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AN ALGORITHM FOR A GENERAL CLASS OF ROUTING PROBLEMS

DERIVED FROM HUYGENS' PRINCIPLE

By Lee M. Avis and George R. Young

Langley Research Center

SUMMARY

If a set of N points or nodes with a nonnegative cost associated with each ordered

pair is known, it is desired to find a path from one given node to another given node which

minimizes the cost sum. An algorithm is presented which yields a global minimum solu-

tion after at most N - 1 iterations or on a typical large third-generation computer, after

1 hour of computation time for a 10 000-node problem. The rapid-access data storage

capacity demanded by the algorithm is approximately 3N words for costs read in from

slow-access storage or 2N words for calculable costs. The time-storage requirements

of the algorithm compare favorably with those of dynamic programing or any other optimal

path algorithm known to the authors. When the problem is viewed as a discretized optimal

control problem, after N - 1 iterations, an optimal control or node transition is estab-

lished for each of the N nodes or states; thus, the algorithm can be applied to situations

where there may be errors in the control that necessitate a closed loop control philosophy.

INTRODUCTION

The following class of routing problems is considered: If a network of nodes with a

nonnegative cost associated with each ordered pair of nodes is given, it is desired to find

a minimum cost path from one given node to another given node.

A method of finding global optimum paths through a network of nodes is presented as

a discretized algorithmic form of the Huygens' Principle (ref. 1) which can be stated as

An optical wave front propagates through space or matter as if each

point on the front were a source of a new wave front and the envelope

of these new (secondary) wave fronts in advance of the given (primary)

front were a subsequent primary wave front. The line joining a sec-

ondary source and the envelope of secondary wave fronts in the shortest

optical distance approximates a primary optical ray; in general, the

nearer the envelope to the secondary source, the better the approximation.



The algorithm presented herein constructs (exact) optimal paths through the network of

nodes as the Huygens' Principle constructs light rays through space or matter, where

optical distances and propagating wave fronts are replaced by, respectively, cost dis-

tances and propagating cost contours.

The algorithm is presented and developed as a means of solving the fixed end points

optimal path problem stated in the section "Statement of the Problem "; extensions to vari-

able ends points and optimal cor.trol problems are discussed in the section "Applications

to Optimal Control Problems With Multinode Goals and Origins."

The Huygens' Principle foundation of the current algorithm should lead to much fur-

ther generalizations and extensions of the technique developed here than that of a similar

algorithm developed by E. W. Dijkstra (ref. 2).

SYMBOLS

a,b computer times in microseconds for certain operations

c(I, . . .,j) cost of path (I0, . . j)

(I0, . . .,j) path from node 10 to node j

(I0 - j) optimal path from node 10 to node j

(i,j) direct path from node i to node j

.0',If  starting node and goal node, respectively, defining the end points of the optimal

path

I s  starting node defined on page 9

Jk (k + 1)th node to be occupied; defined on page 10

jk unoccupied node for which c(1 0 , . . .,j) is a minimum at kth step

Kij cost matrix element; the cost of the direct path from node i to node j

N number of nodes in problem

nl,n2  indices of refraction
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q any node on path of equation (2)

r,s,t,j running indices

(Sk) (k + 1)th set of occupied nodes, JO,J 1 ,J 2 , ' Jk)

Tk cost of an optimal path from node I0 (or JO) to node Jk

AT Tk+1 - Tk at the (k + 1)th iteration of algorithm, which is obtained opera-

tionally as minimum of 7 values

ui  next to last node of optimal path from node 10 to node i for any occupied

node i; for an unoccupied node i, u i is a current estimate of the next to

last node of optimal path from node I0 to node i

(a at (k + 1)th iteration, the cost distance remaining to reach (occupy) node j

along the direct path (Jr,j) where Jr is an occupied node (defined after

eq. (4))

7(k) at (k + 1)th iteration, the minimum over all occupied nodes J of 0 (k)
j r Jr, J

for node j unoccupied; for node j occupied, 7(k) = m

7 variable of algorithm in step (6) on page 7

STATEMENT OF THE PROBLEM

A set of N nodes, numbered arbitrarily from 1 to N, together with a cost matrix

Kij is known where i,j = 1, . .. ,N and K ij 0; find a sequence of nodes (10,11,12,
f-1

.,If) which minimizes i i when I0 and If are known but not the number

i=0 11

of nodes in the path f + 1. That is, a mifnimum cost path from 10 to If is sought. A

sequence of nodes is called the "path" through those nodes and the cost matrix defines the

cost of all paths.

EXAMPLE PROBLEM

A simple four-node example problem is solved to illustrate the principles of the

algorithm and its kinship to Huygens' Principle. Consider the four nodes at the vertices
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of the parallelogram of sketch (a). The costs associated with the sides and diagonals of

the parallelogram are indicated in sketch (a). Suppose an optimal path from node 1 to

node 4 is desired. The cost per unit path length is n2 to the right of (but excluding) the

diagonal (3,2) and n 1 elsewhere. If n 1 and n2 are interpreted as indices of refrac-

tion, then the light ray path from node 1 to node 4 of minimum optical path length (or

equivalently, minimum travel time) is sought when the ray is confined to the sides and

diagonals of the parallelogram. A discretized simulation of the refraction of light rays

passing from one medium to another of different refractive index has been defined.

- n1

1  3 44n,

1 2
6n

1

Sketch (a).- Four-node refraction problem.

Let n 1 = 1 and n2 = 3. The matrix of costs Kij associated with the ordered node

pairs or links is then

0 6 7.21 25.30
6 0 4 21.63

7.21 4 0 18

25.30 21.63 18 0

Consider a wave front originating at node 1 and propagating at a speed inversely propor-

tional to the cost per unit link length; that is, the wave front is a contour of constant cost.

In order to indicate that node 1 has been encountered by the wave front or "occupied,"

71 is set equal to a very large number (written o). The shortest cost distances to the

unoccupied nodes 2, 3, and 4 from the wave front along direct links to these nodes are

specified by, respectively, 72 = 6, 73 = 7.21, and 74 = 25.30. To complete the descrip-

tion of the wave front, record the direct link associated with each 7j by uj = i where j

is the node and the direct link is (i,j). Thus, at the beginning, ul = u 2 = u3 = u4 = 1.
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The next node reached (occupied) by the wave front is node 2, since 72 is the mini-

mum 7. In reaching node 2, the wave front has advanced 72 or six cost units, and so

the 7 values of the unoccupied nodes are decremented by 6. Then 72 is set equal to

to flag node 2 as occupied. Thus the 7 values become

71 = 00 72 = 3 = 1.21 74 = 19.30

The newly occupied node 2 now becomes the source of a secondary wave front that is

consistent with Huygens' Principle. As shown in sketch (b) and by the K matrix, the

wave front originating at node 2 (now a single point at node 2) is more cost distant from

the unoccupied nodes 3 and 4 than is the wave front originating at node 1; therefore, 74
is not changed to K2 4 nor is u4 changed to 2, and 73 is not changed to K2 3 nor is

u 3 changed to 2.

u 3 =1 u4 = 1

C73 =1.21 74 = 19.30

front : ---- K24 =21.63 > 74

71 72

ul= 1 u2 
= 1

Sketch (b).- Node 2 is occupied.

The possibility that the optimal path from node 1 to any unoccupied node passes

through node 2 has thus been eliminated, and the secondary wave originating at node 2 can

be neglected. The Huygens' Principle has a provision similar to that exercised here:

that all portions of the secondary waves which are behind the advancing wave envelope are

neglected.

At this stage, 73 is the minimum 7; thus, node 3 is the next node reached by the

(composite) wave front. By proceeding as before, the new 74 is set equal to 74 - 73
19.30 - 1.21 = 18.09 and then 73 is set equal to oo. Now node 3 becomes a new wave

source. Since this third wave is slightly "closer" to node 4 than is the old composite

wave, 74 is changed from 18.09 to K3 4 = 18 and u4 is changed from 1 to 3. See
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sketch (c). Finally, T4 being the minimum T, node 4 is the next node to be reached by

the composite wave. An optimal path from node 1 to node 4 is defined by

u4 = 3

u3 =1

or path (1,3,4). See sketch (d). The optimal paths from node 1 to node 2 and to node 3

have also been found; u2 = 1 means that path (1,2) is optimal (once 72 becomes )

and u 3 = 1 means that path (1,3) is optimal. The u values define an optimal transition

to each occupied node for a given starting node. If the problem is worked in reverse from

node 4 to node 1 (reversing the indices of K if K is asymmetric), the u values would

define an optimal transition from each occupied node for a given goal node.

u 3 = 1 
u4 = 3

Wave T3 = c 4 = 18 = K 3 4

front _ 4-

2

T1 =0 72 00

ul= 1 u2 =1

Sketch (c).- Node 3 is occupied.

u3 = 1

T3 = 3

3
Wave

' front

1

-1 = o2 =-2
Ul= 1 u2 = 1

Sketch (d).- Node 4 is reached.
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The Huygens' analogue to the u values are those vectors (rays) connecting each

secondary source to the envelope of secondary waves in the shortest optical distance.

The algorithm replaces optical distance with cost distance and replaces the rays with

pointers to the sources, that is, the u values. The envelope of secondary waves is

analogous to the composite wave or the cost contour of the algorithm. A distinction

between Huygens' Principle and the algorithm is that light, according to Huygens'

Principle, propagates so that obstructions cast shadows, whereas the cost contour con-

structed by the algorithm spreads throughout all available "space." (The analogue to

an obstruction is a set of nodes which can be reached from nodes outside the set only

through links of very high cost.)

DESCRIPTION OF ALGORITHM

The algorithm is now presented in a form convenient for calculation. The elements

of K, the cost matrix, as defined previously, can either be calculated as needed or pre-

computed and stored in auxiliary storage and read in as needed.. Let IO be the starting

node and If be the goal node and N be the number of nodes. The algorithm follows.

Step Operation Comment

(1) 7j = KI ,j; uj = 1 (j = 1,. .,N) Initialization of iteration loop.

(2) T1 = Flags 10 as occupied.

(3) AT(0) = min (T (j = 1, . . .,N) Begin iteration loop.

(4) -If j 0 If, go to step (10) Stop iteration when goal node If is occupied.

(5) = Flags j 0 -as occupied.

(6) r =Kj0 (j = 1, . . ,N) If K elements are not calculated, read j0th row of K into T'.
Sldp this operation if K elements are calculated.

(7) 7j = 
Tj- AT (All T7j

(8) Tj = min~TT (All T If K elements are calculated, the 7 array is not needed and

can be replaced by Kj 0 ,j to reduce data storage by N words.

(9) uj = j0 (for all j having 7 = Go to step (3).

(10) Output j0; j =0; Cost = 0.0 Initialization of output loop.

(11) i = u Output loop (steps (11) to (15)). Yields an optimal path from I0
to If (in reverse order), the total path cost, and the incremental

(12) Cost = Cost + Kj path cost.

(13) Output i, cost

(14) If i = I0, exit

(15) j = i. Go to step (11).
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APPLICATIONS TO OPTIMAL CONTROL PROBLEMS WITH

MULTINODE GOALS AND ORIGINS

The optimal path problem is cast in the form of an optimal control problem by

identifying the nodes as states of a system which is to be brought from an initial state to

a specified final state through a sequence of states minimizing the sum of the state transi-

tion costs. Each state transition cost is assumed to be a function only of that state tran-

sition; this assumption amounts to a definition of the concept of "states," in that the cost

matrix defines the system. The states or nodes might represent a discretized approxi-

mation to a continuum state space. Disallowed state transitions are assessed a high cost

level to prevent, or at least flag in the output, the "forbidden" transitions. The "forbidden"

flag is set less than the "occupied node" flag (c) to avoid premature assignment of nodes

to the occupied status.

As pointed out previously, if the optimal path problem is worked in reverse (with

the goal node as the initially occupied node) with a transposed K matrix, then the algo-

rithm establishes an optimal transition uj from each node j which becomes occupied.

The u values thus define an optimal control, or an optimal way to proceed, from each

occupied node, when a specified goal node is given. Since one additional node is occupied

upon each iteration, N - 1 iterations are required to generate the complete field of

optimal controls over the state space. The complete field of optimal controls defines the

optimal procedure even after a control error, which allows closed loop control with state

information feedback.

After N - 1 iterations, all nodes are occupied, including those "isolated" nodes,

if any, from which the goal node can be reached only by a series of transitions including

at least one forbidden transition. In this situation, the u values contain some forbidden

transitions, which, however, are flagged in the output by the associated high cost. In some

cases, it is convenient and computationally advantageous to remove isolated nodes from

the state space beforehand.

The modifications to the algorithm for generating the complete optimal control field

are

(1) Replace the K matrix with its transpose [KT]

(2) Wherever I0 occurs, replace it with If, the goal node

(3) Initialize an iteration number k = 0 before the third step of the algorithm

(4) Replace the test at step (4) by an operation incrementing k by 1 and then an

operation testing k for the value N - 1, a successful test triggering a shift

to the output
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(5) Replace the output loop (steps (10) to (15)) by a routine which outputs the uj

array and the associated costs KT

Once the complete optimal control field is generated, the optimal path(s) from any

node(s) to the goal node If can be output as the sequence(s) of optimal controls beginning

at the desired starting node(s) Is; the sequence(s) are of the form (-\Is,uu . .,If

If only the optimal paths from each of a set of starting nodes to a goal node and the
associated costs are desired (for example, all optimal paths originating within a neighbor-
hood of a nominal starting node), then N - 1 iterations of the algorithm, in general, are
not necessary. The modifications to the algorithm to allow less than N - 1 iterations

are as follows:

Steps (1) to (3) are the same as those for complete optimal control field

Step (4) Replace the test at step (4) by an operation incrementing k by 1 when the

newly occupied node j0 is one of the desired starting nodes and perform

an operation testing k for the number (quantity) of desired starting

nodes, and then switch to output when k equals the number of starting
nodes

Step (5) Replace the output loop, steps (10) to (15), by a routine which outputs the

sequences of optimal controls (Isu ,uus , . . . ,If) for each desired start-

ing node Is and the associated costs

A generalization of the problem of path optimization with fixed end points, optimiza-.
tion over all paths with starting and goal nodes each in specified respective subsets of the
set of N nodes, is solvable in one application of the algorithm. A simple procedure is
to set all Kij = 0 for both i and j in the goal subset, transpose the K matrix, set
I0 equal to any node in the goal subset, change the stopping rule test (step (4)) from
"jO = If?" to "jO E (starting subset)?", and change the exit rule test in the output loop

(step (14)) from "i = IO ?" to "i E (goal subset)?".

THEORETICAL BASIS OF ALGORITHM

In this section, theorems are proven which provide the basis for the algorithm.

As demonstrated by the example problem (and shown in the following), the algorithm
places each node in the occupied status, in sequence, in increasing order of the cost of
optimal paths from the starting node 10 to each of the nodes. It is first reasoned that
closed loops need not be considered in seeking an optimal path; thus, only a finite number
of paths need to be considered. From this finite number of path costs, a unique minimum
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can be selected. It is proven that there is an optimal path from 10 to an unoccupied

node j such that (a) all nodes in the path except j are occupied and (b) the cost of the

path is not less than the cost of any optimal path from 10 to any occupied node and not

greater than the cost of any path from 10 to any unoccupied node. The procedure for

computing the cost distance to node j is then demonstrated. This procedure, applied
recursively, yields a global optimum path.

Assume that a ranking (with ties permitted) exists for the costs of all paths orig-

inating at IO0. The existence of a unique minimum path cost over all paths from 10 to
any given node is shown to result from the nonnegativity of the elements of the cost matrix
K by the following statement.

For any path from IO to a given node j containing any node q more than once

(that is having a closed loop), (IO,n 1 ,n 2 , . . .,q,ml,m 2 , . . .,q, . . ,j), there is a path
from I0 to j of no greater cost obtained by deleting from the node sequence all nodes
following the first occurrence of q up to and including the last occurrence of q; for the
nonnegativity of the cost elements implies that the cost of the sequence of nodes deleted is
nonnegative. The number of paths from 10 to j with no multiply occurring nodes is
finite and, by assumption, their costs can be ranked; therefore, a path from 10 to j of
unique minimum cost over all paths from IO to j exists, this being the minimum over
the paths from 10 to j with no multiply occurring nodes.

Let the minima over the costs of all paths from IO to each of the N nodes be
sequenced in a monotonically nondecreasing order: TO,T 1,T 2, . . ,TN- 1 . For each Tk,
associate a node Jk so that the cost of an optimal path from 10 to Jk is Tk for
k = 0,1,2, . . .,N - 1. (The sequence of Jk values is the sequence in which each node is
placed in the occupied status. This sequence is not necessarily unique because of the

possibility of ties, which are arbitrarily ordered.) Let (S be the set of all Jr for

r = 0,1,2, . . .,k; (Sk) is to be identified as the (k + 1)th set of occupied nodes. For sim-

plicity, the condition that JO = I0 is chosen without loss of generality.

The following theorem demonstrates the constructive nature of the algorithm.

Theorem: There is an optimal path from IO0 to some j (Sk )

of cost, Tk+l, such that all nodes in the path except j belong to

Sk) , for k = 0,1,2,. . .,N - 2.

Proof: By definition of (Sk), Tk, and Jr for r = 0,1,. .. ,k,

Tk+ 1 = min (c( 0 -j)) (1)

S10k)
10



where (10 - j) is an optimal path from I 0 to j and c(IO - j) is the associated cost.

Let jk be a j for which c(IO - j) is minimized. Then,

Tk+l = c(I 0 - jk) (2)

Let q be any node on the path of equation (2). Then,

Tk+l = c(I0, ,q, . .  ,Jk)

If (10, . . .,q) or (q, .. .,jk) is not optimal, then (I0, . . .,q, . -,Jk) is not optimal. By

contradiction,

Tk+l = c(I 0 - q - jk)

By the nonnegativity of Kij ,

c(I 0 - q) - c(I 0 - q - Jk) = Tk+l (3)

Suppose q Sk). Then q is a candidate j in equation (1) and

c(IO - q) ' Tk+l

Therefore by equation (3)

c(I 0 - q) = Tk+1

(Note the incidental result that c(q - jk) = 0.)-

The algorithm determines the path-defining u values indirectly by means of recur-

sive minimization over the incremental costs (the T values) of completing optimal paths

to unoccupied nodes. The essential features of the optimal path determination through

recursive minimization are set forth in the following theorem; the corollary to the theorem

allows simplification of the computation and reduction of data storage. (Tk+1 - Tk is the

AT of the algorithm at the (k + 1)th iteration.

Theorem:

k+1 - Tk r.,min Tjrk (k E (0,. . .,(N-2)) (4)
l rE{O,l, k E ,-2))

jl (Sk)
11



where

(k) (k-= 1) Tk Tk-1) (r E (0,1, ,(k - 1)); j j Sk)
j ,j Tk T

(K) (r=k; j( Sk) )

Furthermore, there is an optimal path from 10 to Jk+l of the

form (10 -JR, Jk+1) where JR and Jk+l are the Jr and j,

respectively, which minimize a(k)

Proof: Equation (1) in the proof of the first theorem is

Tk+1= min (c(I - ))

j,(Sk)

which, by the first theorem and the definition of the Jr, can be written as

Tk+l =  min c(IO - Jr,j)) (5)

rEO,1,.. .,k)

j, CSk)

By definition,

c(IO - Jr) - Tr

Thus, equation (5) can be written as

Tk+ 1 = min Tr + C(Jr,j))
r(0,, . . .,k)

j (Sk)

12



By subtracting Tk and substituting K rj for c(Jr,j),

Tk+1 - k = min (K j (Tk - T (6)k+l TkrE(0,1, .,k) r'

j (Sk)

(k)From the definition of Ujr r, it follows that

(k)j (r)j-Tk- Tr) =K j- (Tk- Tr) (r E (0,1, .,k); j (Sk)

Therefore, equation (6) can be written as

Tk+- Tk = min (k)rE 0,1, . .,k) Jr'j

jg(Sk)

which establishes the first part of the theorem (eq. (4).) Let JR and J' be the Jr and j,
(k)

respectively, which minimize j, in equation (4). Then, by equations (5) and (4),

Tk+l = c(I 0 - JR,J')

By equation (1), the path (10 - JR,J') is optimal; thus, by definition of the Jr, one can set

Jk+l = J '. Therefore, (10 - JR,Jk+l) is optimal.

Corollary:

Tk+l - Tk = min k) (k (0, . . .,(N- 2)))

j (Sk)

13



where Tk) is defined by

(k) ( min 7k-1) k - k-1 Kk (kk > 0; j Sk)mIn T - ( T1)'{Jk,j

(0 )  
(J J0)

Proof: The proof is inductive on k. Suppose 7 (k) = min (k). allt E 0,1, . . .,j

j Sk and some k E 0,1, .,(N - 3). Then, by equation (4) and the hypothesis,

Tk+ - Tk = min (Tkj

ji Sk

By equation (4),

S(k+1) O(k) - T r E 0,1, ,k; j Sk+
Jr9j Jr,j - . . k 

(,jk = K, (r=k+ 1; j Sk+) )

Thus,

min (k+l min min (o (k) (T -k KJk+1,

rEK0,1, ... ,(k+1)) J r  I- k+1 k k

where t E (0,1, . . .,k), j (Sk+l or by the hypothesis

min (k+ = min (k) - (Tk+ - Tk J, k+l k+1)

r140,1, .,(k+l))

14



Since

Tk+l Tk = min T(k

(k) = min O, (k) j/PSk)

t~(0,1, . . .,k) '
7 (k+ l ) m(k+

rE(0,1, . . ,(k+l)) r' j

for all j g (Sk) and for any k E (0,1, . .,(N - 3)), in order to complete the inductive
proof, it will be shown that for k = 0,

7(k) =  mi (k) (All j Sk))

tE(0, .,k) Ct,

For k = 0 by definition,

_(k) = K (All j { Sk) )J 0KJ,j

min c(k) (0) K
it' j) JOJ 0]tE 0, . .,k)

Therefore,

7(k) - mm U(k)
S (0, . . .,k)

Note that the algorithm defines the optimal paths by updating the uj when the 7j
are updated by

T k) = n m Tk- 1)  k Tk1 ,- ] Kj

15



whereupon if K < T k- (Tk- Tk l) , then uj is set to Jk. Since the proof of the

corollary shows that

T k) = minm (k)k E ( 0, . .,(N- 2)); j/(Sk

tE(O, ,k

then, when the minimum 7( k ) is found, u is the Jt which minimizes (k) Thus,j k Jt,j h,

by the second theorem, there is an optimal path from I0 to Jk+l of the form

0 - UJk+Jk+l where J is the j which minimizes 7 k)

COMPUTATIONAL CONSIDERATIONS

The rapid-access data storage demanded by the algorithm is approximately 3N words

for the uj, Ti, and 7j) for cost elements read in from slow-access storage. (The rapid-

access data storage can be reduced by up to N words by reading at step (6) partial rows

of the K matrix into an abbreviated T' array, working with this array down through

step (9) with appropriate changes to running index limits, and cycling back through step (6)

for the next 7' array until the j0th row of K is exhausted. The additional computation

time that would result might be acceptable if core storage were a serious constraint.)

For cost elements calculated as needed, the rapid-access data storage is approximately

2N (for the uj and the 7j). Now consider computation time, or more precisely, resi-

dence time in core memory.

The numbers of operations performed for the worst case of N - 1 iterations are

as follows:

Operation Total times performed Breakdown

Comparisons 2N2  Step (7), N2

Step (8), 1/2 N2

Step (3), 1/2 N2

Additions or subtractions 1/2 N2  Step (7), 1/2 N2

Substitutions 2N2  Step (3), N2

Step (8), 1/2 N2

Step (9), 1/2 N2
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Operation Total times performed Breakdown

Calculations of T or 1/2 N2  Step (8), 1/2 N2

Row read-in of 7,7' from auxiliary storage 2N Step (6), 2N

For those particular operations where an exact count of frequency could not be made, the

worst case frequency is taken.

For large third-generation machines, the computation times of each of the listed

operations except the last two are in the approximate range 1 to 10 microseconds. The

time used in a row read-in of 7,7T' or a read-in of a single element is of the order of

100 milliseconds for disk storage systems. Thus, for costs read-in rather than calculated,
the computation time is approximately

Time < 4.5 x 10 - 6 aN2 + 0.2N seconds

where a is a characteristic computation time in microseconds for these listed opera-

tions (excluding the last two), and 1 < a < 10. For the case of computed costs, the com-

putation time is approximately

Time <= (4.5a + b/2) x 10 - 6 N2 seconds

where b is the computation time in microseconds for one T computation.

COMPARISON WITH OTHER ALGORITHMS

The data core storage and maximum numbers of operations for the proposed algor-

ithm, a dynamic programing algorithm (ref. 3), and an algorithm due to Ford and Fulkerson

(ref. 4) are presented in the following table. The term "elementary operations" refers to

replacement, addition, subtraction, multiplication, division, or simple one-branch or two-

branch logical operations.

The Ford and Fulkerson algorithm is limited in practice to problems with no more

than a few hundred nodes because of the rapid increase in the number of operations with

increasing numbers of nodes. However, this algorithm works under a less restrictive

assumption than that of nonnegative costs; the cost of any closed loop is nonnegative. It

can be seen from the table that the proposed algorithm is comparable in storage to the

Ford and Fulkerson algorithm but requires less computation time by a factor of the order

of N2 . It can also be seen from the table that the general routing problem with nonnega-

tive costs is solvable by the proposed algorithm in, for worst cases, less computer time
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by nearly a factor of N and with somewhat less core storage than the dynamic program-

ing algorithm. This advantage can be exploited to solve general routing problems with

an order of magnitude more nodes than those solvable by dynamic programing in the same

run time.

Data Number of Number of Number of

Algorithm Source of cost core elementary cost element accesses of
elements storage operations computations auxiliary storage

Dynamic Computed -3N -3N 3  zN3

programing

Dynamic Read in from ;4N 3N3 ------- N2

programing auxiliary storage

Dynamic Stored in core N2  3N 3

programing

Ford and Computed 2N =1/8 N4  z1/8 N4

Fulkerson

Ford and Read in from 3N 1/8 N4  ------- /8 N3

Fulkerson auxiliary storage

Ford and Stored in core ;N 2  =1/8 N 4

Fulkerson

Proposed Computed -2N =9/2 N2  =1/2 N2

Proposed Read in from 3 N 9/2 N2  ------- 2N

auxiliary storage

CONCLUDING REMARKS

Huygens' Principle has been used as the motivation to develop an algorithm for

solving a general class of routing problems. If a nonnegative cost for each ordered pair

of a set of N nodes is known, the algorithm can find the path of minimum cost sum from

one given node to another given node in at most N - 1 iterations. By viewing the prob-

lem as a discretized optimal control problem, after N - 1 iterations, an optimal control

or node transition has been established for each of the N nodes or states; thus, the

algorithm can be applied to situations where there may be errors in the control that would

necessitate a closed loop control philosophy. The algorithm is compared in both data

core storage and maximum number of operations with a dynamic programing algorithm
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and with an algorithm of Ford and Fulkerson. The algorithm is found to compare favor-

ably in both core storage and maximum operations for a large number of nodes.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., February 25, 1974.
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