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ABSTRACT - An upper bound on the average error probability for

maximum-likelihood decoding of the ensemble of random binary tree

codes is derived and shown to be independent of the length of the

tree.

An upper bound on the average error probability for maximum-likelihood

decoding of the ensemble of random L-branch binary trellis codes of

rate R - 1/n *s derived which separates the effects of the tail length

T and the mem. •/ length M of the code. It is shown that the bound is

independent of the length L of the information sequence when

M > T + [nEVU(R)]-1 
1092 

L. This implication is investigated by compu-

ter simulations of sequential decoding utilizing the stack algorithm.

` These simulations confirm the implication and further suggest the follo-

wing empirical formula for the true undetected decoding error probabili-

ty with sequential decoding:

P[e] z c2
-nTR

T , provided M > T + [nEVU (R)]
-1 

1092 

where c is a constant independent of L, T and M. The exponent R  is

related to Viterbi's upper and lower exponents for the ensemble of

time-varying convolutional codes by the inequality:

EVU (R) < RT < EVL(R).

The first draft of this paper was presented orally at the

IEEE International Symposium on Information Theory, Ashkelon,

Israel, June 25-29, 1973.
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I. INTRODUCTION

Massey [1] has recently defined the class of random tree codes as a

generalization of the type of convolutional code used in sequential

decoding and has defined the class of random trellis codes as a

generalization of the type of convolutional code used in Viterbi

decoding. He has also proved random upper bounds on the average pro-

bability of error for maximum-likelihood decoding of these codes for

codes rates less than RO , where RO is less than capacity C of-the

channel.

In Section III of this paper, we extend Massey's bound for tree codes

to all rates less than capacity. In Section IV we do the same for his

bound on trellis codes but we do this in the context of a more gene-

ral class of trellis codes for which a distinction can be Trade bet-

ween its "memory length" and its "tail length". The bounds obtained

suggest that it is advantageous to use a memory length which is a

specified amount greater than the tail length, this amount depending

an the length of the trellis. In Section V, we report'sequential de-

coding simulations which confirm this suggestion and which should be

useful guides in the design of future sequential decoding systems.

These simulations suggest an empirical formula for the true decoding

error probability with sequential decoding which we give in Section VI,
I

To relate the more general codes used in this paper to the special

cases used in practice, we note that convolutional codes constitute

the class of linear tree codes. After L information bits have been

encoded in the convolutional code, the encoded sequence is terminated

after a "tail" of T information zeroes has been encoded. A convolutio-

nal code is further characterized by its encoding memory length M

which is the number of unit delays in the encoder. The usual practice

has been to take M"T but the merit of removing this restriction will

become obvious in the sequel.
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II. PRELIMINARIEi

In our discussion of tree and trellis nodes, we shall restrict our

attention to codes of rate R - 1/n both for simplicity of descrip-

tion and because these rates are those of the most practical inte-

rest.

A binary tree code of rate R - 1/n, tree length L, and tail length T

is formed by assigning n channel input symbols to each branch of a

rooted tree such that 2 branches stem from the root nods, 2 branches

stem from each successive node at depth i from the root for i < L,

and a single branch stems from each node at depth i from the root

for L < i < L+T. We show such a tree code in Figure 1 for T-3, n-2,

and a binary input.cKannel. To encode a binary information sequence

of length L with such a code, one begins at the root node and moves

through thJj tree taking the upper branch or the lower branch accor-

ding as each successive information digit is 0 or 1. Since n(L+T)

encoded digits result from thib process, the true rate (in bits per

channel input symbol) of the code is L/[n(L+T)j and hence approxima-

tely equal to its supremum R - 1/n only when L > > T. Fer this reason,

one ordinarily desires to choose L > > T. We shall call those nodes

where the tree divides "information nodes' to correspond with their

function in encoding the binary information sequence of length L.

In this paper we shall derive an upper bound on the average decoding

error probability, assuming maximum-likelihood decoding, for the

ensemble of R, L, T tree codes in which each channel input symbol in

the tree is chosen independently according to a specified probability

distribution.

ti
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III. UPPER BOUND FOR RANDOM TREE CODES.

For the binary tree codes described in II, we shall now derive an

upper bound on the average probability of decoding error, assuming

that a maximum- likelihood decoder is used.

Suppose that L information bits have been encoded and that the resul-

tant n(L+T) encoded symbols have been transmitted through a discrete

memoryless channel. Let E  (i - 1,2,...,L) be the event that the

probability of the received sequence given some incorrect path stem-

ming from the i -th last information node along the correct path is

equal to or greater than the probability of the received sequence

given the correct path. Then, letting c be the event that a decoding

error - is made by the maximum- likelihood decoder, we have

c c E 1 U E2 U ... U EL 	(1)

(where we are prevanted

the fact that the maxim

in case of ties for the

error over the ensemble

the union bound

from writing """ rather than "c" only by

an-likelihood decoder may correctly decode

best path). The average probability of

of R, L, T tree codes is then bounded by

P[c] < P[E ll + P[E21 + ... + P[EL]	 (2)

We now note that a total of 2
1-1 

incorrect paths, each of length

T+i branches, stem from the i-th last information node on the .

correct path. Since over the ensemble of codes all symbols on each

path are mutually independent, the symbols on the transmitted path

stemming from the i-th last node are independent of the symbols on

any incorrect path stemming from the'sams node. Thus, we may use

Gallager's random coding upper bound on block codes of length n.(T+i)

with ( 2
1-1

+1) codewords [2^ to bound the i-th term on the righthand
side of (2) as

P[Ei] < 
2 (i-1)P 2-n(T+i)EO(p)	

0 < p < 1	 (3)



where p is a parameter which can be chosen later, The function EO(p)

is defined as

EO (P) ° max (-1092 	 C Z Q(X) p(ylx) 1l1+p] 1+p )	
(4)

Q(X)	 Y	 X

where X and Y are the channel input and output spaces respectively,

p(ylx) is the channel transition probabilit distribution, and Q(x)

is a probability distribution on the input space. The maximizing

Q(x) in (4) is than also taken as the specific probability distribu-

tion defining the ensemble of R, L, T tree codas,

Inserting (3) in (2) yields

L

P ^c^ < i 1 

2 (i-1)P 2-n(T+i)Eo(p)

<	 nTE
0 (p) 2-p 1
2 	

2-i [nEO (p) - P]

•	 i^1

e.

- O(p)	
Z 

nTE
o (p) , O < p 1. 1	 (5)

1
nS

'a
?a

where

3

d	 Eo(p) - pR > O	 (6)

Since EO (p) is a monotonically increasing function of p, we have

Theorem 1:

The average probability of error for maximum-likelihood decoding

of the ensemble of binary R 1/n, L, T tree codes satisfies
I	 '1

1

P[c] < c2
-nTEVu(R)	 p 

(7)

f

s
A



S.

where E
VU

(R) is Viterbi's upper bound exponent [31, namely

RO
	 O=.R<RO

E
VU

(R) -
	

(B)

sup EO(p)
	

RO<R<C
P

where the supremum is taken over p such that 0 < p < 1 and

EO (P) > P R and where	 .

2 -nEw (R)

C - 1-2- n6

The "constant" c depends on R but is independent of L and T. The

exponent RO is defined to be EO (1). This exponent R O is numerically

equal to the "computational cutoff rate R
comp [4] encountered,in

sequential decoding. The rate C is the channel capacity.

(9)

The remarkable feature of the bound (7) is its independence of the

length L of the tree: The bound (7) implies that only the tail

length T is important in determining the error probability for

tree codes. In Section V, we report simulations which verify this

conclusion.

Viterbi [51 has given the same upper bound on the first-event error

probability for time-varying convolutional codes.

We also wish to re A that for rates R < R O , Massey [1] derived

an upper bound equal to (7^. His argument used the two codeword

exponent RO and this work stimulated the investigation reported in

this paper to extend the bound from RO to C and to conduct simula-

tions to verify its implications.

Massey [6] also recently presented the straightforward generalization

of his formula to rates R - k/n < R O , where k and n are integers and

suggested the use in principle of convolutional codes with memory

-length greater than tail length to remove the dependence of P[e] on

true length L as has been carried out in the simulations .sported in
ii
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Section V. Massey's generalized argument can be extended to show

that (7) holds for all rates R e k/n provided that the constant "c"

in (7) is given by

c - (2k-1 )p	
2- nE  

V'J(R)	 (10)
1-2 n6

rather than by (9). We have omitted this refinement because , the

generalization while straightforward is somewhat awkward and

because R 1/n is the case of greatest practical interest.

'

u

ti

J
1J !	 LL	
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IV. UPPER BOUMOS FOR TRELLIS COCES.

In Section II, we described an R " 1/n, L, T tree code as the

assignment of n • 1/R channel input symbols to each branch of a

particular rooted tree. Recall that a sequence of L information

bits specifies prey "_°tely one path through this tree. Wo now defino

an R, L, T, M trellis coda to be a tree code with the property that

(i) if the proceeding M information digits on the paths

leading into two nodes at the same depth in the tree

coincide then the same further encoded sequence results

whenever the'same further information sequence is app-

lied starting from either node and

(ii) all digits are the same on the last M-T branches.

In other words, the "memory" or dependence on the past information

bits is limited to the M previous information bits but the useful

"tail" of the tree is only T rather than M branches in length. From

an encoding viewpoint then, nodes with sane proceeding M information

bits can be "merged" in the tree so that the passible encoding

paths may be shown as forming a "trellis-like structure". In Figure

2, we show an R • 1/2 binary trellis code with T-1 and M=2 for a

binary input channel. Forney 141 was the first to use the term

"trellis" in connection with a special class of such codes (viz. con-

volutional codes with M-T? while Massey [1] generalized the definition

to that given here except again for the restriction that M =T. By allo-

wing T < M we are able, as shown in the sequel, to demarcate rather

precisely the different effects of the "tail length" T and the "memory

length" M on decoding error probability.

Our artifice of requiring all of the digits on the last M-T branches

of each path in the trellis to coincide renders these digits "useless"

and hence unneccessary to transmit over the discrete memoryless

channel being considered and hence to have a true "tail" of length

only T branches, but this artifice also allows us to use with only

slight change the bounding techniques normally used for the "usual"

trellis codes with M-T.
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Suppose now that L information bits have been encoded in on

R, L, T, M trellis code and that first n(L,^T) encoded digits on

the corresponding path (i.e. all except the "useless" last n(M-T)

digits which are the some on all paths in the trellis) and n(L+T)

corresponding digits have bean received over the discrete memory-

less channel.

Consider next any subpath of the correct path in the trellis. We

define an "adversary" for this subpath to be any path which has

the same first node and "remerge" with this subpath at its last

node, i.e. it has this same last node but no previous node in common

with this subpath (except of course the first node). Sy our defini-

tion of a trellis code, an adversary must have length at least M+1

branches since after diverging with the correct path at soma node

there must be some '1 consecutive information bits that agree with

those on the correct: path for remergence to take place.

A maximum-likelihood decoder for the trellis code will decode correctly

unless there is some subpath of the correct path such that the proba-

bility of the corresponding portion of the received sequence given

some adversary of this subpath is as great or greater than its pro-

bability given the subpath. In case of ties for the best subpath the

maximum-likelihood decoder may decode correctly. Hence we begin our

bounding of the decoding error probability by defining F  (M < j < L+M)
as the event that for some subpath of the correct path ending at the

j-th node from the root along the correct path the corresponding, por-

tion of the received sequence is as probable or more probable given

some adversary of the subpath than given the subpath. Letting a be

the event that the decoding is not correct, we then have

e c FM+1 U FM+2 U...... U FM+L	 (11)

Using the union bound, we can then overbound the average error pro-

bability for the ensemble of trellis codes in which each digit in
Y

the trellis is chosen independently according to some probability

distribution q ( ) over the channel input space as

P [e] < P [F M, 1 ] + P [F M+21 + ... + P [FM+L]	 (12)	 ?



and we can uverbound P[F j] using the random coding bound for cer-

tain ensembles of block codes as we now consider in detail. For

the nodu at depth j from the root along the correct path, there is

only one adversary of a subpath of length M+1 branches which remsr-

gas at this node. For R > 2, there are at most 2
R-2 

adversaries of

a subpath of length M+R which remerges at this node as can be seen

from the fact that the first information bit for the adversary must

disagree with that of the subpath while the last M information bits

must agree and the information bit just previous to these must

disagree with those of the subpath or remergence would have occurred

sooner. Honce M+2 of the M+R information bits of an adversary of

length M+R are uniquely specified when R > 2. Thus 
2max(01R-2) 

is a

general upper bound on the number of adversaries for a subpath of

length M+R branches, R > 1.

In considering nodes at depth j from the root, for M < j < L+T

all digits an the adversaries remerging at this node are statistically

independent of those an the corresponding correct subpath so that

using Gallager's upper bound on random block codes M we have

P [F 1 < Oi	 (2max(0,R-2))p Z n(M+R)E0(P)
j

<'(2-nEO(P) + 2-2p-nC 2 6R ) 2-nMEO(p)

< 2-nEO(P)	 2-nMEO(P)

1-2-n6

c2
-WEO (P) 

, 0 < p < 1 , M < j < L+T	 (13)

But for L+T < j < L+M, the digits on the last (j-M+T) branches of

each adversary agree with those on the correct path because of our

artifice of using the same channel input letter for all digits on

the last M-T branches of 'every path in the trellis. Thus the block

coding bound must be revised to account for the reduced useful

codeword length and we obtain

s
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P F < j-M (px(U,Z-2))p 2-n(L+M-j+T+R)EO(p)
f. j 7	 RE1	

t

< 2-n(L+M-j)EO(P) (2-nEO(P)

	

+ 2-2p		 2-n6t) 2-nTEO(p)

R•2

< 2- n (L
+M-j ) EO (P) c2-nTE0(P)

	

0<p<1,L+T<j<L+M	 (14)

where in both (13) and (14)

s • EO (p) - pR > 0	 (15)

and where c is as given in (9), i.e. c is the same constant as

in (7).

Finally, substituting (13) and (14) in (12) we have

P c < L+T c2-nMEO(P)
C ]	

j•M+1

+ L+M	
2 n(L+M-j)EO (P) c2-nTEO(P)

j•L+T+1

• (L*T-M)c2 nME
O (P) + 1-Z n(M-T)E 

(P)
0	 c2-nTEO(P)

1-2-nE0 P

0 < p w 1	 T<M	 (161

Since EO (p) is a'monotonically increasing function of p, we have

Theorem 2: N

The average probability of error for maximum-likelihood decoding

of the onsemble of binary R - 1/n, L, T, M trellis codes satisfies

a
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P[c] < c2
-nTEVU

(R) -1-2 n(M-T)EVU(R)

1-2 nEVU^

+ (L+T-M)2-n(M-T)EVU(R)1

where Ew(R) is given in (B) and T < M.

Upon observing that, since T < M,

1-2 n(M-T)EVU(R)
< M-T1_,2-nEVU R:

we can state

Corollary 1:

The averago probability of error for maximum-likelihood decoding

of the ensemble of binary R o 1/n, L,T, M codes satisfies

P [e] < Lc2
-nTE

VU (R)	 (19)

where EVU (R) is given in (B). In the special case when T=M, the

bound of Corollary 1 is identical to Viterbi's well-known upper

bound for the ensemblu of time-varying convolutional codes.

Next, we notice that the first term within the brackets in (17) is

independent of L whereas the second term can be made arbitrarily

small for a given L by increasing M. Thus, by choosing that value

of M which. for a given L, makes these two terms equal we have

Corollary 2:

The average probability of error for.maximum-likelihood decoding of

the ensemble of binary R	 1/n, L, T, M codes satisfies

-nTE (R)Pre < c' 2 	V 	 (20)

(17)

(18)
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provided

M > T + ^n Vll(R)]-1 log2L	 (21)

where

L '.

o' 
r	

iR	
(22)

1-22n^VLJ
t

and E	 (R) is given in (8).
W

The bound (20) of Corollary 2 is independent of the length L of f

the trellis and . is very similar to the bound (7) of Theorem 1 for

the ensemble of tree codes.- ^Is

We r!anark that Theorem 2 and its corollaries can be proved to
hold for the ensemble of time-varying convolutional codes, but

not presently for the ensemble of constant convolutional codes
.y5

s

which lack the independence needed in the proof. However, we con-

jecture that Theorem 2 and its corollaries hold also for the en-

semble of constant convolutional codes which in fact are the type

of convolutional code that has always been used in practice. Since

there must always be at least one code whose P Ec] is no more than ,e

average, 'we can state an even weaker

Conjecture. "4

The probability of error for maximum-likelihood decoding of a "good"

binary R	 1/n, L, T, M constant convolutional code satisfies

P[e] a c2	 (23)(23)

provided

-M > T + [nEVd (R)1 	 1092 	 (24) 1

where c is a constant independent of L, T and M and E Vd (R) is

given in (8).
A

Y
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The conjecture is given strong support by the simulations discussed

in Section V which is not too surprising, since all "Viterbi type"

error bounds for convolutional codes can presently be proved only

for random or time-varying codes but all simulations to date have

used "good" constant codes and the bounds have always been found

to be valid, i.e. the actual P[c] for the constant code considered

was smaller than cho upper bound an P[c] for the ensemble of time-

varying codes of that length.

Finally, we note that by taking M = L+T, the ensemble of R, 1., T, M

trellis codes becomes exactly the ensemble of R, L, T tree codes.

We have already noted that for M=T, the ensemble of R, L, T, M trellis

codes becomes the ensemble of trellis codes defined bs Massey [1].

Hence our Theorem 2 is a generalization from which upper bounds on

P[c] for both these ensembles follow as special cases.

p
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V. RESULTS OF SIMULATIONS.

In order to test the implications of the bounds for trellis codes

derived in the previous soction and in particular to test our con-

jecture that these bounds apply to "good" constant convolutional

codes, decoding simulations for the binary symmetric channel (BSC)

were conducted.

Although the theory was developed for true maximum-likelihood de-

coding, it is well-known [7J that the exponent of error probability

for sequential decoding is the same as that for true maximum-likelihood

or "Viterbi" decoding. Since the latter is too time-consuming, for

practical simulations except when M is very small, it was decided to

perform the simulations using sequential decoding. The particular se-

qucntial decoding algorithm employed was the quantized or "stack

bucket" algorithm proposed by Jelinek [6] which is the practical

modification of the "stack algorithm" conceived independently by

ligangirov [9] and Jelinek. The simulations were all performed for
the code rate R - 1/2. The "good" convolutional codes chosen were

the "complementary codes" found by Bahl and Jelinek [10]. Three

different BSC's were simulated, namely those with "crossover probabi-

lity" p of 0.033, 0.045 and 0.057 which correspond to R - 0.9 R0,

R e R  and , R = 1.1 R  respectively when R - 1/2. For each code used

on each of these channels, a very large number (up to 60,000) of

received "frames", i.e. complete received sequences of length n(L+T),

were decoded so that the decoding error probability could be accura-

tely inferred. The "metrics" used for the sequential decoding on

each BSC are tabulated in Table I.

In Figures 3, 4 and 5, we give the simulation results for the sequen-

tial decoding undetected error probability P[c] as a function of the

tail length T of the convolutional code, (Because of the extreme

variability of the computation in sequential decoding when M is large,

there were occasions where the decoding had to be stopped because the

computation exceeded the alloted maximum. The observed probability

of this "overflow" is tabulated in Table II and had negligible effect

on the curves of Figures 3, 4 and 5.) These curves show that the

actual P[c] decreases exponential with T with an exponent very close

to that of the bound (20) for the range T < M - [nEVU(R)]-1 1092L+2
II
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i.	 <s

while further increases in T beyond this point have virtually no

offaot on P[c]. This is in surprising agreement with the effect

of M and T an P[c] in the bound of (17). It is rather remarkable'

that the range of T for which the bound becomes independent of L,

viz. T < M- [nE
Vd (R)]

-1
 1092  is so close to the range where the

true P[c] becomes independent of L. Neneo the relation (21) can

be taken as a slightly conservative design rule for choosing M so

-that P[c] is reduced to as little as possible for the tail length

T that can be allocated to an,encoded frame.
;

"
^i

A

I
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VI. AN EMPPIRICAL FrRMULA FOR P Ecl WITH SEQUENTIAL OECODING.

The curves of Figures 3, 4 and 5 for P[c] versus T obtained from

our sequential decoding simulations are well approximated by two

straight lines giving the exponential decrease of P[c] with T up

to the point where P[c] becomes independent of T. The following

empirical formula then provides a close match to the undetected

error probability for sequential decoding of the "good" convolutio-

nal codes used in these simulations:

P[e] n; c2
-nTR

T , provided M > T + [nEVU (R)]
-1 

1092 	 ' (25)

where the observed values of c and R  for each of the decoding simu-

lations performed are given in Tables III, IV and V. The near con-

stancy of these parameters for wide variations in M and L when M > 6

suggest that these parameters can be well estimated in advance and

used for design of sequential decoding systems. The case M-4 is a

case where the memory length is so small that the exponential app

-roximation is not very well fulfilled. In fact, the appar€ant slight

variation of c and R  for large values of L is probably related more

to the inaccuracies of the statistical values because of the small

but increasingly non-negligible overflow probability Po (as given

in Table II) rather than to an actual variation of c and RT.

The average values of R  evaluated over M > 8 and over all L (four

values exceeding 0.96 are omitted) are given together with Vitorbi's

upper and lower exponents EVU (R) and EVL (R) for R - 1/2 in tTable VI.

The exponents EVU (R) and EVL (R) are shown in Figure 6 where straight-

line approximations are used when R O < R < C.

From Table VI we conclude that

EVU (R) < R  < EVL (R).,	 R < RO	(26)

R  - 
EVU(R) - EVL (R)	 RO < R < C	 (27)

Thus, R  is in agreement with both the exponent EVU (R) of the

upper bound (20) and the exponent E VL (R) of Vitorbi's lower bound

on the error probability in decoding a time-varying convolutional

code [3].

W
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VII. REMARK.

Finally, we should remark that, if we wanted solely to minimize

the undetec .d error probability with sequential decoding for a

given memory length and was not concerned with holding the tail

size to a minimum to maximize the true rate of the trellis code 	 A

then the optimal value of the tail length is, of course, the memory

length, i.e. T =M. Probably this fact has caused 'investigators to

ignore the distinction between the "tail" and the "memory" so that

the memory .length came to.be honoured for work actually done by

the tail.
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bTABLE I

Channel

transition

probability

RO R/R0 Code symbol

Mtitric

Received

0

symbol

1

p - 0.033 0.50 0.89
0
1

1
-10

-10
1

p - 0.045 0.50 1.00
0
1

1
- 9

- 9
1

p - 0.057 0.45 1.11 ._
0
1

1
- 9

- 9
1
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TABLE II

The probability of computational overflow Po for the secauential

d	 iecoding simulations, (1000 dcoded frames). 	 ;	
V

 h

p PI	 L 8 16 32 64 96 128 160 192 224 256 286 320

4 .000 .000 .000 .000 .001 .001 .001 ,001 .001 .001 .002 .002

6 .000 ,000 .060 .000 .001 .002 .002 .004 ,008 .009 .009 .009

.033 8 .000 .000 .000 .000 .001 .001 .002 .004 ,005 .006 .007 .008

12 ,000 .000 .000 .000 .001 .001 .001 .004 ,006 .009 .008 .009

16 .000 .000 .000 .001 .002 .005 .005 .008 .010 .013 .014 ,016

4 .000 .000 .000 .001 .003 .004 .005 .009 ,013 .016 .019 .026

6 .000 .000 .000 .002 .002 .009 .012 .022 .030 .036 .038 .049

.045 8 .000 .000 .000 .002 .006 .013 .016 .034 .044 .052 .057 .071

12 .000 .000 .000 .002 .005 .012 .020 .031 .042 .050 .058 .073

16 .ODO .000 .000 .002 .006 '.012 .018 .034 .043 .051 .059 .073

4 1	 ,000 .000 .000 .006 .015 .021 .031 ,052 .067 .086 .106 .127

6 ,000 .000 .000 .009 .02n .048 .070 .106 .133 .153 .176 .218

.057 8 .G00 .000 .000 .007 .030 .051 .071 ,130 .161 .189 .216 .249

12 .000 .000 .000 .007 .026 .057 .078 .123 .152 .180 .215 .255

16 l	 .000 .000 .000 .008 ,030 .055 .084 ,132 .160 .190 .225 .277
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TABLE III

Results of simulations at p 0033 (R 0.9R0)

(1000 decoded frames).

M 1. 8 16 32 64 96 128 160 192 224 256 288 320

4

c .075 .113 .113 .100 .116 .131 .134 .134 ,117 .144 .137 .153

R  .69 .62 .64 .51 .43 .52 .36 .33 .32 .38 1 .28 .31

c .073 .111 .106 .076 .092 .099 .095 .102 .064 .079 ,095 ,106

6
R  .97 .75 1.18 .52 .58 .51 .64 .57 .55 .57 .56 .54

c .073 .112 .110 .094 .093 .114 ,°';",J6 .104 .070 .078 .092 .097

6
R  .97 .70 .99 .62 .59. .71 .62 .58 .54 .51 .53 .52

12

c .061 .102 .106 .083 .096 .102 .095 .080 ,058 .090 .088 .091

RT .65 .60 1.29 .G1 .58 .65 .63 .55 .65 .69 .66 .54

16

c .073 .108 .106 .081 .096 .103 .087 .078 .073 .093 .092 .090

R  .75 .65 .98 .EB .70 .72 „S8 .58 .66 .77 .63 .64
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TABLE 1V

Results of simulation at p • 0:;045 (R V
(1000 docoded fraanas), 	 I

M L 8 16 32 64 1	 96 128 160 192 224 256 288 320

c .127 .180 ,172 .199 .208 .234 ,252 ,276 .266 .296 ,305 .344
4

RT .52 .50 .45 .36 .32 .27 ,21 .16 ,13 .16 .13 ,14

c .101 .159 158 154 .159 .172 .167 .169 .141 .168 .170 .179
6

RT .57 .50 .50 50 .46 .48 .50 .41 .41 .46 .33 .39

c .106 .156 .175 ,168 .153 .154 .170 .154 .127 .132 .146 .135
8

RT .60 .54 .47 .48 .47 .45 .45 ,48 .50 .58 .43 .49

c .099 .157 .163 ,158 .154 .164 .158 .154 .104 .141 .145 .140
12

RT .53 .51 .58 .49 .47 .53 .49 .46 .51 .51 .46 .48

c .103 .151

P47

.149 .143 .152 ,162 .140 ,111 .138 .145 .146
16

RT .48 .48 .54 .50 .5% .50 .48 .49 .61 .50 .52
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TABLE V	 n	

M	

tl
o	 R

Results of simulations at p • 0.057 (R 	 1.1R0)
(1000 decoded frames).

M L 8 I	 16 32 64 96 128 160 192 224 256 288 320

c .172 .227 .246 .266 .308 .367 .387 .406 .406 ,424 .430 .459
4

RT 48 .41 .38 .27 .20 .18 ,15 .11 .10 .10 .07 .08

6
c .153 .200 .226 .225 .216 .259 .242 .246 .214 ,237 .244 ,231

•
R  .51 .37 .42 .39 .31 .36 .32 ..28 .24 .29 .23 .25

c .133 .207 .232
1 

244 .237 .260 .242 .219 .189 .177 .193 .187
8

R I	 .42 .40 .38 .39 .35 .37 .37 .36 .35 .36 .30 .38

12
c .139 .196 .223 ,244 .229 .250 .233 .206 .168 .177 .179 .172

R  .45 .38 .43 .42 .36 .41 .37 .36 .41 .37 .36 .42

16
c .142 .204 .229 .225 -?25 .251 .222 ,194 .152 .188 .183 .162

RT ,49 .42 .40 ,45 .33 .48 .41 .37 .39 .45 .39 .42

Y

A



I	 Channel

transition RT EV0(R) EVL(R)

probability

p - 0.033 0.63 0.56 0.60

p d 0.045 0.50 0.50 0.50

p a 0.057 0.39 0.36 0.30

9

9
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Fig. 1.

An example of a binary tree coda with rate 1/2 and tail length 3

,.	 for a binary input channel.
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An example of a binary trellis code with rate 1/2, memory length

2 and tail length 1 for a binary input channel.
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The decoding error probability obtained from sequential decoding

simulations versus the tail length of the convolutional coda.
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The decoding error probability obtained from sequential decoding simula-
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The decoding error probability obtained from sequential decoding simula-

tions versus the tail length of the convolutional code.
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KEY=

p c EVO(0) EVL(0)

0.033 0.84 0.56 0.74

0.045 0.80 0.50 0.63

0.057 0676 0.45 0.55

—

0.50	 -----

0.38

0	 t	 ^—^	 «.. R

0	 1/2	 C

Fig. 6

Viterbi's exponents EVO (R) and EVL (R) for several binary symretric

channels

(p - 0.033, p 4 0.045, p	 0.057).
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