NASA CR-120846

Contra Part

ő

でた

NG

0,7

⊳

0672-52-4LN

A N

CALE

σ

n C

ACOUSTIC TESTING OF A 1.5 PRESSURE RATIC LOW TIP SPEED FAN WITH A SERRATED ROTOR (QEP FAN B SCALE MODEL)

44

J.E. Paas W.R. Minzner

S.B. Kazin

by

GENERAL ELECTRIC COMPANY

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-Lewis Research Center Contract NAS 3-12430

1. Report No	2. Government Acces	sion No.	3. Recipient's Catalog	No.
CR-120846				
4. Title and Subtitle			5. Report Date	
ACOUSTIC TESTING OF A 1,5 PRES	SURE KATIO,	Ļ		
(QEP FAN B SCALE MODEL)	ROTOR		6. Performing Organiz	ation Code
7. Author(s)	<u></u>		8. Performing Organiz	ation Report No
S.B. Kazın, J.E. Paas, and W.F	. Minzner	ŀ	10. Wurk Unit No.	
9. Performing Organization Name and Address				
General Electric Company			1i. Contract or Grant	'No.
Aircraft Engine Group			NAS3-12430	
Evendale, Unic 45215		F	13 Type of Report an	d Period Covered
12. Sponsoring Agency Name and Address			Contractor Re	eport
National Aeronautics and Space	Administration	F	14. E	Cada
Washington, D.C. 20546			14. Sponsoring Agency	Code
15. Supplementary Notes				
Project Manager, E.W. Conrad				
V/STUL & Noise Division NASA Lowis Research Contor				
Cleveland Obio				
16. Abstract				
A scale model of the bypass fill speed fan was tested with a se generation. The serrated rote the nominal rotor blades. The models noise characteristics w rotor.	ow region of a 1,3 prrated rotor lead or was produced by effects of speed were investigated of	o pressure ratio, shi ing edge to determine cutting teeth into and exhaust nozzle a with both the nomina	ngle stage, low t e its eifects on the leading edge area on the scale l rocor and serat	tip noise of ted
Acoustic results indicate the In particular, the 200 foot () for nominal and large nozzle of P^{AL} 's were increased 1.5 to 3 with these serrated rotor black	icate the servations reduced front quadrant PNL's at takeoff power. 20 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdB at 40° e nozzle operation. However, the rear quadrant maximum sideline 1.5 to 3 PNdB at approach thust and up to 2 PhdB at takeoff thust rotor blades.		ver. 40° 2 1st	
The configuration with the set sideling PNL for any given the	rated rotor produ	ced the lowest maxim	um 200 foot (61.0 ign area) was emu) m) ploved.
	ly given thust when the large nozzle (116% of design area) was em		,	
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Experimental Quiet Engine Proj Serrated Turbofan Rotor Turbofan Noise	gram .	Unclassified -	Unlimited	
		<u> </u>		
19 Security Classif (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassifie	3		\$3.00

:

•

i

¥

, ,

:

••

* For sale by the National Technical Information Service, Springfield Virginia 22151

TABLE OF CONTENTS

1

1

		Fage
I.	SUMMARY	1
11.	INTRODUCTION	4
111.	TEST VEHICLE DESCRIPTION	7
IV.	TEST PROGRAM	17
v.	ACOUSTIC DATA ANALYSIS	23
	A. NOISE VARIATIONS WITH SPEED	23
	B. NOISE VARIATIONS WITH FAN NOZZLE AREA	30
	C. SERRATED ROTOR EFFECTS	42
	D. SCALED-UP-TO FULL SCALE RESULTS	55
VI.	CONCLUSIONS	75
VII.	APPENDIX	77
VIII.	NOMENCLATURE	103

PRECEDING PAGE BLANK NOT FILMED

(;;

i

iii

ı.

T

٦.,

,

ł

I. SUMMARY

.....

A scale model fan, designated "Fan B," was utilized to determine the acoustic characteristics of a single stage fan designed for a corrected tip speed of 1160 ft/sec (353.6 m/sec) at a bypass pressure ratio of 1.5. The fan had 26 rotor blades and 60 vanes with 2 rotor aerodynamic chord spacing between the rotor and the OGV's. The scale model fan which represented a .484 linear scale model version of the NASA/GE Quiet Engine Program full scale Fan B simulated the bypass flow region through the fan.

The scale model was tested with both a nominal and a serrated rotor to determine the effect of serrations on noise generation. The acoustically treated fan frame configuration was used for the comparison tests in which the fan's nominal rotor blades were replaced by an equal number of serrated blades. The serrated blades were produced by cutting teeth .32 inch (.81 cm) deep into the leading edge of nominal rotor blades, the tip cords of which were 5.5 inches (13.9 cm). Spacing of .1 inch (.25 cm) was left between adjacent teeth including appropriate rounds and filets. The acoustic frame treatment used during the comparison tests consisted of ½ inch (1.25 cm) thick Scottfelt covered with a 225% porosity plate.

The scale model with the nominal rotor was tested to determine the effects of speed and exhaust nozzle area on the fan's noise characteristics and thus establish a baseline. Acoustic data was recorded at ten speed points covering a range from 30% to 100% sea level thrust. The fan was tested with three different nozzles - nominal, 16% oversize and 6% undersize - for this sequence of speed points in order to identify operating points which would produce lower noise at a given thrust level. Each set of tests was then run with the serrated rotor to determine the effectiveness of the cut-in serrations.

尚書雅

le e

The data obtained at each of these points was scaled up to full scale to evaluate the projected effectiveness of the design in reducing the noise of the fan system. The following table summarizes the 200 foot (61.0 m) sideline, maximum PNL's for all three fan exhaust nozzles, for both the clean and serrated rotor at approach and takeoff thrust:

FULL SCALE FAN B 200 FOOT (61.0 m) SIDELINE, MAXIMUM PNL

	Front Qua	drant	Rear Qua	drant
	Approach*	Takeoff**	Approach*	Takeoff**
Nominal Nozzle				
Baseline	98.4 PNdB	110.3 PNdB	100.9 PNdB	112.4 PNdB
Serrated Rotor	99.9 PNdB	109.2 PNdB	103.7 PNdB	113.4 PNdB
Large Nozzle				
Baseline	99.3 PNdB	110.4 PNdB	101.1 PNdB	113.6 PNdB
Serrated Rotor	97.8 PNdB	108.5 PNdB	102.7 PNdB	113.5 PNdB
Small Nozzle				
Baseline	101.0 PNdB	111.0 PNdB	102.1 PNdB	113.6 PNdB
Serrated Rotor	100.1 PNdB	110.7 PNdB	103.8 PNdB	115.6 PNdB

* 6,684 pounds (29,744 newtons) static fan thrust - 60% N $^{\text{**17,140}}_{\text{rc}}$ pounds (76,277 newtons) static fan thrust - 91% N_{rc}^{c}

From this table, it can be seen that the lowest front quadrant, maximum 200 foot (61.0 m) sideline PNL's were produced with the serrated rotor while employing the large fan nozzle. The lowest rear quadrant maximum sideline PNL's for the serrated configuration were also produced with the large nozzle. However, the use of serrations increased the rear quadrant maximum PNL's by 1.6 to 2.8 PNdB at approach thrust with the three nozzles and by 1.0 and 2.0 PNdB at takeoff thrust for the nominal and small nozzle, respectfully.

1.

Acoustic data also indicates that at takeoff thrust, the blade passing frequency SPL values were significantly reduced in the front quadrant by the serrations; with the nominal nozzle, the fundamental PWL was reduced 4.2 dB. Further, at takeoff power, the serrations reduced the front quadrant baseline PNL's. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdB at 40° for nominal and large nozzle operation.

II. INTRODUCTION

This report describes work performed by the General Electric Company for the NASA-Lewis Research Center on the Experimental Quiet Engine Program. The major objectives of this program were:

- To determine the noise levels produced by turbofan bypass engines designed for low noise output and to confirm that predicted noise reductions can be achieved;
- (2) To demonstrate the technology and innovations which will reduce the production and radiation of noise in turbofan engines;
- (3) To acquire experimental acoustic and aerodynamic data for high bypass turbofan engines from which acoustic theory and experience can be correlated to provide a better understanding of the noise production mechanisms.

A scale model fan program was utilized to provide information pertinent to achieving these objectives. The results of the scale model testing provided directly applicable experimental data on noise reduction features that might be applied to full size fan systems. Experience indicates that such scale model acoustic tests provide accurate and effective means to readily evaluate such low noise design configurations.

Among the principle mechanisms of fan noise generation are the wakes shed from the rotor blades. The blade passing frequency and associated harmonic ruise are governed by the wake width and wake velocity decrement; while the generation of broadband noise is primarily associated with the intensity of rotor wake turbulence, the width of the wake and the susceptibility of the rotor

4

1.

to lift fluctuations due to the impingement of random inlet turbulence on the rotor's leading edge. Therefore, means are sought to reduce the influence of this wake and inlet turbulence without impeding the aerodynamic performance of the rotor.

1. 110

The source of the wake is the boundary layer along the rotor blade, thus, in order to reduce its effects, the thickness of the boundary layer must be reduced at the trailing edge of the blade. One method to accomplish this is to induce turbulent flow in the boundary layer which slows the build up of the boundary layer. Another method is to smooth adverse pressure gradients encountered by the flow along the blade and in so doing, forestall the separation of the boundary layer from the blade surface. (These adverse pressure gradients occur in regions of rapid acceleration along the blade surface, generally on the suction surface in the vicinity of the leading edge). An approach that both induces turbulent flow in the boundary layer and relieves the high acceleration region on the suction side of the blade is to cut serrations into the leading edge of the rotor blade. Although serrating the leading edge of the blades will not reduce the inlet turbulence generated in the inlet flow and in the casing boundary layers upstream of the fan, it may be hypothesized that the serrations will reduce the reaction of the airfoil to the turbulence by "breaking up" the eddies before they reach the main portion of the airfoil.

Prior to a QEP fan investigation cascade tests were run to select a serrated configuration that promised to reduce rotor generated noise. The resulting serrated blade was installed and tested in scale model Fan B with the acoustically treated fan frame. The particular serrations cut into the scale

model rotor blades were determined, during cascade testing to decrease the rotor wake width while producing nearly the same turbulence intensity and wake velocity decrement as the non-serrated or clean rotor. A description of these serrations appears in the following section.

The effects, on the scale model's noise characteristics, of speed and exhaust nozzle area for the clean rotor were examined during acoustic testing to establish a baseline. Acoustic data were recorded at speed points corresponding to a range from 30% to 100% sea level static thrust. The fan was tested with three different nozzles for this sequence of speed points in order to identify operating points which would produce lower noise at a given thrust level. The same set of tests was also run for the serrated rotor configurations to determine the effectiveness of the cut-in serrations. Furthermore, the data obtained at each test point from both configurations were scaled up to full scale to evaluate the projected effectiveness of each design in reducing the noise of the fan system.

Further details on the acoustically treated baseline configuration are contained in the scale model NASA/GE Fan B report¹ which compares configurations with and without acousite frame treatment.

¹Kazin, S.B., Minzner, W.R., and Paas, J.E., "Acoustic Testing of a 1.5 Pressure Ratio Low Tip Speed Fan (QEP Fan B Scale Model)," NASA CR-120709.

6

ì

III. Test Vehicle Description

Full scale Fan B is a low speed, moderately loaded, single stage fan. It has been designed at the altitude cruise condition for a corrected tip speed of 1160 ft/sec (353.6 m/sec), at a bypass pressure ratio of 1.5 and with a corrected fan flow of 950 lb/sec (430.9 kg/sec). This fan incorporates 26 shroudless rotor blades and 60 outlet quide vane (OGV's) with a rotor-OGV spacing of two aerodynamic rotor chords to minimize noise generation.

The scale model used to determine the acoustic characteristics of different low noise designs was approximately a half scale version (48.4%) of Fan B which essentially simulated the byples flow region (outer 84.5% of flow) of the full size fan as shown schematically in Figure 1. The design basis was to provide the same corrected tip speed, pressure ratio and weight flow per unit area as the bypass portion of the full scale Fan B. To maintain the bypass pressure ratio on the scale model, it was necessary to increase the loading at the hub to account for the end-wall blade boundary layer interaction. Some pertinent scale model and full scale characteristics are shown in Table I.

The acousite treatment of the fan frame was scaled from the full scale fan and incorporated in the scale model. Figure 2 shows a cross section of the fan indicating the location of the acoustic treatment. The amount of acoustic treatment at each location is listed in Table II. The areas shown are effective areas, allowing for fasteners, assembly methods, rake pads, support ribs, etc. The treatment material used on the scaled fan was Scottfelt 3-900, $\frac{1}{2}$ " (1.3 cm), an open-celled polyurethane roam material having wide suppression bandwidth characteristics similar to the Multiple-Degree-of-Freedom resonator

1

SCHEMATIC OF FAN B

Figure 1

ŝ

8

TABLE I

QEP FAN B FULL SCALE AND SCALE MODEL CHARACTERISTICS SEA LEVEL STATIC, STANDARD DAY TAKEOFF POWER - 91% FAN SPEED

	Full Scale	Scale Model
Fan Speed, RPM	3299	6814
Tip Speed, Ft/Sec (M/Sec)	1055 (322)	1055 (322)
Bypass Total Pressure Ratio	1.415	1.415
Bypass Flow, Lb/Sec (Kg/Sec)	692 (313.9)	162 (73.5)
Fan Duct Thrust, Lb (Newtons)	17,140 (76,277)	4,010 (17,844)
Rotor Inlet Tip Diameter, In. (M)	73.35 (1.9)	35,5 (Ú,9)
Inlet Hub/Tip Ratio	0.465	0,579
Number of Rotor Blades	26	26
Number of OGV's	60	60

ì

τ.

9

FAM & SCALE MODEL CHOSS SECTION INFICATION: LOCATION OF ACOUSTIC THEATRONT SERMATED ROTOR

. 1

Figure 2

:

Č,

ł

÷

į

TABLE II

AND THE

1

QEP SCALE MODEL FAN B ACOUSTIC TREATMENT AREAS

	A1	rea
Location	In. ²	cm ²
Inlet	812	5,240
Rotor - OGV's		
Inner Wall	315	2,030
Outer Wall	1007	6,500
Aft of OGV/s		
Inner Wall	417	2,690
Outer Wall	668	4,310
Total	321 9	20,770

11

3

The second

suppression material used on the full scale vehicle. The scale model treatment was held in position by means of a perforated face plate with 1/16 inch diameter holes and a porosity of $22\frac{1}{2}\%$.

Both the clean rotor baseline and the serrated rotor configurations had the same fan frame acoustic treatment. The only difference between the two configurations was the rotor blades. The serrated blades were produced by cutting fifteen teeth into the leading edge of clean rotor blades. The teeth were cut .32 inches (.81 cm) deep with appropriate rounds and filets, leaving spacing between adjacent teeth as indicated in the rework drawing of the fan blade, Figure 3. The tip cord of the nominal rotor blade was 5.5 inches (13.9 cm). A single blade and the assembled rotor are shown in Figures 4 and 5 respectively.

The effects of varying the fan operating line were also investigated with the scale model by running three nozzle sizes on both configurations. The nozzle areas run were 372 square inches $(.24 \text{ m}^2)$, 396 sq. inches $(.26 \text{ m}^2)$ and 460 sq. inches $(.30 \text{ m}^2)$ or about 6% less than nominal, nominal and 16% greater than nominal, where the nominal nozzle was equivalent to a 1700 sq. inch (1.10 m^2) nozzle on the full scale fan. Figure 6 shows the scale model Fan B operating lines for these three nozzle areas. Note that the serrated rotor has not changed the operating lines.

12

j.

1 h...

i

13

į

.

FAN B SCALE MODEL SERRATED ROTOR ASSEMBLY

Figure 4

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POUR

14

i

i

2

:ŧ

۰.

QUIET ENGINE PERFORMANCE SCALE MODEL FAN B CLEAN ROTOR AND SERRATED ROTOR

Figure 6

i

ç

IV. Test Program

Testing of the scale model vehicle was performed at the Peebles Test Operation, General Electric's out-door test facility shown in Figures 7 and 8. Testing was performed at the Scale Model Fan Test Stand, using a G.E. LM1500 stationary gas turbine as the drive system. Figure 9 shows a typical scale model vehicle installation. As can be seen, the scale model fans were driven from the front to eliminate noise generation by discharge flow over the drive structures.

Table III summarizes the acoustic tests conducted for the baseline and the serrated rotor configurations, each with three nozzle sizes. The speeds selected correspond to the net engine thrusts shown below:

			* *
RPM	% SPEED	^{% F} n SLS	% F n alt≈0 M = .25
4040	54.0	29.5	22.3
4474	59.8	36.8	30.6
4700	62.8	40.9	35
4907	65.5	45.2	40
5505	73.5	58.6	55
5990	80	71.1	70
6354	84.9	81.9	82.5
6526	87.1	88.4	90
6649	88 .8	92.9	95
6845	91 · ^l ±	100	102.5

* 100% = 22,000 lbs (97,900 newtons) full scale ** 100% = 16,000 lbs (71,200 newtons) full scale

1.

These physical speeds were set in order to avoid shifting the frequency of the tones between 1/3 octave bands due to day to day ambient temperature variations.

Figure 7

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POUR

18

Ś

i

Figure 8

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POUR

TABLE III

QEP FAN B SCALE MODEL TEST DATA BASELINE AND SERRATED ROTOR WITH NOZZLE VARIATIONS

j.

7.7

Configuration		Baseline		Ň.	errated Roto	L.
Run No.	17	14	13	4 31B	32	34
Test Date	10/6/70	9/19/70	9/19/70	1/23/71	1/23/71	2/6/71
Nozzle Size	Nominal	Large	Small	Nominal	Large	Small
Fan Sroed	Re	ading Numbers	10	Å	eading Numbe	rs
4040 RPM	261 271]]]	218 229	489 499	509 519	537 547
	262*	239*	219*	*067	510*	538*
4474 (Approach)	272	244	230	500	520	548
	263	I	220	164	511	539
4700	273	1	231	501	521	549
	264	240*	221	492*	512*	540*
4907	274	245	232	502	522	550
	265*	1	222*	£6 1	513	541
5505	275	1	233	503	523	551
	266*	241*	223*	*767	514*	542*
5990	276	246	234	504	524	552
	267	1	224	- 495	515	543
6354	277	1	235	505	525	553
	268	242	226	496	516	544
6526	278	247	236	506	526	554
	269	1	227	*267	517*	545*
6649	279	.	237	507	527	555
	270*	243*	228*	867	518	546
6845 (Takeoff)	280	248	238	208	528	556

Small Nozzle = $372 \text{ in}^2 (.24 \text{ m}^2)$ Nominal Nozzle = $396 \text{ in}^2 (.26 \text{ m}^2)$ Large Nozzle = $460 \text{ in}^2 (.30 \text{ m}^2)$

*100-foot, 1/3 octave data are presented
in the Appendix.

Moreover, the following restrictions were imposed or acoustic testing:

The second s

- Acoustic data were not taken with steady winds greater than 5 mph (8.05 km/sec) or gusts greater than 3 mph (4.83 km/sec);
- 2. Water or snow accumulation on the sound field prohibited testing;
- 3. Rain, snow or fog at the test site prohibited testing;
- Testing was restricted to conditions where the relative humidity was greater than 30% and lower than 90%;
- 5. No absolute level acoustic data was taken while aerodynamic instrumentation was installed.

The acoustic data was taken² with microphones located on a 100 foot (30.5 m) arc, positioned at 10 degree increments from 20° to 160° as measured from the fan inlet centerline at the rotor leading edge. The microphones were set at the height of the fan centerline, 12 feet (3.7 m) above the sound field surface. This sound field surface consisted of a level, 250 ft. (76.3 m) arc of crushed stone. The 1/3 octave scale model data used to prepare this report are presented in the Appendix, Section VII.

In addition to providing comparative data on noise reduction features, the scale model results were used to predict the full scale fan noise levels.

²Kazin, S.B., Minzner, W.R., and Paas, J.E., "Acoustic Testing of a 1.5 Pressure Ratio, Low Tip Speed Fan (QEP Fan B Scale Model), NASA CR-120789, pp 13, 17 and 20-25.

22

and the second second

and the second terms

V. Acoustic Data Aralysis

A. Noise Variations with Speed

مى مەربىي مەربىيى مەربىيى <u>ئ</u>ەربىي

.

The noise characterists is a scale model Fan B with the nominal nozzle are shown in Figures (0+14) at reveral speeds for the configuration with nominal rotor blades. The data presented were recorded around a 100 foot (30.5 m) arc and have been corrected to Standard Day conditions of $59^{\circ}F$ ($15^{\circ}C$) temperature and 70% relative humidity.

Figures 10 and 11 show the distribution of the fundamental and second harmonic respectfully around the arc at approach and takeoff thrust. The SPL's of the tones were derived from narrowband data and then corrected to Standard Day. The sound power levels were calculated from these tone SPL values. The fundamental at approach was 17.4 dB PWL lower than at takeoff thrust and the second harmonic was 10.3 dB PWL lower at approact than at takeoff. The maximum takeoff fundamental and approach second harmonic tones occurred in the front quadrant while the maximum approach fundamental and takeoff second harmonic tones occurred in the rear quadrant.

Figures 12 and 13 present the 1/3 octave spectrum at 50° and 130° respectfully, for corrected fan speeds of approximately 60%, 70%, 80% and 90%. Although the blade passing frequency occurred within different 1/3 octave bands for the different fan speeds, it can be seen that both the fundamental and second harmonic tones increased with increasing speed. Further, the broadband noise level generally increased with speed at both angles. (The 1/3 octave scale model data for all angles is presented in the Appendix).

÷.

Figure 11

SCALE MODEL FAN B SECOND HARMONIC - STANDARD DAY

÷,

100, Are SPL , dB

Figure 13

QEP FAN B SCALE MODEL RESULTS

Figure 14

ļ

Figure 14 contains the sound power level spectra versus frequency for the four speeds. Again, it can be seen that the levels of the tones and the broadband noise increased with increasing speed.

• •

.....

29

1

1

ł

1.

B. Noise Variations with Fan Nozzle Area

Figures 15-24 present the noise characteristics of the scale model with nominal rotor blades at approach and takeoff thrusts with three different fan nozzles. These nozzles were designated small, 372 square inches (.24 m²); nominal, 396 sq. inches (.26 m²); and large, 460 sq. inches (.30 m²). The data presented in these figures are for a 100 foot (30.5 m) arc.

and a second realized and an and an and a second and a second

The distribution of the fundamental and the second harmonic around the arc for the fan with each of the three nozzles is shown in Figures 15 and 16 for approach thrust and in Figures 17 and 18 for takeoff thrust. The sound pressure levels of the tones were derived from narrowband data and these levels have been corrected to Standard Day conditions. At approach, the fan tone levels were approximately the same with both the nominal and small nozzles. However, the fundamental was generally higher around the arc with the large nozzle than with the other nozzles, resulting in a 1.8 dB higher power level than produced with the nominal nozzle. The sound power level of the second harmonic was also greater with the large nozzle, although the difference in SPL occurred only at 120° and 130°. In comparison, at takeoff thrust, the fan with the nominal nozzle produced notably higher fundamental tones - 5.2 dB PWL higher than with the large nozzle and 3.5 dB PWL higher than with the small nozzle. These fundamental tones were particularly higher in the front quadrant. Similarly, the second harmonic produced by the fan with the nominal nozzle was 3.2 dB PWL higher than with the large nozzle, again the difference occurred primarily in the front quadrant. In contrast, however, the second harmonic resulting with the small nozzle was generally the same tone level as with the nominal nozzle.

30

1.

QEP FAN B SCALE MODEL FUNDAMENTAL AT APPROACH

<u>م ار</u>

Figure 16

T.

I.

. . .

.. . . .

. . . .

.

The 1/3 octave spectra are presented at 50° and 130° for approach thrust, Figures 19 and 20, and for takeoff thrust, Figures 21 and 22. The spectra show that the fundamental was much more prominent at 50° than at 130° , especially for takeoff thrust. Of the three nozzles, the spectra indicate that the fan with the small nozzle generated the most broadband noise from 500 to 1600 Hz, while the least amount was produced with the large nozzle.

ne a la compositiva en estado en estado estado estado estado taxilizada en estado estado estado estado estado e

States in a damagement states

Figure 23 contains sound power levels versus frequency for the three nozzles at approach thrust. The spectra shows the same relative broadband noise levels among the three nozzles as does the 1/3 octave data. From 200 to 1600 Hz, the fan with the small nozzle was 3 dB to 4½ dB PWL higher than with the nominal nozzle which was, in turn, higher than the large nozzle throughout this frequency range. Figure 24 contains the PWL spectra at takeoff thrust for the three nozzles. At this thrust level, the broadband noise was again higher with the small nozzle than with the other nozzles, although the difference was not as great as that at approach thrust.

36

Figure 19

59.0 , 58.8 58.6 , 58.6

- D'dLarge Nozzle

---- OSmall Nozzle

59.0 , 58.8 58.6 , 58.6 72N/ 10 58.8 , 59.1 • ONominal Nozzle **Dd**Large Nozzle

QEP FAN B SCALE MODEL RESULTS

Fig:re 21

, 90.5

---- D'OLarge Nozzle

90.5 8.63

- }

QEP FAN B SCALE MODEL RESULTS

Figure 23

58.6 , 58.6

♦♦ Small Nozzle

QEP FAN B SCALE MODEL RESULTS SOUND POWER LEVELS AT TAKEOFF

Figure 24

89.8 , 90.4

------O Small Nozzle

C. SERRATED ROTOR EFFECTS

Comparisons of the treated baseline and the serrated rotor configurations of the scale model fan with the nominal nozzle are presented in Figures 25-34. Both of these configurations contained acoustic treatment in the fan frame. In fact, these two configurations differ only by the rotor blading. The details of the rotor serrations are presented in Section III, Test Vehicle Description.

Figures 25-28 show the distribution of the fundamental and second harmonic around the 100 foot (30.5 m) arc as derived from narrowband data which have been corrected to Standard Day conditions. At approach thrust, (Figures 25 and 26), no significant tone power level differences are indicated by the data for either the fundamental or second harmonic tones. Figures 27 and 28 present the tones at takeoff thrust and include a split PWL computed by segmenting the arc into a front quadrant with angles less 85 degrees and an aft quadrant with angles greater than 85 degrees. The data shows that the fundamental tone power levels were significantly reduced by the serrated rotor in both the front and aft quadrants. The reductions were 4.2 dB PWL and 2.1 dB PWL for the front and aft quadrants respectively, resulting in a 3.6 dB PWL reduction around the arc. In addition, the second harmonic tone power level was reduced 1.6 dB in the front quadrant by the serrated rotor. However, a noise increase of 2.1 dB PWL in the aft is indicated (controlled by the point at 130[°]) resulting in a total PWL increase of .6 dB.

42

с v-

FAN B SCALE MODEL SECOND HARMONIC AT APPROACH STANDARD DAY NARROWBAND

Figure 26

•!

r

FAN B SCALE MODEL

FAN B SCALE MODEL

SECOND HARMONIC AT TAKEOFF

l

Figure 28

Corresponding to the narrowband data, the 1/3 octave data show no tone reduction at approach thrust for 50° (Figure 29). The spectra show, however, that the broadband noise did increase at 2500 Hz and at frequencies above 6300 Hz with the serrated rotor. The figure also indicates that the baseline spectrum was higher at 630 Hz and 800 Hz resulting from pure tones occurring within these octave bands. At 130° (Figure 30), the serrated rotor data indicates a general noise increase above the treated baseline levels. Both tones have increased 4 dB with the serrated rotor and the broadband noise has increased as much as 6% dB above the baseline - this maximum occurring at 10 KHz.

At takeoff thrust, on the other hand, the spectra show tone reductions of approximately 2 dB at 50° (Figure 31) due to the serrations. This figure also indicates broadband noise reductions with the serrated rotor from 1250 -2000 Hz and between the fundamental and second harmonic tones. The magnitude of the difference occurring at 1600 Hz was due to multiple pure tones generated with the baseline configuration which did not occur with serrations. At 130[°] (Figure 32), the fundamental decreased with the serrated rotor while the second harmonic increased. The baseline broadband noise was lower at this angle from 8-10 KHz, with the maximum difference of 3½ dB occurring at 10 KHz. Note that the serrated rotor generates higher SPL values than the clean rotor at the high frequencies for the spectra examined.

Figure 33 contains the sound power level spectra for the two configurations at approach thrust, showing a 1 dB PWL increase at both tones as well as 2 dB or more PWL broadband noise increase at 2500 Hz and from 6300 to 10 KHz.

QEP FAN B SCALE MODEL RESULTS 100' ARC SFL BASELINE VS SERRATEP ROTOR

Figure 29

£1

QEP FAN B SCALE MODEL RESULTS

SOUND POWER LEVELS AT APPROACH

61.4 , 61.1

- OSerrated Rotor (nominal nozzle)

· **AVBaseline**

due to the serrations. However, at takeoff thrust (Figure 34), the serrated rotor PWL spectrum shows a 4 dB decrease at the fundamental and a $1\frac{1}{2}$ to 2 dB decrease from 1000 to 1600 Hz while the high frequency power levels have increased $1\frac{1}{2}$ dB at 8 and 10 KHz.

:

D. SCALED-UP TO FULL SCALE RESULTS

In order to obtain a picture of the full scale results, the scale model data was scaled up to full scale.³ Figures 35-40 present the 200 foot (61.0 m) sideline perceived noise levels for both the baseline and serrated rotor configurations with each of the three nozzles tested. The rotor serrations reduced the front end noise of the fan with both the large and nominal nozzles at takeoff thrust. The maximum reduction occurred at 40 $^{\circ}$ and was from 3 to 4 PNdB. In the rear quadrant, the noise levels remained unchanged with the large nozzle although they increased with the nominal nozzle. However, with the small nozzle, the perceived noise increased from 1 to 3 PNdB at angles of 30° , 40° and 50° in the front quadrant and throughout the rear quadrant. Further, at approach thrust, the serrations did not reduce noise levels. The major PNL difference between the clean and serrated rotor this thrust occurred at 130° where the servated rotor was approximately 14 1½ PNdB higher with the large and small nozzles and 3 PNdB higher with the nominal nozzle. Through the remaining angles, the PNL's were approximately the same with the large and small nozzles while the serrated rotor generally generated 11/2 to 2 PNdB higher levels with the nominal nozzle.

Note that the fan noise was aft dominant for both configurations at both thrust levels. Further, no dip in perceived noise was indicated with the serrated rotor from 80° to 100° as was with the clean rotor. Most likely, aft quadrant noise was radiated into the front quadrant, thus possibly masking some of the front end noise reductions with the serrated configuration.

³Kazin, S.B., Minzner, W.R., and Paas, J.E., "Acoustic Testing of a 1.5 Pressure Ratio, Low Tip Speed Fan (QEP Fan B Scale Model), NASA CR-120789, pp. 22 - 24.

QEP FAN B FULL SCALE PROJECTIONS FROM SCALE MODEL RESULTS 200' SIDELINE PNL BASELINE VS SERRATED ROTOR TAKEDEF - SINGLE FAN

Figure 36

QEP FAN B

.

Figure 38

QEP FAN B FULL SCALE PROJECTIONS FROM SCALE MODEL RESULTS 200' SIDELINE PNL AT APPROACH WITH SINGLE FAN

60

Figure 39

15

U

QEP FAN B

ł

FULL SCALE PROJECTIONS FROM SCALE MODEL RESULTS

200' SIDELINE PNL

Figure 40

Figures 41-43 present the variation of maximum 200 foot (61.0 m) sideline PNL with corrected speed. The approach and takeoff points which have been examined in detail are shown. The data generally indicates that the maximum perceived noise for the serrations was higher than for the baseline. These results correspond to the data presented in Figures 35-40 which showed the noi 2 to be aft dominant and indicated no rear quadrant noise reductions with the serrations. Recall that the major difference in PNL at approach thrust occurred at 130° , the angle of maximum perceived noise. The maximum PNL data indicates that the same magnitude of difference extends to 80% corrected fan speed with the nominal and small nozzle and to 70% corrected speed with the large nozzle. Note that at takeoff thrust perceived noise no longer peaked at 130° but rather flattened out between 120° and 130° .

To show the effects of the serrations more clearly, Figures 44-46 present the front quadrant, maximum 200 foot (61.0 m) sideline PNL's as they varied with corrected fan speed. Operating with the nominal nozzle, the fan did radiate higher noise levels at speeds below 88% N_f. However, at higher speeds (including the important takeoff speed), the serrated rotor blades reduced max mum perceived front end noise. Moreover, with the large nozzle, the maximum front quadrant PNL's were reduced 1½ to 2 PNdB by the serrations at every fan speed examined. The serrations also reduced maximum perceived noise in the front quadrant with the small nozzle at speeds below takeoff although not to the extent as with the large nozzle; at takeoff power, the PNL values were approximately equal with both configurations.

Another data presentation which provides more insight into the thrustmaximum PNL situation is an iso-noise map. Figure 47 presents this information for the baseline configuration. Lines of constant maximum PNL, fan speed and

مستدميميناه الالإسمائيو والماسيين الرمان

64

V - maximum communication and communication

ł

ł

Figure 44

BASELLINE VS SERRATED ROTOR

STANDARD DAY ; SINGLE ENGINE

Figure 45

ł

68

: ;

Figure 46

:

, ,

ł

fan thrust appear along with the three operating lines. The identification of a point along a constant thrust line which produces the least noise represents an improvement from an acoustics viewpoint.

At both takeoff (100% thrust) and approach (39% thrust) points, the corstant PNL lines are such that at operating points other than on the nominal operating line, noise increases. In fact, at approach static thrust, the constant thrust, speed and PNL lines are for all practical purposes parallel. However, from 50% to 80% static thrust, the large nozzle produced the lowest noise. Nevertheless, these static thrust levels do not have the importance of the approach and takeoff thrust levels for which airport noise regulations are formulated.

The iso-noise map for the servated configuration, Figure 48, shows that the large nozzle produces the lowest maximum perceived noise from the approach thrust level to the takeoff thrust level. Thus, at any static thrust level, a decrease in fan nozzle area from the large nozzle size increases the noise level.

Figure 49 shows the PNL for a level flyover at approach power setting of a single uninstalled fan at 370 feet (112.8 m) with the flight speed of 279 feet per second (85.0 m/sec), flight Mach number 0.25. The PNL directivity shows a maximum angle (130⁰) increase of 4½ PNdB with the serrated rotor.

Figure 50 presents the PNL for a 1000 foot (304.8 m) level flyover of a single uninstalled fan at takeoff power for Mach number 0.25. At this condition, the front end noise was reduced significantly, 4 PNdB at 40° , with the servations while the aft quadrant noise only increased 1 PNdB from 100° to 130° . Again, it should be noted that the servated data shows a nearly monotonic

ISO-NOISE MAP

k

ł

QEP FAN B -- FULL SCALE PROJECTIONS FROM SCALE MODEL RESULTS LEVEL FLYOVER AT APPROACH FOR STANDARD ACOUSTIC CONDITIONS

Figure 49

QEP FAN B -- FULL SCALE PROJECTIONS FROM SCALE MODEL RESULTS LEVEL FLYOVER AT TAKEOFF FOR STANDARD ACOUSTIC CONDITIONS

Figure 50

73

•

increase from front to rear indicating the possibility of rear radiated noise playing a significant role in the front maximum and thus obscuring some of the front end noise decrease due to serrations.

3

.

ŧ

1

ŧ

,

and the second second

.

٤

-

f

VI. CONCLUSIONS

From this data, it can be concluded:

- The serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thrust when the large nozzle (116% of design area) was employed.
- 2. The serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdB at 40° for nominal and large nozzle operation.
- 3. The use of serration increased rear quadrant maximum PNL's at approach thrush by 1½ to 3 PNdB.
- 4. The serrations reduced blade passing frequency SPL values significantly in the front quadrant at takeoff thrust; with the nominal nozzle, the fundamental PWL was reduced 4.2 dB.

Summarizing the results, projections of full scale Fan B indicate the following 200 foot (61.0 m) sideline maximum perceived noise levels:

	Fron	t Quadrant		Rear Quadra	ont
	Approac	h* Take	off** App	proach* 1	Takeoff**
Nominal Nozzle					
Baseline	98.41	PNdB 110.3	PNdB 100).9 PNdB J	12.4 PNdB
Serrated Rotor	99.9 1	PNdB 109.2	PNdB 103	3.7 PNdB 1	13.4 PNdB
Large Nozzle					
Baseline	99.3 1	PNdB 110.4	PNdB 101	.1 PNdB J	113.6 PNdB
Serrated Rotor	97.8 1	PNaB 108.5	PNdB 102	2.7 PNdB 1	13.5 PNdB
Small Nozzle					
Baseline	101.0 1	PNdB 111.0	PNdB 102	2.1 PNdB	13.6 PNdB
Serrated Rotor	100.1 1	PNdB 110.7	PNdB 103	3.8 PNdB 1	115.6 PNdB
*	6,684 pounds (;	29,744 newt	ons) static fan	thrust - (50% N _f
**	17,140 pounds (*	76,277 nev t	ons) static fan	thrust - 9)1% $N_{f_c}^{c}$

FULL SCALE FAN B 200 FOOT (61.0 m) SIDELINE, MAXIMUM PNL

VII. APPENDIX

Tables A1 - A24 contain the 1/3 octave scale model data used to prepare this report. The data presented is for the 100 foot (30.5 m) are and has been corrected to Standard Day conditions. Tables A1 - A4 contain the data for the treated fan frame configuration with nominal nozzle at speeds as close as possible to 60, 70, 80 and 90% corrected fan speed. Tables A5 - A8 present the data for the serrated rotor configuration with nominal nozzle at these speeds. Tables A9 - A16 contain the same set of information for the fan with large nozzle and Tables A17 - A24 present the data for the small nozzle.

PRECEDING PAGE BLANK NOT FILMED

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY 100' (30.5M) ARC ; 58.8%N_{fc} ; NOMINAL NOZZIE ; BASELINE

TABLE A1

QEP SCALE MODEL FAN B 1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

100' (30.5M) ARC ; 73.0%N_{fc} ; NOMINAL NOZZLE ; BASELINE

넕

•	2	4 -1			44	1	30			11	-		-	e4 -	• #3 #". • • • •	4 - 4	1		4
-	•																		
	.																		
<u></u>	~																		
31/4	_																		
ADI Š			-	12	00			2	2	24	-21		2	n M	120	-	- 12		22.0
0 A (C)*	. 10 B	2.0		1	(n) 4 (n) 40				5		2						200	99	
R. 2	- 0 -	- in	~*		(h. 4	1	(4 4	1	K) -	0 0	-	• •	-	~ "	• • v	0	•	-	
* 0 m			0	1	200	5	60		2	2	21	200	5			10	200		100
	4 ~ * *	, n	•• •	, n	<u>а</u> м	2	90	-			•	N 0	0	+ c	- (1 10		-		1- 1-
Wo		20	0	i i		5	-10	^N		00	5		6				50	ig :	, no
4. H				_							_								
						-	-	~		2.5						2			
	y Y	•	* *			-	6 0 h	•		0 60	-0						~ ~	40 0	
2		1	+0		-	5	n		=			5	-	5					
- AN			~ •		~ *	•0	0 P	-	10 4	•	0	0.00	10	Ű.	60 C	-			• •
ш <u>т</u> ,	-	••	-14	<u> </u>		212	2	1			-1	N4		~ "		*	•		
A 1 2 2		1	**	20	6 4	3 (N 6)	04		ĉ.	0 %	6		5	0			~~	-	10.0
0.4				- 0	1	-	-	• •		9		0 -	10	~	n s		-	-	
413				10	73		6.5		27	2.2	2		2				22		2010
244	() ~~ ~ ~	•	~		n r	.	• •			ñ 77	•	.	•	~~			~	-	
	101					2		1	2				5			i.	2		Ň
¥0	5		~ -				_											_	
O							5	-	-	ñ	-								
er 1	5		~ ~				~ ~		~	~ *		- 40			- - - P			•••	
2.4								20	-	~*	2	04 • • •	1	-			77	Ξ	
		• •0	**	- ō		-			F.		7	~ •		~ 4	he	īħ		-	4 4 4
EN]					* *				-	n 10		2	1	-15	124	1	1	2	
RES 60			P P		~ ~				~		-		E.						10 4 A
n	240			• •			-		-			••	-				07		107
					24		5		21	~ ~	2						5 F	24	ini 1 0
E .		7 .	•	n in	• •		••	~	.	• •	~	-		in P	***	•	m ~	÷.	
2 H Q			Ĩ		22	20			2		29.						5		
EFA SSU	2 ~~•	. n	~				08	•	-	~		~ 4		or		-			
				12	-	52	-	1		ĉ.	5		ē	2	-		22		
N LI									_								_		
13								1											
יא מע ער בע ביי	5	•••	P - 4	••	-04		~ ~		~ 1		~		•	~ ~			~ 4		9 49 10 11
	-£.7		50		00	12			2		100		5				300		
	Ű.		•••							a ü	-	ŇŇ	n	Ťž		Ş	23		
	•	XX	-			5		_		~	-	23			5			-	3
NO V	1	e 'n	FAN	0			H2.	- ×	ы. С	ドライ	Ę	r T a	x	2,					
NAS .		•	-	11		Ĩ	22			ä è	5		2						1
_	2	3		22		9	0				P.					Ĭ			i i i
u l	4	5	"		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	171	5			00		3.4	5					20
A G E	503	EHI	š	are Are	54	1			iet.	- Lu	-	ະັ	×	~ a		5			
•	44	2	U.	٩¢	K 2	- 🖷	•	•	-	×		2	2	1	2	t			

, **1**4

TABLE A2

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

100' (30.5M) ARC ; 79.3%N_{fc} ; NOMINAL NOZZLE ; BASELINE

PAGE 1 NASADUI	ETENGINE	1	PSCALF	2.4						PHOC.	DATE -	HLYON	12 DA	1 0 >	iR. 21	6.0		
	NODEL	CNNOS .	PRESS	SURE LE	VELS 4	RESELT	ED FOR	STANDA	YAU OF.	574 -	LES FR	DK 1M	21 14	DESVES	S CAVI	CRACIANS)		
		23.	30.	, D.A	50,	[69]	70,	åc.	90 T	1.1	10, 1	20. 1	30, 1	40.1		150.		P.4.
-	FRE3, (162101	1(26.0)	0.7016	3, 871	1,0510	2,22)(1	1111111	.57)(2	179162	, 92) (2	100112	. 27) (2	5) (1 1 2 .	16216	2,7916	~	
RADIAL 100, FT.	90	74,2		74,1				13.6	76.1	76,8	** . *	76.2	79,0	82,5	36,2	89,5		129,5
(E 107)	52	70,5	72,2	73,2	76.7	544	7311	74,0	78,9	?7,5	7.9	79,1	79 9	83,1	96,1	E 7 . 3		129.8
VEHICLE , 3FA	0 0	5		10.7	12,0	7.11	70,5	72.9	73,2	70,0	57,9	78,5	79.5	52,3	6 1 9	87,3		126,4
CONF CONF CONF	001	13.0	72,1	15.0	17.4	76.6	78.4	79.2	7.6	1.1	111		85 A	85,2		6 9 8		131,3
LOC 710	125	71.4	71.0	73.1	72.9	73.4	1164	13.4		75, J	76.5	77.8	2.1	79,6	61, C	011		12412
DATE 10/6/70	160	70.4		70.5		7112		71.0	71.6	72	74.5	15,4	77 2	78,9.		5115		125/1
RUN 17, PT, 26	. 200	75.7	72.	6.14	72.0	7113	74.0	72.0	75.2	76.2	79,3	70,6	62, C	54,0		86,3		129.5
74PE 7966	• 25 u	0.0	72.4		1.0	9 - 6	76.9	7.7	10.64		85 F	64.2	5.56	07.6	69,1	57.4		1324
048 29.0 HG	115	75.1	76.3	78.6	70.5	70.5	79.3	60.0	82,0	83,3	84.9	86.6	37.6	86.5	0.7	96.4		134.2
(97760, N/2)	400	74.5	17.7	79.1	19.4	78.0	78.1	70.6	5.5	92,1	03.3	64.6	94.6	84.4	83,3	52.2		131.0
TAM9 69, DEG 6	100	7.0	77.7	76.1	7.0	76.4	74.2	75.4	7.1.1	77.8	76.7	5.0	62.5	02.0	6.0	1.61		120.2
(254, DEG K)	620	2.	77.1	2			70	79.2	1		0.1.2	94.4	120	65.5	03.7	82.2		132.3
7467 39. DEG F	900	75.0	76.7		79.0	0.0	0.0	79.6	• · • •	02.1	0.3.0		11	82.9				131.7
(200. DEG K)	1000	13.1	77.5	71.2			70.0	77.0			03.2	94.7			6 19			1117
NACT 9.93 GH/NS	1250		76.4			77	77.7	76.9	1. 1		5.1			82.6	1	70.2		
CHIVER DOGOC	100	7 - 2	10.	78.5	18.0	77	70.0	74.9	76.9	8.19	62.9	84.9	15.3	650	с т	79.1		111
RPA SPOD. RPH	2000		76.0	77.7		76.4	76.6	7.0	78.4	60.2	010	0.2.4		82.2	- 0-	77 6		130.6
1 420, RAD/SE	C1 2500	4 10	4.1.	1 6 8		6.6	05.2		6.20	1.00	5	95.0	6.06		36			137,9
NEX 5939, RPH	3192	72.2	82,9	01.5	111	0110	79.0	79.7	79.5	0.2	62.2	34.9	07,5	01,1	32,5	79.0		13311
1 422, RAD/SE	C) 4000		79,9	9119	1100	79.44	5.91	77.4	79,9	5 2 5		06.7	97,1	63,1	1126	79,7		133,8
270 7486, 29X	9000		85,7	87.7		9445	9410	111	82,4	115	36,5	88,9	2.10	85,9	1150	3,2		137,3
1 7 9 4 RADZE	C) 4300				~	0210	1.10	00.0	01,2	92.5	84 . 5 5	07 E		84,7	5.19	0°0		1321
AU ULASS CO																		
			7 								4 4 4			0 · 1 0				
	12300	71,2	5.0		79.9	212	112	75.2	75.5	70,0	7911		50.5	27.2	0 1 2 2	7412		13219
	1000	46,4	73,5	79,22	121	7514	111	71.1	7015	415	74.4	76,8	75,5	73,1	1314	7013		1391
	20330	66,7	69 3		7216	71.6	72:3	61,9		7010	70.7	72.4	7107	69'69	6913	6715		129,6
	EASURED	3.1	6.4		96	9519	9-46	1.29	94.7	111	97.9	8849 T	111	99,J		5.80		
DYERALL' CAL	GULATED						7104	49.4			¥0,4		1146	5 ¹ 6	1.04	0496		147.12
		102.7	110.0	109.3	100.0	1001	10448 3	2 0.00	06.1 1	0746 1		11,7 1	1340 1	0 ° 5 1	111	1001 4		

ł

TABLE A3

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY 100' (30.5M) ARC ; 90.7ZN_{fc} ; NOMINAL NOZZLE ; BASELINE

۰

E 1. MASAQUIETENS	11 NE 25U	V2SCAL	EFAN Sure Le		TESENTE:	Te noj	GRACKA	DAY AD	C, DAT	1 HOH		DAY B DEGRE	N N N N N N N N N N N N N N N N N N N	C. RADIANS	ľ
FRED	22.0	100.52	40. 1 (0 - 7 0) (9.57 1 C	1.05111.	22, 11, 23		52.13.4	1110.	12.30	133,	140,	157.5	teg 2.73, c 2.	
L 100, FT,	90 70	-	12		7.0					120	62,3	92.9	91.0		1331
		1	77.4		7712					4'S		1.7		1911	1407
													0		1.0.7
PT0 THT	25														
10/0/76		2													121
17. PT. 270 2	00 72.	4 75.		75,2	75.0	7 1 1			. 32 ·			10.2	615		1401
1969, 2	50 75.				1 1	21 12						1	050	2	
20,0 HQ 3,05			1.00	Δ Z Φ				2			2			12.1	139,
794 N/H2) 4	100 LU		1 12.6		0215 6	2.1 82		2 05		99.5	0.0	9.00	6,9	67.5	136.1
	9. 00	30.5	90.0	7.7				1.		03,5	97.2	6.79	66.50	84.7	133.
293, DEG K) 6	144 05			78.2	79.1	11.0	50 5.			1 04.5		2 0			135,1
30, 060 1	10 77.		1.10	99.2	0110	2,5 12	5 5	7		11.	99.2			94.4	1341
200. DEG K) 10	10 24		97,6		97:2	11.5	1 03		7	9.09		01.0			135.0
	50 70		92.5		1 5 10				6 05 I	00.0			1150	515	1341
12 (DH/0X 0543)	00 79		1 13,2	9249		60 611	5 62			96.2		5.9	85.2		1347
150, APN 20	00 76	1 71		• •	79.2 3		,	. 821		1411	05.3		62.9	1,1,1	1321
717, RAD/SEC1 25	96 00				83,5	3,9 82	~		÷ 12	84.5	., .	82.6	B 3,8	6 1 0 6	1401
TO HAN TAK	90 E4				95,0 4	5.4 93	0		50.		5.5	89,5	6.20	39,5	
711, RAD/SEC) 40	00 74	1 8 1	03,7	12,5	92,0	2.7 81			0.0	0.69	96.1	11.5	85,2	52,6	135.0
	00 77	5.0	5159		82.7	2.5		1 05			196	69,3		02.0	1361
784 RAD/SEC) 65.	00 42		5 , D, 2		3 0 0 0	17 ₆ 1 86				2114	2.1		96.9		140.1
LADEs 26 83(00 74			111	83,5 8	10 110				99,99	80.3	84,5	547	00 7 CO	1463
201	30 73		5.10		92,0 4	2,5 00	. 7 12		1		17.0	02,9	61,6	79,5	136,1
122	11. 00	1 76.1	5 91.1		1 1 36			7 82.	1 521	93.4	244	1.67		75,6	401
1091	00 6 6,	211	1 77,4	19.6	7311 2	512 72	2		2 7	1 79.7	77.2	75,2	7510	72,9	13213
200	30 60	2 6 7	1 74,1	72,2	2113	2.6	11		- 12 - 0	77,9	12,3	73,2	74,2	73,3	131,
CVENAL, "LABUR			101.7	1010				5	1011	1221	1931	103,3	10413	1021	ļ
NERALL CALCULAT		22	11001							101.4	1021	102.5	103.2	102,7	1201
		1 112.1	1.6.1	1.4.7	13.7 11	4.0.11					1 + Å - 7				

;

TABLE A4

81

" 0 ------Ą

100' (30.5 M) ARC ; 61.4% N_{fc} ; NOMINAL NOZZLE ; SERRATED ROTOK 1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

1

		. 9	2) 	<u></u>								2	2 -	25				.=	
	×.		-	2					2				G,		2	6	i,		10.15		1	
												-										
		ī									:					ļ	1	1		•		
		;			1			ء.								•	1	•		i	•	
		-			•	•						•				ı	•			•	•	
	•				•																•	
N	r																					
10			•	-	* 10		•		~	A 4		- 64	-		**	*	-			an i	-	۰.
04	6		~	-	no	ō	-		-	-		Ĩ						lin.	- 1			-
NE	-	Y.					~ *								- 1		~ •	-	~~	· r (4
		že	115	•	-		-		~	•	-	-	in i	• 0		-+-0	•				h+(•
<i></i>	2	12	'n		n c	20	-	1	-				5		2	-	00	-	-		-	ž
Ξu		N															••••					H
ng		<u>;</u>	1	-	ņe					-				~-0		•			10	. n		0
7 20	10	- 22	2	~		8		22	2	24		22	23	20	11	20			22	2		
åz		N																				-1
~		24				5	[44			-			2				200					¥.
	5		P	~	200	5	21	:2	2				21		0				**			5
Ĕź			_	_					-	_	_		_							:		
<u>§</u> _	_	2.2	-	3	-		-			÷			-						-		1.2	
Ťĝ.	5	-	-	-	~ 6	-			2	2.2			κ.		24	1		-	~~	-	-	5
ૣૻૻૻ			-		• •		-4.4					-						-	-			
T S			-			5								5.			~					
60		3	•	•	~ 0		• •		P			-	•	0 1	~ *	-	b ~ b		**	- 6		
U A		ž.	-	•	• •	-	00		m -1			r q	-	* •0	n 1	• •4	- #	•	-	-	b edd	
ę.		ŗ.	•	-		÷	ō.,	- -	-		-	5 15	-	0 0	N		•			i ai	-	õ
<u>م</u>	. A .	-	•••		0 10		•	~~	P				~ '	~ ~	~ -				~~	1 - 1		1
		-	•	0	24	-	~	0	•	2	117.	-	-	- 10	-	- 64	n.	-	00	-	-	-
2			-	ē		5		2	<u>-</u>		10.	4.0	-	50		2	5	÷	-			5
. A		Ð																		- 1	:	
· X		- N	0	2	-	m	**	2 2	-	•	10.4	29	~	24	<u>.</u>				10		é	N.
t s			2			5		10	N.	10.C						1			22			
9		2																				•
2		23	2			27,			1		9 0- 0	4 M	ж.,	1		¥1.						2
6	1	18	6	5		3	94		F.	0.4		5 6	200	. 4			~ ~		~~	*		8
1		2_	_	_	~~~				-			•			~ -		-	_	_			
ũ				5	~				-	~		֊			5	5						-
u a	÷		ě	ō		-	-0 -	0 P.	•	0 0	-	•	-	•			ŇF		.	R i		
۵.		ž.		n -	- 0				-	n.	- (*) -		. .	0 10	-		-	•		-	***	N
2	i di	ì	m	•		ī	÷		5	-	-0-0		ā				80	.,,,	-10	Ģ	ĩã	
_	5		•	•	•	9.40	•••	•	P 1			~								•		
X		20	o	•	ar	. 0	-	-	٠	-	-		~						-	•		Nr.
0.4	2		2		25	- 0	22			0		5 0		20	2		-		22			2
20		Ē		-	-					~												F
Z U	1	30,	0			20	2	1	n	-	-	***	147.3 1-16		128		24	:2	17 875			2
O à	5	, -	5	-	55	3	\$	28	2	10		56	1			*					13 y 44 1- (1)	3
50					_														•••			
23	-											<u> </u>										5
20	2	5			~ <	-	5	0 ×	7	2.6		5 00	5;	10	**		~		~~	~	101	Š.
* -	1	ີ			or			-	•					<u>.</u>				>0	00		201	
		åŇ	Ó	õ		10	8	N P				210	No.	00			20		00 n 0			<u>Ş</u>
"T											•	4 +1		N OF			• •	4		2	25'	
¥	•	.		Z.	R		6							G	Ē	5	3			i	13	
5			-	<u>الم</u>	Z		-		æ	L 5	د ۱۰ ک	ζņ	Ê	ä		į	ų.					
ų.		5	Ŷ	-		, ri	ř.	۴,	2	a d	0.0	ŝ	Š.	£ĝ	XE	Ì	è.	•		. 1	1	
2		ê				5	-	Ĭ	Ż	ãč	តើដី	50	×	a a	α'n	čα	ά,	,				
-		ă	ļīš		5	<u>ب</u>	ă				1.5	; i î	\$				- 40	3				
et			~	4		. 4	17	5	e,	-	1.00	ù N	2		-		R			• •	0	
ų		1 ×		5		ų	_•	U	5	<u>n</u> `	<u>ا</u> _1			<u> </u>	2	<u>ب</u>	÷	li		į	ť	
A C		7		Ē			3				E.	1AC	-		Ĩ,	5	ġ					
•		1		-	يد الان ر	-0	eE i	:	j	-	; -	1	•	- 1	-	1	1	- 1		:	:	
		,				1			•		•	•	•				'				,	

· ----

ı

• 1

.

TABLE A5

•

.

ł

;

. .

; SERRATED ROTOR 1/3 OCTAVE DATA CORRECTED TO STANDARD DAY 100' (30.5 M) ARC ; 66.9% N_{fc} ; NOMINAL NOZZLE **QEP SCALE MODEL FAN B**

ł

138.9 ŝ 145. Ï i l i Ξ ! .2 RADIAVS) 76)(1.B 19 S - N ø 04 109. 107.0 NOND 92.9 an min 75)(1.9 ANGL D 1 # 0 1 90.5 90.2 90.2 101.6 101.1 NA OPANNANOMAL MANA ----ю. 9 102. e7)(1,0) 65,- 67 -----• • • • • • • N. 26 ۰. **1**0 0 -1look was REDUCTION PROG . 20020 20020 20020 10.35 3 72.8 88 202 FULL SCALE DATA MGDEL FAED. 14 12500 12500 12500 14000 24000 20000 20000 0VERALL CALGULATED 0000
MU
< FAN FAN 3 3J. N. MADIAL 198. FT PT0 1/23/71 318, PT. NO. BLADES VENICLE Config Config PAGE 1 11 1 .

TABLE A6

100' (30.5 M) ARC ; 82.2% N_{fc} ; NOMINAL NOZZLE ; SERRATED ROTOR 1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

÷

	MODEL		PRESSUI	RE LEVE				VE ALKA				LET IN					
	fata.	25.	30.	40. 9	6. 60 87 / 11 - 0	51.1.22	80.	90.	1.75)/1	10.	20.	2.271	140. 2441	29.621	160. (2.79)(20	-
RADIAL 100. FT.			76.6	7.1.7	7. 75		5 75.2	77	76.9	79.3	78.6		82.6	86.4	4.4		•
(30. W)	25	71.4	1.0	74.3	5. 73	.7 73.	74.9	77.8	76.6	77.6	70.7	6.64	62.7	86.4	89.2		
VENICLE .5	FAN BC	2.5/	71.2	10.04	3.2 72	.2 73.	5 74.9	76.4	76.8	78.3	79.4	80.3	82.8	85.9	67.4		
COVE 16 FA	1 301	5		77.1 7	5. 2.2		5 77.5	78.1	78.2	6 6 -	81.4	61.5	8.58	85.6	85.3		
LOC PT3	125		7	74.55 7	3. 71	.21 72.1	9 73.c	74.9	15.1	76.8	77.6	78.1	79.4	39.C	79.6		
DATE 1.23/72	151		70.7	72.4 7	FC [0.7	. 72.	2 71.8	72.7	73.2	75.2	10.1	77.6	79.5	5.50	92.4		
BUN JIB PT.	194 200	79.8	72.3	75.4 7	1	.4 75.1	76.1	77.3	78.1	82.9	82.0	62.7	85.2	87.4	07.1		
TAPE	267 + 250	5.1.	2.2	70.5 7	6.7 76	.5 77.1	5.91.6	50.5	81.9	03.6	85.1	86.5	50.6	99.2	86.5		
BAR 28.9 HG	10	76.5	75.9	79.4 7	8. 78	.2 01.	5 91.2	82.4	1.40	85.5	87.1	88.2	8 0.2	89.7	86.8		
(97561. N/M2)	400	77.3	78.2	80.1 7	8. 78	7 77.	7 79.4	50.1	82.3	94.0	5, 28	1.10	85.9	84.9	82.8		
TAMB 30, 050	500	76.4	76.6	76.6 7	6 75		20.01	76.3	17.5	79.6	81.4	63.2	83.8	0.10	81.2		
(272. DEG)	K) 630	75.4	75.3	76.6 7	5.5 76	.2 77.5	5.46	81.2	8.26	1.10	85.7	86.3	86.1	84.5	82.2		
THET 26. DEG 4	0.00	74.7	75.	77.3 7	6.5 77	.1 76.	8.77.9	78.0	ac.5	81.5	82.8	03.2	82.5	01.5	79.5		
(273. DEG)	() 1000	0.0	74.7	76.7 7	6.7 76	.0 76.	1 77.4	76.9	81. 4	93.3	85.4	56.1	93.2	:1.7	79.6		
HACT 2.45 GH/H	3 1250	73.3	21.12	70.6 7	6.2 76	.5 76.	8 77.1	77.9	8 0.7	82.4	85.8	86.4	83.6	31.1	79.0		
(-00245 K3/M	3) 1690	73.7	75.6	76.9 7	6.1 76	.3 75.	9 77.3	78.3	80.3	83.3	86.2	87.3	97.9	40.02	75.9	•	
NFA 6036. RPM	2000	74.5		78.7 7	8.2 77	.5 76.	5 79.2	80.2	82.2	14.1	85.6	0.00	94.2	31.6	79.5		
C 425 RAD/	SEC1 2500	81.5	. 58	* * · · · •	6.7 66	.7 87.	2 85.8	4.40	8.35	54.5	87.6	91.5	5.80	65. 55.	93.7		
NFK 0175. RPH	3150	73.7	19	81.0 7	9.7 78	. 67 0.	5 79.3	80.5	90.4	84.5	89.3	88.2	8 3. 4	91.3	79.3		
1 647. RAD/	SEC) 4000	F. 71	5.50	84.0	2+-2	1 81	3 80.5	86.7	85.7	85.4		0.05	86.9	84.1	9 1.6		
MFD 7433. RPH	5000	78.0	95.1		4.5 85	.7 82.	7 82.5	63.2	66.1	96.2	89.4	51.2	86.1	85.9	95 P		
(784. RAD/5	SEC) 6300	77.2		8.4.6	€.5 81		07 82.2.	9129	1.68		50.04	92.7	66.3	84.7	81.7		
NO. BLADES 24	5 8000	17.4	86.4		4 U 9		1 82.9	83.5	36.1	86.8	88.4	91.2	86.6	86.7	82.1		
	10020	77.2	06.t	87.5 B	6:0 6 4	18 84-1	32.6	82.9	85.4	86.7	98.2	90.0	85.1	85.2	2.19		
	12500	75.7	92.8	87.1 B	5.8 83		9 82.1	81.4	n , 00	95.4	96.7	39.6	94.9	84.1	9.08		
	16000	74.7	62.5	86.7 8	58	.9 83.1	5 81.4	80.2	5.3	83.9	85.3	87.7	84.0	63.5	86.1		
	20000	13.0	4 4-6	89.9	4.2 82	-100	2 00.1	1.97	76.9	8 2,5	83.8	1.00	83.1	81.9	79.4		
DVERALL	MEASURED	51.1	50.5	98.2 9	6.2 95	16. 5	6.16.6	5156	97.2	9.8.6	100.4	102.2	101.3	100.7	4.04	•	
OVERALL CA	ALCULATED	59	96.4	97.4	5.2 95	.3 95.	94.3	94.7	96.6	1.89	100.0	101.9	4-66	3.9.6	4.69		
					6.0 . A	.4 107.	6 117.3	107.3	109.3	5.61	12.6	1	444.8	111.9	4.08.4		

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

TABLE A7

100' (30.5 M) ARC ; 91.1% N_{fc} ; NOMINAL NOZZLE ; SERRATED ROTOR 1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

í

			2 11 4		134.3	133.3	133.1	130.3	129.9	1.561	130.2	135.8	136.0	134.1	133.7	4 ° 2 E T	133.9	0.221	2.251	132.8	136.3		2.01	135.9			138.8	139.0	137.1	140.3		121.0	
		•	~																•						_				:				
			-																1		:		•		:		ĺ		1				
527															:		•		•		۱				:		5 4 •		i				
101			-	21	~	~		-	•	1.0	•	•	0.	•		2.5		'n	0		•	-	2	•		n (<u> </u>		-	5	e é	2
			N		ē	•	ŏ	ě	6	ö	œ.	ō.	60	ě	ŏ	ē	د	÷	ю -		•	ē		ĕ		•	eo L	ř	F	-	5	Ë	Ę
. : 		•	(20,	2.12	91.6	90.7	90.1	36.0	37.3	92.6	95.1	94 - 5	38,7	89.1	5.55	85.4	85.1	0.58	82.9	82.5	56.1	2.0 0.5	5	84.0	86.6	83.2	5,56	82.7	81.7	39.8	5	03.1	
		-	2	•	ņ	Ň	•	•	0.	2	-	•	ŝ	0.	ņ	æ	ņ	ų	Ņ	ų	m	+	•	÷		ŗ	•	÷	ņ	-			-
× v × v × v			N	0	6	-	9 80	93	4	0	5	m e	6	6	õ	66	90	6 10	4	4	85	88	5	•	80		50 60		20	5	103	182	
~	- (22	2.2			V. 5	+	5	2.6	m . T	4		0 .0	9	6.7	7.7	n	۲, E	5.4	6.2	4.0	0.0		2.2	2.1	0.2	9.9	-	4.5	5.5	2.9	يد 1
	ייי ג א	2		n •	0 0	5	0	10 10	••	9 9	о. 	ہ 0	-	•	-	۵ م	-	•	0 10	8	80 64	с С	е. Ю	96 97	6 6	•	•	~	40 N	- 103	2.40	6 10) L
Õ				10	20.	20	32.	51.	00	83.	6	91.		9.0	8	85.	5	S	92°	5	50	60	96 .	80	2	66	88.	5.			192	101.	1 2 6 .
Ë,			202	N	•	ŗ	m	\$	0.	۲.	•		2		-	ņ	2	n .		<u>.</u>	•	<u>.</u>		+	2	~	<u>,</u>	2	•	5	-	N	2
			5	0	5	õ	0		2	82	6	6	5	5	ŝ.	ó	5	ő	é	0	ē	5		õ	F	õ	6	6	Ŧ	6	Ĕ	201	-
PROC	< ۱ :		(0.00	6. G	8.08	81.6	79.7	77.4	0.10	5.7	87.6	36.1	82.3	5.5	94-0	51.2	92-2	82.Q	83.1	85.0	87.9	85.7	85.5	6 ⁻ 6	88.0	0.40	86.4	82.4	00.3	8°.66	99.0	6 - F 2
		-	= 	~	- -	•	•			~	-	-	•	N	nt-	N	-0		ņ	•	6	ņ	71	2	-	•	-	-	ī N	•	-	••	-
-		2	Ì	2	000	5	79.	2	13.	00	-	10.60	10	90	5	ŝ	5	00	ė	8	10	99	10	20	8	÷.	10	ŝ	5	2	6	00	0
1				•	•	• •	6.6	7.8	5.0	6	3.2	4.4	3.1		1	1.0	0.5	n.0	•	6 .6	2.7		0.0	2.7	2.7	4.0	.	1.9		9.1	0.0	4 • •	•
ļ	5 (5	D	::-	~	•	~	ř.	~	~	Ň	•	~ ~		5		•	•	~	•	2		۰ ۵	10 1-1	•	-	•	₽ n	5	به م	-	6	ø 9	14 37 15 16
ĩ	2		NN	77.1	77.1	76.	77.1	75.	73.1	76.	82.	84	01.	20	50	79.	78.1	7	70	5	. 4 8	00	19	5.	5		2	92.	110		- 86	96	
		•		ņ	•	•	P.	~		17	-	0	•	¢.		-	-	2	•	ņ	a :	-	0.	•	•	-	•	-		•	•	•	0
100		5		•	76	5	17	2	E .	54	5		9	19	2		24	2	2	0		8	19	8	-	3		2	F	20	90	n	0 4 7
		در در	20		e. 8	16.8	7.9	15.7	2.1	10	11.5	2.	0.6	0.0	7.5	54	19.6	19.5	5.64	5.5	1.1	5	3-11	1.2	96.4	11.0	1.1	1.1	12.5	1.5	9.7	9.9	9.41
A # 41	5		0	•	•	5	-			• -		-	-	0		-		•	N	-9	a		-		5	-		q	2		•	•	
1003		Ş	G . 7	5	0		77.	76.	-	76.	-	10	82	2	2	20.	20.	2	2	79		5	05	Ň	2	50	5	60	Ξ	5	-	5	
200	100		1.1	1.9 9	2 • 1	0.10	¥.	•		0	-	u.	2.2		~	9.1		0 0	6.7	2.0	in.	4	4 - D	*	ыл 10	ю. Н	•	3.8	-	1.0	e. 10	5.7	10
	i i 2	0	3	Ň	ė	~		~	-	-		Ň	ē	2	-	~	~	~	•	~	•	•		•	•	•	•	•	-	•	•	0	-
REDU	537	20.	n n	0	76.1	72.0	76.0		73	15.0	2	80.3	83.	79.	1	77.	76.5	39.0	13.	74.0	79.	19	76.1	5	70.	15		33.	72.	70	8	5	
V L V			<u>د</u> ا	5	50	80	00		0				00	0		00	00	50	0	0	00	5		00	00	00	00		00	9	0	0,4	-
аğ щ			REQ				.	• ••	-	• ñ	Ĩ		-	-	. 40	8	10	14	i vi	2	23	ต	4	ñ	100	0	100	125		203	AU24	JLAT	2
SCA!				•	_	FA	а 7			493	25.	,	-	- 44	ŝ		ŝ	2	10				SEC		3EC						Ĩ.	ALCI	
Ľ				.	Î.	, ,	L		171		5	g	N/N2	DEG	DED	DEG	DEG	H/HD	KO X	H d H	RAD	HUN	RAD	H H H	RAD.	-			•		RALL	L L	
•				3 6 7	1 30	Ľ.	L	910	EC/	1.8		3.6			N	26.	70.	Ş	245		96.	-	5	. 96		1085	I		•		9VE	VERA	
1					_	11 CLE			u	· •	, m	26	975	ge	N	•	3		.00.	565	, 6 ,	69	1	748	Ē	2			;			ó	
PAG						KEX	000		DAT			BAR	~	TAN		345		NAC	~	NFA	•	NFK	2	MFD		3	i		ļ				•
- 1					·						·		:		١		۲		·						ł		L		i				

}

TABLE A8

ı

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

100' (30.5M) ARC ; 59.0%N_{fc} ; LARGE NOZZLE ; BASELINE

L A A	110.7	1221	122.4	117	11011	121.0	121 1	11911		120.0	1221	131.1	122	1001		121	1.24.6	123,1	123.1	159.1	
A Radians;	~																				
: НЗ, 11. (еес (АVD	74.1		73.0	70,1	67 6 71,9	15.0	72.5	69.7	10.4	70.0	72,8	5	22.7	80.0		15,8	27272	66,1	63,6		102.2
10 0 4 15 1 1 0 0 15 301 1 4 0 5 5 5	70.6 72.5	72.1 74.	72,177,72,17	69.7	67,2 68,1 70,2 71,5	74.1 74.7	73 4 72	70,4 70,4	70.7 70.6	72,9 72,4	74.3 75.5	32,2 05,	75.4 74.3			99.2 78,2	77,1 77,0	59.4 69	55,6 67.6	92.3 92.6	14.0 104.2
П - НОМТН ГНОН INL	6 70 6	12.4	0 75.5	169	4 00 00 00 00 00 00 00 00 00 00 00 00 00	5 73,6	9 74 4	404	2	1 73,2		30,00	13.14		2 78.3	2010	5 - 2 2 - 5 2 - 5 2 - 5	9 67 7	6 62 9	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 102.8 11
8836, DAT 7 - Avgles 103, 1103	69'1 69	69.3 69	72.6 75	6619 87	6517 66	7017 715	7210 72	68,7 68; 70:7 7.5	59 B 70	7012 717	10, 9, 72,	77 7 80	1011 705	7610 77	101 0 101	7214 74	57 11 73 67 7 69	63,4 69	8210 643	8215 87	98.7 100
ANDARD DA	12 70.6	101	67.7	8 67 5	0000	9 7010	1110	.6 67 6 .0 69.5	4 69 4	9 6 6 9 9	2 66 7	6 77 8 1	· · · · · · · · · · · · · · · · · · ·	8 747		7 1 7	0 0 0 0	9 64 6	0 92 9	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.9 97,7
1550 FOR S	90 T 09	9 9 29		64 3	0 0 0 0 0 0	67 2 6 70.8 7	7012 6	6 6 6 9 6 9 6 9 6 6 9 6 6 6 6 6 6 6 6 6	70,1 64	10 1 10 1 10 1		80.447	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 6	74.8	75,0 7	10.00	67 4 62	65 8 61	86.44	100.0 94
ELS PRESEN 50. 605.	10.0 0.04	77,3 69,3		66.0 60.0		70.5 67.5	69 4 69 0	67.5 67.0	68.1 69.1	67,5 68,0	69 69 69	89,3 81.1	70.5 67.5	80,0 77,6	76.0 74.6	76.0 73.9	71.2 70.3	66.7 06.7	64,7 84,5	87.2 86.J	00,7 99,5
SSURE LEV 51 - 20 - 10	2 67 2	5 66,3		1 56.7		0 00 0 0 0 0 0 0 0	4 79.7	9 67.7	6 67,3	0 00'2 5 0'2	1 70.0	5 82 7	1 73.0	95	6.66	77.5	20.0	0 70.2	4 67,5		2 102,3 1
500N0 PR8 26. 30.30	71.9 69	66.2 66.	74.9 72	67.0 66		65.2 65 66.7 68	67.6 69	66 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	66.9 67	66.7 67.	68.5 72	78.2 54	64.1 72	72,3 81.	66.3 77	67.1 76	63.4 72	60.3 69	50.6 56.	1 10 1 10 10 10 10 10 10 10 10 10 10 10	96.4 102.
JULET FAN Model Fred -	50	544 63		125	190	304 250	004	200	800	1000	1) 1600	2000 Bri 2500	3150	EC) 4000	1000 000	6008	12560	1000	20000	LCULATED	PCNA
1 MASA	1 100, FT.	(1)0())	C L	PT0 9 9 . To	14. PT 2	29,0 MG	789, N/H2)	73, DEG F 294, DEG K	63, DEG -	290. DEG K 7.47 GM/HT	1262 KG/H3	400, APH		462, RAD/S	784. RAD/S	LADES 26				DVERALL CA	
P A G G	AIDAA	CTHRV	CONF				1) 9641	THET			* Y 3%	NEK 4	NEO 7	, 2	8 · 0X					

ŧ

• ,

1

TABLE A9

86

.,

١

.

•

, ,

,

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

100' (30.5M) ARC ; 64.9%N_{fc} ; LARGE NOZZLE ; BASELINE

1

١

	Ъ.Г.	110	2 0	200			5.0	231	112	22	22	221	201	3				501	271	59	41.6	!
	_		-i	-	4	-	rt yr	1 41	•	rt e	• •• •	-	- 1 -	-1		4 -4-			-1-1			ł
		J,																				
SN SN	-																					
10	۲ ۲	ž																				
+ 0	Ċ																			•	,	
12	2 r	<u>ă</u> m a		. *	•	.	-	~	~			-	• •	4.04	~ •				~~	~ .	o 🛥	
		0	5	5		ino		*	2	2	N	2	2		19 -	-		2	Neo	5	Ň	
±ŭ	1						n .0		-			_			~ ~							
1010	0	• • •			5	-		3	2						•			5		6	. N	0
A Z	-	N					~ -											-		-		
品		NINE		5		~	50	5		e M	'n				~ 5	-	50		0.0		Ē	č.
H Z	-	N			_																	4
Ű.	0	-	2 (1	20	-	N		5	~		'n	5		20	5		10	8,7				
	-		-									_				æ.			_	-01		10
ATE S 3		~~~ } }	- 17		80			-	5	20	5			2	~ ~			5	200	-		NI NI
	7	1				- r					•					~ ~		P ~ 1	∿ 10	-00	A 160	7
800			34	00			- 10 - 10 - 10	1	0		1		10		~~~	0	5	4				1.0
<u></u>	<u>ج</u>	5		~ <	0	-0 F		•	•			~ *		-		**		~ 1	~ 40	-0 4		10
				-+0 -+0	5 N	0	 	2,6	5						-10	44		217	2 C 2 C	2		
A R	ີ	1 1 1	- 40	~ <		40 P	-	•	-01		•					~~	-	~	0.0	-0 -	0 40	10
7 <u>,</u> N						50	1.				14			202				2.2	~~ ~ 0	1	5.0	9.2
ы С			• •0	N 10	••	40 P		•	-0 #	~~	~	•••		- 40 1	~ ~	~ ~	•	•	0.0	-0	0 10	•
04			9.40	4 · 4		2.5	212	1.1	1	7 M	2	50		5				11	5	10		3.6
1 - 0	1	ť	n na	~ •	•••	••					~	~ •	. 40			~ ~	•	~ 1		-00		10
Sev	-		10		2.0	0.0	Ê	11	5	~ ~ ~	1		9 C	263) 	200	500	10	2	2010 2010	0	518	2 . 2
P.R.F	10.		9 40	N 4	10		5	r	-0-	-	-0-	0			0 10	~ ~	•	~	~~	÷Ö ē	0 Ø	7
8			2.2	**	2			112					10	~				3	20	2		
5 4 6	, n 1	- h h			•	40 4		~	•0 •		•	0	. 40	-	•	~~	-	P I	N 10	÷0-0		-
ت ب		- 04 		40		N.P.		2	50			2						1.1	••• • •			
FAN SUR			0		-	40 4		•		0 10	-	0		-	- 40	~	•	in i		00	• •0	10
AL AL AL			2 2 2	2				6.0	10					50			1	-	**			3.6
SS C			9 -0	h • •	-	•	ы ю	~		0.4		01		-	H 10			•		õ	-	10
13				N 17	0	in o			r 0						-1-0			•		2		
ية س	<u> </u>	jan is L	÷	N 10	6	- 0	0.0	10		5		0 4	7	-0	0 1		•	•	0.0	-0 -	õ eõ	0
61 <i>N</i>		- 10 M	6	000		000		100	5		200	220					000	000		0000		208 208
N H	0				•••	•••		-			-		H Ň	i i i i i i i i i i i i i i i i i i i	2.4	ne		ġ,		200		Ĩ.
11			N.Y.	5		10	ŝ.	_		2.	5			U U	5	1				1	<u>ר</u> י	
SAQ				LA.	70			Å2.			0			ŝ	Ţ	IC	ñ			1	Ū	
NA.	•		2		6	6	Ĭ	z	öč			גע מיני			ž ž	ä					E.	
		- -	-14	Ĕ	5	1	29.5	780			062	0	10				AD	1		é	N.E.	
3		le I d	11		ų	- 2-	س	16	ŗ	بير	2	-				È,	Ē				-	
2		A A	ž			24		-		TH						Ş	ġ					

,

ı

TABLE A10

<u>.</u>

.

•

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

t

100' (30.5M) ARC ; 79.5%N_{fc} ; LALGE NOZZLE ; BASELINE

744

ž			
JLANS J			
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			٠
т т т т т т т т т т т т т т	1999 09 19 09 19 09 09 09 1997 09 19 19 19 19 19 19 1997 1997 1997 1997	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 40 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
10 10 10 10 10 10 10 10 10 10 10 10 10 1		1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
			• 5 6 6 6 6 6 7 7 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
HIN CON	N94 4448 48 8 8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24.50 24.500		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 10 10 10 10 10 10 10 10 10
	0 7 MOMANA 3 7 7 10 7 10 10 5 10 10 10 10		4 900 4 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
000000 00000 7 4 4	4 - 4 - 4 - 10 0 00 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		
F 0 4 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	NR GLELELE		
			· · · · · · · · · · · · · · · · · · ·
55 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	NAMA A GA		
100 mm		·	
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1019 010 0 40 19 2010 10 00 00 00 00 00 00 00 00 00 00 00	**************************************	1 GIN- 4 HP HB HC
	6 4 00 0 0 440 0 0 0 0 0 0 0 0	145 0 50 4 0 4 4 4 5 6 4 4 5 6 6 7 5 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 7 6 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		**************************************	
1994 1997			
rskeuti FT:	FAND FAND FAND FAND FAND FAND FAND FAND		
1 4/		N NN COOX	10054 10054 1040 1040 0 1040 0 0 10 0 10
7406 7476	2120104 2201284 2201284 21201200000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

TABLE A11

۰.,

145,6

ł

1/3 octave data corrected to standard ${\rm Jar}$

100' (30.5M) ARC ; 90.5%N_{fc} ; LARGE NOZZLE ; BASELINE

ı

ñ.

-.....

J

		776	136.6	131,5	130.4	130.4	129.4	127.4	131.9	135,8	137.8	135,1	132,2	134,4	44751	133,7	133,2	133,9	133,1	24,55	141,9	137,3	137.7	140.0		101.0			133.1		
		~	•																												
	ANS)																														
_	RAD I	2																													
11.	2	~																												•	
	<u>ح</u> د	5	9.6	0.0		97.9	35.1		0.0	2.0	2.5	38,6	16,1	99.9	6.6	35,1	0, 20		92,6		5,5	36,3	85,0	8.98		1.15			2	2	20.0
Ë	REE	-10		10	N	9	ā	-	•	-	-	~ •	-	ŝ	~	-	•	0	ŝ	- m	0	~	•	~	0	•	n a	•	~ •	а (77 19
LŸ 1	DEG		5	5	5	5	2	2		-	Š	8	99	98	5	86.	95	90		58	6	ເ ເ	88.	2	50	5	-		5	201	
0 0	2					-	2	-	~	ŝ	ņ	1.2	ŗ	-	2	-0	'n	6	2	•	<u>.</u>	٥ ب	-	5	Ņ	2		0	الا	N.	0 0
E E	ALET.	5	6		0	6	5		6	6	5	88	5	ĩ	9	66	50	60 60	5	50	5	a	7	7	20	8	60 6		8	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NO.	E E		~		9.5	0	2		3.11	8,0		2.0		+	5,9	7.4	611	2.1	11	5.4	2,7	16	0,0	с [L	8	5		5	5,0	5.0
۱ س	л В	1				5	- -	~	8	ар гч	0	4		9 9	~	ۍ دو	ŝ	-	2	ŝ	~		м М		*	8	~		5		3 7
TAG	LES	101	00		0	00	0	1	00	50	89	8	52	85		65	10		10	62)	87	87	88	206	1/9	99			5	000	22
ос.	N.N.N.		5	-	-0	5	ņ	+	-	•	•	2	-	2	g	•	•	-	-	~	~	m	~		•	10	넏	2	2		22
6.	7	100	6	•	64	10	56	15	10	50	90	5	-	5	-	-		-	2	5	8	•	9			-		-	5		111
	a a			6	1.8		1.1	-	2	1.9	4.6	312	5	*	212	6 1	6.0	112	1.9	\$ \$	7.0	1 .*	- -	5	-	212	9 9	•	2		
	ADAR	5		~		-	~	~	~	•0	•		~	æ	•		•	80	°	~	•••	•	€0 ~~	an (~ P	~ (~ (> <	
	STAI		70	17	76.	77.	26	-	5	5	23	10	5	.00	91.0			20	79.	110	6	83,	82	50	50	10			50		
	20 Y		-		1		-	2	~	-	•		~	ŝ	, m	-0		-		M	•	~	ã	2	2	~	è	ž	0	•	
	6	2	5	69	69	22	1	70	5	0	5	5	6	5	5	5	0	83	5	50	5	0	98		0				20		112
	SENT	35.	~	-		2	~	~	2	0.0	2.1	9.0		n	1.1	1		~ ~	5.0	2	•	ŝ	-	2	N 1		2				
	PRE	5		Ň	Ē	•	•	•	-	~	õ	Đ	ř	F	ē	F.	ē	ė	Ŧ	•0	ē.	۰Ö	•0	Ō				• •		• <	1
	ELS	50.		9.9	7.0	76.1	5.3	2.4	1.1	78.3	51.2	79.5	77.0	77.6	19.1	10		92.0	100		53.12	6 .5	2.4	50					202		22
	LEY					•0	-	~	~	•	•	0	-	-	-	-0	-	•		-	~	•	•	•	••	'n		D	~ •	•	ิล งค
	URE	÷.		15	73.	2	2	2	2	20.	5		00	17.	-	79		5	90	5		5	•	8		20		2	2		13.
	ESS			-	-	-	7	-	5	2	\$	C.	•		7	-	-	-0-	-0		•	80	-	-	0		ហ្		n j		r n
	Ä	. 30 . 5		1	-	-	5	1	F	5	5	0	0	5	ž	R	2	5	0	6	5	2	ō	ē	D				-		111
	SCUN	0	2 D	6.2	1.1	2.0	1.2	2.0	2.2	11	8,5	8,8	8.8	ŭ S	6.9	6.5	5.9	8.6	7.1	6.9	5.1	7.0		2			N		2		10
z	Ľ	2		-	0	0	'n	0	0		ŝ	0	0	0	0	0		0	0	0	_	0	-		0	0			0		ີ ມີ
FF	5 F	aEo.	'n			-	7		ຈິ	2	ñ	4	5	59	9	100	125	160	200	250	5	4 0	ŝ	202		0001	1250	0001			L Q Z
NIE		Ĩ.			FAN	8			7					-		-		2		60		50		ŝ		- •					1
5 A 6			Ē.	Î	÷	Z		70	-	S11	C 1	(H2)	50	9 10 12	5	50	E.E	51 D	I	AD/S	I	AD/5	T		N					ļ	5
Ž			03,	30,			0	2			Ï	z -	ō .:	ā •	ā	ā :-	сй С	м Ж	æ •	œ	œ́.	œ		<u>a</u>					-		
-1			ÀL 1	-	с С	2	•	0	Ä		29	7806	5	r 294	5	[29]	121	0126	6845	2	4 773	110	7486						•		5
PAGE			RAD		VEH1	CONF	Loc	DATE	NON	1 A P E		2	TANG		T 967		HACT	-	N N	-	X										

i

ï

:

.

TABLE A12

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

100' (30.5 M) ARC ; 61.3% N_{fc} ; LARGE NOZZIE ; SERRATED RCTOR

÷

141.0 i ž AND RADIANS 11(2.99)(~~~~~~~ 5 ~~~~~ ō1 TE - MONT A NO IN CRASS 2) (2. AGLE' 14 17 X PAY 16.12 ANDARD 24 60 5 FOT PRESENTED -1 ĪŠ 2 31+ ~~~~~~ REDUCTI SOUND P 3362 2 FULL SCALE DATA Hodel CALCULATED FREG. 20001 20001 HEASUREI RPH RAD/GECI RAD/GECI RAD/GECI 15 FAN AAD/BEC) 18108. DVERALL CA t 123/71 HO. BLADES 970 7 VENICLE CONFIG PAGE 1 **ADIAL** LOC DATE Ž í

ł

ġ

A13

TABLE

4

90

ķ

QEP SCALE MODEL FAN B 1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

ł

5

Ł

1

100' (30.5 M) ARC ; 67.4% N_{fc} ; LARGE NOZZLE ; SERRATED ROTOR

	17.4								1291	127	125	1221	2					5	12	132				132.		- -	143	•
		^																										
		ž																					1	ł	•			
L S N																				•								
		ž	• •			-	-	è	•	•	-		No				-	2		•	-	-	-	•	•			ë
10		~			4		Ē		2			22	·				6			1				~	5		10	102
		2						•	-	•								0		•	Þ 0				•		•	5
						•		•	•		i ~1	Ň					Đ	•			r i		-	-	~ ~	ò	•	Ę
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		-								5 0							12.6	7.7									201	36.3
DA		~		-		-	-	•	•	+	~							~	-					•	00			H o
<u>_</u> _				2		-		2		à			È,				8.		-	ñ			50	3			94	.08.
ONT)						-		-	•	-	-	<u>.</u> .	• •		**	••			•	•	-	•	in.	•	<u>.</u>	••		-
	120			22		-	0			•		?;				ŗ	0 ¥	a b					6 0	5	~ *		0	105
	-			2		4.0	•••••••••••••••••••••••••••••••••••••••	*								1	•	÷	2				N.				۲ - 4 4 - 5	•
	3	Ľ.				<u>-</u>	-	-		~ I							~	~		<u>-</u>	~		-				•	10
NOR I				10	1			79.1					5			1		74.1				•	2			19		. 20
Υvα	-	100		1 17)	-	•	~	-		> <	>_•	•	•		E PT	-	-	2	•	20			~	~	~	9	N	-
Q N C		5					~	0							20	5	1	-		n.,		-		Z.			3	100
ľ ∧ Nň				•		-	~		•	n	-		•			-	-			-			•	-	-		H	4.
in E		5		~	~	3	Ŧ	5	~ 1							-	7	•	n 1			-		ř.		•	-	õ
5		, 22) 7 0 · 2		2.0	50.7	9	57 · O	5.		2	2					6.0	29.3		1.1							8.6		2.10
HTE				0	9	-	0	10 I	n	-		- 	10		•	•		-	•								1	ਜ ਜ
RESE	÷	56		73.	70.	5	5	5	5	Ň							1	Ē	:			2.	*			:	2	102.
			-	-	•	9	ġ			•					-		ð	ņ	•			•••	•			-	•	2
E Vel	.	5.0	~	2	3	5	5	3,					1		3	-	-			0 6		K				5	•	101
A MOI			, n	2.4			5.0			N			•		6.9	0.0	5.0	-	2.2			20		2	N 4	2.1	2.0	
SSUI			5	5			5		- - -	~ •) -) -			~	-		~	0 4		.		•	**	÷.		7
NO. C	ģ	ň	5	÷.	ě	2	Ĉ.		ż		N P			ę	۰.	.	ň	5.	2			ē.	ę.			31.	÷	36.
		- 	•	•		ņ	•	ņ	<u>.</u>	?•	-		2		¢.	ų	ŝ	•		-	? ~	+	• ,•	-		0	4	-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	200	÷	5	72	-	2						3	6	6	67	2		n ,			20	0			-		•
DAT			-0	80	100	123	100							600	250	603	000		120			600	000			Neg N	163	
u Z				4	_			.					•) -4	-	~	~ 	- CO	• # ~	•	•	5		9 Q 1 N	SA	יר גר	Ŀ
ů,		,	-	ы К	N		•			÷	ç.	ž		÷	'n	[2]	ì	Se	200		/ SEC	-				Т С	CALC	
FULL		۱۵ ۱۹	7 		4	1	1/1	E	20		C HO	DEG	DEG	DEG	20	ŝ					AD.	÷				FRAL	ŗ	
-		201	1 1 1	w			2	221					5	69.	ī	231	2					ADE				Ň	VER	
		DIAL		5			<u>.</u>	u Ze	». ر	14.0		-		2	~ }	00-1	;	<u>ַ</u>	ָּהָ ג	<u></u>		=					Ð	
2		A L		ŝ	ŝ	5		2-			÷.		ŤuE		HAC	Ĩ			ż	NFC		Ŷ.						

ł

TABLE A14

TABLE A15

Ľ.

	A
B	STANDARD
FAN	ខ្ព
ALE MODEL	CORRECTED
JEP S(DATA
J	OCTAVE
	-

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY 100' (30.5 M) ARC ; 82.3% N_{fc} ; LARGE NOZZLE ; SERRATED ROTOR

PABE 1 FULL SC:	LE DATA	REDUCT	ICN PRO	JERAN 200					PROC.	DATE	THOM -		AY 21		4.6 D. 01011	ŝ	
	MOJEL	SOUND ALL	77E5201	10 10 10 10 10 10 10 10 10 10 10 10 10 1				06	100	110.	120.1	130			160.	2	THE .
	FRED.	0.351()	.52) (9	,70)(0. 33,5 7	87.51.74	1.2.11.2 1.2	2)(1,43	2222	5.64	74.9		2.2/10 80.1		4.9K)(90.0		130.
			78.9	10.2		1.4 73	2	6 77.4	16.1	70.0	79.1	80.8	92.5	45.9			129
ventrie .5 FA	6		71.6	2.6 7	3.6 7.	2.4 73	. 42 6.	3 78.0	17.4	76.5	79.4	30.2	82.4	85.2	6.99		124
CONFIG FALL		6				5.9 76.	.3 76.	9 79.3	1.04	31.3	61.2	03.3	94.9	1.20	4 (4 (
LOC 770	125	~	72.1 3	2.8 7		2.1 72.	.3 73.	2 74-1	74.8	76.5	77.6		79.1	0.00	79.7		122
DATS 1/28/71	C 4 7	-: `	4 9.7	C.0	2 2 5	0.1 76	-17: 	2 71.5	13.0	75.1	4.4	1.1	4.0.	31.9	82.0		
BUN 32. PT. 514	550	r. M	72.6			3.1 76		9 76.6				22.0					
TAPE 51203		-10							6 - 5 Q	2. 98 1	0.76	5. C 2					135
						9.6 77	1 79	9.97	81.9	84.2	8.8	15.5	94.6	83.6	92.4		132.
		1	76.9	5.2	5.3 7	5.1 76	.3 75.	9 76.2	17.4	79.1	\$1.2	12.4	93.0	83.4	80.1		120
(271. DEG K)	10) 1	74.5	5.5 7	5.7	3.8 76.	.4 78.	4 79.6	02.0	82.4	1.2			43. 4			
THET 25. DEG F	6.73		74.0	15.5	5.1 21	8 · C · 8	.9 76.	3 76.5	6.94	80.2	81.7	81.6	81.1	80.5	78.0		
(269. 366 K)	10.13	4.1	2.15	5.4	7. 4 7.	4.3 77	.0 77.	3 78.	00.2	82.1		94.0	+ · · · · · · · · · · · · · · · · · · ·	5.18	8.81		
MACT 2.31 GM/HS	1223	2.2	74.2		2 • 4			1.2.4	2.77	2.87				9.6			
(.C0231 KG/43)	1000	5.2	73.8			E/ 8.9				0.0							
	1.05		7. 7					* /0.0									
(828 - 340/560 MFF 418: 884							76.	1.28.4			92.1				5.54	•	129.
ALA GLAL MARKER			78.5			77	1 7	2 77.8	92.0	62.0				79.4	77.4		132.
	0.00	5		12.4		0.0 0.0		7 01.4	65 8	87.1		••••	8 3.2		6 0.7		601
. (784. RAD. SEC	1 0302	0.5.		0.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.0 7		2 87.9		0.70	~			40.7	28·8		
ND. 5L 1DPS /6	9000			12.2											2. 4/		
		? I'												7.8.4	55.5		135
			78.4			7.2 77	20.	4 77 6		0.7	62. 0		10.01		74.7		135.
		0.74	70.2		7.9 7	6. · · · ·	.3 73.	3 74.3	74.5	79.4	80.5	12.2	78.6	76.4	74.2		- 6 1
OVERALL ME	ASURED	- 50				2.2			46.4	F. 20		100-5	98.7				147.
DVERALL CALC	ULATEU Prob	161.1 1 161.1 1	19.4.1			6.1 10 6	1 105.	7.77 0 102 0	100.1	109.4	110.4	112.5	109.1	107.1	106.6		ŀ

REPROVE THE ORIGIN POOR

100' (30.5 M) ARC ; 91.1% N_{fc} ; LARGE NOZZLE ; SERRATED ROTOR 1/3 OCTAVE PATA CORRECTED TO STATDARD DAY QEP SCALE MODEL FAN B

ž	133.2	132.4	132.	126.4	133.0	137.9	135.4	132.0	+ + H H		131.7	• 121	135.4	140.2	135.6		130.5	130.0	136.9	150.2	
ŝ	5																				
4.7 10 Radia 160.	94.2	2.54 9.16	ມ. ອ	84.1 85.3	5.06	21.7 20.7	86.8	83 3	94.6		9 0-9			85.6	8.08	85 4 C	-	7.94	39.66	102.9	110.5
2 MR . 1 Rees (AN	90.7		0,65	0 0 0 0 0 0 0	5.04 6	6 93.1	6.96.6	9 87.0	6 87.5		8-29 0	5.2 7 7 7		9 . 1 . 9	5 62.7		1.1	0.04 0.04	1 77.9	0.101 A	0 112.3
2 DAY 2 DAY 6. 140.		12.4 05.	5.5 06.	1.0.6 B2.	97.	1.6 92.	19.3 68.	.90 5.91			14.6 04.			10.2 86.			1.3 05.		14.5 8g.	12.5 101.	5.6 112.
- MONTH From Inle 120. 11		84.1 82.5	6.20	5 M 5 M 5 M		N . C 6	66.2							•			5.06	5		101.5 10	114.5 11
0C. DATE Angles 110.		4.08 V.	.7 63.9	0.87 8.	.3 82.1	.7 8 6.5	.1 86.8	-6 82.2			.6 .92.0		2 11 2	·2 89 .2	-1 06.2				.2 \$2.7	5 100.2	7 112.5
70 DAY -		78.8 79	.0.7.0.	54 75	61.A 79		03.3 85	C0 5.62			79.1		12.5	47.4 45	87.9 87		14.7 17		79.1 79	25 7 16	0.0 . 110
38 STANDI			1.62		77.5		7 02.0	1.95			1 90.7			51.5			9.20		1.1.		111.3
SENTED F1	117 2.4		7. 4.7	····			0.7 60.1				9.2 70.4			1-1 11-1					77.		
VELB PRE			79.5	72.	7.7		39	78.7 7	17.8		0.5			91-2				10.7	7 7	4 · · · · · · · · · · · · · · · · · · ·	11-1 10
PROGRAM				6 73.4	7.17		5 81.5	78.8	1.7. E		2 79.9	2'20					4 02.2		5.44 4	91.9 4.10	7 112.3
SOUND PRE			3.2 75.	3.3 7	70.5 70.		2.12 76.	. 8 .8 73.			5.6 74.			4.5 80.			3.7 8.	9. 7. 99	7.8 77.		
MODEL	51 - Daw -		001		020		57	205		000 T	1253			3150	4140		0100	200 0 1	00002	ASURED	
FULL SCA	19. FT.	53. N: .5 FA		3/71	PT- 5:7	1 MG	N/M21	DEG F	. DEG K.		BN/HS		RAD, SEC	MdX	RAD/SEC	RAD SEC	. 26		I		
P16E 1	AADIAL L	VENICLE	CONTIG	DATE 1/7	RUN 32	TAP5 BAB 20.4	(17557	74HB 27.	142)	184 18a1	NACT 2.3	(-202-)		N ^F K 5641.	716		NO. JLAD			61	•

1

TABLE A16

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

100' (30.5M) ARC ; 58.6%N_{fc} ; SMALL NOZZLE ; BASELINE

PAGE 1 MASA QUIET FAN				PROC	. DATE -	HONTH TO	DAY 15 MR. 11.4		
HODEL SOUND	RESSURE LEVEL	S PRESENTED F	OR STANDAR	D CAY - A	NGLES FA	ON INLET	V DEGREES (AND RAD	ANS)	
				70. 100. 1775.	110; 1	20. 130.	140. 150,		1
RADEAL 100. FT. 50 71.6		7 47,9 59	0 67.7 7	0.34 2.0	6912	50'0 20'0'	72.6 74.5		11 .5
(30. H) 63 65.2	15.4 45,7 7	1,5 67,1 59,	7 66.9 7	4 2 40 4	69	213 71.	73,8 74,2		121,7
YEMICLE .5 FAN 80 64.6	5.6 66 8 61	13 45'9 40'	. 67.4 6	6 2 20 B	6 6 9 9	60 2 60 F	71.4 73.2		1103
COPFIG FAN 8 100 74.8	17.4 74.5 71	70.0 64	8 67,7 6	8,0 69,3	7117	71,9 72.3	72,5 73.0		121.4
LOC 210 125 66.2	12.7 66.6	5. P 47.4 43	9 47.9 0	7.6	5.09	69 T 69	60.5 70.5		11717
	14 . 6 . 6 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	· · · · · · · · · · · · · · · · · · ·	1 5 5, 8 6		66,00	60,3 67,			110,0
HUN \$3, FT, 25F 200 67.1			• • • • •			69,1 70.(72.5 72.3		11/12
				1.0 71.	72.0	1417 75,1	75,7 76,3		1:221
		71.6 72	7 72.7 7	4.0 75.5	2415	78.6 78.			125.0
(200 DEG K1 A30 71.3	2.5 73.7 7			3.6 75.6	111.	9.0.0.0			125.7
TEET 45, DEG F 640 72.9	9.6 70.2 7	74.4 75.	0 73.7 9	1.4 75.7	2.94	76.1 77	78.0 77.6		126.5
(291. DEG K) 1008 71.2	3.5 75,3 7	1,4 73,9 75,	• 73.5 7	4.0 75.8	774	79.9 79.	99.6 78.2		127.0
HACT11, TD GM. M3 1290 79.2	2,9 74,2 7	1.2 73,2 74	3 72,8 7	3,6 75,2	1640		B0 5 76, B		126,0
1.01796 KS/H3) 1600 70.6	4.2 73.8 7	1.3 73.2 79,	1 72,5 7	4.0 75.7	77 33	011 00	81.9 77,8		127,5
NFE 4466, 9PM 2000 75.0		14 7811 791	7 19.1 7	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8011	00'1 00'0	92,9 80,7		130.0
(404, RAD/SEC) 2500 65,6	1.2 72,4 7			8 9 70 4	7272	73,2 75,1	77,2 73.5		123,0
		12 18 18 121			222				
1 784. RAD/SEC) 6360 70.4	0.0 01.0	1 11 5 11	1 73.2 7	2.7 73.6	1				1 2 0 1 1
NJI BLADES 26 8000 69.2	14.2 60.6 71	1.4 77.9 77	F 72.4 7	311 7312	74:44	76.9 00.	79.3 78.2		129,3
10000 48.2	10.4 29.4 21	1,2 77,0 79,	9 71,8 7	2.3 72.0	1110	5,7 77,	242 241		129,0
22500 65.7	6.2 77.5 7	1 24 3 74			7011	7212 244	Z4.0 73,7		127,
2.57 0000						102 J 140			
OLERALL REASURED AS. A									
DVERALL CALCULATED 64.5			1 92'2 P	11 A			92.4 90.8		140.5
	3.3 163,9 101	101 101 C 101.		P.1 10011	201 2 1	03-1 105-1	165.3 104.3		•

REPLODUCIBIL'I Y OF THE ORIGINAL PAGE IS

: -

TABLE A17

POOR

ĺ.

; BASELINE 1/3 OCTAVE DATA CORRECTED TO STATDARD DAY (30.5M) ARC ; 72.37N_{fc} ; SMALL NOZZLE QEP SCALE MODEL FAN B

100

1 ž AVD RADIANS Ξ 145N0 N YAC JE HTKCH TAG P.8.3C ANDARD FOR 51 2)(1) BRESE 47E3 F 63 76 < 5 .3 .s 1 2044646 25.72 ENGINE RODEL FRECS KASA GUIET APK SEC TAN B 115 cm (N)/22 VENICLE J. K) VENICLE 55 03xf10 51 10. 710 51 0416 5/10/90 TuET 200 404 23 7405 23 647 25 67756 77756 1291 HAC 711.9 .4 P46E

Å18 TABLE

10,

1.7.1 -

2.11.3

BUNK

OVERALL MEASURE! Overall Calgulate?

UN 14.4

194.2

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

100' (30.5M) ARC ; 78.6%N_{fc} ; SMALL NOZZLE ; BASELINE

i

ŝ

<pre>1 Miss Outce February 2015 - 252 February 10 February 10 Miss - Monta Note - M</pre>		PHL	~	126,7	12714	1201	12913	12515	12410	12710	121 2				134/0	13511	13512	12512			130.0	1001	13712	137.1			
<pre>A MAX OUET ENGINE FINA HOPEL SOUTO F75 SSURE FINA FILE FAM FILE FAM F</pre>	L L NS I)()(
<pre>A "ASA QUET EACH FAN HOUSE Source 75 State FAN HOUSE Source 75 (7) (7) (7) (7) (7) (1) (7) (1) (7) (1) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</pre>		20 . V . D	. 62) (0 4 9	84,7	83,6	0110	7100	79,0	34,22	5,7				84,8	95,9	84,9	9449			90,00	20,0	82 • • •		61.7	77.4	
<pre>A Mass duter boly and an analysis of a sink and an analysis of a sink and a sink an</pre>	DAY 28 H	140. 140. 140. 140. 140. 140. 140. 140.	1 (2,44) (2	4 81,1	6 6212	9 81,2	9 82.0	4 90 4	2 79,5	5 4 8 8	1 87.1				4 85,6	0 87,6	6 69 2	4 88,8				2 09.9	97,4			a 79,0 0 78.0	
<pre>1 Mass ouleT thousand and an analysis of the set of a six No.80 by a base and a set of a six of a</pre>	OT HANCH	20. 130.	041(2.2)	17.5 77.	78.9 781	77.4 77.	01.2 29.	77.4 77	75.6 74	51.9 B1	44.2 331			87.6 .00	04.2 05	98 1 99	55.4 37,				07.8 50	89.5 91			83,2 83,	79.5 801	
<pre>1 "155 OUTER ENGINE LEVELS PRESENTED FOR SIANDARD DAY 1 150, FT 1 20, FT 1 20, FT 2 24 FT 2 24 FT 2 24 FT 2 25 FT 2 25 FT 2 25 FT 2 26 FT 2 27 FT 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	C DATE	1	1(1,92)(2	5 76.2	8 7648	7 7646	20.9	6 52 A	9 11 0	5 3213			1 79.8		9 6417	1 55,8	1 05,5	9 93,7				1 86,9			6 8012	1 70.5	
<pre>1 Mass Outer Events 1 Mass Outer Events 1 10, FT. 1 11, FT</pre>		90. 100.	571(1,75	75.2 75,	77,8 75,	74.3 751	28.1 24.	74.7 741	72,3 721	73,7 74,			77.4 78.		02+1 03+	92,6 84.	52,0 041	52.4 541				83.7 83.			77,0 76	104 014 014 014 014 014 014 014 014 014	
<pre>1 Mass outer to file 1/2 Scafe fai 1 120 fg: 500 0 55 5250 fg fai 1 120 fg: 50 0 50 5550 fg fai 1 120 fg: 50 0 50 550 550 550 550 550 550 550 55</pre>			1114011	0 73.6	9 73.2	3 73.0	3 77.6	0 73.7	8 72.5	8 75.4	9 77.9		400	20.04	8 52.1	0 81.3	9 80,8					7 81.7	0000		7 78.0	4 74.B	
<pre>1 Mass outer tend inter the sector for the sec</pre>	ESSATER 51	50. 73.	22,11,60.	73.4 54.	7217 65+	7111 05.	B012 741	7412 701	7114 601	71.0 731			102 102	1012 01	217 82.	6111 831	51 (5 05 ·	-00 D-10				9713 861			9216 721	75.3 75.	
<pre>1 Mass ouler the set of the</pre>	ky EVO:S POI		1(5,37)(1.	7 73.4	2 79.2	5 72.9	79,5	5 73,0	9 70'S	1.1.	5			6 6	62.0	7 82.3	2 82.3	2112			02.00	5 65,9			5129	77.2	
L 100, FT. C. 23, H, FA FA 00 EL 50, FT. FA 100, FT. FA 100, FT. FA 100, FT. FA 100, FT. FA 100, FT. FA 100, FA 100, FA 10, FA	2 SCALE FU		521 (0.70)	75.2 74.	71,5 72,2	101 201	75.7 78.	72.1 73.	70,7 70.1	72,4 69	7311 731			10.01	13,9 83.4	52,6 82,1	32,8 82,5	32,2 91,1			199 991	57,5 87.5	96.3 87.		34,1 05,1	97 6 78 1	
L 160, FT. F.	SUINE 1/1		(10,39)(2,	1 76,9	1 70.1	1 67,9 (20.2	23,33	502	71.4			10.0	77.4	91,6	3 33.C E	1 79,6	D1 86 0			10.02	80.0	76.6		1 73.0	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1 <td>OULET ENG</td> <td></td> <td>F REQ ,</td> <td></td> <td>63</td> <td>FAN 00</td> <td>K 8 100</td> <td>125</td> <td>100</td> <td>223 200</td> <td>156, 250</td> <td></td> <td></td> <td></td> <td>F 300</td> <td>K) 1000</td> <td>3 1250</td> <td>3) 1600</td> <td>0002 1002</td> <td></td> <td>SEC) 4000</td> <td>2000</td> <td>SEC) 6300</td> <td></td> <td>12500</td> <td>16000</td> <td>MCADIGE</td>	OULET ENG		F REQ ,		63	FAN 00	K 8 100	125	100	223 200	156, 250				F 300	K) 1000	3 1250	3) 1600	0002 1002		SEC) 4000	2000	SEC) 6300		12500	16000	MCADIGE
	T HASA		•	1 100 FT	(30° H)	5. 37	EA EA	P10	5/29/7D	13, PT.	15 S1	7384 - N.43		1299. DEG	050 . DEG	1291. DEG	H/13 06.11	H 0X 06110	AND REAL	NGA - EAS	AD.	485. 87	784. RAD/				I IV CONU

1

TABLE A19

•

1

Ş

96

, î

100' (30.5M) ARC ; 89.8%N_{fc} ; SMALL NOZZLE ; BASELINE 1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

DULET
NASA
BOK.

ł

•

.

1×	130.3	130,5 131,1	131.4	132.1	4 1 0 1 1 4 1 0 1 4	134 0		136.7	137.6		142.0	28,82		139.2		151.0	
	~																
	-		•														
l s	^																
NY 1	-																
4. 1 4 1	~																
ANA	~ 00	-		~ ~	m 4	- 10-	0	~ 0		0 N	ю.	-		-	¢ 0 4	• • •• ••	n
4 S S	99.9	99	64	000	10	62		50	80		0 0 0 0	00	80,1	5	000	100	19.
2. 	<u> </u>	~ m	0.4	~	0		N -1	t n	m	~ 17	-	N	Ň	2	óņ.		ņ
1.04		5			• •	5		0 0 0 0	68	9 C		-	- in	6			114
6.	279	* 12		20	-		20	~~~	-	20	-		0 M	•	• • •		
	(38) (38) (38)	00	0.0	60.64	0.0		56	B- 60	6	0.0	66	6	00		60 60 P		11
20110	000		- M - I	00	-	-	~ ~ ~	~ •	10	9 in 9 in	0.0	6	10-1 1-1-1 1-1-1	+	-		.
121	2		0	40 40	00	404			•		0.0		0- 40 	•			11
	200	2 C C	201	0.0	1970			2280	57 49	22	0.0	6		99,98			3.8
ANG.	1						2 N			ະ ຄິດ				<u>م</u>	- 12 K	ঁ নন ১০ ০	유. N
	200	0.0	01	18	-	63	0.0		-	10	90	5			0.0	20.0	111
TAU T			-	in a	~	•	N 60	an	~	-+0	n 9		90	ŝ	in or		+1 +
80°.		28	10	11	00	5					90	5	50	5	~~~		110
Î.	525	•	~	No			T IN	••	-	~~~		-	'nγ	8	e	n	•
500	4 	7.6	51	36	5 10			9 (V 9 (V	50			60		5	0 IN C	6.6	110
FOR	201	•			0	2	07 + +	~		2	no		•••	-	+		n
760 70	1.00	57	~ ~	6.6	0.0				5		6 Ø			5			112
SE V	505	• •	10 N	6 m				2.2	-	0 '' N N		0	-19 8 6	12		140	2.1
986		n n	~~	1	•0 •	1 0	0.00	6	•		0 C			•	.		11
در	2 4 5	100	10 M	14.0	-			2 C		10	5	5		2.5	000 000 000		2.5
EVE.	50	~ ~ ~				- 190 (- 199 -					97 90 101			~			5
1. 1.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1.1	22					5	100		10	000	99.0			
nss		-0-10	-	-		- 40 (N -1	 		- 	- CHE		ne	•			#
PR6 30.	79.2	22	12	52	20	1	50	50.0		22	-	5	55	5		66	12.
QND .	<u>.</u>	NO	•	-	~	-	N -	N 0		<u>.</u>	• •		~~	P2	<u>ل</u> ة م		а. С
Sol	200	22	~ ~	200					8		00		~~~	1	- 01	12.0	10
AN DRL					5			00	00	00		0	00	00	886		
1 F	REG	-		0 M M	1 12 4	- 10	00	100	-		55	- n	50	100	190		ž
110	÷.	ξ.,	•	228		~ 6-	2 .	<u>.</u>		1531			580,	,		H	
	1.1	n Z	70	-					T a	E Q	Hd	E	NOV SOV	İ			
AN '	00			. 6. 1 <u>-</u>	J Z			ن م م ز	2 I 2 I					1		VEN	
	ر ۲ بر	Ц Ц	29	1	20.	-	569 99	[291			672G 784	1408	784	1		OVE	
20¥	ADI	EH C	200	N	Ĩ	BHR	re r	ACTI			ž	, a		-			
۹.	æ	>Ű	-10	a de ⊷	Ð		-	×.		z	z	Ť.	ž				

•

TABLE A20

.

• •

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

100' (30.5 M) ARC ; 61.0% N_{fc} ; SMALL NOZZLE ; SERRATED ROTOR

1. .

PAGE 1		10H	NEL SOUN	ID PRES	Sune in	EVEL S	PRESCH	Ten Fo			PROC.	DATE	TNOK +		AY 10	H. Sa	5.8			
			22.	39.				70.	.00		1001	110.	10.5	130.	140.	150.	160.	_		
24 014/	100 . FT.			(0.92)		(4, 8, 9)	(1.02)	(22'1)		(1,57)	(1,75)(2.27) (2.442	2.62)(2,79)(ž	_`	9
			1 1 1			2 E 6											76.6			NŠ
JUSHAN		TAN T	0 76.2	2 66,6	5.11	67.9	67,6			689	70.7	12.1	7.7		4.54	75.1	76.2			Ň
CONFIG	FAN	9	10 73.1	1 69.1	73,6	66.6	66,6	6. 36	67.3	68,7	• •	70.7	70.3	71.3	72.3	13.0	73.5			2
- 201	10	11	15 69.2	65.2		65.0	9 B B B	66.2	1 6. 1	67,7		60,1		70.1	6	71.6	70.4			-
DATE 3	10/71	1	5 60.J	65,7	9.5	64.1	64.5	63.7	65,7	56.1	65,1	66,8		67.6	N. 44	70.0	8.68			1
	4. PT. 5	38 25	13 67.3	1 65.4		1 2,4	61.5	6, 56		67,0	17.1	60.7		7.01	7.0	73.5	73.1			-
TAPE	512	76. 25	10 68.7	5 99 3		70.0	69,7	70.3	7.17	72.0	73,5	73.9	79.1	74.0	76.3	77.3	75.6			
844 28	9H 9.	ñ	1. 26.4	1 70.9			73.2		73.0	9440	75.9	76.7			79.3	20.1	76.3			
69741	5. N/H23	Ŧ	10 71.6	71.6		72,2	72,3	71.2	71.0	73.0	13.4	73.2	76.4	77.2	77.3	77.3	75.3			S
	4. DEG F	ทั	10 71.0	1 72.6	2.1	70.0	70.5	6.64	69.3	0.00	70.0	71.6	13.1	74.4	74.3	73.4	72.9			2
(2)	4. DEG K		10 71.7	72.5	71.9	1.1		71.5	72.4	7 3 . 6	75.2		78.4		79. 0	77.				
THET 2	•. DEG F	ē	212 00	9.54	1.1		72.8		72.7			79.4					74.4			
(2)	1. DEG K	1 100	10 70.6	1 73.0		111	72.2	72.7	73.0		5.9			02.0				•		
HACT 2.	57 01/HD	12	50 69 E	1 72,5	73.6	73.0	72.6	72.4	72.0	7.17	75.0	77.5	82.9			7.0				
100-1	87 KG/HS	1	10 70.4			9'EL	73,0	73.1	73.2		75,4	78.9					75.5			
NPA 447	2. RPH	200	10 75.4	02,1	111	11.1	74.6	10.1	76.7	77.0	70.1	80.1				0.20	0.2			-
••	B. RAD/S	EC1 256	10 49.2	1 75.7		6.84	73,1	72,6	71.9	72.4	75.1			81.5	02.2	77	75.1			-
NFK 458	4. RP+	315	10 68.9	76.6	7.6	11.0	72.4	72.1	71,0	73.0	73.0	75.5	77,0	. a	79.2	77.1	13.5			2
	G. RAD/S	EC) 406	10 74.4	1 02.9		6.63	15.3	78.3	75.5	75.0	74.5	79.0		64.3	97. S	02.1	78.9			-
NFD 748	. 294	306	10 70.3	1 78.1	20.0	70.4	77.3		71.5	1.1.2	74.7	75.3		01.3	0.0	77.4	74.6			Ň
9 2 9	4. RAD/S	EC) 13	10 72.4	93.5		1.1	7.1	76.6	74.5		74,9	17.7			12	80.2	13.4			
70. 0	DES 24		0 71.3	1 01.5	01.9	1.1	17,2	76.2	72.4	71,5	74.5	75,6	78.9	01.1	61.2	78.1	74.6			-
		1004	1112	62,8		1.10	79.0	7.7	• "EL	73,2	7410	19.9	77,5			78.1	74.2			-
		1251	10 71.2				77.4	4.96	72.1	71.3			75.4	76.1	76,0	77,3	73.0			2
		1001	10 73.5				77.1	12.	71.1	70,2		111	73,9	76.7	76,6	76,6	72.7			Ż
		2001	10 70.2	110		1.64	76,6		70,3	8 ° 6 9	0.0	114	1152	75.8	76,2	75,7	72.7			ņ
1	DVERALL	NEASUR		1 21,7		10	6.6	96.2	1.0	59. 5	0.0	98.7	• 2 • •	94,8	94,2	92,6	0.2			
20	EPALL CA	CULATE		2.2	2.1		90,6	÷••	n	5° 10	0,00	39.8	9217	94.2	93,6	91.9	89.8			1
			1. 74 - AC	4.401		102.7	100.2	100.0			100.7	102,0	107.1	107.4	106.7	105.0	102.3			

TABLE A21

98

DA Tu

P

!

100' (30.5 M) ARC ; 66.9% N_{fc} ; SMALL NOZZLE ; SERRATED ROTOR 1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

1

ł

	~												
~	Ξ												
24													
101		-				-		-	n o				
nès								1.8					-
HZ C			- 13 -4		9 m m			-	• #			-	- -
				N-01		-							
Ĩ	1 N .	_					~ -						
10		n	-	no		~		mn				-	
402	-						-		-				
*	Ê.			40.									
· 비위 도교로 도교	12		, n . n. 1	~ ~ •			•						
				00				10 A				177	
12.1			~~				-		-			**	
2				00		n •	-	-	~~				
919				~~~								223	
Ъ						-							
					100	1.		24			223		
đ	2.			~	4 (1) (2)		0 9	-	~ 0	~	-	Nine	• •
8	-		-95			~	27	10					
MDA	3.1	0 an		071				••				10. TO 1	, 1 (110) 1
Ž.								-					
	=	_					_	_		_		·	
	N		-			-		-					-
TEO	<u>.</u>					~~			~ ~ (
	<u> </u>	() 4 4 7 4 5 7 4 5											100
		~ ~ ~			***	**	p. . P	**	~~ 1				**
	22			NO						n in (
19.5				67,F		~~	22		22				••
	āņ.	N0 C		ne -				-	-	h a		-	
		0 N N				20							
ES3 .	<u></u>		-	u		n 4		20	20	<u>_</u>	224	-	
	-		54		204	20		- 01 - 01				40,0	
	ž.		-	1 2 - 4 -17					1	- 00			-
	E.	112	000			20	22			225		22	
Ţ	Ξ.,	<u>, oo</u>		006	100	00		90		900	5 0 d		
601					1 9 9		129	100	61F				
	Ë.	2		-					6	5 5	3	L - 1 - 1 - 1	
				50		. 2 L	35	<u>e</u> 1					E.S.
		E -u	(- 5 e			S S S S S S S S S S S S S S S S S S S		ÌL	Ì			L L L
	Ē			n. 3 • 4				25.92() ()		ac a⊈ 6 _=			Ęź
-	i i i L		L ài			2.0	22						
) I A I	10					5		<u>َ</u>	<u> </u>			-
1	TAR	ű Å	Š				Ϋ́	N	÷	Ĩ.	Ê		

١

2.

Ĩ

TABLE A22

100,5

100' (30.5 M) ARC ; 82.0% N_{fc} ; SMALL NOZZLE ; SERRATED ROTOR 1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

QEP SCALE MODEL FAN B

1

ž.

5 13,3 JAND RADLAVS: -----1001 112. DAY 17 IN DEGNE 1001 DAY - ANGLES FROM INLET DAY - ANGLES FROM INLET 1.1 2 90 110 120 120 1.1 2 91 120 120 120 ----110. 108,5 ANDARD N - N & O A 5 101 101 : LEVELS PRESENTED FO¹ 5 59 5 10, 47 5 0, 73, 9 5 11, 93 5 12, 12 5 12 110,3 111.5 ESSURE (111. 20 AL 199. FT. CLE 39. FT. CLE 39. FT. 21. FT. 22. F. 23. F. 24. F. MODEL

 #4014
 10.
 7

 VENICLE
 10.
 7

 CONFIG
 70.
 5

 LOC
 70.
 5

 THE
 2.4
 5

 THE
 2.7
 5

 THE
 2.7
 5

 NA
 3
 5

 NA
 3
 5

 NA
 3
 5

 NA
 5
 5
</tr -PAGE

۰.

ł

TABLE A23

191,0

-

i

ł

1

,

1 .

1/3 OCTAVE DATA CORRECTED TO STANDARD DAY

100' (30.5 M) ARC ; 90.7% N_{fc} ; SMALL NOZZLE ; SERRATED ROTOR

ı

PAGE	-											DK4	C. DA	76 - 1	ION TH	2 DAY	Ĩ.	e	5.0			
	1		×0DEL	SOUND	PRESS	SURE L	EVELS	PRESEN	47ED F	OR 57A	UDARD	DAY -	ANGLE	102 L S	1 INCE		JEGREE	NAS CAN	D RAD1			
				20.	30.	÷0+	2.				-05	190.	110	. 121	1. 13	0. 14	10. 1	50.	160.			ž
		5	REQ. ()	1 1 2 1 3	0.521(10.703	(0.0)	(1:03)	111.22	3 (1.4	11(1,57	1(1,75	111.9	21(2,1	301(2,	27)(2.	441 (2	1,62)(2,7911	ž	^	i I
RADI	AL 100.		5	13,8	75.7	7.47	73.4	. 75.2	5.	0 <i>77</i> .	4 78,	• 78.	5 P	٠. ق	•	2.1	5.1	90.04	93.2		7 1	32,5
	1 30.	(n	5	72.2	7.7	75.3	77.2	5.54		• 74.	9 79.	4 70.			8 5''	3,0 8	9.0	90.2	93.2		-1	32,4
VEHI	16	HAN C.	•	70.3	74.1	74.6	75.7		35.	8 77.	2 78.	8 79.	500		2, 1 0	3,5		0,09	92.5		-	32,2
L'AOU	9	FAN B	105	71.0	10.1	80.2	77.0	80.5	11.	0 83.	6 83.	6 8 5.	.a by	1 1 1		• 2		1.14	90.7		-	22.3
LOC	014	•	125	71.2	70.3	78.4	75.0	7.0.		1 01.	4 81.	4 82.		4		7.0	6.1	08.2	66.7		-	33,0
DATE	2/0/7	-	160	72.2	73.0	73,2	72.5	13.4	. 51	5 73.	0 75,	3 75,	9 77		-		2.0	84,6	84.3		-1	20,2
	* ***	T. 545	200	73.5	79.4	76.1	76.0	90.4		5	6 82,	0 01,	010		- S	5.9 8	1.4	90.1	2.63		-	
TAPE		51276+	253	13.9	79.1	00.2	81,4	01,0	1 52.	1 02.	8 84.	5	90	,1 ØĽ	6 n (6 + 0		5.0	9,10		-	37,1
N N	20.0 H	(7	315	17.4	62.3		93.9	(. E 6		8.05.	1 00.	6 87.	100	4	0 	2.1	-	94.0	4.16		-	2.0
8	7415. 4	(H2)	400	77.8	82,3	03,5	82.1	82.1	02.	0 83.		3 05,	7 87	50 6	•	6 4 0	1.0	9.9	87.9		-	36,7
TANS	52° D	EG F	20¢	76.1	81.1	80,2	00.5	0010		1 80.	5 80.	9 62.	1 84	.7 6.7		9.0.0	7.8	97,6	85.7		-4	111
	1275. D	EG K)	639	15.3	0.5	1.7	9.00				7 65,	5 87,		•	2		6.1	90,2	67.7			51.5
THET	30. 0	EG F		74.4	02,3	12,1	02.5	5.5	-	6 83,	5 05,		1	- -		1.0	•	00.1	86.3		-	9.45
-	272. DI	EG K)	1001	76.0	01,6	2,2	12,5			5 12,	9 85.	0	60 0.		•		1.0	87.9	99.0		-	38,2
HACT	3-04-0	51/1	1250	75.5	0111	02,9	8216	92.4	92.	6 B2.		2 1 6.	5 5	:	•	3,0 8	1915	96.98	94.9		~1	38,0
:	10304 K.	5/H3)	1600	75.9	5.50	1,1	93,2			1 83.	92	2 6.	4 8 9	یم م	1,1		9.5	87.0	65.0		-1	20.7
A A	12 - 1594	X	2002	15.4			111		j	5.	2 46	7 97.	2		-	2°	20	86.9	85.3		-4	11
~	697. H	AD/SEC1	2560	76.3	07.2	87.7	92.1	87,0		5.	5 63,	4 87.	60 6	-2	•	3,6		60,7	65.7		-4	10.05
X	1012- R	×	3190	9.10	1.0.	91,3	4.54	4 0.	:	1 1	2 00.	0 0 7.		6.		5. 6 6		02,3	00.0			4.4
-	713. R	AD/SEC1	4000	76.0	89,2	88,2	87.2	82,5	50.	2.02	5 85,	5 80,	906		6 6'-	3,6	•	00,7	85.9		-	56.8
N ⁰	7486- R	Pri	5000	74.4		1100	9996	87.4	:			Ē	00 00	• • •	• • •	2.4	17.8	07.0	84.5			1.65
	784. A	AD/SEC)	030C	70.2	1.1.				:		•			5 6				1.0			-1	42,0
j.)LADES	34	9000	76.3	0.0		9.99		:	и В.	7 86,	° • • •	2	•	•	* *		07.2	93.9		-	40,4
			10000	70.1	6.40	5.6	99.7		j	7 04.	8 83	j t		10	•		5.7		63.0		-4	101
			12500			57.60	67.5		5	, 10 1		0				0.1 G		92.6	9 7 9		-	40,7
			1-000		• ^ • ·					5 65		•		-			2	54,5	1.00			
		ALL MEA	20200			2 · 2	5150				N N N					7,6 2,5		87.6			#1	
	OVERAL		LATED		1001	1001	101.4							10		914 917 917 917 917 917 917 917 917 917 917	11		102.5		*1	53.0
	!		BONA	1.401	113.2	113.4	116.3	112.0	111.	6 111.	2 111	8 112,			.0 11	8.2 11	5.0	15.4	112.6			

TABLE A24

ł

1

Ξ.

VIII. Nomenclature

۱

۰.

ŧ

۱

. . .

:

:

ŝ

2

とうち ひろいつ

•

and a second of the second of

÷

. .

.

ĸ

Bar.	Barometric pressure in inches of mercury (newtor; 3/sq. meter)
f ₁	Fan blade passing frequency fundamental
f ₂	Fan blade passing frequency second harmonic
F _n	Net engine thrust
Freq.	1/3 octave band center frequencies
Н	Absolute humidity in grams/cubic meter (kilograms/cubic meter)
Loc.	Location of testing
Mo	Aircraft Mach Number
N/ 10	Fan rotational speed, corrected to standard day
NFA	Actual physical fan speed in rpm (radians/second)
NFD	Design fan speed in rpm (radians/second)
NFK	Fan speed corrected to standard day in rpm (radians/second)
OAPWL	Overall sound power level calculated by summation of power level spectra from 50 Hz to 20K Hz.
OASPL	Overall sound pressure level calculated by summation of sound pressure levels at each 1/3 octave from 50 Hz to 20K Hz.
0.G.V.	Outlet guide vane
P _{T23} /P _{T2}	Ratio of fan bypass exit total pressure to fan inlet total pressure
PNL	Perceived noise level; a calculated, annoyance weighted sound level
PTO	Peebles Test Operation
PWL	Sound power level, Re 10^{-13} watts
QEP	Quiet Engine Program
Radial	Arc distance in feet (meters)
SL	Sideline
SLS	Sea Level static
SPL	Sound pressure level, Re .0002 dynes/cm ²
T amb	Dry bulb ambient temperature in degrees Fahrenheit (degrees Kelvin)
T wet	Wet bulb ambient temperature in degrees Fshrenheit (degrees Kelvin)
V plane	Aircraft velocity
W _{bypass} √θ΄ δ	Bypass air flow, corrected to standard day

PRECEDING PAGE BLANK NOT FILMED

103

À

ł

,

۱

.

1

÷

ł

ł

dB Decibel

1

ĸ

٠

ł.

Hz Hertz (cycles per second)

•

!

٦,

4

PNdB Perceived noise decibel

104

ł

i

- .