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DERIVATION OF FORMULAS FOR ROOT-MEAN-SQUARE ERRORS

IN LOCATION, ORIENTATION, AND SHAPE IN TRIANGULATION

SOLUTION OF AN ELONGATED OBJECT IN SPACE

By Sheila Ann T. Long

Langley Research Center

SUMMARY

Formulas are derived for the root-mean-square (rms) displacement, slope, and

curvature errors in an azimuth-elevation image trace of an elongated object in space,

as functions of the number and spacing of the input data points and the rms elevation

error in the individual input data points from a single observation station. Also, formulas

are derived for the total rms displacement, slope, and curvature error vectors in the tri-

angulation solution of an elongated object in space due to the rms displacement, slope,

and curvature errors, respectively, in the azimuth-elevation image traces from different

observation stations.

INTRODUCTION

The purpose of this paper is to relate the errors in location, orientation, and shape

in the triangulation solution of an elongated object in space to the rms elevation errors in

the individual input data points. An elongated object, in this paper, is defined as an entity

whose lateral dimensions are so small in comparison to its length that it can be regarded

as a curved line. One example of such an entity in space is an ionization trail resulting

from an object entering the upper atmosphere. A second example is an ionized cloud

released in space, such as the barium ion cloud released in the magnetosphere on

September 21, 1971 (ref. 1).

In reference 2 a formula is derived for the total distance (i.e., displacement) error

vector, which specifies the error in location, in the triangulation solution of a smoke trail

in space. For curved lines in space, however, one also needs to specify the errors in

orientation and shape. For these, formulas are needed for the total slope and curvature

error vectors, respectively. In this paper the total rms slope and curvature, as well as

displacement, error vectors are determined.

This paper is composed of two main parts. In the first part a smoothed azimuth-

elevation image trace through the azimuth-elevation input data points from a single
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observation station is obtained by a least-squares procedure. (The input data points are

taken from photographs of the elongated object in space and are initially in terms of right

ascension and declination coordinates. A coordinate transformation is then made from

right ascension and declination to azimuth and elevation.) Formulas are derived relating

the rms displacement, slope, and curvature errors in this smoothed azimuth-elevation

image trace to the rms elevation error in the individual input data points.

In the second part of this paper, the errors in the triangulation solution of an elon-

gated object in space are considered. These errors are manifestations of triangulating

on azimuth-elevation image traces (and, consequently, input data points) from several

observation stations that contain errors. If the input displacement, slope, and curvature

errors in the azimuth-elevation image traces are assumed to be small, then one can

assume that they give rise to the total rms displacement, slope, and curvature error vec-

tors, respectively, in the triangulation solution. Formulas are derived relating the total

rms displacement, slope, and curvature error vectors in the triangulation solution of an

elongated object in space to the rms displacement, slope, and curvature errors, respec-

tively, in the azimuth-elevation image traces.

The total rms displacement, slope, and curvature error vectors are useful for

determining the relative merits of two or more different triangulation procedures appli-

cable to elongated objects in space. They are also useful for determining the effect of

various experimental parameters - such as the number and relative location of the obser-

vation stations, the spacing of the input data points along the azimuth-elevation image

traces, etc. - on the triangulation solution of an elongated object in space.

SYMBOLS

AN, B ' CN coefficients of second-degree curve (n-l), nA, (n+l)1

aN',b, cN random curvature, slope, and displacement errors in segment (n-l)A,

ni, (n+l)4

dN ,d/ d4 di total, east-west, radial, and north-south output displacement errors
N N, pN' 4N

in solution curve at point N, due to error eN

dvl displacement error in curve (n-l)t, nt, (n+l) t ' at vn = 0

dN total output displacement error vector in solution curve at point N, due

to error e NN
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eN input displacement error in segment (n-1)1, n1 , (n+l)4

fN distance between points n+1 and (n+l)L in input slope error
determination

gN distance between points n and nl in input curvature error
determination

hn m  coordinates along ordinate axis (i.e., elevation) of individual input data
points

, ib unit vectors centered at point N in directions of increasing east longitude,
geocentric radius, and geocentric latitude

quantity which is directly proportional to number of input data points

m index for sequential labeling of individual input data points

N,NA indices for sequential labeling of points along curves S and S/

n,nP indices for sequential labeling of points along traces s and s/l

rl input radius of curvature error in segment (n-l)P, n , (n+l)4

S,SPI reference and triangulation solution curves of elongated object in space

s,sL azimuth-elevation error-free and image traces from station t

p total number of input data points

p2p 4  quantities depending on number of input data points

T T ^ , unit vectors in directions of vectors N4,N+I and N-1,Nl

tN' N unit vectors in directions of vectors N,N+1 and N,(N+1)4

unm coordinates along abscissa axis g.e., azimuth x cos(elevation]
of individual input data points
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vnI wI  continuous variables along abscissa .e., azimuth x cos(elevation) and

ordinate (i.e., elevation) axes of second-degree curve (n-l)1, ni ,

(n+l)P

x,y,z rectangular coordinate system with origin at center of earth, x axis in

equatorial plane toward Greenwich meridian, z axis toward north,

and y axis to form right-hand orthogonal triad

aN input slope error in segment (n-l) , n , (n+l)1

, iN' total, parallel, and perpendicular slope errors in solution curve at point N,

due to error aN

(As) N  spacing between points n and n+1

5 spacing between coordinates unm

E deviations associated with individual input data points
nm

LN vertical displacement of curve (n-l)1 , n1l , (n+l) 1 at vn = 0

TI 1jcurvature of curve (n-1)t, nt, (n+1) at n = 0

ON'1N', 2N total, parallel, and perpendicular rms curvature errors in solution curve

at point N

NI iN 2N total, parallel, and perpendicular curvature errors, per unit input curva-

ture error, in solution curve at point N

LN input curvature error in segment (n-i)A, n, (n+l)l'

KN K IK2N total, parallel, and perpendicular output curvature errors in solution curve

at point N, due to error tN

KN total output curvature error vector in solution curve at point N, due to

error LA

N N east longitude of points N and N4
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p. particular observation station

-N A-N'pN N total, east-west, radial, and north-south rms displacement errors

in solution curve at point N

N5,5 pN,'N total, east-west, radial, and north-south displacement errors, per
unit input displacement error, in solution curve at point N

pN'P geocentric radius of points N and NA

oN rms elevation error in individual input data points

0A ' BN 1CN rms errors in AN, Bi, and CNAN' BN CN N' N N

S'aN IN' N rms curvature, slope, and displacement errors in segment (n-i)A,
n A, (n+1)A

N' N geocentric latitude of points N and N 1

N slope of curve (n-l)A, nA, (n+l)A at v ' = 0

ON' lN', 2N total, parallel, and perpendicular rms slope errors in solution curve at
point N

wN' N' w 2N total, parallel, and perpendicular slope errors, per unit input slope error,
in solution curve at point N

ANALYSIS

Relationship Between rms Displacement, Slope, and Curvature

Errors in an Azimuth-Elevation Image Trace From a

Single Observation Station and rms Elevation

Error in Individual Input Data Points

In figure 1 an azimuth-elevation plot from the observation station 1 of an image

trace sA and an error-free trace s is shown. An azimuth-elevation image trace

approximates the actual photographic image of an elongated object in space. An azimuth-

elevation error-free trace is the trace that would result if no errors whatsoever occurred
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from the data acquisition system and the data reduction procedure. The image trace seg-
ment (n-1) 1 , n , (n+1)1' differs from the error-free trace segment n-1, n, n+1 in
location (i.e., displacement), orientation (i.e., slope) as defined by the first-order deriva-
tive, and shape as defined by the second and higher order derivatives. In this paper the
highest order derivative considered will be the second; hence, shape will be defined by the
single parameter curvature.

For convenience the azimuth-elevation input data points within the segment are
selected so that they are equally-spaced along the azimuth x cos(elevation) coordinate
axis. The segments are sufficiently small so that they can be accurately described by a
second-degree curve. Each second-degree curve is obtained by a least-squares procedure.
The segment (n-l), n ', (n+l)4, centered about the point n4, of the azimuth-elevation
image trace sA is one such resulting second-degree curve.

The coordinates unlm [.e., azimuth x cos(elevation and hn m (i.e., elevation),
where m = -j, -j+l, ... , -1, 0, 1, ... , j-l, j, of the individual input data points in the interval
which gives rise to the second-degree curve (n-1)', nil, (n+l) ' are shown in figure 2.
The deviations ell associated with these individual input data points arenm

E A"um" u BCu h (1')nm = AN unm Bnm N nm

The coefficients AN, BN, and CN are to be determined. The sum of the squares of
the deviations is

2 2 2

nm = m + BNu n C - hn (2)
m=-j ( " m=-j tm

The following is a generalization of the procedure set forth in reference 3 for the
best fit of a straight line to experimental data. In this analysis the best fit of a second-

i 2
degree curve to the data of interest is the one which minimizes (Enm . Taking the

m=-j

first partial derivatives of equation (2) with respect to A4, BN, and C1, respectively,
and then setting each of these three resulting expressions equal to zero, one arrives at

A (Um)+ ) +C (nmin)2 . hBnm1(U"m) 0 (3)

m=-j m=-j m=-j m=-j
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j 32 j
A unm)+B Z n +Cul m C Unm- S h nm u  0 (4)

m=-j m=-j m=-j m=-j

J2 j j

A (nm) B)i + unm+ C~- hP Im 0 (5)
m= -j m=-j m=-j

The quantity p is the total number of input data points in the interval of interest.

p = 2j + 1 (6)

Without loss of generality the 2j + 1 equally-spaced coordinates Unm can be centered

on a local coordinate origin (i.e., unO = ). Then,

m=-J

m = -j

( u ) = 0 (9)
m=-j

J 4

unm )452 (10)
m=-j

The quantity 6 is the spacing between the coordinates upm of the individual input data

m---J

points. The quantities p2 and p4 , which depend on the number of input data points in

the interval of interest

p2 = 2(1 2 + 22 + 3 2  . + j2 )

=j(j + 1)(2j + 1) (11)
3
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p4 = 2(1 4 +2 4 +3 4 +.. + j4)

Sj(j + 1)(2j + 1)(3j 2 + 3j - 1) (12)
15

Substituting equations (7) to (10) into equations (3) to (5) where appropriate, one finds that

equations (3) to (5), respectively, become

2
p 4  P26 2CN= .hnm \nm) (13)

P4 nm nm
m=-j

P2=2BIJ' h " u A (14)
P N nm nm

m=-]

p 26 2AI +pC= hm (15)m= -J

after rearranging. Solving the three simultaneous equations (13), (14), and (15), one

obtains the coefficients Al, B, and CN

J 2

Z. P(Unm)2 2- p2hnm

B m=-j (17)

S2 p 2

P4 P=- 2 \ nm nm
C4= m=-_ p (18)

N 62 2)

One can assume that the individual input data points are uncorrelated. If the rms
error in the individual coordinates hnm is denoted by oN, then the rms error AN

in AA is obtained from the following:
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s(PP4- 2)

using equation (16)

( 2 2 ( 4) - 2pp 2 2(p 262) +P264

68 - 2)2

using equations (10), (8), and (6)

( ,)2
-

Hence, the rms error oAN in ANI is

? - 1/2 (19)
AN 62 p 2

Similarly, the rms errors in BA and CN, denoted by OBN and oN, respectively,

are

(20)

BN p1/2

SP4 2 
(21)

From equations (19), (20), and (21), using equations (6), (11), and (12), one notes

that, for large j,

A.N varies approximately as i6 ()1/2
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BfN varies approximately as (1 1I'BN

YCN varies approximately as I
(j)l/2

The quantity 6 is the spacing between the coordinates unm of the individual input data

points, and the quantity j is directly proportional to the number of input data points in

the interval of interest.

The equation for the second-degree curve (n-1)A, ni, (n+1)A, centered about the

point nil, is

= ANn +BV + C (22)

where vn and wn, shown in figure 2, are the continuous variables along the abscissa

.e., azimuth x cos(elevationJ and ordinate (i.e., elevation) axes, respectively. The ver-

tical displacement C of this curve, at vn = 0 (i.e., at the point nl), is
N n

N W n

= CA
N

The vertical displacement error dSN is

dA = dCA

The normal displacement error dv N in the curve (n-l)A, nA, (n+l)A, at vn = 0, is

n 0 n-

= dCN cos tan-1 BN

+ (BN 1 I/2
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Therefore, the rms displacement error ocN in the azimuth-elevation image trace

segment (n-l) , ni, (n+1)IL, as related to the rms elevation error ojN in the individual

input data points in the interval of interest, is

L CN (23)
cN 1/2

where cCN is given by equation (21).

The slope N of the second-degree curve (n-l),, n , (n+l)I, at vn= 0, is

n v1=0
n

= tan- 1 BA

The slope error d* is

dBA
d = N

1 + BA

Therefore, the rms slope error ON in the azimuth-elevation image trace segment

(n-1)/a, nM, (n+l)t, as related to the rms elevation error oN in the individual input

data points in the interval of interest, is

ObN BN (24)
1+ BN

where O N is given by equation (20).

The curvature q/ of the second-degree curve (n-1)I, n, (n+l), at v = 0,

is



d2wn

n

dvi

2AAN

1 B 23/2

The slope error d7 N is

2A A 2A' N

dIN774 + BN 2 3/2 dA N + N dBP

2dA' 6AAB!dBN

I+ (B A / 1+ BNi l "/2

Therefore, the rms curvature error o~ in the azimuth-elevation image trace segment

(n-l)P, nt, (n+l)A, as related to the rms elevation error N in the individual input data

points in the interval of interest, is

4 2 + 36(AP)2B) ( )2 1 (25)/2
4 2 +36 N N 2 BN 2(25)

1 + (BN 1 ) 1 + (BN~j

where O N and O-BN are given by equations (19) and (20), respectively.
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Relationship Between rms Displacement, Slope, and Curvature Errors

in the Triangulation Solution of an Elongated Object in Space and

rms Displacement, Slope, and Curvature Errors, Respectively,

in Azimuth-Elevation Image Traces

Separation of errors.- The output displacement, slope, and curvature errors in the

triangulation solution of an elongated object in space are assumed to be small and linearly

related to the input displacement, slope, and curvature errors, respectively, in the

azimuth-elevation image traces. A linear error analysis model will be derived using

perturbations of triangulation solutions to establish the required linear relationships.

The problem reduces to defining the deviation of one curved line in space from a

second curved line in its immediate neighborhood. The first curved line is called the ref-

erence curve and is denoted by S. The reference curve S, shown in figure 3, is assumed

to have the same position and form as the elongated object in space of interest. The

points along the curve S are sequentially labeled ... , N-1, N, N+1, .... The geocentric

latitude, east longitude, and geocentric radius of the point N on the curve S are

denoted by N, XN, and pN, respectively. In computations one should space the points

along the curve S at small, equal intervals in geocentric latitude, east longitude, or

geocentric radius, depending on the position and form of the elongated object in space of

interest. Also, the points along the curve S should be spaced so that the distances

between the successive points are small compared to the geocentric radii of the points.

Hence, the arc segments between the successive points along the curve S can be

regarded as straight-line segments.

From the curve S, one can derive the azimuth-elevation error-free trace from

each of the observation stations of interest. The azimuth-elevation error-free trace s

from the observation station p. is shown in figure 4. The points n-1, n, and n+l

along the trace s correspond to the points N-i, N, and N+l, respectively, along the

curve S.

The input displacement, slope, and curvature errors are assumed to be small.

Hence, one can assume that they give rise to the total rms displacement, slope, and curva-

ture error vectors, respectively. In other words, the total rms displacement, slope, and

curvature error vectors are assumed to be effectively decoupled and, consequently, can

be examined separately.

One notes that configurations of one, two, and three points define zero, first, and

second order derivatives, respectively, if the derivatives are expressed in finite difference

notation. This fact will be used in this part of the analysis. In other words, configurations

of one, two, and three points will be used in the determinations of the total rms displace-

ment, slope, and curvature error vectors, respectively.
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The general procedure for determining the total rms displacement error vector,

for instance, will be as follows: Introduce an input displacement error into the error-

free trace s from station 1i to form an image trace sI'; triangulate, using the

trace sl from station 4 and the error-free traces from the remaining stations, to

obtain a triangulation solution curve SI; compare the curve S5 to the curve S to find

the total output displacement error vector due to the input displacement error introduced

at the station p; take the ratio of the output to the input displacement errors; and com-

pute the rms sum of this ratio over all of the stations. Analogous procedures will also

be carried out with regard to the total rms slope and curvature error vectors.

Displacement errors.- The determination of the total rms displacement error vector

will be considered first. For this the points n-1, n, and n+l on the azimuth-elevation

error-free trace s from the observation station A are displaced through eN radians

along the normals to the trace s at the points n-1, n, and n+1, respectively, to form

the points (n-1)I, nI, and (n+l)4, respectively, as shown in figure 4. The segment

(n-l)I, nI, (n+1l), extended, is the azimuth-elevation image trace sEi from the obser-

vation station A. The quantity eN is the input displacement error in the azimuth-

elevation image trace segment (n-l)I, nI, (n+l) from the observation station I.

The triangulation solution of the elongated object in space is then calculated, using

for input data the points along the azimuth-elevation image trace sMi from the observa-

tion station 1 in conjunction with the points along the azimuth-elevation error-free

traces from all of the remaining observation stations. Three appropriate triangulation

procedures for a curved line in space are described in references 4, 5, and 6.

The resulting triangulation solution curve of the elongated object in space is

denoted by SI and is shown in figure 3. The points along the curve SI1 are spaced

according to the same scheme as that used for spacing the points along the curve S.

They are spaced at the same small, equal intervals in geocentric latitude, east longitude,

or geocentric radius that were used for the spacing of the points along the curve S. The

point on the curve S1 which has the same geocentric latitude, east longitude, or geocen-

tric radius as the point N on the curve S is denoted by Ni. The geocentric latitude,

east longitude, and geocentric radius of the point NI are denoted by 0N, XL, and

pN, respectively. (One should notice that no correspondence exists between the points

NI' and nI, unlike the situation for the points N and n.)
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The vector N,N+1, from the point N to the point N+I, shown in figure 3, is

N,N+1 = pN+1 cos qN+ 1 sin(N+l- XN)'X

+ PN+ 1 [sin N+ cos ON cos +1 sin qN cos(AN+l - N I

S N+1 Cos + cos cos N+1 AN) + sin 0+1 sin - PN) p (26)

where 1, , and ip are the unit vectors centered at the point N in the directions of

increasing east longitude, geocentric latitude, and geocentric radius, respectively, where

4N' XN, and pN are the geocentric latitude, east longitude, and geocentric radius,
respectively, of the point N, and where +1, XN+1, and PN+l are the geocentric lat-

itude, east longitude, and geocentric radius, respectively, of the point N+1. The unit

vector N, shown in figure 3, which is in the same direction as the vector N,N+1, is

N N+1
tN = (27)

The vector N,N t', from the point N to the point N11 , in figure 3, is

N,NI=pN cos ,sin (X N ) 1x

+ pA [sin "'cos PN - cos sin cos - N

+ ( cos cos cos N) + sin sin N] - pN) (28)

where , A, and pN are the geocentric latitude, east longitude, and geocentric

radius, respectively, of the point NA1.

The vector d1 , shown in figure 3, which is drawn fromand normal to the curve S,

at the point N, to the curve S11, very closely approximates the shortest vector distance

from the curve S to the point Nil . The vector d1l is the total output displacement

error vector in the triangulation solution curve at the point N, due to the input displace-

ment error eN'
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From figure 3 one sees that

dN = N,N - NN " t NN (29)

Substitution of equations (27) and (28) into equation (29) leads to an equation for the vector
--->

d4 in the following form:

d = d i T + d4 I d i (30)N AN X ON 0+ pN p

where dN , d N , and dpN are the east-west (i.e., in the direction of increasing east

longitude), north-south (i.e., in the direction of increasing geocentric latitude), and radial

(i.e., in the direction of increasing geocentric radius) output displacement errors in the

solution curve at the point N, due to the input displacement error eN. The total output

displacement error dN in the solution curve at the point N, due to the input displace-

ment error eN, isN'

( 1/2
dN = d + dN)2 + dpNj (31)

Hence, the east-west, north-south, radial, and total displacement errors, denoted by

NA N' NN' and N, respectively, per unit input displacement error, in the solution

curve at the point N are

d1
= e"' (32)

N

dA (33)

N

d
(34)

pN ep

lj N (35)
N

16



Now, the east-west displacement error 1, for instance, in the solution curve at

the point N is due only to the unit input displacement error in the azimuth-elevation

image trace segment (n-l)A, nl, (n+l)A from the observation station p. If a random

normal displacement error, cN, with zero mean exists in the segment (n-1)A, nA,

(n+l) from the station p, then the east-west displacement error in the solution curve

at the point N, due to the random displacement error cN' is N c). Hence, the

east-west rms displacement error -N in the solution curve at the point N, due to the

random displacement error cN in the azimuth-elevation image trace segment (n-1)A,

nA, (n+1)A from each of the respective observation stations, is

1/2

XN X N cA (36)

The bar denotes the mean value, and the summation is over the total number of observa-

tion stations. Because the random displacement errors c4 at the various observation

stations are uncorrelated, equation (36) becomes

-N = )2 (C J (37)

If one assumes that the mean-square random displacement error cN  in the azimuth-

elevation image trace segment (n-l)A, n~, (n+1)A from each respective observation

station is equal to (oN) radians the mean-square displacement error in the azimuth-

elevation image trace segment (n-1)A, n , (n+1)4' as given by equation (23k, then equa-

tion (37) becomes

=2( 2 (38)

Therefore, equation (38) is the formula for the east-west rms displacement error in the

triangulation solution curve at the point N, as related to the rms displacement errors

cN in the azimuth-elevation image traces. Similarly, the north-south, radial, and

total rms displacement errors, denoted by -@N pN, and FN' respectively, in the

triangulation solution curve at the point N, as related to the rms displacement errors

'cN in the azimuth-elevation image traces, are
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Si2/22 1 11, \2q (39)

pNI N 2  N)21/2 (40)

-N N 2 (41)

Slope errors.- In this section the relationship between the total rms slope error

vector in the triangulation solution of an elongated object in space and the rms slope

errors in the azimuth-elevation image traces is considered. For this determination a

triangulation solution of the elongated object in space is calculated, using for input data

the points along the azimuth-elevation image trace segment n, (n+l)A, extended,

denoted by sM, and shown in figure 5, from the observation station Ii in conjunction

with the points along the azimuth-elevation error-free traces from all of the remaining

observation stations. One notes that the segment n, (n+l)/ has one extremity on the

trace s. This is permissible, without loss of generality, because the total rms slope

error vector has been assumed to be effectively decoupled from the total rms displace-

ment error vector. (The point (n+l)4 in fig. 5 is not necessarily the same as the

point (n+l)4 in fig. 4.) The resulting triangulation solution curve SI of the elongated

object in space extends through the segment N, (N+1)1 , as shown in figure 6. (There is

no correspondence between the point (N+1) 1 in fig. 6 and the point (n+l)L in fig. 5 and

the point (N+I) L in fig. 6 is not the same as the point (N+1)' in fig. 3.)

The angle aN, shown in figure 5, between the segment n, n+l and the segment

n, (n+1)1 is the input slope error in the azimuth-elevation image trace segment (n-l)t,

n, (n+l)4 from the observation station [. The angle oN, shown in figure 6, between

the segment N, N+I and the segment N, (N+1) is the total output slope error in the

triangulation solution curve at the point N, due to the input slope error aN. The first

step in this section is to determine the equations for the total output slope error PN

and the input slope error a.

18



The vector from the point N to the point (N+)l', in figure 6, is N,(N+1) L.

N,(N+1) = cos N+ sin N)

+ fp sin ++ cos N- cos + sin NNCos ( N+1 - XN)j1

+ [pN+Icos +1 cos O cos N N + sin sin N- PN)p

(42)

where +1, N+1, and P+I are the geocentric latitude, east longitude, and geocen-

tric radius, respectively, of the point (N+1) . The unit vector t, shown in figure 6,

which is in the same direction as the vector N,(N+1), is

S N,(N+O (43)

N,(N+1) I

Also from figure 6 one sees that the total output slope error N in the solution

curve at the point N, due to the input slope error a , is

N= sin-llN x ^t (44)

where the unit vector tN is given by equation (27). Now, the unit vector that is normal

to the local vertical tangent plane is N , which is seen from figure 6. The local

vertical tangent plane, here, is the plane passing through the earth's center and tangent to

the reference curve S at the point N. The total output slope error " can be

resolved into two components, the parallel output slope error PN (parallel to the local

vertical tangent plane) and the perpendicular output slope error 02N (perpendicular to

the local vertical tangent plane). From figure 6 one observes that, for small slope

errors, the perpendicular output slope error ON and the parallel output slope error

p N in the solution curve at the point N, due to the input slope error aN, are
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02N N tN xi) 4 5

N[ 2 (lN) 1/2 (46)

From figure 5 one sees that the input slope error aN in the azimuth-elevation

image trace segment (n-1)1, n1, (n+l) from the observation station p is

a j= tan'-1 N (47)
N (s)7N

The quantity (As)N is the spacing in radians between the points n and n+l, and the

quantity fN is the distance in radians between the points n+l and (n+l) 1 . (Incompu-

tations one may set the quantity fN equal to the input displacement error eN.) Hence,
the parallel, perpendicular, and total slope errors, denoted by w N , WN and wN

respectively, per unit input slope error, in the solution curve at the point N are

WN (48)
2N

N
2oN = (49)

S(50)

Now, the parallel slope error wlN , for instance, in the solution curve at the

point N is due only to the unit input slope error in the azimuth-elevation image trace
segment (n-l)1, n i , (n+l) L from the observation station p. If a random slope
error bN with zero mean exists in the segment (n-l)A, n , (n+l)A from the sta-
tion p, then the parallel slope error in the solution curve at the point N, due to the ran-

dom slope error bN, is (N bA). The random slope errors at the various observation

stations, like the random displacement errors, are uncorrelated. If one assumes that the
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mean-square random slope error (b") in the azimuth-elevation image trace segment

(n-1)4, n", (n+1)1 from each respective observation station is equal to (agbN) radians

(the mean-square slope error in the azimuth-elevation image trace segment (n-l)4, n i ,

(n+l) 1 as given by eq. (24)), then

1N (bN (51)

is the formula for the parallel rms slope error in the triangulation solution curve at the

point N, as related to the rms slope errors abpN in the azimuth-elevation image traces.

Similarly, the perpendicular and total slope errors, denoted by Q2N and QN, respec-

tively, in the triangulation solution curve at the point N, as related to the rms slope

errors bN in the azimuth-elevation image traces, are

Q 2N = 2 b 2 (52)

22N1 (b]/2

wN N 2 O PN 2 (53)

Curvature errors.- In this section the relationship between the total rms curvature

error vector in the triangulation solution of an elongated object in space and the rms cur-

vature errors in the azimuth-elevation image traces is considered. For this determina-

tion a triangulation solution of the elongated object in space is calculated, using for input

data the points along the azimuth-elevation image trace segment n-l1 , n , n+1, extended,

denoted-by sA, and shown in figure 7, from the observation station 1 in conjunction with

the points along the azimuth-elevation error-free traces from all of the remaining obser-

vation stations. One notes that the segment n-1, n4, n+1 has both of its extremities

on the trace s. This is permissible, without loss of generality, because the total rms

curvature error vector has been assumed to be effectively decoupled from both the total

rms displacement and slope error vectors. (The point n4 in fig. 7 is not necessarily the

same as the point nL in fig. 4.) The resulting triangulation solution curve SI' of the

elongated object in space extends through the segment N-1, N4, N+I, as shown in fig-

ure 8. (No correspondence exists between the point NW in fig. 8 and the point n 1 in

fig. 7, and the point N4 in fig. 8 is not the same as the point N in fig. 3.)
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The input curvature error LI (i.e., the reciprocal of the input radius of curvature
error rN) in the azimuth-elevation image trace segment (n-' )., n ,(n+1) M from the

observation station p. is shown in figure 7. The total output curvature error vector

K in the triangulation solution curve at the point N, due to the input curvature error

LN, is shown in figure 8. The first step in this section is to determine the equations for

the total output curvature error vector KJ and the input curvature error L0N

The vector NI,N+1, from the point Nil to the point N+1, in figure 8, is

SN+ pN+1 cos +l sin (N+ - XN) - PNcos sin( X- XN I

+ (PN+ [sin +PN1 cos PN - cos +1 sin cos (XN+1 - IN

- pfNsin ucos - cos sin cos(!- N N

+ (PN+i [sin + sin N + cos cos (N cos (N+1 - N

- p[sin sin N + cos cos cos( -N XN]P (54)

The unit vector N, shown in figure 8, which is in the same direction as the vector

N ,N+1, is

C NtN+1
N -= N + (55)

NI',N+1

The vector N-I,N , from the point N-i to the point NA, in figure 8, is
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N-1,NI L= cos$ ( - XN) + N-1 cos -1 sin(x -~ 1 -

SpNsin cos - cos sin cos (CN

- PN- ICos 1 - sin 5Ncos O-1 cos ON N- 1 p

+ psin sin N+ cos cos cos 

- PN.- l + cs c 1 cos (N - N-1) (56)

where N-1' N- 1, and PN-1 are the geocentric latitude, east longitude, and geocen-

tric radius, respectively, of the point N-1. The unit vector TN-' 1, shown in figure 8,

which is in the same direction as the vector N-1,NA, is

S1 N-iN1  (57)

N-1,N-L

If the curvature of the reference curve S is small compared to the curvature of

the triangulation solution curve SA, -then the total output curvature error vector K in
the solution curve at the point N, due to the input curvature error l-N is approximately

TA -T
K1 '  N N-1 (58)K = (58)

I N-1. I

as is seen from figure 8. The total output curvature error K1 in the solution curve at

the point N, due to the input curvature error AN, is

NK K1 2 (59)
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The total output curvature error can be resolved into two components, the parallel

output curvature error K N (parallel to the local vertical tangent plane, as defined in

the previous section on slope errors) and the perpendicular output curvature error K2N
(perpendicular to the local vertical tangent plane). The perpendicular output curvature

error K~N and the parallel output curvature error K11 in the solution curve at the

point N, due to the input curvature error LN, areN'

2N N *N P (60)

K1 = K 2 1/2 (61)

where the unit vector tN is given by equation (27).

Now, the point nA is approximately midway between the points n-I and n+-

along the azimuth-elevation image trace segment n-I, nA, n+i and also the quantity

gN, which is the distance in radians between the points n and nA, is much smaller than

the input radius of curvature error r 1 , as are shown in figure 7. Hence, one finds that,

to sufficient accuracy, the input radius of curvature error rN in the azimuth-elevation

image trace segment (n-1)[ , nA, (n+l)A from the observation station A is

r- As) (62)
N 2gN

where (As)N is the spacing in radians between the points n and n+l.

Hence, the input curvature error LN in the azimuth-elevation image trace seg-

ment (n-l)A, n , (n+l)A from the observation station p is

2gA
S N (63)

IN) 2

(In computations the quantity gN may be set equal to the input displacement error eN.)

Hence, the parallel, perpendicular, and total curvature errors, denoted by O N, 0N'
and 0~, respectively, per unit input curvature error, in the solution curve at the point N

are
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1N = iN (64)

N

- KA2N (65)
2N

N

Op N (66)

N

Now, the parallel curvature error OAN, for instance, in the solution curve at the

point N is due only to the unit input curvature error in the azimuth-elevation image

trace segment (n-1i), n/1 , (n+l) L from the observation station i. If a random curva-

ture error a1T with zero mean exists in the segment (n-1)[, nt, (n+l) L from the sta-

tion 1, then the parallel curvature error in the solution curve at the point N, due to the

random curvature error aN, is (0IN aN). The random curvature errors at the various

observation stations, like both the random displacement and slope errors, are uncorre-

lated. If one assumes that the mean-square random curvature error (aN) in the

azimuth-elevation image trace segment (n-1)', nA, (n+l) 1 from each respective obser-
2

vation station is equal to jN radians (the mean-square curvature error in the

azimuth-elevation image trace segment (n-1)A, nt, (n+l)A as given by eq. (25)), then

0 1N M 2 11 2 / (67)

is the formula for the parallel rms curvature error in the triangulation solution curve at

the point N, as related to the rms curvature errors arN in the azimuth-elevation

image traces. Similarly, the perpendicular and total rms curvature errors, denoted by

0 2N and ON, respectively, in the triangulation solution curve at the point N, as related

to the rms curvature errors a 1  in the azimuth-elevation image traces, are

0 2N, 2 2 a 2 (68)
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ON (9A ) (69)

CONCLUDING REMARKS

Formulas have been derived for the rms displacement, slope, and curvature errors

in an azimuth-elevation image trace of an elongated object in space, as related to the rms

elevation error in the individual input data points. Also, formulas have been derived for

the total rms displacement, slope, and curvature error vectors in the triangulation solu-

tion of an elongated object in space, as related to the rms displacement, slope, and curva-

ture errors, respectively, in the azimuth-elevation image traces. These total rms dis-

placement, slope, and curvature error vectors specify the errors in location, orientation,

and shape, respectively, in the triangulation solution of an elongated object in space.

Therefore, the errors in location, orientation, and shape in the triangulation solution of

an elongated object in space have been related to the rms elevation errors in the indi-

vidual input data points.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., January 23, 1974.
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(n + )1 S'

nP

Elevation (n-1) P n +
n

n-i

Azimuth x cos (elevation)

Figure 1.- From observation station /i, image trace segment (n-1) , n , (n+1)'

differing from error-free trace segment n-1, n, n+l in location, orientation,

and shape.
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Figure 2.- Within a segment, the coordinates of the individual input data points that
giv e I to the second-dLUro curve (n;1 , ,V (n+1 \-2.
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Figure 3.- In space, reference curve S, triangulation solution curve S4 ,

and total output displacement error vector d .

30



(n +1 ) s
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Elevation N

n-1

Azimuth x cos (elevation)

Figure 4.- From observation station Ip, input displacement error eA.
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Elevation s

n+ln,

Azimuth x cos (elevation)

Figure 5.- From observation station ji, input slope error a
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Figure 6.- In space, output slope errors P N,' 2N and Oi'
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Elevation n - 1 n (ALs)N

\r=

Azimuth x cos (elevation)

Figure 7.- From observation station ji, input curvature error L.
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Figure 8.- In space, total output curvature error vector K1.
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