
FINAL SUMMARY REPORT

FOR

"STUDY OF GENETIC DIRECT SEARCH ALGORITHMS

FOR FUNCTION OPTIMIZATION"

NASA Grant NGR23-005-602-'

Project Director:

Bernard P. Zeigler

Associate Professor

Department of Computer and Communication Sciences

University of Michigan

Ann Arbor, Michigan

June, 1974

https://ntrs.nasa.gov/search.jsp?R=19740018599 2020-03-23T08:39:28+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42895546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INTRODUCTION

1.1 Objectives
- The following is the final report for a research project on

the "Study of Genetic Direct Search Algorithms for Function
Optimization" conducted under NASA Grant NGR-23-005-047. The
duration of this project totalled approximately three years,
beginning on October 1, 1970 and running to September 30, 1972
then lapsing for one year before beginning again on May 1, 1973
and terminating on April 30, 1974.

The purpose of the project was to determine the performance
of genetic direct search algorithms (employing techniques
suggested by natural adaptive systems) in solving function
optimization problems arising in the optimal and adaptive control
areas. In particular we attempted to answer the following
questions with respect to a particular class of algorithms
to be studied:

1) How well could the particular genetic algorithms
studied perform in comparison to standard direct
search techniques currently available?

2) What are the essential parameters determining the
behavior of genetic algorithms to be studied and
what values should be assigned to these parameters
for optimum performance?

3) Can relatively simple genetic algorithms be constructed
while still retaining the efficiency of more complex
ones?

These questions were investigated with the hope of being
able to draw tentative conclusions for the fol lowing more' long
range questions :

How broad is the domain of useful application of genetic
algorithms? Should one general form of algorithm be^ applied
in all situations or are different configurations or parameter
settings appropriate in different problem environments?

1.2 Methods
In investigating these questions our research took the

following directions:
1) Design, construction and experimental testing of

algorithms
2) Analysis of the data so generated with a view toward

drawing empirical confirmation of intuitively
based hypotheses.

3) Mathematical modelling of the algorithms and their
environments.

Our major effort was concentrated in direction 1) and
2) . We gathered large amounts of data from parametrtally
controlled experiments employing the IBM 1800 computer available
to us on an open shop basis. It is from the reduction and the
analysis of this data that our conclusions are mainly drawn.
Part of our effort also went into direction 3)., .Our results in



this direction fell well short of providing predictive models
but did succeed in clarifying some of the factors involved in
the highly complex behavior displayed by our algorithms.

*

1.3 Documentation
The research performed under the grant was described in

the following reports:
I. "Comparison of Genetic Algorithms with Congugate

Graduent Methods" (J.L. Bosworth, N.Y. Foo, and
B.P. Zeigler) NASA Contractor Report No. 2093,
NASA, Washington, D.C. August, 1972.
(This paper was also presented at the Sixth Annual
Princeton Conference on Information Sciences and
Systems, "Princeton, NT7., 1972).

II "Algebraic, Geometric and Stockastic aspects of Genetic
Operators" (N.Y. Foo and J.L. Bosworth), The University
of Michigan, Computer and Communication Sciences Report
No. 003120-2-T, March, 1972.

Ill "Noisy Function Optimization by Genetic Algorithms
and Conjugate Gradient Methods" (B.P. Zeigler, J.L.-
Bosworth, and A.D. Bethke) The University of Michigan,-
Computer and Communication Sciences Report No. 143,
March, 1973.

IV "Convergence Properties of Simple Genetic Algorithms",
(A.D. Bethke, D. Strauss and B.P. Zeigler), The University
of Michigan, Computer and Communication Sciences Report,
to appear.

In what follows we shall first provide a brief summary of
the results discussed in these reports. Then we shall discuss
the conclusions drawn in response to the short and long range
questions raised above.

We shall refer to these reports by number in what follows.

II BACKGROUND AND RESULTS

2.1 Background
Our Report I outlines the importance of direct search

optimization methods in optimal and adaptive control applications.
In such applications it is desirable that the method firstly,
converges (i.e., actually locates an optimum or near optimum) and
secondly, converges rapidly (many algorithms such as random search
are guaranteed to converge but do so much too slowly for practical
application).

At the time of the project initiation, a host of direct
search methods, which we refer to as classical methods, had been
suggested and studied. The most successful of these, in terms
of performance and analytic justification were the congugate
gradient-variable metric methods. However, while the latter
methods could be shown to converge superlinearly on quadratic
functions, they were not guaranteed to converge on functions
not well approximated by quadratic forms. Moreover, in practice
the matrix updating techniques employed by the more sophisticated
versions required complex computation. Also the matrices involved



can not be guaranteed to remain non-singular and positive &•
definite as required in the justifying theory.

More generally, the classical methods were largely developed
for' the case of unimodal functions. Based on local information,
these methods were subject to being trapped on false sub-optimal
peaks when applied to non-unimodal functions. Moreover,
reliance on gradient information, implies an erratic behavior
when applied to noisy functions. (Recent work in the area
has included attempts to broaden the class of functions on
which conjugate gradient methods can be guaranteed to coverge,
and sojne relatively unsophisticated proposals for employing
second level supervision for co-ordinating local optimizers
in the multipeak optimization problems).

Also at the time of project initiation, several promising
results had been obtained employing genetic algorithm* in
artificial adaptation problems. These algorithms had the
attractive feature of being applicable to functions defined
on non-numerical spaces. For such situations, the usual
euclidian topologies do not apply and hence genetic algorithms
must, of necessity, employ non-local, combinatorial information
gathering and search techniques. Applied to numerical spaces,
this would appear to limit the performance of these methods
since gradient information can not be utilized. On the other
hand, because of the non-reliance on local information, the
genetic methods appeared to be promising for application to
the multi-peaked and noisy function optimization cases.

2.2 Construction of Genetic Algorithms
Our Report I describes several versions of genetic algorithms

we constructed during the exploratory phase of our investigation.
Many variations were incorporated and tested in the possibility
that they could prove essential to algorithm performance. As
could be expected, this lead eventually to a complex software
package. Thus in the last year of the project the algorithm
was refashioned into a much more simple and elegant form. This
version is described in Report IV. It contains only the basic
features which our experimentation with earlier versions suggested
to be essential. As a consequence, it fits well within the 32K
core of the IBM 1800 we employ and would thus be within the
limited complexity range necessary for on line control applications.

2.3 Basic Structure of Genetic Algorithms
The basic structure of the genetic algorithm studied in

the last year of the project can be briefly described as
follows:

We are given a function f:A ->R to be maximized; R is the
set of real numbers, A is an arbitrary set called the alleles.
When A=R we have the usual real valued functions with numerical
arguments. In representing such functions on a computer, the
arguments must be bounded between limits and quantised to
discrete values between these limits; the set A can be taken
to represent the resultant discrete set.



At any time, a population of points in the domain A of f
is maintained. Each point is represented in the computer by an
ordered string of the form a ,a , ...,a with the value of that

string being given by f (a ,a2, ... To form a new generation

of strings the following operations may be applied:
1) mutation: altering one or more of the alleles of a

string.
2) crossover:

3) selection:

combining two strings so that a pair of
strings is produced whose allele values
come from either one of the parents (the
position information of alleles is retained
in this operation i.e., at locus or position
i, a daughter receives one the alleles a. or

a', which appear in the i-th position of the

parents).
the population size is reduced by eliminating
__points with low function values.

A generation consists of the application of one or more
of the operators. Parameters control the probability that a
particular operator will be applied in a generation and the
exact nature of the operation involved. As the generations
proceed, the populations are expected to improve in the sense
of average function value or maximum function value of the
population.

2.4 Additions to Basic Structure
As indicated, we initially investigated various additions

to the basic structure just described. These additions included
the following:

4) inversion:

5) adaptation:

here we must distinguish between a point
(a ,a , ...,a ) in the domain of f and its

representation as a string. One such
representation is- (l>a.,) (2,a2)... (n,a );

another is (2,a2) (l,a..) ..., (n,a ); indeed,

there are n! such representations, each
preserving the significance of allele a.

in its position i. Inversion is an operator
which operates upon representations by
altering the order of the pairs (i,a.)«

the parameters governing mutation -are
controlled during an optimization run
by 3. second level adaptation routine
which basically determines the size of
a mutation alteration according to an
estimate of whether large or small mutation
sizes have been fruitful in the recent
past.



2.5 Structure of Operators and Search Effectiveness
In our Report II, the crossover and inversion operators

are precisely defined and characterized algebraically and
gegmetrically. The operation of crossover as a combinatorial
operator was studied by characterizing the smallest sphere which
encloses a set of points subjected to arbitrary crossover in n-
dimensional euclidian space. It was shown that such a sphere
could grow exponentially with successive generations to a
maximum of n times its original radius. Monte Carlo simulations
however showed that more typically the points produced by
successive crossovers remain inside a sphere close to the
original one.

Thus conceptually, the crossover operator implements a •
search of a well defined type. We had hoped to employ these
results in analysis of genetic algorithm search efficiency but
were unable to achieve reportable progress by project's end.

2.6 Comparison of Genetic Algorithms with Conjugate Gradient Methods
In our Report I, we present results obtained with genetic

algorithms employing^all five of the operators outlined above.
Versions of these algorithms were run against the Fletcher-Reeves
conjugate gradient algorithm. Performance was measured by the
number of function evaluations required to achieve a given level
of function value. The results can be,summarized as fo'llows:

1. The genetic algorithms were markedly inferior to the
conjugate gradient algorithm when applied to "easy
quadratic functions" (functions with spherical contours).
This was a confirmation of the expected limitations of
the genetic algorithms -in exploiting gradient information.

2. The genetic algorithms were markedly superior to the
conjugate gradient algorithm when applied to a function
with multiple peaks. This was a confirmation of the
expected limitation of the local optimizer on a non-unimodal
domain. But more significantly, it established that
genetic algorithms can locate the global optimum of ;
certain multimodal functions. • '

3. Applied to other uninodal standard-test functions
(including for example the Wood function) the genetic
algorithms proved superior in converging closer to the
true optimum while the conjugate gradient algorithm
was superior in rapidity of convergence. The progress
curves of the two kinds of algorithms were qualitatively
very distinct. The conjugate gradient method made very
rapid progress at the beginning of a run but when a
given x'alue was reached no further progress was achieved.
In contrast, the genetic algorithm made relatively slow
but steady progress until it too reached a value where
no further progress was possible. In all cases, the
final value attained by the genetic algorithm was orders
of magnitude closer to the optimum than that of the other
method.



2.7 Noise Behavior
We hypothesized that the impediment to further progress

of the conjugate gradient method was due to the effect of
round off noise generated in the function value computation
to'which the genetic algorithms were less sensitive. This
was confirmed when we investigated the behavior of the
algorithms given functions corrupted by noise. In our
Report II, we describe the following result :

4. The genetic algorithms are much less affected by
increasing additive noise levels then" are the
conjugate gradient methods. This was a confirmation
of the expected limitations of local optimizers in
noisy environments. More significantly, it showed
that genetic algorithm . performance need not be
degraded by reasonably low noise levels.

2.8 Basic versus Augmented Structure
In Report I we describe experiments in which the effect

of adding inversion and adaptation (section 2.4) to"the
basic structure is explored. This augmentation considerably
complicates the software realization since it requires more
sophisticated data structures (for inversion) and memory
storage and processing (for adaptation). We found that while
inversion did improve performance, the improvement was not
very marked. On the other hand, the second level adaptation
routine considerably improved performance, by enabling the
sizes of mutations to be adjusted as the optimum was
approached.

2.9 Covergence Properties of the Basic Structure
As indicated in section 2.2, we concentrated our final year

of effort on the study of the basic genetic algorithm structure.
We constructed a software package which enabled us to
conveniently control 8 parameters specifying the algorithm
structure and the objective function difficulty. We ran
experiments for about 80 experimental points in this parameter
space, each consisting of 3 to 5 randomly initialized runs.
Various statistics were gathered but of central importance was
the plotting of mean value (over runs) attained versus number
of function evaluations for each experiment. The details of
method, results and analyses are given in Report IV.

Our main objectives were to describe the progress curves
obtained as a parametrically specified family, and to assess the
effect of structure parameters on these descriptive parameters.
We hoped to draw conclusions concerning optimal parameter settings
and to develop possible predictive models.

Our main results concerned maximization of linear functions,
and are summarized as follows:

1) All progress curves could be described by an exponential
approach to final value of the form



V(n) = (VVe~rn+Vf

inhere V(n) is the mean value achieved after n sample evaluations

V is the mean value at the beginning of a run

V., is the mean value which appeared to be asymptotically
being approached

r is the exponential decay factor

Thus the properties of most interest in the study
of convergence viz. the final value converged to,
and the rate of convergence could be simply described
by the parameters V_ and r respectively ^according
to our results.

2) There is a trade off between final value attained
V,. and rate of convergence r in the following cases:

r .

a) Increasing population size tends to increase
Vf but decrease r,

b) V_ for mutation operating without crossover is

higher than that for crossover without mutation
but the reverse is true for r,

c) For small populations (10 strings), V for crossover-

mutation combined is greater than that of either
alone, but r is lower than the r's of either alone.
For large populations (50 strings) the combined
curve approximates that of mutation alone.

3) The sensitivity of performance (V_,r) to parameter

settings (such as crossover rate and mutation rate)
decreases as the population size increases and the
objective function difficulty (number of co-ordinates)
decreases. With small populations, equal crossover to
mutation ratio is optimum.

4) The computer time required for a given run length
increases faster than linearly with population size
from around 1 hour for 10 strings to 12 hours for
50 strings.

The results are consistent with the following explanation:
Mutation is the dominant operator in determining the
progress curve. The exponential form can be derived
from a model in which mutation randomly samples a
space with uniform density of good (in the sense of
yielding an improvement) points. Increasing the



population size and adding crossover tend to increase
the "effective" space accessible to mutational sampling.
As a consequence, the final value attainable increases
while the rate of achieving this final value decreases.

Ill CONCLUSIONS
With regard to the questions which motivated the project

investigation (raised in section 1.1), our results suggested the
following conclusions:

1) Genetic algorithms can outperform standard algorithms
in multimodal and/or noisy optimization situations, but
suffer from lack of gradient exploitation facilities
when gradient information can be utilized to guide the
search.

2) For large populations, or low dimensional function
spaces, mutation is a sufficient search operator. However,
fo'r small populations or high dimensional functions,
crossover appliecl in about equal frequency with mutation
is an optimum combination.

3) Complexity, in terms of storage space and running time, is
significantly increased when population size is increased
or the inversion operator, or the second level adaptation
routine is added to the basic structure.

Each of these additions tends to increase the closeness to
which an optimum can be approached. Thus, in this sense,
simple algorithms can not replace more complex ones. However,
the rate of approach may also be decreased by these additions
so that if this is the criterion of efficiency, simple
algorithms can perform, as well or better, than the more
complex ones.

These conclusions, of course, apply strictly speaking only to
the algorithms and problem situations actually studied. However,
with respect to long range, more global questions posed we venture
the following conclusions:

Genetic algorithms may be usefully applied to function
optimization in which one or a combination of the following
features are significant:

a) the function domain is non-numerical and has no obvious
topology in which gradient information can be efficiently
utilized.

b) the function evaluation is confounded by a high level of
noise contamination.



c) the function has a numerical domain but is multimodal.
<y

Genetic algorithms should not be applied in situations where
sufficient information is available about the structure of a numerical
function to enable classical exploitation of gradient information.

The form of the algorithm employed depends on the criteria
of performance and the difficulty of the optimization problem. The
simple algorithm structure (small population, crossover and mutation)
is best when quick response is essential or in easy (linear, low
dimensional) function optimization environments. Larger populations,
inversion and/or second level adaptation significantly increase, the
prospect of ultimate convergence. However the price to be -paid is a
significant increase in both the number of function evaluations
required to achieve a given suboptimal level and the complexity of
computation involved.


