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A PENNY-SHAPED CRACK IN A

FILAMENT-REINFORCED MATRIX*

II. THE CRACK PROBLEM

by

A. H. Pacella** and F. Erdogan

Lehigh University, Bethlehem, Pa.

Abstract. Using the filament model developed in the previous

paper, the elastostatic interaction problem between a penny-shaped
crack and a slender inclusion or filament in an elastic matrix is

formulated. For a single filament as well as multiple identical

filaments located symmetrically around the crack the problem is

shown to reduce to a singular integral equation. The solution of

the problem is obtained for various geometries and filament-to-

matrix stiffness ratios, and the results relating to the angular

variation of the stress intensity factor and the maximum filament

stress are presented.

1. INTRODUCTION

In studies relating to the fracture of filament-reinforced

composites and reinforced concrete in the presence of internal

cracks, in practice two of the most important factors one needs

to evaluate are the effect of the reinforcements on the stress

state around the leading edge of the crack and the effect of the

crack on the maximum stresses in the reinforcements. Basically

the problem is that of interaction between an internal crack in

an elastic matrix and elastic inclusions of different thermo-

elastic properties and of given size, shape, orientation, and

* This work was supported by The National Science Foundation

under the Grant GK-11977 and by the National Aeronautics and

Space Administration under the Grant NGR-39-007-011.

**Present Address: Bettis Atomic Power Lab., Westinghouse
Electric Corp., West Mifflin, Pa.
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distribution which are imbedded in the matrix. The general prob-

lem is clearly intractable. However, if the medium fulfills

certain conditions of symmetry with respect to the geometry and

the external loads, under some simplifying assumptions it is

possible to solve the problem within a reasonable degree of

accuracy and with a reasonable amount of computational effort.

Such a solution will be given in this paper.

Specifically, the following are the symmetry conditions

which are assumed to be satisfied:

(a) the crack is a plane, circular (i.e., penny-shaped)

internal crack;

(b) the filaments are circular cylinders imbedded in the

matrix with their axes perpendicular to the plane of the crack,

z =0 (Figure 1);

(c) z = 0 is a plane of symmetry with respect to the geom-

etry of the composite medium and the external loads; and

(d) the overall dimensions of the matrix are large in com-

parison with the local dimensions of the crack-filament region

(i.e., the crack diameter, 2a, the distance of the ith filament

from the crack center, bi , and the filament length, 2ci ) so that

in the analysis the matrix may be treated as being infinite.

The primary assumption to render the problem analytically

tractable is that the Poisson's ratios of the filaments be equal

to that of the matrix. Under this assumption it was shown in [1]

that if the Green's functions (for a concentrated body force) of

the matrix are available, the problem may be reduced to a system
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of (two-dimensional) integral equations for layers of (fictitious)

body forces imbedded along the filament-matrix interfaces. The

following simplifying assumptions are then made in this paper in

order to keep the analysis and the numerical work to solve the

problem within manageable proportions:

(i) The filaments are identical, i.e., c = ... = cN = c,

rl ... = rN = r , El = ... = EN = Ef V 1V = V f = v , where 2c

is the length, ro  is the radius, Ef is the Young's modulus, vf is

the Poisson's ratio, and N is the number of filaments, and v is

the Poisson's ratio of the matrix (Figure 1);

(ii) c/r0 is sufficiently large so that a one-dimensional

treatment of the auxiliary inclusion (having the elastic constants

Ef- E and v, E being the modulus of the matrix) is justified (see

[1]);

(iii) The filaments are distributed symmetrically (i.e.,

with equal angular spacings) on a circle in z = 0 plane concentric

with the penny-shaped crack (i.e., b1 = ... =bN = b), they are

parallel to the z axis, and their mid-points lie on z= 0 plane;

(iv) The filament radius ro  is sufficiently small in com-

parison with other dimensions of the medium so that the effect of

the radial component R of the (fictitious) body force acting on

the filament-matrix interface and the effect of the angular varia-

tion of the axial component Z of the body force may be neglected.

It was shown in [1] that as a result of this assumption the effect

of the. end tractions (or the body forces distributed at the ends

z = ic) may also be neglected; and

(v) The external load is the uniaxial stress azz = o applied

to the matrix away from the crack-filament region.
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Figure 1. Geometry for the penny-shaped crack in an elastic

matrix reinforced by symmetrically located identical filaments.



From the viewpoint of the elasticity solution, clearly the

most drastic assumption is that regarding the distribution of the

body forces. However, the results and some comparisons given in

[1] indicate that the error introduced into the solution as a

result of this assumption would be within an acceptable range.

The physical problem described in this paper was also consid-

ered in [2], where the problem was assumed to be essentially

axisymmetric and the filaments were replaced by a discrete set of

concentrated body forces acting in z-direction.

2. FORMULATION OF THE PROBLEM

Consider now the problem described in Figure 1 subject to

the symmetry conditions (a)-(d) and the simplifying assumptions

(i)-(v) outlined in the previous Section. Since the filaments

are identical and symmetrically located, the body forces Z(z)

imbedded in different filament-matrix interfaces will be the same.

Hence if one can obtain the Green's functions for a cracked

matrix, it is possible to formulate the problem in terms of a

single integral equation with Z(z) as the unknown function. This

integral equation may be obtained by matching either the z-compo-

nents of the displacement vector or the strains EZZ in the cracked

matrix subjected to the external loads oo and Z(z) and that in

the auxiliary filaments subjected to the external loads -Z(z).

In using the equality of the strains in the derivation the single-

valuedness condition of the displacements must separately be

satisfied. The solution for the cracked matrix may be obtained

by superimposing four solutions described in Figure 2. Note that
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Figure 2. Superposition for the stresses in the matrix.



there are no cracks in problems described by Figures 2a and 2c.

Let the filament 1 be located on the x axis (i.e., at r= b,

o = 0) and let (6,p,z) be the cylindrical coordinates referred to

the center of filament 1. Let a ~d be the strains corre-
ZZ zz

sponding to problems described by Figures 2a,..,2d, and Ef be the

axial strain in the auxiliary filament. From [1] it follows that

a + b + c + d f
ZZ ZZ ZZ ZZ ZZ

(6 =r o ,  ,  - c < z< c), (1)

where ro is the radius, 2c is the length of the filament, and 0

is an appropriate angle describing the generator of the cylinder

along which the strains are matched (Note that the body force

Z(ro,4,z) is assumed to be independent of p). The filament strain

is given by [1]

f 2 c
z () = - (Ef - E) Z(t)dt , (-c < z < c). (2)

o f z

Within the confines of the simplifying assumptions made in the

previous section regarding the body forces R and Z, the strains

ezz and were obtained in [1] as follows:

a -o (3)
zz E

Cc (z) = 1 i Z(t)dt + m2 2 (z,(t) dt] ,
1 -c -c

(-c < z < c), (4)
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2r 2r - p 2r (t-z)

2 2 (zt) 2ro (K(k) 1 o o + 3 K(k)m22(z't) p z t-z p (t-z) 3
o o PO

0

2ro_ _E(k 2roy(t-z)

+ y+ E(k)

N 1
+ ro (t-z) 2 (1 - 2y

i=2 [d 2 + (tz)2]3/2
1

3y(t-z)
2

d 2  + (t-z) 2 )

4rr(l -v) 1
1  (1+v)(3 - 4v) ' 3 - 4v

2 2  2 2ro
p = 4r + (t-z) , k - P

o o p

27r(i-I) 1/2
d = b[2( - cos N , (i =2,..,N), (5)

where K(k) and E(k) are complete elliptic integrals, N is the

number of filaments, and b is the distance from the center of the

crack to the midpoint of the filament (Figure 1).

To obtain bzz and Ezzd the solutions of the crack problems

shown in Figures 2b and 2d (where the only external loads are the

self-equilibrating crack surface tractions) are needed. In Figure

2b the crack surface tractions are

azz = o rz = 0 = z  (6)

This is an axisymmetric problem the solution of which is known

(see, e.g., [4]). In the problem described by Figure 2d the crack

surface tractions are equal in magnitude and opposite in sign to

the stresses at z=O plane obtained from the solution of the prob-

lem given by Figure 2c. In Figure 2c, because of symmetry, the
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shear stresses at z=O plane will again be zero. Hence for the

problem 2d the crack surface tractions will be

ozz p(r,e) , arz =0 = 0 z (7)

where p(r,e) is the normal stress at z=O plane in Figure 2c.

p(r,O) may easily be calculated in terms of Z(z) by using

the basic solution given in [3] (see also [1]). However, since

ro <<c and r0 <<a (where ro is the radius, 2c is the length of

the filament and a is the crack radius), to calculate p(r,8) for

simplicity it will be assumed that the concentrated body forces

2Tr Z(z) act along the lines (r = b, - c < z < c, 0i = 2ri/N),

i= 1,2,..,N (i.e., along the axes of the filaments), rather than

Z(z) acting along the cylindrical surfaces (6 = ro ,  -c< z< c,

0< < <2r). Thus, following [3] we find

r c N 3t 2

p(r,O) = f3 (1 - 2v + 3- ) dtp(r,) = 4(l-v) f Z(t)t 3
-c i=l p. p1 1

2 r2  2br 2i) + b2 + t 2  (8)
Pi - 2br cos(e-b

For the solution of the crack problem it will be necessary to

express p(r,6) in product form. Since p is periodic (and even)

in 0 this may easily be done, giving

SNn
p(r,e) = I b (r) cos(Nne) , (0< r< a, 0< < 2T), (9)

n=0

where

a 2x
b ff p(r,o)rdrde ,

Tra o o

2(nN+l) a 2T nN+1
bn 2(nN+) f f  p(r,e)( ) cos(nN)drde ,

o o
(n =  1,2,...). (10)
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Assuming that crack radius a is the length unit for the medium,

without any loss in generality for the remainder of this paper

we will let a =1.

The crack problem described in Figure 2d may thus be consid-

ered as a mixed boundary value problem in elasticity for a half

space z> 0 subject to the following boundary conditions:

zz(r, ,0) = - p(r,) , (0< r < 1, 0< 6 < 2 ),

uz(r,0,0) = 0 , (1 <r< , 01<60<2 ),

rz(r, ) = 0 =  z(0,0) 0 =fez(r,0,0) , (< r< -, 01<< 2w).

(1ll.a-c)

Similar mixed boundary value problems have been treated in [5] -

[7]. As shown in, for example, [8], because of (ll.c) the prob-

lem may be formulated in terms of a single harmonic function f,

which may be expressed as

03 00

(r,8,z) = cos(nNO) I f n()e-z nN(r)d , (12)
n=O o

where fn is the unknown function. Using (12) and the relations

[8]
2

2u z = 2(l-v) - z 2 '
3z

2 3
_ 3= z 3 (13.a,b)

zz 2 3z zz

from (9), (1l.a) and (ll.b) it is found that

of fn()JnN(ra)da = - bnrnN , (0<r < ),
0

f f n(a)JnN(ra)d~ = 0 , (l< r <-), (n= 0,1,2,...). (14)
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After some manipulations the solution of the dual integral equa-

tions (14) may be expressed as [4, 9]

f (o) = - bnan a-1 /2 nN+3/2 ( ) ,

n r n n nN+3/2-k
an 2-2nN nN (2nN+l (-1 )n-k (15)a= 2 \ 2n - 2k + 1

k=O k/

Substituting now (12) and (15) into (13.a) the desired strain

may now be expressed as

d (r z) - l+v 1 anbn O (nNO)[( 1 - 2v)F (r,Izl)

n=O

+ IzIGn(r,lz )] , ( zl> 0), (16)

where

Fn(r,z) = a 1/2JnN(ra)JnN+ 3/2 (a)e-ad ,

G (r,z).= f (3/2 nN(ra)JnN+ 3/2 (a)e-aZda , (z> 0). (17.a,b)

The functions Fn and Gn may be evaluated by using Filon's inte-

gration formula [9]. However, a simpler way to evaluate these

integrals would be to use the series expansions given in [10,

p. 400]*

The problem described by Figure 2b is a special case of

Figure 2d, a0 replacing p(r,O) in (ll.a). The strain for this

case may be expressed as

z(r,z) = +v 2 o [(1-2 )F (r,Iz ) +  IZIGo(r,lzl)] ,

(-C< z< 00), (18)

where Fo and Go are also given by (17).

*The details may be found in [11].
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By substituting now from (2), (3), (4), (16), and (18) into

(1) we obtain a singular integral equation for the unknown func-

tion Z(z). Z again has integrable singularities at z =+c, the

index of the integral equation is +1, and the general solution

contains one arbitrary constant which is accounted for by the

single-valuedness condition of the displacement uz.  In the numer-

ical solution of the problem if one assumes that Z(z) = -Z(-z),

because of the symmetry properties of the kernels, the single-

valuedness condition is automatically satisfied [1]. Note that

in the derivation given in this section the elastic moduli appear

only through E/Ef.

3. THE FILAMENT STRESS

Once the body force Z(z) is obtained the shear stress on the

filament-matrix interface and the axial stress in the actual fila-

ment may be obtained by using the general results given in [1].

Thus, from (24) or (48) of [1] the interface shear may be ex-

pressed as

Sz(ro' z) - Ef -E Z(z) , (-c< z < c). (19)

Similarly the filament stress Ofzz(z) may be evaluated by using

(27) or (49) of [1], which may be expressed as

Sfzz(z) - Z(t)dt + ao + o (b,z) + o (bz)
0 Z

+ zd (b,z) , (-c < z <c), (20)

where on the right-hand side of ('20) the first term is the stress

in the auxiliary filament, the second and the subsequent terms

correspond to the matrix stresses obtained from the problems
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described by Figures 2a- 2d. The matrix stresses may either be

averaged over the area (0< 6 <ro , 0<p< 2w) or be approximated by

the stress azz along the filament axis, (r= b, -c < z< c). Follow-

ing [1] these stresses may be expressed as

ac (bz) - 0  c Z(t)(t-z) (1 - 2v+ 3(t-z) 2 2)dt
zz(bz) = 4(-v) [r2 +(tz)2] 3/2 + (tz)

r c N 1

+4(l-) f Z(t)(t-z)dt [2 3/2 (
-c i=2 [di + (t-z)23

2
- 2v + 3(t-z)2 , (21)

d. + (t-z)
1

(where di is given by (5));

ab (b,z) = - a0 /2r [F(b,Izj) + IzIG (bzl)] , (22)

ad (b,z) = - /2 X a b n[Fn(b,zi) + IzlGn(b,z )] , (23)
n=0 n

(with (17), (8), (10) and (15)).

4. THE STRESS INTENSITY FACTOR

Because of symmetry on the z=O plane arz =oz = 0 in the

matrix, and the stress state in the close neighborhood of and in

the plane normal to the leading edge of the crack is plane strain.

Thus the stress intensity factor may be defined by

K(e) = lim 72-(r-a) azz(r, ,O) , (r> a, 0< < 2w), (24)
r-*a

or

K(O) = - lim E /2(a-r) u (r,,+O) ,
r-a 2(1-v 2 )

(0< r < a, 0< e < 2w), (25)
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where uz(r,6,+0) is the crack surface displacement on z> 0 side

of the medium and it is assumed that a= 1. From (13.a) and the

solution given in Section 2 the crack surface displacement in the

matrix may be expressed as

uz(r,0,+O) = ub(r,+O) + ud(r,6,+0)

= 2(1-v 2) /Tr [acH (r,0)

+ I anbncos(nN6)Hn(r,O)] ,
n=O

(0< r< , < 0< 27), (26)

where

Hn (r,z)= f n-1/2 nN(ra)JnN+ 3/2 (a)e-azda , (z > 0). (27)

Following [10]

nN lr 2 1/2
r (1-r2 )1/2 (o r< 1)

Hn (r,+O) = / r(3/2) < ), (28)

0 , (1< r< ),

which gives

2 00
uz(r,,+0) 4(1 ) (1-r2 1 /2[ + b anb rnNcos(nN0)] ,

n=0

(0< r < 1, 0< 0< 27r), (29)

and

K() 2 [ + ab cos(nN6)] , (0 < 2rr). (30)
K(0) 2 + ann

/w n=O

5. NUMERICAL RESULTS

In deriving the integral equation for Z(z) it was pointed

out in Section 2 (of this paper) that the strain ef in the auxil-

iary filament has to be matched with the strain in the matrix
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along an appropriate generator of the cylinder (6= ro, < < 27T,

-c< z < c), i.e., along the line (6= ro , p=  o,' -c< z< c). The

effect of this selection on the stress intensity factor for a

single filament is shown in Figure 3. The three curves given in

the figure correspond to selecting this generator at the outer-

most (o = 0 or r'= b+r ), at the innermost (po = r or r' = b-ro),

and at an intermediate point (po = 7r/2 or r' = b) of the filament

cross-section. The differences appear to be rather insignificant.

Hence, for the remainder of the numerical analysis in this paper

the strains are matched along the line (r = b, -c< z < c). The

solution of the integral equation is of the form [12]

Z(z) = f(z) c 2  z 2  (-c< z<c), (31)

where f(z) = -f(-z) is a bounded function which is obtained

numerically [13,14]. In the examples given in this paper the

crack radius was assumed to be the length unit, i.e., a= 1. For

a 1 1 the stress intensity factor ratio given in the figures should

be read as K /(2oVa7TT).

The effect of the modulus ratio Ef/E and filament distance b

in the case of single filament is shown in Figure 4. As expected

the stress intensity factor decreases for increasing Ef/E, de-

creasing b, and decreasing lel, where the angle 6 along the crack

front is measured from the radius going through the filament

center.

Figure 5 shows the effect of the filament radius ro and fila-

ment length 2c on the angular variation of the stress intensity

factor for a single filament.
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Ef/E= 100
V =.35

.98.t9o= .1 b =2.0
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.96- b =1.5

20-0
.94

r'= b+r
.92 r= b 0

, r' =br o  - -

.90
0 0.2 0.4 0.6 0.8 1.0

8/TT

Figure 3. The effect of the location of the strain matching
line on the stress intensity factor.



1.00

Ef/E=50Ef/E= 10
.98

.96 0

.94 / 0- Ef/E=100

0KI - / /2
2ao zv =.35
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-5 - 2c

.90 b
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b=2.00 -

.88- b=1.50

b=1.25 -- -

.86 I I I II
0 0.2 0.4 0.6 0.8 1.0

8/7r

Figure 4. The effect of the filament-to-matrix modulus ratio
Ef/E and the filament-to-crack center distance b on the angular
distribution of the stress intensity factor.
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.90 -,- Ef/E=100

, =.35
b =1.5

85- / ro = .05 --

Sro = .1 0
r = .15

. 0.2 0.4 0.6 0.8 1.0
e/ TT

Figure 5. The effect of the filament dimensions r and c on
the stress intensity factor. o



The effect of the number of filaments, N, is shown in Figure

6. It may be observed that for N >4 in the case of b/a =2 and

for N >6 in the case of b/a =1.5 (and for c/a = 5, ro/a = 0.1, and

Ef/E = 100) the stress intensity factor will be independent of 0

and the problem may be simplified considerably by assuming axial

symmetry (and by treating the filaments as "shells" of equivalent

stiffness which are concentric with the crack).

The effect of the modulus ratio Ef/E together with N is

shown in Figure 7.

Figures 8 and 9 show the "stress concentration" effect in

the filament resulting from the existence of the crack. Here,

a c (0) is the axial stress in the filament at z = 0 obtained from
fzz

(20) in the presence of the crack for a single filament whereas

ao (0) is the filament stress at z = 0 calculated from (20) in
fzz

b d
the absence of the crack (i.e., obtained by ignoring azz and ozz

Figure 8 shows the effect of the modulus ratio and the distance b,

Figure 9 shows the effect of the filament dimensions ro and c,

and the distance b.

Figures 10 and 11 show the effect of the modulus ratio Ef/E

on the actual filament stress at z= 0 for a single filament in

the cracked matrix. The result for Ef/E = 1 (i.e., the case of

no filament) is obtained from the simple penny-shaped crack solu-

tion (e.g., [4]) as the stress ozz at (r= b, z= 0). Note that as

b/a increases, the filament stress at z= 0 approaches Ef/E asymp-

totically. This is the known result in the uncracked matrix for

the case of reinforcement by fibers or long filaments.
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N=4
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2%o
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v=.35 b=.5 --
ro =.

.75- c=

N=6

.70
0 0.2 0.4 0.6 0.8 1.0

8N/I

Figure 6. The effect of the number of filaments N on the stress
intensity factor.
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.90 - b=2
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N=2 -
N=4

Ef/E=100

.85 -. . . I 1 - " 1 I I
0 0.2 0.4 0.6 0.8 1.0
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Figure 7. The effect of the modulus ratio Ef/EN on the stress
intensity factor.



1.3

S=.35

ro=.
c=5

1.2

Cf zz(O)
Cfzz() E /E = 10

1.011.O 2.0 3.0
b

Figure 8. The ratio of the maximum filament stress in a cracked
matrix to that in an uncracked matrix for a single filament.



1.15

Ef/E=100
Q=.35

1.10-

r=.05

Ofzz(O)

o (o)

1.0 2.0 3.0
1.05-

r0= .15
c = 7.5

1.00
1.0 2.0 3.0

Figure 9. The ratio of the maximum filament stress in a cracked
matrix to that in an uncracked matrix for a single filament, the
effect of filament dimensions.
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12-
Ef/E= IO

I0

8

Ofzz(o)

S6 - Ef/E=5

v=.35

ro-.l4-
Sc=5
N=I

2-
Ef/E=I

No Filament

0 I I
1.0 2.0 3.0

b

Figure 10. Maximum filament stress for a single filament in the
cracked matrix.
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80

60
6 () E,/E-50. =.35

40
ro =.1
c=5
N=1

20 Ef/E=10

Ef/E=1, No Filament

1.0 2.0 3.0
b

Figure 11. Maximum filament stress for a single filament in the
cracked matrix, the effect of the modulus ratio Ef/E.
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Finally, Figure 12 shows the effect of the number of fila-

ments N and the modulus ratio Ef /E on the filament stress at z= 0

in the presence and in the absence [1] of the crack. The "stress

ratio" given in the figure is the ratio of the filament stress

ofzz(O) to the filament stress at z = 0 obtained from the solution

of a single filament in the uncracked matrix.

The analysis given in this paper may easily be extended to

filaments with different dimensions, locations,and elastic moduli

provided they are oriented perpendicular to the plane of the crack

and this plane is a plane of symmetry with respect to the external

loads and the geometry of the composite medium. In this case,

the formulation of the problem would lead to a system of singular

integral equations in the body forces Zl(z),...,ZN(z) imbedded in

the filament-matrix interface, N being the number of filaments.

In the case of symmetrically located large number of filaments,

the problem may be treated as being axisymmetric with unknown

body forces imbedded along cylindrical surfaces concentric with

the crack. These extensions will be considered in the next paper

which deals with a somewhat more practical problem of infinite

fibers rather than finite filaments.
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