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NOMENCLATURE

The axis system and sign convection are shown in figure 1. Because of the limitations in the

computer notation system for plotting data, conventional aerodynamic symbols are replaced by
plot symbols in the data figures as follows.

Plot
Symbol symbol

b wing span, m

c mean aerodynamic chord, m

CN CN normal-force coefficient; normal force
qS

CA CA axial-force coefficient; axial forc
qS

Cy CY side-force coefficient; side force
qS

CA CAB base-force coefficient; base force Ab(Pb - P)
b qS qS

CAf CAF forebody axial-force coefficient, CA - CAb

Cm CLM pitching-moment coefficient; pitching moment
qSZF

Cn  CYN yawing-moment coefficient; yawing moment
qSb

C9  CBL rolling-moment coefficient; rolling moment
qSb

CWBM wing root bending-moment coefficient; bending moment
qSc~

aspect ratio

BL butt line, orbiter wing reference plane, m

FS fuselage station, m

WL water line, m

L length of hydrogen-oxygen tank, m

M MACH free-stream Mach number

v
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q free-stream dynamic pressure, N/m 2

r radius of nozzle, m (see footnote 1 below)

re radius of nozzles at exit plane, m

r* radius of nozzles at throat, m

ru  radius of upper gaseous plume boundary, m

r radius of lower gaseous plume boundary, m

ru + r- average gaseous plume boundary, u m
2

S wing area, m 2

x longitudinal distance from nozzle exit plane, positive downstream, m (see
footnote 1 below)

XCP/L center of pressure

o ALPHA angle of attack, deg

3 BETA angle of sideslip, deg

6a  AILRON aileron deflection, deg

6e  ELEVON elevon deflection, deg

6r RUDDER rudder deflection, deg

ON  conical nozzle angle of SRM, deg

(p U) density velocity product of jet at exit plume boundary, N/m 2 -sec

(P U). tunnel free-stream density velocity product, N/m 2 -sec

(p_ PC/PT ratio of engine chamber pressure to tunnel total pressure

(t st) PC/PT ratio as setset

(pe ) ratio of engine chamber pressure to nozzle exit static pressure

1See sketches in table 2 for additional r and x nozzle coordinate definitions.
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()c (PC)set (calibration factor), where calibration factor

cal et (Pc/Pe)theory

(Pc/Pe)exp

NOM nominal or design PC/PT

A A/A ratio of nozzle exit area to minimum throat area
A*

SRM solid rocket motor

ORB orbiter

TNK hydrogen-oxygen tank

AC DCBL rolling-moment coefficient increment due to control surface deflection
5a

DCBLP rolling-moment coefficient increment due to control surface deflection in

presence of plumes

ACy DCYN yawing-moment coefficient increment due to control surface deflection
Ai

r

DCYNP yawing-moment coefficient increment due to control surface deflection in
presence of plumes

Cm DCLM pitching-moment coefficient increment due to control surface deflection
A5 e

DCLMP pitching-moment coefficient increment due to control surface deflection in
presence of plumes

DCBLA ratio of rolling-moment increments due to aileron deflection, plume on
divided by plume off

DCBLR ratio of rolling-moment increments due to rudder deflection, plume on
divided by plume off

DCYNR ratio of yawing-moment increments due to rudder deflection, plume on
divided by plume off

DCLME ratio of pitching-moment increments due to elevator deflection, plume on
divided by plume off

Ck DCBLDB slope of rolling-moment coefficient versus angle of sideslip

Cn DCYNDB slope of yawing-moment coefficient versus angle of sideslip
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EFFECT OF GASEOUS AND SOLID SIMULATED JET PLUMES ON

AN 040A SPACE SHUTTLE LAUNCH CONFIGURATION AT M = 1.6 TO 2.2

Jules B. Dods, Jr., Jack J. Brownson, and Donald L. Kassner
Ames Research Center

Kenneth L. Blackwell
Marshall Space Flight Center

John P. Decker
Langley Research Center

and

Barney B. Roberts
Johnson Space Center

SUMMARY

An experimental investigation was conducted in the Ames 9- by 7-Foot Supersonic Wind

Tunnel to determine the effect of plume-induced flow separation and aspiration effects due to

operation of both the orbiter and the solid rocket motors on a 0.019-scale model of the launch

configuration of the Space Shuttle Vehicle. Longitudinal and lateral-directional stability data were

obtained at Mach numbers of 1.6, 2.0, and 2.2 with and without the engines operating. The plumes

exiting from the engines were simulated by a cold-gas jet supplied by an auxiliary, 200-atm, air

supply system and by solid-body plume simulators. The aerodynamic effects produced by these two

simulation procedures are compared. The data indicate that the parameters most significantly

affected by the jet plumes are pitching moment, elevon control effectiveness, axial force, and

orbiter wing loads. The solid rocket motor (SRM) plumes have the largest effect on the aero-

dynamic characteristics. The effect of the orbiter plumes in combination with the SRM plumes is,

however, also significant. Variations in the nozzle design parameters can reduce plume-induced

aerodynamic effects. Configuration design changes, such as a more rearward location of the SRM

nozzles, should produce smaller plume-induced effects.

The tests were conducted at angles of attack from -40 to 100 and at angles of sideslip from

-4o to 60. Flow visualization studies were made to determine the extent of flow separation on the

wing and body caused by the jet plumes. The vapor-screen technique was used to show the cross-

sectional shape of the operational plumes at various distances from the nozzle exit for a limited

range of angles of attack.

INTRODUCTION

During the ascent, or launch, phase of the Space Shuttle Vehicle trajectory, both the orbiter

main propulsion systems and the large SRM boosters are operating. The plumes formed by the
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exhaust gases of these boosters induce flow separation over the aerodynamic control surfaces of the
orbiter vehicle. This flow separation reduces the effectiveness of the vehicle aerodynamic control
and increases the aerodynamic loads of the vehicle, both static and dynamic. To investigate the
magnitude and significance of these plume-induced effects, tests were conducted in the Ames 9- by
7-Foot Supersonic Wind Tunnel (SWT) on a 0.019-scale model of the JSC 040A Space Shuttle
Vehicle in the ascent configuration with provisions for both gaseous and solid simulation of the
exhaust plumes. The tests were conducted at Mach numbers of 1.6, 2.0, and 2.2, at angles of attack
from -4o to 100, and at angles of sideslip from -40 to 60.

Solid-plume simulation tests on the same scale model were conducted previously in the Ames
9- by 7-Foot SWT and the 11- by 11-Foot Transonic Wind Tunnel (TWT) (ref. 1). For this investiga-
tion, tests with solid plumes for Mo, = 1.4 and 1.6 of the reference tests were repeated inasmuch as
the pitching moments would not be comparable because, for the present tests, the pressure loads of
the nozzle were not being measured by the force balance. The nozzles and their pressure chambers
were an integral portion of the supporting sting. The solid plume shapes were predicted from
reference 2.

Although the basic objective was to obtain the longitudinal and lateral aerodynamic stability
characteristics and the vehicle control effectiveness with and without the exhaust plume simulation,
wing root bending-moment increments were also obtained; off-design variations such as the number
of engines operating, area ratio, and altitude were also studied.

TEST FACILITY

The Ames 9- by 7-Foot SWT is of the closed-return, variable-density type with a 9- by 7-foot
rectangular test section. The nozzle is an asymmetric, sliding-block type in which the Mach number
is varied by streamwise translation of the fixed contour block that forms the floor of the nozzle.
The Mach number range of the SWT is continuously variable from 1.55 to 2.5. This facility can be
operated at unit Reynolds numbers from 3.9370X 106 to 21.325X10 6 per meter.

DESCRIPTION OF MODEL

The 0.019-scale model of the Space Shuttle Vehicle launch configuration consisted of aJSC 040A orbiter combined with an external hydrogen-oxygen tank (EHOT, 8.2885 m diam, fullscale) and two externally mounted solid-rocket motors (SRM, 3.9624 m diam, full scale). The
details of the model are shown in figures 2(a) through 2(g) and pertinent full-scale and model-scaledimensions are given in table 1. The model nozzle geometry is given in table 2. Figures 3(a) and 3(b)
are front and rear views, respectively, of the model installed in the tunnel and figure 3(c) is a front
view of the model with the M = 1.4 nozzle design solid plume simulators. Solid-plume simulators
were used to compare the test results with gaseous plumes. The solid-plume simulators designed for
M = 1.4 and 1.6 are shown in figure 2(g) and the coordinates are given in table 3. One wing of theorbiter was instrumented with strain gages to measure wing-bending moments.
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PLUME SIMULATION

Both the orbiter and the SRM propulsion system exhaust plumes were simulated by air

expanding from supersonic nozzles supplied by a high-pressure (200-atm) air system. The supersonic

nozzles were designed on the basis of the following considerations: (1) calculated prototype plume

shapes and flow characteristics, (2) application of plume simulation criteria, and (3) vehicle model

limitations. The prototype plume shapes were calculated from Lockheed's Method-of-

Characteristics Computer Program (VOFMOC) (ref. 3). The orbiter and SRM motor characteristics

used as input to this program (summarized in table 4) represent the best data available for the

engine-operating conditions and nozzle configurations.

Specific motor-nozzle specifications were not available for the SRM's. Therefore, calculation

of the SRM plumes was based on the nozzle exit conditions determined only from nozzle area ratio

and exit lip angle information. Equilibrium chemistry data for use with the VOFMOC program were

calculated using the NASA-Lewis Chemical Equilibrium Chemistry (CEC) program (ref. 4). A pro-

pellant composition representative of prior SRM systems was used. The chamber pressure of the

SRM motor decreases with time as shown in table 4. Therefore, a unique set of equilibrium

chemistry data was used at each trajectory point. Newtonian pressure conditions were assumed to

define the SRM plume boundaries. The free-stream flow was assumed to be uniform and parallel to

the nozzle centerline. No attempt was made to consider two-phase flow effects in the flow-field

calculations. SRM prototype plume boundary shapes were determined for the trajectory conditions

listed in table 5.

The design of the model nozzles was an iterative process. Design criteria for the model nozzles

were the plume shape similarity parameters found in reference 5. The objective of these similarity

parameters is to match the overall prototype plume shape as closely as possible. However, because

of a one-dimensional flow assumption used in the model nozzle design procedures, prototype values

of the similarity parameters were not duplicated by the model nozzles. It was found, through
parametric calculations, that the prototype plume shapes could be satisfactorily matched by the

model nozzles even though the similarity parameters of reference 5 were not duplicated. In fact,
this investigation revealed that all prototype plume shapes could be produced by each model nozzle

whereas the criteria of reference 5 require a different nozzle for each plume shape. This allowed, at
least theoretically, for the plume shapes to be held constant and for the effects of other plume

parameters on base pressure and plume-induced separation to be investigated.

A consideration of the limitations dictated by the vehicle model design required that the
simulation criteria be modified. For the SRM, the conical model nozzle area ratio was held constant
and the angle of the conical nozzle section and the model chamber pressure were varied to satisfy
plume boundary simulation. This procedure permitted the exit dimension of the nozzle to remain
constant and the overall length of the nozzle to remain within acceptable limits.

The simulation of the orbiter plume shapes followed more closely the established criteria.
Nozzle length limitations dictated by vehicle model considerations required the use of contoured
nozzles. To satisfy this requirement, the prototype orbiter contour was scaled down. Model area
ratio was changed by varying the model throat size and fairing the nozzle throat into the scaled
contour. Model chamber pressure was then varied to match the prototype plume boundary shapes.
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TESTING AND PROCEDURE

The model was sting mounted through the base of the external hydrogen-oxygen tank
(EHOT), and force and moment data were obtained from an internally mounted, six-component,
strain-gage balance. The moment center was 0.5005 m aft of the EHOT nose and 0.02316 m above
the centerline (fig. 2(a)). The nozzles and the nozzle pressure chambers for both the orbiter and the
SRM's were an integral portion of the sting; thus, the forces and pressures on the nozzles were not
measured on the strain-gage balance. Base and cavity chord force corrections were, however, applied
to the data. The jet plumes generated from the SRM's and the orbiter engines were simulated with
cold air supplied by the auxiliary, 200-atm, air-supply system. The SRM's and the orbiter engines
were independently supplied by a compartmented sting design. The total pressure conditions of the
tunnel were dictated by the capacity of the auxiliary air-supply system to set nozzle design pressure
ratios (Pc/Pt ), as well as for the under- and overexpanded pressure ratios tested to illustrate the

effect of plume size. The high mass and pressure addition to the tunnel circuit caused the total
pressure of the tunnel to rise considerably during a "blow" of the model engines. Special opera-
tional procedures were thus required. After sufficient experimentation with the air-pressurizing
system of the tunnel, it was possible to maintain nearly constant total pressure in the tunnel during
a sequence by continuous suction on the tunnel circuit.

Data were obtained at M = 1.6, 2.0, and 2.2 for angles of attack from -4 ° to 100 and angles of
sideslip from -40 to 6', with and without the gaseous plume simulation. In addition, data were
obtained for solid-plume simulation at a free-stream Mach number of 1.6 for M = 1.4 and 1.6 design
solid-plume simulators. Fluorescent oil-flow studies of the upper and lower surfaces of the orbiter
wing and body were made with and without the gaseous flow simulation.

Transition was artificially induced on the vehicle by applying spherical roughness elements to
the wing, tail, and noses of the EHOT, the SRM's, and the orbiter. The roughness elements, about
2.6924X 10- 4 m in diameter, were located about 0.0254 m aft of the noses of the EHOT, the SRM's
and the orbiter. The roughness strips on the wings and tail were also about 0.0254 m aft of the
leading edges.

As previously mentioned, the model was tested with different design Mach number nozzles to
simulate plume shapes larger and smaller than the prototype plume shape. Table 6 is a tabulation
of experimentally measured plume shapes derived from schlieren photograph measurements. The
nozzle test conditions are given in table 7.

RESULTS AND DISCUSSION

The objectives of the present test were to obtain longitudinal and lateral stability characteris-
tics and rudder, aileron, and elevator control effectiveness, and wing root-bending-moment incre-
ments with and without jet exhaust plumes operating to evaluate the plume-induced separation
effects on the current Space Shuttle Vehicle. Of secondary importance was the evaluation of solid
versus gaseous plume simulations since the solid plumes are only a rough approximation because of
the basic error in using a solid body to represent a gaseous boundary. Figures 4 and 5 present
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experimentally determined, average plume shape variations with the viscous mixing parameter for

various nozzle designs at free-stream Mach numbers of 1.6 and 2.0. Figure 6 shows the variation of

the average gaseous plume shape with the viscous mixing parameter at a given distance from the

nozzle exit, with different nozzle designs. The corresponding plume dimensions for the solid-plume

simulators are also shown. The remainder of the discussion is divided into basic propulsion effects

and simulation problems. The basic data are presented in figures 7 through 27 as described in detail

in table 8.

Basic Propulsion Effects

Nominal power, A/A* = 8 - For the space shuttle launch configuration of the present tests,

the plumes generated by the propulsion system affect the aerodynamic characteristics of the vehicle

significantly. The data show that pitching moment, elevon control effectiveness, axial force, and

orbiter wing loads are most significantly affected. The changes in these characteristics from the

power off case are, of course, caused by the plume-induced flow separation (evidenced from the

force- and pitching-moment data and confirmed by fluorescent oil-flow observations, not shown).

The flow separation on the wing varies significantly with angle of attack for the Mach numbers tested

At near zero angle of attack, there is only a small area of separation on the wing trailing edge ahead of

the plume, which extends no farther forward than the elevon hinge line. As angle of attack increases

(either positively or negatively), the flow separation increases until, at a = 100, the outboard portion

of the wing (as described by a line from 50 percent of the leading edge and 80 percent of the

trailing edge) is completely separated by the jet plume. The oil flow did not cover the rear portion

of the external tank and the SRM's, so the extent of flow separation there could not be visualized,
but it was probably limited to a small aft region. As shown in figure 7, the plume-induced flow

separation on the wing body causes a localized change in load distribution, resulting in a 10 to

20 percent decrease in normal force, creating a pitch-up moment that is maximum at -2o< a < 40 .

This pitch-up is accompanied by a large shift in Cmo. Flow separation on the wing reduces the root

bending-moment considerably, which follows the same trends as the total vehicle moments (fig. 7).

Because the elevons are submerged in the separated-flow region, their effectiveness is drastically

reduced and, for M > 2.0, control reversal occured (as shown in figs. 17 and 18).

Lateral-directional characteristics were not as severely affected by propulsion operation. Rud-

der control effectiveness was reduced by approximately 50 percent and aileron effectiveness was

reduced to nearly zero, while lateral and directional stability was affected by 15 to 25 percent

(fig. 8). Note that even though lateral-directional levels are reduced, the stability characteristics as a

function of the angle of sideslip are more nearly linear than the longitudinal data. The longitudinal

data have large shifts in the zero intercepts and the gradients change sign as a function of angle of

attack.

Engine isolation- The change in the aerodynamic characteristics (as previously discussed) is

caused by flow separation on the vehicle. From the data for which the orbiter and the SRM plumes

are operated separately and together, the effects caused by each propulsion system can be isolated.

The data indicate that the SRM plumes have the largest effect on the aerodynamic characteristics.

The orbiter plumes alone have little effect on the data; however, their contribution is magnified

when coupled with the SRM operation (figs. 10 and 1 1).
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Nozzle design sensitivity- The data presented in figure 7 illustrate the rather large effects on
the vehicle aerodynamic characteristics (in particular, pitching moments) for moderate changes in
the prototype nozzle design. The nominal data for this test were obtained for a prototype nozzle
area ratio of A/A * = 8, with variations on either side of this value, that is, as shown in figure 7, for
A/A * = 12 and for an effectively lower value of A/A * obtained by operating the model nozzle at
about 30-percent higher than design chamber pressures. The data illustrate that larger expansion
ratios (which yield smaller plumes) reduce the jet plume effect on the vehicle aerodynamics. In fact,
the data are sensitive to small changes in the plume shape, in general, as illustrated by a comparison
of the data in figures 4 and 5, which show the plume shape variation with various nozzle designs,
with that in figures 7 and 9. Thus, variations in the nozzle design parameters can reduce plume-
induced aerodynamic effects on the vehicle by increasing the nozzle area ratio, by reducing the
nozzle lip angle, or by reducing the chamber pressure for the prototype propulsion system.

Simulation Effects

Validity of simulation- For these tests, the prototype was simulated by matching the plume
shape using cold air as the simulant at M = 1.6 only. Plume sizes obtained during the present test
did not necessarily simulate desired trajectory conditions. This occurred for two reasons. First, the
plenum chamber pitot tubes gave erroneous readings. During a post-test check, it was discovered
that two SRM pitot tubes had broken off. Also, the plenum designs could be deficient because of
their small size and because sharp bends precede them. This possibility cannot be confirmed since
the plenums were not calibrated thoroughly before the tests. The second error was due to oxygen
liquefaction and possible water vapor condensation, as illustrated in pretest calibration data (ref. 6).
The calibration data indicate that oxygen liquefied in the orbiter nozzle and outside the SRM
nozzle in the plume. However, during the present test, the higher operating chamber pressure and
approximately equal chamber temperatures caused the oxygen to liquefy in both the orbiter and
the SRM nozzles. The oxygen liquefaction during the test indicated an oversight in the test design.
However, without a heated air supply, nothing could be done to correct this design. The liquefac-
tion tends to yield larger plumes for a given chamber pressure because heat is given off when oxygen
liquefies, causing an increase in pressure. This oversized plume was confirmed when quiescent
plumes from the present test were compared with analytical plumes, and has since been further
confirmed in nozzle recalibrations conducted at the MSFC 14-Inch Trisonic Wind Tunnel (unpub-
lished results). Water vapor condensation could not be confirmed by a water content measurement.
Water vapor condensation was suspected because of the visibility of the plume and because, in the
calibrations, plumes were not visible although oxygen liquefaction was present. However, since the
present test was conducted at higher pressures, which resulted in greater oxygen liquefaction, the
visibility was possibly due to a combination of liquefaction and oxygen crystals in the plume. Thus,
the information presently available is insufficient to determine quantitatively the vapor state of the
plume.

During this test, it was not realized that the pitot tubes were broken or that liquefaction had
occurred. However, some anomaly was noted because Pc/Pe measured during the test did not match
the analytical values. It was assumed that the chamber pressure measurements were erroneous and
that the exit pressure measurements were accurate. On the basis of this assumption, the chamber
pressures were adjusted to account for this deficiency by (Pc/Pe)analytical/(Pc/Pe)test. However,
this procedure left a deficiency in plume shape when plumes were calculated on the basis of
adjusted chamber pressure.
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It appears that at least part of this discrepancy is due to the effects of liquefaction and

condensation. Even though exact plume shapes could not be duplicated to match a given prototype
plume shape, the major objectives of the tests were achieved by varying the plume sizes over a range
large enough to provide an assessment of the effects of plume size on the aerodynamic characteris-

tics of the vehicle (as discussed in "Nozzle design sensitivity"). For tests in which it is important to

duplicate prototype plume shapes for various trajectory design altitudes and pressures, a heated air

supply should be provided to eliminate oxygen liquefaction, or, if heated air is not available, the
nozzles and their plenum chambers should be calibrated at the expected pressures and temperatures

to compensate for pressures due to liquefaction effects.

Effect of viscous mixing parameter- Attempts to isolate the effects of the viscous mixing
parameter, (pU) /(pU), were unsuccessful because the plume size could not be held constant for
varying values of (pU)/(p U),, and nozzle geometry became an unexpected variable. The reason for
not being able to control the plume size (condensation effects) was previously discussed under
Validity of Simulation. The data presented here show that plume-induced aerodynamic effects are,
at least, a function of some parameter other than plume shape, but that the effect of (p U)jl(pU),
cannot be isolated from the present results (see figs. 4, 5, and 6 and table 7). Thus, for the present
investigation, plume effects were found to be a function of plume shape and nozzle geometry,
neither of which was varied independently of the viscous mixing parameter. Although no conclu-
sions can be drawn concerning the effect of (pU)j/(pU),, it cannot be ruled out as a significant
factor.

Comparison of solid body and gaseous plumes - The data presented in figures 6 and 12 show
that, for the gaseous plumes tested, a smaller solid-body plume is required to produce similar
results, particularly for longitudinal data. The M = 1.6 design solid-body plume (designed to simu-
late plumes at M = 1.6 and trajectory pressure altitude for an earlier test and trajectory (ref. 1)) is
approximately the same size as the nominal gaseous plume at M = 1.6 (nominal conditions at
M = 1.6 for the present test). Yet the pitching-moment curves show that much larger effects are
caused by the solid body. This effect was not as apparent for the yaw data (figs. 8 and 12),
including wing bending moments, although the effects were not too large for the gaseous plumes
either. The fact that the wing bending moments were not affected differently indicates that, since
the moment for the total vehicle was affected to a greater degree by the solid-body plumes, local
plume interference distribution must be considerably different. Even though the wing bending-
moment characteristics are nearly the same for both solid and gaseous plumes, it is suspected that
the wing load distribution is altered. It would be unreasonable to expect that all interference is
confined to the EHOT and SRM since the wing is so near these bodies. Note that the M = 1.4
solid-body simulators produced pitching-moment results very similar to those for the gaseous
plumes at M = 1.6. However, it is believed that solid-body simulators cannot be used for more than
qualitative results, and they will probably be limited to moderate angles of attack and to the higher
Mach numbers where plume entrainment is small and does not affect the aft portion of the vehicle,
that is, at supersonic Mach numbers and altitude where there is considerable nozzle underexpansion.
If solid-body simulators are to be used even qualitatively, then a better understanding of the
relationship between a solid plume and a gaseous plume is required. (A development program would
be required to accomplish this.)

Effect of plumes on control effectiveness - The remainder of the data presented in figures 13
through 27 shows the effect of the plumes on elevon, aileron, and rudder power and effectiveness.

7



Figure 13 compares the control effectiveness for gaseous and solid SRM plumes. Plume effects with
and without the orbital maneuvering system (OMS) pods are shown in figure 14, and the effect of
angle of attack on the lateral characteristics with and without the OMS is shown in figures 15 and
16. Figures 17 through 20 show the effect of plumes on elevon, aileron, and rudder power. The
effect of plume size on elevon and rudder power is shown in figures 21 and 22. The separate effects
of orbiter and SRM plumes on elevon and rudder power is presented in figures 23 and 24. In
figures 25 through 27, the effect of plumes on elevon, rudder, and aileron effectiveness is shown.
The effects of the plume simulation on the control power and effectiveness presented here are given
primarily to document the results obtained and are not discussed further.

CONCLUSIONS

1. For the space shuttle launch configuration of the present tests, the plumes generated by the
propulsion system affect the aerodynamic characteristics of the vehicle significantly. The data show
that the most significantly affected characteristics are pitching moment, elevon control effective-
ness, axial force, and orbiter wing loads.

2. The SRM plumes have the largest effect on the aerodynamic characteristics. However, the
orbiter plumes, when coupled with the SRM plumes, also have a significant effect.

3. For the present configuration, at the test Mach number and altitude conditions, the plume-
induced separation effects are very sensitive to small changes in the SRM plume shape.

4. Variations in the nozzle design parameters can reduce plume-induced aerodynamic effects
(separation, aspiration, etc.) on the vehicle. These parameters include nozzle area ratio, nozzle lip
angle, and chamber pressures of the prototype propulsion system.

5. Configuration design changes, such as a more rearward location of the SRM nozzles, should
also produce smaller plume-induced effects.

6. Attempts to isolate the effects of the viscous mixing parameter were unsuccessful because
the plume size could not be held constant for varying values of the parameter. Plume sizes obtained
during the test were not as predicted, but this result will not adversely affect the use of present
results because a range of plume sizes was investigated.

7. A discussion of the factors of the present investigation that pertain to the validity of the
proper simulation parameters indicates that further analysis is required.

8. A comparison of the aerodynamic results obtained from solid-body plume simulators com-
pared to gaseous simulation indicates that solid-body simulators caused larger aerodynamic effects
for the same plume size than did the gaseous plume simulation.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, October 11, 1973
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TABLE 1.- MODEL GEOMETRY (JSC 040A)

Orbiter body (B1)

Full scale Model scale

Length, m 33.401 0.6346

Maximum width, m 5.1816 .09845
Maximum depth, m 6.0452 .1149

Maximum cross-sectional area, m2  28.4429 .01027

Projected base area, m2  27.4863 .009923

Wing (W1)

Total data

Area
Planform, m2  293.1368 .1058

Span (equivalent), m 22.4028 .4257
Aspect ratio 1.71212 1.71212
Taper ratio .14860 .14860
Dihedral angle, deg 7 7
Incidence angle, deg 1.5 1.5
Aerodynamic twist, deg 0 0
Sweep back angles

Leading edge, deg 60 60
Trailing edge, deg 0 0
0.25 element line, deg 52.42 52.42
0.5 element line, deg 40.9 40.9

Chords
Root (wing station 0.0), m 22.7838 .4329
Tip (equivalent), m 3.3858 .06433
MAC, m 15.4813 .2941
FS of 0.25 MAC, m 26.8714 .5106
BL of 0.25 MAC, m 4.2164 .0801

Airfoil section
Root NACA 0008-64 0008-64
Tip NACA 0008-64 0008-64

Exposed data

Area, m2  186.7356 0.06741
Span (equivalent), m 17.2212 .3272
Aspect ratio 1.58818 1.58818
Taper ratio .18501 .18501
Chords

Root, m 18.3007 .3477
Tip, m 3.3858 .06435
MAC, m 12.5527 .2385
FS of 0.25 MAC, m 29.0661 .5523
BL of 0.25 MAC, m 5.9090 .1123
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TABLE 1.- MODEL GEOMETRY (JSC 040A) - Continued

Elevon (WI) (each)

Full scale Model scale

Area, m2  21.1509 .007635
Span (equivalent), m 7.0612 .1342
Inboard equivalent chord, m 2.9972 .05695
Outboard equivalent chord, m 2.9972 .05695
Ratio movable surface
Chord/total surface chord

At inboard equivalent chord .166 .166
At outboard equivalent chord .516 .516

Sweep back angles
Trailing edge, deg 0 0
Hingeline, deg 0 0

Vertical tail (V2)

Leading-edge sweepback, deg 45 45
Airfoil section

Root NACA 0012-64 0012-64
Tip NACA 0012-64 0012-64

Exposed data

Area, m2  45.0562 .01626
Span (equivalent), m 9.3769 .1782
Aspect ratio 1.95 1.95
Taper ratio .3137 .3137
Chords

Root, m 7.3152 .1390
Tip, m 2.2949 .04361
MAC, m 5.2421 .09959
FS of 0.25 MAC, m 37.3136 .7090
WP of 0.25 MAC, m 16.5720 .3149
BL of 0.25 MAC, m 0 0

Rudder (V2)

Area, m2  18.4585 .006663
Span (equivalent), m 8.7630 .1665
Inboard equivalent chord, m 2.921 .0555
(WL = 12.700)
Outboard equivalent chord, m 1.016 .01930
(WL = 21.463)
Ratio movable surface chord/total surface chord

At inboard equivalent chord .4 .4
At outboard equivalent chord .4 .4
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TABLE 1.- MODEL GEOMETRY (JSC 040A) - Concluded

Full scale Model scale

Sweep back angles
Trailing edge, deg 25 25
Hingeline, deg 35 35

Body of revolution (EHOT)

Length, m 48.4566 .9207
Maximum width (diam), m 8.2885 .1575
Fineness ratio 5.846 5.846
Maximum cross-sectional area, m 2  53.9558 .01948

Body of revolution (SRM) (each)

Length, m 39.3835 .7483
Maximum width (diam), m 3.9624 .07529
Fineness ratio 9.939 9.939
Maximum cross-sectional area, m2  12.3313 .004452
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TABLE 2.- MODEL NOZZLE GEOMETRY

Orbiter nozzles
Ro ro

00

r re

r*

2 .Xol
XT2

X ' 02

ro2

M = 1.6 nozzle M =2.0 nozzle
Coordi- Coordi- m (in) Coordi- Coordi-nate m (in.) nate nate (in.) nate (in.)

re  0.02189 (0.8619) XT -0.0591 (-2.3274) re  0.02189 (0.8619) xTy -0.0579 (-2.2814)
XT, -. 0536 (-2.1108) rT2 .0067 (.2627) XT, -. 0527 (-2.0740) rT2 .0068 (.2680)
rT .0061 (.2383) xo2 -. 0648 (-2.5494) rT, .0066 (.2610) xo -. 0649 (-2.5558)
Rol .0044 (.1747) ro2 .0010 (.0408) Rol .0048 (.1900) ro2  -. 0031 (-.1232)
xo, -. 0560 (-2.2038) Ro .0080 (.3139) xo -. 0552 (-2.1723) R0  .0121 (.4779)

ro, .0098 (.3862) rp .0090 (.3547) ro .0107 (.4236) rp .0090 (.3547)
r* .0054 (.2115) r* .0059 (.2336)

Nozzle contours

x/re  r/r e  x./re  rre x/re  r/r e

-0.0340 0.9954 -1.0543 0.8098 -1.8349 0.5751
-. 1043 .9856 -1.0946 .8001 -1.8987 .5504
-. 1823 .9744 -1.1470 .7872 -1.9715 .5207
-. 2685 .9614 -1.2143 .7700 -2.0326 .4946
-. 3131 .9544 -1.2518 .7603 -2.0775 .4745

4134 .9380 -1.2933 .7492 -2.1435 .4438
-. 5096 .9216 -1.3397 .7364 -2.2264 .4028
-.5713 .9104 -1.3908 .7219 -2.2462 .3926
-.6508 .8957 -1.4564 .7026 -2.3097 .3586
-. 6951 .8871 -1.5187 .6837 -2.3427 .3401
-. 7444 .8774 -1.5595 .6708 -2.3598 .3302
-. 7993 .8662 -1.6111 .6543 -2.4063 .3028 a

-. 8601 .8535 -1.6724 .6337 -2.4287 .2891
-. 9275 .8388 -1.7483 .6071 -2.4490 .27 65 b

-. 9919 .8243 -1.7934 .5907

aEnd of M = 2.0 nozzle.

bEnd ofM = 1.6 nozzle.
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TABLE 2.- MODEL NOZZLE GEOMETRY - Concluded

SRM nozzles

xro

Rol ,

"XXT T

/ XO2

r0 2
Dimensions independent of design M

Coor- Coor-
dinate m (in.) dinate m (in.)

re  0.0341 (1.3437) rT2 0.0137 (0.5412)

rol .0386 (1.5200) Ro2 .0876 (3.4476)

Rol .0257 (1.0133) ro2 -. 0708 (-2.7889)

r* .0129 (.5067) rp .0167 (.6587)

Dimensions that vary with design M

M = 0.9 nozzle M = 1.6 nozzle M = 2.0 nozzle M = 3.0 nozzle

dinate (in.) m (in.) m (in.) m (in.)

XT -0.0500 (-1.9693) -0.03997 (-1.5738) -0.0368 (-1.4494) -0.0314 (-1.2373)

rT1 .0146 (.5759) .0153 (.6031) .0156 (.6147) .0162 (.6394)

xol -. 0594 (-2.3373) -. 0509 (-2.0052) -. 0484 (-1.9047) -. 0442 (-1.7386)

XT2 -. 0660 (-2.5996) -. 0576 (-2.2675) -. 0550 (-2.1669) -. 0508 (-2.0009)
xo2 -. 0887 (-3.4919) -. 0803 (-3.1598) -. 0777 (-3.0592) -. 0735 (-2.8932)

deg deg deg deg

ON  21.3000 25.2000 26.7000 29.6500
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TABLE 3.- SRM SOLID PLUME SHAPES (from ref. 2)

Nozzle: M= 1.4 Nozzle: M= 1.6
Pc = 526.75X 104 N/m 2  Pc = 513.66X 104 N/m 2

P.= 147.95X 102 N/m 2  P, = 96.239X 10 2 N/m 2

x/re T/re x/re Fire

0 1.00 0 1.00
.164 1.149 .522 1.507
.537 1.448 1.239 2.052

1.052 1.784 2.119 2.575
1.776 2.172 2.784 2.896
2.545 2.500 3.552 3.216
3.269 2.746 4.418 3.507
4.545 3.067 5.388 3.761
6.000 3.291 7.567 4.127
6.791 3.351 8.955 4.231
7.612 3.381
8.955 3.381
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TABLE 4.- PROTOTYPE NOZZLE-MOTOR CHARACTERISTICS

SRM Orbiter

Pc (see figure below) Area ratio E = 79.436:1
A/A* = 8.0 Pc = 200 atm lip = 7.870

lip = 17.5 Dt = 0.2585 m Dex = 2.3043 m
Dex = 3.5921 m
DT = 1.27 m

Propellant composition Propellant composition
AP 69.0 0/F = 6.0 Oxidizer -02 (L)

AR 15.0 by weight Fuel -H 2 (L)
PBAN 9.6
Binder materials 6.4%

1000

-6.5

6.0

600 600

50 100 150 200

Burning Time, (sec)

16
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TABLE 5.- LAUNCH TRAJECTORY CONDITIONS

M. t, Altitude h, Po
sec m N/m 2

0.9 58 7,620 38,687
1.2 73 11,278 23,461
1.6 89 16,459 9,624
2.0 101 21,031 4,788
2.2 107 24,079 2,777
3.0 117 30,785 1,053

TABLE 6.- EXPERIMENTAL SRM PLUME SHAPES AND TEST CONDITIONS

Nozzle: M= 1.6, at M= 1.6 Nozzle: M= 1.6, at M= 1.6
Run 2, correlation 570 Run 9, correlation 739
SRM and orbiter engine operating SRM and orbiter engine operating
SRM data: SRM data:

(Pc/Pt)set = 132; (Pc/Pt)cal = 154 (Pc/Pt)set = 77.6; (Pc/Pt)cal = 90.7

(pU)j = 5.0179X10'; (pU)o= 4.1512X10 2  (pU) = 1.075X10 4 ; (pU = 1.1108X 103

(pU)j /(pU)= 12.1 (pU)/(pU), = 9.69

x/re ru/re rk Ire Ire x/re ru/re r- Ire r/re

0.37 1.31 NA NA 0.37 1.28 NA NA
.74 1.58 NA NA .74 1.49 NA NA

1.12 1.85 NA NA 1.12 1.70 NA NA
1.49 2.08 NA NA 1.49 1.87 NA NA
1.86 2.26 NA NA 1.86 2.02 NA NA
2.23 2.50 NA NA 2.23 2.14 NA NA
2.61 2.62 2.77 2.70 2.61 2.23 NA NA
2.98 2.80 3.01 2.91 2.98 2.35 NA NA
3.35 2.92 3.12 3.02 3.35 2.41 2.89 2.65
3.72 3.07 3.30 3.19 3.72 2.47 3.01 2.74
4.47 3.27 3.54 3.41 4.47 2.62 3.18 2.90
5.21 3.45 3.75 3.60 5.21 2.68 3.36 3.02
5.96 3.63 3.93 3.78 5.96 2.74 3.51 3.13
6.67 3.75 4.11 3.93 6.67 2.80 3.66 3.23
7.44 3.87 4.26 4.07 7.44 2.89 3.81 3.35
8.93 3.96 4.55 4.26 8.93 2.89 3.98 3.44

10.42 3.87 NA NA 10.42 2.83 4.08 3.46
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TABLE 6.- EXPERIMENTAL SRM PLUME SHAPES AND TEST CONDITIONS - Continued

Nozzle: M = 3.0, at M = 1.6
Run 79, correlation 1676
SRM engine operating
SRM data:

(Pc/Pt)set = 225; (Pc/Pt)cal = 262

(PU)j = 1.2229X 104; (U) = 7.6273X 102

(PU)/(pU)oo = 16.03

x/re ru/re r /re rire

0.37 1.40 NA NA
.74 1.76 NA NA

1.12 2.08 NA NA
1.49 2.35 NA NA
1.86 2.65 2.80 2.72
2.23 2.95 3.07 3.01
2.61 3.18 3.30 3.24
2.98 3.39 3.54 3.47
3.35 3.57 3.75 3.66
3.72 NA NA NA
4.47 4.11 NA NA
5.21 4.40 NA NA
5.96 4.70 NA NA
6.67 4.91 NA NA
7.44 5.15 NA NA
8.93 5.45 NA NA

10.42 5.62 NA NA
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TABLE 6.- EXPERIMENTAL SRM PLUME SHAPES AND TEST CONDITIONS - Continued

Nozzle: M= 1.6, atM= 1.6 Nozzle: M= 1.6, atM= 1.6
Run 14, correlation 812 Run 13, correlation 798
SRM and orbiter engine operating SRM engine operating
SRM data: SRM data:

(Pc/Pt)set = 177; (Pc/Pt)cal = 206 (Pc/Pt )set = 137; (PcIPt)cal = 160

(pU)j = 1.1937X 104; (p) = 8.5754X 102  (pU) = 1.4220X 104 ; (pU) = 1.1348X103

(pU)j/(pU)oo = 13.92 (p U)/(p U) = 12.53

x/re ru/re r2 /re F/re x/re ru/rre/r e  /re

0.37 1.28 NA NA 0.37 1.34 NA NA
.74 1.61 NA NA .74 1.58 NA NA

1.12 1.85 NA NA 1.12 1.85 NA NA
1.49 2.14 NA NA 1.49 2.05 NA NA
1.86 2.32 NA NA 1.86 2.23 NA NA
2.23 2.50 2.92 2.71 2.23 2.41 2.83 2.62
2.61 2.65 3.18 2.92 2.61 2.59 3.01 2.80
2.98 2.83 3.36 3.10 2.98 2.77 3.18 2.98
3.35 2.95 3.54 3.25 3.35 2.92 3.30 3.11
3.72 3.07 3.72 3.40 3.72 3.07 3.48 3.28
4.47 3.24 3.99 3.62 4.47 3.27 3.75 3.51
5.21 3.42 4.26 3.84 5.21 3.48 3.99 3.74
5.96 3.60 NA NA 5.96 3.66 4.20 3.93
6.67 3.72 NA NA 6.67 3.81 4.40 4.11
7.44 3.84 NA NA 7.44 3.93 4.58 4.26
8.93 4.08 NA NA 8.93 4.17 4.88 4.53

10.42 4.26 NA NA 10.42 4.26 NA NA
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TABLE 6.- EXPERIMENTAL SRM PLUME SHAPES AND TEST CONDITIONS - Continued

Nozzle: M = 0.9, at M = 1.6 Nozzle: M = 0.9, at M = 1.6

Run 75, correlation 1642 Run 69, correlation 1587

SRM engine operating SRM engine operating
SRM data: SRM data:

(Pc/t)set = 141; (Pc/Pt)cal = 165 (Pc/Pt)set = 96.4; (Pc/Pt)cal = 113

(pU) = 1.5274X 104 ; (pU= 1.2545X 103  (pU) = 1.5752X 104 ; (pU) = 1.5465X 103

(pU)j/(pU) = 12.2 (pU)j/(pU)oo= 10.2

x/re ru/re rk/re r/re x/re ru/re rre /re

0.74 1.36 NA NA 0.74 1.31 NA NA
1.49 1.84 NA NA 1.49 1.73 NA NA
2.23 2.20 NA NA 2.23 2.02 NA NA
2.98 2.56 NA NA 2.98 2.32 NA NA
3.35 2.68 2.68 2.68 3.35 2.44 2.32 2.38
3.72 2.80 2.74 2.77 3.72 2.56 2.50 2.53
4.47 3.03 3.15 3.09 4.47 2.68 2.92 2.80
5.21 3.33 3.33 3.33 5.21 2.92 3.03 2.97
5.76 3.45 3.63 3.54 5.96 2.98 3.15 3.07
6.67 3.57 3.81 3.69 6.67 3.03 3.39 3.21
7.44 3.75 3.99 3.87 7.44 3.09 3.51 3.30
8.93 3.93 4.11 4.02 8.93 NA NA NA

10.42 3.99 4.34 4.17 10.42 NA NA NA
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TABLE 6.- EXPERIMENTAL SRM PLUME SHAPES AND TEST CONDITIONS - Continued

Nozzle: M= 3.0, atM= 1.6 Nozzle: M= 3.0, atM= 1.6
Run 80, correlation 1686 Run 78, correlation 1666
SRM engine operating SRM engine operating
SRM data: SRM data:

(Pc/Pt)set = 156; (P/Pt)cal = 182 (Pc/Pt)set = 189; (PcPt)cal = 221

(p) = 1.0222X10 4 ; (pL)= 7.4789X 102  (pU) = 1.1625X10 4 ; (pU)= 7.8093X10 2

(p 0)i/(p ) = 13.67 (p U)j (pU), = 14.89

x/re ru/re rre r/rre x/re ru/re rR/re -/re

0.37 1.25 NA NA 0.37 1.34 NA NA
.74 1.64 NA NA .74 1.64 NA NA

1.12 1.93 NA NA 1.12 1.87 NA NA
1.49 2.20 NA NA 1.49 2.20 NA NA
1.86 2.49 NA NA 1.86 2.47 2.77 2.62
2.23 2.65 2.89 2.77 2.23 2.71 2.95 2.83
2.61 2.89 3.12 3.01 2.61 2.95 3.18 3.07
2.98 3.07 3.27 3.17 2.98 3.15 3.36 3.26
3.35 3.24 3.45 3.35 3.35 3.30 3.54 3.42
3.72 3.42 3.66 3.54 3.72 3.45 3.75 3.60
4.47 3.72 3.96 3.84 4.47 3.78 4.14 3.96
5.21 3.90 4.23 4.07 5.21 4.08 NA NA
5.96 4.11 4.32 4.22 5.96 4.29 NA NA
6.67 4.29 4.52 4.41 6.67 4.46 NA NA
7.44 4.40 4.67 4.54 7.44 4.67 NA NA
8.93 4.61 4.97 4.79 8.93 4.97 NA NA

10.42 4.72 5.21 4.97 10.42 5.24 NA NA
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TABLE 6.- EXPERIMENTAL SRM PLUME SHAPES AND TEST CONDITIONS - Continued

Nozzle: M = 2.0, at M = 2.0 Nozzle: M = 2.0, at M = 2.0

Run 32, correlation 1090 Run 37, correlation 1156

SRM and orbiter engine operating SRM and orbiter engine operating
SRM data: SRM data:

(Pc/Pt)set = 141; (Pc/Pt)cal = 165 (Pc/t)set = 71; (Pc/Pt)cal = 83

(p)j = 1.1396X 104 ; (U) = 7.8524X 102  (pU) = 8.1396X 10; (pU)= 7.7566X 102

(p=U)l(p)l = 14.5 (pU)1/(pU). = 10.5

x/re ru/re rk/re F-/re xu/ re rk/re 7/re

0.37 1.28 NA NA 0.37 1.19 NA NA

.74 1.58 NA NA .74 1.43 NA NA

1.12 1.90 NA NA 1.12 1.64 NA NA
1.49 2.20 NA NA 1.49 1.85 NA NA
1.86 2.44 2.86 2.65 1.86 1.99 NA NA
2.23 2.65 3.10 2.88 2.23 2.14 NA NA
2.61 2.83 3.30 3.06 2.61 2.29 2.98 2.64
2.98 2.98 3.48 3.23 2.98 2.47 3.07 2.76
3.35 3.12 3.69 3.40 3.35 2.53 3.24 2.89
3.72 3.27 3.90 3.59 3.72 2.62 3.39 3.00
4.47 3.51 4.20 3.86 4.47 2.80 3.66 3.23
5.21 3.69 4.55 4.12 5.21 2.98 3.87 3.43
5.96 3.87 4.76 4.31 5.96 3.07 4.11 3.59
6.67 3.99 NA NA 6.67 3.18 4.26 3.72
7.44 4.11 NA NA 7.44 3.27 4.37 3.82
8.93 4.37 NA NA 8.93 3.45 4.61 4.03

10.42 4.52 NA NA 10.42 3.60 NA NA
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TABLE 6.- EXPERIMENTAL SRM PLUME SHAPES AND TEST CONDITIONS - Concluded

Nozzle: M = 2.0, at M = 2.0 Nozzle: M = 2.0, at M = 2.0
Run 38, correlation 1166 Run 43, correlation 1210
SRM and orbiter engine operating SRM engine operating
SRM data: SRM data:

(Pc/Pt)set = 181; (Pc/IPt)cal = 211 (Pc/Pt)set = 127; (Pc/Pt)cal = 149

(p U) = 9.8154X 10; (pU) = 5.9372X 102  (pU) = 1.1683X 104 ; (pLU) = 8.4269X 102

(pU)j/(p U) = 16.5 (p U)j/(pU) = 13.9

x/re ru/re rk/re F/re  xlre rulre r /re Flre

0.37 1.34 NA NA 0.37 1.31 NA NA
.74 1.64 NA NA .74 1.61 NA NA

1.12 1.93 NA NA 1.12 1.87 NA NA
1.49 2.20 2.62 2.41 1.49 2.11 NA NA
1.86 2.50 2.83 2.67 1.86 2.35 NA NA
2.23 2.74 3.10 2.92 2.23 2.53 3.04 2.78
2.61 2.98 3.33 3.16 2.61 2.74 3.27 3.00
2.98 3.12 3.51 3.31 2.98 2.92 3.48 3.20
3.35 3.27 3.72 3.50 3.35 3.07 3.66 3.37
3.72 3.42 3.90 3.66 3.72 3.27 3.84 3.55
4.47 3.69 4.26 3.98 4.47 3.54 4.14 3.84
5.21 3.90 4.55 4.23 5.21 3.87 4.47 4.17
5.96 4.05 4.82 4.44 5.96 4.11 4.73 4.42
6.67 4.20 5.09 4.65 6.67 4.37 4.94 4.66
7.44 4.32 5.36 4.84 7.44 4.55 5.15 4.85
8.93 4.55 NA NA 8.93 4.82 NA NA

10.42 4.67 NA NA 10.42 4.94 NA NA

23



TABLE 7.- NOZZLE TEST CONDITIONS

Orbitera SRMb

Correla- c Design Design

Run tion Moo Mnozzle (P)j(o Pc too P2P PC3 Ptoo PcPtoo P4Pt oo Pc t PPt oo

2 510 1.6 1.6 12.1 Nom. 151.4 147.7 148.1 118.0 147.6 154.2 155.9

3 598 12.41 Nom. 110.4 107.8 108.8 118.0 150.6 156.6 155.9

9 739 9.67 A/A*= 12 120.5 117.8 118.0 118.0 86.9 90.67 91.03

12 781 -- Nom. ORB only 113.5 111.0 111.1 118.0 -- -- --

13 798 12.53 Nom. SRM only -- -- -- -- 153.8 159.8 155.9

14 812 13.92 1.3Pc Nom. 149.4 146.0 146.3 153.4 198.1 206.4 202.7

32 1090 2.0 2.0 14.50 Nom. 98.37 95.33 97.16 101.2 158.0 164.8 165.6

37 1156 10.53 A/A*= 12 103.6 100.9 102.9 101.2 80.19 83.28 84.66
38 1166 16.09 1.3Pc  131.8 123.2 130.7 131.6 203.3 211.1 215.3
42 1200 NA Nom. ORB only 96.46 93.80 95.31 101.2 -- -- --

43 1210 13.83 Nom. SRM only -- -- -- -- 143.0 143.8 165.6

44 1225 2.2 16.31 Nom. 170.1 165.6 167.2 169.5 176.6 188.4 185.8

45 1242 2.0 14.43 Nom. SRM only -- -- -- -- 158.4 165.5 165.6

47 1269 2.2 16.51 Nom. 162.2 158.1 160.4 169.5 182.7 190.2 185.8
78 1666 1.6 3.0 14.89 Nom. SRM only -- -- -- -- 213.6 221.1 228.2
79 1676 16.03 1.2P, SRM only 253.8 262.4 273.8
80 1686 13.67 .8Pc, SRM only -- -- -- -- 175.5 182.0 182.5
75 1642 0.9 12.20 1.1Pc , SRM only -- -- -- -- 160.3 165.1 162.8
69 1587 10.17 SRM only -- 109.1 112.8 --
72 1612 10.76 SRM only -- -- -- 170.1 124.1

aPc,,2,3 = P ,2,tunnel output/0.931.

bP = P tunnel output/0.855.
C4 , 5 C4 , 5
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Notes: C C
1. Positive directions of force cofficients, N m,w

moment coefficients, and angles are C Yw
indicated by arrow C

2. For clarity, origins of wind and stability Cn
axes have been displaced from the center
of gravity .

C

C C

C Y YS a CL

C CxD, w x -z z
C A

C w Cns

LCD CL

Figure 1.- Axes system showing direction and sense of force and moment coefficients, angle of attack, and sideslip angle.



DIMENSIONS IN METERS 145
38- U0.001588

I 400

.07529- E---
0.1575 20 -

- s

S- +- W.L.O.1930 130

3.00.006858 
0 0 9 84 5

0.09652 

F.. 073180.3378

0.9207

(a) 040A integrated vehicle.
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(c) Orbiter fuselage.
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Figure 2.- Continued.
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Figure 2.- Continued.
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DIMENSIONS IN METERS
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(e) Solid rocket motors, S1.
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0.005514 0.003866
0.008273 0.004602
0.01103 0.005126
0.01379 0.005479
0.01655 0.005677
0.01930 0.005733

L.E. RAD.=0.00 1168

0.01930 0.01930

0.0497- 0.005733 0.009652

- -0.009652 0.01147

(f) Vertical tail ACPS pods P1V.

Figure 2.- Continued.
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NOTE: ALL DIMENSIONS ARE MODEL SCALE IN METERS

i= 1.6
1.4

0.2880
0.06833

0.2304

0.3048-

(g) SRM plumes.

Figure 2.- Concluded.
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(a) Front view.

(b) Rear view.

Figure 3.- Installation of the 0.019-scale model launch configuration of the Space Shuttle Vehicle with the
040A orbiter.
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(c) Front view with M = 1.4 nozzle design solid plume simulators.

Figure 3.- Concluded.
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DATA MEASURED GASEOUS
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Figure 4.- Average plume shape variations with the viscous mixing parameter (pU)j/(pU)o for various SRM nozzle
designs at M = 1.6.
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Figure 5.- Average SRM plume shape variations with the viscous mixing parameter (pU)j )/(pU for M= 2.0 nozzle
design at M = 2.0.
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5 -_ M 1.6

NOZZLE DESIGN
MACH NUMBER

4- 3.0

" 1.6

D2-

m 2
w M= .6 SOLID PLUME

) M=-1.4) BOUNDARIES
-ia- I 
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VISCOUS MIXING PARAMETER, (pU)j/(pU)C

Figure 6.- Variation of the average gaseous SRM plume shape with the viscous mixing parameter at a given distance

from the nozzle exit.
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e=6a=6 =0
O No plumes
a Nominalplumes(P,/Pt Nom;SRMA/A*=8)

O Smaller SRM plumes (Nom. orb. plumes; SRM A/A = 12)
A Larger plumes (Orb. and SRM PcPt = 13 Nom.)
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(a) Normal force vs. angle of attack at M = 1.60.

.35

.30

.25

.40

-.15

- .20-

-. 25

36

U .0

-4.0-00 1 2 8 9 1

ANLWFATC.APA ERE

(b-omlfoc.s0nelo5tak t .8

Fiue7-Efc.f lm ieo h lniuia hrctrsisa03=0

361



6, = 6,= =6,
o No plumes
o Nominal plumes (P/P, Nom;SRMA/A* = 8)

O SmallerSRM plumes(Nom. orb. plumes;SRM A/A* 12)
A Larger plumes (Orb. and SRM P,/P. = 13 Nom.)
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(c) Forebody axial force at M = 1.60.
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(d) Forebody axial force at M = 1.98.

Figure 7.- Continued.
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Se= ==0r=u
O No plumes
O Nominal plumes (P/P, Nom;SRMA/A* = 8)
O Smaller SRM plumes (Norm. orb. plumes; SRM A/A= 12)

Larger plumes(Orb. and SRM P/P, = 13 Nom.)
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(e) Pitching moment at M = 1.60.
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(f) Pitching moment at M = 1.98.

Figure 7.- Continued.
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, =6,a= =0
°

o No plumes
0 Nominalplumes(P/Pt Nom;SRMA/A*= 8)
O. Smaller SRM plumes (Rom. orb. plumes; SRM A/A*= 12)
A Larger plumes (Orb. and SRM Pc/P, = 13 Nom.)
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(g) Normal force vs. pitching moment at M = 1.6.
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(h) Normal force vs. pitching moment at M = 1.98.

Figure 7.- Continued.
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6 =6 = = 0
o No plumes
* Nominal plumes (Pc/P, Nom;SRM A/A= 8)

O Smaller SRM plumes (Nom. orb. plumes;SRMA/A
=  

12)
a Larger plumes (Orb. and SRM P/Pr = 13 Nom.)
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(j) Wing bending moment at M = 1.98.

Figure 7.- Continued.
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5e = a , = 0
o No plumes
o Nominal plumes (P,/Pt Nom;SRMA/A* 8)

O Smaller SRM plumes (Nom. orb. plumes;SRM A/A = 12)

A Larger plumes(Orb. and SRM Pc/Pt= 13 Nom.)
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Figure 7.- Concluded.
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e6, =a = 0
o No plumes
o Nominal plumes (Pc/P ,Nom; SRM A/A* = 8)
O Smaller SRM plumes (Nom. orb. plumes; SRM A/A *= 12)

Larger plumes (Orb. and SRM Pc/Pt = 1.3 Nom)
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(b) Side force at M = 1.98.

Figure 8.- Effect of plume size on the lateral characteristics at i = 00.



e = = r = 0

o No plumes
0 Nominal plumes (Pc/, Nom;SRM A/A = 8)

O Smaller SRM plumes (Nom. orb. plumes; SRM A/A*= 12)
A Larger plumes (Orb. and SRM Pc/P = 13 Nom.)
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.09

.08

.07

< .06

S.05

.04

u .03

z .02

.01

-. 01 -

- .02

-. 05

-. 06- 
-

l 3 .... 5 6
SIDESLIP ANGLE. BETA. DEGREES

(d) Yawing moment at M = 1.98.

Figure 8.- Continued.
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S=6, =6, =0

o No plumes
" Nominal plumes (PcP, Nom;SRMA/A= 8)
O Smaller SRM plumes ( om. orb. plumes;SRMA/A*= 12)
A Larger plumes (Orb. and SRM P/P = 13 Nom)
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(f) Rolling moment at M = 1.98.

Figure 8.- Continued.
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(h) Pitching moment at M = 1.98.

Figure 8.- Continued.
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6,e= a= =0
o No plumes
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(j) Wing bending moment at M = 1.98.

Figure 8.- Concluded.
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(a) Normal force vs. angle of attack.
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Figure 9.- Effect of nozzle design point on the longitudinal characteristics at 3 = 00 and M = 1.60.
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(d) Normal force vs. pitching moment.

Figure 9.- Continued.

48



0 =6 = =0

Nozzle design,
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Figure 9.- Concluded.
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(a) Normal force vs. angle of attack at M = 1.60.
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(b) Normal force vs. angle of attack at M = 1.98.

Figure 10.- Effect of the orbiter and the solid rocket motor (SRM) plumes on the longitudinal characteristics at 3 = 00.
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(c) Forebody axial force atM = 1.60.
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Figure 10.- Continued.
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(f) Pitching moment at M = 1.98.

Figure 10.- Continued.
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Figure 11 .- Effect of the orbiter and the solid rocket motor (SRM) plumes on the lateral characteristics at
a= 0.
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Figure 13.- Comparison of the control effectiveness with gaseous and solid simulated SRM jet plumes at M = 1.60.
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Figure 14.- Plume effects with and without the orbital maneuvering system (OMS) atM = 1.60.
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Figure 15.- Effect of angle of attack and plumes on the lateral characteristics at M = 1.60 with OMS.
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Figure 16.- Effect of angle of attack and plumes on the lateral characteristics at M= 1.98 without the OMS.
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6, =6,=0

O No plumes 0
a No plumes 10
O Orb. and SRM plumes (Nom. Pc/P,) 0
A Orb. and SRM plumes (Nom. Pc/Pt) 10
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.0 0 4 .. . . . . . . . . . . . . . . . . . . . . . . .

.003

.002

S.001

--.D0
z
L -.002

-.003

w -. 004

-.005

W- .00613

- .0015 " . . . . .

DSIDESLIP ANGLE BETA DEGREES

(j) Wing bending moment at M = 1.98.

Figure 20.- Concluded.
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Orbiter and SRM plumes; 6
a 
= 0

8e 60r
o Nom. plumes (Pc/P, Nom.; SRM A/A = 8) 0 0

o Nom. plumes (Pc/P, Nom.; SRM A/A =8) 10 10

0 Smaller SRM plumes (Nom. Orb. plumes; SRM A/A * = 12) 0 0

A Smaller SRM plumes (Nom. Orb. plumes; SRM A/A = 12) 10 10
L Larger plumes (Orb. and SRM P,/Pt = 1.3 Nom.) 0 0

n Larger plumes (Orb. and SRM P/P = 1.3 Nom.) 10 10
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(b) Normal force vs. angle of attack at M = 1.60.
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(b) Normal force vs. angle of attack at M = 1.98.

Figure 21.-Effect of the size of the plumes on the elevon and rudder power at !3=00
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Urbiter and SRM plumes; 6, = 0

o Nom.plumes (PP Nom.;SRMA/A*=8) 0 0
o Nom. plumes (Pc/Pt Nom.; SRMA/A*=8) 10 10
0 Smaller SRM plumes (Nom. Orb. plumes; SRM A/A*= 12) 0 0

Smaller SRM plumes (Nom. Orb. plumes; SRM A/A * = 12) 10 10
Larger plumes (Orb. and SRM P/P = 1.3 Nom.) 0 0
Larger plumes (Orb. and SRM PPt = 1.3 Nom.) 10 10
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Figure 21.- Continued.
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Orbiter and SRM plumes; o, = 0

o Nom.plumes(PcP Nom.;SRMA/A*=8) 0 0

o Nom. plumes (Pc/Pt Nom.; SRM A/A* = 8) 10 10

0 Smaller SRM plumes(Nom. Orb.plumes;SRMA/A= 12) 0 0
A Smaller SRM plumes (Nom. Orb. plumes; SRM A/A = 12) 10 10

r Larger plumes (Orb. and SRM P/P = 13 Nom.) 0 0

! Lrger plumes (Orb. andSRMPP, = 1.3 Nom.) 10 10
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(e) Pitching moment at M = 1.60.
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Figure 21.- Continued.
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Orbiter and SRM plumes; S. = 0'

o Nom. plumes (PcPt Nom.; SRM A/A * = 8) 0 0

0 Norm.plumes(PcP, Nom.;SRMA/A * = 8) 10 10

O Smaller SRM plumes (Nom. Orb. plumes; SRM A/A = 12) 0 0
A Smaller SRM plumes (Nom. Orb. plumes; SRM A/A = 12) 10 10
n Larger plumes (Orb. and SRM Pc/Pt = 1.3 Nom.) 0 0
t- Larger plumes (Orb. and SRM Pc/Prt= 1.3 Nom.) 10 10
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(g) Normal force vs. pitching moment at M = 1.60.
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Urabter na nKM plumSne -

bee S m

o Nom. plumes (PP, Nom.; SRM A/A = 8) 0 0

o Nom. plumes (P,Pt Nom.;SRMA/A= 8)  10 10

0 Smaller SRM plumes (Nom. Orb. plumes; SRM A/A= 12) 0 0

A Smaller SRM plumes (Nom. Orb. plumes; SRMA/A* 12) 10 10

N Larger plumes (Orb. and SRM Pc/P= 1.3 Nom.) 0 0

th Larger plumes (Orb. and SRMPc/P = 1.3 Nom.) 10 10
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(i) Wing bending moment at M= 1.6.
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(j) Wing bending moment at M = 1.98.

Figure 21.- Continued.
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Orbiter and SRM plumes;&a = 0'

6e
° 

6,

o Nom. plumes (Pc/P% Nom.;SRM A/A* = 8) 0 0
o Nom. plumes (P/P, Nom.; SRMA/A* =8) 10 10

O Smaller SRM plumes (Nom. Orb. plumes; SRM A/A*= 12) 0 0
" Smaller SRM plumesr (Nom. Orb. plumes; SRM AA*=12) 10 10

SLarger plumes (Orb. and SRM P% t= 1.3 Nom.) 0 0

S LaUrger plumes (Orb.and SRM PcP = 1.3 Nom.) 10 10
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(k) Side force at M = 1.60.
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Figure 21.- Continued.
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Orbiter and SRM plumes; a = 0
°

ee 0
0 Nom. plumes (P/P Nm.; SRM A/A= 8) 0 0
0 Nom.plumes (P/Prt Nom.;SRMA/A =8) 10 10

0 Smaller SRM plumes(Nom. Orb. plumes;SRMA/A*=12) 0 0
a Smaller SRM plumes(Nom. Orb. plumes;SRMA/A*=12) 10 10
b Larger plumes (Orb. and SRM Pc/P, = 1.3 Nom.) 0 0

C Larner plumes(Orb. and SRMPcP,t = 1.3 Nom.) 10 10
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(m) Yawing moment at M = 1.60.
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Orbiter and SRM plumes;,
a = 0 6 60

o Nom. plumes (Pc/P Nom.; SRM A/A = 8) 0 0

" Nom. plumes (Pc/P, Nom.; SRM A/A* = 8) 10 10

0 Smaller SRM plumes (Nom. Orb. plumes; SRM A/A = 12) 0 0

A Smaller SRM plumes (Nom. Orb. plumes; SRM A/A* 12) 10 10

t- Larger plumes (Orb. and SRM PcP, = 1.3 Nom.) 0 0

C Larger plumes (Orb. and SRM PcP = 1.3 Nom.) 10 10

.007

.006 t

.005

.003

o.001

-.oo

-. 002

w

-. 003

ANGLE OF ATTACK. ALPHA. DEGREES

(o) Rolling moment at M = 1.60.
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Figure 21.- Concluded.
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Orbiter and SRM plumes;6 = 0
°

Nom. plumes (Pc/Pt1 Nom.; SRM A/A = 8) 0 0

Nom. plumes (PIP, Nom.;SRM AA*= 8) 10 10

0 Smaller SRM plumes (Nom. Orb. plumes; SRM AI/A* = 12) 0 0

A Smaller SRM plumes (Nom. Orb. plumes; SRM A/A*= 12) 10 10

n Larger plues (Orb. and SRM P,./P, = 1.3 Nom.) 0 0

n Larger plumes (Orb.and SRM Pc = 1.3 Non.) 10 10
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(b) Side force at M = 2.60.
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(b) Side force at M = 2.00.

Figure 22.- Effect of the size of the plumes on the elevon and rudder power at a = 0'.
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Orbiter and SRM plumes;,o = u

SNom. plumes (P/Pt Nom.;SRM A/A*=8) 0 0

Nom. plumes (Q/P,c Nom.; SRMA/A*=8) 10 10

0 Smaller SRM plumes (Nom Orb plumes; SRM A/A = 12) 0 0

A Smaller SRM plumes (Nom. Orb. plumes; SRM A/A = 12) 10 10

r Larger plumes (Orb. and SRM P,/Pt= 1.3 Nom.) 0 0

Larger plumes (Orb. and SRM Pc/ = 13 Nom.) 10 10
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(c) Yawing moment at M = 1.60.
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Orbiter and SRM plumnes; 
a 

= 06

o Nom. plumes(P/Pt. Nom.;SRMA/A*=8) 0 0

o Non,. plumes (Pc/P, Nom,;SRMA/A*=8) 10 10

O Smaller SRM plumes(No,. Orb. plumes;SRM A/A*= 12) 0 0

S Smaller SRM plumes (Nom. Or. plumes; SRM A/A
* = 

12) 10 10

t Larger plumes (Orb. and SRM Pc/P, = 1.3 Norm.) 0 0

[ Larger plurnes (Orb. and SRM PIP,, = 1.3 Nom.) 10 10
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(e) Rolling moment at M = 1.60.
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(f) Rolling moment at M = 2.00.

Figure 22.- Continued.
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Orbiter and SRM plumes;6, = 0
°

o Nom. plumes (Pc/P, Nom.; SRM A/A* = 8) 0 0

tl Nom. plumes(PIP,t Nom.;SRMA/A*=8) 10 10

O Smaller SRM plumes (Nom. Orb, plumes; SRM A/A*= 12) 0 0

SmallerSRM plumes (No. Orb. plumes; SRM A/A = 12) 10 10

p. Larger plumes (Orb. and SRM P./Pt = 1.3 Nom.) 0 0

[ Larger plumes (Orb. and SRM PcIP, = 1.3 Nom.) 10 10
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(g) Pitching moment at M = 1.60.
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(h) Pitching moment at M = 2.00.

Figure 22.- Continued.
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Orbiter and SRM pluoncsr: 
a 
= 0'

Nom. plumes (P/,.P Nom.;SRM A/A* = 8) 0 0

S Nom. plumes (Pc/P, Nom.;SRMA/A* =8) 10 10

O Smaller SRM plumes (Nom. Orb. plumes; SRM A/A = 12) 0 0

S Smaller SRM plumes (Nom . Orb. plumes; SRM A/A* = 12) 10 10

IL Largcr plumes (Orb. and SRM PIPt = 1.3 Nom.) 0 0

o Larger plumes (Orb. and SRM P/Pt= 1.3 Nomr.) 10 10
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(i) Wing bending moment atM = 1.60.

.007

.00O

: .005

.004

.003

.002

- .001

z -. 000

0 -. 005

-. 006

-. 007

- .O _ . . .. .t 2 . . . . . . . . . 2.

SIDESLIP ANGLE. BETA. DEGREES

(j) Wing bending moment at M = 2.00.

Figure 22.- Concluded.
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6, =0

60 0

o No plumes 0 0

0 No plumes 10 10

O Nom. SRM plumes only (A/A= 8) 0 0
a Nom. SRM plumes only (A/A*= 8) 10 10

N Nom. Orb. plumes only (Nom. Pc/P,) 0 0

C0 Nom. Orb. plumes only (Nom.P/P,t) 10 10
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(a) Normal force vs. angle of attack at M = 1.60.
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(b) Normal force vs. angle of attack at M= 1.6098.
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(b) Normal force vs. angle of attack at M = 1.98.

Figure 23.- Effect of the orbiter and the solid rocket motor (SRM) plumes on the elevon and rudder power at P = 0' .
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b
a = 0

bc
° 

6r

1C No plumes 0 0

, No plumes 10 10

0 Nom. SRM plumes only (A/A = 8) 0 0

A Nom. SRM plumes only (A/A * 8) 10 10

L Nom. Orb. plumes only (Nom. PCPI ) 0 0

E Nom. Orb. plumes only (Nomn. P,/t) 10 10
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(c) Forebody axial force at M= 1.60.
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(d) Forebody axial force at M = 1.98.

Figure 23.- Continued.
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6a=0*

o No plumes 0 0
o No plumes 10 10

0 Nom. SRM plumes only (A/A* = 8) 0 0
A Noa. SRM plumes only (A/A* = 8) 10 10

" Nom. Orb. plumes only (Nom. Pc/Pt) 0 0

" Nom. Orb. plumes only (Nom. Pc/P) 10 10
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(f) Pitching moment at M = 1.60.
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(f) Pitching moment at M = 1.98.

Figure 23.- Continued.
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6 =0o
6e 6,

o No plumes 0 0

o No plumes 10 10

0 Nom. SRM plumes only (A/A* = 8) 0 0
Nom. SRM plumes only (A/A* = 8) 10 10

n Norm. Orb. plumes only (Nom. P,/P) 0 0

D Nom. Orb. plumes only (Nom. Pc/P) 10 10
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(g) Normal force vs. pitching moment at M = 1.60.
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Figure 23.- Continued.
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6 =0

N, pluni 0 0

No p hlmes 10 10

SRM plu s o i1 .
= 

81) 0 0

\,lIa SR I plu es ol I II I 1 - ) 10 10

N \a Orh phll esoll (\l' llP pI) 0 0

0 No , Odb pLm ala (1ni P 6, 10 10
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(i) Wing bending moment at M= 1.60.
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(j) Wing bending moment at M = 1.98.

Figure 23.- Continued.
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1, - U 0

l plumei 0 0
N R plumes

or SR,\ p11 mm,,nl AI , *=U 0

\nl SRM plue ul I 
= 

) liU 10
S \u. Orb plime nl (\m P 0 0

N"m Orb plune\ln 1li m P 10 0
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(k) Side force at M= 1.60.
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Figure 23.- Continued.
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S
a = 0

oNo plumes 0 0

0 No plumes 10 10
0 Nom. SRM plumes only A/A = 8) 0 0
A Nom. SRM plumes only (A/A* = 8) 10 10

L Nora. Orb. plumes only (NMul. P /Pt) 0 0
L Nom. Orb. plumes only (Nor.P P/l't) 10 10
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(m) Yawing moment at M= 1.60.
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(n) Yawing moment at M = 1.98.

Figure 23.- Continued.
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a
u = 0

, No plumes 0 0

n No plumes 10 10

0 Nom. SRM plumes only (AA = 8) 0 0

A Nom. SRM plumes only (AIA = R) 10 10

L No.m Orb. plumes only (Nora.P/Pt,) 0 0

b Nom. Orb. plumes only (Nom. P /P,% ) 10 10
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(o) Rolling moment at M = 1.60.
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(p) Rolling moment at M = 1.98.

Figure 23.- Concluded.
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6a =0

60 B0

o No plumes 0 0
S No plumes I0 10

0 Nom. SRM plumecs only (A/A*= 8) 0 0
N"n. SRM plumes only (A/A = 8) 10 10

[ No . Orb. plumesonly (Nom. P P, ) 0 0

[ Norm. Orb. plumes only (Nom. Pc/P ) 10 10
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(a) Side force at M = 1.60.
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(b) Side force at M = 1.98.

Figure 24.- Effect of the orbiter and the solid rocket motor (SRM) plumes on the elevon and rudder power at a = 00.
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Se
° 

6r

No plumes 0 0

S No plumes 10 10

0 Nom. SRM plumes only (A/A* 8) 0 0

A No SRM plumes onl) (A/el 8) 10 10

* No Orb plumes onl) (Nol. PcP) 0 0

* Norm. Orb. plumes only (N n. Pc./Pt 10 10
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(c) Yawing moment at M = 1.60.
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(f) Rolling moment at M = 1.60.
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(f) Rolling moment at M = 1.98.

Figure 24.- Continued.
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(g) Pitching moment at M = 1.60.
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(h) Pitching moment at M = 1.98.

Figure 24.- Continued.
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(i) Wing bending moment at M= 1.60.
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(j) Wing bending moment at M = 1.98.

Figure 24.- Concluded.
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Figure 25.- Effect of the orbiter and the solid rocket motor (SRM) plumes on the elevon effectiveness parameters
at j = 00
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Figure 26.- Effect of the orbiter and the solid rocket motor (SRM) plumes on the rudder effectiveness parameters
at 3 = 0 .
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(c) Rolling-moment parameters at M = 1.60 and 2.00.
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(d) Rolling-moment parameters at M = 2.20.

Figure 26.- Concluded.
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Figure 27.- Effect of the orbiter and the solid rocket motor (SRM) plumes on the aileron effectiveness parameters
at a = 00
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