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ABSTRACT

Recent observations have now provided evidence for diffuse background

gamma radiation extending to energies beyond 100 MeV. There is some

evidence of isotropy and implied cosmological origin. Significant

features in the spectrum of this background radiation have been observed

which provide evidence for its origin in nuclear processes in the early

stages of the big-bang cosmology and tie in these processes with galaxy

formation theory. A crucial test of the theory may lie in future

observations of the background radiation in the 100 MeV to 100 GeV

energy range which may be made with large orbiting spark-chamber

satellite detectors. A discussion of the theoretical interpretations

of present data, their connection with baryon symmetric cosmology and

galaxy formation theory and the need for future observations will be

given.



1. Introduction

Since this is a symposium on the context and status of gamma-ray

astronomy, it is perhaps an appropriate time and place to consider the

evolution of our ideas in the recent past and where we should be going

in the future, not only in important observational work such as 
the

COS-B experiment, but also in the evolution of theoretical ideas 
and

concepts. It may therefore be of interest to begin this presentation

with a brief look backward before discussing the future. Such a look

is, by its very nature, a subjective thing and this presentation 
is

somewhat reflective particularly of the views of one of us (F.W.S.)

who has has a rather longstanding interest in the subject of the

existence and origin of the diffuse gamma-ray background radiation.

With that warning and apology, let us consider the subject at hand.

2. Early Ideas and Motivations

Early interest in gamma-ray astronomy was stimulated by important

discussions of the potential knowledge to be gained about high energy

astrophysics by studying cosmic gamma-rays. Of particular significance was

the discussion by Morrison (1958). Interestingly enough, Morrison's

discussion of a possible gamma-ray background centered around antimatter

annihilation as a prime source, this being in the context of the steady

state cosmology. We are ncw coming again to focus our attention on anti-



matter annihilation as the prime source of the gamma-ray background radiation,

this time in a different cosmological context (Stecker, Morgan, and Brede-

kamp, 1971; Stecker and Puget, 1972).

It must have been evident very early, in an implicit way that the

only source of matter large enough to give a significant background of

isotropic radiation of a truly astronomical nature is the universe itself.

Therefore, the connection with cosmology has been clearly the prime

motivation for interest in an isotropic background radiation since Morrison's

paper.

Theoretical discussions of various types may be found in the literature

long before the first solid observatioral evidence of the existence of a

gamma-ray background.

The mechanisms listed by Morrison (1958) to be of possible significance

in producing continuum radiation were synchrotron radiation, cosmic-ray

electron bremsstrahlung, 0o-meson decay (from cosmic ray-nucleon interactions)

and antimatter annihilation. To these four, one more mechanism, viz.,

Compton interactions between cosmic-ray electrons and starlight (Felten

and Morrison, 1963) was added. It later became apparent when the 3K

blackbody radiation was discovered that these photons would be orders of

magnitude more numerous than starlight photons in intergalactic space as

targets for cosmic-ray electrons and should thus be the prime Compton

radiation generators of cosmological interest. That the significance

of this was readily grasped is obvious from the plethora of independent

suggestions made immediately after the discovery of the microwave background

radiation (Felten 1965, Gould 1965, Hoyle 1965, Fazio, Stecker and Wright

1966, Felten and Morrison 1966). The relative weakness of intergalactic
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magnetic fields, evidenced by data on the non-thermal radio background,

eliminated synchrotron radiation as a prime contender in generating the

diffuse gamma-ray background so that four mechanisms were left

a) electron bremsstrahlung

b) electron-photon interactions (Compton effect)

c) cosmic-ray produced o-decay

d) decay of no-mesons from matter-antimatter annihilations

The first detection of a low energy garmma-ray background was from a

detector aboard the Ranger 3 moon probe. The concluding remarks of Arnold

et al. (1962) made about their data 12 years ago, still have bearing today:

"The continuum falls roughly as E- 2 u4 up to 1 MeV and is essentially

flat thereafter. The shape below 1 MeV is suggestive of a thick target

bremsstrahlung spectrum. The shape above 1 MeV is puzzling; the absence

of spectral data above 2.6 MeV precludes a unique unfolding of the instrument

response. Nevertheless, attention is called to the unexpectedly high flux

observed above 2.1 MeV."

Evidence for a diffuse background above 50 MeV was reported by Kraushaar

and Clark (1962) from measurements on Explorer 11. The interpretation of

Felten and Morrison (1963) that both the Ranger 3 and Explorer 11 results

could be fitted reasonably well by a single power law of the type expected

from Compton interactions seemed logical; the possible flattening above

1 MeV reported by Arnold, et al. shuffled off to relative oblivion for

years to come and it was expected that data in the two energy decade between

1 and 100 MeV would exhibit nothing more exciting than a smooth power law

spectrum as extrapolated from the sub-MeV ("X-ray") energies.



Theoretical attention was turned to the problem of galactic oT-

production by cosmic rays since the bremsstrahlung and compton production

cross sections were well understood and the measurement of Kraushaar and

Clark on Explorer 11 eliminated the large annihilation fluxes predicted by

steady state cosmology and provided a serious blow to the steady state

theory itself. Ginzburg and Syrovatsky (1963) made estimates of galactic

ro production based on a study by Greisen (1960) of w meson production in

the earth's atmosphere. Pollack and Fazio (1963) calculated the production

rate based on accelerator data. While attempts were made to detect a

gamma-ray background with balloons (e.g. Haf6 eret al. 1963) balloon results

remained ambiguous because of subtractions of large background correction

from atmospheric secondary gamma-radiation. The observational situation

remained relatively stagnant as observational gamma-ray astronomy book a

back seat to X-ray astronomy until the classic OSO-3 experiment whose

preliminary results were reported on by Clark, Garmire and Kraushaar

(1968). While their most exciting results were about the detection of

galactic gamma-rays, they also reported on a possible background flux at

high galactic latitudes.

3. Cosmology, Redshifts and Spectra

In the late 60's one of us (FWS), having made detailed thesis calculations

of gamma-ray spectra from cosmic-ray producted secondary particles and from

proton-antiproton annihilation (Stecker 1967), became interested in the

effects cosmology might have on such spectra and on the implications of

these effects for cosmology itself. Cosmic-ray wa-decay was suspected to
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play a major role in generating galactic gamma-rays (Pollack and

Fazio , 1963 ) and it remained a viable possibility for explaining

the extragalactic background flux above 100 MeV. But if such interactions

are occuring in intergalactic space now, why not in the distant past when

gas and cosmic-ray densities were higher (in an expanding universe)?

If so, large fluxes of extragalactic cosmic-rays (comparable to galactic

fluxes) need not exist now to explain the 100 MeV background (Stecker 1966, 1969a).

Also, the spectrum would be redshifted and would be softer than the galactic

spectrum (Stecker 1969b). Similar ideas were being independently worked ,on

by Ginzburg (1968) in the context of the Lamaitre cosmological model and

by Rozental and Shukalov (1969) for the standard expanding universe model.

In these models, various cosmological effects come into play to distort

the spectrum from To-decay and redshift its characteristic peak from an

energy of mTc 2/2 1 70 MeV to lower energies (see extensive discussions in

the monographs by Stecker (1971a) and Ozernoi, Prilutsky and Rozental (1973)).

The result was the prediction of a possible enhancement in the gamma-ray

background spectrum between 1 and 100 MeV deviating from the simple power

law extrapolation of the X-ray background. At the time of these early

predictions, there was only a single uncertain data point at 100 MeV obtained

by the OSO-3 experiment which seemed as if it might be above the X-ray

extrapolation (Stecker 1968). Figure 1, taken from Stecker and Silk (1969)

showed these predictions for the gamma-ray background. Shortly thereafter,

results on the background up to an energy of 6 MeV were reported by Vette

et al. (1969, 1970) as obtained on the ERS-18 satellite which did indicate
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an enhancement above 1 MeV, recalling the earlier statement of Arnold,

et al. The data of Vette, et al. gave support to the interpretation of a

redshifted 0o-decay origin for the gamma-ray background, but with the

surprizing implication of a burst of cosmic-rays produced at a redshift

of 100 and it was speculated that such a large burst at such a high redshift

might be connected with the galaxy formation process and protogalactic

masses (protars) (Stecker 1969c, 1971b). Cosmological absorption effects

expected at high redshifts were then examined by Rees (1969), Arons and

McCray (1969), Fazio and Stecker (1970) and Stecker (1971a). Other implications

of the "protar" hypothesis have recently been examined by Montmerle (1973,

1974).

4. Baryon Symmetric Cosmology

Early observations of gamma-radiation by Kraushaar and Clark (1962)

had clearly indicated that if antimatter exists in the universe in large

amounts, it must clearly be separated from matter so that the average

annihilation rate is quite small. In 1969, Omn~s suggested a baryon

symmetric (equal amounts of matter and antimatter) cosmology based on a

possible phase transition effect which could separate matter from antimatter

at an early stage in the big-bang corresponding to nuclear density for the

cosmic plasma. The phase transition effect was also studied by Aldrovandi

and Caser (1972) and Cisneros (1973). Further work by Omnes (1972 and

references therein) showed that the separate domains of matter and antimatter

could grow to contain masses of the size of galaxies by the recombination

epoch. This result has recently been refined by Aldrovandi et al. (1973).
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It was to be expected that boundary-region annihilations in this picture

would also produce redshifted o-decay radiation and absorption effects

would cut off the resultant flux below 1 MeV. Therefore, Stecker, Morgan

and Bredekamp (1971) were motivated to make a detailed calculation of the

resultant diffuse background spectrum to be expected, and the results

agreed fairly well with the observations then available. The encouraging

enhancement in the 1 to 100 MeV range is partially due to the existence

of a "gamma-ray window" in this energy range as shown in Figure 2. The

results were encouraging enough for us to examine further the evolution of

the Omnes cosmology for redshifts less than 103 (Stecker and Puget 1972).

We then found several exciting implications

a) separate regions containing masses the size of galaxy clusters

could be obtained.

b) turbulence produced by annihilation pressure could provide enough

energy to trigger galaxy formation.

c) estimates obtained placed the galaxy formation stage at redshifts

of the order of 60.

d) mean densities and angular momenta of galaxies could be estimated

in this picture consistent with observation and related to the

annihilation rates calculated by the model and implied by the

observations.

The annihilation rate has been further examined by one of us (Puget

1973) and the galaxy formation model has been further refined by Dallaporta,

Danese and Lucchin (1974). These later results have been encouraging as

have the more recent data.



9

The general scheme of the galaxy formation model is shown in Figure 3.

The observational implications of the model are outlined in Figure 4.

The calculated annihilation rate as a function of redshift z is shown

in Figure 5 (Puget 1973). Further discussion of the gamma-ray spectrum

calculations has been given previously (Stecker 1973).

5. Recent Data on the Diffuse Gamma-Ray Background

Since 1971, various groups have obtained data on the diffuse background

radiation in the cosmologically critical region between 1 and 100 MeV,

hopefully in some part stimulated by the theoretical calculations. These

data have now defined a continuous background spectrum up to an energy of

%200 MeV. They are summarized in Figure 6. Figure 7 shows a comparison of

these data with the annihilation spectrum calculated by Stecker, Morgan and

Bredekamp (1971) (see also the discussion of Stecker and Puget 1972).

Determinations of isotropy have been made by Fichtel et al. (1973) at the

higher energies and by Sho-nfelder and Lichti (1974) at the lower energies.

We feel that the recent data tend to support the annihilation model.

Figure 8 shows the energy spectrum J(E ) E EyI(E ) of the background

radiation between 10- 3 and 200 MeV as based on the review paper of Schwartz

and Gursky (1973) and the data shown in Figure 6. An extrapolation of

the data between 30 keV and 1 MeV is shown by the dashed line. A strong

deviation from the power law extrapolation expected historically is indicated.

These data may be compared with Table 1 which summarizes the features

expected from the four main production mechanisms mentioned earlier. Further

discussion of these features and mechanisms has been recently given

(Stecker 1973).
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Growing evidence of an enhancement in the background flux has stimulated

a variety of other theoretical models to explain these data ex post facto.

We feel that these later attempts have problems of various degrees of

seriousness ranging from "troublesome" to "physically impossible." Such

models have been discussed previously (Stecker 1973) and more recent

attempts will probably be discussed elsewhere in these proceedings and in

the future (Stecker 1974). Suffice it to say here that we feel that the

redshifted n1Tdecay mechanisms seem to us the most likely explanation of

the gamma-ray background spectrum.

6. Future Observational Tests

Having discussed the past evolution of our knowledge of the diffuse

background and the present situation, we now turn toward the future. We

feel theorists and cosmologists should be encouraged by the recent observational

successes in the field. Likewise, it is to be hoped that the exciting

theoretical implications of these studies will inspire new observational

efforts. In the range around 1 MeV, a better understanding of intrinsic

contamination and its minimization should enable a more confident determination

of the energy spectrum to be made. But perhaps the new challenge lies

in a study of the flux between 100 MeV and 100 GeV. It is in this energy range

that critical tests may be made of the "protar" and annihilation hypotheses.

The first critical test lies in a study of the energy spectrum.

Figure 9 shows the present range of the data, indicated by the shaded

region, along with the extrapolated power-law spectrum (X) the annihilation

spectrum (A) and the high energy form of the spectrum predicted for red-

shifted cosmic-ray TTo-decay gamma-rays (CR). The annihilation spectrum



should exhibit a sharp cutoff slightly below 1 GeV because the energy of

the gamma-rays is limited by the rest energy available to them from baryon-

antibaryon annihilations. A detailed discussion of this may be found in

Stecker (1971a). The cosmic-ray produced spectrum, on the contrary, can

continue up to highe energies with a steepening induced around 10 GeV

by pair-production losses through interactions with the microwave background

(Fazio and Stecker 1970). This steepening should amount to an increase of

0.5 in the spectral index for a closed Einstein-de Sitter universe and an

increase of 0.75 in the spectral index for a low-density open universe

(Stecker 1971a). It should be kept in mind that the cutoff in the annihilation

spectrum may be somewhat obscured by the presence of other background

radiations having relatively lower intensities below 200 GeV.

The other test lies in possible angular fluctuations in the background

radiation at a few hundred MeV. Such fluctuations may be expected from

annihilation radiations since annihilations take place mainly at the

boundaries of regions containing galaxy clusters at present (redshift zero).

On the contrary, metagalactic cosmic-ray induced radiation may be more

uniform in nature.

In order to accomplish these observational tests, experimenters are

challenged to build more sensitive detectors to study the relatively small

fluxes of photons expected at the higher energies. Better angular resolution

is clearly needed. The challenges may not be easy ones,.but the results

can be rewarding in shedding more light on the nature of the universe in

which we live.
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MECHANISM y-RAY SPECTRUM CHARACTERISTICS
MECHANISM

SINGLE INTERACTION GALACTIC SPECTRUM COSMOLOGICAL SPECTRUM

COMPTON INTERACTIONS FLAT AT TYPICAL COSMIC-RAY POWER-LAW ROUGHLY POWER-LAW ROUGHLY
ENERGIES I(E ) E 2  I (E ) E 2

PEAKED TOWARD HIGH PHOTON ENER- RELATION BETWEEN RELATION BETWEEN
GY AT ULTRAHIGH ENERGIES. EXPONENTS EXPONENTS

(KLEIN-NISHINA THEORY) c =(Ie+ 1)/2 = (1 +1) /2

BREMSSTRAHLUNG FLAT AT RELATIVISTIC ENERGIES. POWER-LAW ROUGHLY POWER-LAW WITH POSSIBLE CHANGES
INTERACTIONS PEAKED TOWARD LOW PHOTON ENERGY I ~ E- 3  OF EXPONENT AT - 0.04, 1 and

AT NON -RELATIVISTIC ENERGIES. fb=Je (RELATIVISTIC) ~ 3.5 MeV.

Fb= (e + 1), NON-REL.

NEUTRAL PION PROD- FLAT AND SYMMETRIC AROUND m7 c2 /2 MAXIMUM AT m c 2 /2. MAXIMUM IS REDSHIFTED TO SOME
UCTION (INELASTIC ON A LOG E GRAPH NEARLY FLAT NEAR MAX- ENERGY BETWEEN -1 AND - 70MeV.
COSMIC-RAY INTER- (FOR DECAY OF A SINGLE PION) IMUM AND SYMMETRIC ON (NOTE: m r c2 /2 70MeV).
ACTIONS) A LOG Ey GRAPH. POWER- POWER -LAW AT HIGHER ENERGIES.

LAW ROUGHLY I '- E- 3 AB-

OVE A FEW HUNDRED MeV.

NEUTRAL PION PROD- FLAT AND SYMMETRIC AROUND m7r c2 /2 EXPECT NONEXISTENT SPECTRUM POWER-LAW BETWEEN
UCTION IN MATTER- ON A LOG Ey GRAPH - 5 AND - 50 MeV, TURNS OVER
ANTIMATTER ANNIHIL- (FOR DECAY OF A SINGLE PION) BELOW 5 MeV AND FALLS OFF MORE
ATION. SHARPLY ABOVE 50 MeV. o



FIGURE CAPTIONS

Figure 1 Early predictions of the diffuse gamma-ray background spectrum

given by Stecker and Silk (1969). The expected power-

law flux, according to the Compton hypothesis of Felten

and Morrison (1963) is indicated by the dashed line. Red-

shifted cosmological cosmic-ray pion decay spectra for two

maximum redshifts (zmax) were shown to predict enhancements

in the background spectrum between 1 and 100 MeV. Zmax = 100

corresponding to the epoch of galaxy formation was considered

the extreme case. Calculations were based on an E- 2 .5

cosmic-ray spectrum which later had to be steepened to E
- 2 .7

to fit the observational data.

Figure 2 The redshift at which the universe becomes opaque to photons

given as a function of observed gamma-ray energy. Gamma-

rays originating at all redshifts below the curve can reach

us unattenuated with the energy indicated. The two curves

on the left side of the figure are for attenuation by

Compton scattering with intergalactic electrons having

the densities indicated and for pair production and are

based on the calculations of Arons and McCray (1969).

The right-hand curve results from attenuation of gamma-rays

by interactions with the microwave blackbody radiation and

is based on the discussion of Fazio and Stecker (1970).

Figure 3 Outline of the galaxy formation theory of Stecker and

Puget (1972).



Figure 4 Observational implications of baryon symmetric cosmology.

Figure 5 Matter-antimatter annihilation rate as a function of redshift

based on the discussion of Puget (1973).

Figure 6 Observational data on the gamma-ray background energy

spectrum. The highest energy point of Vette, et al. (1970),

shown with a dashed line, and possibly the neighboring point

are now thought to be erroneously high due to an inefficiency

in the anticoincidence circuit of their detector which

should not significantly affect the points at lower energies

(Vette, private communication).

Figure 7 A comparison of the data given in Figure 6 with the annihilation

model discussed by Stecker, Morgan and Bredekamp (1971)

and Stecker and Puget (1972).

Figure 8 Energy flux spectrum of the X-ray and gamma-ray background

based on Schwartz and Gursky (1973) and the data given in

Figure 6. The straight diagonal line indicates an extra-

polation of the 30 keV to 1 MeV spectrum.

Figure 9 Predicted energy flux spectra from the annihilation model

(A) and cosmic ray (protar) model (CR) as discussed in the

text. Also shown is the scatter area covered by the

observational data (shaded) and the extrapolated X-ray

background spectrum (X). The two curves shown for the CR

spectrum above 7 GeV are for closed (Einstein-de Sitter)

and open universes as discussed in the text (Stecker 1971a).
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GENERAL SCHEME OF MODEL

* MATTER AND ANTIMATTER EXIST IN EQUAL AMOUNTS IN SEPARATE REGIONS.

* MIXING OCCURS ALONG BOUNDARY REGIONS OF THICKNESS,.AA.

SRESULTING RAPID HEATING OF PLASMA WITHIN A DISTANCE eAx OF BOUNDARY BY
ANNIHILATION PRODUCTS PRODUCES EXPANSION AWAY FROM BOUNDARY.

* RESULTING EXPANSION OF PLASMA INDUCES HIGH-VELOCITY GAS MOTIONS.

* DURING THE NEUTRALIZATION ERA (POSSIBLY EVEN SOMEWHAT BEFORE) GAS MOTIONS BECOME
TURBULENT (,-,500: _Z _','3000).

* WHEN GAS GOES FROM PLASMA TO ATOMIC STATE (e 400 _ ZN !Se"600):

A) DUE TO DECOUPLING OF MATTER FROM RADIATION FIELD, VISCOSITY DROPS BY
ALMOST 8 ORDERS OF MAGNITUDE AND SOUND VELOCITY DROPS BY FOUR ORDERS
OF MAGNITUDE.

B) THIS CAUSES TURBULENCE TO BECOME SUPERSONIC AND TO EXTEND THE EDDY
SPECTRUM DOWN TO A SCALE OF THE ORDER OF 10- 3pc.

C) THE SUPERSONIC TURBULENCE INDUCES DENSITY FLUCTUATIONS Ap/p ',1 OVER
THE WHOLE RANGE OF EDDY SCALES.

OAT A REDSHIFT OF 2ZN OR ABOUT 60, VIRIALTHEOREM BECOMES SATISFIED FOR BINDING OF

GAS CLOUDS INTO PROTOGALAXIES DUE TO DENSITY FLUCTUATIONS INDUCED BY
SUPERSONIC TURBULENCE.
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