

1. Introduction. In che olassionl linẹar thoory of elsetioity there is: a widely ueod integral theorem oalled the rooiproosl theorom of Eetti
 versatility of this theorsm for olastostatio problems while Pátion flo [4] and Baitin [5] have employsd a dynamic varsion to etucty olestodynimad probloms involving moving point and ine loodings. Fuais 【6\$ has genoralized the theorem to sover the oase of a linsar viesoclastio selid and his book contatis raforences to voraione of this theores useful to thermociesticity and oholl theories.

In thes papor wo intend to establish a dymamio raoiprocal theorsan for a linearised theory of intoraoting modia postulated in a pepar by i. Steol [7]. The constituenta of the mixture are a linear elastio colld. and a inneariy visoous fiuid. In addition to Steel's fiold equations we use boundery oonditions and inequalitios on the material constante thet havo boen shom by Atkin, Chadwick and Stoel (8) to be sufilicient to guarantes uniquaness of solution to initial-boundery vilue problems.

The olemente of the thoory aro given in section 2 end two different boundary value problems are considored. The reodprocal theorem is dorived In seotion 3 with the aid of the Leplece transform and the divorgence thoorem and this seotion is comoluded with a disoussion of the spooial cases which arise when one of the oonstituonts of the mixture is abscate

Ae an illustration of the theoren we obtain the response of the . mirture cooupying an infinite region and eubjeoted to an impulaivily appliod noving point load acting on the rolld constituent. The dieplecerant of the noisd component and the rolooity of the shuid constituemt are found and discusesd. This is the content of ceotion to
2. Field equations fox the mixtures. He, Formilate the fiold equations sppropriate to mixtisre of Innar olastic nolid and Innanis Fisoou Muid veing the fisid equations and bsundsyy ocnditions given in [7] and 181. AL1 squatsons ari eivon refiorred to a cartselan coordinete
 a regriar rogion of threo-dimensional Buolidean apace, D_{0} with bounding curiace, So The conventional indiodsi oubsoript netation is usod to epeoify peotor or tensor oompononts with en index appearing trice inciloating a cum over $122_{0} 30$ Subsomipte proosded iv a commi indicate spetiol differentsatlon kith reapoot to that visiabic. while time derivetives exe indioatsu by a doci.
socorting to $\{71$ and $\{8\}$, tho E1old onumtiose concict:cis the following:
gontimuity equations

$$
\varphi_{1}=\bar{\phi}_{1}\left(1-\theta_{k k}\right)_{\theta} \stackrel{\varphi}{\theta}^{+}+\bar{\varphi}_{2} \varphi_{k_{g} k}=0
$$

equations, of motion

$$
\begin{aligned}
& \pi_{1 j_{0}}+\pi_{1}+\bar{p}_{2} \xi_{1}-\bar{T}_{2} \bar{T}_{2} \text { - } 1=1,2_{2} 2
\end{aligned}
$$

strein-displenoment equstions

$$
2_{1, j}=w_{1, j}+w_{j, 1}, 1, j=1,2,3
$$

cata of deformation-valocity ralations

$$
2 \varepsilon_{1 j}=\tau_{1, j}+\nabla_{1, j}, 1,1=1,2,3
$$

constitutive rolations

To complots the formistion wo add to the above the initial and bounding conditions. Thus shan $t 0$ wo require

$$
\begin{aligned}
& w_{1}(x, 0)=w_{i}^{(1)}(x)_{0} \quad v_{1}(x, 0)=v_{i}^{(1)}(x)_{0} \\
& \dot{w}_{1}(x, 0)=v_{1}^{(2)}(x)_{0} \quad \eta(x, 0)=0, \quad 1=1,2,3
\end{aligned}
$$

$$
\begin{aligned}
& \left(\sigma_{1 j}+\mathbb{x}_{1 j}\right)_{n_{j}} t_{1}, \\
& \stackrel{*}{1}-v_{1}=r_{1}, 1=1,2,3
\end{aligned}
$$

where n_{1} are the components of the unit outward normal to $S_{\text {. }}$
Quantities appearing in (2.1) to (2.5) which are associated with the solid component of the mixture are $\rho_{1}=\bar{\rho}_{1}, w_{1}, \theta_{i j}, \sigma_{i j}$ and \boldsymbol{q}_{1}. Here ρ_{1} is the density at time t and place $x_{p} \bar{\rho}_{1}>0$ its initial value, w_{1} the displacement components, f_{i} the body fore components, and $\sigma_{i j}, \sigma_{i j}$, respectively, tho strain and partial stress tensor component. In the fluid, η is the current density minus its initial value, $\bar{\rho}_{2}>0_{9} v_{1}$ the fluid volooity components, $f_{1 f}$ the rate-of-deformation tensor, Fr $_{1 \mathrm{f}}$ the fluid partial stress tensors and g_{1} the Nuld body force components. The vector components π_{1} in (2.5) ar* those of tho diciuaivo resistance vector. The material constants
 inequalities given in $[8]$ as well as the equalities

$$
\begin{aligned}
& \bar{\phi}=\bar{\varphi}_{2}+\bar{\varphi}_{2}
\end{aligned}
$$

Quantities $w_{1}^{(1)}, w_{1}^{(2)}, \nabla_{1}^{(1)}, t_{i} \operatorname{man} x_{1}$ are assumed known throughout t the appropriate domain.

* This follows qua tho rarinition of $\beta_{1}, \beta_{2}, \beta_{3}, \gamma_{1}, \gamma_{2}$ given by Stool 17 I.

Now oonsider a noomd probien for, the eamo fegion Do Lot the correspending fiold equationa for thic problem bo

$$
P_{1 j}=-\bar{\rho}_{2} C_{2} \delta_{1 j}=\gamma_{2} \delta_{1 j} E_{k k}+2\left\{F_{1 j}+\lambda \delta_{1 j} I_{k k}-\gamma_{1} E \delta_{1 j}\right.
$$

Equations (2.1) to (2.7) duffor fros (2.1) to (2.7) only in allowing diffosoni body foross, inftial oonditions and surfaco conditions. The notational ehanges are obvioue and are ueed for the ake of olemsty in whet followe.

$$
\begin{aligned}
& s_{11_{0} d}=P_{1}+\bar{P}_{1} F_{1}=\bar{\varphi}_{1} \overline{U V}_{1} \text { 。 } \\
& P_{1 j, j}+P_{1}+\bar{T}_{2} G_{1}=P_{2} \bar{V}_{1} 01=202,3 \\
& 2 E_{1,1}=W_{1,9}+N_{j, i}, i_{0} j=1,2,3 \\
& 2 E_{1 j}=v_{i_{0} j}+v_{j, i}, \quad 1_{0} 4=1,2,3 \\
& s_{1 j}=\alpha_{1} \delta_{1 j}+2 \mathcal{F}_{j} E_{1 j} * \beta_{2} \delta_{1 j} \xi_{k k}+\hat{\beta}_{1} E \delta_{1 j},
\end{aligned}
$$

by (2.1) to (2.7) and tho zolutions of problom 2 given by (2.1$)^{0}$ to
 tranaform and the divergenco theoremo
3. The restiproogl theoreme Wo bagin by defining the Iaplace trancforse with raspsot to thas of a Aunotion if 0 to to

$$
\begin{equation*}
\hat{f}(0)=\int_{0}^{50} f(t) a^{-s t} d t \tag{3.4}
\end{equation*}
$$

and by recalling that the inverse of the weduof of $z_{1}(a) \tilde{z}_{2}(s)$ tu given by

$$
\begin{equation*}
2^{-1}\left\{\hat{s}_{2}(0)_{2}^{\infty}(\mathrm{s})\right]=\int_{0}^{t} f_{1}(t-r) I_{2}(r) d r \tag{3.2}
\end{equation*}
$$

Applying (3.1) to $(2.1)_{0}(203)$ and $(2.5)_{0}$ and, ueing the Antithal comations (2.6) no obtaln

The boundary oonditions (2.7) when tranaformed by (3.1) bedome,

$$
\begin{aligned}
& \left\|\hat{\theta}_{1 j}\left(x_{0} \theta\right)+\hat{g}_{1 j}(x, \theta)\right\| n_{1}-\hat{t}_{1}\left(x_{0} \theta\right) \\
& -w_{1}(1)(x)+\hat{\sigma}_{1}(x, s)-\hat{v}_{1}(x, s)=\hat{f}_{1}\left(x_{0} \theta\right) \quad 1_{0} j=1,2,3
\end{aligned}
$$

for x on the surface 3 .
How consider the aolution to (2.1) to (2.7) to be given by $H_{1}\left(x_{0} t\right)$ and $V_{1}\left(x_{0} t\right)$. Appiy (3.1) to this oolution. watipiry (3.4) by o $\hat{W}_{1}(x, 0)$ and $(3.4)_{2}$ by $\theta_{2}\left(x_{0} b\right)$, tion sisa on 1. Integrato both. equatiens ever D and edd. We thon havo

$$
\begin{aligned}
& \iiint\left\{a \hat{W}_{1}(x, s)\left[\hat{\sigma}_{i y, j}(x, s) \bullet \hat{\pi}_{1}(x, s)\right]+\right.
\end{aligned}
$$

Doztine

$$
\begin{aligned}
& I_{2}=\iiint_{B} d A_{1} \ddot{H}_{2} d \\
& I_{3}=\iiint_{B} \hat{V}_{1} \hat{F}_{1 j_{0}} d^{d r} 0 \\
& I_{1}=\iiint_{1} A_{1} A_{4} d \boldsymbol{D}
\end{aligned}
$$

Rownete Z as

An appiliction of the divergenoe theoren to the now voiume integral Hields

$$
\begin{aligned}
& \left.+\nabla_{2} \beta_{1} \hat{\mathrm{~L}}_{\operatorname{man}} \hat{\mathrm{t}}_{j} \mathrm{n}_{3}\right] \mathrm{d} \sigma \\
& +\iiint_{D}\left|\hat{w}_{1}\left(2 \rho_{3} \hat{E}_{1 j_{2} j}+\beta_{2} \hat{R}_{j j, 1}\right)=\hat{\rho}_{2} \beta_{1} \hat{E}_{j 1,1} \hat{\nabla}_{1}\right| d T .
\end{aligned}
$$

If we neri uso $(2.1)_{2}^{\prime},(2.5)_{i}^{9}$ and (301) to eliminate $\hat{E}_{1, j}$ then

$$
\begin{aligned}
& \left.+\bar{\varphi}_{2} \rho_{1} \hat{E}_{k k} \hat{ष}_{2} n_{1}\right] d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \left.\therefore+\bar{P}_{2} \hat{S}_{2} \hat{E}_{k t h} \hat{v}_{1} n_{1}\right] d \theta \\
& \text { 4... :t. }
\end{aligned}
$$

$$
\begin{aligned}
& 0 .
\end{aligned}
$$

Ito final some
Eliminating the dotasles whith are oimilar to I_{1} gre givo formi. Foras which the romaining intogreis in (3.8) take. Fwe Antegrais $I_{2} I_{30}$ and I_{4} beooras

$$
\begin{aligned}
& x_{4} n \iint_{8} \frac{\bar{q}_{1} \bar{p}_{2} \sigma_{2}}{\bar{p}}\left(\hat{\bar{p}}_{k k} \hat{\sigma}_{4} n_{1}-\hat{\nabla}_{1} \hat{z}_{k k} n_{2}\right) \\
& \left.+\frac{\overline{\bar{\rho}}_{2} \alpha_{1}}{\bar{\rho}}\left(\hat{户}_{k k} \hat{x}_{1} n_{1}-\hat{\nabla}_{1} \hat{\theta}_{k k^{\prime}} n_{1}\right)\right) d \sigma
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\overline{\bar{\theta}}_{2} \alpha_{1}}{\bar{\phi}^{\prime}}{\hat{w_{1}}}_{1} \hat{F}_{k k, 1} 1 d r .
\end{aligned}
$$

(302)
axpressions (3.9) to (3.12) are now used in (3.7) and volume and nurfaon surface integrals exe oolleotod, If, now we recall the matorial Identity (2.8) and is we appiy (3.1) to the boundary oonlitions (2.7), (2.7) 0 and use these rasulte in the euxfece integral we achiove

$$
\begin{equation*}
\hat{I}_{1}+\hat{I}_{2}=.0 \tag{3.23}
\end{equation*}
$$

wheirp

$$
\begin{align*}
& f_{1} \iiint_{B} \int_{i}^{\hat{H}_{2}}\left(\bar{\theta}_{1} I_{1}+\bar{\theta}_{1} w_{1}^{(2)}+a w_{1}^{(1)}+\operatorname{sig}_{2} w_{2}^{(1)}\right) \\
& +\hat{\nabla}_{1}\left(\bar{\varphi}_{2} \hat{g}_{1}+{\overline{\varphi_{2}} \nabla_{i}}^{(1)}-\alpha w_{1}^{(1)}\right) \\
& -\hat{\sigma}_{1}\left(\bar{\theta}_{1} \hat{p}_{1}+\bar{\theta}_{1} W_{1}^{(2)}+\alpha W_{1}^{(1)}+\bar{p}_{1} W_{1}^{(1)}\right) \\
& \left.-\hat{\nabla}_{1}\left(\bar{\sigma}_{2} \hat{a}_{1}+\bar{\sigma}_{2} v_{1}^{(1)}-\alpha w_{1}^{(1)}\right)\right] d x \tag{3.24}\\
& \left.\hat{H}_{2} \int_{\|} \int_{\frac{1}{2}\left(\theta \hat{W}_{1}\right.}+\hat{V}_{1}\right)\left(t_{1}+\frac{\bar{P}_{2} \alpha_{2}-\alpha_{1}}{\delta_{1 j}} \delta_{1 j}\right)
\end{align*}
$$

$$
\begin{align*}
& \left.+\frac{2 \bar{\theta}_{2} \alpha_{1}}{\bar{\theta}_{2}} \hat{\varepsilon}_{k k} \theta_{i j}\right)_{n_{j}} I d \theta: \tag{3.15}
\end{align*}
$$

Equation (3.13) is the atatomsnt of the reciprocal in the transformed variables. A divot inversion to real tine yields tho Anal fora of the theorem and this can be cecomplished by moans of che convolution (3.2). We give several versions that axe useful.
A. Zero initial data. If the initial conditions (2.6), (2.6)0 are homogeneous then by (3.2) and (3.13) to (3.15) we obtain

$$
\begin{aligned}
& \because \leftrightarrow f_{j}^{t} \iint_{g^{\prime}}^{\frac{1}{2}} R_{1}(x, t-g) n_{j}(x) f \sigma_{1 j}(x, g): \infty x_{i j}(x, g)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2}\left(\frac{\partial w_{1}(x, y)}{\partial g^{2}}+v_{1}\left(x_{g} g\right)\right)\left[T_{1}\left(x_{\theta} t_{-} g\right) \div-\cdots{ }_{2}\right)_{1} n^{n_{4}}
\end{aligned}
$$

$$
\begin{align*}
& \left.\because \quad \int_{0}^{t_{p}} \iint \| \bar{\rho}_{1} f_{1}\left(x_{0} t-\xi\right) \frac{w_{1}(x, \xi)}{\partial \xi}+\bar{\rho}_{2} z_{1}\left(x_{0} t-\xi\right) v_{1}(x, \xi) \right\rvert\, d x d y \\
& \therefore \int_{0}^{t} \iint_{2}^{1} \frac{1}{2} x_{2}(x, t-y) n_{j}(x)\left(s_{i j}(x, y)=\rho_{1 j}\left(x_{p} y\right)\right. \\
& \left.-\left(\alpha_{1}+\bar{\phi}_{2} \xi_{2}\right) \delta_{1 y}-\frac{2 \bar{\varphi}_{1} \alpha_{3}}{\bar{\varphi}} E(x, y) \delta_{i j}+\frac{2 \bar{\theta}_{2} \alpha_{j}}{\bar{q}_{k j}}\left(x_{0} y\right) \delta_{i y}\right) \\
& \text { 童 }\left(\frac{\theta}{2} W_{1}(x, \xi)+V_{2}(x, \xi)\right)\left(t_{4}(x, t-\xi)\right. \tag{3.16}
\end{align*}
$$

B. Infinite region. If in place of $(2,7)$ and $(2.7)^{\circ}$ we use the condition that volooitios and stresses vanish as distance incupasec styron the origin then from (3.16) there remains

$$
\left.\int_{0}^{+} \int_{-\infty}^{\infty} \iint_{1} \bar{P}_{1}(x, t-g) \frac{8 w_{1}(x, \xi)}{\partial \xi}+\overline{9}_{2} \sigma_{1}(x, t-\xi) w_{1}(x, \xi)\right] d x d y
$$

$$
\int_{0}^{t} \iiint_{-\infty}^{+\infty}\left|\bar{\nabla}_{1} s_{1}(x, t-\xi) \frac{\delta W_{1}(x, y)}{\partial \xi}+\bar{\nabla}_{2} g_{1}(x, t-\xi) V_{1}(x, \xi)\right| d t d \xi \cdot
$$

It is this version that we will ubs in section 4.
C. Single constituent. If one of the constituents is absent then from (3.13) to (3.15) wo obtain a reciprocity relation wald for a Inner olaptio solid or a 2 nearly viscous fluid alone Suppose first that the solid 18 absent. Then $\phi_{1}=0_{1} \rho_{2}=\theta$, and the Iud equations are obtained from (2.1) to (2.7) by equating to sro the constants

$$
\alpha_{1}, \rho_{1}, \beta_{2}, \beta_{3}, \gamma_{1}, \gamma_{2} \text { and } \dot{<}
$$

and by Identifying $\lambda ; \beta$ as the riscositiss and $\overline{\mathrm{p}} \mathrm{m}_{2} . \overline{\mathrm{p}}$ with the Rudd prosespe in the rest tate.

Waking these edguntmont and repheolng the boundary oomotsthen (2.7) by either
$\therefore \quad \pi_{1 j} n_{1}=t_{1}$ on 8
05

$$
\begin{equation*}
\gamma_{1} \propto y_{1} \text { on } 8 \tag{3.150}
\end{equation*}
$$

then, wing (3018a) and are initial dits, $(3,14)$ and (3.15) yarkand

$$
\begin{align*}
& \int_{0}^{t} \iiint_{D} \bar{\theta}_{2}\left(x_{0} t-g\right) \psi_{2}\left(x_{0} g\right) d T d y \\
& \left.\left.1+\int_{0}^{t} \iint_{s} \gamma_{1}\left(x_{0} g\right)\right] t_{1}\left(x_{0} t-g\right)+m_{1}(x) R(t-y)\right) d \theta \\
& \cdots \\
& \int_{0}^{t} \iiint_{B} \bar{\gamma} 0_{i}\left(z_{9} t-\xi\right) \nabla_{1}\left(x_{8} \xi\right) d t d \xi \tag{3.19}
\end{align*}
$$

\because Simileniy, if the Sluid component is absent, then Q_{1} if,
$P_{2}=0$, and wo sot equal to zero

$$
\alpha_{2}, \lambda ; \beta_{0} \dot{\gamma}_{1}, \gamma_{2}, \alpha, \alpha_{1} \text { and } \beta_{1}
$$

Wo 1dentiry β_{2}, β_{3} as the Lame oonstante and replaoe tho boundery oonditions (2.7) by oither $\sigma_{1 j} n_{j}=t_{1}$ cor $w_{1}=x_{1}$ on s_{1}
$\therefore \quad$. Hence, using sero initial dita, and presoribing treation bomidary. \therefore oonditiona on 9 yfelde frea (3.13) to (3.15)

$$
\begin{aligned}
& \therefore \int_{0}^{t} \iiint_{B} \vec{O}_{1}\left(x_{0} g\right) \hat{x}_{1}(x, t-\xi) d r d z
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{t} \iint_{B} \vec{T}_{1}(x, y) r_{1}\left(x_{0} t-y\right) d x d y
\end{aligned}
$$

4. Motion of a ystrig of a 14nger olsatio soind and vicoous_nuld due to soving ratit lond.
 (2.1) to (2.5) arad hemogenocus indtisi oonditiona,

$$
\begin{align*}
& v_{1}\left(x_{0}, 0\right)=\dot{B}_{1}(x, 0)=v_{1}\left(x_{0} 0\right)=0,1=1,2_{2} 3 \\
& \pi\left(x_{0} 0\right)=0 \tag{4.1}
\end{align*}
$$

for the anfinito rogion dofinad by $<x_{1}, x_{2}, x_{3}<+\infty$ and $t=0$ In place of (2.7) tro require $v_{1}\left(x_{5} t\right), v_{i}\left(x_{8} t\right), \sigma_{i j}$ and $\pi_{1 j}$ to : ranioh as $\left(x_{1} x_{2}\right)^{\frac{1}{2}}$ incroesen without bound.

> In partioular ve consider bodis forcos to be given by

$$
\begin{aligned}
& \vec{f}\left(x_{9} z_{0}, t\right)=\vec{a}_{1} \delta\left(x_{1}-x_{10}\right) \hat{\theta}\left(x_{2}=x_{20}\right) \&\left(x_{3}-x_{30}\right) \delta(t) \\
& \vec{g}\left(x_{9} x_{\Theta} v t\right)=\overrightarrow{a_{1}} \varepsilon\left(x_{1}=x_{10}\right) \delta\left(x_{2}=x_{20}\right) \delta\left(x_{3}=x_{30}\right) \delta(t)
\end{aligned}
$$

whore \vec{a}_{1} is tho unit vocior in the x_{i} dirsction and is the Dirac dolts sunctiono Tho symbel intanis for the usual voctor statement $\ddot{\varepsilon}=r_{1} \vec{a}_{1}$.

Tho phycioal problem dosoribod above corrosponds to that of
 appiled at x_{0} in tha droation parsilel to the x_{i} exia at tico. 0 。 The voitoris oought aloarizy play the role of Greens funotions fors the thooser wed boro.
$\because \quad$ Tro protlen hac boon cmanined in [9] and [10] for the body
 the materias ocnterante. In [9f, the solution was given for ars the diffusiva reolstance paranotro woro for the casse when the

perturwation expamaion for as emall. In addition to enall w wsed the routrictions, which can bo romoved

$$
\begin{equation*}
\bar{\theta}_{2} \rho_{1}=\frac{\bar{\theta}_{1} \alpha_{1}}{\bar{\theta}}, \quad \bar{\theta}_{2} \bar{\sigma}_{1}=\frac{\bar{\theta}_{1} \alpha_{1}}{\bar{\theta}}, \bar{\rho}_{2} \alpha_{2} a_{c_{1}} \tag{4.3}
\end{equation*}
$$

This last oaso is used horo.
From (10) wo take tho soiution $\varepsilon_{1}\left(x_{8} x_{0}, t\right)$, valld for α emen
 to to ternas up to ordores

$$
\begin{align*}
& v_{1}\left(x_{0} x_{0}, t\right)=\frac{t}{v_{0} x_{0}^{2}} F_{1}\left(x_{0} x_{0}, t\right), \tag{4,4}\\
& w_{v}\left(x_{0} x_{0}, t\right)=\frac{t\left(x_{1}-x_{1}\right)\left(x_{v}-x_{v 0}\right)}{t_{0} R_{0}^{t}} F_{2}\left(x_{0} x_{0}, t\right), v=2,3 \tag{4,5}
\end{align*}
$$

thers

$$
\Gamma_{2}\left(x_{0} x_{0} \theta\right)-\frac{1}{\theta_{2}} \theta\left(\hat{a}-\frac{R_{0}}{O_{2}}\right)-\frac{1}{\theta_{0}} \delta\left(\hat{2}-\frac{R_{0}}{V_{0}}\right)
$$

$$
+\frac{3}{R_{0}}\left[1-\frac{\pi}{2 \bar{\varphi}_{2}}\left(\hat{0}-\frac{R_{0}}{a_{1}}\right)\right] R\left(t-\frac{R_{0}}{O_{1}}\right)-\frac{3}{R_{0}}
$$

$$
\begin{equation*}
-\frac{3}{R_{0}}\left[1-\frac{\alpha}{2 \theta_{1}}\left(t-\frac{8_{0}}{v_{B}}\right)\right] z\left(t-\frac{R_{0}}{v_{B}}\right) \tag{4.5}
\end{equation*}
$$

$$
\begin{aligned}
& \text { rhere } \\
& \left.r_{1}\left(x, x_{0} 0\right)_{=}=\frac{\left(x_{1}-x_{10}\right)^{2}}{\theta_{1} R_{0}^{2}} \delta\left(t-\frac{R_{0}}{\theta_{1}}\right)+11-\frac{\left(x_{1}-x_{10}\right)^{2}}{R_{0}^{2}}\right] \frac{1}{v_{B}} \delta\left(t-\frac{R_{0}}{y_{B}}\right) \\
& +\frac{1}{W_{0}}\left[\frac{3\left(x_{1}-x_{1}\right)^{2}}{R_{0}^{2}}-1\right]\left[10 \frac{a}{\partial Q_{1}}\left(t-\frac{R_{0}}{O_{1}}\right)\right] K\left(t-\frac{R_{0}}{O_{1}}\right)
\end{aligned}
$$

The wayo apeosis $C_{1} 3 / y_{0}=0$ aro assecisted with tho olestio coaponent
 dintence maanured incu tho point x_{0}.

Expressions fer the 1 nusd volooity ocmponents were siso round In \{10\} but aines to do not intera to use them here they wili not be reprediseed.

Lot us new consider the sense problea with $\vec{f}=0 \ln$ (402). FCllowing tho mothois prosented in (10) worat translato the origin to the point x_{0} othen using the Fourier exponential transform on oxoh of tho opeos veriables and the Laplaco treansform or: the tine verrablo the orrationo $(2,1)=(205),(4.1)$ and $(4,3)$ Fiela

$$
\begin{align*}
& A_{1} E A_{1}\left(A_{j} \lambda_{j}\right) \approx \mu \lambda_{j} \lambda_{j}+a+\omega_{2} p \\
& A_{4}=A_{3}\left(\lambda_{j} \lambda_{j} \lambda_{1}=A_{3} \lambda_{j} \lambda_{j} \text { oap }+\bar{\theta}_{3} p^{2} .\right. \tag{409}
\end{align*}
$$

The notation \hat{H}_{n} regresente

$$
\therefore \quad \hat{w}_{n}\left(\lambda_{1}, \lambda_{2} \theta^{2} \lambda_{3} p\right)=\frac{1}{(2 n)^{3 / 2}} \iint_{m \infty}^{t} \int_{0}^{\infty} \int_{0}^{\infty}=1 \lambda_{j} x_{j} w_{m}\left(x_{1}, x_{2}, x_{3}, t\right) d t d x_{2}^{\prime} d x_{2} d x_{3}
$$

 a0iving, 淢 248 cound to No

$$
\begin{aligned}
& \left(a_{2}^{2}+\lambda_{3}^{2}\right)!\left(k_{2}-\beta\right) A_{3}+\left(k_{2}-\beta_{3}\right) \alpha_{1} I!
\end{aligned}
$$

\therefore with no aus on 0 and

$$
\begin{align*}
& A_{2}\left(\lambda_{j} \lambda_{j}\right)=k_{2} \lambda_{j} \lambda_{j}+\omega+\bar{Q}_{2} p \\
& \theta_{3}\left(\lambda_{j} \lambda_{j}\right)=k_{1} \lambda_{j} \lambda_{j}+\alpha p+\bar{Q}_{2} p^{2} \tag{Hos.11}
\end{align*}
$$

Fourier inversion of (4,10) is accomplished in two steps. The denominator of (4,10) is sectored into quadratios in λ_{1}^{2} and (4.10) is expanded by partial rations involving these factors. Inversion smith rospoot to d_{1} is chon easily performed. the inversion With respect to λ_{2}, λ_{3} is next and is made easier is one exploits rotational symantag of tho expressions.

The not result of those two operations leaves the function $\hat{u}_{n}\left(x_{1}, x_{2} \circ x_{3} \rho p\right)$ with the inversion of the Laplace transform resuaininge At this potage wo introduce the perturbation in small a and retain only the leading tiara in tho expansion tie have then for $\hat{W}_{m}\left(x_{0} p\right)$, to terms of order ©

$$
\begin{aligned}
& \because \quad \vdots \quad{ }_{1}, t_{2} p\left(p=\frac{\hat{q}_{2}^{a_{2}^{2}}}{k_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{\mu p\left(p-\frac{\bar{p}_{2} v_{g}^{2}}{\mu}\right)}\left\{\frac{1}{p_{1}} p_{1}\left(p_{1}, x_{1}, R\right) i^{i_{1} p^{2}}+\frac{1}{p_{2}} x_{1}\left(p_{2}, x_{1}, R\right) \cdot p_{2}^{R} \|\right.
\end{aligned}
$$

$$
\begin{align*}
& +f_{2}\left(p_{2}, n\right) \cdot{ }^{P_{2} R} \| . \tag{4,12}
\end{align*}
$$

 λ_{1} inveriaion and to the first order in Q are defined by

$$
\begin{equation*}
p_{1}=\frac{p}{v_{0}}, \quad p_{2}=\left(\frac{\bar{q}_{2} p}{\beta}\right)^{\frac{p}{3}} ; \quad p_{3}=\frac{p}{c_{1}}, \quad p_{4}=\left(\frac{\bar{q}_{2} p}{k_{2}}\right)^{\frac{2}{4}} \tag{4023}
\end{equation*}
$$

In addition we have also used $x=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{\frac{1}{4}}$,

$$
\begin{aligned}
& f_{1}\left(p_{k}, x_{1}, R\right)=\frac{-P_{k}}{R}\left(1-\frac{x_{1}^{2}}{R^{2}}\right)+\frac{1}{R^{2}}\left(\frac{3 x_{1}^{2}}{R^{2}}-1\right)\left(1+\frac{1}{R_{R_{k}}}\right) \\
& f_{2}\left(P_{k}, R\right)=1+\frac{3}{R_{P_{k}}}+\frac{3}{R_{P_{k}}^{2}}, k=1,2,3,40
\end{aligned}
$$

A direct tarn by term for the landing terms of (4.12) gives the displacement for early times

Phere

$$
\begin{aligned}
& \frac{\left(x_{1}^{2}-R^{2}\right)\left(t-\frac{R}{v_{B}}\right)}{4 R^{3}}\left\{1+\frac{1}{2}\left(\frac{v_{B}\left(R^{2}-3 x_{1}^{2}\right)}{R^{3}\left(R^{2}-x_{1}^{2}\right)}+\frac{\bar{p}_{2} v_{8}^{2}}{\mu}\right)\left(t-\frac{R}{y_{s}}\right)\right\} H\left(t-\frac{R}{v_{8}}\right)
\end{aligned}
$$

The new notation intrecuced into (4,i6) is the mpocted intograis \therefore Of the orros funotion 1 kroco(A) deqined by

 Fiold producod by a moving-point foros. Let a point foroo bes usidonly applied on the solid oonetitwent ot the onigin at tims
 that 180 sion 104014)

$$
\begin{align*}
& \vec{F}\left(x_{0} t\right)=a_{3}\left(x_{y}\right) \delta\left(x_{2}\right) N\left(x_{3}-8 t\right) \\
& \vec{G}\left(x_{0} t\right)=0 . \tag{4,87}
\end{align*}
$$

\because Th ' ciaplacoment siode of the solid component is to bo found first. Sinoe wo want to have the displecement Eiold and not the voloaity fiald of the nolld compenent, wo go back to the recipreas statement in the tranefomed variables (3.13) - (3.15) inctend of
 wo got a direot invoraien of (3.13) - (3.15) to real time in the final form

Eventhough wo dealing with the mixtures, the rolation ($4 \leqslant 18$) bstwoon the displeoment siolde subjected to (4.2) with $\underset{g}{ }=0$ and (4.17) appasto to bo that of tho aisgle constituent (3.20). : To dotermhno tho colid cisplocomont W_{1} gubjoct to (4017), we

Sivilaxiy, mploying $\tilde{f}\left(x_{0} x_{0}, t\right)={ }_{2}^{\infty} \delta\left(x_{1}=x_{10}\right) \delta\left(x_{2}-x_{20}\right) \&\left(x_{3}-a_{30}\right) \&(t)_{,}$ and then $\tilde{x}\left(x_{0} x_{0} t\right)=a_{a_{3}}^{\infty} \delta\left(x_{1}-x_{1}\right) \delta\left(x_{2}-x_{20}\right) \delta\left(x_{3}-x_{30}\right) \delta(t)_{9}$.then $:$. paxforming the Ancegration (tho28) give

$$
\begin{align*}
& W_{2} x_{1} \frac{1}{4 \pi j} \int_{0}^{i(t-\xi) x_{2}\left(x_{3}-v \xi\right) F_{2}\left(x_{1}, x_{2}, x_{3}, 0,0, v \xi, t-\xi\right)} \tag{4.19}\\
& R^{4}(\xi) \\
& W_{3}=\frac{1}{4 \pi} \int_{0}^{t(t-\xi) F_{1}\left(x_{3}, x_{2}, x_{1}, v \xi, 0,0, t-\xi\right)} \\
& R^{2}(\xi)
\end{align*} d \xi
$$

Where we usod the notation $R(\xi)=\left[x_{1}^{2}+x_{2}^{2}+\left(x_{3}-v y\right)^{2}\right\}^{\frac{1}{2}}$. $F_{1}\left(x_{1}, x_{2}, x_{3} \circ x_{10}, x_{20} \circ x_{30}, t\right)=F_{1}\left(x_{;} ; x_{0}, t\right)$, sith vootor notation boing understood in (4.6) and (4.7).

The voleosty field of the fluid component may be caesily found by the rooiprocel rolation (3.17) Considering the initial and rogular consitiona, (4.2) wati $8=0$ and (4.57), wo got trom (3.17)
whore $\frac{\partial w_{1}\left(x_{9} g\right)}{\partial \xi}$ as the derivative with respeot to time variablo ξ from tho displacemens (4.15).

To detoralno V_{8} nubjoot to (4017$)_{0}$ wo substitute (4.2) witas $\vec{\delta}=0$ ard (4.15) suto (4.20) othen wo got portorming tho nincegration

Similexig, by employing $\bar{g}\left(x_{0} x_{0} t\right)=a_{a_{2}} \delta\left(x_{1}-x_{10}\right) \delta\left(x_{2}-x_{20}\right) \delta\left\{_{x_{3}-x_{30}}\right) \delta(t)_{0}$ $\vec{g}\left(x_{9} x_{0} 0 t\right)=\vec{a}_{3} \delta\left(x_{1}-x_{10}\right) 8\left(x_{2}-x_{20}\right) d\left(x_{3} x_{30}\right) \delta(t)_{2}$ and performing. the integration (4.20) we get
whore $H_{1}\left(x_{8} x_{0}, t\right)=H_{1}\left(\vec{x}^{\infty} x_{0}, b\right)$ are defined to bo from (4, 15) .en coloring
($H_{2}(x, t)=\frac{\Delta \theta_{2}(x, t)}{\partial t}$
For the integration of (4.19) and (4.21), e careful consideration must bo given to tho behavior of the function

$$
g_{1}(\xi)=t-\xi-\frac{R(\xi)}{O_{1}}, \quad \xi_{2}(\xi)=t-\xi-\frac{R(\xi)}{P_{B}},
$$

because the integral of (4.19) and (4.21) depend upon the zeros of $\mathrm{g}_{1}(\xi), \mathrm{g}_{2}(\xi)$ and upon the interval where $\mathrm{g}_{1}(\xi), \mathrm{E}_{2}(\xi)$ take positive values. Sine the behavior of a similar function for the o - lastio sold was illustrated in [3], wo omit the duplication.

Tho Final solid displacement and fluid velocity Eislde are Sound to be in polar arlindiricel coordinates (x, θ, s) s:-

where

$$
\begin{aligned}
& \therefore+\frac{3}{2}\left(\frac{v^{2}-2 o^{2}}{0^{2}} \frac{\left(c^{2}-v^{2}\right)}{\frac{L_{1}(c, x, t)}{}}=\frac{3 v}{20 R} \cdot \tan ^{-1} M_{5}(0, x, t)\right. \\
& \left.+2\left(x_{3}-\operatorname{sit}\right)\left\{\frac{\left(e^{2} \operatorname{cy}^{2}\right)^{2} M_{2}\left(c_{8} x_{0} t\right)}{e^{2} x_{y}^{3}\left(0, x_{0} t\right)}-\frac{x^{3}}{R^{3}}-\frac{M_{0}(0, x, t)}{R^{2}}\right)\right\} \\
& \therefore \frac{c^{2}}{\Delta \sin ^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\cos ^{2}\left(v^{2}-2 e^{2}\right)\right]-2\left(0^{2}-v^{2}\right) x^{4}\right]+\frac{v}{20 x} \tan ^{-1} A_{y}\left(0, x_{0} t\right) \\
& \left.4 \frac{n_{0}}{\mid x^{2}+\left(x_{3}-2 t\right)^{2}}\left|\frac{v^{2}-20^{2}}{a^{2}} \cdot \frac{2\left(x_{3}-v i\right)^{2}}{3 x^{2}}\right|\right\} \text {. }
\end{aligned}
$$

Ho 0

$$
\begin{aligned}
& +\frac{\dot{2}}{\dot{R}_{c_{1}}} \& \frac{\alpha y^{2}}{2 \bar{\theta}_{8}}{T_{4}}\left(\alpha_{1}, x_{0} b\right) \int S\left(\theta_{1}\right)
\end{aligned}
$$

where

Above wo uecd tho gynbola $\left.x=\left(x_{1}^{2}+x_{2}^{2}\right)^{1}\right)^{\frac{1}{2}}, R=\left(x^{2}+x_{3}^{2}\right)^{\frac{1}{2}}, R_{0}=\left\{\left(x_{3}-0 t\right)^{2}+\left(\lambda_{0} \frac{u^{2}}{0^{2}}\right)_{x^{2}}^{1}\right\}^{\frac{1}{2}} \because$ $\because H\left(t_{0} \frac{\text { 号 }}{0}\right)$ is tho Kearyside unit stop suriotion, $S(c)$ is a funotion whioh \because
 value sero outside the ragion sfth a playine tho role of $o_{1} \% y_{0}$ \%

Tho Ind velocity flocs avo found to bo 8
where

$$
\begin{aligned}
& +\frac{\bar{q}_{2} o^{2}}{k} I_{\rho g}\left|\frac{o i q_{1}(c, x, t)}{R\left(o^{2}-y^{2}\right)}\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\left|2+\frac{\overline{0}_{2} a^{2}\left(x_{2}+v t\right)}{\theta t}\right| \frac{1}{\square}-\frac{\left(c^{2}-v^{2}\right)}{0 t_{1}\left(c, x_{0} t\right)} \\
& +\frac{30}{2 v}\left(x_{3}-v t\right)\left\{\frac{1}{R^{2}} \frac{\left(c^{2}-v^{2}\right)^{2}}{0^{2} x_{d}^{2}(0, x, t)}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{EA}_{1}(0, x, 6)
\end{aligned}
$$

$V_{0}=0$.

$$
\nabla_{x_{3}}=\left\lvert\, \frac{\nabla_{2} o_{1}\left(\left(v x_{3} \omega_{1}^{2} t\right) m_{1} R_{1} o_{1}\right.}{k_{2}^{2}\left(v^{2}-o_{1}^{2}\right)}+\frac{1}{v^{2} k_{2}}\left\{\left.2 a_{1} 1 o_{2} \frac{o_{1} H_{1}\left(o_{1}, x, t\right)}{R\left(o_{1}^{2} v^{2}\right)} \right\rvert\,\right.\right.
$$

$$
+\left\{2 \nu+\bar{\sigma}_{2} o_{2}^{2}\left(x_{3}-\leadsto t\right)\right\} x_{6}\left(a_{1} p x_{9} t\right)+r^{2} \bar{\varphi}_{2} M_{7}\left(c_{1}, x_{9} t\right)+\frac{3 c_{1}}{2}\left(x_{3}-\omega t\right) M_{8}\left(c_{1}, x_{0} t\right)
$$

$$
\left.1+\frac{3 c_{1} r^{2}}{2} M_{9}\left(\theta_{2}, x_{0} t\right)+\bar{p}_{2} o_{1}^{2}\left\{\left.\frac{c_{1} K_{1}\left(c_{1}, x_{0} t\right)}{c_{1}^{2}-\theta^{2}}=R \right\rvert\,\right\}\right\} H\left(t-\frac{R_{2}}{o_{1}}\right)
$$

26.
where the Eymbols used are defined by

$$
M_{13}(x, t)=R^{2}=2 v+3^{t}
$$

are casiticd.

$$
\begin{aligned}
& M_{1}(0, x, t)=v\left(x_{3}-u t\right)+c R_{0} 0 \\
& X_{2}\left(0 ; x_{0} t\right)=0\left(x_{3}-v t\right)+v R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& x_{5}\left(0, x_{0} t\right)=\frac{v_{r}\left\{\left(v x_{3}-0^{2} t\right)+0 R_{\rho}\right\}}{\cdot v_{0}^{2}\left(e^{2}-v^{2}\right)+0 x_{3} H_{2}(0, x, t)} \\
& M_{6}(0, x, t)=\frac{M_{2}(0, x, t)}{M_{1}(0, x, t)}-\frac{x_{3}}{R}, \quad M_{p}\left(0, x_{0} t\right)=0 \frac{0^{2}-v^{2}}{K_{1}\left(0, x_{0} t\right)}=\frac{0}{R}
\end{aligned}
$$

$$
\begin{aligned}
& M_{10}\left(0_{0} x_{\theta} t\right)=\frac{2 v r c R_{c}\left(o^{2}-v^{2}\right)}{r^{2}\left(0^{2}-v^{2}\right)^{2}+0^{4}\left(x_{3}-v t\right)^{2} a \nu^{2} c^{2} R_{0}^{2}} \\
& H_{1}(0, x, t)=\frac{2 R_{0}\left(x_{3}-v t\right)}{r^{2}+\left(x_{3}-v t\right)^{2}} \quad \text {, } H_{1}(0, x, t)=\frac{R_{c}\left(x_{3}-v t\right)\left(c^{2}-v^{2}\right)^{2}}{x_{1}^{2}(0, x, t) x_{3}^{2}(0, x, t)}
\end{aligned}
$$

Simple observetion shows that tho colld displacement and fusd velo voloodty fiolde for the mixture oxhibit components that depond upon the solid wave volooities e_{1} \% y_{6} and diffusive component deponding upon the fluid viccoosition and k_{2}.

Moreover, if the velooity of the moving force is greater than the wave velocity y_{g} but less then c_{1}, then there 18 a region whose points eatiosy

$$
A>y_{a} t \text { and } t=\frac{x_{3}}{v}=\frac{x}{v}\left(\frac{v^{2}}{v_{s}^{2}}-1\right)^{\frac{1}{2}}>0
$$

Inside this region wo havo $S\left(v_{3}\right)=1$ and out side this rogion $S\left(v_{g}\right)=0$. Therefore, the solid displacoment and ILuid veleoity , fields have oomion propagating conical wave frones $t-\frac{x_{3}}{v}=\frac{r_{1}}{v}\left(\frac{v^{2}}{v_{s}^{2}}-1\right)=0$, basides the apherioal one, $R=v_{s} t$. Similariy If the velooity of the moving force 18 greater than the wave veloaity o_{1}, then thare are two conical regions in whioh $S\left(a_{1}\right)=0$ or $S\left(\nu_{s}\right)=1$ but outside the regions $S\left(c_{1}\right)=0$ and $S\left(\nu_{8}\right)=O_{0}$ therefere: the oolid displeoment and shuid velocity fielde have two comion propecative conioal wave ironts besides the spherioal ons.

The solid dieplacement and the fluid volocity fiolds have singularities and bocone unbounded when $n_{0}=0,80$ the singulapitios occur at $x_{3}=v t_{0} p \equiv 0$ if $u<y_{s}$ and at the conioal surfaces $\left.t-\frac{x_{3}}{y}-\frac{r}{y}\left(\frac{v_{0}}{c}\right)^{2} \circ 1\right\}^{\frac{1}{2}} \approx 011$ y>0 where o play the role of $0 c_{1}$ or $0=y_{s}$.

Pinally wo observe that the Pluid volocity fisid are of onder for both wave and diffusive somponenta. If ex wore sero, the siusd peapense vorsa be 1denticeliy sero. On the other hande

the solid displooment in tho sace of, a a roducec to that of the olantio the olastio aclid ore 138.

Reforencea

1. I. S. Sokolnitori, Mathemationi Thoory of Elactioity, Mooraw-isis Book Cog Inoo, Kew York, (1.956), py 391 - 7.
2. A. E. Love, A Treaties on the Wethenatical Theory of Blastioity, Dovor Pub., 'How York, (1944), Sootions 121, 160, 169,
3. R. G. Payton man Application of the Dymamio Betti-Rayleigh

I! Reoiprocel Thoorom to Roving-Soint Loado in Elastia Media, ${ }^{*}$ "Quartoriy of Applied Kathematios", 21, (1964), pp 299-313,
4. R. G. Payton, Miransiont Motion of an Elastio Kalf Space due to a Moving Surface Lins Loado "xntemational Journal of Eng1nooring Soienoe, 5, (1967) pp 49-79,
5. K. Io Eorting *Response of an Slactic half Space to a Decolerating Surfeos Point Lead," Journal of Appiled Meohanioa Traneretions of the Aos.M.E. , 26, Sories Eq No. 1s, (1969) pp $819-26$,
6. I. C. Fung, Foundacione of Solid Reshanios, Prentice-fiall, Ino., Englonood Cliffs, How sorsey, (1965), pp 4,29-33,
7. T. I. Steol "Appiliostiong of a Theory of Interacting Continuap"; Quartority Journal es Nechanios and Applied Mathematios, 20, \therefore Pary X_{0} (1857), pp 57-72,
8. IT. J. Atking I. Chadriok, and To Ro Stool, winiqueness thoorems for unnoarised Choorios of Intorepting Continua, "Hathomatika,

