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1. Atroduotion. In the olassical linear theory of elasticity there is.,

a widely used integral theorem called the rooiprocal theorem of Betti

and Rayleigh. Sokolnikoff [i] and Love (2[ have amply illustrated the'

versatility of this theorem for elastostatio problems while Pton (3 .,

(4) o and Beitin (51 have employed a dynamio version to study elastodyn4 id

problems involving moving point and line loadingsc Za (6) has

generalised the theorem to cover the case of a linear visooelastio .

solid and his book contains references to versions of this theorem

useful to thermoelasticity and shell theories,

In this paper we intend to establish a dynamio reciprocal theorea

for a linearised theory of interacting media postulated in a paper by '

Steel (71. The constituents of the mixture are a linear elastic solid *

and a linearly viscous fluid. In addition to Steel's field equations

we use boundary conditions and inequalities on the material constants

that have been shown by Atking Chadieck and Steel [81 to be sufficient

to guaranteo uniqueness of solution to initial-boundary value problems.

The elements of the theory are given in section 2 and two different

boundary value problems are considered. The reoiprooal theorem is derived

in section 3 with the aid of the Laplace transform and the divergence

theorem and this seotion is conoluded with a disoussion of the speoal

cases which arise when one of the constituents of the mixture is absents

As an illustration of the theorem we obtain the response of the .

mixture ooccupying an infinite region and eubjected to an itpulsively

applied moving point load acting on the solid constituent. The

displacement of the solid component and the velocity of the fluid

constituent are found and dicusosed. This is the content of seetica 4#
a



2. Field equations for the mixtura. We formulate the field equations

appropriate to a mixture of linear elastic solid and linear3y visoaeo

fluid ueing the field equations and boundary conditions given ik 1[7

and [81. All equations are given referred to a cartesian coordinate

system x:u (xix 2 3,9), and time to The mixture is assumed to oeoup ,

a regular region of three-dimensional Euolidean epace D9 with

bounding surfaoe, 8. The conventional indicial subscript notatioen

is used to specify "eGtor or tensor ooponents with an index

appearing twice indicating a sum over 312p3, Subscripts preceded b ,

a coamia indicate spatial differentiation with respect to that varisae.

while time derivtives iare adicated t a dot.

According to [71 nd (8, the field equations onsiseto f the

followingi

.ntinuith eo iations

ijj f ( i F 2), o+.k k ". .(.

2 f a + eis ± I T(.
. '. + (so)

nstitutierelat " iolns
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To complete the formulation we add to the above the initial and .baow ar

oonditions Thus when V20 vs require

wi(x( )  ( Vi))( (xO) a '-10293

fer all points x in v D yhilea an. cthe bouYdAw 8 we prescribe for CO

(13  i)n ti '
(2..)

Wi i = ri  1 = 1i,2,3

where ni are the components of the unit outward normal to 8.

Quantities appearing in 12.1) to (2*5) which are associated with

the solid component of the mixture are , I wi ' eij ' Oi and fi *
Here 9, is the donsity at time t and place x, 9>0 its initial value,

wi the displacement components, fi the body force components, and

ij ' , rij respectively, tho strain and partial stress tensor

.component. In the fluid, q is the current density minus its initial

value, Q?0, vi the fluid velocity components, fij the

rate-of-deformation tensor, ij the fluid partial stress tensor, and

gi the fluid bedy force ccronents. The vector components Wi in (2.5)

are those of the diffaive resistance veotor. The material constants

oil 9 l2 0171 9 P2'OP3 0140'%g 71 072 and e are assumed to obey the

nequalitie3 givan in (8I as well as the equalities

" *9 2

S(20.P).

9 9

Quantities Wi ) V ', t) andi ri are assumed known throughout t

the appropriate domai.an

* This follows fron the dofinition of P P2 * 3  * 2 given
by Steel 171.



Now oonsider a sooond problem for the sa = region DE Let. the

Corresponding field equations for this problem be

94 g'kk 2,k ) (2e)''

.%. . .1- -(292.2oP

ij .... , ij 2 i k &O N

Pi 3 U 2 g2 ijkk i3 ijkk F 1 .

Pg P E: Ekk( 1 "

at all points a of D hen is a So

. 1, " in !,9293

J9

P, 9 kk l,

Equtions (a.i)' to (2?)' differ frou (2,1) to (2.?) oly' ": .

the lae of (olar) in (what) w rq e t h followwse O -

S .. 26)9

4,lxO)" 4)(4X)9 E,'9 ,:,. "9 I., 102.30

t all npoin x ot tio d h n sow tat tere est

(S ei n 't" (P,

the adke of clai a im+ +L.t f. ., ....

In ts rte se ti= ++o I rr w tM oh tr he exi t .an

,ineVA olatic- betwo.n th solution.9 of+problem I speoifte
i. '" ~ i



by (2.1) to (~.7) =4 the solutiona of problem 2 givme by (2o.1) to

(2.7)o. .is relatlon is otablished vith the aid of the LAploe

tranaform nd the divargenoo theorem,

3a. The l theo a We begin by defining the Laplsoe tusfeam

with reepe to t inu of a finotion (t) to bs

f(d) f t(t)a-satd *1)

and by reealling that the inverve of the produot of ti(s) 2( L

given by

A1(1 ( s 2(s) ) f (,&)f"( )d -. "2)

Applying (3.1) to (241), (2.2) eand (2.5), and9 using th initial

oonditionu (2.6) e obtain

Sse( s) 04) 0 . . (3.3)

. W, P ", '."O d(XOs) -a) (.e) i(x O)

1 - (X) ' (2) 92 9 (p 1 , "

S 1) ,,+ A4,. 1,23

gpo) a, ' go) .($)tf 0L&8 I - ^ (xt i) ) + ' 0j

10 3 2.r~ - b ' :tl



6.

The oundary conditions (2.7) when tranaormed t (3.1) bedom

t ij(p,) +-i j(x..)n ti(x.) ,

- i) () + -)(x,s) O(x,) p ( *.) , i, a 1,2,3

for x on the srurface 8o

Novw onsider the solution to (2.1)' to (2.7)1 to be given bV

Wi(xt) and Vi(xt). Apply (.1) to this oolution =umtip2y (3.o).

b i(xbs) and (3.4)2 by f(xes), then sun on 1s Integrate both

equations ever D and addo We then have

Si(,.)[A i, 4(zx) + (r xss)) d .r( 4

B

.ewNit & ,
&t*

S1 .
B *"



And this form in turn, upon using the avergence theoaa (243) o (. 4)e

Sand io

.), ,' (, Wit) ..a ,be k ,

a. .

aflm n f, .. .., 2e

+ aP E j:n da

w f1 d + " 41jj, jj, i dr .
B

If we no use (2.i1), (2o5)1 and (3,i) to eliinate 0ijD then
I, ff [s,~&ijjj +n - a w +ej(,1 , ;m.>+J '

EkknJ

!21 dikko . ii

SFina127, ve (3i)o (2o1) .(2*2)1, (2.5)3 and .(2.6)' to obtain

pp pp f [ of A - 'in i i 8a + P kk C,
Xa. 2t - i+.jn sin0 -- i .ij+ .

S. A
+ ' , kkvi d, do

L +

+O, s Wi '+  # ' i - kkBli
99

• P+m,.. , , 3o1, (al) 1 . 11 (zs): ,ma( - ), o otai



8. *! . . ,

o .a become

ee

*Vnt (3.10)
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a,
i. ff 9 .(S.jin ) V)q22

Eppressiona (3.9) to (3.12) axe now used in (3.7) and volumeand wA notw

surfaoe Integrals are oolloted. If. nw we recall th.e material

identit (2.8) and it we apdy (3.1) to the boundary coniitios

(2.7), (2.7) and use these results in the surfao integral we.

achie• +

f, .

+ N

P ((344 )

. - -1) (1
"_ :.t s + .

A 9 . "

9I "

,,.,) ' C -i .. . " + '. . . .
• . .. + . 'f '4, ' ' '" . ..



. (O ,.

E e )n 4dr

of the theorem and this can be accomplished by means of the convolution

(3*2). We give several versions that are usefuLDA. Zero jnitdal data. If the Initial conditions (2o6) (2o 6)ow

homogeneous then.by (3.2) and (313) to (3.15) we obtain

S i (x, . Ow 1 " ,.d

S 8

R + (n, - )n()x i  (x 1  g)( ;,I,-.

S + ) •(xg) +kk(

+ f, ) ( x),()} ] d d

2 8

S(x,t - )(t -, sj) dr dak
+ , +g ) ( 9lt - --  ( 9)){ P( xqs . ) . ..,

* ( j j) n4(x)s.)(t ] do Qdg . 0.16)



I ai

B. Innite region. If in place of (2*?) and (2.?)' we use the

condition that velooities and stresses vanish as dis ta O Jlaiareas

.om the origin then from (3o16) there remains

a t

It is this version that we will use in seation 4.

CO Sinal constituent. If one of the constituents is absent the

from (3.13) to (3*15) we obtain a reciprooity relation valid for

a linear elastio solid or a linear2ly visoous fluid alone

Suppose first that the solid is absent. Then 91 m. 0 .9. 9

and the fluid equations are obtained from (2.1) to (27) bv

equating to sero the constants

o ( to 17 01 o13t c oi o 12and @1

and by identifying As as the viscosities and tga2., "p it th

fluid pressure in the rest state

Making these adjustment and repaoing thd boundara sediti s

(247) by either

n t on a (3.isa)

then, nase (30ea) and saro initial data, (3.14) and (3.i) etid

.. . .. , * . ..



.. ffiX V,6$9) r d ' 

+ on *g )11(t4)1 4o Q° t YI() Yzet( ) i ' "

0 S

0 B

* , ff ,.(x, ) [ Ta ,,t).+ Pn(x)a(t-)j d d. * (,.19)

Similary, if the fluid component is absent, then 9i  9.

092 a O and we set equal-to sero

12,A g, 1 r 2  a7 O and .

We identify g2p, p3 as the Lame constants. and replace the boudawy

* . d. .4

+fff WPl z(xzj)(x tg) dr d+ y.. .j(x,)-.(x..) d. .

;,- on 6.:Jott (dys JBel d. .

I.'

Swhich the sta form of the ett.ar le .. tbeorm .

* -. * . * . .



, otion of mtur of a linea atos4 sus

As a prl. min- y problem wo seek wi(xgt)q i - 0 12,3w.atistfy

(2.1) to (2.4) tnrd honoencsou initial oonditions,

"i(x,r0) wI k(x) v v(xO).?= 0, 1 a 1293

,(xo) = 0 . (4,.

for the infinite region dofined by .-s<xi. 9 x2  X3<+. aM to 0.

In place cO (2.7) re require wi(x,t), vi(xpt)q ai and4ij to.

vanish as (rvyi) increases iithout bound.

In partioulr re conaider body forces to be given by

"(x,, 0 9 et) "I a (x - ) (x 2  20) (x 3  3 0) -(t)

g(XgXept) =a &(l - 10iO) O(x2 - X20) 1(3 *X30 ,o2
where a1  io the iit votor in the x direction and 8 is the

-9

Dirao dolta fanctiono The symbol f stands for the usual veoter

Sstatement 2 = riai •

Tho phroical pr~blm doscribed above corresponds to that of

f* inding (nxz t) at plaoe n and at tie t due to a unit force

applied Pt io0 fi th direction parallel to the axia at -.tb ,Oe

The vo6tor a Souht oloarly play the role of Greens funotions for

the theory used hera.

Tho p~~bam hao boon e%.amined in (91 and (10] for the bob

force (oadPi- (42) with a = 0 and wLth several restriotions on

Sthe material ~csntantas. In [9j, the rolution was given for im,.

the diffucio reol otnce ptrwmoter soro for the cases when-the

fluid is bAsald ev vocoue. In (101, the same problem was

exa=nO V1, tv k (1) n tmrky tir'me approxination and (2) a



perturbation expanoion kor a srAll. In addition to small o we used

the rostriotioen8, hioh can be romovod .

9
This last casoe ic ued re. .

From 10) te take tho solution v(xx 00 t) p valid for t ma~lr

and subjeot to (2o1) - (2.5), (4o1), (493) aM (4.2) with i **

to be terms up to order a

v(x,xo, t) 6 t2 ) 7(x,xo(t) , . , (,

..Whero

,I -r, 0 2 L1 (

. '. a: • .

(e

. 0 Is(. 10 2H 21 ( 0

0 0.



The wave speeds eapv, areo aesooi&teS with the elastic component

and are defined by c2 % 28  9/ RO is the spherial
distance measured from the point x0

Expossiona for the fluid volooity components were also fou d .
in [101 but sino w do not inten to use them here they will noet "-
be reproduced.

Let us now consider the same problem with f = 0 in (4.2).
Folloino tho metho"s presented in (10j we first translate the
origin to the point x0 . Then using the Fourier exponential

transform on ach of the 'pia"e variables and the Laplace transform

on.' the t1a veiablo the ocatione (2.1) - (205)9 (4.1) and '(43)
yield

* t adg @ ) aPAA a + _

d4 544 *3 p+ (49)

The notation j represents

a 1 &,dwxAx) 
2 92 djA.P

f we altPpy (4,8) .Am s1 aim the resulting exresion
can be uOd to emlinate the treseA mo[aA Doing this and
solving , in f tnd to be.
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ihno sumon , and

2 2

.d2 2 +%) ak2+ +33p

(L. (k' P 3

Fourier invervion of (4.10) is aocomplished in two steps.
The denominator of (410) is faotored into quadrat in A2 and

rot tional symetry of the expressions.

The not rosult of those two operations leaves the function
Sfrxz2 3 op) with tho inveraion of the Laplace transform remaini .

At this stage we introduce the perturbation in small t and retain

only the leading tera in the expansion. We have then for '(xop)

-to terms of order a,

I R

92

- . 7 " '2 .P *

•~r~l ""



S.PI

. P, x R) P iO R s a)

i b i ::

' 2

k2p(p
k2

* POR 1 * pR

f 2 (p29,n ) * I .12)

In (4.12) the p1k, IAk24, represent the factors involved in the

A1 Inversion and to the first order in a are defined by

2 2

" P" P* "a" " * P -- . k#*. th.s)

fl(P. RR) R2 mR2 R2

S 2(k R)t1 + +j km 1,2,3,4.

. A direct term by term for the leading terms of (4.12))gives the

displaoement for earl time a

t(*) 2 01(. oxs) + 01--- -90o(ax0)( , (4,15)*g .~q . 4t~r



2 12

2 2

AR 2 )R3(R2 ~~ 1'

2 ( ) 2 t

* ..4t(x2.R ) 2 21 3136~

-2( .(t ,L

kR 2Rk" 00f

2 2 2

q'4~x R 1 2

3c 20

~ro~~&2+ 6 At

S . )t L) ~. R

* ~~R A3 ZfoA R knit ~ ,~,.

whenIc *Ow ave %'~(A) ~wo(A) .

S~ kv 
2.



We shall now consider the solid diaplacement and fluid valooil'

field produced by a moving-point aorcee Let a point force be

uidenl Applied on the solid constitueni at the origin at time

t 0 and maintained at a constant velocity v along positive X3 ai,
that Is, we le in (3.14)

o(xVt) o .

'The'dioplabeom nt field of th solid component is to be found

first, Since wo want to have the displacement field and not the

velocity field of the solid component, we go back to the r.ciproal

statement in thl transformed variables (3.13) - (3.15) instead of "

utilisin (3.17). With the aid of (4.2) with 0a 0 and (4.17),

we got a direct invercien of (3,13) . (3.15) to real time in the

final fora

I F,(,t P t drd ff fi(xt 9, dt - (40,is)
SEventhough we are dealing with tho mixturo, the relation, (41i8),
between the displa~ement fields subjected to (4.2) with g m 0

and (4.17) appear to be that of the single constituent (.20).
To determino tho olid displacement W ubject to (4.17), e

substitute (4.2) with 0 and (4,4) - (4.7) into (4.18)* Then '

..rforming the integration Giv

-S .

.. 
.

.. .



20,

S rilar3y employing f(xx,t) .a2.(:.ix.10)6(xP .x20)g(x )6(t)g
and then f(x0xt) " -a 0(x O)S(x2-x20)d(x 430)d) (t)"np :i
performing the irtagration (4018) give

o '(t o)X 2 (x3  , )FxqP.xx, 2go, OP,t- OVt. )

L4 9

where we used the notation R(Q) 2 + OC2 + (x )2 2

Si(x ox2,Px , 1'20Vx ODt) = Fi(x'rO) *th veotor notation .

bein understood in (4.6) and (4.7).

The velooity field of the fluid oomponent may be easily

found by the reciprocal relation (3.17)o Considering the initial

:an regular conditions, (4.2) wIth f a 06 and (4.17), we get from

T ((,X) .+

0 " ... 0 -

wher In we derivative with respeot to time variabld j
from the displacement (4,15).

To determine V, subjot to (4.17)v we substitute (4.2) with
fm 0 and (4.15) into (4 .20), thien wo get tar performing the
integration

+( .a1)!
d -S.................... •. .. .. ,..,



a8iil.ary, by employing g(xqro,*t)1 1 (.Xxo)( () .x2)2(t),
gc(xo9t),X a3) (x 1,x 0o)(x 2 - 2o)@(x,.3xo0)( t) ad aM .pt for
the integration (4,20) we get'

V2 x2x 2 H2 (g) t dg . (40,21)

-3 " HL( 39x 2,x10. ~, *o. o,t4) ( . .;;. . (.).
whee Hi(Z 0 H(xm 0 t) we defined to be from (40153 .a

O G, (xt)

SH2(xt) 4 22)

For the integration of (4.19) and (4.21),a carefil consideration

must be given to the behavior of the funotion

beoause 'the integral of (419) and (4.21) depend upon the seroes

of g1(), g2(Q) and upon the interval where g1(Q), g2(j) take

positive values, Since the behavior of a similar funotion for the

elastic solid was illustrated in [3, we omit the duplication,

S Theq final solid diaplacement and fluid velocitn fields are

found to be in polar cylindrical coordinates (wr, 6 s)..:

S;("U rr (xt)

F .. *., 4Yl. ,T 
2  + )) .

"+ ' : r'< I2 , 9, .-

' " ~t) V T(oG ,'s , t) s(0 +. :
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2 2 ' (R2 4VAt a 2h (Y px-'

_R3 (cxwt o 0 R(0
2 n A

.:I

~I (o2,1# Ir 2 2 23

T(const) vt)

3 7a

Si-o3K6(01xCt) (5Avo)t-'(,xt) .w logiR 2o r R 02.W22

k~~(on~(C _v2)2 a )PI"-LXq2t) X a (x 4#t j
Ao oSdl (at) Onr , t )+ IVh )

02M3 R

x .,,2T " thas the v-1u.~ I inIhideth9 r~op 2 t-8 I tanT4(' _Vt-J o 2or

3

2+li(x w 2 V4) r2gno)")z+oa(b ,.4t12to)2t

2("..2W od 1 a ONIt

2 21 2 2)2")2 R . V!vsc~b, ~
.lboue wso used the symbols r=(xthj6 .o 4y h r o 0

*(G ~) note that R rO h oih so S(o) is a f(totion wah

0
val ~tue zero outside thefh rogiion trith a playin6 the role o c, or Vila We ; ;

notee that lb P0 In each be.- -the region whera H It. B-r)M1 MA B(C)V4

Tho ls 0 ~) I 4'let. i. 13, are givenI onl page274't a I,

~~~~~~~P~~~~~~~~~~~~ 0~raO~P' j?8tO) ~ pgo~3~ g~I W~L~.8
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The fluid veloaity fields are found to boo

where

(~i~I 2 3
a)

L2O VC2(ot) x c(x mVt+ R)

Ii t 22 I )

*.+~~2 £ C2LV 2 )2

2v 2  2 I1j(0,x,t)

J2(ok~x~) am~ 1I 2 (o~xvt) foxt)

V., 2M 4 (xt 3 
ae'N0(,~



viaf P2 xv~ 21t 2x
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3____ %___(_~b ,,V (y2.v2)2 _2_(v_.u2_;

++ + j. .a

R3 43i vvz, 2 )x,~ r I x~
~~~~N O% f Py8 xt) NJ (v x ~ ,~

4w 1V v jttJ
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(xV - t)

8r* 1.(VOxt Ht .
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v -,P2~ Iq( 2 Y )
a 3(3w) 3r a62 f~~I2)

* e (jt M13( t) 4v~:t

r 2

21t2 x2 a2  Lr -vt') l d.xt

22 2
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R 2t)

Erto[~$7 ~ 2) R2.

'r~Ft 2  2 2 i'ro~~ 21
+ 4 r4)

whe, the symbols used are Aefined bY

M(xt)a i(x -ivt) + oR0  2 oxt o(xj4it) 4 VRO
H3(otx~t) wx 3't R0 , ~ oxt)uoxmt V

1(tt) V(i 3 a~~)+o~

r (vx02) + oR~~oxt

*So x t r 2( 2.v?) +_ _ _ 0X2 O x t

M10(o~xtt) x 2vc 2 0u2

S* 0

* 2

2a (k(~tm a v)R( V)c-

131
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Simple observation shows that the solid displacement and fluid velO

veleoity fields for the mixture exhibit components that depend upon

the solid wave velocities oj YO and a diffusive component depending

upon the fluid visoosities g and k2 .

Moreover, if the velocity of the moving force is greater than

the wave vslooity . but less than o , then there is a region.WhosI

points satisfy R> ,. Vd * 2

Inside this region we have S(y.) 1 and out side this eregion

S(ve) .Oe Therefore, the solid displacement 
and fluid veleoity,

fields have a oomnon propagating conical wave fronts

S(-- 1) O, besides the spherical one, R=v t. Similar ?

if the velocity of the moving force is greater than the wave

veloioty oj0 then there are two conical regions in which S(c1 ) .

or S(V ) = 1 but outside the regions S(o1) = 0 and S(Ve) = Op

therefore, the solid displacement and fluid velocity fields have

two common prapagating conical vave fronts besides the spherical

one.

The solid displacdment and the fluid velocity fields have

singularities and become unbounded when Ro a 0, so the singularities

occur at x3 = v t r 0 if v s, and at the conical surfaces

* " r (e)2 2 , 0 if*VVo where a play the role of

o' O or 0 Ve

Finally we observe that the fluid velooity field 
are of

order c for both wave and diffusive somponents. If a were sero,

the flu iaponse would be idontically a ero. On the other hand,
• gj •
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the solid displaoment in the ase0 of a 0 r"duoe , to tha of the ela#i"

the elastio sol d case (3.
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