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ABSTRACT

Emperical equations have been derived from measurements of solar cell

photovoltaic characteristics relating light-generated current, IL, and open cir-

cuit voltage, Vo, to cell temperature, T, intensity of illumination, W, and 1

Mev electron fluence, 4. Both 2 ohm-cm and 10 ohm-cm cells were tested over

the ranges: 123 0 K < T < 473 0 K, 5 mW/cm2  W < 1830 mW/cm 2 and 1 X 10'3

e/cm2 < <1 X 1016 e/cm2 .

The temperature dependency of I L is similar for both resistivities at 140

mW/cm 2 ; at high temperature (T > 2730 K) the temperature coefficient varies

with fluence as 40.18, while at low temperatures the coefficient is relatively in-

dependent of fluence. Fluence-dependent degration causes a decrease in I L at a

rate proportional to ¢0.153 for both resistivities. At all intensities other than

560 mW/cm2 , a linear dependence of I L on illumination was found. Open cir-

cuit voltage equations were derived for all temperatures except 123 0 K and

173 0 K, where Schottky barrier effects and cell shunting led to questionable ex-

perimental results. The temperature coefficient of voltage was, to a good

approximation, independent of both temperature and illumination for both re-

sistivities. Illumination dependence of V oc was logarithmic (the voltage in-

creasing by approximately 0.025 V and 0.032 V per decade increase in illumina-

tion for 10 ohm-cm and 2 ohm-cm cells respectively), while the decrease with

fluence of Voc varied as 0o.25 for both resistivities.
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TEMPERATURE, ILLUMINATION AND FLUENCE

DEPENDENCE OF CURRENT AND VOLTAGE

IN ELECTRON IRRADIATED SOLAR CELLS

I. INTRODUCTION

Utilization of solar cells as the primary power source for spacecraft

missions ranging from approximately Mercury orbit to Jupiter orbit has re-

ceived wide consideration. Sun oriented solar panels experience illumination

intensities greater than 1000 mW/cm 2 and temperatures greater than 4730 K in

Mercury orbit and only 5 mW/cm 2 at temperatures ranging down to approxi-

mately 1309K in Jupiter orbit. Many works have been published on cell behav-

ior at both the highl, 2 and low3 - 7 extremes of this illumination/temperature

range, and an extensive body of data exists on electron irradiated cells in the

middle ranges, i.e., for earth-orbit conditions. 8 The purpose of the present

work was to cover the entire temperature/illumination range with the same set

of electron irradiated n/p cells with two different base resistivities. This

report presents results of measurements of light-generated current and open-

circuit voltage and of an analysis of these measurements which led to empirical

equations enabling easy comparisons between the two cell resistivities.

1



A more complete discussion, including I-V curve fits is available elsewhere, 9

and in recent work to be published.

II. EXPERIMENTAL PROCEDURE

The solar cells used in these experiments were 1 cm X 2 cm commercial

grade n/p silicon cells with Ti-Ag solderless contacts, manufactured by Cen-

tralab. Two different base resistivities were tested, pre-irradiation capaci-

tance measurements on several cells indicating values of approximately 10

ohm-cm and 2 ohm-cm. Five cells of each resistivity were irradiated at room

temperature by 1 MeV electrons from a Van de Graaf generator to one of the

following fluences: 0, 1 X 101, 3 X 1013, 1 X 10"1, 3 X 1014, 1 X 1015, 3 X 10",

or 1 X 1016 e/cm2 . Post irradiation measurements were made on all cells at

50 0 K temperature increments over the temperature range from 1230 K to 4730 K.

Cell illumination at intensities of 5, 35, 140, 560 and 1830 mW/cm 2 was pro-

vided by an Aerospace Controls Corporation model 302 xenon arc solar simula-

tor. The temperature/illumination matrix for cell measurements is shown in

Figure 1. The cells, which were soldered to a copper-plated kovar cell block

bolted to a vacuum cold finger, were held within +20 K of the nominal measure-

ment temperature by the proper combination of liquid nitrogen in the cold finger

and electrical power to a heater coil attached to the cell block. Five test cells

plus a dummy cell carrying a copper-constantan thermocouple were mounted on

each cell block, the data to be presented representing values averaged over the
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five cells. Photovoltaic current-voltage characteristics were generated auto-

matically by a Spectrolab model D550 electronic load and displayed on a Mosely

model 7030 A X-Y recorder. Open-circuit voltage and short-circuit current

were displayed on a NLS model 3020 digital voltmeter, the voltmeter being

shunted by an SRI precision 1 ohm resistor for current display. Cell tempera-

ture was measured using a Rubicon model 2745 potentiometer in conjunction

with the copper-constantan thermocouple soldered to the dummy cell.

A 3-inch diameter, 1/4-inch thick Corning 7940 fused silica disc with flat

optical transmission from 0.4 pm to 1.2 pm provided a sight glass for cell illu-

mination inside the vacuum cold finger vessel. Calibration of the intensity of

illumination was provided by a standard cell calibrated at Table Mountain, Ca.

which was mounted beside the cell block location, 3 inches from the center of

the block, and in the same test plane. The intensity of illumination at the test

plane was varied by adjusting either the xenon are current or the distance be-

tween the are and the test plane. Low intensity illumination (5 and 35 mW/cm 2)

was accomplished using a set of neutral density filters purchased for Aerospace

Controls Corporation. To establish high intensity, W, the standard cell was

centered on the beam axis and a filter combination with transmission equal to

140 mW/cm2 was placed in the beam. Xenon arc current and distance were

adjusted to yield a standard cell current of 63.1 mA. Removal of the filters

then established the illumination intensity at W. Since the test cells view the

illuminator through a sight glass, a companion sight glass was placed in front
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of the standard to equalize the transmission to the standard and the test celis.

The standard cell temperature was maintained at 300C using a circulating brine

system.

The experimental error in the measurement of IL varies from ±1.4 per-

cent for cells of either resistivity where W < 140 mW/cm2 , T > 2730 K, and

S< 1 X 1015 e/cm2, to ±3.6 percent for W > 140 mW/cm 2, T < 2730 K, 0 >1 X

1015 e/cm2 and 2 ohm-cm cell resistivity. The combined uncertainty in the

measurement of Vo is estimated to be approximately ±0.012 V. 9

III. RESULTS AND ANALYSIS

Light-Generated Current

Results of measurements of light-generated current, IL' are shown in

Figures 2 to 9 where IL is plotted versus temperature with fluence a parameter.

Figures 2 and 3 show results for 10 S2-cm and 2 S2-cm cells, respectively, at

an illumination intensity of 140 mW/cm 2 . Figures 4 and 5 and Figures 6 and 7

show equivalent results for intensities of 35 mW/cm2 and 560 mW/cm 2, re-

spectively, while Figures 8 and 9 give results for both resistivities at 5 mW/

cm 2 and 1830 mW/cm 2, respectively. The solid lines in these figures repre-

sent empirical equations for IL developed in the manner outlined below.

The analysis was initiated at the center of the temperature illumi-

nation matrix, 2730 K and 140 mW/cm2 . Light-generated current
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IL (4, 3, ¢)* was plotted versus fluence and empirical fits were established. A

good fit to the experimental data, with a single equation valid over the entire

fluence range, was obtained using a power law dependence of current on fluence:

for 10 2-cm cells:

IL( 4 , 3, 0) = 81.7 - 0.13400153 (1)

for 2 R2-cm cells:

IL( 4 , 3,) = 83.6 - 0.15400.153 (2)

both of which apply over the entire fluence range from 1 X 1013 e/cm2 to 1 X 101

e/cm2 (but not for 4 = 0). Figures 10 and 11 show the curves representing

equations (1) and (2), respectively, together with the appropriate experimental

data. One large (3.6 percent) deviation between equation (2) and the data ap-

pears at q = 1 X 1014 e/cm2 . This has been tentatively ascribed to the particu-

lar cells measured at this fluence, which displayed unusual behavior in temper-

ature cycling.

The temperature dependence of IL under 140 mW/cm2 illumination was

next considered. For temperatures of 2730 K and above the light-generated

current varied approximately linearly with temperature with a temperature

*IL = L(T, W, 4) with T, W, and 0 being represented by integers n.
T: (n = I to 8) representing T = 73 + 50n (OK)

W: (n = 1 to 5) representing W = 5,35,140,560, and 1830 mW/cm 2

0: (n = 1 to 7) representing 0 10(n + 25)/2 (e/cm 2 ).
Thus IL( 4

, 3, ) refers to T = 273 0 K, W = 140 mW/cm 2 .
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coefficient that increased with increasing fluence. It was found that the temper-

ature coefficient, dIL/dT, divided by the current at 273 0 K, IL(4 , 3, ¢), followed

a power law relationship with fluence. This relationship is seen in Figure 12

which gives plots of normalized temperature coefficient versus fluence. Both

10 92-cm and 2 92-cm cell data are fitted to a good approximation by the rela-

tionship,

1 dIL
1 = 3.23 X 106 0° 18 (3)

IL(4, 3, 4) dT

over the entire fluence range.

At temperatures below approximately 223 0 K the behavior was different,

the temperature coefficient being relatively independent of fluence. This was

particularly true for the 10 92-cm cells where dIL/dT averaged 0.055 mA/oK.

For 2 E2-cm cells a slight fluence dependence was apparent, but a large scatter

in the data prompted the use of the value averaged over all fluences, which was

0.062 mA/oK.

Combining the temperature and fluence dependencies, equations can be

written for the light-generated current valid for all temperatures and fluences

covered in the experiment. The current is given by

I (T, 3, = I(4,3,) 1 + I 4,3, (T - 273 (4)
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For 10 2-cm cells, for T > 223 0 K:

IL(T, 3, 4) = (81.7 - 0.13400-153) [ 1 + 3.23 X 10-6 4.' 18(T - 273)] (5)

and for T < 223 0K:

IL(T, 3, q) = 1(3,3,4) + 0.055(T - 223) (6)

where 1(3, 3, 4) is obtained from equation (10);

for 2 62-cm cells, for T > 2730 K:

IL(T, 3, 4) = (83.6 - 0.15400.153) [1 + 3.23 X 10-6 0.1 8 (T - 273)] (7)

and for T < 273 0 K:

IL(T, 3,¢) = 83.6 - 0.1540 '153 + 0.062(T - 273) (8)

Note that in equation (5), the high temperature equation for 10 2-cm cells ex-

tends to a lower temperature than its counterpart for 2 S2-cm cells, equation

(7). As a consequence the low temperature equation (6) is based on IL(3 , 3, 4),

the current at 2230 K, rather than IL(4 , 3, 4), the current at 273 0 K.

Several characteristics which the two resistivities have in common are

clear from the data and the similarities in their empirical equations. One

which shows up in Figures 2 and 3 is the match between high and low tempera-

ture coefficients at low fluence, i.e., the linearity of IL vs T over the entire
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temperature range. However, several subtle but significant differences are in

evidence. First, as noted above, the high temperature equation for the 10 2 -cm

cells extends down to 2230 K, 50 0 K further than its counterpart for 2 42-cm cells.

Secondly, although there is an obvious break in the curves for 0 > 3 X 1014 e/cm2

for both resistivities, the break is significantly stronger for the 10 S2-cm cells,

their temperature coefficient being lower at low temperature and higher at high

temperature than that for the 2 92-cm cells. (The normalized temperature co-

efficients, equation (3), are the same for both resistivities at high temperature,

but the normalizing currents are lower for the 2 S2-cm cells. Consequently,

the absolute coefficients are higher for the 10 &2-cm cells.)

In deriving empirical equations for illumination intensities other than

140 mW/cm 2, the initial approach assumed the fluence and temperature depend-

encies obtained at 140 mW/cm2 and a linear dependence of current on illumina-

tion, i.e.,

IL(T, W, )= 0 IL(T 3,) (9)

where IL(T, 3, 0) is obtained from the appropriate number among equations (5)

through (8).

Figure 4 indicates that equation (9) provides a good fit to the 10 -cm

data, predicting the break in the slope (temperature coefficient) which is in

evidence in the data. In corresponding plots for 2 92-cm cells in Figure 5, the



break in the slope is not in evidence in the data. Since no data was taken at 35

mW/cm 2 above 3230 K, (50 0 K above the break for 2 S2-cm cells at 140 mW/cm 2

illumination) it is not possible to ascertain from the present data whether or not

this break is actually absent in the 2 n-cm cells.

All of the data at 5 mW/cm 2 (Figure 8) are at 223 0 K and below so equa-

tions (6) and (8), the low-temperature equations which give fluence-independent

temperature coefficients, apply. This fluence-independence is reflected in the

data for cells of both resistivities.

Equation (9) did not fit the data at 560 mW/cm2 so a modification was

made by replacing the factor W/140 in this equation by tw where tw is an illu-

mination-dependent coefficient determined separately for each cell resistivity

but is independent of fluence and cell temperature. This drops the assumption

of a linear current-illumination relationship but maintains the temperature and

fluence relationships derived for 140 mW/cm2 illumination. The criterion for

the best-fit value of tw was that the deviation between the equation and the data

averaged over the 35 data points be zero. This resulted in values for w of 3.66

and 3.63 for 10 2-cm cells and 2 E2-cm cells, respectively. These values are

approximately 9 percent below the value of 4.0 for W/140. The reason for this

apparent divergence from linearity is not known. However, other workers have

observed linear current-illumination relationships to higher intensities than

those measured here. Thus it is tentatively concluded that a calibration error
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due to uncertainties in neutral-density filter transmission is responsible for the

apparent non-linearity.

The curves in Figure 9 represent tw values of 12.86 and 12.50 for 10

62-cm cells and 2 2-cm cells, respectively. These values are within 5 percent

of the value of 13.1 for W/140. Considering the experimental error of up to ±4

percent at 1830 mW/cm 2 and cell-to-cell variations of up to 10 percent at this

intensity, this difference is not considered significant. The equations give

adequate predictions of fluence dependence, and the predicted increase in tem-

perature coefficient with fluence is in evidence at both 560 mW/cm 2 and 1830

mW/cm 2. However, given the high degree of scatter in the experimental re-

sults at these intensities, the criteria for an equation describing them are

rather modest, i.e., a reasonably good general fit and a form proven valid in

other experiments with a better data base.

An indication of the quality of the empirical fit to the data was obtained by

computing the percent deviation, E, given by

(ID - IE
E = 10 0  (10)

(ID, + IE)/2

where I D and IE are the values of light-generated current obtained from the ex-

perimental data and from the appropriate empirical equation, respectively.

For 10 E2-cm cells, all but 3 of the 55 points for W = 140 mW/cm2 show a

deviation between data and equation of less than three percent, only one point
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shows a deviation greater than 4 percent, the point at = 1 X 1016 e/cm2 , T =

4730 K, which is 8.3 percent higher than the equation predicts. Examination of

Figures 2 and 3 shows an upturn in data at 4730 K at other fluences as well as at

1 X 1016 e/cm2 suggesting a greater than linear increase in current at very high

temperatures. Close examination of the data indicates the possibility of further

complexities in temperature dependence. Such complexities have been previ-

ously reported, 10 however, the equations derived here are believed to be ade-

quate given the experimental accuracy of the present results.

At other illuminations the number of points representing greater than 4

percent deviation are: 3 of 34 points for 35 mW/cm2 , 5 of 35 points for 560

mW/cm2 , 5 of 20 points for 5 mW/cm 2 , 4 of 20 points for 1830 mW/cm 2 . The

quality of the fit is thus best at 140 mW/cm 2 and is worst at the ends of the

illumination matrix, i.e., at 5 and 1830 mW/cm2 . For 2 &2-cm cells, the num-

ber of points representing greater than 4 percent deviation are: 3 of 56 points

for 140 mW/cm2 , 4 of 35 points for 35 mW/cm 2 , 7 of 34 points for 560 mW/cm 2,

7 of 21 points for 5 mW/cm 2, and 3 of 19 points for 1830 mW/cm2 .

Open-Circuit Voltage

Plots of open-circuit voltage versus cell temperature with illumination as

a parameter are given in Figures 13 to 16, Figures 13 and 14 for 10 E2-cm and

2 92-cm cells, respectively for 0 = 3 X 1014 e/cm2 and Figures 15 and 16 for

= 1 X 1016 e/cm2 . This data, together with those at other fluences was fitted
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in a manner similar to that employed for light-generated current. The result-

ing equations are, for 10 92-cm cells,

Vo(T, W, ) = 0.621 - 9.35 X 10-6 00.25 - 0.0023(T - 273) + 0.025 In I) (11)

and for 2 92-cm cells,

Vo(T,W,) =(0.651 -9.35 X 10-6 0.25)-CT(T - 273) + 0.032n ( (12)

where CT = 0.0022 V/oK for 1 X 10"13< 4 1 X 10" e/cm2 , and 0.0023 V/oK for

3 X 1014 < < 1 X 1016 e/cm'. As suggested by equation (11), the temperature

coefficient for 10 92-cm cells was to a good approximation independent of both

temperature and fluence. In contrast, the temperature coefficient for 2 g2-cm

cells has a significant fluence dependence as described by these two different

values of CT. In addition, the coefficient of the illumination-dependent term is

larger for the 2 92-cm cells. Otherwise the equations are very similar; in par-

ticular for W = 140 mW/cm2 and 4 > 3 X 1014 e/cm 2 the difference in open-

circuit voltage between the two resistivities is constant at 0.030 V.

An interesting feature in the data for both resistivities is the approximate

parallelism in the curves at different illuminations, reflected in the illumination-

dependent terms of equations (11) and (12). The diode equation gives:

AkT FI L-o]V= - InL 0(13)
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where e is the electron charge, k is Boltzmann's constant and IL is the reverse

saturation current. For an ideal diode A = 1; for actual solar cells a summa-

tion of terms, each having different values of A and 10 is often used to fit the

experimental curves. For temperatures near room temperature the portion of

the curve near V° usually fits the ideal diode well. 11 Under such circumstances

the difference in Vo, AVo, between two illuminations W1 and W2 is proportional

to cell temperature,

AV= -- n (14)
e W1

However, the data and equations (11) and (12) show V0 to be relatively independ-

ent of temperature. This corresponds to an A factor in equation (14) that is in-

versely proportional to cell temperature. An inverse temperature dependence

of A has previously been suggested by Barrett et a112 based on low temperature

measurements by Kennerud. 13 In interpreting the present results as implying

such a temperature dependence, a stipulation must be made, i.e., the measure-

ments cover different illuminations in different temperature ranges. Thus it

would be improper to use equation (11) or (12) for T/W combinations not meas-

ured, e.g., 432 0K/35 mW/cm 2 or 273 0 K/560 mW/cm 2. In addition, the validity

of the equations is limited to the temperature range above 223 0 K. Below this

temperature evidence of both Schottky barrier formation and cell shunting in-

validated open-circuit voltage data.
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The experimental uncertainty of the measurements was essentially corl-

stant at ±0.012 V. Therefore, the quality of the empirical fit was tested by

calculating the difference between data and equation directly in volts. For 10

62-cm cells the fits to all data points at 5, 35, and 560 mW/cm2 are within the

experimental uncertainty of the measurements. At 140 mW/cm 2 one reading

differs from the equation by 0.017 V, the equation giving the higher value.

However, this data point was at 2230K, where Schottky barrier effects begin to

reduce V0 . Similarly at 1830 mW/cm 2 one reading differs from the equation by

0.017 V, the equation value being lower. The fits for 2 92-cm cells are not as

good as those for the 10 &2-cm cells. The number of readings for which the

empirical voltage equation differs from the corresponding experimental point by

more than 0.012 V are: 3 of 42 points for 35 mW/cm 2 , 8 of 34 points for 560

mW/cm2 , and 4 of 21 points for 1830 mW/cm3 . In spite of some rather signifi-

cant divergences, it is felt that both the current and voltage equations provide a

valid (and certainly convenient) basis for a first approximation comparisons

between cell resistivities.

IV. CONCLUSIONS

Photovoltaic characteristics have been measured on solar cells irradiated

with 1 Mev electrons to fluences ranging from 1 X 1013 e/cm2 to 1 X 1016 e/cm2 ,

for cell temperatures ranging from 123 0 K to 4730 K and illumination intensities

ranging from 5 mW/cm2 to 1830 mW/cm2 . Emperical equations have been
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derived from these measurements to describe the behavior of light-generated

current and open circuit voltage over various portions of these temperature/

illumination ranges. Both 10 f2-cm and 2 92-cm n/p silicon solar cells were

tested, similar analytical expressions being sought to provide a basis for easy

comparisons between the two resistivities.

Equations for light-generated current were obtained for both resistivities

covering the entire experimental T/W range. The temperature dependencies

are similar for both resistivities-at high temperature (T >2730 K) the normal-

ized temperature coefficient varies with fluence as 00.18; at low temperature the

coefficient is relatively independent of fluence. A power law relationship was

generated for fluence dependence at 2730 K; at this temperature it was deter-

mined that light-generated current decreased at a rate proportional to 0.#53 for

both resistivities. The coefficient of the power law expression was larger for

2 2-cm cells, consequently the advantage in current for 10 92-cm cells in-

creased with increasing fluence.

Open circuit voltage equations have been derived for all temperatures ex-

cept 123 0 K and 173 0 K, where Schottky barrier effects and cell (high A factor)

shunting led to questionable experimental results. The temperature coefficient

of voltage was, to a reasonable approximation, independent of temperature and

illumination for both resistivities and for 10 2-cm cells was 0.0023 V/oK inde-

pendent of fluence. For 2 f2-cm cells it was 0.0022 V/oK for low fluences and

0.0023 V/oK for fluences of 3 X 10"1 e/cm 2 and above. Illumination dependence

15



was logarithmic, the voltage increasing by approximately 0.025 V and 0.032 V

per decade increase in illumination for 10 92-cm cell and 2 92-cm cells, re-

spectively. At T = 2730 K, the decrease with fluence varied at 0o.25 for both

resistivities. At 140 mW/cm2 the voltage difference between 2 and 10 2-cm

cells, as given by equations, is constant at 0.030 V (independent of temperature)

for f> 3 X 1014 e/cm2 . Since the illumination dependence is stronger in the

2 62-cm cells, this 0.030 V advantage increases at high intensity and decreases

at low intensity.

In deriving analytical equations to fit the data the principal guidelines

were to generate the minimum number of equations compatible with an accept-

ably good fit, as dictated by uncertainties and scatter in the raw data. Since

the data was the most coherent near the center of the temperature/illumination

matrix (2730 K, 140 mW/cm 2), the results here show the best correspondence

between the raw data and those calculated from the derived equations; the

spread increases at the extremes of the matrix, so the quality of the fit is not

as good in these regions. It is felt, however, that a good start at characteriz4 ng

solar cell performance over the specified fluence, temperature and illumination

ranges has been made.

16



ACKNOWLEDGEMENT

The writers wish to acknowledge the encouragement and support of Dr.

D. W. Harris of NASA-GSFC and of P. Nekrasov of RCA. T. Glock, R. Neadle,

and W. Rutan provided capable support in the design and fabrication of experi-

mental apparatus and in the performance of measurements. P. Pierce, now at

EOS, collaborated in the early stages of the program. Cell irradiations were

performed by J. Groppe of RCA Laboratories.

17



REFERENCES

1. C. A. Lewis and J. P. Kirkpatrick, Conf. Record of Eighth Photovoltaic

Spec. Conf., IEEE catalog No. 70C 32 ED, 123 (1970).

2. P. A. Iles, Final Report, JPL Contract No. 952865, issued by Centralab

Div. of Globe - Union Inc., Nov. 30, 1971.

3. H. W. Brandhorst and R. E. Hart, Conf. Record of Eighth Photovoltaic

Spec. Conf., IEEE catalog No. 70C 32 ED, 142 (1970).

4. J. C. Ho, F. T. C. Bartels, and A. R. Kirkpatrick, Conf. Record of Eighth

Photovoltaic Spec. Conf., IEEE catalog No. 70C 32 ED, 150 (1970).

5. W. Luft, Conf. Record of Eighth Photovoltaic Spec. Conf. IEEE catalog

No. 70C 32 ED, 161 (1970).

6. P. A. Payne and E. L. Ralph, Conf. Record of Eighth Photovoltaic Spec.

Conf. IEEE catalog No. 70C 32 ED, 135 (1970).

7. N. D. Wilsey and R. J. Lambert, Conf. Record of Eighth Photovoltaic Spec.

Conf. IEEE catalog No. 70C 32 ED, 169 (1970).

8. J. H. Martin, R. L. Statler, and E. L. Ralph, Second Intersociety Energy

Conversion Engineering Conf. Proc., 289 (1970).

9. T. J. Faith, Final Report, NASA Contract No. NAS5-21642, issued by

RCA, April 1973.

10. E. L. Ralph, Conf. Record of Sixth Photovoltaic Spec. Conf., IEEE catalog

No. 15C53 Volume I, 98 (1967).

11. M. Wolf and H. Rauschenbach, Adv. Energy Conversion, 3, 455 (1963).

12. M. J. Barrett, M. B. Hornstein and R. H. Stroud, Final Report, JPL Con-

tract No. 952548, prepared by Exotech Inc., June 15, 1970.

13. K. L. Kennerud, IEEE Trans. on Aerospace and Electronic Systems,
AES-3, 586 (July 1967).

18



473 l- +200

423 - * - +150

373- - +100 m
r-

LU m
D 323 - 0 +50 9

-v
m

r

o 273 0- -

w

-J
223 - * --50

173 0- * * -100

123 i* IAm ,I * ' ,..,°I a l l I ' 1111 -150

100 101 102 103

ILLUMINATION INTENSITY, W, (mW/cm 2 )

Figure 1. Temperature -Illumination Combinations
at Which Cells Were Measured

19



80 I 8
80 1

70 - *70

S60 - S 60

30 -I-- 50 - " 50

w z

D 40 40
10R -cm CELLS

o W = 140 mW/cm 2  o

.- 30 4(e/cm 2 ) SYMBOL - 30 ~ 25, -cm CELLS

Sa W = 140 mW/cm 2

O , 1x 1013 (e/cm 2) SYMBOL

20 1x1014  20 1 x 10 13

1 x 1014

1 x 1015 1 x 1015
SC 1x101 5

C3 10 1 x 1016  v 10 1x10 16  V

0 0 I I I I
123 173 223 273 323 373 423 473 123 173 223 273 323 373 423 473

CELL TEMPERATURE, T, (oK) CELL TEMPERATURE, T, (oK)

Figure 2. Light Generated Current at W = 140 Figure 3. Light Generated Current at W = 140

mW/cm2 Versus Cell Temperature mW/cm2 Versus Cell Temperature

and Fluence, 10 2-cm Cells and Fluence, 2 &2-cm Cells



18

18 I

16
1616

16 - 14
4 14

zz

E- 1 4

8 -1 -m1- -
SE 12 - @-

W = 35 mW/cm 2  . (e/cm 2 ) SYMBOL
(e/cm 2 ) SYMBOL

(ecm2) S1 x 1013
1 x 1013  14

6 3x10 14  6 3x1014

3 x 1015  3 X 1015  4
1x1016  1 x 1016

0II 0 I I I 1
123 173 223 273 323 123 173 223 273 323

CELL TEMPERATURE, T, (OK) CELL TEMPERATURE, T, (OK)

Figure 4. Light Generated Current at W = 35 Figure 5. Light Generated Current at W = 35
mW/cm 2 Versus Cell Temperature mW/cm2 Versus Cell Temperature
and Fluence, 10 92-cm Cells and Fluence, 2 S2-cm Cells



300 300

280 - @ - 280

260 - 260

LU 240 240

w- - LU 220Lu --z 220 C-
- -

" 200 -w 200 -
SLU 0I-

180 - 10 -cm CELLS u 180

W = 560 mW/cm2  W = 560 mW/cm 2

W= 3.66 I W =3.63
6 (e/cm2) SYMBOL (=

160 e/cm2) SYMBOL 160 - (e/cm2 ) SYMBOL
1 x 1013 1x1013 o
3x101 4

3
3x1015 ,6 3x1014

140 1x1016  140 - 3 x10 1

•, 1 x 1016 v

272 323 373 423 473 273 323 373 423 473

CELL TEMPERATURE, T, (OK) CELL TEMPERATURE, T, (OK)

Figure 6. Light Generated Current at W = 560 Figure 7. Light Generated Current at W = 560

mW/cm 2 Versus Cell Temperature mW/cm 2 Versus Cell Temperature

and Fluence, 10 &2-cm Cells and Fluence, 2 92-cm Cells



2.6 I I 2.6 10S -cm CELLS 2 -cm CELLS

10, -cm CELLS 2a - cm CELLS cW = 12.86 W = 12.50
1000 1000

2.4 - - 2.4

E " 950 950
2.2 - - 2.2 9

. 2900 * * 900

_ 2.0 - -2.0

z _8 - 850 - 850
c 1.8- -1.8 Z
D w

Scc 800 800
w 1.6 1.6

t C 750 750L
z 1.4 1.4 .

/cm2 700 W = 1830 mW/cm 2  700I- 700 700
•V2 = 5 mW/cm 2  7 1 (e/cm 2) SYMBOL

( 1.2 - (e/cm2 ) SYMBOL 1.2 x 1013
1 x 101 3  3x 1014

3x 1014  @ 650 3 x 101 5  650
1.0 3x 101 5  A ' 1.0 1 x 1016 y

1x10 16  I 6S 1I6 I 00 I I 600
123 173 223 123 173 223 373 423 473 373 423 473

CELL TEMPERATURE, T, (OK) CELL TEMPERATURE, T, (OK)

Figure 8. Light Generated Current at W = 5 Figure 9. Light Generated Current at W = 1830
mW/cm2 Versus Cell Temperature mW/cm2 Versus Cell Temperature
and Fluence, 10 2-cm and 2 92-cm and Fluence, 10 E2-cm and 2 a-cm
Cells Cells



70 - 7 70

65 -
65

60 - 60
60 _-

.- z
z -w 55 - 2,-cmCELLS
"' 55 c
cc 10n-cm CELLS T = 2730K

T 73K W = 140 mW/cm2
. 50

0 50 W = 140 mW/cm2 5
- EXPERIMENTAL DATA

EXPERIMENTAL DAT45 - POWER LAW EQUATION
w 

zw
z 45 - POWER LAW EQUATION z

---- 40
40 0

J 35 35 I1 |I3

1013 101
4  1015 1016 1013 1014 1015 1016

1 MeV ELECTRON FLUENCE,~, (e/cm
2 ) 1 MeV ELECTRON FLUENCE, , (e/cm

2
)

Figure 10. Light Generated Current Versus Figure 11. Light Generated Current Versus

Fluence at 273 0 K and 140 mW/cm2  Fluence at 273K and 140 mW/cm 2

Illumination, 10 b2-cm Cells Illumination, 2 2-cm Cells



28
26-
24 - * 22-cm CELLS
22 - l10.-cm CELLS
20- 273<T<4730 K

0 18 - *
, 140 mW/cm 2

LL
,w 16
0
,, 14

- 12
0

a. 10 -

9
- 3.23 x 10-6  0.188 -

7LU

o 6
N

1 5

O
Z 4

3 1I 1 i

1013 1014 1015 1016

1 meV ELECTRON FLUENCE,#(e/cm 2 )

Figure 12. Normalized Temperature Coefficient of Light
Generated Current Versus Fluence

25



0.8 0.8 I I I

10O- cm CELLS
S= 3 x 1014 e/cm 2  0.7

0.7 - WrmW/cm 2 ) SYMBOL

1830 v>
- 560 A 0.6
S0.6 - 140 @

35 *
5

0.5- 6 0.5

S0.4
0.4 0.4

0 >

0.3 0.3
0. 2a -cm CELLS

cce r = 3 x 10 14 e/cm 2

S0.2 W (mW/cm 2 ) SYMBOL
S0.2 1830

0 0 560

0.1 0.1 140

35 0

0 I I I I

223 273 323 373 423 473 223 273 323 373 423 473

CELL TEMPERATURE, T, (OK) CELL TEMPERATURE, T, (OK)

Figure 13. Open Circuit Voltage Versus Cell Figure 14. Open Circuit Voltage Versus Cell

Temperature and Illumination at Temperature and Illumination at

=3 X 10t4 e/cm2 , 10 S2-cm Cells ¢ = 3 X 1014 e/cm2 , 2 n2-cm Cells



0.8 I I I 0.8 I 1

10 -cm CELLS 22 -cm CELLS
0.7 - P= 1 x 1016 e/cm2  0.7 - = 1 x 1016 e/cm2

W(mW/cm 2 ) SYMBOL WlmW/cm 2 ) SYMBOL

S1830 - 1830 Z
1 830 560

0.6 - 560 4 0.6 140
140 35
35 35

S5
o 0.5 - 0.5 -

0.4 < 0.4

> >

4- I.-

t 0.3 0.3

U U-

w 0.2 0.2
LU 0.2

0.1 0.1 -

0 0[
223 273 323 373 423 473 223 273 323 373 423 473

CELL TEMPERATURE, T, (OK) CELL TEMPERATURE, T, (OK)

z
> Figure 15. Open Circuit Voltage Versus Cell Figure 16. Open Circuit Voltage Versus Cell

Temperature and Illumination at Temperature and Illumination at
So= 1 X 106 e/cm2 , 10 n2-cm Cells = 1 X 1016 e/cm2, 2 n-cm Cellsn,


