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ABSTRACT

The pfoblem.of determining the limiting performance characteris-
tics of mechanical systems subject to:random input is stﬁdied. A
review is presented of the classical work in the optimal design ﬁf‘stochas~
tic systems. Somé receﬁt results of stochastic optimallcontrclltheory
are employed, The so;ution to thg limiring performancé problém is
formulated in Béth the frequency and time domains, Both formulations

require substantial, burdensome computations when applied to large scale

systems.
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1. INTRODUCTIONV

Random disturbances appear as complicated time~var§ing functions
that may exhibit wide irregular varlations in amplitude and frequency.
Both the input disturbance and the system response must be given sta-
tistical characterization and, ‘as expected, this compiicétes the optimum
design problem. No all encompassing methodologies are available for opti~
mizing realistic systems,undef general random environments. Since
related.literature from control theory on the optimization of stochastic
processes 1s quite extensive, we will take advantage of these develop~
ments and ﬁse these techniques, both in the frequency domain and in the
time domain, as a basis for this étudy of limiting performance of dynamic
gystems subject to certain clasges 6f random inputs. The limiting per-
formance concept for transient Systems is defined in Ref, 1. Briefly,
it is the theoretically optimum performance of a system, fegardless
of configuration.

In fhis study the input disturbances are chafacterizéd by spec~
tral density matrices or correlation matrices. Aithough for much
of this report the performance index is quadratic in both responses and
‘control forces, other choicés are possible., Most of this stuﬁy is con-
fined to'linéar syétems.

This study begins with a review of the single—input,'singlg—output
‘Wiener-Hopf type apbroach which has been examined by others (Ref. 2,3},
The governing Wiener-Hopf equation and its solution are summerized, An
example is presented. Next, it 1s shown how the limiting performance of
a multi-degree of freedom (MDF) system under random input can be deter-
mined by the extension of Wiener-Hopf techniques to the multiple—lnput,

multiple~output case reported by Weston, et. al., (Ref., 4),



Parallel to the above frequency domain appreach; the problem in

the time domain will also be formulated by applying results from stoch-

astic optimal contrel theory {(Ref. 5). Thils approach has also been

pointed out IECéPtlY by Karnopp (Ref. 6). A gingle degree of freedom

(SDF} problem which was previously solved by frequency domain techni-

ques will be solved by this approach.

Algo, included in this report will be dynamid programming ap-

proaches. This method is more general in the gense that it can treat

performance indéxes other than a’mean—square type. A formulation with

quadratic criteria 1s summarized and a non-quadratic possibility pro-

posed.

1.1 Statement of Problenm

Consider a MDF dynamical system described by

Mx + Cx + Kx + Vu = FI

=T =TT L (1)

-where

M -~ n x n mass matrix

L - n xn damping matrix

K =~ n xn stiffness matrix

¥V - 1n x nu coefficient matrix of control forces

F - n x nf coefficlent matrix of disturbances

X - nx 1 state vector - |

f - nfx1l distufbance vector

u - nux 1 generlc or control force vector =

n - number of degree-cf~freedom of the system

nu - number of controllers of the system -

nf - number of disturbances (forcing functions) of the system



In Eq. (1) ¥ is a random vector of known étatiatics. in order té make

a limiting performance study, portions of the system have been replaced
by T a vector of generic or control forces . These forcés can represent

any sub-system. The remainder of the sys£em must be linear as must be

the system kineﬁatics.

Since thé foréing function is random in nature, ;hellimitingAper—
formance problem ﬁust be defined in some statistical sense. The most
common'optimization criterion is to minimize some expécted mean square
response quantity while imposing constraints on other éipected mean
square responses, This criterionm, though not as dirept.as the criterion
uéed in the frénsient case is still meaningful. It is selected Eecause
in the analysis of stochastic processes, it is difficult to find reSpqﬁaes
other than the mean square response of the system, Anothér reason for
using mean squafe criteria is that when the performanée,iﬁdex and con-
straints are cbmbiﬁéd in a penalty function type objective function,
the resulting oﬁtimum sysfem will be linear. This is a well known
result of optimal control theory (Ref. 5), Other criteria have been
suggested by several authors, Aoki (Ref, 7) treated a'simple problem
‘based on a performance index of a maximum expected deviatiOn over the
history of a dyﬁamic‘process. Trikha and Karnopp (Ref. 8) studied a
gingle degree of ffgedom system with a criferion based on the valﬁes'of
dispiadement and acceleration, whoée probability of being.exceeded is less
than a prescribed value. It does not appear as though either :of these

criteria can be applied to large.systems.



2. REVIEW OF CLASSICAL WORK

Limiting performance characteristics of SDF systeﬁs-have been
reported in the literature for several inputs and are‘ﬁased on either
expected meén square values or the probability of'exceeding selected
résponse levels; These results are summarized in Ref. l, To ﬁgke this
report more self-contained, the limiting ?erformanqe_problem based on

expected mean square responses will be treated briefly.

2,1 The Governing Integral Equation

Consider the configuration of Fig. 1. For a given input spectral
'density ¢rr the optimum compensation Wc(t) (or Wc(s) in the frequency
domain) is to be foﬁnﬁrsuch that E[yz(t)] is minimi;ed subject to the
constraint E[qi-]ép,where g is the maximum ailowable meén-équare value
of qs(t) and_E{'] stands for mathematical expectation. This constrained
optimization problem will be converted to an unconstréined problem by
infroducing a Lagrangian multiplier p, The problem then Becomes one of
minimizing |

F = E[y.] + pEla’] ‘ (2)

It i3 shown in Ref; 9 that the optimum compensation Wcm(t) that

minimizes (2) is governed bf the integral equation

120 | (3)

ao

- f* Won(E9)8(E -t )ty —T(t,) = 0 for ¢
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v(t) compensation Tixed element
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ye(t)

v(t) = random input disturbance
q(t) = actual output

i(t) = dideal output

ye(t) = error

Fig. 1 Block diagram for deriving Wiener—Hopf
integral equation.



vhere

reep) = [ae(ee, (e peyde,

VA(t1~t3) = [{Z21{:§f(t2)gf(t4)dt2dt4'

+ pf [ (e )a (e )de de 1o (et

D — e T

27ty 4)

¢vi = cross correlation function of input to ideal output
¢vv = autocorrelation function of input

2.2 Solution of the Governing Iﬁtegral Equation

Equation (3) is of the Wiener-Hopf type for which spectral fac-
torization can be applied to obtain an explicit solution formula in the

frequency domain (Ref; 9). This is

[TSB) + o

A (s)l+

W_(s) = (4)
cm : A+(s) .

where o 18 an arbitrary constraint

OB 216 (-8) ¢vi(s).
b(s) = 27 [6;(s)G, (~s) + oGs(s)GS(—s)] ()
A+(s) = any factor of 44(8) which includes all the poles and zeros

in the LHP (left—half—plane)

AT(s) = a(s)/a' (s)
[%é%%y = component of-——%—%-which has all its )
.+.

polés in the LHP such that‘Afgzg - [f(s):] has all its poles

A-(8)
in the RHP,



2.3 Application to SDF System

The results of previous sections can be applied to find the limiting
performance characteristics cf a single degree system subject to réndom~
inputs. Consider the SDF gsystem shown in Fig. 2. The p;leem 1s to find
. u such that the performance index E[u2] + pE[x2] is minimized.. By

the present approach, we seek to find the optimum transfer function

™~
[~
0

W(s) =

-
-

(s

Draw the block diagram of Fig. 3. Equation (4) will provide W(s) for
given input spectral density,
For an input with spectral density

‘ A
] (S) £ - —
vy "

The solution is

W) = 82/ (s> + V2 s8 + %)

where

2.4 Discussion
The classical Wiener-Hopf technique leads to tractible analytical
solutions to single~input single-output systems. Since most systems do

not fit in this class the usefulness of this technique is quite limited.



z (absolute displacement)

x (relative displacement)

y{t) (input motion)

_Fig. 2 SDF 8ystem subject to random input,



y(t)

—] W ] (e

o (t)

e H (5)

Gy} = ms®  G(e) = 1 H(s) = 1

W) = 1?7

Fig. 3 Block diagram for the configuration of Fig. 2.
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3. EXTENSIOX OF WIENER—HOPF TYPE APPROACH TQ THE LIMITING PERFORMANCE
OF MDF SYSTEMS

The analytical design techniques of Newton et/al. {(Ref. 9), have
been applied to find.the limiéing performance characteristics of qimpie
systems, These teghniques are extended Ey Weston and Bongiorno (Ref. 4).
It is the purpose of this section to summarize the principal results of
this extended théory. Also, an example will be given tﬁ illustrate the
applicatioﬁ of‘this technique. |
3.1 Formulation

Consider the system configuration shown in Fig.'4. All elements
of the system are assumed: to be linear and time invariant., The Input
vectors (signal; noise, and disturbance) are generated by a stationary
stochastic process whose power spectral density is knoyn;‘:The purpose
is to find optimum compensation to minimize a performance index con-
sisting of a weighted sum of the output mean-square error plus a weighted
sum of the meanmsﬁuare vaiue of a set of saturation signals, The results
are summarized in Theorem 1. |

The following nomenclature is used.k El(t), ﬁft);'a(t) aren x 1
_vectors of input, noise and disturbance (to phe measurements) respec-
tively, whose elements are the realization of an independgnt, stationary
random process. The statistics of the random processes ;1, n, d are
assumed to be known and adequately deseribed by rational power spectral-
density matrices irlrl(s){ gnn(s), Qdd(s), respectively. Transfer'
function matrices Q?(s), gs(s) and H(s) represent asymptofically stable
systems. The dimensions of these matrices are:

E?—n xm (miﬁ), G, mxmn, gTrﬁuxgn; G, -9 xm

q is the dimension of A(s), the satuation signals.
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Fig. 4 Block diagram of multivariable system.
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'The performance index to be minimized is

J= E[iggﬁé +a'Ra] (5)
where Q and R are real, constant, symmetric, positive, definite matrices.

Q is n x n, R 1s q x q. The superscript T designates the transpose of a matrix.

The problem was solved by a.caleulus of variation technique with the results
summarized in Theorem 1,

-Theorem 1. (Ref. 4)
The physically realizable W_ = w;o that minimizes
T -

J= E[?ngé + 3,Ra1

assoclated with the system in Fig. 4, satisfies

W = A @) 71, [27] RON
where -

e - e,

¥ 9 = EP* G + 93*39; | (2)

A=38 QG

£ _rigﬁp*

The optimal compensation is then

-1 .
B 1T W o (8)

Ec = [I_W -0

-0
The following motational convention ig used in Theorem I:

(1) For real matrix X, X (s) = g?(—s)

(2) [z(s)], = part of function z(s) which is analytic in R 820
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| 3.2 Application

For any multi-input; multi-butput system, the application of
Theonem 1 leads to the optimum transfer matrix which minimizes .the per-
formance index of'(S), provided a block diagram similarrto Fig. 4 cen
be constructed for this system. We will illustrate this using a two
degree of freedom system. This same problem was solved by Bender
(Ref; 3) using the classical Wiener-Hopf approach,

Consider the systen shown in Fig, 5. The innut to this system

has the following spectral density

[b

¢xx(s) T 2
8

This system is governed by the differential equations -
My = u
(9

mE = -u + k(y-z)

"yf The problem is to find the optimum isolator characteristics such
'that ‘the relative displacement (z-y) is minimized while the acceleration
'-;‘is;bqunded. Since ‘the input is random a meaningful performance index

‘will be of the mean square type
J = E[p¥ "+ (z-y)“} ' . . (10)

The‘problem will be solved in the frequency domain.

Define '

W

Ws) = Yle)/%X{s) | | | (1)

Z(s) - Y(s) a2

H

§(s)



f M
y
@
J i3
Z
X

L1777 77777777

Fig. 5 Two degree of freedom vehicle model.
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Transforming (9) into the frequency domain it is found that
) .
Ms " Y(s) = U(s)
(13

sz (s) = -U(s) + K(X(s) - Z(s))

Solving (13) using definitions (11),

2(s) = S x(q B (14)
. Kts'm ‘

¥(s) = %8 (o) o (15)
8 ' .

§(s) = Z(8) ~ Y(38)

- [(#1/7) (s/u )% +1]
= ) 2 - 3 " /w )2 W(S) X(S)
Q§*>-*I 8" (I+g L

where %i= k/m, 1 = m/n
. From the block Qiagram of Fig. 6

s(;) = [Hy(8) = By (8) W(s)] X(s)
Compare the above £wo equations,

L+ L) (slu )
H () = — 3
8T (1 + (Slﬁﬁ) )

(16)



roadway
elevation

X

]

W(s)

vibration

«:]

Hl(S)

16

H2(8)

1

Fig. 6 Block diagram for Fig. 5.
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g
Vrelative

displacement
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1

— an
1+ (s/mn)

H,(s) =

Compare the block diagrams of Fig. 6 and Fig. 4., For the present

case, the various matrices used in Theorem 1 are

All quantities are scalars for this system. For the performance index,

Q=1, R= p. From Theorem 1, we have for this case
-1 =-1.T, T.-1 -1 -
W =¥ ¥ AT(R) 1,0 . (18)
where
0,0 = -a/s” (19)
¥¥ = ,'H]j’#]_-’- p
A= HH,(-A/sD) (26)
271% ' '
From (19) @ = VA/s (21)

Substitution of £19), (20}, (21), into (18) gives the same equation as
found in Ref. 3. |
3.3 Discussion

It would appear that the results given in iheorem 1 are quite prom-
ising, in that multi-input, multi~output gystems can be treated. However,
there are at least two difficultieslinvolved. First of‘ali, to use
‘Theorem 1, a block diagram similar to Fig. 4 must be established for the-
system. Unfortunately, this would be a difficult procedure to automate.
Secondly, computational problems are encountered when this is extended

to large systems. As indiéated in Theorem 1,lthe golution of the optimum
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transfer function matrix requires matrix spectral factorization For

practical problems, this must be done computationally An avallable Pro-.

gram using Tuel‘s algorithm (Ref 10) can be used to factor polynomial
matrices of dimension up to 6 x 6 with order not exceeding 20 for each
polynomial element. This program requires 10,000 words of storage,

Apparently, this is a very limited computetional capability,

&, APPLICATION OF STOCHASTIC OPTIMAL CONTROL THEORY TO THE LIMITING PER-.
FORM.ANCE CHARACTERISTICS OF MDF MECHANICAL SYSTEM

The formulations described in the previous two sections are fre-
quency domain approaches. In this section a time domein approach will
be set forth, with the equations of motion in a form compatible with those
used in the lihiting performance study of transient systems (Ref. 11)

4.1 ‘General Formulation

Consider 2 mechanical system described by qu. (1) with a
gauSSian white noise representation for f. Consider a linear realiza-
ble system for u. Define

R (1) = E[T (&) (t4m)]

as the correlation matrix of the input disturbance vector Ff. For this
problem

Re(1) = Ryé(x) - @

where § 13 the usual Kronecker delta function.
Since the input disturbances are random in nature, the limiting
performance characteristics will be defined in the expected mean square

senge. . That is, we will find u that minimizes the expected mean square
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of somé response {objective function)while the expected mean square values .

of some other response variables (constraints) are bounded. Trade-off

relations betweén'the objective funcétion and any one of the coﬁstraints
can then be obtained.

To 'solve this problem, adﬁantage will be taken of stochastic opti-
mal contreol theory, To do so we trénsform our problem to the format
of optimal control theory. A similar technique has been”rgCently
reported by Karnopp (Ref. 6).

Equations (1) can be written in first order form as

where g-= {-

wl
[
.
o
+
=
=
+
o
+h

(23)

RN
Ip,_\-—-u-\.J
o
|+

=

|t
]

i
]

The limiting performance problem is to find u(t) such that the performance
index
o0 =T = =T - : -
J = E[ [(5°gs + u Ru) dt] (24)
t ' _ :
0
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is minimized. 1In (24) E{*] stands for expectation. Q_and R-are
positive semidefinite weighting matriceé. By adjusting the components
of the Q and R matrices properly,‘the desired limiting pefformance
problem can be formulated.

In stbchast;c control theory, an observation (or measurement)
_model is required. Since we are considering the limiting or theoréti-
-cally optimum performance, it will be apﬁropriate for us to assume
.noisé free perfect measurements. For such problems, optimal control
- theory (Ref. 5) leads to the foilowing results, For the system des-
'cribéd by (23) subject to white noise input, the optimal control law

U* that minimizes. the performance index (11) is given by

a* = R BNYs(¢) | . (25)

where ¥ is a constant matrix which is the solution of the following

algebraic matrix Riccati equation

Ay +va - yBRBTY + g = 0 | (26)

Havigg the optimal control law, the next step is to calculate the
value of the performénceindex and then‘establish the desired trade—off
relations, To evaluate the correlation matrices such as E[Eér], a
-method reported by Yang and Iwan (Rgf. 12) will be_épplied. To do so,
substitute the control law into Eq. (23) and rewrite the resulting equa-
tion in second order form. Then, by application of the result given in

Ref. 11, the following set of linear equations for the computation of

E[xx ], E[¥x'], and E[¥%'] are obtainad.



wps’] - cEat) -

MELxx]e,” + Sy Elxx M + ME [Fx 1Ky + K ECa'] M7

where
-g{) =
' K -
-0
I =
Y =
and
E[Tar]

-=T

=T, T

C+ TY,,
Ry

Ly 4y

=21 =22

Ti“T

LLT T A ’
ZiEDex1z) + 20Elxx "1z,

. =T T ==T.,.T
tZED 1z + ZEle 1z,

. -1
where [_Z_Z: }_1] | "BY

EUE[xx ] =0

i

= ngg

T

4.2 - Example: Limiting Performance of an SDF Vibration Isolater

Congider the SDF gystem shown in Fig, 7.

21

- (27)

(28)

Suppose the disturbanqe

f is gaussian white noise. The problem ig to find the trade-off rela-

tion between mean square values of % { oru/m) and x.

This problem has

 been solved by Fujiwara et.al. (Ref. 14), We will solve the problem |

in the time domain.



£{t)

LTI 77777777

Fig. 7 SDF S8ystem subject to random force

22
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~ The governing equation can be written as

mk = u+ f - (29)
or in first order form
- g =_é§ + .:.B_G 't"_G_-f_ - - - - - - (30)
where
- T
s =3} ELFE] = R 6(0)
0 1
s o 3]
-1 0
B = [;/m:]
-
=} 0
= Ll/m:[

“The performance index to be minimized ig

J = E[f" @G'Ra + 5Q8) dt] | (1)
0.
where
2
AT 0
- [} 2]

The optimum control law is

1.T

u* = -R "B'Ys | (32)

" where Y i{s the solution of

AT+ YA - BRI+ g =0 - (33)

-



The solutlon of (33) is

Substitute (34) into (32) to find

or

Since E[EETJ = 0 for an SDF system, (27) becomes

frad

u* = -Asl(t)‘— v2mA sz(t)

u*(t) = -Ax(t) - vV2mx x(t)

AvZm) mA

mA mv 2mA

ME[iz] - KOE{le =0

ME[&2100.+-COE[£2]M +0=R

where
0

Thus, E[le

E[u?]

1

K. =X, C. = v2m\

0
Rf/ZAVZﬂh. and

.,(3Rf/zv’ia) Vi

£

24

(34)

(35)

(36)



25

These results are the same as obtained by Fujiwara. By eiiminating b

, 2 ‘
betwaen Ef{u~ ] and E{xz], we find the tradeoff relationship

2 2
E[u”].3 E[x7]
Eadyd Erly « g

where

This is plotted in Fig. 8.

4,3 Discussion’ ' ' _ T
The underlying assumption for the formulation of this seétion is
that f must be white ﬁoise. This is not so severe as it may appear, even
though white noise does not actually exist. White noisé does provide
a good approximation for broad band random ndises. The major drawback
in this formhlation is that its implementation encounters computational
burdens for large systems. |
Since the most efficient procedure of solving matrix Riccati equa-
tions (26) 1s by matrix spectral factorization (Ref. 4), this approaéh
involves the same_complications as described in Section 3. However, set-
ting up tﬁis formulgtion for a particular problem is much easier then

* using the method of Section 3.

5. DYNAMIC PROGRAMMING APPROACH

In this section the application of dynamic programming ;echniques
- to the limiting performance problem of dynamic systems subject to rﬁndom
inputs will be discussed. This technique is more'powerfql in the sense it
can treat problems with performance indices other than tﬁe’usual expec-
ted mean square type, The essence of this technique will Be discussed

first and then applied to various limiting performance problems of interest.



Fig. 8 A trade-off curve for SDF system

subject to white nolse
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- 3.1 Definition of Dynamic Programming

Dynamic Programming is the name given by its inventor, Richard Bellman
(Ref. 15), to a computationally motivated procedure for solving optimi~
- zation problems-tﬁrough a sequence of smaller problems. .It is ideal for
‘multi-stage optimization problems since it provides an efficient algo-
rithm for analytical and computational procedures by allowing only those
continuations of multi-stage processes that coﬁstitute optimal continu-
ations. This can be formalized as the Principle of Optimality. This
principle can be applied to derive the functional relationghips of dy-
namic programming. Many researchers have applied the dynamic programming
technique to solve stochastic optimal control problems. -~ A rather com-
_prehensive biblicgraphy in this regard can be found in Réf. 16.
To illustrate the principle of optimality, consider the following

simple example: Given:

341 = Tlsygs 0y | o 37
with ) = ¢  where 5 = state vector, u = control vector
find uo,ui, v ey uN-l to m;nimize
- N
V= J4(sp) o (38)
i=]1
Define
£,(c) = Min Min . . . Min(¢(s )+ . . . + $(s)) (39)

YooY UN-1
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Then, by definition,

-

fltE) Min ¢ (T (e, GO)) | (40)

Y0
for N>2
Fy(e) = Hin (6 (15, y) ey ) (T(eug)] Y
0 .

The principal of optimality, when applied to the above example,
spécifies that when only one more decision (u's) stage - remains, the
decision must be made in such a way as to minimize ¢(§1)."When more
than one decision stage remains, make the immediate decision GO in such
a way as to minimiée the overall sum consisting of the terms of the
immediate contribution ¢(§1) and the term fN;l(T(E,GO)yrepresenting sums
obtainable from the resulting-state T(E,GO) hy an optimal continuation.
Solution of the functional relations (41) gives the optimal control
sequences.

_‘In the folldwhu;sﬁﬁéections, several limitiﬁg performance problems

will be formulated with different optimization criteria. These criteria

include; mean Quadratic performance index, probability of maximum deviation.

L4

5.2°. Quadratic‘Per£Orman;e'Index
~Consider a‘ﬁechaniéél;system described by (23) in which'?, the
- distufbance, is an independent random variable, The discrete solution

of (23) can be written as

5(k+l) = Ps(k) + Gu(k) + h(k) ' (42)
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where
%= ,eéi T = sampling period
6= fODT 4(een)p ar
kT -

g(k) _ f(k+l)T
kT

$(t-1)Df(1)dr
The performance index of interest is the mean quadratic form

. |
Iy = B L (3 (085 (4" (k-1)RG (k-1 ] . (43)
k=1 ) o

lwhere 8, R are ﬁositive definite symmetric matrices. By adjusting the
values in the elements of Q and R matrices, relative weight can be
imposed on gtate as well as control, Following a dynamic programming
approach as used by Tou (Ref. 17}, the following results can be detived.
| The optimal control law that minimizes the performance index (43)

can be obtained from the algorithm

w*(3) = K (N-1) 2() . o (48)
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where

KORD) = = Qoo (- GHDHR) L, (8- (341))

P (N-(J41)) = LM(N'U""D) +£¢G(_N G+1))B(x-3)

= T — C
%¢(N-(j+l)) =9 SFN (3+1))¢(3) . (45)

Lee 2

(N-(3+1)) = '8 (N-(J+1))E

L}

Sl (N-(3+1))e

Loy (- (1))

]

. T
Lic®-(+1)) = ' s@-(+1))¢

S(N-(3+1)) = Q + P(N-(3+1))
with
PO) =0

Thus, from j = N - 1, with P{0) = 0 we can gemerate. K(1), P(1), K(2),
. . - £

P(2), . . . recursively. Note that even when the system is invariant,

the feedback gain matrix is still time varying, The performance index

can be evaluated from
£4[X(0)] = X' (PMZ(0)

Such problems as the airplane taxiing during landing can be treated
- by this technique; The landing velocity provides an initial condition
and the runway is the random input. Also, taxiing stops éfter a finite
time, This apbroach'can be used to evaluate the limiting performance

for such systems,
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5.3 Minimizing the Probability of a Maximum Deviation

Bellman (Ref,18) pointed out that the problem of minimizing the
probability that the maximum response will exceed a preaséigned value gz,

can be solved by dynamic Programming, For this case

£.(c) = Prob{max(|x | |% | ..., )x 1) <x)
N Bl ix ¥ (46)

If we interpfete [x|<z in the component bf component sense, then
this problem, when solved for a range of z, will fesuft in an interesting
trade-off diagram (Fig. 9). For example, for z = A in Fig. 9, the
probability that max Ixi[ will not exceed A will be Pl; - The probability
of@exceeding A-is (lﬁPi). This could be correlated to some other prop-

erties of the system, such as reliability.

5,4 Discussion

Dynamic programming provides a very general limiting performance

problem formulation. However, due to its inherent "curse of dimensionality"4

and the concomitant computational burden, the application of this techni-

que to large scale problems is limited,

6. CONCLUSIONS

The 1imiting'perforﬁance characteristics for dynamic. systems sub-
ject to random inpuﬁs has been solved for a class of problem by various
control theory optimization techniques. 1In most caseé,lthése‘problems
are restricted to linear systenms subject to inpﬁts with known power spec-—

tral densitjes, either white noise or representable by rational functions.
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Flg. 9 A trade-off diagram.
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In the case of white noise, stochastic optimal control theory in the
time-domain canrbe applied to find the optimal law leading to liﬁiting
performance. This approach has been formalized for vibratibn isola~
tion systems and only requires matrix manipulation and solution of a
set of algebrailc Riccati equatioms. |

The analytic design technique extended by Weston is more general
in the sense that it can solve problems subject to colored noise inputs.
The drawback in this approach is that the system configuration must be
put in a specialrblock—diagram form, Howevér, for the computation of an
optimum transfer function, existing spectral factorization programs can
be applied,

Dynamic programﬁing, which appears to be the most versatile formula-

tion, is of limited value due to its computational inefficiency.
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