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ABSTRACT

The problem of determining the limiting performance characteris-

tics of mechanical systems subject to random input is studied. A

review is presented of the classical work in the optimal design of stochas-

tic systems. Some recent results of stochastic optimal control theory

are employed. The solution to the limiting performance problem is

formulated in both the frequency and time domains, Both formulations

require substantial, burdensome computations when applied to large scale

systems.
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i. INTRODUCTION

Random disturbances appear as complicated time-varying functions

that may exhibit wide irregular variations in amplitude and frequency.

Both the input disturbance and the system response must be given sta-

tistical characterization and, as expected, this complicates the optimum

design problem. No all encompassing methodologies are available for opti-

mizing realistic systems under general random environments. Since

related literature from control theory on the optimization.of stochastic

processes is quite extensive, we will take advantage of these develop-

ments and use these techniques, both in the frequency domain and in the

time domain, as a basis for this study of limiting performance of dynamic

systems subject to certain classes of random inputs. The limiting per-

formance concept for transient systems is defined in Ref. 1. Briefly,

it is the theoretically optimum performance of a system, regardless

of configuration.

In this study the input disturbances are characterized by spec-

tral density matrices or correlation matrices. Although for much

of this report the performance index is quadratic in both responses and
control forces, other choices are possible. Most of this study is con-

fined to linear systems.

This study begins with a review of the single-input, single-output

Wiener-Hopf type approach which has been examined by others (Ref. 2,3).

The governing Wiener-Hopf equation and its solution are summerized. An

example is presented. Next, it is shown how the limiting performance of

a multi-degree of freedom (MDF) system under random input can be deter-

mined by the extension of Wiener-Hopf techniques to the multiple-input,

multiple-output case reported by Weston, et. al., (Ref. 4).
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Parallel to the above frequency domain approach, the problem in

the time domain will also be formulated by applying results from stoch-

astic optimal control theory (Ref. 5). This approach has also been

pointed out recently by Karnopp (Ref. 6). A single degree of freedom

(SDF) problem which was previously solved by frequency domain techni-

ques will be solved by this approach.

Also, included in this report will be dynamic programming ap-

proaches. This method is more general in the sense that it can treat

performance indexes other than a mean-square type. A formulation with

quadratic criteria is summarized and a non-quadratic possibility pro-

posed.

1.1 Statement of Problem

Consider a MDF dynamical system described by

Mx + Cx + Kx + Vu Ff (1)

where

M - n x n mass matrix

C - n x n damping matrix

K - n x n stiffness matrix

V - n x nu coefficient matrix of control forces

F - n x nf coefficient matrix of disturbances

x - n x 1 state vector

f - nf x 1 disturbance vector

u nu x 1 generic or control force vector

n - number of degree-of-freedom of the system

nu - number of controllers of the system

nf - number of disturbances (forcing functions) of the system



In Eq. (1) r is a random vector of known statistics. In order to make

a limiting performance study, portions of the system have been replaced

by U a vector of generic or control forces These forces can represent

any sub-system. The remainder of the system must be linear as must be

the system kinematics.

Since the forcing function is random in nature, the limiting per-

formance problem must be defined in some statistical sense. The most

common optimization criterion is to minimize some expected mean square

response quantity while imposing constraints on other expected mean

square responses. This criterion, though not as direct as the criterion

used in the transient case is still meaningful. It is selected because

in the analysis of stochastic processes, it is difficult to find responses

other than the mean square response of the system. Another reason for

using mean square criteria is that when the performance index and con-

straints are combined in a penalty function type objective function,

the resulting optimum system will be linear. This is a well known

result of optimal control theory (Ref. 5). Other criteria have been

suggested by several authors. Aoki (Ref. 7) treated a simple problem

based on a performance index of a maximum expected deviation over the

history of a dynamic process. Trikha and Karnopp (Ref. 8) studied a

single degree of freedom system with a criterion based on the values of

displacement and acceleration, whose probability of being exceeded is less

than a prescribed value. It does not appear as though either:of these

criteria can be applied to largesystems.
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2. REVIEW OF CLASSICAL WORK

Limiting performance characteristics of SDF systems have been

reported in the literature for several inputs and are based on either

expected mean square values or the probability of exceeding selected

response levels. These results are summarized in Ref. 1i, To make this

report more self-contained, the limiting performance problem based on

expected mean square responses will be treated briefly.

2.1 The Governing Integral Equation

Consider the configuration of Fig. 1. For a given input spectral

density #rr the optimum compensation Wc(t) (or W (s) in the frequency

domain) is to be found such that E[y (t)] is minimized subject to the

constraint E[qs ]<a,where a is the maximum allowable mean square value

of qs(t) and E[*] stands for mathematical expectation. This constrained

optimization problem will be converted to an unconstrained problem by

introducing a Lagrangian multiplier p. The problem then becomes one of

minimizing

2 2F = E[y2] + PEfqs 1 (2)

It is shown in Ref. 9 that the optimum compensation W (t) that
cm

minimizes (2) is governed by the integral equation

fmWcm(t 3 )A(tl-t 3 )dt 3 -F(tl) = 0 for t1 0 (3)tl00(3
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sa- turation

G (t) signal

s s

v(t) compensation fixed element
W(t) G (t)
or or

W(s) Gf(s) q(t)

Ye(t)

v(t) = random input disturbance

q(t) = actual output

i(t) ideal output

Ye(t) = error

Fig. 1 Block diagram for deriving Wiener-Hopf
integral equation.
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where

r(t 1) = f~gf(t 2) v i (tl+t 2 )dt 200

A(tl-t 3) = [f rf(t 2 )gf(t 4)dt2dt 4
-00 -00

+ pf0 f'q (t 2 )q (t 4 )dt 2dt 4 ]. 4 (t+t 2 -t 3-t 4 )

#vi = cross correlation function of input to ideal output

= autocorrelation function of input

2.2 Solution of the Governing Integral Equation

Equation (3) is of the Wiener-Hopf type for which spectral fac-

torization can be applied to obtain an explicit solution formula in the

frequency domain (Ref. 9). This is

r(s) +

cm +A (s) (4)

where a is an arbitrary constraint

F(s) = 2 nGf(-s) vi(s)

A(s) = 2T [Gf(s)Gf(-s) + pGs(s)Gs(-s)] D (s)

A (s) = any factor of A(<4) which includes all the poles and zeros

in the LHP (left-half-plane)

A (s) = A(s)/ + (s)

FL(s) = component of s which has all its
LA-(s)+ A(s)+ -" -

poles in the LHP such that F - s) has all its poles

in the RHP.
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2.3 Application to SDF System

The results of previous sections can be applied to find the limtiting

performance characteristics of a single degree system subject to random

inputs. Consider the SDF system shown in Fig. 2. The problem is to find

u such that the performance index E[u 2 + pE[x 2 ] is minimized. By

the present approach, we seek to find the optimum transfer function

W(s) = Z(s)
Y(s)

Draw the block diagram of Fig. 3. Equation (4) will provide W(s) for

given input spectral density.

For an input with spectral density

P(s) = A
yy 2

s

The solution is

W(s) = 82/(s2 + /2 sB + 82)

where
1 /4

2.4 Discussion

The classical Wiener-Hopf technique leads to tractibie analytical

solutions to single-input single-output systems. Since most systems do

not fit in this class the usefulness of this technique is quite limited.
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z (absolute displacement)

U x (relative displacement)

y(t) (input motion)

Fig. 2 SDF system subject to random input.



Gs ( s)  I u(t

q

x

Gs(s) = ms Gf(s) = 1 H(s) = 1

W(s) = ?

Fig. 3 Block diagram for the configuration of Fig. 2.
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3. EXTENSION OF WIENER-HOPF TYPE APPROACH TO THE LIMITING PERFORMANCE

OF MDF SYSTEMS

The analytical design techniques of Newton et.al.(Ref. 9), have

been applied to find the limiting performance characteristics of simple

systems. These techniques are extended by Weston and Bongiorno (Ref. 4).

It is the purpose of this section to summarize the principal results of

this extended theory. Also, an example will be given to illustrate the

application of this technique.

3.1 Formulation

Consider the system configuration shown in Fig. 4. All elements

of the system are assumed to be linear and time invariant. The input

vectors (signal, noise,and disturbance) are generated by a stationary

stochastic process whose power spectral density is known. .The purpose

is to find optimum compensation to minimize a performance index con-

sisting of a weighted sum of the output mean square error plus a weighted

sum of the mean square value of a set of saturation signals. The results

are summarized in Theorem 1.

The following nomenclature is used. rl(t), n(t), d(t) are n x 1

vectors of input, noise and disturbance (to the measurements) respec-

tively, whose elements are the realization of an independent, stationary

random process. The statistics of the random processes r , n, are

assumed to be known and adequately described by rational power spectral-

density matrices l(s), nn(s), id(s), respectively. Transfer

function matrices G (s), G (s) and H(s) represent asymptotically stable

systems. The dimensions of these matrices are:

G -n x m (m>n), G -m x n, H--n x7-n, G -q x mq s the dmenson - -A(s), the satuation s
q is the dimension of A(s)', the satuation signals.



N(s) input disturbancenoise
D ns)

R (s) "G C(S) G (S)
nput p

signal
compensator plant

feedback

H(s)

actual system E----- -

ideal system

G (s)

error
Y (s)

Fig. 4 Block diagram of multivariable system.
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The performance index to be minimized is

-TT
J = E[Ye e + ~TR ]  

(5)

where Q and R are real, constant, symmetric, positive, definite matrices.

Q is n x n, R is q x q. The superscript T designates the transpose of a matrix.

The problem was solved by a calculus of variation-technique with the results

summarized in Theorem 1.

Theorem 1. (Ref. 4)

The physically realizable W = W 0 that minimizes

-T -TJ = E[Ye2ye + ae ]

associated with the system in Fig. 4, satisfies

-i T T -1i1 (6)

where

-rr

1 + GsRG- ()

A--

The optimal compensation is then

-1G = [I-W HG P W (8)-c -O -p -cO

The following notational convention is used in Theorem 1:

(1) For real matrix X, X(s) = XT(-s)

(2) [Z(s)]+ = part of function Z(s) which is analytic in R s>O+e
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3.2 Application

For any multi-input, multi-output system, the application of

Theorem 1 leads to the optimum transfer matrix which minimizes the per-

formance index of (5), provided a block diagram similar to Fig. 4 can

be constructed for this system. We will illustrate this using a two

degree of freedom system. This same problem was solved by Bender

(Ref. 3) using the classical Wiener-Hopf approach.

Consider the system shown in Fig. 5. The input to this system

has the following spectral density

o -A

xx 2

This system is governed by the differential equations

(9)
mz = -u + k(y-z)

The problem is to find the optimum isolator characteristics such

that the relative displacement (z-y) is minimized while the acceleration

';is.bounded. Since the input is random, a meaningful performance index

will be of the mean square type

..2. 2J = E[py2 + (z-y) ] (10)

The problem will be solved in the frequency domain.

Define

W(s) = Z(s)/- (s) (11)

6(s) = Z(s) - Y(s) (12)
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M

Y

u

m

X

Fig. 5 Two degree of freedom vehicle model.
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Transforming (9) into the frequency domain it is found that

Ms2Y(s) = U(s)

(13)

ms2Z(s) = -U(s) + K(X(s) - Z(s))

Solving (13) using definitions (11),

Z(s) = K-Ws X(s) (14)
K+s m

Y(s) = ( X(s) (15)2
s

6(s) Z(s) - Y(s)

1 [(l+1/r)(s/wn)2 +1]

2 - 2 2 W(s X(s)
s (1+s/n)

2
where n = k/m, r = m/n

From the block diagram of Fig. 6

6(s) = [H2 (s) - H1 (s) W(s)] X(s)

Compare the above two equations,

1 + (1 + 1/r)(s/ n)2
H1 (s) = 2 n (16)

s (1 + (s/ )2)
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vibration

roadway
elevation

W(s) H1(s)

H2 (s)

displacement

Fig. 6 Block diagram for Fig. 5.



17

H2(s)= 2 (17)
1 + (s/-n)

Compare the block diagrams of Fig. 6 and Fig. 4. For the present

case, the various matrices used in Theorem 1 are

H = 0, G = H2 , G = H1 , Gc = W, G =1

All quantities are scalars for this system. For the performance index,

Q = 1, R = p. From Theorem 1, we have for this case

-1 E1A T)-1 -l (18)
Wc0  A () ] () (18)

where

n. = -A/s2  (19)

= 1 l+ p

A = H2H1*(-A/s2) (20)

From (19) Q = /i/s (21)

Substitution of (19), (20), (21), into (18) gives the same equation as

found in Ref. 3.

3.3 Discussion

It would appear that the results given in Theorem 1 are quite prom-

ising, in that multi-input, multi-output systems can be treated. However,

there are at least two difficulties involved. First of all, to use

Theorem 1, a block diagram similar to Fig. 4 must be established for the

system. Unfortunately, this would be a difficult procedure to automate.

Secondly, computational problems are encountered when this is extended

to large systems. As indicated in Theorem 1i, the solution of the optimum
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transfer function matrix requires matrix spectral factorization. For

practical problems, this must be done_ computationally. An available pro-

gram using Tuel's algorithm (Ref. 10) can be used to factor polynomial

matrices of dimension up to 6 x 6 with order not exceeding 20 for each

polynomial element. This program requires 10,000 words of storage.

Apparently, this is a very limited computational capability.

4. APPLICATION OF STOCHASTIC OPTIMAL CONTROL THEORY TO THE LIMITING PER-

FORMANCE CHARACTERISTICS OF MDF MECHANICAL SYSTEM

The formulations described in the previous two sections are fre-

quency domain approaches. In this section a time domain approach will

be set forth, with the equations of motion in a form compatible with those

used in the limiting performance study of transient systems (Ref. 11)

4.1 General Formulation

Consider a mechanical system described by Eqs. (1) with a

gaussian white noise representation for f. Consider a linear realiza-

ble system for u. Define

Rf() = E[f (t)fT(t+)]

as the correlation matrix of the input disturbance vector T. For this

problem

}R(T) 6(T) (22)

where 6 is the usual Kronecker delta function.

Since the input disturbances are random in nature, the limiting

performance characteristics will be defined in the expected mean square

sense. That is, we will find u that minimizes the expected mean square
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of some response (objective function)while the expected mean square values

of some other response variables (constraints) are bounded. Trade-off

relations between the objective function and any one of the constraints

can then be obtained.

To solve this problem, advantage will be taken of stochastic opti-

mal control theory. To do so we transform our problem to the format

of optimal control theory. A similar technique has been recently

reported by Karnopp (Ref. 6).

Equations (1) can be written in first order form as

s As + Bu + Gf (23)

where s-=

0 I

M K -M C

-M _V

G =
K M-lF

The limiting performance problem is to find u(t) such that the performance

index

j-(-T - + -T-
J = E[ (ss + u TR) dt] (24)

t
0
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is minimized. In (24) EJ'] stands for expectation. Q and R-are

positive semidefinite weighting matrices. By adjusting the components

of the _ and R matrices properly, the desired limiting performance

problem can be formulated.

In stochastic control theory, an observation (or measurement)

model is required. Since we are considering the limiting or theoreti-

cally optimum performance, it will be appropriate for us to assume

noise free perfect measurements. For such problems, optimal control

theory (Ref. 5) leads to the following results. For the system des-

cribed by (23) subject to white noise input, the optimal control law

u* that minimizes the performance index (11) is given by

u* = -RBTYs(t) (25)

where Y is a constant matrix which is the solution of the following

algebraic matrix Riccati equation

ATY + YA - YBR-1BTY + = 0 (26)

Having the optimal control law, the next step is to calculate the

value of the performance index and then establish the desired trade-off

relations. To evaluate the correlation matrices such as E[xx ], a

method reported by Yang and Iwan (Ref. 12) will be applied. To do so,

substitute the control law into Eq. (23) and rewrite the resulting equa-

tion in second order form. Then, by application of the result given in

Ref. 11, the following set of linear equations for the computation of

E[xx ],:E[xx ], and E[xx T are obtained.
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*IT [-T -- TME [xx - ~EtxxT - Exx = 0

(27)
TT T -T T "AT T TME[xx] +. E[ E Tx ]M + ME [ o + K0 +KE[xx ] =

where

C = C + T22-O -22

K = K + TY
-o - -21

T = VR- -1

11 -L12
Y .

--21 -22

and

-T - T + -- T TE[uu ] Z E[xx ]Zl ZE[xx 2

(28)
-+ TT --T T

2E[xx ]Z +2K.E(xx ]Z2-2 -1 -2 LX --2

where R BY

4.2 Example: Limiting Performance of an SDF Vibration Isolater

Consider the SDF system shown in Fig. 7. Suppose the disturbance

f is gaussian white noise. The problem is to find the trade-off rela-

tion between mean square values of R ( oru/m) and x. This problem has

been solved by Fujiwara et.al. (Ref. 14). We will solve the problem

in the time domain.
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f(t)

x

u

Fig. 7 SDF system subject to random force
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The governing equation can be written as

mx = u + f (29)

or in first order form

s-=-As + Bu +-G.f -------- - -. - (30) --

where

s=x E[ff = Rf 6()

A*J

The performance index to be minimized is

J = E[f- (uTRu + sTq).,dt] (31)0

where

R = 1]

[12 0

The optimum cnntrol law is

U* -1 T-
Is (32)

where Y is the solution of

AT + YA - YBRBT + = 0 (33)
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The solutinn of (33) is

1Y i  
(34)

LmX mvr

Substitute (34) into (32) to find

u* =-Xsl(t) - /2mX s2 (t)

or

u*(t) = -Xx(t) - 22m i(t) (35)

'-T
Since E[xx J = 0 for an SDF system, (27) becomes

ME[ 2] - KOE[x 2 ] = 0

ME[ 2 ]C + COE[ 2 ]M + 0 = Rf (36)

where

KO = X, C0 =

Thus, E[x 2] = Rf/2 X'2iX and

E[u 2 ] = .(3Rf/2/ 2m) A
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These results are the same as obtained by Fujiwara. By eliminating X

between E[u 2] and E[x2], we find the tradeoff relationship

b )

where

b = Rf /2/m

This is plotted in Fig. 8.

4.3 Discussion

The underlying assumption for the formulation of this section is

that f must be white noise. This is not so severe as it may appear, even

though white noise does not actually exist. White noise does provide

a good approximation for broad band random noises. The major drawback

in this formulation is that its implementation encounters computational

burdens for large systems.

Since the most efficient procedure of solving matrix Riccati equa-

tions (26) is by matrix spectral factorization (Ref. 4), this approach

involves the same complications as described in Section 3. However, set-

ting up this formulation for a particular problem is much easier then

using the method of Section 3.

5. DYNAMIC PROGRAMMING APPROACH

In this section the application of dynamic programming techniques

to the limiting performance problem of dynamic systems subject to random

inputs will be discussed. This technique is more powerful in the sense it

can treat problems with performance indices other than the usual expec-

ted mean square type. The essence of this technique will be discussed

first and then applied to various limiting performance problems of interest.
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E[x2
b

E[u2 ]
b

Fig. 8 A trade-off curve for SDF system
subject to white noise
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5.1 Definition of Dynamic Programming

Dynamic Programming is the name given by its inventor, Richard Bellman

(Ref. 15), to a computationally motivated procedure for solving optimi-

zation problems through a sequence of smaller problems. It is ideal for

multi-stage optimization problems since it provides an efficient algo-

rithm for analytical and computational procedures by allowing only those

continuations of multi-stage processes that constitute optimal continu-

ations. This can be formalized as the Principle of Optimality. This

principle can be applied to derive the functional relationships of dy-

namic programming. Many researchers have applied the dynamic programming

technique to solve stochastic optimal control problems. A rather com-

prehensive bibliography in this regard can be found in Ref. 16.

To illustrate the principle of optimality, consider the following

simple example: Given:

si+l = T( si, u) 
(37)

with s0 C=  where s = state vector, u = control vector

find u0,ui, . . . ., UN-_ to minimize

N
T i )  (38)

i=1

Define

fN(c) = Min Min . . . Min[O(sl)+ . . + (SN) ]  (39)

U0 uI uN-1
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Then, by definition,

fl(c) = Min #(T(c, u)) (40)u0
U 0

for N>2

fN(c) = Min [#(T(c,u 0) +fN_(T(c,u0)] (41)
U0

The principal of optimality, when applied to the above example,

specifies that when only one more decision (u's) stage remains, the

decision must be made in such a way as to minimize O(sl). When more

than one decision stage remains, make the immediate decision u0 in such

a way as to minimize the overall sum consisting of the terms of the

immediate contribution O(s) and the term fN_-1 (T( 0))'representing sums

obtainable from the resulting state T(c,u0 ) by an optimal continuation.

Solution of the functional relations (41) gives the optimal control

sequences.

In the followIng subsections, several limiting performance problems

will be formulated with different optimization criteria. These criteria

include: mean quadratic performance index, probability of maximum deviation.

5.2 Quadratic.Performance Index

Consider a mechanical system described by (23) in which f, the

disturbance, is an independent random variable. The discrete solution

of (23) can be written as

s(k+l) = .s(k) + Gu(k) + h(k) (42)
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where

AT
)= e- T = sampling period

G = f)T (t-T)B dr
kT

h(k) = f(k+l)T 0(t-T)Df(t)dT
kT

The performance index of interest is the mean quadratic form

N -T - -T
IN = E X s (k)gs(k)+Ty (k-1)Ru(k-1)]  (43)

k=l

where q, R are positive definite symmetric matrices. By adjusting the

values in the elements of q and R matrices, relative weight can be

imposed on state as well as control, Following a dynamic programming

approach as used by Tou (Ref. 17), the following results can be derived.

The optimal control law that minimizes the performance index (43)

can be obtained from the algorithm

u*(j) = (N-J) x(j) (44)
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where

K(N-J) = -(GG(N- (j+)+R)-LG (N-(j+l))

P (N-(j+l)) = (N-.(J+I)) + LG(N (j+1))B(N-j)

L (N- (j +1) TS (N- (j+1)) (j) (45)

LGG (N- (j+l)) = GTS(N-(j+l))G

LO (N-(j+1)) = G (N-(j+1))

G(Ni(j+1)) = IT S(N-(j+l))G

S(N-(J+l)) = J+ P(N-(j+l))

with

P(0) = 0

Thus, from j = N - i, with P(O) = 9 we cangeaerate K(1), P(l), K(2),

P(2), . . recursively. Note that even when the system is invariant,

the feedback gain matrix is still time varying. The performance index

can be evaluated from

-T
fN[X(O) = x (0)P(N)x(O)

Such problems as the airplane taxiing during landing can be treated

by this technique. The landing velocity provides an initial condition

and the runway is the random input. Also, taxiing stops after a finite

time. This approach can be used to evaluate the limiting performance

for such systems.
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5.3 Minimizing the Probability of a Maximum Deviation

Bellman (Ref.18) pointed out that the problem of minimizing the

probability that the maximum response will exceed a preassigned value z,
can be solved by dynamic programming. For this case

fN(c) = Prob{max(I~jl 121 
( 4 xN6)x)
(46)

where iL z

If we interprete I z. in the component by component sense, then
this problem, when solved for a range of z, will result in an interesting

trade-off diagram (Fig. 9). For example, for z = A in Fig. 9, the

probability that max Ixil will not exceed A will be P1 . The probability

of exceeding A:is (1-P ). This could be correlated to some other prop-
erties of the system, such as reliability.

5.4 Discussion

Dynamic programming provides a very general limiting performance

problem formulation. However, due to its inherent "curse of dimensionality"4

and the concomitant computational burden, the application of this techni-
que to large scale problems is limited.

6. CONCLUSIONS

The limiting performance characteristics for dynamic systems sub-
ject to random inputs has been solved for a class of problem by various
control theory optimization techniques. In most cases, these problems
are restricted to linear systems subject to inputs with known power spec-
tral densities, either white noise or representable by'rational functions.
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Fig. 9 A trade-off diagram.
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In the case of white noise, stochastic optimal control theory in the

time-domain can be applied to find the optimal law leading to limiting

performance. This approach has been formalized for vibration isola-

tion systems and only requires matrix manipulation and solution of a

set of algebraic Riccati equations.

The analytic design technique extended by Weston is more general

in the sense that it can solve problems subject to colored noise inputs.

The drawback in this approach is that the system configuration must be

put in a special block-diagram form. However, for the computation of an

optimum transfer function, existing spectral factorization programs can

be applied.

Dynamic programming, which appears to be the most versatile formula-

tion, isf limited value due to its computational inefficiency.
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