Reports of the Department of Geodetic Science

CORE

Report No. 195

FREE GEOMETRIC ADJUSTMENT OF THE SECOR EQUATORIAL NETWORK (Solution SECOR-27)

by

Ivan I. Mueller, M. Kumar and Tomas Soler

Prepared for

National Aeronautics and Space Administration Washington, D.C.

> Contract No. NGR 36-008-093 OSURF Project No. 2514

The Ohio State University Research Foundation Columbus, Ohio 43212

February, 1973

N74-26771

unclas 41180

A 8 44 1 1 1 1 1 1

FREE GEOMETRIC ADJUSTMENT OF THE SECOR EQUATORIAL NETWORK (Solution SECOR-27)

by

Ivan I. Mueller, M. Kumar and Tomas Soler

Prepared for

National Aeronautics and Space Administration Washington, D. C.

> Contract No. NGR 36-008-093 OSURF Project No. 2514

The Ohio State University Research Foundation Columbus, Ohio 43212

February, 1973

PREFACE AND ACKNOWLEDGEMENT

This project is under the supervision of Ivan I. Mueller, Professor of the Department of Geodetic Science at The Ohio State University and is under the technical direction of James P. Murphy, Special Programs, Code ES, NASA Headquarters, Washington, D.C. The contract is administered by the Office of University Affairs, NASA, Washington, D.C., 20546.

The authors wish to express their appreciation to the Defense Mapping Agency (Topographic Center) for the SECOR data, and for other helpful information related to the analysis of the data.

TABLE OF CONTENTS

PREFACE AND ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
1. INTRODUCTION	1
2. DATA	3
9.1. The superscript Data	
2.1 Terrestrial Data 2.2 Setallita Observational Data and 2	Ba Handling 2
2.2 Saternice Observational Data and	ts nanoling 3
3. THEORETICAL BACKGROUND	14
3.1 The Mathematical Model	14
3.2 Normal Equations	16
3.3 Reduced Normal Equations	16
3.4 Constraints Contributions to the 1	Normal Equations 17
3.41 Relative Position Constr	raints 19
3.42 Height Constraints	21
3.43 Directional Constraints	21
3.44 Inner Constraints (Free	Adjustment) 23
4. THE SOLUTION	26
5. COMPARISON WITH OTHER SOLUTIONS	36
6. CONCLUSIONS	. 44
REFERENCES	45
LIST OF TABLES	
TABLE 2.1-1 Survey Information of Observa	tions Stations 4
TABLE 2.1-2 Geodetic Datums	
TABLE 2.1-3 Relative Position Constraints	. 7
TABLE 2, 1-4 Geoidal Undulations and Height	s used in Constraints 8
TABLE 2.1-5 Direction Constraints between	BC-4 Stations 9
TABLE 2.2-1 Summary of SECOR Observation	ons by Quadrangle 12
TABLE 4-1 General Information on the SE	COR-27 Geometric 26
Adjustment	
TABLE 4-2 Cartesian and Geodetic Coordi	nates (Solution SECOR-27) 27
TABLE 5-1 Transformation: NWL 9D-SEC	COR-27 37
TABLE 5-2 Transformation: SAO III - SE	COR-27 39
TABLE 5-3 Transformation: WN14 - SEC	OR-27 41

÷

•

1. INTRODUCTION

The basic purpose of this experiment is to compute reduced normal equations from the observational data of the SECOR Equatorial Network (Fig. 1) obtained from DMA/Topographic Center, D/Geodesy, Geosciences Div., Washington, D.C. These reduced normal equations are to be combined with reduced normal equations of other satellite networks of the National Geodetic Satellite Program to provide station coordinates from a single least square adjustment.

An individual SECOR solution was also obtained and is presented in this report, using direction constraints computed from BC-4 optical data from stations collocated with SECOR stations. Due to the critical configuration present in the range observations [Blaha, 1971], weighted height constraints were also applied in order to break the near coplanarity of the observing stations.

Details of the SECOR network, including instrumentation, historical background, etc., are given in Rutscheid [197]].

2. DATA

2.1 Terrestrial Data

Terrestrial data including survey coordinates and mean sea level heights of stations, instrument type used, etc., are given in Table 2.1-1, together with a list of geodetic datums involved (Table 2.1-2).

These survey coordinates provide the necessary relative position constraints between 13 SECOR stations and collocated BC-4 stations and in addition relative position constraint between two SECOR stations [Mueller, et al., 1973]. Constraints used in this experiment are given in Tables 2.1-3, 2.1-4 and 2.1-5. Geoidal undulations (Table 2.1-4) were computed by using formula and constants as given in [Rapp, 1973].

2.2 Satellite Observational Data and Its Handling

The magnetic tape containing SECOR data, obtained from the Defense Mapping Agency, created on the UNIVAC 1108 EXEC 8 System was translated to a 9-track BCD tape for use on the IBM 360 computer.

For checking purposes, a printout of the ranges with the first and second differences was obtained. No major blunders (besides some duplication of a few observations) were detected.

Corrections to the ranges were applied according to Figure 2.2-1 and a new data set was generated for all the simultaneous observations from four stations. This data in a new format (OSUGOP [Reilly, et al., 1972]) was transferred to a tape. A summary of these observations by quadrangle is given in Table 2.2-1.

Tabl	le	2.	1-	1
------	----	----	----	---

SURVEY INFORMATION OF OBSERVATION STATIONS

	STATION	DATUM		SURVE	Y C	00	RDIN	ATES ²	1 MSL ³	I INSTR. 1	INSTR.	SOURCE]
NG	Î NAME	CODE	L	ATITUDE	 L	ONG 1	TUDE	ELL. H(M)	(M)	HEIGHT" (M)	TYPE	CODES
 5001 5201 5410 5648 5712 5713	HERNDON HOSES LAKE SAND ISLAND FORT STEWART PARAMARIBO TERCEIRA	1 29 29 27 27 29 41 41 1 17	38° <u>5</u> 47 1 28 1 31 <u>5</u> 38 4	59' 37",697 11 5.916 12 32.061 15 18.405 16 59.817 15 36.725	2820 240 182 278 304 332	40' 39 37 26 47 54	16".705 50.463 49.531 0.260 44.990 21.054	 129.0 358.0 6.0 24.0 12.0 56.0	127.80 268.92 6.10 27.80 21.50	1 9.39 1 2.00 1 2.00 1 3.90 1 4.93 1 4.93 1 4.25	SECOR SECOR SECOR SECOR SECOR SECOR	
5715 5717 5720 5721	IDAKAR FORT LAMY ADDIS ASABA Mashhad	1 50 1 1 1 16 1 16	14 4 12 8 4 36 1	4 41.008 7 49.300 6 9.479 4 30.404	342 15 38 59	30 2 59 37	52.935 6.148 49.196 40.105	27.0 320.0 1661.0 962.0	27.30 298.50 1289.40 994.40	4.42 4.83 4.29 4.35	SECOR SECOR SECOR SECOR	
5722 5723 5726 5730 5732	DIEGO GARCIA CHIANG MAI ZANBDANGA Make Island Mago Pago	* 26 49 *	- 7 2 18 4 6 5 19 1	20 57.440 7 55 26.213 7 24.100 *	72 99 122 166	28 00 4 36 *	31.570 3.558 41.206	* 14.0 8.0 *	6.10 310.50 13.30 8.10 *	4.60 4.83 4.29 *	SECOR SECOR SECOR SECOR SECOR	2 1 2 1 1
5733 5734 5735 5736 5736 5739 	GHRISTMAS ISLAND Shemya Natal Ascension Island Terceira	12 29 41 5 17 1	2 52 4 - 5 5 - 7 5 38 4	0 35.622 2 54.894 4 56.253 8 15.220 5 36.311	202 174 324 345 332	35 7 49 35 54	21.962 37.870 57.605 32.385 19.686	4.0 -7.0 66.0 74.0 56.0	3.50 39.30 39.40 74.00 56.10	1 2.29 1.50 1 * 1 4.32 1 4.25	SECOR SECOR SECOR SECOR SECOR	
5744 5907 5911 5912 5914	CLIANIA WORTHINGTON EERMUDA Panama Puerto Rico	16 * * *	37 2	\$6 40.831 * * * *	15	2 * * * *	44 . 955	~4,0 * * *	11₊80 .≁ * *	4.17 * * * *	SECOR SECOR SECOR SECOR SECOR	
5915 5923 5924 5925 5930	AŬSTIN Cyprus Rota Rođerts field Singapore	* * * * *		* *		* * * * *		* *	* * *		SECOR SECOR SECOR SECOR SECOR	

÷

	STATIGN	DATUN		ន ប	RVEY	С	0 0	RDIN	ATES ²	MSL ³	I INSTR.	INSTR.	SOURCE
NC	I NAME	CODE ¹		LATI	TUDE	L	ONGI	TUDE	[ELL. H(M)	(N)	(H)	TYPE	CCSE5
5071									1		1 I		ļ.
1 27 <i>31</i> 1 6032	I HUNG KUNG	1 * 1					±4		*	*	*	SECOR	ļ
503/	I DARWIN MARRIS			:			ب ب		1 *	*		SECOR	ļ
5035	L MANUS			÷.			*		₩ ₩		*	SELUN	1
E037		1 1		ž			*		*			SECUR	i
3731	I FALAU	1. * 1		*			*		+	-	1 7 1	SECON	1
											1 1		1
5938	I GUADALCANAL	1 × 1		*			*		*	*	! * !	55008	1
5941	MAUI	. * 1		*			*		*	*	1 * 1	SECOR	1
60.03	I MOSES LAKE	i 29 i	47	11	7.132	240	39	48,118	356-0	368.74	1.50	8C-4A	i 1
6004	SHEMYA	i 29 i	52	42	54.890	174	7	37.870	-9.0	36.80	1 1.50	8C-4	iī
6007	TERCEIRA	1 17 1	38	45	36.725	332	54	21.064	53.0	52.30	1.49	30-4	i ī
	i	i i							1		1 1		i -
			-		** ***	~ ~ .							1
6008	PARAMAR 150	41 1	5	26	55+325	304	47	42.832	8.7	18.38	1 1.49 1	EC ~4	1
6012	I WAKE ISLAND I	1 49	19	17	23.227	166	36	39.7oD	4.0 1	3,50	1.50	BC-4	1 1
6015	MASHHAU	1 10 1	36	14	29.527	59	37	42.729	959.0	991.00	1.50	8C-4	1 1
6016	LATANIA	1 16 1	37	26	42.628	15	2	47.30B	-7.0	9.24	1.50	8C-4A	1 1
6042	ADDIS ABABA	1 1	8	46	8.501	38	59	49.164	1878.0	1886.46	1.52	SC-4	1
	l												{
6047	1 7 A 260 ANG A	1 26	6	55	26.132	122	4	4.538	9-0	9,39	1 3.50	PC-4	1 2
6055	ASCENSION ISLAND	1 5	- 7	58	16.634	345	35	32.764	71.0	76.94	1 1.50	AC -4	i ī
60.59	CHRISTMAS ISLAND	1 12 1	2	Ő	35.622	202	35	21.962	1 3.0	2.75	1 1-50	80-44	ii
6063	E BAKAR	1 50	14	44	44.228	342	30	55.594	26-0	26.30	1 1.50	BC-44	i i
6067	I NATAL	1 41	- 5	55	37-414	374	50	6.200	66.7	40.63	*	80-44	iì
~~~~		1 1	-								1 1		i -
	Ì	ii							i i		i i		i
	i	i i							ì				i
	i	i i							i		i i		ŕ

## Table 2.1-1 (Cont'd)

SURVEY INFORMATION OF OBSERVATION STATIONS

* Data Not Available

1 Refer to Table 2.1-2

2 Geodetic Coordinates of the Instrumental Reference Point (Optical/Electronic Center, etc.) on the Local Geodetic Datum

3 Mean Sea Level Height of the Instrumental Reference Point

4 Height of Instrumental Reference Point above Survey Monument

5 Source Code:

- 1 -- (CSC, 1971)
- 2 --- (CSC, 1972/73)

Note: Zero in the last digit may indicate that the digit is unknown.

ហ

## GEODETIC DATUMS

CODE	DATUM	ELLIPSOID	ORIGIN	LATITUDE	LONGITUDE (E)
1	ADINDAN (ETHIOPIA)	CLARKE 1880	STATION Z5 ADINDAN	22010' 07,110	31° 29' 21" 608
5	ASCENSION IS 1958	INTERNATIONAL	MEAN OF 3 STATIONS	-07 57	345-37
12	CHRISTMAS IS ASTRO 1967	INTERNATIONAL	SAT.TRI.STA. 059 RM3	02 00 .35.91	202 35 21.82
16	EWROPEAN	INTERNATIONAL	HELMERT TOWER	52 22 51.45	13 03 58,74
17	GRACIOSA IS (AZDRES)	INTERNATIONAL	SW BASE	39 03 54.934	331 57 36.118
26	LUZON 1911(PHILIPPINES)	CLARKE 1866	BALANCAN	13 33 41.000	121 52 03.000
27	MIDWAY ASTRO 1961	INTERNATIONAL	MIDWAY ASTRO 1961	28 11 34.50	182 36 24.28
29	NORTH AMERICAN 1927	CLARKE 1866	MEADES RANCH	39 13 26.686	261 27 29.494
41	SOUTH AMERICAN 1969	S.AMERICAN 1969	CHUA	-19 45 41.653	311 53 55,936
49	WAKE IS ASTRO 1952	INTERNATIONAL	ASTRO 1952	19 17 19,991	166 38 46.294
50	YOF ASTRO 1967 (DAKAR)	CLARKE 1880	YOF ASTRO 1967	14 44 41.62	342 30 52.98
_			l		

	RELATIVE	COORDINATES	(METERS)	WE IGHTS
STATIONS	Δu	Δv	Δw	( 1/σ²))
				i {
5201-6003	29+55	-48.21	-25.52	1.00
5712-6008	48.95	45.97	137.68	1.00
5713-5739	8.05	33.26	9.95	20.00
5713-6007	2.08	-1.06	1.88	1.00
5715-6063	1.05	-83.72	-95.45	1.00
5720-6042	-1.87	-0.26	30.16	1.00
5721-6015	49.67	-44+84	23.59	1.00
5726-6047	30.82	24.81	3.07	1.00
5730-6012	-4+69	-41.68	26.60	1.00
5733-6059	-0.92	-0.38	0.04	1.00
5734~6004	-1.20	0.12	1.59	1.00
5735-6067	-46,20	l -290+84	1257.74	1.00
5736-6055	5.82	-13.48	42.60	1.00
5744~6016	49.84	-46.49	-42.16	1.00
	1 	ł 		

## RELATIVE POSITION CONSTRAINTS

SOURCE: DEFENSE MAPPING AGENCY TOPOGRAPHIC CENTER ¹ APPLIED EQUALLY TO ALL THREE RELATIVE COORDINATES IN M⁻² UNIT

GEOIDAL UNDULATIONS AND HEIGHTS USED IN THE CONSTRAINTS

	STATION	NREF 1	HCONSTR ²	
NO	I NAME,	I. ( M )	(м)	(M),
1		]		
5001	HERNDON	-36.87	69.67	6.0
5201	MOSES LAKE	-17.65	341.99	4+0
5410	MIDWAY ISLANDS	- 4-13	6.72	0.8
5648	FORT STEWART	-35.07	-29,10	2.5
5712	PARAMARIBO	-28.31	-40.09	4.0
5713	TERCEIRA	54.00	82.80	4.0
5715	I DAKAR	27.20	20.91	
5717	FORT LAMY	10.35	279,97	6.0
5720	ADDIS ABABA	- 5.78	1861.35	6.0 1
5721	MASHHAD .	-20+67	962.23	4.0
5722	I DIEGU GARCIA	-73.64	-79.68	B.O
5723	CHIANG MAI	-40.39	269.90	8.0
5726	ZAMBDANGA	62.16	79.76	8.0
5730	WAKE ISLAND	13.75	28.88	8.0
5732	PAGO PAGO	27.35	35.16	6.0
5733	CHRISTMAS ISLAND	16+07	18.52	8.0
5734	SHEMYA	6.22	48.36	8.0
5735	I NATAL	-12.03	-9.55	6.0
5736	ASCENSION ISLAND	1 16.26	53.57	8.0
5734	IERCEIRA	54.00	82.90	4.0
1 5744	L CATANIA	51.45	20.13	4.0
5907	WORTHINGTON	-28.11	437.93	2.5
5911	BERMUCA	-43.44	-47.06	8.0
5912	PANAMA	6.16	-11.73	6.0
5914	PUERTO RICO	-50.08	-14.72	6.0
5915	AUSTIN	-26.32	162.18	2.5
5923	CYPRUS	24.64	168.92	8.0
5924	I ROTA	54.48	40.16	6.0
5925	ROBERTS FIELD	33.75	10.77	6.0
5930	SINGAPORE	8.28	13.85	6.0
5931	HONG KONG	2-32	167.12	6.0
5933	DARWIN	50.66	69.31	8.0
5934	I MANUS	74.75	86.77	8.0
1 5935	I GUAM	48.15	92.63	8.0
F 5937 	T PALAU	69.93   	145.94	8.0
5938	GUADALCANAL	59.97	76.57	8.0
5941	MAUI	2.05	34.51	8.0
<u> </u>	I	<b>!</b>		·i

- 1. From [Rapp, 1973]
- 2. HCONSTR = MSL+NREF+ $\Delta N$ , where  $\Delta N$  is a correction term for the differences of position and size of the ellipsoids used [Mueller et al., 1973]
- 3. Used in Computing the Weights of the Height Constraints

Station-Station	α	σα	β	σβ
6003 - 6004	-67:598	1.''4	-4.°994	1.''4
6003 - 6008	166.052	0.8	34.380	0.4
6004 - 6047	-95.629	1.1	40.651	1.1
6007 - 6008	74.620	1.4	47.803	1.4
6007 - 6055	-157.541	1.1	69.401	1,1
6015 - 6042	168.292	1.4	49.890	1.4
6015 - 6047	-8.781	1.2	26. 323	1.2
6016 - 6042	-90.094	1.2	47.462	1.2
6016 - 6055	112.934	0.9	56.487	0.9

١,

DIRECTION CONSTRAINTS BETWEEN BC-4 STATIONS

. .

For the definition of the angular components  $\alpha$  and  $\beta$  see section 3.43. These angles are based on station coordinates computed from the OSU WN14 solution [Mueller et al., 1973].

..



Fig. 2.2-1 Scheme of SECOR preprocessing procedure at OSU.



Fig. 2.2-1 continued



$$\tan (360^{\circ} - h^{\circ}) = -\tan h^{\circ} = \frac{v_{1} - v_{1}}{u_{1} - u_{1}}$$

$$\tan h^{q} = \frac{v_{1} - v_{1}}{u_{1} - u_{1}}$$

$$\tan \lambda = \frac{v_{1}}{u_{1}}$$

$$\tan \phi = \frac{w_{1}}{\sqrt{u_{1}^{2} + v_{1}^{2}}}$$

 $\sin a = \sin f \sin \varphi + \cos f \cos (h^{G} + \lambda) \cos \varphi$ 

.

## Figure 2.2-2

Quad Stations Involved	No. of Observations	Quad Stations Involved	No. of Observations
5001-5907-5648-5911 5911-5001-5648-5914 5911-5907-5915-5912 5911-5915-5912-5712 5911-5915-5912-5712 5911-5915-5912-5712 5911-5912-5712-5713 5713-5911-5712-5715 5715-5713 5712-5735	432 168 1008 92 260 228 684 1220 548 288	5726-5930-5933-5934 5726-5933-5934-5935 5931-5726-5934-5935 5935-5726-5934-5730 5935-5726-5934-5937 5730-5935-5934-5938 5730-5935-5938-5732 5730-5938-5732-5733 5730-5732-5733-5411 5730-5733-5411-5410	644 808 1144 2048 1264 2216 1380 756 752 648
5715-5712-5735-5736 5715-5735-5736-5717 5715-5736-5717-5744 5739-5715-5717-5744 5715-5736-5717-5744 5744-5715-5717-5923 5744-5715-5717-5925 5923-5744-5717-5720 5923-5717-5720-5721	660 640 28 384 464 868 804 612 1236 772	5730-5733-5411-5734 5734-5410-5411-5201 5734-5730-5411-5201	508 312 264
5744-5717-5720-5721 5721-5923-5720-5722 5721-5720-5722-5723 5923-5721-5722-5723 5723-5721-5722-5930 5723-5722-5930-5931 5722-5723-5930-5726 5931-5723-5930-5726 5931-5930-5726-5933 5723-5930-5726-5933	20 752 296 36 460 588 68 768 1064 652		

## Table 2.2-1

## SUMMARY OF SECOR OBSERVATIONS BY QUADRANGLE

13

L

#### 3. THEORETICAL BACKGROUND

## 3.1 The Mathematical Model

In the range observations mode each participating station  $P_j$  at an event  $[E_j, Q_j | t_j]$  observes the length of the distance  $(P_i Q_j)$  i.e., the topocentric range  $r_{ij}$  from ground station  $P_i$  to satellite position  $Q_j$  (See Fig. 2.2-2).

Let  $(u_i, v_i, w_i)$  be the Cartesian coordinates of  $P_i$  and  $(u_j, v_j, w_j)$  of  $Q_j$ , with respect to an average terrestrial (tied to the solid earth) coordinate system defined by:

- a) w axis is directed toward the average north terrestrial pole as defined by the International Polar Motion Service (IPMS), commonly known as the Conventional International Origin (CIO).
- b) u-w plane parallel to the mean Greenwich astronomic meridian as defined by the Bureau International de l'Heure (BIH).

Thus the mathematical model can be written as

$$\mathbf{r}_{i,j} = \left[ (\mathbf{u}_{j} - \mathbf{u}_{i})^{2} + (\mathbf{v}_{j} - \mathbf{v}_{i})^{2} + (\mathbf{w}_{j} - \mathbf{w}_{i})^{2} \right]^{\frac{1}{2}} \qquad 3.1-1$$

 $\mathbf{or}$ 

$$\mathbf{F}_{ij} = \left[ \left( \mathbf{u}_{j} - \mathbf{u}_{i} \right)^{2} + \left( \mathbf{v}_{j} - \mathbf{v}_{i} \right)^{2} + \left( \mathbf{w}_{j} - \mathbf{w}_{i} \right)^{2} \right]^{\frac{1}{2}} - \mathbf{r}_{ij} = 0 \qquad 3.1-2$$

Thus in order to tie the satellite position points to the system only three known stations observing simultaneously are necessary and sufficient although we will not have redundant information. For redundant information at least four stations observing simultaneously are necessary, provided their configuration is not a degenerized one [Blaha, 1971a, Tsimis, 1973].

The expression for the linearized mathematical model as F is known takes the form:

$$\mathbf{AX} + \mathbf{BV} + \mathbf{W} \approx \mathbf{0}$$

where the design matrix B is a negative unit matrix and the design matrix A is formed by submatrices of the form:

$$A_{ij} = \frac{\partial F_{ij}}{\partial \vec{X}_{j}^{o}, \partial \vec{X}_{i}^{o}} = \begin{bmatrix} a_{ij} & a_{ij} \\ a_{ij} & a_{ij} \end{bmatrix}$$

where

$$a_{ij} = \left[ \frac{u_{i}^{\circ} - u_{i}^{\circ}}{r_{ij}^{\circ}} \frac{v_{i}^{\circ} - v_{i}^{\circ}}{r_{ij}^{\circ}} \frac{w_{i}^{\circ} - w_{i}^{\circ}}{r_{ij}^{\circ}} \right]$$

and  $r_{ij}^{\circ}$  is computed from 3.1-1 using the initial approximate values for the station. and satellite coordinates, the latest coordinates resulting from a preliminary least squares adjustment (for each event j) with the observing stations held fixed. [Krakiwsky and Pope, 1967].

The unknown vector X is made up of subvectors

$$X_{ij} = \begin{bmatrix} X_j \\ X_i \end{bmatrix}$$
$$X_j = \begin{bmatrix} du_j \\ dv_j \\ dw_j \end{bmatrix}$$
$$X_i = \begin{bmatrix} du_i \\ dv_i \\ dv_i \\ dw_i \end{bmatrix}$$

where

and

The misclosure vector W is formed by the individual differences  $W_{ij} = r_{ij}^{o} (computed) - r_{ij}^{b} (observed)$ 

The residual vector V is composed of the individual residuals  $v_{ij}$ (in meters) corresponding to the observed ranges  $r_{ij}^{b}$ . Giving consideration to the characteristics of the design matrices, the final matrix equation for the linearized model can be written as:

$$AX - V + W = O$$

 $\mathbf{or}$ 

$$AX + W = V$$

#### 3.2 The Normal Equations

The variation function for the range adjustment is similar to the optical case, namely,

 $\Phi = V'PV + X'P_XX - 2K'(AX - V + W)$  3.3-1

where

- V is the vector of residuals corresponding to the range observations
- X is the vector of corrections to the preliminary ground and satellite positions*
- P is the weight matrix for the ranges
- $P_x$  is the weight matrix for the ground and satellite positions
- K is the vector of correlates

The differentiation of equation 3.2-1 for the minimum condition results in the following expanded form of the normal equations:

$$\begin{bmatrix} -P_{X} & 0 & A' \\ 0 & -P & -I \\ A & -I & 0 \end{bmatrix} \begin{bmatrix} X \\ V \\ K \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ W \end{bmatrix} = 0$$
3.2-2

After the elimination of the correlates and residuals, and the expansion of the A and P matrices the following expression results:

$$\begin{bmatrix} \sum_{i} a_{i,j} p_{i,j} a_{i,j} + P_{j} & -a_{i,j} p_{i,j} a_{i,j} \\ -a_{i,j} p_{i,j} a_{i,j} & \sum_{i} \sum_{j} p_{i,j} a_{i,j} + P_{i} \end{bmatrix} \begin{bmatrix} X_{j} \\ - \dots \\ X_{i} \end{bmatrix} + \begin{bmatrix} \sum_{i} a_{i,j} p_{i,j} W_{i,j} \\ - \dots \\ U_{i} = \\ - \sum_{i} a_{i,j} p_{i,j} W_{i,j} \end{bmatrix} = 0$$

## 3.3 Reduced Normal Equations for Range Observations

The general form of the reduced normal equations after the elimination of  $X_1$  (corrections to the preliminary coordinates of the satellite position) can be formulated as :

^{*} Satellite positions will be considered "nuisance" parameters and therefore eliminated from the solution.

where the  $3 \times 3$  blocks in N are now computed using  $P_i = 0$  [Mueller, 1968]:

$$N_{kk} = \sum a_{kj}^{i} p_{kj} a_{kj} - \sum a_{kj}^{i} p_{kj} a_{kj} \left[ \sum a_{ij}^{i} p_{ij} a_{ij} \right]^{-1} a_{kj}^{i} p_{kj} a_{kj}$$
  

$$S = \sum \sum \left[ a_{kj}^{i} p_{kj} a_{kj} \left( \sum a_{ij}^{i} p_{ij} a_{ij} \right)^{-1} a_{ij}^{i} p_{ij} a_{ij} \right]$$
  

$$N_{kl} = \sum \left[ a_{kj}^{i} p_{kj} a_{kj} \left( \sum a_{ij}^{i} p_{ij} a_{ij} \right)^{-1} a_{ij}^{i} p_{ij} a_{ij} \right]$$

and the vector of constant terms having the form:

$$\mathbf{U}_{\mathbf{k}} = -\Sigma \, \mathbf{a}_{\mathbf{k}\mathbf{j}}^{\mathrm{i}} \, \mathbf{p}_{\mathbf{k}\mathbf{j}}^{\mathrm{i}} \, \mathbf{v}_{\mathbf{k}\mathbf{j}}^{\mathrm{i}}$$

where

 $v_{k,j}$  = residual of any observed range from a particular station (resulting from a preliminary least squares adjustment of any simultaneous event with the stations held fixed).

$$p_{11}$$
 = weight of any observed range  $r_{11}$ 

- i denotes any ground station participating in an event
- $\sum_{i}$  is the summation over all ground stations involved in event j.
- $\sum_{s}$  is the summation over all events observed by ground station k and/or 1.

## 3.4 <u>Constraint's Contributions to the Normal Equations</u>

Two alternative definitions exist for the term "constraints". The absolute constraints represent certain conditions which have to be fulfilled exactly and with no uncertainties and the relative constraints (or weighted constraints) which have the same characteristics as the observations.

In general the contribution of the functional constraint equations

$$G(X, L_{C}) = 0$$

to the normal equations can be found bordering the normal equation matrix

$$\begin{bmatrix} N_{n-1} & C'_n \\ C_n & -P_{c_n}^{-1} \end{bmatrix} \begin{bmatrix} X_n \\ -K_{c_n} \end{bmatrix} + \begin{bmatrix} U_{n-1} \\ W_n \end{bmatrix} = 0$$

from where after elimination of  $K_{c_n}$  it is easy to find  $[N_{n-1} + C'_n P_{c_n} C_n] X_n + U_{n-1} + C'_n P_{c_n} W_n = 0$ 

 $[N_{n-1} + N_n^c] X_n + U_{n-1} + U_n^c = 0$ 

where  $N_n^c$  and  $U_n^c$  are the contributions to the coefficient matrix and constant vector of the normal equation due to the application of constraints. The coefficient n-1 represents the normal equations of the previous set (without constraints).

3.4 - 1

After the constraints are added the normal equations will take the usual form:

$$N_n X_n + U_n = 0$$

and we are in the position to obtain the contribution from a new set of constraints. Constraints can be applied between two stations k and 1 or to a single station. The contribution of these constraints to the matrix  $\mathbb{N}$ (3 x 3 blocks) and U (3 x 1 blocks) can be schematically expressed in two different ways:

a) Contribution to the normals due to the constraint applied to station k



b) Contribution to the normals due to the constraint between stations k and l



These blocks obtained as indicated above for the corresponding case will be the only ones computed and added to the original normal equations.

## 3.41 Relative Position Constraints

Relative position constraints are used in order to constrain "double" stations or closely situated stations of the same net. The expression for the constraints contribution to the normals can be written as follows:

 $[\mathbf{N} + \mathbf{N}^{\mathsf{R}}] \mathbf{X} + \mathbf{U} + \mathbf{U}^{\mathsf{R}} = \mathbf{0}$ 

where  $N^{R}$  and  $U^{R}$ , computed from (3.4-2), (3.4-3), are the contribution to the original normal equations (NX + U = 0).

If the relative position ( $\Delta u$ ,  $\Delta v$ ,  $\Delta w$ ) of two stations is known, along with the standard deviation of these relative positions, the constraints can be formed. In this case the functional contraint equations are

$$u_{\mathsf{K}} - u_{1} = \Delta u$$
$$v_{\mathsf{K}} - v_{1} = \Delta v$$
$$w_{\mathsf{K}} - w_{1} = \Delta w$$

Therefore

$$C_{K}^{R} = I$$
;  $C_{1}^{R} = -I$   
3 x3 3 x3 3 x3 3 x3

and

$$N_{KK}^{R} = I P_{R}I = P_{R}$$

$$3x^{3}$$

$$N_{11}^{R} = I P_{R}I = P_{R}$$

$$3x^{3}$$

$$N_{K1}^{R} = N_{1K}^{R} = I P_{R} (-I) = -P_{R}$$

$$3x^{3}$$

$$3x^{3}$$

where

$$P_{R} = \begin{bmatrix} \frac{1}{\sigma_{\Delta u}^{2}} & 0 & 0\\ \sigma_{\Delta u}^{2} & & \\ 0 & \frac{1}{\sigma_{\Delta v}^{2}} & 0\\ & \sigma_{\Delta v}^{2} & \\ 0 & 0 & \frac{1}{\sigma_{\Delta w}^{2}} \end{bmatrix}$$

If

$$W = - \begin{bmatrix} \Delta u \\ \Delta v \\ \Delta w \end{bmatrix}$$

and

$$W_{o}^{R} = G^{R} (X^{o}, L_{R}^{o})$$
$$W^{R} = W_{o}^{R} - W$$

Therefore

$$U_{K}^{R} = I P_{R} W^{R}$$
  

$$U_{I}^{R} = -I P_{R} W^{R}$$

Thus, the diagonal elements of  $P_3$  are added to each element of the diagonal of the blocks kk and ll of the matrix of the original normals N, and sub-tracted from the diagonal elements of the blocks kl and lk of N.

The constribution to the vector U will be obtained adding  $U_{\kappa}^{R}$  and subtracting  $U_{1}^{R}$  to the corresponding block columns k and l of U.

## 3.42 Height Constraints

If the geodetic (ellipsoidal) height  $H_{K}$  of the station k is to be constrained, then

$$\underset{\substack{3 \times 3}}{N_{K \kappa}^{H}} = (C_{\kappa}^{H})^{i} P_{H} C_{\kappa}^{H}$$

where

$$C_{k}^{H} = \left[\cos \varphi_{k}^{\circ} \cos \lambda_{k}^{\circ}, \cos \varphi_{k}^{\circ} \sin \lambda_{k}^{\circ}, \sin \varphi_{k}^{\circ}\right]$$

and

$$P_{H} = \frac{1}{\sigma_{HK}^{2}} .$$

Here  $\phi_k^o$  and  $\lambda_k^o$  are the approximate geodetic coordinates and  $\sigma_{HK}^2$  is the variance of the height for station k.

The constant vector  $U_{k}^{H}$  can be computed from

$$\mathbf{U}_{\mathbf{K}}^{\mathsf{H}} = (\mathbf{C}_{\mathbf{K}}^{\mathsf{H}})^{\dagger} \mathbf{P}_{\mathsf{H}} \mathbf{W}^{\mathsf{H}}$$

where

 $W^{H} = H_{K} - H_{K}^{\circ}$ ,  $H_{K}^{\circ}$  being the approximate height.

## 3.43 Directional Constraints

Directional constraints are introduced when the orientation of the coordinate system is not defined through the observations (e.g., in the case of a ranging network).

The directional constraint between two stations k and 1 is accomplished by applying weights to two angles  $\alpha^{\circ}$  and  $\beta^{\circ}$ , defining the direction between them, and computed from the approximate ( $u^{\circ}$ ,  $v^{\circ}$ ,  $w^{\circ}$ ) coordinates of the two stations as follows:

$$\alpha^{\circ} = \tan^{-1} \frac{\Delta v^{\circ}}{\Delta u^{\circ}}$$

$$\beta^{\circ} \approx \tan^{-1} \frac{\Delta w^{\circ}}{R^{\circ}}$$

 $\mathbf{21}$ 

where

$$\Delta u^{\circ} = u_{k}^{\circ} - u_{1}^{\circ}$$
$$\Delta v^{\circ} = v_{k}^{\circ} - v_{1}^{\circ}$$
$$\Delta w^{\circ} = w_{k}^{\circ} - w_{1}^{\circ}$$

and

$$\mathbf{R}^{\circ} = \left( \Delta \mathbf{u}^{\circ \, 2} + \Delta \mathbf{v}^{\circ \, 2} \right)^{\frac{1}{2}}$$

The matrix  $C^{\flat} of$  partial derivatives is then formed

$$C_{0}^{k} = \begin{bmatrix} \frac{9 \nabla_{0}}{2} & \frac{9 \nabla_{0}}{2} \end{bmatrix}$$

where

$$\frac{\partial \alpha^{\circ}}{\partial \Delta u^{\circ}} = \cos^{2} \alpha^{\circ} \tan \alpha^{\circ} / \Delta u^{\circ}$$
$$\frac{\partial \alpha^{\circ}}{\partial \Delta v^{\circ}} = -\cos^{2} \alpha^{\circ} / \Delta u^{\circ}$$
$$\frac{\partial \alpha^{\circ}}{\partial \Delta w^{\circ}} = 0$$
$$\frac{\partial \beta^{\circ}}{\partial \Delta u^{\circ}} = \Delta u^{\circ} \cos^{2} \beta^{\circ} \tan^{2} \beta^{\circ} / R^{\circ 2}$$
$$\frac{\partial \beta^{\circ}}{\partial \Delta v^{\circ}} = \frac{\partial \beta^{\circ}}{\partial \Delta u^{\circ}} \tan \alpha^{\circ}$$
$$\frac{\partial \beta^{\circ}}{\partial \Delta w^{\circ}} = -\cos^{2} \beta^{\circ} / R^{\circ}$$

and clearly  $C_1^0 = -C_k^0$ .

Then the matrix

$$\mathbf{N}^{\mathsf{p}} = (\mathbf{C}^{\mathsf{p}})^{\mathsf{p}} \mathbf{P}_{\mathsf{p}} \mathbf{C}^{\mathsf{p}}$$

is formed where  $P_0$  is the weight matrix estimated from the statistics of  $\alpha^{\circ}$  and

 $\beta^{\circ}$  in the customary way.

3.44 Inner Constraints (Free Adjustment)

Even though the definition of a coordinate system is arbitrary in the case of a minimum constraint adjustment, in the case of ranging, the selection of the six coordinates to be constrained for this purpose is very critical, since one set of constraints would give a different solution than another set. The "best" solution is arrived at in a coordinate system defined through the use of a set of constraint equations called "inner" constraints [Rinner et al., 1967]. In this sense, the "best" solution would have the smallest covariance matrix for the unknowns. Covariance matrices may be compared by means of their traces, and the inner constraint equations are characterized by the property that the trace of the covariance matrix obtained with their use is a minimum among those obtained by adjusting a given set of observations augmented by a minimal set of constraint equations. The resulting adjustment is called a "free" one. The functional inner constraints equations can be written as

 $C^1 X = 0$ 

where

$$C^{I} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

23

.

and  $C^{I}$  has as many 3 x 3 unit blocks as unknown points. X is the set of corrections of the approximate coordinates of the unknown points.

In the most general application when the "best" origin, orientation and scale are sought the matrix  $C^1$  has the form

$$C^{I} = \begin{bmatrix} C_{1}^{I} \\ C_{2}^{I} \\ C_{3}^{I} \end{bmatrix} = \begin{bmatrix} I & I & I \\ 3x3 & 3x3 & 3x3 & \dots \\ 0 & w_{1}^{\circ} & -v_{1}^{\circ} & 0 & w_{2}^{\circ} & -v_{2}^{\circ} \\ & & & & & & \\ -w_{1}^{\circ} & 0 & u_{1}^{\circ} & -w_{2}^{\circ} & 0 & u_{2}^{\circ} \\ & & & & & & \\ \frac{v_{1}^{\circ} & -u_{1}^{\circ} & 0 & v_{2}^{\circ} & -u_{1}^{\circ} & 0 \\ & & & & & & \\ u_{1}^{\circ} & v_{1}^{\circ} & w_{1}^{\circ} & u_{2}^{\circ} & v_{2}^{\circ} & w_{2}^{\circ} \end{bmatrix} \dots$$

The symbols  $(u_i^{\circ}, v_i^{\circ}, w_i^{\circ})$  denote the approximate coordinates of the ith unknown point where both the ground points and the satellite positions are considered.

If we represent the normal equations with the contribution of all the constraints (except inner constraints) by

$$[N + N^{R} + N^{H} + N^{D}]X + U + U^{R} + U^{H} + U^{D} = 0 \quad \text{or}$$
$$\overline{N}X + \overline{U} = 0$$

then the inner adjustment can be obtained by bordering the coefficient matrix  $\overline{N}$  of the normal equations as

$$\begin{bmatrix} \overline{\mathbf{N}} & (\mathbf{C}^{\mathsf{T}})^{\mathsf{I}} \\ \mathbf{C}^{\mathsf{T}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ -\mathbf{K}_{\mathsf{f}} \end{bmatrix} = \begin{bmatrix} -\overline{\mathbf{U}} \\ \mathbf{0} \end{bmatrix}$$

It can be proved [Blaha, 1971] that

$$\Sigma_{\mathbf{x}} = \left\{ \mathbf{\overline{N}} + (\mathbf{C}^{\mathbf{I}})^{\dagger} [\mathbf{C}^{\mathbf{I}} (\mathbf{C}^{\mathbf{I}})^{\dagger}]^{-1} \mathbf{C}^{\mathbf{I}} \right\}^{-1} \left\{ \mathbf{I} - (\mathbf{C}^{\mathbf{I}})^{\dagger} [\mathbf{C}^{\mathbf{I}} (\mathbf{C}^{\mathbf{I}})^{\dagger}]^{-1} \mathbf{C}^{\mathbf{I}} \right\}$$

Upon the addition of any kind of constraint to the normal equations, it becomes necessary to consider also its contribution to  $\Sigma V' P V$ . The degrees of freedom change as well. In order to compute the proper variance of unit weight the latter must be taken into consideration.

...

25

ŝ

## 4. THE SOLUTION

With the specific constraints mentioned above, particular values of which are given in Section 2.1, SECOR-27 solution was computed using the general OSUGOP program [Reilly et al., 1972].

· · · .

The basic information regarding the range adjustment is presented in Table 4.1.

The coordinates of SECOR-27 solution are shown in Table 4.2 with their corresponding standard deviations and error ellipsoid parameters.

#### Table 4-1

General Information on the SECOR-27 Geometric Adjustment

No. of SECOR stations	37
$\sigma$ of a single range observation (estimated)	3 m
Number of Constraints used:	
Relative Position Constraints Height Constraints Direction Constraints Inner constraint defines the origin of the	15 37 10
coordinate system	
No. of degrees of freedom	7173
$\Sigma V' PV$	14183.1
$\hat{\sigma}_{\delta}^{2}$ (a posteriori variance of unit weight)	1.88
$\hat{\sigma}$ of a single range observation (a posteriori)	4.1 m

## Table 4.2

## Cartesian and Geodetic Coordinates (Solution SECOR-27)

Sta, No	u	σ	v	σ,	w	σ.
	φ	0.0	λ	σλ	H	σ _H
		a	A	r		
	1	ab	Ab	· r _b		
		a	A _c	r.		······

**u**, **v**, **w** · Cartesian coordinates in meters (Orientation: u =the Greenwich meridian as defined by the B.I.H.;  $v = \lambda = 90^{\circ}$  (E); w =Conventional International Origin).

 $\varphi,\lambda$  Geodetic latitude and longitude in angular units (degrees, minutes and seconds of arc) computed from the Cartesian coordinates and referred to a rotational ellipsoid of a = 6378155.00 m and b = 6356769.70 m,

H Geodetic (ellipsoidal) height in meters referred to the same ellipsoid,

 $\sigma_{u_1}\sigma_{v_2}\sigma_{v_3}$  Standard deviations of the Cartesian coordinates in meters.

- $\sigma_{\sigma}, \sigma_{\lambda}$  Standard deviations of the geodetic coordinates in seconds of arc.
- $\sigma_{\rm H}$  Standard deviations of the geodetic height in meters.
- a, A, r, Altitude (elevation angle), azimuth and magnitude of the major
   semi axis of the error ellipsoid, respectively. Angles in degrees,
   magnitude in meters. Altitude is positive above the horizon.
   Azimuth is positive east reckoned from the north

 $a_{bs} A_{bs} r_b$  Same as above for the mean axis of the error ellipsoid.

 $a_{es} A_{cs} r_c$  Same as above for the minor axis of the error ellipsoid.

,

·	······································			· · · · · · · · · · · · · · · · · · ·		
5003	1088828.38	9.30	-4842954.37	5.36	3991826.29	6.31
	38 59 37.09	0.24	282 40 15.47	0.40	75.52	2.94
	L					
		3.42	74.83	9.70		
		2.23	-15.30	7.25		,
	-	-85.91	41.63	2.88		
L					_1	
5201	-2127764.63	10.48	-3785925.77	9.36	4656018.34	8.40
	47 11 5.43	0.37	240 39 47.37	0.52	341.78	3.99
		0-13	-0.85	11.56		
		-0.98	89.15	10.88		
		89.01	96.74	3.99		
			. *			
5410	-5618727.46	4.11	-258239.91	11.66	2997266.52	7.42
	28 12 44.19	0.24	182 37 53.38	0.43	6.11	4.35
		3.72	-86.01	11.72		
		17.18	5.14	7.47		
		-72.40	-7.82	3.85		
		1				
5648	794673-60	14.25	-5360057-B1	9,56	3353057.17	13.47
2040	31 55 18.05	0.51	278 25 59.34	0.57	-28.89	2.55
					·	
		0.08	43.04	18.90		
		3.74	-46.96	10.61		
	-	-86.26	-45.79	2.46		
				•		
5712	3623273+36	9.23	-5214191.74	6.34	601652.09	6.92
	5 26 57.21	0.23	304 47 41.75	0.35	-41.63	2.95
		1.82	92.96	10.82		
		3.40	2.85	6.91		
	-	-86.14	31.05	2.90		
5713	4433623.16	4.99	-2268166.55	8.30	3971660.02	4.28
	38 45 36.74	0.15	332 54 23.34	0.38	88.32	2.40
		0.51	89.52	9-20		
		10.24	-0.57	4.71		
		79.74	-177.69	2.29		

5715	5584456.27 14 44 39.20	13:63 0:15	1853588.65 342 30 56.54	9•91 0•35	1612756.86	4.80 2.36
		0,77	.90.46	10.33		
		13,09	` <b>0</b> •64	4.80		
		76.89	177.15	2.15		
5717	.6023411.35	4.06	1617942.91	10.16	1331652.04	6.06
	12 7 52.10	. 0 <b>.1</b> 9	15 2 6.97	0.35 **	% 283.02	2.94
		-2.62	90.16	10.63		
		13,50	0.79	6.06		
		76.23	169.40	2.63		
5720	4900759.40	7.78	3968252+89	8429 -	966350.72	6.94
	. 8 46 13 <b>.</b> 15	0+22	38 59 52430	0.36	1861.24	3.32
		-4.06	90.43	11.01		
		15,15	1.54	6.98		
		14.29	103+8%	2.11		
5721	2604415.22	8.37	4444129.74	5.35	3750359+77	5.47
	36 14 26.91	0.19	59 37 41.55	0.37	970+84	2.99
		1.18	-92.95	9+28		
		11.48	-2.71	- 5.89		
·		78.45	171.26	2.80		
5722	1905138.10	12.15	6032291.16	5.63 -	-810717.57	7.95
	- 7'21 6.18	0.26	72 28 21.61	0.40 -	-84.71	4.88
		⊴4⊋51	-84.72	12.43		
		8 + 27	5.93	8+13		
		80.56	156.96	4.70		
5723	-941701.28	11.20	-5967451.72	3.62	2039344.19	5,97
	18 46 11.75	0.19	98 5R 3+65	0.39	264.45	3.14
		3.36	-91.69	11.47		
		16.91	-0+87	5.97		
		124:14	101+23	2.65		
5726	<b>→3361939.4</b> 8	10.12	5365843.38	. 7.22 .	763649.99	5.66
э	. \6 55 21.35	0:18	122 4 8.30	0.40	89.57	2.76
		2160	-90.69 /	12.20		
		18.21	0.17	5.76		
		71.59	171.47	2.13		

5730	-5858556.40	3.75 0.21	1394470.97 166 36 41.12	11.88 0.41	2093873.15 17.61	6.74 3.63
		2.57	-89 73	12 00		
		19.16	1.17	6.74		
		-70.66	-7.06	3.00		
		10.00	1100	2.00		
5732	-6099969.36	5.57	-997356.01	13.19	-1568568.44	9.26
	-14 19 53.78	0.31	189 17 8.88	0.44	37.10	4.93
		1.15	-99 62	13.43		
		-1.00	-9.64	9.29		
		-88.47	-140+45	4.92		
5733	-5885321.54	6.71	-2448387.42	12.44	221669-14	10.15
	2 0 18.35	0.33	202 35 17.12	0.43	17.07	5.11
		-1+60	-93.89	13.22		
		8.05	-4.11	10.18		
	•	-81.79	7.29	<b>4.9</b> 4		
5734	-3851774.79	6.08	396407.45	10.09	5051369.83	7.02
	52 42 49.49	0.21	174 7 26.62	0,54	59.11	6.52
		3.43	-86.46	10.16		
		44.38	6.91	7.01		
		-45.42	0+05	5.98		
5735	5186342.89	7.09	-3654228.01	8.91	~653034.54	6.03
	- 5 54 58.06	0.20	324 49 55.15	0.35	0.15	3.52
		2.02	92.79	10.85		
		-3.34	2.91	6.02		
		86+10	-28+37	3.49	•	
5736	6118339.51	4.68	-1571766-98	10.47	-878564 03	5 91
	- 7 58 13.95	0.19	345 35 33.29	0.35	58.44	3.85
		0.33	89.37	10,78		
		1.22	-0.64	5.85		
		88.74	-165.40	3.84		
5739	4433614.77	4.99	-2268199-51	8,30	3971650.24	4.28
	38 45 36,34	0.15	-332 54 21 97	-0.28-		- 2.40
		0.50	89.51	9,20		
		10.25	-0.58	4.71		
		79.74	-177.72	2.29		

5744	4896433,80 37 26 37,53	3.93 1.17	1316125.99 15 2 42.31	8,81 0,37	3856632 <b>.1</b> 5 19 <b>.</b> 20	4.68 2.53
	-0. 8. 81.	72 35 62	91.07 1.98 176.99	9.07 5.17 2.44		
5907	-449437.73 43 38 56,58 (	9.25 9.28	-4600908.92 264-25-14.84	5,86 G.41	4380274.10 439.06	6.87 2.31
	1. 3 - -86 -	57 06 56	53.61 -36.48 -9.25	9.63 8.31 2.26		
5911	2307970.19 32 21 45.28	*.77 0.20	-4873779.10 295 20 23.35	5.44 0.37	3394450.16 -36.32	5.95 3.19
	2 · · · · · · · · · · · · · · · · · · ·	42 93 70	82.68 -7.66 9.53	9.64 6.29 3.07		
5912	1142624.52 11 8.58 26.02 (	1.07 0.28	-6196106.91 280-26-54.72	4 • 29 0 • 36	988310+55 -14+80	8.32 3.88
	3 -2 -85	26 22 99	94.34 4.47 129.84	11.15 8.44 3.82		
5914	2349442.68 23 18 29 38.59 0	1.19 0.66	-5576035.64 292 50 52.62	14.34 0.81	2010318.58 -14.77	18,98 6,09
	0 -12 -77	89 02 94	52.65 -37.16 138.47	28.17 13.83 5.47		
5915	-744112.30 10 30 13 45.29 (	0.20 3.30	-5465236.37 262 14 47.91	5.45 0.38	3192445.85 160.55	7,04 2,30
	-0 -2 -87	•75 •33 •55	82.41 -7.62 -169.73	10-25 9-30 2-26		
5923	4363335.16 .35,11 30.41 (	5.•84 0.•1,8	286225 <b>7.9</b> 3 33 15 50.58	7.84 6.36	3655387•25 177-24	5+23 2+67
	~1 10 79	•51 •49 •40	90.89 1.17 172.81	9.22 5.63 2.49		

4

5924	5093544.42 36 37 37.26	3.35 0.16	+565325.16 353 40 0.28	9.16 0.37	3784273.72 13.36	4.51 2.60
		-0.44	90.36	9.20		
		8.44	0.43	4.93		
		81.55	177.41	2.52		
5925	6237359.96	3.26	-1140250.68	10.61	687734.03	5.53
	6 13 53.99	0.18	349 38 24.59	0.35	10,62	2.93
		-1.41	90.44	10.73		
		9.12	0.66	5.53		
		80.77	171.72	2.82		
6030	-1542545 11	11 02	6196050 64	4 00	163840 40	( 10
2750	1 22 24.24	0.20	103 59 58.83	4±00 0±40	20.96	3-29
		·				•••
		3.84	-88.31	12.37		
		17.32	2.89	6.37		
		14.23	107.00	2.09		
5931	-2423905-19	10.13	5388261.01	5.82	2394895.69	r 74
	22 11 -56.43	0.18	114 13 14.02	0.39	156-14	3.38
		2.40	-92+88	11.33		
		20.69	-1.97	5.73		
		69.15	170-80	2.85		
5933	-4071567.51	9,82	4714260-45	9.28	-1366510 80	6 04
	-12 27 14.53	0.21	130 48 58.33	0.42	77.56	4.07
		2.06	-89.61	12.73		
		10.50	0.499 170 or	6.52		
		[4.71	112+95	3.19		
5934	-5367655.52	7,03	3437875.44	11.01	-725304-72	6.12
	- 2 2 19.65	0.20	147 21 40.52	0.41	78.18	3.18
		1.96	-91.43	12.65		
		16.41	-0+85	6.38		
	-	-13.41	~0.06	2.69		
.59.3.5					- 147970714	S 20-
	13 26 22.92	0.10	144 38 5.50	0.40	01-101-10 44-101-10	2.00 3.04
				s # 192	20407	J∎V1
		2.41	-91.38	12.12		
		19.35	-0.53	5.71		
	-	-70.49	-8.19	2.46		

5937	-4433454.80 7 20 41.10	A.57 0,18	4512935.88 134 29 27.56	9+14 0+40	809981.92 136.63	5.70 2.83
		2.32 18.44 -71.40	-91.17 -0.40 -8.08	12+29 5+79 2+22		
5938	-5915090.05 - 9 25 40.37	5.67 0.23	2146866.80 160 3 6.35	12.28 0.42	-1037891.22 74.03	6.83 3166
·		2.04 11.16 -78.65	-92.83 -2.43 -13.06	12.86 7.14 3.64		
5941	-5467730.74 20 49 55.01	6.62 0.30	-2381255.25 203 32 1.11	11.4P 0.43	2254035,33 40,14	9.28 5.05
		2.37 14.39 -75.41	-84.24 6.37 -3.39	12.43 9.28 4.61		
6003	-2127794.22 47 11 6.54	10.51	-3785677.57 240 39 45.02	9.39 0.52	4656043.83 341.77	8.45 4.11
		0.17 -1.04 88.95	-1.02 88.98 98.34	11.58 10.91 4.11		
6004	-3851773.60 52'42-49.49	6.14 0.21	396407.34 174 7 26.62	10.14 0.54	5051368.22 57.11	7•08 6•59
		3.41 44.66 -45.13	-86.44 6.94 0.13	10.20 7.07 6.05		
6007	4433621.08 38 45 36.74	5+08 0+15	-2268165.44 332 54 23.34	8•35 0•38	3971658+14 85+30	4.40 2.60
		0.50 10.88 79.11	89.59 -0.51 -177.81	9+26 4+79 2+49		
6008	3623224.46 5 26 52.72	9.27 0.23	-5214237.73 204 47 39.59	6.40 0.35	601514.49 -44.87	6.98 3.11
		1.85 3.42 +86.11	92.99 2.88 31.39	10.84 6.98 3.07		

-

.

6012	-5858551.70	3.88	1394512.64	11.93	2093846.49	6.81
	19 11 29.00	0.21	100 30 37.07	0+42	13:00	2.11
		2.57	-89.72	12.14		
		19.26	1.18	6.81		
		-70.55	-7.02	3.16		
6015	2604365.53	8.42	4444174.55	5.44	3750336.18	5.57
	36 14 26.03	0.19	59 37 44.17	0.37	967.81	3.15
		1.17	-92.94	9.34		
		11.73	-2.70	5.96		
		78.21	171+44	2.96		
6016	4896384.03	4.02	1316172.48	8.87	3856674.30	4.79
	37 26 39.33	0.17	15 2 44.66	0.37	16.25	2.72
		-0.71	91.87	9.13		
		8.97	1.98	5.25		
		81.00	177.35	2.62		
6042	4900761.23	7.82	3968254.18	8.34	966320.58	7.01
	8 46 12.18	0.22	38 59 52.27	0.36	1858.23	3.45
		-4.05	90.45	11.03		
		15.02	1+54	7.04		
		74.42	165.74	2.93		
6047	-3361970.26	10.15	5365818.57	7.29	763646-92	5.75
	6 55 21.26	0.18	122 4 9.58	0.40	84.55	2.94
		2.62	-90.69	12.23		
		18.27	0.18	5.84		
		71.53	171.44	2.35		
6055	6118333.69	4.75	-1571753.54	10.47	-978606 63	5 90
	- 7 58 15.37	0.19	345 35 33.67	0.35	-010000105 55+45	3.95
		0.34	89.36	10.78		
		0.94	-0.65	5.93		
		89.00	-160,98	3.94		
6059	-5885320.62	6_79		-17-48	221669.11	10-20
	2 0 18.35	0.33	202 35 17.12	0.43	16.07	5.21
		-1.60	-93.87	13.26		
		8.09	-4.09	10.22		
	-	-81.75	7.27	5.04		

ŝ

.

6063	5884455.23	3.77	-1853504.94	9.95	1612852.31	4•90
	14 44 42.42	0.16	342 30 59.20	0.35	20.15	2•57
		-0.77 13.26 76.72	90.46 0.64 177.21	10.38 4.90 2.37		
6067	5186389.10	7.16	-3653937.17	8•97	-654292.28	6.11
	- 5 55 39.22	0.20	324 50 3.75	0•35	0.87	3.67
		2.03 -3.22 86.19	92.79 2.90 -29.43	10.89 6.10 3.64		

## 5. COMPARISON WITH OTHER SOLUTIONS

Transformation parameters between SECOR-27 and NWL-9D [Anderle, 1973], SAO-III [Gaposchkin et al., 1973] and WN-14 solutions[Mueller et al., 1973] are included in Tables 5-1, 5-2 and. 5-3, respectively. The method of computing the parameters is described in [Kumar, 1972]. In the table the positive angles  $\omega$ ,  $\psi$ , and  $\epsilon$  are counterclockwise rotations about the w, v, and u axes respectively, as viewed from the end of the positive axis. The scale difference factor is in units of ppM.

Tables 5-1 to 5-3 also contain the variance-covariance matrices, the correlation coefficients, and the residuals after transformation for the solutions mentioned above. The unit in the variance-covariance matrix for the elements corresponding to the rotations in the above tables is radian squared. The residuals tabulated are those of the Cartesian coordinates (u, v, w) in meters.

## Table 5-1

#### Transformation NWL-9D - SECOR-27

SFCOR27 -TO- NWL-90 ************************

00	DV	DW	DELTA	OMEGA	PSI	EPSILON
METERS	METERS	METERS	(X1.0+6)	SECONDS	SECONDS	SECONDS
17.61	0.96	-12.56	0.63	0.42	0.22	0.64

#### VARIANCE - COVARIANCE MATRIX

 $\eta_0^2$ = 1.86 0.931D+01 0.212D-01 0.326D-01 -0.106D-06 0.395D-07 0.056D-07 -0.133D-07 0.212D-01 0.140D+02 0.212D-01 0.335D-07 0.754D-07 0.196D-07 -0.2525-06 0.328D-01 0.212D-01 0.105D+02 -0.116D-06 -0.424D-08 -0.107D-06 -0.412D-07 +0.106D-06 0.335D-07 -0.116D-06 0.547D-13 0.546D-17 -0.1240+15 0.536D-15 0.395D-07 0.754D-07 -0.424D-08 0.546D-17 0.523D-13 0.214D-14 -0.466D-15 0.956D-07 0.196D-07 -0.107D-06 -0.124D-15 0.214D-14 0.531D-12 +0.676D-14 +0.133D-07 -0.252D-06 -0.412D-07 0.536D-15 -0.460D+15 -0.678D-14 0.103D-12

#### COEFFICIENTS OF CORRELATION

-0.1370-01	0+1360+00	0.5679-01	-0.1490+00	0.3310-02	0.1860-02	0.1000+01
-0.2119+00	0.2280-01	0.8010-01	0.3830-01	0.1750-02	0,1000+01	0+1860-02
-0,3960-01	-0,1430+00	-0.571D-02	-0.1530400	0+1000+01	0.1750-02	0,331D-02
0.7150-02	-0.230D-02	0.1020-03	0.1000+01	-0.1530+00	0.3830-01	-0.1490+00
-0.6280-02	0.4060-01	0.1000+01	0.1020-03	-0.5710-02	0.8810-01	0.5670-01
-0.9190-01	0.1000+01	0.4060-01	~0.230D-02	-0.1439+00	0,2280-01	0 <b>.</b> 136D+00
0_1000+03	-0.9190-01	-0+6280-62	0.715D-02	-0.3960-01	-0.211D+00	-0.1370-01

 $\mathbf{37}$ 

# RESIDUALS V

.-

1

	V1 (	SECOR2	7)		V2 ( N	1L-9D	)		· v1 - v2		
							-				
5410	-0.4	0.7	-1.1	700	7.7	-1.2	8.2	-	8.0	1.9	-9.3
5648	6.3	1.4	9.3	708	-11.1	-3.6	~21.0	1	7.4	5.1	30.3
5713	1.3	5.6	+0.5	713	-18.1	-19.1	11.5	1	9.3	24.8	-12.0
5733	-22.6	27.7	7.1	733	1.7	~0.4	-0.3	-2	4.3	28.1	7.3
5736	-0.8	10.5	1.4	716	0.1	-0.2	-0.2	-	0.9	10.7	1.5
5739	1.3	5.6	-0.5	739	-18.2	-19.2	11.2	1	9.5	24.8	-11.7
5915	17.7	0.0	13.5	709	-23.1	-0.1	-35.3	4	0.8	0.2	48.8
5923	-1.7	-9.8	0.8	719	6.6	13.4	-5.0	-	8.3	-23.1	5 9
5924	8.0	3.4	-0.4	740	-25.6	-9.4	8.0	2	6.4	12.3	8.4
5933	2.8	-2.8	2.3	727	-10.4	7.5	-25.7	1	3.2	-10.3	28.0
5934	-0-6	2.2	-0.1	729	4.6	-4.3	1.2	-	5.2	6.5	-1.3
5935	1.8	1.2	1.1	728	-13.9	~2.6	-14.2	1	5.7	3.8	15.3
6003	-27.3	6.2	-7.7	738	4.0	-1.1	1.8	-3	1.3	7.3	-9.5
6004	-2.0	-15.5	-17.2	739	0.9	2.5	5.6	-	2.9	-17.9	-22.7
6007	3.5	9.4	-1.6	727	-16.0	-15.7	9.9	1	0.5	25.2	-11.6
8008	13.1	2.7	9.5	815	-2.5	-1.1	-3.2	1	5.6	3.7	12.7
6012	-1.4	1.9	-2.3	708	10.6	-1.5	5.7	-1	2.0	3.4	-7.9
6015	-7.2	-14+8	0.3	817	1.6	8.1	-0.2	-	8.8	-22.9	0.5
6016	6.8	-4.6	-1.0	812	-6.8	0.9	0.7	1	3.5	-5.5	-1.7
6055	-0.8	9.1	0.6	722	0.5	-1.4	-0.3	-	1.3	10.5	0.9

.

- 4

.

, `

\$

. . . .

38

ł.

## Table 5-2

#### Transformation SAO-III - SECOR-27

SECOR 27 -TO- SAD-III ***********************

DU	DV	DW	DELTA	OMEGA	PSI	EPSILON
METERS	METERS	METERS	(X1.D+6)	Seconds	SECONDS	Seconds
17.26	14.44	-13,93	-1.31	0.32	0.58	0+18

#### VARIANCE - COVARIANCE MATRIX

$$\sigma_{a}^{a} = 1.09$$

0.177D+02 0.164D+00 -0.120D+00 -0.310D-06 0.989D-07 0.222D-06 -0.367D-07 0.164D+00 0.227D+02 0.725D-01 0.527D-07 0.314D-06 0.453D-07 -0.396D-06 -0.120D+00 0.725D-01 0.177D+02 -0.172D-06 -0.119D-07 -0.361D-06 -0.106D-06 -0.310D-06 0.527D-07 -0.172D-06 0.976D-13 0.315D-15 0.275D-15 0.367D-15 0.989D-07 0.314D-06 -0.119D-07 0.315D-15 0.109D-12 0.701D-14 -0.136D-13 0.222D-06 0.453D-07 -0.381D-06 0.275D-15 0.701D-14 0.126D-12 -0.142D-13 +0.367D-07 -0.396D-06 -0.106D-06 0.367D-15 -0.136D-13 -0.142D-13 0.193D-12

#### COEFFICIENTS OF CORRELATION

-0.1980-01	0+1490+00	0.7120-01	-0.236D+00	-0.6810-02	0.8170-02	0.100D+01
-0.1890+00	0.2680-01	0+200D+00	0.354D-01	0.3620-02	0.1000+01	0.8170-02
-0.5710-01	-0.2560+00	-0.8570-02	-0.1310+00	0.100D+01	0.3620-02	-0.6810-02
0.2670-02	0.2480-02	0.3050-02	0.1009+01	-0.1310+00	0.3540-01	-0.2360+00
-0.9270-01	0.5990-01	0.1000+01	0.3050-02	-0.8570-02	0+2000+00	0.7120-01
+0.9130-01	0.1000+01	0.5990~01	(1.248D-02	-0.2560+00	0.268D-01	0.1490+00
0.1000+01	-0.9130-01	-0.9370-01	0+2670-02	-0.5710-01	-0.1890+00	-0.198D-01

				ć • ,	$\mathbf{f}_{i,j} = \mathbf{f}_{i,j} + \mathbf{f}_{i,j}$						
					RESI	DUAL'S V	<b>v</b> -	7			
							<b></b>				
	V1 ( S	FCOR27	}		V2( \$/	0-III	}	v	1 - V2		
	<b></b>		<del>-</del>				~				
6003	-18.2	3.6	5.3	6003	17.5	-4.3	-7.9	-35.7	7.9	13.2	
6004	-0.4	0.3	-0,4	6004	8.2	-2.1	5+1	-8.7	2.5	-5.5	
6007	2.2	3.9	-1.3	- <del>6</del> 007	-17.8	-11.8	14.3	20.0	15+7	-15.6	
6008	5.3	-0.9	2.9	6008	-18.9	6.8	-17.8	24+3	-7.7	20.7	
6012	0.1	-0.3	-2.6	6012	-1.4	0.9	21.5	1.4	-1.2	-24.2	
6015	-2.2	-3.0	-0.9	6015	5.9	18.9	5.7	-8.2	-21.9	-6.7	
6016	1.3	-3.9	-0.3	6016	-10.9	6.5	1.5	12.2	-10+4	-1.8	
6042	-6.7	-5.9	5.5	6042	11.9	9.3	-12.2	-18.6	-15-2	17.8	
6047	4.8	-0.9	-0.0	6047	-17.2	6.0	0.3	22.0	-6-8	-0+3	
6055	-0.7	2.7	<del>~</del> 0.9	6055	5.9	-4.5	4.9	-6.6	7.2	-5.8	
6059	-4.4	9.8	5.3	6059	23.7	-15.7	-12.7	-28.0	25.6	18.0	
6063	-0.6	6.2	-3.0	6063	2.0	-3.0	6.0	-2.6	9.2	-9.0	
6067	10.6	2.2	1.1	6067	-12+1	-1.6	-1.7	22.7	3.8	2.8	

ı.

.

à

,

ŝ

## Table 5-3

# Transformation WN14 - SECOR-27

SECOR 27 - TO- WN14 ********************

DU	DV	DW	DELTA	OMEGA	PSI	EPSILON
METERS	METERS	METERS	{X}.D+6}	SFCONDS	Seconds	Seconds
0.76	-5.68	-7.35	0.64	-0.25	0.29	0.48

VARIANCE - COVARIANCE MATRIX

## $\sigma_o^2 = 1.84$

ī

-0.2220-08	0.721D-08	0+3450-09	-0.569D-08	0.8840-03	0.659D-02	0.1550+01
-0.1050-07	0.2179+08	0.2870-08	-0.1210-08	-0.3060-02	0.249D+01	0.6590-02
0.2790-08	-0.5390-08	0.1850-09	-0.8140-08	0.1770+01	-0.306D+02	0.884D-03
0.1590-17	-0.4110-17	0.754D-17	0.3950-14	-0.6140-08	~0.121D-08	-0.5690-08
0.1130-15	-0.1220-15	0.3770-14	0.7540-17	0.1850-09	0.2870-08	0.3450-09
-0.1110-14	0.3580-14	-0.1220-15	-0.411D-17	<b>~0.53</b> 9D-08	0.2170-08	0.721D-0B
0.5180-14	-0.1110-14	0.1130-15	0.1590-17	0.279D-08	-0.1050-07	-0.222D-08

#### COEFFICIENTS OF CORRELATION

			i.	•		
-0.2470-01	0.9680-01	0.4520-02	-0.7280-01	0.5340-03	0.2360-02	0.1000+01
-0.9280-01	0.2300-01	0.2970-01	-0.1220-01	-0.1460-02	0.100D+01	0.3260-02
0.2910-01	-06770-01	0.227D-02	-0.973D-01	0.100D+01	-0.1460-02	0.534D-03
0.3510-03	-0.1090-02	0.1950-02	0.1000+01	-0.9730-01	-0.1220-01	-0.728D-01
0.2560-01	-0.3310-01	0+1000+01	1950-02	0.2270-02	0.2970-01	0.452D-02
0-2578400	0.1000+01	-0.3310-01	-0.1090-02	-0.6770-01	0.2300-01	0.9630-01
0.10000000	-0.257D+00	0.2560-01	0.3510-03	0.2910-01	-0.928D-01	-0.2470-01

## Table 5-3 continued

## RESIDUALS V

	•									
	1 - V2	VI		N14 )	V2( W		V1( SECOR27)			
5.6	4.8	18.1	-1.4	-1.1	-2.4	5001	4.2	3.6	15.7	5001
-8.8	15.4	-35.6	0.7	-0.8	1.6	5201	-8.1	14.6	-34.0	5201
-5.2	9.3	-18.9	1.0	-0.5	4.5	5410	-4.2	8.8	-14.4	5410
16.6	8.1	13.3	-1.1	-0.5	-0.8	5648	15.5	7.6	12.5	5648
11.7	7.4	6.9	-1.8	-0.6	-0.3	5712	9.9	6.8	6.6	5712
-9.6	5.7	12.6	2.4	-0.4	-1.7	5713	-7.2	5.4	10.8	5713
-2.0	4.1	7.0	0.4	-0.2	-1.I	5715	-1.6	3.9	5.9	5715
6.6	-3.3	-1.8	-1.1	0.1	0.3	5717	5.5	-3.2	-1.4	5717
13.9	-7.3	-7.8	-2.0	0.4	0.5	5720	11.9	-6.9	-7.3	5720
-4.0	-17.4	-2.0	0.8	2.4	0.1	5721	-3.2	-15.0	-1.9	5721
21.1	-3.5	-5.3	-4.8	1.2	0.4	5722	16.3	-2.3	-4.9	5722
~0.6	-9.1	3.3	0.2	2.7	-0.2	5723	<b>~0</b> .5	-6.5	3.1	5723
1.0	-2.0	3.7	-0.2	0.2	-0.2	5726	0.8	-1.8	3.5	5726
-9.8	4.3	-9.0	1.7	-0.2	2.1	.5730	-8.0	4.1	-6.9	5730
11.3	19.5	0.5	-1.9	-1.3	-0.2	5732	9.4	18.1	0.4	5732
10.2	22.5	-10.8	-1.3	-1.2	1.6	5733	8.9	21.3	-9.2	5733
-18.9	1.0	-14.5	4.5	-0.1	2.4	5734	-14.5	0.9	-12.1	5734
9.0	7.5	-2.4	-1.3	-0.4	0.2	5735	7.6	7.1	-2 . 2	5735
7.6	5.8	-7.5	-1.4	-0.3	1.5	5736	6.2	5.5	-6.1	5736
-9.6	5.7	12.5	2.4	-0.4	-1.7	5739	-7.2	5.3	10.8	5739
-4.5	-11.9	fi.3	0.9	0.7	-1.1	5744	-3.6	-11.2	5.2	5744
7.8	3.6	19.4	-2.4	-0.8	-3.3	5907	5.4	2.8	16.1	5907
3.9	4.7	16.4	-0.8	-0.7	-1.3	5911	3.1	3.9	15.1	5911
17.0	4.8	11.6	-3.3	-1.9	-0.8	5912	13.7	2.9	10.7	5912
14.1	11.0	6.9	-1.5	-2.1	-1.4	5914	12.7	8.9	5.5	5914
14.7	1.7	18.0	-3.9	-0.5	-2.2	5915	10.9	1.1	15.8	5915
-0.7	-14.0	1.7	0.1	0.9	-0.2	5923	-0.6	-13.1	1.5	5923
-8.5	-6.6	11.3	2.5	0.5	-2.7	5924	-6.0	-6.1	8.*6	5924
2.9	5.7	0.4	-0.7	-0.3	-0.1	5925	2.2	5.4	0.3	5925
7.8	-0.4	5.7	-1.81	0.1	-0.3	5930	5.9	-0.3	5.4	5930
-5.7	-11.4	2.5	1.6	1.8	-0.1	5931	-4+1	-9.6	2.4	5931
6.8	3.7	7.3	-1.9	-0.4	-0.7	5933	4.9	3.3	6.6	5933
0.7	5.5	1.2	-0.2	-0.3	-0.1	5934	0.6	5.2	1.0	5934
-4 + 1	1.6	-1.3	8.0	-0.1	·0 • 1	5935	-3.3	1.5	-1.2	5935
-0.7	0.9	1.9	0.2	-0.0	-0.1	5937	-0.5	0.8	1.8	593 <b>7</b>
2.1	8.7	0.1	-0.4	-0.5	-0.0	5938	1.7	8.2	0.0	5938
5.1	18.7	-22.7	-0.7	-1.0	2.9	5941	4.4	17.7	-19.9	5941

÷

.

3

RESIDUALS V

	· V1( :	SECORZ	_{{7		V2( W	N14 )	V	V1 - V2			
	The first line for pairs with first lange provided starting over										
6003	-34.5	15.0	-8.5	6003	1.4	-0.7	0.6	-35.9	15.7	-0.1	
6004	-11.8	1.1	-14.5	6004	2.3	-0.1	4.4	-14.2	1.2	-18.9	
6007	12.2	6.1	-7.2	6007	-2.0	-0.4	2.3	14.1	6.5	-9.5	
6008	6.7	7.0	10.3	8008	-0.4	-0.7	-1.6	7.0	7.7	12.1	
6012	-6.5	3.9	-6.4	6012	2.0	-0.2	1.8	-8.4	4.1	-10.2	
6015	~3.6	-16.0	-3.4	6015	0.2	2.6	0.8	-3.8	-18.6	-4.2	
6016	5.6	-10.6	-3.6	6016	-1.1	0.6	0.8	6.7	-11.3	~4.7	
6042	-7.5	-7.4	12.5	6042	0.5	0.5	-2.1	-8.0	-7.9	14.6	
6047	4.1	-2.1	0.8	6047	-0.2	0,2	<b>−</b> 0 <b>.</b> 2	4.4	-2.3	1.0	
<b>605</b> 5	-6.3	5.6	5.9	6055	1.5	-0.3	-1.4	-7.8	5.9	7.3	
6059	-9.7	22.3	9.3	6059	1.6	-1.2	-1.3	-11.3	23.5	10.6	
6063	5.5	4.5	-2.0	6063	-1.2	-0,2	0.5	6.7	4.7	-2.5	
6067	~2.0	6.7	7.3	6067	0.2	-0.4	-1.3	-2.1	7.1	8.7	

## 6. CONCLUSIONS

The average standard deviations of the coordinates and the heights for SECOR-27 solution (excluding stations 5648 and 5914) are:

 $\sigma_{\text{Position}} = \pm 7.5 \text{m}$  $\sigma_{\text{Height}} = \pm 3.4 \text{m}$ 

The above values when compared with the corresponding values of WN14 solution [(Table 5.3-2) Mueller et al., 1973] show that a further significant improvement in the SECOR network determination is possible, if it is done as part of the world net.

The standard deviations of stations 5648 and 5914 (Table 4.2) indicate that these two stations are poorly determined compared to the other stations in the network -- a pattern which is also present in the WN14 solution [(Table 5.2-2) Mueller et al., 1973].

The semi-diameter of the level ellipsoid best fitting the geoid (defined through the SECOR 27 undulations) is  $6378140.4 \pm 7.7$  m (1/f = 298.2495).

#### REFERENCES

- Anderle, R.J. (1973). "Transformation of Terrestrial Survey Data to Doppler Satellite Datum." Journal of <u>Geophysical Research</u>, preprint.
- Blaha, Georges. (1971). "Inner Adjustment Constraints with Emphasis on Range Observations." <u>Reports of the Department of Geodetic Science</u>, No. 148. The Ohio State University, Columbus.
- Blaha, Georges. (1971a). "Investigations of Critical Configurations for Fundamental Range Networks." <u>Reports of the Department of Geodetic</u> <u>Science</u>, No. 150. The Ohio State University, Columbus.
- CSC. (1971). <u>NASA Directory of Observation Station Locations</u>, <u>Vol. 1 and</u> <u>2</u>, second edition. Prepared by Computer Sciences Corporation, Falls Church, Virginia, for Metric Data Branch, Network Computing and Analysis Division, Goddard Space Flight Center, Greenbelt, Maryland.
- CSC. (1972/73). <u>Correction Sheets to NASA Directory of Observation</u> <u>Station Locations, Vol. 1 and 2</u>. Prepared by Computer Sciences Corporation, Falls Church, Virginia.
- Gaposchkin, E. M., G. Veis and J. Latimer. (1973). "Smithsonian Institution Standard Earth III Coordinates." Presented at First International Symposium, The Use of Artificial Satellites for Geodesy and Geodynamics, Athens, Greece, May 14-21.
- Krakiwsky, Edward J. and Allen J. Pope. (1967). "Least Squares Adjustment of Satellite Observations for Simultaneous Directions or Ranges, Part 1 of 3: Formulation of Equations." <u>Reports of the Department of Geodetic Science</u>, No. 86, The Ohio State University, Columbus.
- Kumar, Muneendra. (1972). "Coordinate Transformation by Minimizing Correlations Between Parameters." <u>Reports of the Department of Geodetic</u> <u>Science</u>, No. 184, The Ohio State University, Columbus.
- Mueller, Ivan I. (1968). "Global Satellite Triangulation and Trilateration," Bulletin Geodesique, 87.
- Mueller, Ivan I., M. Kumar, J. P. Reilly, N. Saxena, T. Soler. (1973).
  "Global Satellite Triangulation and Trilateration for the National Geodetic Satellite Program." <u>Reports of the Department of Geodetic Science</u>, No. 199, The Ohio State University, Columbus.

- Rapp, R.H. (1973). "Comparison of Least Squares and Collocation Estimated Potential Coefficients." <u>Reports of the Department of Geodetic Science</u>, No. 200, The Ohio State University, Columbus.
- Reilly, J. P., C.R. Schwarz, M.C. Whiting. (1972). "The Ohio State University Geometric and Orbital (Adjustment) Program (OSUGOP) for Satellite Observations." <u>Reports of the Department of Geodetic Science</u>, No. 190, The Ohio State University, Columbus.
- Rinner, K. et al. (1967). "Beiträge zur Theorie der Geodätischen Netze im Raum." <u>Deutsche Geodatische Kommission, Reihe A, Heft 61</u>, Munich.
- Rutscheid, Erick H. (1972). "Preliminary Results of the Secor Equatorial Network," <u>The Use of Artificial Satellites for Geodesy</u>, edited by S.W. Henriksen et al., Geophysical Monograph 15, American Geophysical Union, Washington, D.C.
- Tsimis, Emmanuel. (1973). "Critical Configurations (Determinantal Loci) for Range and Range-Difference Satellite Networks." <u>Reports of the</u> <u>Department of Geodetic Science</u>, No. 191, The Ohio State University, Columbus.