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A MONTE CARLO INVESTIGATION OF EXPERIMENTAL DATA

REQUIREMENTS FOR FITTING POLYNOMIAL FUNCTIONS

By George C. Canavos

Langley Research Center

SUMMARY

This report examines the extent to which sample size affects the accuracy of a low-
order polynomial approximation of an experimentally observed quantity and establishes a
trend toward improvement in the accuracy of the approximation as a function of sample
size. The task is made possible through a simulated analysis carried out by the Monte
Carlo method, in which data are generated by using several transcendental or algebraic
functions as models. Contaminated data of varying amounts are fitted to linear quadratic
or cubic polynomials, and the behavior of the mean-squared error of the residual variance
is determined as a function of sample size. Results indicate that the effect of the size of
the sample is significant only for relatively small sample sizes and diminishes drastically
for moderate and large amounts of experimental data.

INTRODUCTION

The purpose of this report is to investigate by Monte Carlo simulation the effect
that the number of experimental data points has on smoothing out the influence of random
error in an analytic-function approximation of an experimentally observed quantity.

In an environment in which experimentation is the only source of information, it is
often desired to determine and quantify the effect that some controlled variable exerts on
a measured quantity which is nearly always subjected to random contamination. For
many such cases, the true functional relationship is too vaguely known to be of practical
use. Thus, some simple analytic function, such as a polynomial of relatively low degree,
is used to approximate the behavior of the dependent variable within a prescribed range
of the controlled variable. To determine the polynomial approximation, a reasonable
amount of test data is needed to smooth out the effect of random error to some nominal
value. However, in many instances the collection of laboratory data is becoming
increasingly more difficult for reasons such as cost and complexity of test equipment.
Consequently, it is advisable to plan carefully the collection of experimental data to
enhance the relevancy of each data point while holding down its cost. Nevertheless, it is
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conceivable that economic restrictions on the sample size may compromise the accuracy

of the approximation to an unacceptable level. Therefore, the purpose of this report is

to shed some light on the problem of how the amount of test data affects the accuracy of

a low-order polynomial approximation of a stochastic quantity and to establish, at least

for typical cases, a trend toward improvement in the accuracy as a function of sample

size. In addition, the report summarizes some existing techniques on how the observa-

tion points should be spaced within the range of the controlled variable to improve the

predictive capability of the approximating function.

To determine the extent to which the sample size affects the accuracy of an approx-

imating polynomial function, a simulated analysis is carried out by appealing to Monte

Carlo procedures (ref. 1). In order to include a practical range of possibilities, data are

generated first by using one of several polynomial or transcendental functions as models

and then adding random errors generated from a Gaussian distribution. However, in all

cases, the contaminated data are fitted to either linear, quadratic, or cubic polynomial

functions. It is believed that these low-order polynomial functions are the most plausible

to approximate the behavior of an experimentally observed quantity when compared with,

say, high-order polynomials, which may fit the random error more than approximate the

variable quantity.

SYMBOLS

E expectation operator

m degree of polynomial function

n number of measurements

x controlled variable

X matrix of controlled-variable values

y measured variable

y vector of measurements

vector of unknown coefficients

E vector of random errors
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9 2  error variance

Subscripts:

estimate

T transpose of matrix

An underlined symbol denotes a vector.

REVIEW OF FUNDAMENTAL CONCEPTS

Let the unknown functional relation between an observable quantity y and a con-
trolled variable x be approximated by a polynomial of degree m in which the jth obser-

vation is depicted by

yj= l0 21x. + 2x 2 + mxjm + (j = 1,2,...,n) (1)

where 0O' .1'" " " m are the unknown coefficients of the polynomial, Ej is the random
error associated with the observation yj, and n is the number of laboratory measure-
ments used to fit the polynomial. In vector form, this set of n equations in m + 1
unknown coefficients is written as

y Xj0 + E (2)

where

2 m
Y1 1 x 1  x1  ... x 1  0

Y2 21 x 2  2  . .. x2m 1 2

y=l, • X= fl . =

2 Inyn 1 xn  xn2 m m n
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If E(E) = 0 and E(ItT) = a2 I, where a2 is the error variance and I the

appropriate identity matrix, then the least-squares estimates (refs. 2 and 3) of the com-

ponents of 3 are determined by the result

S= (XTX1 XTy (3)

where _ denotes the vector of estimates.

The quality of the estimates is measured by the variance-covariance matrix of

given by (ref. 2)

var(j) = 2(xTx)- 1

The (i,i) element of o 2 (TX) is the variance of Pi, while the (i,j) element

corresponds to the covariance between i and 0j for i / j. Since variance is a

measure of dispersion, then the smaller the variance of a component of ., the better the

estimate of that component. In real-world situations, however, the error variance r2

is not likely to be known. Therefore, to compute var), an estimate of 2 must be

determined. This is usually the unbiased estimate (ref. 2)

2 = y TxTy (4)
n - (m + 1)

which is nothing more than the sum of squares of the residuals divided by the number of

data points less the number of estimated coefficients. Thus, the estimate U2 is

usually referred to as the residual variance. Whereas the error variance .2 measures

the magnitude of the random error, the residual variance 62 measures the magnitude

of the degree to which the fitted equation fails to describe the change in the dependent

variable. The residual variance is an unbiased estimate of U2 only if there is no

model error; otherwise 62 reflects both random variation and model error. For

example, if the true model is an exponential type while the approximating function is a

polynomial, then ^2 accounts for the error due to inherent differences between the true

and fitted functions as well as for pure random error.

Of major interest in an analytic-function approximation of a variable quantity is the

ability to predict that quantity without a laboratory observation. Thus, let xp be a point

of prediction. The predicted value yp corresponding to xp, from equation (1), is
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where

P T( 1,XpX 2 xpm

From matrix algebra, the variance of yp is

var(p) T(xTX)-' x 62

Therefore, the quality of yp is directly proportional to the quality of the least-squares

estimates of the polynomial coefficients. Moreover, var (Y ) is a function of the resid-

ual variance 62. If, for example, the residual variance is zero, the predicted and

observed values will coincide and the fitted polynomial function will model the observed

data without error. On the other hand, an excessively large residual variance will result

in a poor prediction capability.

As stated earlier, the motivating force in an analytic-function approximation of a

stochastic quantity is to predict the quantity without an actual measurement. Thus, it is

imperative that the data-gathering procedure be carefully planned to control the size of

the error between a laboratory measurement and the corresponding predicted value. In

fact, how the observation points are spaced is related to the error of a predicted value.
If, for example, some polynomial of unknown degree is to be tried as the approximating

function, the optimal spacing of observation points is a uniform distribution throughout

the selected range of the controlled variable (ref. 4). Such a spacing increases the likeli-

hood of detection of an unusual behavior while holding down the size of the error. Alter-

natively, if the degree of the approximating polynomial is known, spacing such as that
considered by De la Garza (ref. 5) is preferred. Some optimal-spacing techniques in

curve fitting are summarized briefly in the appendix.

MONTE CARLO SIMULATION

In every Monte Carlo simulation, it is mandatory to specify completely the process

to be simulated and to identify quantities of interest (ref. 1). It is therefore necessary
to present a detailed discussion for implementing the simulation procedure.
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The objective is to fit a varying number of contaminated data points to one of three

models (viz., linear, quadratic, or cubic polynomial) and determine the behavior of the

random error as a function of the number of data points. Establishing the effect that

sample size has on smoothing out the influence of random error in a polynomial-function

approximation is essentially the same as determining the stability of the residual variance

as a function of sample size. A quantity which measures the stability of any estimator is

the mean-squared error of the estimator. The mean-squared error depicts the average

squared difference between the estimator and the quantity it is estimating. Since the

error variance must be an input to the simulation, it is possible to determine the squared

difference between 62 and a 2 , given a model and a set of data points. By simulating

and repeating such a procedure many times, the squared differences are accumulated and

the mean-squared error of the residual variance is determined.

Data are generated by using polynomial and transcendental functions as models and

are uniformly distributed throughout the range of x for the following 11 values of n:

5, 11, 21, 31, .. ., 101. The reason that odd sample sizes are selected is to allow for the

inclusion of the midpoint and both extremes of the range of x while maintaining uniform

spacing.

When polynomials are used to generate data, the range of x is restricted to the

interval (-1,1) for the purpose of providing reasonable control on the magnitude of the

dependent variable. Moreover, two distinct values of the error variance a 2 are used:

1 and 225. Since the magnitude of y is not likely to be excessive within the indicated

range of x, it is believed that these two values of a 2 provide modest and significant

contamination to the data, respectively. Data are generated by using a polynomial func-

tion of degree m - 3 and are fitted to the same model after contamination. Thus, for

each value of n and a 2 , this part of the simulation is carried out according to the fol-

lowing scheme:

(1) Values for the coefficients of the polynomial are generated from the range -100

to 100.

(2) By using the generated coefficients and the appropriate X matrix, n uncon-

taminated values of y are generated.

(3) Each value of y is contaminated by generating a random number from a normal

distribution with a mean of zero and a variance of 2

(4) The least-squares estimates of the coefficients and the residual variance are

computed according to equations (3) and (4), respectively.

(5) The squared differences between 62 and a 2 are computed and stored.

(6) Steps (1) to (5) are repeated 500 times to determine the mean-squared error of

the residual variance.
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The results are provided in figures 1 to 3, where the behavior of the mean-squared

error of 62 is given as a function of n for each polynomial model and each value

of U2 .

The second part of the computer simulation deals with generating data from trans-

cendental functions, contaminating the data, and fitting them to either quadratic or cubic

polynomial models. Three distinct functions are arbitrarily selected. These are

y = 2 exp(-2x) - exp(-4x) (0 5 x 5 2) (5)

y = 2 x 1 04x/(100+x) (0 - x 5 100) (6)

y = lOx exp (- x/2) (0 5 x 5 200) (7)

where the selected range of x is indicated for each function.

Data generated by equation (5) are fitted to both quadratic and cubic models, while

simulated data from equations (6) and (7) are fitted to quadratic and cubic models, respec-

tively. The error variances used to generate Gaussian noise to contaminate the data gen-
erated by equations (5), (6), and (7) are 0.01, 81, and 9, respectively. Figures 4 to 6 are
provided to show generated data before and after contamination for each one of equations

(5) to (7).

The implementation of the simulation scheme for data generated by transcendental
functions is analogous to that already discussed; that is, after generating the data by using

one of equations (5) to (7), the simulation scheme picks up with step (3) of the outlined pro-
cedure. The results are given in figures 7 to 10, where once again the behavior of the
mean-squared error of 62 is depicted as a function of n. On the basis of the overall

results, the following conclusions are apparent:

(1) The behavior of the mean-squared error of ^2 as a function of n resembles

a fast-decaying exponential curve. This result is in agreement with the expected behavior
of statistical estimators.

(2) In most cases, the mean-squared error is reduced dramatically as n increases

to a moderate size. However, as n becomes larger, the mean-squared-error curves

for nearly all cases flatten out so much that any further reduction may not be economically
advantageous.

(3) Within the scope of the investigation, the substance of the results appears to be

nearly invariant with the source from which the data are simulated. The same comment
also applies to different values of the error variance.
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From the results of this investigation, the effect that the sample size has on

smoothing out the influence of random error in an analytic-function approximation of a

stochastic quantity appears to be significant only for small sample sizes and diminishes

considerably for larger values of n. Thus, the careful planning of only a moderate num-

ber of laboratory tests appears to be most beneficial.

CONCLUDING REMARKS

In an environment in which decisions are based on experimentation, it is often

desired to determine an analytic representation of an experimentally observed quantity

as a function of some controlled variable. Such a task is usually carried out by fitting

laboratory measurements of the quantity to some simple analytic function, as a poly-

nomial of relatively low degree. However, the amount of laboratory testing is becoming

increasingly more restrictive mainly for economic reasons. Consequently, the purpose

of this report has been to determine the effect of sample size on the accuracy of an

analytic-function approximation of an experimentally observed quantity. Results obtained

by using the Monte Carlo method indicate that for typical cases a moderate sample size

provides an excellent trade-off between accuracy and economic restrictions.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., February 12, 1974.
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APPENDIX

OPTIMAL SPACING TECHNIQUES IN CURVE FITTING

When the degree of the polynomial function to be fitted is known, an optimal spacing
of the independent variable has been developed by De la Garza (ref. 5). Consider the
polynomial function

Y= 0 + i3 x + 92x2 +. + i pxm

of known degree m. Assume that n observations of y will be made within the range
of x, which is scaled to the interval (-1,1) for convenience. De la Garza (ref. 5) showed
that to minimize the maximum variance of a predicted quantity y, the optimum spacing
of the n observations is accomplished by using no more than m + 1 distinct observa-
tion points within the range of x. The spacing for minimax variance is provided in the
following table through the cubic polynomial function:

Model Observation points Number of measurements per
observation point

Linear 1 n/2
-1

Quadratic 1 n/3

0
-1

Cubic 1 n/4

-1

Let xp be any arbitrary point of prediction within the interval (-1,1). If the indi-
cated optimal spacing is used, it has also been shown (ref. 5) that the maximum variance
of p corresponding to the prediction point xp is

maxvar(P)] _ (m +n1)u2
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APPENDIX - Continued

where the residual variance ^2 usually replaces the unknown error variance a2. In

fact, given the polynomial model, the absolute minimum variance of yp can also be

determined. As an example, consider the cubic model. The matrix X which corre-

sponds to the minimax variance spacing when n is a multiple of 4 is

1 -1 1 -1

1 -Vi/5 1/5 - /25

1 r/5 1/5 /25

1 1 1 1

X=

1 -1 1 -1

1 -/5 1/5 -\r//25

1 4/5 1/5 5/25

1 1 1 1

Thus,

1 0 3/5 0

0 3/5 0 13/25

3/5 0 13/25 0

0 13/25 0 63/125
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APPENDIX - Continued

and

13 0 -15 0

0  63 0 -65

XX -1 1
4n -15 0 25 0

0 -65 0 75

Therefore, if xp is the point of prediction,

var(yp) T(XT)' 2

13 0 -15 0 1

0 63 0 -65 Xp 2
X -15 0 25 0 2 4n

0 -65 0 75 x 3

13 + 33xp2 - 105xp 4 + 75xp6

4n

where a 2 is temporarily dropped for convenience. It follows that the points at which

maximum or minimum variances occur are determined by solving the equation

d var 0
dxp

or

66x - 420x 3 + 450 5 = 0
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APPENDIX - Concluded

which, upon simplification, yields the values xp = 0, ±5i, ±V15 . By examining

the second derivative, it is determined that the minimum variance for a cubic model

is 2.578cr2/n and occurs at xp = ±Vi7 , while the maximum variance 4u2/n occurs

at xp= ±V1/5.

Assuming the spacing for minimax variance with regard to linear, quadratic, and

cubic polynomials, the following table provides upper and lower bounds of the variance

of a predicted value p when the prediction point is within the range -1 to 1:

Variance boundaries for a
Model predicted value

Linear = varp 2U

Qud5t8 
va N

Cubic 2.578 a2  va 4 2
Cubic var y 5n n
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