$2^{(mix)}$ 01

ţ

https://ntrs.nasa.gov/search.jsp?R=19740019682 2020-03-23T08:02:18+00:00Z

238

E7.4-10.632 CR-138742

"Made available under NASA sponsorship

In the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereot."

WHEAT:

ITS WATER USE, PRODUCTION AND DISEASE DETECTION

AND PREDICTION

COMPLETION REPORT

(E74-10632) WHEAT: ITS WATER USE, PRODUCTION AND DISEASE DETECTION AND PREDICTION COmpletion Report (Kansas State Univ.) 238 p HC \$15.00 - CSCL 02C	G3/13	N74-27795 THRU N74-27800 Unclas 00632	
---	-------	---	--

1060C

KANSAS ENVIRONMENTAL AND RESOURCE STUDY: A GREAT PLAINS MODEL

1

Wheat: Its Water Use, Production and Disease Detection and Prediction

Edward T. Kanemasu Evapotranspiration Laboratory Kansas State University Manhattan, Kansas 66506

February 5, 1974 Completion Report Report No. 2263-3

Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GODDARD SPACE FLIGHT CENTER

GREENBELT, MARYLAND 20771

i

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 2. Government Accession No.	3. Recipient's Catalog No.
	er net prese a construction
4. Title and Subtitle	5. Report Date
Wheat: Its Water Use, Production and	February 5, 1974
Disease Detection and Prediction	6. Performing Organization Code
7. Author(s) E. T. Kanemasu, D. Lenhert, C. Niblet H. Manges, and M. G. Eversmeyer	t 8. Performing Organization Report N
9. Performing Organization Name and Address	10. Work Unit No.
Kansas State University	
Manhattan, Kansas 66506	11. Contract or Grant No.
	NAS5-21822
	13. Type of Report and Period Covere
12. Sponsoring Agency Name and Address	Completion
NASA-GSFC Richard Stonesifer	Comprecion
Greenbelt, Maryland	14. Sponsoring Agency Code
15. Supplementary Notes	· · ·
	•
16. Abstract	
Leaf area index was linearly correlated and MSS5:MSS6. In an area of severe wheat stu	with ratios MSS4:MSS5 reak mosaic virus
Leaf area index was linearly correlated and MSS5:MSS6. In an area of severe wheat str infected fields, correlations of ERTS-1 digits yields and disease severity levels were signif for MSS bands 4 and 5 and band ratios of 4/6 a Data collection platforms were used to g data for the early prediction of rust severity	reak mosaic virus al counts with wheat ficant at the 5% level and 4/7.
and MSS5:MSS6. In an area of severe wheat str infected fields, correlations of ERTS-1 digits yields and disease severity levels were signif for MSS bands 4 and 5 and band ratios of 4/6 a Data collection platforms were used to a	reak mosaic virus al counts with wheat ficant at the 5% level and 4/7.
and MSS5:MSS6. In an area of severe wheat str infected fields, correlations of ERTS-1 digits yields and disease severity levels were signif for MSS bands 4 and 5 and band ratios of 4/6 a Data collection platforms were used to a	reak mosaic virus al counts with wheat ficant at the 5% level and 4/7.
and MSS5:MSS6. In an area of severe wheat str infected fields, correlations of ERTS-1 digita yields and disease severity levels were signif for MSS bands 4 and 5 and band ratios of 4/6 a Data collection platforms were used to g data for the early prediction of rust severity	reak mosaic virus al counts with wheat ficant at the 5% level and 4/7. gather meteorological y and economic loss.
and MSS5:MSS6. In an area of severe wheat str infected fields, correlations of ERTS-1 digita yields and disease severity levels were signif for MSS bands 4 and 5 and band ratios of 4/6 a Data collection platforms were used to g data for the early prediction of rust severity	reak mosaic virus al counts with wheat ficant at the 5% level and 4/7. gather meteorological y and economic loss.
and MSS5:MSS6. In an area of severe wheat str infected fields, correlations of ERTS-1 digits yields and disease severity levels were signif for MSS bands 4 and 5 and band ratios of 4/6 a Data collection platforms were used to g data for the early prediction of rust severity [7. Key Words (& lected by Author(s)) [18. Distribution S Wheat, disease, water use, leaf	reak mosaic virus al counts with wheat ficant at the 5% level and 4/7. gather meteorological y and economic loss.

*For sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

世界の Technical Report Standard Title Page) (4)

TABLE OF CONTENTS

Page
Title Page
Table of Contents
List of Figures
List of Tables
1.0 Introduction
2.0 Water Use of Wheat
2.1 Water loss from dryland and irrigated wheat 5
2.2 Water loss from diseased and healthy wheat
3.0 Data Reduction
3.1 General data handling method
3.2 Special computer programs generated
3.3 CCT data used
3.4 Data reduction recommendations for other investigators 42
4.0 Effect of Crop Growth on ERTS-1 MSS Response
5.0 Detection of Disease Severity and Economic Loss
6.0 Literature Cited
7.0 Conclusions
8.0 Future Research Needs
Appendix A. ERTS-1 Data Collection Systems Used to Predict Wheat Disease Severities
Appendix B. Seasonal Canopy Reflectance Patterns of Wheat, Sorghum, and Soybean

TABLE OF CONTENTS (Continued)

		Page
Appendix C.	Flexible DCP Interface	. C-1
Appendix D.	Master's Thesis: Predicting Soil Moisture and Wheat Vegetative Growth from ERTS-Imagery	. D-1
Appendix E.	Computer Programs to Generate the Mean and Standard Deviation for the Interior of a Field	. E-1
Appendix F.	Computer Program and Flow Chart to Create Contour Plots on Calcomp Plotter	. F-1
Appendix G.	Algorithm to Enhance Variation within a Category	• 6-1
Appendix H.	Computer Programs to Implement the Algorithm of Appendix G	. H-1

LIST OF FIGURES

		I	age
Figure 1.1	Map of test areas in Kansas	•	4
Figure 2.1	Relationship between measured LAI and ratio of digital counts in band 4 to band 5	•	13
Figure 2.2	Comparison of measured and predicted available soil moisture	•	16
Figure 2.3	Crop coefficient curves for winter wheat	•	23
Figure 2.4	Crop water use from five wheat fields and precipitation patterns for the general area	•	30
Figure 2.5	Trends in the hourly energy balance of rust and control (healthy) wheat for May 4, 1973	٠	31
Figure 2.6	Trends in the hourly energy balance of rust and control (healthy) wheat for May 19, 1973	-	32
Figure 2.7	Trends in the hourly energy balance of rust and control (healthy) wheat for June 15, 1973	•	33
Figure 2.8	Daily trends in stomatal diffusion resistance of control, rust-infected and wheat streak mosaic virus (WSMV)-infected wheat leaves	•	34
Figure 2.9	Daily trends in the leaf-water potential of control, rust-infected, and WSMV-infected wheat leaves	•	35
Figure 3.1	Computer generated gray-scale map	٠	.37.
Figure 3.2	Sample computer output from general program	ŧ	40
Figure 4.1	Radiometric response of ERTS-1 bands for Hartner wheat field during the 1973 growing season	•	57
Figure 5.1	Temporal variations in the relationship between mean digital counts and wheat yield	•	64
Figure 5.2	Temporal variations in the relationship between mean digital counts and WSMV severity	•	6.5

...

LIST OF TABLES

Page

Table :	2.1	Weather conditions during satellite pass over test fields
Table	2.2	Digital counts of MSS data and LAI for Field A 10
Table	2.3	Digital counts of MSS data and LAI for Field B 11
Table	2.4	Available soil moistures (cm of water)
Table	2.5	Precipitation and irrigation at the test sites 17
Table	2.6	Measured and predicted soil moisture depletion and water use
Table	2.7	Cropping description of five wheat fields 25
Tab le	2.8	Physiological calendar for wheat
Table	2.9	Yield data for test wheat fields
Table	3.1	Computer compatible tapes used in the project 43
Table	4.1	Location and cropping description of the Riley County Fields (Hartner and Erichsen) and the irrigated wheat fields in Finney County
Tab le	4.2a	Mean digital counts and standard deviations for ERTS-1 observations of Hartner field
Table	4.2Ъ	Mean digital counts and standard deviations for ERTS-1 observations of Erichsen field
Table	4.3a	Linear regression equations of leaf area index (LAI) and digital counts from MSS 4, 5, 6, and 7 taken from 6 ERTS-1 observations of Erichsen and Hartner fields 52
Table	4.3b	Linear regression equations of percent cover (PC) and digital counts from MSS 4, 5, 6, and 7 taken from 6 ERTS-1 observations of Erichsen and Hartner fields 53
Table	4.4	Correlation coefficients between the various MSS bands for the Hartner field
Table	4.5	Linear regression equations of pooled LAI and MSS digital count data from Hartner and Erichsen fields (Riley County) and irrigated and non-irrigated fields (Finney County)

LIST OF TABLES (Continued)

Table 5.								relatio				•	•	••	61
Table 5.	2 Mea sev	ns of erity	MSS	dig	ital	coun	its in	relatio	n to	dise	ase •••	٠	•		62
Table 5.								digital				•	•		63
Table 5.								digital				•	•		63

N74-27796

1.0 INTRODUCTION

This report includes data for the 1972 (October, 1971 to June, 1972) and 1973 (October, 1972 to June, 1973) growing season for winter wheat in Kansas. Obviously, there was no ERTS-1 imagery for the 1972 wheat crop since the satellite was launched July 23, 1972. However, under the PEIS (Pre-ERTS Investigator Support), we obtained three U-2 flights over our test areas (March 21, April 26 and June 6, 1972). The imagery was taken during the NASA-Ames to Wallop Island ferry trips. U-2 flight lines for each date differed and made chronological comparison of a given test area impossible; however, we were able to detect virus infected wheat fields on U-2 color infrared film. A systematic analysis of U-2 data was not possible because ground observations and U-2 flight lines did not always coincide. Since the actual U-2 film was not received until 3 months after the harvest, we could not generate the necessary ground truth.

In addition to the U-2 flights, the University of Kansas-CRINC (Center for Research, Inc.) provided three low altitude flights with a Cessna 182 equipped with four Hasselblad cameras. Cessna flight coverage was selected from ground observations of wheat fields. Diseased and healthy fields in the same frame were compared as to the date of planting, variety, disease severity, fertility, topography and crop rotation. In comparing many of healthy and diseased fields, a common denominator was crop rotation. For example, soil borne mosaic virus was more severe on fields that were cropped with wheat the previous year.

The 1973 Kansas wheat crop produced a record 381,000,000 bu with an average yield of 37.0 bu per acre which is attributed to a 10% increase over 1972 in both harvested acres and yield. Part of the increase in yield can be attributed to abundant soil moisture because of ample precipitation

I

and the absence of severe disease epidemics over the state. The abnormally high precipitation adversely affected this project by (a) reducing water stress, (b) producing cool weather which affects disease infestation, and (c) association with clouds which affect quality of the imagery.

Efforts were concentrated in two of the five test areas: Finney County (Garden City) and Riley County (Manhattan), (Fig. 1.1). The Finney county site had a large area infected with wheat streak mosaic virus (WSMV). Riley county was the location of the data collection systems (DCS) and the plots for the energy balance determinations. We obtained 5 ERTS-1 observations for the WSMV area and 7 observations for the irrigated and nonirrigated wheat fields in Finney county. In addition, 8 observations were obtained for Riley county. Because of cloud cover during U-2 flights, no U-2 imagery was available for the entire 1973 wheat crop. Two sets of U-2 imagery were obtained after the wheat harvest.

Objectives of the investigation were: (a) to evaluate the effect of water stress, disease, and leaf area on the reflectance characteristics of wheat, (b) to evaluate disease losses in terms of yield and water use, and (c) to predict disease severity and economic loss.

In this report, the water use of irrigated and nonirrigated wheat and of healthy and diseased wheat are discussed in Chapter 2 (objective a and b). Data handling and reduction of ERTS-1 imagery is reported in a separate chapter (Chapter 3). The use of ERTS-1 imagery to determine leaf area, _ crop growth and disease severity is given in Chapter 4 and 5 (objective a and b). Prediction of disease severity and economic loss (objective c) by the use of ERTS-1 data collection systems is reported in Appendix A. Appendix C contains a detailed electronic description of the data collection interface

Fig. 1.1 Map of test areas in Kansas.

system. The results of ground measurements of the spectral reflectance of sorghum, soybean and wheat are provided in Appendix B. As a result of the ERTS-1 project, a Master's Thesis was written and is provided as Appendix D. Appendices E, F, G and H are related to data handling and reduction phases of the project.

The investigators wish to express appreciation to the National Aeronautics and Space Administration for supporting this project. Soils on the two fields are classified as a Ulyssess-Richfield silt loam with 1.5 percent organic matter and a pH of 6.9. A particle size analysis indicated the soils contained about 50 percent silt and 20 percent clay.

Field A, which had been summer fallowed since July 1971, was planted to Scout winter wheat on September 15, 1972. Seeding rate was 29 kg per hectare in rows spaced 25.4 cm apart. The wheat was completely headed by May 24, 1973 and a yield of 2689 kg per hectare harvested on July 5, 1973.

As field B had been in wheat the previous season, it was preirrigated. Ninety kg per hectare of nitrogen were applied as anhydrous ammonia prior to planting and 50 kg per hectare of Eagle winter wheat were seeded on September 22, 1972, in rows 30.48 cm apart. Two irrigations of 3.05 cm each were applied through a center pivot sprinkler system on May 23 and June 2, 1973. Wheat harvest was completed on July 5 and the yield was 3496 kg per hectare.

According to Variety Tests with Fall-Planted Small Grains (1971), Eagle wheat is a selection of Scout with nearly identical vegetative characteristics. Reflectance measured by the MSS system aboard ERTS-1 should be independent of winter wheat variety, Scout or Eagle.

Data Collection

Fields A and B were both divided into four equal sized square plots with a sampling area in the center of each plot. Two additional sampling areas were established in field A where the corners of the field were double drilled. The sampling areas were sub-divided into one meter square plots. Leaf area index and soil moisture were measured within one day of each pass of ERTS-1 on one plot of each sampling area selected at random.

Leaf area was determined by measuring the length and breadth of each leaf from randomly selected plants. Area of each individual leaf was calculated from the equation (Teare and Peterson, 1971):

$$LA = 0.813X - 0.64 \tag{2.1}$$

where:

 $LA = Leaf area, cm^2$

X = Product of length times breadth of leaf, cm^2

Total leaf area on each one meter square plot was calculated by multiplying number of plants times average plant leaf area. Leaf area index was taken as the ratio of total leaf area to the land surface area.

Soil samples were taken from the surface and at the following increments of depth: 0 to 15, 15 to 30, 30 to 60, 60 to 91, 91 to 121, 121 to 152, and 152 to 182 cm. The samples were weighed, dried in an oven at 105°C until they reached a constant weight and reweighed. Soil moisture was calculated and expressed as percent on a dry weight basis.

Bulk density, field capacity and the permanent wilting point for Ulyssess-Richfield silt loam were obtained from the Garden City Experiment Station.

Meteorological data from the area were collected for use in the ET model. Maximum and minimum temperatures, dew point temperatures and wind run were obtained from the Garden City Experiment Station. Solar radiation was obtained from the Dodge City Weather Service and rainfall was measured near the field site.

Data Analysis

Digital counts in each MSS band and various combinations of bands were compared by multiple regression techniques with leaf area index and available soil moisture. Using an IBM 360/50 digital computer, estimates of the water use by wheat from the ET model developed by Jensen et al. (1971) were compared with changes in measured soil moisture.

RESULTS

Although ERTS-1 passed over the field site every 18 days, clear atmospheric conditions were encountered on only 6 flight days during the period from wheat seeding to wheat harvest. Table 2.1 gives weather conditions on each flight date and the schedule of data collection. Data for July 7 were excluded from the analyses because the wheat crop had been harvested.

Prediction of Leaf Area Index

Tables 2.2 and 2.3 give digital counts of MSS data for bands 4, 5, 6 and 7 and ratios of 4 to 5, 4 to 7 and 5 to 7 along with measured LAI for fields A and B. The regression equations for predicting LAI are:

LAI = -0.15MSS4 + 5.41	,	$R^2 = 0.80$	(2.2)
------------------------	---	--------------	-------

LAI =
$$-0.065MSS5 + 2.66$$
, $R^2 = 0.86$ (2.3)

LAI =
$$1.94MSS6 - 9.37$$
, $R^2 = 0.20$ (2.4)

LAI =
$$0.15MSS7 - 3.53$$
 , $R^2 = 0.53$ (2.5)

LAI =
$$2.92MSS4/5 - 2.63$$
, $R^2 = 0.95$ (2.6)

LAI =
$$-1.22MSS5/7 + 2.08$$
, $R^2 = 0.85$ (2.7)

where

LAI = Leaf area index

MSS = Digital counts for numbered band or ratio

R^2 = Regression coefficient

For each equation there is some minimum or maximum value of the digital counts or ratios beyond which LAI goes negative and the results are meaningless.

Da	ate	·	Weather Condition	Data Acquired ^a
September	4,	1972	Cloudy	
September	22,	1972	Clear	X
October	10,	1972	Partly Cloudy	
October	28,	1972	Cloudy	
November	15,	1972	Cloudy	
December	3,	1972	Partly Cloudy	
December	21,	1972	Partly Cloudy	
January	8,	1973	Cloudy	
January	26,	1973	Cloudy	
February	13,	1973	Rain	
March	3,	1973	Foggy	
March	21,	1973	Clear	X
April	8,	1973	Heavy Snow	
April	26,	1973	Rain	
Мау	14,	1973	Clear	X
June	1,	1973	Clear	X
June	19,	1973	Clear	X
July	7,	1 97 3	Clear	X

Table 2.1 Weather conditions during satellite pass over test fields.

^aIndicates both ERTS-1 and field data taken.

ť

							MSS4/7	MSS5/7	LAI ^b
Date		MSS4	MSS 5	MSS6	MSS7	.MS\$4/5	M994/1	1122211	1.A.L
9/22/72	Meana	34.75	37.89	38.64	19.55	0.918	1.779	1,939	0.00
• •	S.D.ª	1.41	1.90	2,18	0.86	0.040	0.068	0.080	0,00
3/21/73	Mean	33.26	32.29	45.87	25.25	1.031	1.318	1.280	0.37
	S.D.	1.28	1.58	1.74	0.69	0.040	0.055	0.069	0.10
5/14/73	Mean	29.74	24.50	48.11	28.08	1.218	1.064	0.877	0.97
• •	S.D.	1.69	2.12	1.79	1.66	0.066	0.101	0,104	0,26
6/1/73	Mean	33.43	29.48	52.32	29.87	1,138	1,121	0.990	0.89
	S.D.	1.72	2.42	1.84	1.04	0.062	0.083	0.104	0.25
6/19/73	Mean	41.14	49.33	55.26	28.70	0.835	1,436	1,722	0.00
	S.D.	1.62	2.07	1.49	0.92	0.033	0.074	0,090	0.00
7/7/73	Mean	59.46	78,53	77.68	36.36	0,758	1.636	2.161	0.00
	S.D.	2.14	4.25	2.72	1.49	0.030	0.061	0.115	0.00

Table 2.2. Digital counts of MSS data and LAI for field A.

.

^aStandard deviation. ^bAverage of six sampling points.

₹١.,

Date		MSS4	MSS5	MSS6	MSS7	MSS4/5	MSS4/7	MSS5/7	LAI ^b
9/22/73	Mean	37.05	40.41	40.96	20.78	0.919	1.786	1.947	0.00
	S.D.	1.62	2.54	2.37	1.02	0.038	0,094	0.128	0.00
3/21/73	Mean	33.54	32.99	41.47	22.57	1.019	1.488	1.463	0.44
	S.D.	1.09	1.91	2.15	0.96	0.049	0.073	0.088	0.07
5/14/73	Mean	27.63	19.22	56.66	36.78	1.454	0.760	0.532	1.53
	S.D.	1.60	2.68	3.56	3.18	0.132	0.109	0.129	0.39
6/1/73	Mean	26.93	20.03	48.66	31.61	1.355	0.858	0.638	1.23
	S.D.	1.32	2.23	3.43	2.54	0.111	0.083	0.094	0.36
6/19/73	Mean	36.68	37.94	52.00	29.97	0.971	1.227	1.270	0.00
	S.D.	1.21	3.11	2.05	1.56	0.060	0.079	0.131	0.00
7/7/73	Mean	54.46	73.87	77.48	38.24	0.739	1.425	1.932	0.00
	S.D.	2.30	4.37	3.39	1.31	0.033	0.060	0.100	0.00

Table 2.3. Digital counts of MSS data and LAI for field B.

£

.

^aStandard deviation. ^bAverage of four sampling points.

The regression coefficients for all the LAI prediction equations except equation (2.4) were statistically significant at the 0.05 level. For the individual bands, 4 and 5 were better predictors of LAI. While ratios of band 4 to band 5 and band 5 to band 7 were good predictors of LAI, the ratio of band 4 to band 5 had the higher regression coefficient. Figure 2.1 shows measured LAI as a function of the ratio of digital counts in band 4 and band 5.

Prediction of Soil Moisture

Available soil moisture for plant use was taken as the difference between soil moisture at sampling and at the permanent wilting point. Table 2.4 gives available soil moisture for fields A and B at depths of 0 to 15, 0 to 30, 0 to 60, and 0 to 91 cm. The negative values are due to errors in the assumption of soil moisture percentage at permanent wilting point as the soil profile probably did not become that dry. Rather than adjust soil moisture percentage by changing the permanent wilting point percentages, the available soil moisture values were left negative. The only effects of this action are that the constants in the regression equations may be in error but the form of the equations will remain the same and the regression coefficients are not affected.

Linear regression equations to predict available soil moisture from digital counts in the individual MSS bands and various band ratios were developed from digital counts in Tables 2.2 and 2.3 and available soil moisture in Table 2.4. Data for field B on March 21 were excluded from the analyses because of rain between flight of ERTS-1 and soil measurements. Only band 6 predicted available soil moisture at the 0.10 level of significance. The equations for available soil moisture in the 0 to 15 cm zone, AV_{15} , and in the 0 to 91 cm zone, AV_{01} , were:

		oth-cm		
Date	0-15	0-30	0-60	0-91
•	FIELI) A (DRYLAI	ND)	
9/22/72	0.66	1.37	2.59	3.29
3/21/73	0.66	1.50	3.13	4.3
5/14/73	0.19	0.40	1.24	2.3
6/1/73	-0.26^{a}	-0.34	-0.14	0.2
6/19/73	-0.63	-0.99	-1.46	-2.0
	FIELD	B (IRRIGA	IED)	
9/22/72	0.61	1.00	1.58	1.7
3/21/73	0.73	1.71	3.38	4.4
5/14/73	0.52	0.67	1.35	2.1
6/1/73	0.85	1,20	1.44	1.5
6/19/73	-0.37	-0.78	-1.12	-1.5

Table 2.4. Available soil moistures (cm of water).

^aNegative available soil moisture because soil moisture at permanent wilting point was lower than that measured at the Garden City Branch Experiment Station.

14.

.

$$AV_{15} = 7.52 - 0.15MSS6$$
 , $R^2 = 0.35$ (2.8)

$$AV_{91} = 30.31 - 0.60MSS6$$
, $R^2 = 0.33$ (2.9)

Measured LAI was added as an independent variable and multiple regression equations developed to predict soil moisture. The resulting equations for available soil moisture in the 0 to 15 cm zone, AV_{15} , and the 0 to 91 cm zone, AV_{91} , which had a significant regression coefficient at the 0.05 level, were:

$$AV_{15} = 11.73 - 1.88 \text{ LAI} - 0.31\text{MSS4}$$
, $R^2 = 0.93$ (2.10)

$$AV_{15} = 5.14 + 0.76 \text{ LAI} - 0.11\text{MSS6}$$
, $R^2 = 0.80$ (2.11)

$$AV_{15} = 4.85 + 1.56 LAI - 0.20MSS7$$
, $R^2 = 0.79$ (2.12)

$$AV_{91} = 21.99 + 3.03 \text{ LAI} - 0.46\text{MSS6}$$
, $R^2 = 0.73$ (2.13)

$$AV_{91} = 18.1 + 5.60 \text{ LAI} - 0.71 \text{MSS7}$$
, $R^2 = 0.84$ (2.14)

As LAI was highly correlated with the ratio of counts in band 4 to band 5, equation (2.6) was substituted into equations (2.10) and (2.14) for predicting available soil moixture, The resulting equations were:

$$AV_{15} = 16.67 - 5.49MSS4/5 - 0.31MSS4$$
 (2.15)

and

$$AV_{91} = 3.37 + 16.35MSS4/5 - 0.71MSS7$$
 (2.16)

Figure 2.2 shows the comparison of available soil moisture predicted by equations (2.15) and (2.16) with measured available soil moisture.

Predicting Water Use

As no usable data were collected by ERTS-1 from the time wheat was seeded until March 21, 1973, water use calculations were made from that date until just prior to wheat harvest. Table 2.5 gives precipitation

MEASURED AVAILABLE SOIL MOISTURE (cm)

Figure 2.2. Comparison of measured and predicted available soil moisture.

Date	Precipitation cm	Irrigation (Field B) cm		
3/23/73	1.10			
3/27/73	0.70			
3/30/73	1.00			
4/7/73	0.25			
4/24/73	0.80			
5/7/73	1,25			
5/23/73		3.05		
6/2/73		3.05		
6/28/73	0.90			

Table 2.5.	Precipitation	and	irrigation	at	the	test
	sites.					

measured by a local farmer near the test site and irrigation water applied to field B during the latter period. The irrigations were carried out over about a 3 day period and the total amount credited to the center day of the period.

The ET model as developed by Jensen <u>et al</u>. (1971) was used to predict soil moisture depletion on both wheat fields using their suggested crop coefficients. Measured soil moisture depletion was entered into the computer program for March 21, 1973. The wheat crop coefficients were:

$$Y = 0.233 - 0.0114X + 0.000484X^2 - 0.00000289X^3$$
 (2.17)

and

$$Y = 1.022 + 0.00853D - 0.000726D^{2} + 0.00000444D^{3}$$
(2.18)

where:

Y = Wheat crop coefficient

X = Percent of period between seeding and 100 percent crop cover

D = Days after 100 percent crop cover

Table 2.6 gives the measured and predicted soil moisture depletion and water use for fields A and B where measured soil moisture depletion is the difference between field capacity for the 182 cm soil profile sampled and the measured soil moisture level. The ET model over-predicted soil moisture depletion and water use for the period March 21 to June 1 and greatly underpredicted soil moisture depletion and water use for the period June 1 to June 19. Soil moisture depletion and water use for the entire period were underpredicted by the ET model.

A new crop coefficient for the ET model was computed from a multiple regression analysis using LAI measurements from field A. The new crop coefficient equations were:

	Soil Moisture Depletion - cm			Water Use for Period - cm				
Date	Measured ^a	Jensen ^b	Revised 1 ^C	Revised 2 ^d	Measured ^a	Jensen ^b	Revised 1 ^C	Revised 2 ^d
				FIELD A (DRYLA	AND)			
3/21/73	17.65						والد جنة بنية وبي	
5/14/73	19.84	25.07	19.35		7.29	12.52	6.80	
5/1/73	27.74	31.24	27.86		7.90	6.17	8.51	
5/19/73	37.52	32.16	34.65		9.78	0.92	6.79	
Total					24.97	19.61	22.10	
			J	FIELD B (IRRIGA	ATED)			
3/21/73	19.28							
5/14/73	23.44	26,14	20,80	26,52	9.26	11.96	6.62	12.34
5/1/73	27.15	29.24	26.56	32.66	6,76	6.15	8.81	9.19
/19/73	37.77	27.61	31.52	37.90	13,67	4.68	8.01	8.29
Total					29.69	22.79	23.44	29.82

Table 2.6. Measured and predicted soil moisture depletion and water use.

^aField measurements of soil moisture depletion.

^bWheat crop coefficient suggested by Jensen <u>et al</u>. (1971).

^cWheat crop coefficient from LAI of field A.

d Wheat crop coefficient from LAI of field B.

$$Y = 0.005 + 0.0165X - 0.000467X^{2} + 0.00000402X^{3}$$
 (2.19)

and

$$Y = 0.998 - 0.00297D - 0.000747D^2$$
(2.20)

Predicted soil moisture depletion and water use are given in Table 2.6 for fields A and B using the revised crop coefficients in the ET model. Predicted water use for the period was within 2.87 cm or about 10 percent of measured water use for field A and is within the accepted accuracy for the ET model. Predicted soil moisture depletion for field A compared very closely with measured values on May 14 and June 1 but was low on June 19 when wheat was nearing maturity. The ET model with a revised crop coefficient based upon LAI for field A under-predicted water use for field B.

As the ET model utilizing LAI as the crop coefficient from dryland wheat successfully predicted water use on field A, LAI from irrigated wheat was used as the crop coefficient to predict water use on field B. The crop coefficient equations were:

$$Y = 0.0109X - 0.000288x^{2} + 0.00000333x^{3}$$
 (2.21)

and

$$Y = 1.52 - 0.000834D^2$$
 (2.22)

Table 2.6 gives the predicted soil moisture depletion and water use for field B using the revised crop coefficient in the ET model. Predicted soil moisture depletion and water use were about equal to measured values on June 19. However, there was considerable variation between measured and predicted values on May 14 and June 1.

DISCUSSION

Limited data were collected during this study because of cloud cover during many passes of ERTS-1. However, it appears that the MSS system has the potential for predicting water use of growing crops. One possible method for predicting water use is from available soil moisture predicted from reflectance measurements. Water use would be the difference between available soil moisture on succeeding days. As the MSS system only sees the earth's surface, soil moisture would be predicted from its effects on the soil surface and growing vegetation.

Kondrat'yev (1965) reported that albedo varies between soils. The variability was attributed to different soil color, soil moisture content, organic matter content and soil particle size with soil moisture content the most important factor. Bowers (1971) found that reflectance increases as soil moisture decreases and concluded that reflectance techniques are precise enough to measure surface moisture. However, due to the effects of other soil factors on reflectance, a calibration will be necessary for each soil type.

There are several factors which influence reflectance from growing vegetation. According to David (1969), a water deficit in the soil will result in increased reflectance. Severe nitrogen deficiencies also increase reflectance (Remote Sensing, 1970). Leaf reflectance is affected by variety and relative maturity of the crop (Remote Multispectral Sensing in Agriculture, 1970). There are other factors including soil salinity, plant diseases and mineral deficiencies which may affect reflectance from vegetation. Whether soil moisture can be accurately predicted by the MSS system depends upon the relationships between soil moisture, vegetative growth and factors affecting reflectance.

Only band 6 showed potential for predicting available soil moisture by a linear relationship with digital counts. The addition of a second band or band ratio which correlated with LAI improved the accuracy of available soil moisture prediction. Water use of growing vegetation can be predicted from ET models. The MSS system, through prediction of LAI, has the potential to supply the numerical values of the crop coefficient equations for winter wheat developed from LAI measurements. Although LAI is greater for irrigated wheat than for dryland wheat, the curves have the same general shape as shown in Figure 2.3. Additional research is needed to determine the correct relationship between LAI and crop coefficient. When this relationship can be expressed mathematically, the MSS system will be capable of supplying the crop coefficient for ET models.

Practical use of data collected by ERTS-1 or similar vehicles is dependent upon timely acquisition and processing of the data. To be useful in water resources management, the data should be available within 24 hours of flight time. One potential use of the data is in irrigation scheduling.

SUMMARY

To effectively manage water on agricultural lands, daily water use of crops must be known. We hypothesized that the MSS system aboard ERTS-1 could provide data for predicting water use of winter wheat.

A linear relationship was found between digital counts in band 6 and available soil moisture at 0 to 15 and 0 to 91 cm depths. Prediction of available soil moisture was improved by adding the ratio of band 4 to band 5, which predicted LAI, as a second independent variable. Daily water use is the change in available soil moisture on successive days.

Crop coefficient equations, based upon LAI, were developed for use in an ET model to predict daily water use of dryland and irrigated wheat. Predicted water use for the period March 21 to June 19, 1973, was within accepted accuracy for ET models.

Figure 2.3. Crop coefficient curves for winter wheat.

As only limited MSS data were collected because of excessive cloud cover, additional research is needed to verify and extrapolate the results of this study to fields with different soil types.

2.2 Water Loss from Diseased and Healthy Wheat

The patterns of water use in healthy and diseased wheat are important to both basic and applied research in terms of a clearer understanding of the epidemiology and of management practices that will reduce economic effects due to the disease. By accurately determining the water use of healthy and diseased crops and predicting yield reductions due to disease, we can provide the grower with information so that he can intelligently decide whether he should allow the diseased wheat to attain maturity or plow under the diseased wheat and replant a following crop. In western Kansas, wheat and other crops (i.e. soybean and sorghum) yields are largely determined by the availability of water; therefore, the earlier the grower decides to replant, the greater the conservation in soil moisture and a more likelihood of a successful crop.

Procedure

Five fields, Erichsen (commercial, healthy), Hartner (commercial, healthy), rust-infected, wheat streak mosaic virus-infected and control (healthy), were planted to <u>Triticum aestivum</u> L. cv. Scout in late September 1972. Cropping descriptions for the five fields are given in Table 2.7. From the amount of water stored in the soil profile and the precipitation, the seasonal water use can be estimated. Soil moisture samples were determined weekly (in some cases, inclement weather prevented weekly measurements) at 15-cm increments in a 150-cm profile.

Field	Soil Texture	Seeding Rate Kg/ha	Row Spacing cm	Harvested plants per m ²	
Erichsen	Silty clay loam	96	20.3	856	
Hartner	Silt loam	101	20.3	872	
Rust-infected	Silty clay loam	84	17.8	959	
Wheat streak mosaic	Silty clay loam	84	17.8	1125	
Control	Silty clay loam	84	17.8	1144	

Table 2.7. Cropping descriptions of five wheat fields.

۶

.

Hourly estimates of the evapotranspiration rate (ET) were determined by the surface energy balance,

$$ET = (R_n - G)/(1 + \beta)$$
 (2.23)

where R_n and G are the flux densities of net radiation and soil heat, respectively. The Bowen ratio (β) is determined by $\gamma \Delta T/\Delta e$ where γ is the psychrometric constant and ΔT and Δe are the gradients of temperatures and vapor pressure above the canopy. Temperatures and water vapor pressures were determined with wet and dry bulb thermocouple psychrometers where the wick of the wet bulb was composed of a porous ceramic tube. Net radiation was determined with a hemispherical shielded radiometer located 3.0 meters above ground. Soil heat flux were determined with heat flux plates (5-cm depth) and calorimetrically. The sensors were scanned every 10 minutes and recorded on punch tape. The instruments and data acquisition system are described by Brun et al. (1972).

Stomatal resistance, R_{s} , was determined with a diffusion porometer described by Kanemasu et al. (1969) and given by

$$1/R_{\rm s} = 1/R_{\rm ab} + 1/R_{\rm ad}$$
 (2.24)

where R_{ab} and R_{ad} are the resistances of the abaxial and adaxial surfaces of the leaves. Leaf-water potential was estimated by pressure bomb technique (Barr, 1968). In both the stomatal resistance and leaf-water potential determinations, three upper canopy leaves were measured at near midday.

Results and Discussion

Figure 2.4 shows the water loss (determined by soil moisture) and the precipitation pattern. The amount of water loss from all five fields were quite similar; the water loss for the Hartner field being the largest.

Figure 2.4 Crop water use from five wheat fields and precipitation pattern for the general area.

This could be attributed to the lighter textured soil (silt loam) and the heavy rains (72 cm compared to the 30 year normal of 51 cm) which would be conducive to large drainage rates below the root zone. The average seasonal water loss for the five fields was 78.83 ± 5.89 cm. Nearly one-half of this amount being lost after dormancy (late March). By predicting the yield reductions 30 days in advance (e.g. predicting the economic loss from April 23 to 29 meteorological data¹), a grower could conserve up to 15 cm of water (assuming about 7-cm loss through evaporation) by plowing under his diseased crop; this soil water would then be available for the following crop.

Figures 2.5, 2.6, and 2.7 show the hourly energy balance terms for May 4, May 19, and June 15, respectively. The rust infection and the control fields have nearly identical fluxes of net radiation and evapotranspiration. However, the soil heat flux was approximately 50% greater for the control than for the rust-infected. On May 19 net radiation was greater for the control but the evapotranspiration was slightly greater for the rustinfected (Fig. 2.6). On June 15 (hard-dough stage, Table 2.8) the evapotranspiration rates were similar for the two fields but the net radiation was greater for the control than for the rust-infected.

Although there was a greater heat load on the control field, as indicated by the net radiation, evapotransporation was greater in the rust-infected field at time when rust spores were strongly evident (May 19) on the leaves. The greater ET rate would suggest a lower stomatal resistance on rustinfected leaves which was confirmed by data presented in Fig. 2.8 (c.f. May 19).

¹Appendix A. ERTS-1 Data Collection System Used to Predict Wheat Disease.

Figure 2.5 Trends in the hourly energy balance of rust and control (healthy) wheat for May 4, 1973. ET = evapotranspiration, Rn = net radiation, and G = soil heat flux.

Figure 2.6 Trends in the hourly energy balance of rust and control (healthy) wheat for May 19, 1973. ET = evapotranspiration, Rn = net radiation and G = soil heat flux.

Figure 2.7 Trends in the hourly energy balance of rust and control (healthy) wheat for June 15, 1973. ET = evapotranspiration, Rn = net radiation, and G = soil heat flux.

		ANN DA
Reproduced fro	om	
best available	copy.	
Desi avaneere		1

Date	Identifying Characteristics
September 23	planted
April 21	early joint
May 1	boot
May 8	heading
May 18	flowering
May 30	milk stage
June 6	soft dough
June 15	hard dough

Table 2.8. Physiological calendar for wheat

Table 2.9. Yield data for test wheat fields.

Field	Yield (bu/Acre) kg/ha	1000 Kernal weight gm
Erichsen	(36.3) 2566	.33.0
Hartner	(41.7) 2892	31.1
Rusted	(28.4) 2616	33.4
Streak (WSMV)	(36.7) 2621	33.7
Control (healthy)	(40.0) 2729	33.3

Lower stomatal resistances enhance diffusion of both water vapor (ET) and carbon dioxide (photosynthesis). The larger stomatal resistances of the wheat streak mosaic virus (WSMV)-infected plants indicate a loss of turgor pressure by the epidermal leaf tissue (decrease in leaf-water potential). Fig. 2.9 shows the lower leaf-water potential of WSMV -infected compared to the control. Rust-infected leaves had a lower leaf-water potentials later in the growing season (May 29 to June 5). The unfavorable water balance of the diseased plants was reflected in the yields (Table 2.9).

Figure 2.8 Daily trends in stomatal diffusion resistance of control, rust-infected and wheat streak mosaic virus (WSMV)-infected wheat leaves.

Figure 2.9 Daily trends in the leaf-water potential of control, rust-infected and (WSMV)infected wheat leaves.

3.0 DATA REDUCTION

3.1 General Data Handling Method

Initially we requested a standing order for 9" by 9" positive transparencies of MSS4 and MSS5 of each of the two fixed test areas (Riley county and the irrigated and nonirrigated fields in Finney county) and the high probability wheat streak mosaic virus (WSMV) areas of Kansas. Upon receipt of the transparencies they were examined for lack of clouds over the test areas and general suitability for further data reduction. Initially, several dates were examined and cataloged before determining which transparency would be used for further data processing. Later in the project when more frequent data were required and the anticipated arrival of the computer compatible tapes (CCT's) was approximately three months after date of the overflight, it was decided to order tapes as soon as possible in order to minimize the delays.

Upon receipt of these tapes, the transparencies were used to determine the desired test area and the tapes were then sent to the Remote Sensing Laboratory at the University of Kansas so that the desired area could be stripped off onto another tape and a gray-scale map was generated (Fig. 3.1). Since the second tape was organized in a band by band structure, a third tape was generated organized on a point basis. The computer maps were then put together for the location of the test areas by line and cell numbers. Numerous methods were attempted for locating the test fields (including the use of U-2 data); however, the best method was to use a clear piece of acetate over the entire area. This was laid over the computer maps and all -37-Figure 3.1 Computer Generated Gray Scale Map

5 * * * * * * * * * * * * * * * * * * *
- /
【 · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┇ ┱ ╡ ╋ ╪ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋ ╋
I
E
⋈⋼⋼⋼⋰⋰⋰⋰⋰∊∊⋈⋬⋈⋈⋳⋩⋩⋞⋠⋾⋷⋺⋪⋍⋍⋍⋳⋾∊+∻+∊⋼⋪⋇⋞⋷⋷⋷⋷⋷⋷⋷⋷⋷⋷⋷∊⋷⋼∊⋷⋼∊⋷⋼∊⋼∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊∊
王。20209 200 200 200 200 200 200 200 200 20
【1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·
1
- 【十章」。
- 3ゅ!,!专士!。↓!!↓↓?\$
【次令令我就父亲的狗令二多二的随的的的我次三三个个月10月的时间的的男男兄弟自己大笑的哭笑次天子。+男好将令动第三名各令次令二+11111年前西部的的
【内核通過固定回回均浮油気を発料器回回過約対象文文文なチョーキャニュャチャキュを文中書も三角的ニニューを対対文をできるようなもの対象をよる。。」も中二分回路的関題
[1]本三次與國語問約次次対應的的的時間的因為完立+++====++++==========================
【対抗道病路過過次次対過國際問題的的因為第二十十日二三十十年1十十年1十十年1十十年前期留向十日日1日二次時対大もカステニを発せき二十年日二次成項日義用加強問題
- 中國國國的國際國際的意識的局國國國國際意义中中主 1 小市十 1 1 十十 1 1 5 中大中利用國國民業中, 1 十十十 4 5 5 3 3 4 4 4 4 4 5 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 5 5 6 4 4 5 5 6 4 5 7 5 6 5 7 5 7
- 1時だズズの出境方式等用機動感出用出物的例ズやも中やキャニニルでしょう。「「「「「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」、「」」
定大文的的大大文方的場面的協動的的項目的文書+===→ + = = + + + + = + + + + + + + + +
- 本众大利国的代代学的学校中的中国的问题的时间一下。。□□□□□□□□□□□□□□□□□□□(□□□□□□□□□□□□□□□□
「大大協協協大法身的範疇問題的的的的的。」や「「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、
王政治内的政治的影響時時時時時時時時時時時時時時代的大中大小王大大子二日十二月月二日,日月月月二日,日月月月天大天日今至年」。第三年大月時時時時時時時時時時時時時時時時時時時時時時時時時時時時時時時時時時時時
寸態道角的原酸酸酸酸酸酸酸酸酸酸酸酸酸酸酸酸酸酸酸
【持角因発怒の強恐感的怒略関系の困惑の怒的困惑がとことにとして、 ************************************
【再換個與路過短短路路路時間的回線的路上的ややりやマニニニを欠時用消費減をやりし欠的方利方もそそれ欠次をキャンホティキの通貨用設置的場面活動調
【與機器器器過路機器關發調器器器器器器器器器器器器器器器器器器器器器器器器器器器器器器器器器器器
ዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀዀ
【的的边缘网络的的边缘的网络网络网络网络网络网络网络网络马卡文的神经大手手 全动的切开开开开开来来来来来了。如今没有二大的的三三三三十八年
*月日日朝台出游关对的路道海路用台田园的田园的田园的田园的田园的旧乡(二有大大大为大的共产共产的资格的道典共同的中国主要主人主义)。****************
- 主動自動感動的保障的認識層的問題的目的目的目的目的。 * * * * * * * * * * * * * * * * * * *
「美典的时期的网络特别的时期的时期的问题的时期的样々」(イニニスを光光片的特殊特殊特殊分析的光度イッチ」(ようイートを発展機能調整的ニャリ」を自由文
王崩由困難酸曲的時間的時間因的的困難的困難的困難的時時, 1+++1+=次次次時時次次先+1++次+++++1+12224+大大火火中+大大火火火火火火火火火火火
- F均値感調動値移動等的局層層回回回回回回回回回回回回回回回回回回回回回回回回回回回回回回回回回回回
- つ紛患的的風感肉肉的形況阿爾國國的國際國際國家國家的人工工作主義主義主義主要主要主要主要主要主要主要的時代的政治成績或效益的知識的調整調整。
- 丁國語機關問題的問題與問題問題的問題的問題的問題的問題的問題的問題的意味。 * * * * * * * * * * * * * * * * * * *
- 1. 印度网络伊尼斯姓氏卡西斯姓氏斯姓氏斯氏的特别人人工一一个代介一・1.1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1
- 1. 印度网络伊尼斯姓氏卡西斯姓氏斯姓氏斯氏的特别人人工一一个代介一・1.1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1
- 1. 印度网络伊尼斯姓氏卡西斯姓氏斯姓氏斯氏的特别人人工一一个代介一・1.1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1
玉的時間線夠的物物物物的物料不可令风的國際的身份文化不不可又又次大光光大大大中正是主角曲幾天不少。 ¹ * * * * * * * * * * * * * * * * * * *
玉的時間線夠的物物物物的物料不可令风的國際的身份文化不不可又又次大光光大大大中正是主角曲幾天不少。 ¹ * * * * * * * * * * * * * * * * * * *
玉的時間線夠的物物物物的物料不可令风的國際的身份文化不不可又又次大光光大大大中正是主角曲幾天不少。 ¹ * * * * * * * * * * * * * * * * * * *
玉的時間線夠的物物物物的物料不可令风的國際的身份文化不不可又又次大光光大大大中正是主角曲幾天不少。 ¹ * * * * * * * * * * * * * * * * * * *
上海國國務的曲領次治や今年二階國國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令令年期國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令会科的對於內容以且約5月19年二十年次大時與大政大力二十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十
上的通知的的通過次至今今年已的過程的自自的只要用中心。1999年的短期的通路方式中心在十年年後月的方法。2019年19月二十分大大大大力的通路的通路方面的一下年後期的短期的通路方面的一下年後期的一下年代的一下年代的一下年代的一下年代的一下年代的一下年代的一下年代的一下年代
上的通知的的通過次至今今年已的過程的自自的只要用中心。1999年的短期的通路方式中心在十年年後月的方法。2019年19月二十分大大大大力的通路的通路方面的一下年後期的短期的通路方面的一下年後期的一下年代的一下年代的一下年代的一下年代的一下年代的一下年代的一下年代的一下年代
上的通知的的通過次至今今年已的過程的自自的只要用中心。1999年的短期的通路方式中心在十年年後月的方法。2019年19月二十分大大大大力的通路的通路方面的一下年後期的短期的通路方面的一下年後期的一下年代的一下年代的一下年代的一下年代的一下年代的一下年代的一下年代的一下年代
上海國國務的曲領次治や今年二階國國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令令年期國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令会科的對於內容以且約5月19年二十年次大時與大政大力二十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十
上海國國務的曲領次治や今年二階國國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令令年期國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令会科的對於內容以且約5月19年二十年次大時與大政大力二十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十
上海國國務的曲領次治や今年二階國國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令令年期國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令会科的對於內容以且約5月19年二十年次大時與大政大力二十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十
上海國國務的曲領次治や今年二階國國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令令年期國國務局的的以各中中省19年年的大陸局國總國總方中令全十千年本次對対象各位人。 正本中將國國國務務次治令会科的對於內容以且約5月19年二十年次大時與大政大力二十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十
玉的時間線夠的物物物物的物料不可令风的國際的身份文化不不可又又次大光光大大大中正是主角曲幾天不少。 ¹ * * * * * * * * * * * * * * * * * * *

pertinent identifiable points sketched on the acetate with a grease pencil. One of the most difficult tasks was the consistent identification of a test field on the maps.

For the Riley county test fields the U-2 transparencies were projected over the computer maps in order to approximate the location of the fields. There were several identifying points that were initially thought to be identifiable on each date but were not. After the initial location had been verified by several people familiar with the test sites, the acetate sheet was used to identify the area on succeeding dates.

For the Finney county test fields the most useful identifying marks for a large area were the county mile lines (roads every mile). Knowing their approximate spacing, a best fit to these mile lines was drawn on the computer map and again, by using several people familiar with the test area, an original layout of the test fields was made. It must be emphasized that one major check in this process must be the discussion of more than one trained person as to the location of a specific field and even then errors occur. The acetate overlay reduced the time in locating the fields on succeeding dates, especially in the case of the WSMV test area of Finney county with its over fifty fields. It should be noted that the N-S mile lines are much easier to locate than the E-W ones.

After locating the fields, the corners of a straight line approximation to the field were recorded by line and cell number and key punched. These were used to pick the data for a specific field from the point-oriented computer tapes. In order to check the locating of the field, two methods were used. First the points taken from a specific file were displayed as a "1" on a printout with all other points as a "0" which allowed for the detection of many small errors. This was made easier by the fact that each

file contained the data for a 64 by 64 block or area. However, the most useful method turned out to be the use of a Calcomp plot of the boundary of all fields on a specific data. These boundaries were generated using the identical data cards. Different dates could be overlaid and differences in size and location easily detected. An error of a hundred lines was detected in one case, 64 cells in another, and one line or cell in several cases. At this stage the data for each of the test areas were handled differently; however for each area one common program was run which indicated the mean, minimum, maximum, standard deviation, correlation coefficient, and histograms of each of the MSS bands, the difference of bands 6 and 4, 7 and 4, 6 and 5, 7 and 5 (where band 7 had been multiplied by 2 to make the ranges of all band 128) and the ratios of bands 4 and 5, 4 and 6, 4 and 7, 5 and 6, and 5 and 7. An example of this printout is shown in Figure 3.2. This particular printout will be discussed later in this chapter.

3.2 Special Computer Programs Generated

General Program

A number of special computer programs were generated to assist in the location of the fields and in the data reduction for each field. The most frequently used program found the means, minimums, maximums, standard deviation, correlation coefficients and histogram. The input to this program consisted of the tape to be used, the inset or points to be discarded around each field, and the boundary data for each field (line and cell number for each corner). A program listing is given in Appendix E. A sample of the output is shown in Figure 3.2. This sample is for one entire file of data for tape number 1294-16521 which covered the WSMV region of Finney county on May 13, 1973. A total number of 114,688 points

r	V554	<u> </u>	M556	<u> </u>	M\$56-4	2*557-4	M\$\$6-5	24557-5	M\$\$4/5	M5\$4/6		M55516		200
HEA15	46.713	37.221	53.975	23.819	13.291	16.932	14.773	18.414	1.064	0,759	1.465	C.734	1.426	
AT VI WINE			14.000								0.091	0.187		
<u></u>											8,167		0.283	
STO DEV			6.620							0.190	0.449	<u>1.455</u> 0.233	5.500 0.532	
CORPELATT						·								÷
· · · · · · · · · · · · · · · · · · ·			0.10079	0 0 0 0 0 0	<u> </u>		<u> </u>							
NSee										0.61923 (
										0 <u>.57540 (</u>				
4224		- 								0.78685-0				
M347				0.09999	0.80924	0.84461	0.79913	0.82079	0.47714-	0.70033-0	.79543-0	0.72589-	0.77385	
<u>"SS6-4</u>		· · · · · · · · · · · · · · · · · · ·			<u>^.99999</u>	0.96098	0.90894	0.90073	<u>. 42796-</u>	·•78735-0	.87282-0	.77271-		
28957-4						0*46994	0.94092	0.95870	0.51507-0	0.79819-0	- 99029-0	.81804-0	0.86930	
45*6-5							0.999999	0.98084	0.65607-4	0.72457-0	.92792-0			
24207-5								0.99999	7.66090-0	<u>-74501-0</u>	.83859-(0.87118~	91045	,
188413								1	0.99998-(0.12229-0	+22785-C	.45898-0	0.49960	
455416		<u> </u>								.99997 G				
455417												• 84124 (
**\$\$576												.99998		
<u>255517</u>			<u> </u>). 99999	
·		·											• • • • •	
								·			·····			
	<u> </u>				<u> </u>					· · ·				·
						······					<u> </u>			
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>										·	Reprod	luced from	
		·····	······································			·····						best a	luced from vailable copy.	
					<u> </u>						<u>.</u>			40
Fig	jure 3.	2									<u> </u>			

are covered. It is interesting to note that only 3 quantities have a normalized cross correlation of less than 0.2 and these are MSS band 4 and MSS band 6 which have a correlation of 0.20, MSS band 5 and MSS band 6 with a value of 0.04, and the ratios of MSS 4/5 and MSS 4/6 with a correlation of -0.12 which is probably due to the low correlation between bands 5 and 6.

Calcomp CONTUR Subroutine

A Calcomp, contour-generating program was developed which is a very efficient program running in from 1/3 to 1/10 the time of other programs tested. The algorithm utilized 4 adjacent points requiring data which is equally spaced in the X direction and the Y direction but not necessarily the same spacing. This program was used to attempt to define the location of fields and specific targets for location; however this method did not meet with much success. This program can be easily modified to cross hatch a region between two or more given contours by modification of program to intercept the branch out when it is determined that the contour does not cross the rectangle. The computer subroutine, brief description and flow chart are given in Appendix F.

Enhancing Category Variation

A series of computer programs were written to implement a method of taking vector data and reducing it to a single number for ease of plotting. Data from unwanted categories would be near zero, and the data from the desired category would have maximized variation about some number. The proof of the algorithm is given in Appendix G. The computer programs are given in Appendix H. The first computes the eigenvectors and eigenvalues using a set of sample data. The second program computes the variation of data when the test eigenvectors are inputed.

Table 3.1 gives a listing of the observation numbers of each of the tapes used for each of the test areas. The Riley county test field did not receive coverage from May 10, 1973 until July 4, 1973 due to cloud coverage even though it was in the overlap and was covered on two consecutive days each period. An almost three month period was missed in late fall for the irrigated and non-irrigated fields of Finney county due to cloud coverage.

3.4 Data Reduction Recommendations for Other Investigators

The following are a summary of our recommendations to investigators utilizing ERTS CCT's.

- Print a computer gray-scale map of the area. Be sure to include at least a 3 mile buffer all the way around a small test area to aid in location. If possible include large man-made objects such as airports, interstate highways, water bodies, etc.
- 2. On the first attempt to locate the field have as many people as possible that are familiar with the test area go over the tentative location. If possible, have them try to locate it without any information as to where others have placed it and then collectively discuss the location.
- 3. After the initial location is defined, make an acetate overlay including the pertinent characteristics such as large dark areas, sharp boundaries, etc. MSS5 seems the best suited for this. Use this overlay to place the location of the test areas on later dates. Even then it is useful to have others duplicate your overlay. There will be a few point variation from date to date

Table 3.1. Computer compatible tapes used in the project.

Observation Number	Satellite Pass Date	Comments					
Riley County Test Area							
1022-16391 1058-16392 1237-16345 1256-16403 1274-16403 1291-16344 1328-16400 1346-16395	14 Aug 72 19 Sep 72 17 Mar 73 5 Apr 73 23 Apr 73 10 May 73 15 Jun 73 4 Jul 73	Before Planting Clouds obscured field After Harvest					

Irrigated and Non-Irrigated Test Area Finney County

1061-16564	22 Sep	72	
1132-16514	5 Dec	72	On edge of tape
1240-16523	22 Mar	73	1
1295-16573	14 May	73	
1312-16520	1 Jun	73	
1330-16515	19 Jun	73	1
1348-16514	7 Jul	73	After Harvest 1

Wheat Streak Mosaic Virus Test Area Finney County

.

1240-16523	22 Mar	73	1
1294-16521	13 May	73	
1313-16520	1 Jun	73	
1330-16515	19 Jun	73	1
1348-16514	7 Jul 1	73	After Harvest 1

1-Used for both Finney County Test Areas

due to magnification and other optical errors but a local region of possibly 4 to 10 square miles does not change appreciably.

4. Provide cross checks on your locations whenever possible, such as test field boundaries overlaid on reflectance contours. If more than one test area is in the view, their relative positions should remain constant between dates.

4.0 EFFECT OF CROP GROWTH ON ERTS-1 MSS RESPONSE

Determination of crop growth from spacecraft has received considerable attention by agriculturists². Such efforts have been brought about by the increasing awareness of shortages in food and fiber production. In a given area, agronomic crops develop and mature at somewhat predictable rates and abnormal growth patterns are exhibited when the photosynthetic process is interupted or reduced (e.g. disease, insects, nutrition, drought or flooding). Therefore, the monitoring of crop growth can provide valuable information on the prediction of production.

Plants appear green to the human eye because the relatively large reflection in the green wavelength (500 nm). This relatively high reflectance in the visible wavelengths can be attributed to the strong absorptance of blue (450 nm) and red (500 nm) wavelengths by plant pigments, namely, chlorophyll. More characteristic of healthy plant leaves than the low reflectance in the visible wavelengths (400-700 nm) is the high reflectance (about 50 percent) and transmittance (40 percent) to near infrared (700-1300 nm) radiation. Because of this optical characteristic, leaves stacked on top of one another exhibit greater near infrared reflectance as the leaf layer increases; therefore, near infrared reflectance has important consequence in indicating differences in vegetation density (Allen and Richardson, 1968).

The reflected radiation stream from a crop canopy is composed of rays reflected from the vegetation and from the soil surface. The surface, which dominates the scene reflectance depends upon percentage of crop cover. For many crops, especially row crops, there is a good correlation between percentage

²Symposium on significant results obtained from ERTS-1. NASA SP-327. March 5-9, 1973. NASA-GSFC.

cover and leaf area index (leaf area to ground area); however as the percentage approaches 100 (about 85%) large increases in leaf area index can occur with slight changes in percent cover. Since the spectral reflectance of soil differs from that of chlorophyll-containing tissue, vegetation density can be deduced from the signal strength of reflected rays in the visible and near infrared wavelengths, Kanemasu (Appendix B) suggests that ratio of the reflectances in wavelengths of MSS4 and MSS 5 is less than unity when soil exposure dominates the scene and tends to follow the leaf area index while Wiegand et al. (1973) states "the photosynthetic potential of green plants cannot be deduced directly from the photosynthetically active wavelengths" (MSS4 and 5). However, the apparent inconsistency in the two studies may be due to the MSS4:MSS5 ratio being sensitive at low LAI (<2) while the MSS6 and 7 bands being more sensitive at high LAI (>2). At low LAI, the soil reflective properties in the visible wavelengths dominate while at high LAI the leaf reflective properties in the near infrared wavelengths dominate.

METHODS AND MATERIALS

Four commercial wheat fields were used in study. Table 4.1 shows their location and cropping description.

Plant samples for leaf area determination were collected at frequent intervals (usually 10 days) throughout the growing season. Samples in two of the fields (Hartner and Erichsen) were measured with an optical planimeter while the leaf area of samples from the other two fields were determined with an empirical equation using leaf width and length (equation 2.1).

Table 4.1. Location and cropping description of the Riley county fields (Hartner and Erichsen) and the irrigated and non-irrigated wheat fields in Finney county.

Location	Row Spacing (cm)
Hartner - 39° 08' N, 96° 37' W	20.3
Erichsen - 39° 07' N, 96° 35' W	20.3
Irrigated - 38° 8.5' N, 101° 4.9' W	30.5
Nonirrigated - 38° 9.6' N, 101° 5.9' W	25.4
	•

.

.

.

Data reduction

The greater the digital count in each band, the greater the radiance. Maximum digital counts for MSS4, 5 and 6 is 127. The radiance (mw cm⁻² sr⁻¹ μ m⁻¹) is given by

E = (digital counts) (maximum radiance)/127 (4.1) where the maximum radiance for 4, 5 and 6 are 24.8, 20.0 and 17.6, respectively.

The radiance for MSS7 is

$$E_7 = (digital counts) (15.3)/63$$
 (4.2)

Hence, conversion factors (nw cm⁻² sr⁻¹ μ m⁻¹ counts⁻¹) for digital counts in bands MSS4, 5, 6, and 7 to radiance are 0.19528, 0.15748, 0.13858, and 0.24286. The radiance, E, measured above earth's atmosphere, has been affected by the optical properties of the atmosphere.

Satellite reflectance is the ratio of the radiance, E, to the irradiance (incoming radiation flux above atmosphere). In order to compare satellite reflectance with ground reflectance, the spectral transmission of the atmosphere must be determined. The transmission of atmosphere becomes increasingly important to surfaces with low reflectances where errors can overwhelm low signal strength.

Assuming equal atmospheric transmission for MSS4 and 5, we can describe the reflectance ratio of MSS4 and 5 as

$$\frac{R_4}{R_5} = \frac{E_4}{I_4} \left(\frac{E_5}{I_5} \right)^{-1}$$
(4.3)

where I_4 and I_5 are the incident radiation fluxes in the wavelengths of MSS4 and MSS5. Assuming (I_5/I_4) equals 0.8696 (Smithsonian Meteorological Tables), equation (4.3) can be rewritten in terms of the conversion factors

$$\frac{R_4}{R_5} = \frac{(\text{Counts 4})}{(\text{Counts 5})} \frac{(0.19528)}{(0.15748)} (0.8696) = \frac{\text{Counts 4}}{\text{Counts 5}} (1.078)$$
(4.4)

Similar relationships can be derived for the other combination of the reflectance ratios; however, caution should be used since the assumptions are not completely valid. The reflectance ratio of MSS4:MSS5 is slightly larger than the ratio of their digital counts. In this report, we will use digital count ratios and not attempt to estimate reflectance ratios.

RESULTS

Table 4.2 shows (a) the digital counts for MSS4, 5, 6, and 7, (b) the difference in digital counts, (c) the ratio of the digital counts, and (d) their standard deviations for the eight ERTS-1 observations on two Riley county wheat fields. Linear regression equations were calculated for the correlation of leaf area index (LAI) and percent cover (P.C.) with the 13 digital parameters listed in Table 4.2. The regression equations for the pooled data (both fields) are summarized in Table 4.3 for the September to May observations.

The lowest correlation coefficients were obtained directly from the MSS bands while the highest correlation coefficients were the difference between two bands, MSS6-5 and MSS (2 x 7)-5; however, band differences have high standard deviations. In general, the linear correlations were high whenever two bands were combined either by ratio or difference. Of the band ratios used, the poorest correlations were MSS4/6, and 4/7. It is significant that the MSS4/5, which consists of bands confined to the visible wavelengths, is one of the better indicators of crop growth.

Table 4.4 shows the pixel correlation coefficients between the MSS bands for the Hartner field. A positive correlation existed between bands

Observation No.	NSS4	MSS5	MSS6	MSS7	6-4	·(2x7)-4	65	(2x7)-5	4/5	4/5	4/7	5/6	5/7
1022-16391	41.46	44.82	49.91	24.14	8.46	6.82	5.09	3.46	.95	.83	1.73	.90	1,88
August 14, 1972	(4.86) ^a	(8.92)	(2.64)	(1,70)	(3.62)	(7,02)	(7.57)	(11.13)	(,11)	(.08)	(.26)	(.16)	(.43)
1058-16392	34.74	37.48	37.39	17.65	2.65	.57	09	-2.17	.93	.93	1.98	1.00	2.14
Sept. 19, 1972	(3.83)	(4,20)	(2.43)	(1.43)	(3.59)	(4.11)	(4.14)	(5.31)	(.12)	(.10)	(.23)	(,11)	(.29)
1076-16393	35.04	36,38	38,17	19.17	3.13	3.29	1.79	1.96	.97	。92	1,83	.95	1.90
Oct. 7, 1972	(3.30)	(5,26)	(2.99)	(1.24)	(2.25)	(3.45)	(3.30)	(4.73)	(,07)	(.06)	(.17)	(.09)	(.24)
1237-16345	30.41	28,46	36,55	19.32	6.14	8.23	8.09	10.18	1.07	.83	1.58	.78	1.48
March 17, 1973	(1.74)	(2.30)	(2.06)	(1.39)	(2.49)	(3.34)	(3.16)	(3.92)	(.07)	(.06)	(.15)	(.08)	(.18)
1256-16403	29,96	27.18	40.77	22.14	10.82	14.32	13.59	17.09	1.12	.74	1,37	.67	1.26
April 5, 1973	(2.75)	(4.89)	(2.73)	(2.10)	(4.28)	(6.05)	(6.48)	(8.30)	(0.11)	(,10)	(.225)	(.15)	(.35)
1274-16403	27,90	22,80	44.45	25,10	16.55	22.30	21,65	27.4	1.25	.63	1.12	,51	.92
April 23, 1973	(3,16)	(5.04)	(1.40)	(1.59)	(2.80)	(5.70)	(4.66)	(7.53)	(.12)	(,06)	(.21)	(,11)	(.28)
1291-16344	30.17	22,11	48.89	27.89	18.72	25.61	26.78	33.67	1.37	.62	1.08	.45	.79
May 10, 1973	(1.69)	(1.91)	(2.19)	(1.08)	(2.11)	(2.73)	(2.29)	(2.79)	(.06)	(.03)	(.07)	(.04)	(.07)
1346-16395	37.0	39.75	46.25	22,90	9.25	8.80	6.50	6.05	.93	.80	1.62	.87	1.76
July 4, 1973	<u></u> р	(3.46)	(4.87)	(2.47)			(5.69)	(6.30)				(.11)	(.24)

Table 4.2a. Mean digital counts and standard deviations for ERTS-1 observations of Hartner field.

^a(Standard deviation)

^bDiscontinuity in telemetry

Observation No.	MSS4	MSS5	MSS6	MSS7	6-4	(2x7)-4	6-5	(2x7)-5	4/5	4/6	4/7	5/6	5/7
1022-16391	26.06	21.13	27.88	13.75	1.81	1.44	6.75	6.38	1.24	1.01	2,13	,82	1.75
August 14, 1972	(1.98) ⁴	(1.36)	(8,98)	(5,70)	(7.20)	(9.65)	(8.47)	(10,91)	(.08)	(.24)	(.62)	(.22)	(.57)
1058-16392	30.54	28.21	29.33	13.83	-1.21	-2.88	1.125	54	1.09	1.05	2,24	.97	2.07
Sept. 19, 1972	(2.11)	(3.08)	(2,85)	(1.86)	(3.04)	(3,79)	(3.51)	(4.23)	(.07)	(,11)	(.31)	(.12)	(.30)
1076-16393	22.40	19,18	18,69	9.41	-3,69	-3,56	49	36	1.18	1,23	2.48	1.04	2.10
Oct. 7, 1972	(1.58)	(2.51)	(3.54)	(2.38)	(2.48)	(3.80)	(2.09)	(3,27)	(.10)	(.17)	(.46)	(.11)	(.30)
125616403	23.57	17.93	26.14	14.64	2.57	5.71	8.21	11.36	1.33	.92	1.65	.70	1.27
April 5, 1973	(2.21)	(3.03)	(2,96)	(2.34)	(4.33)	(5.80)	(5.24)	(6.69)	(.12)	(.16)	(.33)	(.17)	(.33)
1274-16403	25.77	17.82	41.59	24.59	15.82	23,41	23.77	31,35	1.48	.64	1,10	.45	,78
April 23, 1973	(2.31)	(3.97)	(6.28)	(4.78)	(7.82)	(10.92)	(9.68)	(12,77)	(.18)	(.15)	(.34)	(.18)	(.35)
1291-16344	27.82	18.12	50,44	29.32	22.62	30.82	32.32	40.53	1.55	.57	.99	.37	.66
May 10, 1973	(1.09)	(1.74)	(7,78)	(5.74)	(7.57)	(11.28)	(8,95)	(12,68)	(.15)	(.10)	(.23)	(.10)	(.21)
1346-16395	49.0	59.47	62.00	30.33	13.00	11.66	2.53	1.20	.82	.79	1.62	.96	1.96
July 4, 1972	ь	(2.45)	(2.73)	(1.84)			(1,55)	(2.70)				(.02)	(,09)

Table 4.2b. Mean digital counts and standard deviations for ERTS-1 observations of Erichsen field.

^a(Standard deviation)

b Discontinuity in telemetry

Table 4.3a.	Linear regression equations of leaf area
	index (LAI) and digital counts from MSS
	4, 5, 6, and 7 taken from 6 ERTS-1 ob-
	servations of Erichsen and Hartner fields.

Linear Regression Equation	Correlation Coefficient
LAI = -0.081 (MSS 4) + 3.333	-, 308
LAI = -0.101 (MSS 5) + 3.414	704
LAI = 0.072 (MSS 6) - 1.824	.734
LAI = 0.126 (MSS 7) - 1.717	.838
LAI = 0.095 (MSS 6-4)001	.910
LAI = 0.071 [MSS (2 x 7)-4]028	.937
LAI = 0.074 (MSS 6-5)128	,958
LAI = 0.058 [MSS (2 x 7)-5]107	.962
LAI = 4.148 (MSS 4/5) - 4.195	.918
LAI = -3.946 (MSS $4/6$) + 4.095	815
LAI = -1.696 (MSS $4/7$) + 3.472	⊷. 864
LAI = -3.665 (MSS $5/6$) + 3.400	945
LAI = -1.565 (MSS $5/7$) + 2.952	920

•

Table 4.3b. Linear regression equations of percent cover (PC) and digital counts from MSS 4, 5, 6, and 7 taken from 6 ERTS-1 observations of Erichsen and Hartner fields.

Linear Regression Equation	Cor rel ation Coefficient
PC = -3.457 (MSS 4) + 137.492	410
PC = -3.142 (MSS 5) + 115.858	729
PC = 2.579 (MSS 6) - 63.474	.717
PC = 4.573 (MSS 7) - 59.997	.843
PC = 3.364 (MSS 6-4) + 4.214	.915
PC = 2.465 [MSS (2 x 7)-4] + 4.403	,942
PC = 2.536 (MSS 6-5) + 2.100	.967
PC = 1.953 [MSS (2 x 7)-5] + 3.318	.968
PC = 131.342 (MSS 4/5) - 123.603	.892
PC = -146.141 (MSS 4/6) + 152.736	869
PC = -61.194 (MSS 4/7) + 128.859	900
PC = -123.929 (MSS 5/6) + 122.025	-,963
PC = -52.937 (MSS 5/7) + 107.027	952

Date	<u>4 vs 5</u>	<u>4 vs 6</u>	<u>4 vs 7</u>	<u>5 vs 6</u>	<u>5 vs 7</u>	<u>6 vs 7</u>
August 14	.90	.65	41	. 59	51	.01
September 19	.41	. 39	.26	. 30	10	.66
October 7	.88	.72	. 30	.78	.42	.69
March 17	.60	.14	03	04	17	.73
April 5	.87	21	47	38	64	.75
April 23	.91	.44	59	38	63	.23
May 10	. 79	.41	.01	.36	.06	.68
July 4	.13	.09	.09	.09	09	.86

.

Table 4.4. Correlation coefficients between the various MSS bands for the Hartner field.

t

.

4 and 5 and between 6 and 7. The lowest positive correlation existed between a visible band (4 or 5) and a near-infrared band (6 or 7). This relationship results because vegetation absorbs strongly in the visible and reflects strongly in the near-infrared wavelengths.

<u>Radiometric response</u>. Fig. 4.1 shows the scene radiance from a single wheat field at various growth stages. In general, as the plants develop, radiance in bands 4 and 5 decrease while bands 6 and 7 increase. The higher radiance at LAI = 0 than at LAI = .14 may be due to soil moisture differences (Appendix B). The stubble field (post harvest) shows a high reflectance in the visible (MSS 4 and 5) and in the near infrared wavelengths (MSS 6 and 7).

<u>Finney County Fields</u>. In the Finney county area, leaf area indices were determined periodically on an irrigated and a nonirrigated wheat field (c.f. section 2.1). The Riley county (Hartner and Erichsen fields) and Finney county (irrigated and non-irrigated fields) data were pooled and linear regression equations were determined for the various band ratios (Table 4.5). The MSS4 to MSS5 ratio gave the highest correlation coefficient with the MSS 5 to MSS6 ratio having a slightly lower correlation coefficient.

Fig. 4.1. Radiometric response of ERTS-1 bands for Hartner wheat field during 1973 growing season.

Table 4.5.	Linear regression equations of pooled
	LAI and MSS digital count data from
	Hartner and Erichsen fields (Riley
	county) and irrigated and non-irrigated
	fields (Finney county).

Linear Regression Equation	Correlation Coefficient

Linear Regression Equation	Coefficient
LAI = 3.305 (MSS4/5) - 3.089	.92
LAI = -3.395 (MSS4/6) + 3.275	72
LAI = -1.384 (MSS4/7) + 2.650	73
LAI = -3.034 (MSS5/6) + 2.804	90
LAI = -1.307 (MSS5/7) + 2.402	87

.

5.0 DETECTION OF DISEASE SEVERITY AND ECONOMIC LOSS

ERTS-1 imagery was processed to determine the satellite's usefulness in the early detection and estimation of wheat disease severity and economic loss. The experimental site was a 450 square mile area of Finney and Gray counties which contained healthy and wheat streak mosaic virus (WSMV)infected wheat fields. A detailed map of this area was prepared and the crop and its condition was determined in every field. The following severity ratings were used:

0 = Healthy, No WSMV infection (very green)

1 = Trace WSMV infection (few yellow plants)

2 = Moderate WSMV infection (whole field slightly yellow)

3 = Severe WSMV infection (whole field very yellow)

With farmers permission, four random samples (a sample = 16 square foot plot) were harvested from each of 54 fields. Samples were threshed for yield determination, and four yield groups were assigned:

A = 13.8 - 20.00 Bushels/Acre
B = 20.1 - 25.0 Bushels/Acre
C = 25.1 - 30.0 Bushels/Acre
D = 30.1 - 41.6 Bushels/Acre

Grey scale maps of the site were prepared for MSS Band 5 for each clear date (March 20, May 13, May 31 and June 18, 1973). Test fields were readily identified using center-pivot irrigators, airports and peculiar field shapes for registration. Digital data for the four MSS bands on each data were processed manually or by machine for each field. To minimize border effects a boundary of one data point around the edge of each field was discarded. Means were determined for digital counts on all MSS bands and ratios of the bands. These means were tabulated relative to yield (Table 5.1) and disease severity (Table 5.2). Correlation coefficients for MSS digital counts versus yield and MSS digital counts versus severity were determined. None of these relationships was significant at the 1% level, but 11 of 72 relationships were significant at the 5% level. Of these, eight occurred in the 5/31/73 data. On this date a negative correlation existed between yield and MSS bands 4 and 5, with a positive correlation between yield and the MSS 4/5 band ratio (Table 5.3, Fig. 5.1-C). A significant negative correlation existed (barely) on 5/31/73 between yield and the MSS 4/6 and 4/7 band ratios (Table 5.3). MSS band 6 was correlated with yield on 3/20/73 (Table 5.3). MSS band 7 never showed a correlation with yield at the 5% level (Table 5.3).

Similar correlations occurred between MSS digital counts and disease severity. For 5/31/73 a positive correlation existed between severity and MSS band 4 and for the MSS 4/6 and 4/7 band ratios (Table 5.4, Fig. 5.2-C). A higher positive correlation existed on 6/18/73 between MSS bands 4 and 5 and severity (Table 5.4, Fig. 5.2-D). There was no significant correlation between MSS bands 6 or 7 and severity (Table 5.4).

Significant correlations between MSS digital counts and wheat yields or disease severity were demonstrated only for the 5/31/73 and 6/18/73 data. The negative correlation between yield and digital counts for MSS bands 4 and 5 on 5/31/73 (Fig. 5.1-C) is reasonable and probably resulted from premature coloration of the crop, greater reflectance by the soil due to thinning of the crop or both. WSMV prematurely colors and thins the crop. Positive correlations between severity and digital counts for MSS bands 4 and 5 on 5/31/73 and 5/18/73 (Fig. 5.2-C,D) are also plausible for the same reasons.

We have correlated ERTS-1 imagery with ground truth for both wheat yield and disease severity with significant correlation obtained at the 5% level. Also, in both cases the effects of the disease are being detected near the end of the crop season rather than the disease <u>per se</u> being detected early in the season. It is reasonable to assume that a disease sufficiently severe to reduce yields by over 50% and readily detectable by eye should have been more readily detected and quantified by ERTS-1. However, WSMV was most obvious from very late March to May 1 when no ERTS-1 imagery was available due to inclement weather. Therefore, although we report some positive results on the quantitative effects of the disease, we were unable to adequately test the ERTS-1 system for early detection and estimation of severity and yield reduction in wheat due to wheat streak mosaic virus.

			<u></u>	MSS 1	Band	· .	MSS Band Ratio					
Date	Yield Group	Yield	4	5	6	7	4/5	4/6	4/7	5/6	5/7	
3/20/73	A	17.2	25.8	22,4	29.7	16.2	1.2	0.9	1.6	0.8	1.4	
	Std. Dev.	2.4	0.7	1.1	2.8	1.9	0.0	0.1	0.2	0.1	0.2	
	в	22.8	27.0	24.3	29.8	15.8	1.1	0.9	1.7	0.8	1.6	
	Std. Dev.	1.4	1.7	2.9	1.5	1.2	0.1	0.1	0.2	0.1	0.3	
	С	28.3	26.4	22.8	31.9	17.3	1.2	0.8	1.5	0.7	1.3	
	Std. Dev.	1.3	1.5	3.1	3.6	2.6	0.1	0.1	0.2	0.1	0.3	
	D	35.7	26.8	23.6		17.5	1.2	0.8	1.6	0.8	1.4	
	Std. Dev.	3.6	2.6	4.4	3.3	2.1	0.1	0.1	0.2	0.1	0.3	
5/13/73	A	17.5	34.4	29.7	49.7	27.3		0.7	1.3	0.6	1.1	
	Std. Dev.	2,5	2.7	3.6	6.8	4.6	0.1	0.1	0,2	0.1	0.2	
	В	23.3	35.5	30.6	54.8	30.7	1.2	0.7	1.2	0.6	1.1	
	Std. Dev.	1.0	3.8	5.7	7.4	5.2	0.1	0.1	0.3	0.1	0.3	
	С	28.0	34.7	29.3	54.0	31.1	1.2	0.7	1.2	0.6	1.0	
	Std. Dev.	1.3	2.8	4.6	6.4	5.1	0.1	0.1	0.2	0.1	0.3	
	D	36.3	34.7	29.7	52.0	29.4	1.2	0.7	1.3	0.6	1.1	
	Std. Dev.	3.9	6.4	8.7	12.3	8.3	0.1	0.2	0.6	0.2	0.5	
5/31/73	A	17.1	37.0	35.6	53.0	29.3	1.1	0.7	1.3	0.7	1.2	
	Std. Dev.	2.2	2.3	3.3	5.4	3.2	0.0	0.1	0.1	0.1	0.2	
	В	22.9	35.4	33.2	53.0	30.1	1.1	0.7	1,2	0,6	1.1	
	Std. Dev.	1.3	3.5	6.1	2.7	2.8	0.1	0.1	0.2	0.1	0.3	
	С	27.6	32.6	29.2	51.6	30.6	1.2	0.6	1.1	0.6	1.0	
	Std. Dev.	1.4	3.9	6.1	3.1	2.9	0.1	0.1	0.2	0.1	0.2	
	D	36.9	32.6	28.9	52.6	31.3	1.2	0.6	1.1	0.6	1.0	
	Std. Dev.	3.6	3.9	7.2	2.6	3.3	0.1	0.1	0.3	0.2	0.4	
6/18/73	A	17.6	42.5	48.1	53.1	27.3	0.9	0.8	1.6	0.9	1.8	
	Std. Dev.	1.9	4.7	6.3	5.2	2.7	0.0	0.1	0.2	0.1	0.2	
	B	22.9	41.4	45.8	53.3	28.0	0.9	0.8	1.5	0.9	1.7	
	Std. Dev.	1.3	3.2	2.8	4.1	2.4	0.0	0.1	0.1	0.1	0.2	
	с	27.3	38.5	42.5	52,3	28.3	0.9	0.7	1.4	0.8	1.5	
	Std. Dev.	1,4	3.3	5.4	3.0	1.1	0.0	0.0	0.1	0.1	0,2	
	D	36.7		43.8		27.5		0.8	1.5	0.9	1.6	
	Std. Dev.	3.5	3.0	4.3				0.0	0.1	0.1	0.2	

{

Table 5.1. Means of MSS digital counts in relation to wheat yields.

			<u></u>	MSS B	and			MSS Ba	nd Rat	io	MSS Band Ratio						
Date	Severity Group	Yield	4	5	6	7	4/5	4/6	4/7	5/6	5/7						
3/20/73	0	26.2	27.1	24.4	30.1	16.2	1,1	0.9	1.7	0.8	1.5						
	Std. Dev.		1.9	3.4	3.1	2.1	0.1	0.1	0.2	0.1	0.3						
	1	32.4	26.2		32.4	18.0	1.2	0.8	1.5	0.7	1.3						
	Std. Dev.	4.9	2.1	3.6	4.4	3.0	0.1	0.1	0.2	0.1	0.3						
	2	27.5	27.0	24.0	30.1	16.1	1.1	0.9	1.7 0.2	0.8 0.1	1.5 0.3						
	Std. Dev.	7.1	2.2	3.7	1.5	1.2	0.1	0.1	G. L	0.1	•						
	3	20.8	26.0	22.6		17.1	1.2		1.5 0.1	0.7 0.1	1.3 0.1						
	Std. Dev.	6,3	0.8	1.4	1.4	1.1	0.0	0.0	U.I								
5/13/73	0 ·	28.2	35.6	31.6	51.5	28.8	1.2	0.7	1.3	0.6	1.2						
2112112	Std. Dev.		3.8	6.3		4.3	0.1	0.1	0.3	0.1	0.3						
	1	31.8	31.6	25.3	48.8	28.3	1.3	0.7		0.6	1.0						
	Std. Dev.	5.2	3.7	4,8	13.1	9.2	0.1	0.2	0.7	0.2	0.5						
	2	28.0		30.9	57.1	32.6	1.2	0.6	1.2		1.0						
	Std. Dev.	7.9	4.6	6.5	7.5	5.8	0.1	0.1	0.3	0.1	0.3						
	3	22.7		30.8	53.5		1.2	0.7 0.1	1.2 0.1	0.6 0.1	1.1 0.1						
	Std. Dev.	6.Z	4.2	5.1	7.5	4.2	0.1			0.1							
5/31/73	0	26.6	32.5	29.0	52.8	31.4	1.2	0.6		0.6	1.0						
	Std. Dev.	7.1	4.4	6.8	3.7	3.1	0.1	0.1	0.2	0.1	0.3						
	1	32.2		31.2	51,8	30.3	1.1	0.7	1.2	0.6	1.1						
	Std. Dev.	5.1	4.6	8.1	3.5	3.6	0.1	0.1	0.3	0.2	0.4						
	2		35.1		53.6			0.7 0.1	1.2 0.2		1.1 0.3						
	Std. Dev.	7.8	3.0	0.4		2.5	0.1										
	3 Std. Dev.	20.0	35.8	34.0				0.7		0.7							
	sta. Dev.	5.0	1.4	2.5		2.0				0.1							
6/18/73	0	26.6	38.8	42.7	51.2	27.6	0.9	0.8	1.4								
	Std. Dev.	7.1	3.7	5.6	3.7	2.2	0.0	0.1	0.2	0.1	0.3						
	1	32.2								0.8							
	Std. Dev.	5.1	3,1	4.3	2.5	1.2	0.0	0.0	0,1	0.1	0.2						
	2	27.5			52.9		0.9	0.8	1.5								
	Std. Dev.			2.9		2.1	0.0	0.1	0.1		0.2						
	3 Std. Dev.			47.6				0.8 0.0			1.7 0.1						
	Std. Dev.	2.1	4.7	0.0	4.4	1.1	0.0	0.0	0.1	0.1	0,1						

Table 5.2. Means of MSS digital counts in relation to disease severity

	• • • • •	MSS 1	Band		MSS Band Ratio						
Date	4	5	6	7	. 4/5	. 4/6	4/7	5/6	5/7		
3/20/73	.18	.14	.32*	.30	02	18	18	09	10		
5/13/73	02	01	07	03	.09	.13	.13	.08	. 09		
5/31/73	39*	34*	06	.21	.34*	31*	31*	30	29		
6/18/73	23	24	16	01	.12	17	21	20	22		

Table 5.3. Correlation coefficients - MSS digital counts vs. wheat yields

*Significant at 5% level.

Correlation	coefficients	with a	а	minimum	of	40	degrees	of	freedom;	1% =	Ξ	.393
							_			5% =	3	.304
										10% =	=	.257

Table 5.4. Correlation coefficients - MSS digital counts vs. disease severity

			· · ·			· · ·			
·····	· · · · · · · · · · · · · · · · · · ·	MSS I	MSS Band Ratio						
Date	4	. 5	6.	. 7	4/5	4/6	4/7	5/6	5/7
3/20/73	13	10	.01	01	.04	13	10	12	-,10
5/13/73	.10	.02	.20	.16	.04	13	11	14	12
5/31/73	.32*	.27	05	28	29	• 32*	.32*	.27	.28
6/18/73	• 35*	.35*	<u>.</u> 22	.03	18	.25	.27	. 29	.28

*Significant at 5% level.

Correlation coefficients as above.

Fig. 5.1. Temporal variations in the relationship between mean digital counts and wheat yield.

Fig. 5.2. Temporal variations in the relationship between mean digital counts and WSMV severity.

6.0 LITERATURE CITED

- Allen, W. A. and A. J. Richardson. 1968. Interaction of light with a plant canopy. Jour. Apt. Soc. Amer. 58:1023-1028.
- Barr, H. D. 1968. Determination of water deficits in plant tissues.
 <u>In</u>: Water deficits and plant growth. Vol. 1. (ed.) T. T. Kozlowski. Academic Press. New York. p. 235-368.
- Bowers, S. A. 1971. Reflection of radiant energy from soils. Kansas State University Library, Manhattan, Kansas.
- Brun, L. J., E. T. Kanemasu, and W. L. Powers. 1972. Evapotranspiration from soybean and sorghum fields. Agron. Jour. 64:145-148.
- 5. David, W. P. 1969. Remote sensing of crop water deficits and its potential applications. Texas A & M University Remote Sensing Center Technical Report RSC-06.
- Jensen, M. E., J. L. Wright and B. J. Pratt. 1971. Estimating soil moisture depletion from climate, crop and soil data. Trans. Amer. Soc. Agr. Eng. 14(5):954-959.
- 7. Kanemasu, E. T., G. W. Thurtell, and C. B. Tanner. 1969. Design, calibration and field use of a stomatal diffusion porometer. Pl. Physiol., Lancaster, 44:881-885.
- 8. Kondrat'yev, K. Y. 1965. Actionomentry NASATT F9712. National Aeronautics and Space Administration, Washington, D.C.
- 9. List, R. J. 1949. Smithsonian Meteorological T.bles. Smithsonian Institution Press. Washington, D.C.
- 10. Remote Multispectral Sensing in Agriculture. 1970. Purdue University Agricultural Experiment Station Bulletin 873.
- 11. Remote Sensing. 1970. National Academy of Sciences, Washington, D.C.

- 12. Teare, I. D. and C. J. Peterson. 1971. Surface area of chlorophyllcontaining tissue of the inflorescence of <u>triticum aestivum</u> 1. Crop Sci. 2(5):627-628.
- Variety Tests with Fall-Planted Small Grains. 1971. Kansas State University Agricultural Experiment Station Report 180.
- Wiegand, C. L., H. W. Gausman, J. A. Cuellar, A. H. Gerbermann and
 A. J. Richardson. 1973. Vegetation density as deduced from ERTS-1
 MSS response. Proc. ERTS-1 Symposium. December 10-13, 1973.

7.0 CONCLUSIONS

A computer-based model of estimating evapotranspiration for irrigation scheduling requires a crop coefficient curve. The leaf area index (LAI) of wheat appears to provide a reasonable estimate of a wheat-crop coefficient and can be deduced from MSS digital data. The ratio of any two MSS bands (digital counts) are linearly correlated with LAI (r > .70); the ratios of MSS4:MSS5 and MSS5:MSS6 appear to best simulate LAI (r > .90). In addition, these linear regression equations are useful for estimating LAI of wheat on fields other than which the equation were derived.

The soil moisture in the roo zone of wheat was estimated with reasonable success from MSS7 and MSS4:MSS5; however, the relationship is not unique and would depend upon soil type. This preliminary work needs further investigation.

The early detection of wheat streak mosaic virus using the available ERTS-1 imagery for 1973 was not possible. At the time of greatest visual difference between healthy and disease wheat, no ERTS-1 imagery was available because of cloud cover. However, we attempted a later detection of disease severity using the May 13, 1973 imagery but no significant correlation of disease severity to band digital count was found. The May 31, 1973 imagery showed a higher degree of significance (5% level) of digital counts versus severity and digital counts versus yield. This relationship was attributed to the premature yellowing and thinning of diseased wheat.

Our use of data collection platforms (DCP) to predict disease severity was successful and appears to have potential applications. The implementation of the DCP did not create a major maintenance problem. 68

Currently we are at the stage of development where it is feasible to monitor large agricultural areas and identify the crop type and stage of development. However, further study is required for the detection and evaluation of disease and water stress. These physiological stresses are of major importance in their effect on crop yield. As with most agricultural programs, the timeliness of the observations is extremely critical.

ŝ

N74-27797

Appendix A

ERTS-1 Data Collection Systems Used to Predict Wheat Disease Severities

A - 1

ERTS-1 DATA COLLECTION SYSTEMS USED TO PREDICT WHEAT DISEASE SEVERITIES¹

E. T. Kanemasu, H. Schimmelpfennig, E. Chin Choy, M. G. Eversmeyer and D. Lenhert²

ABSTRACT

The feasibility of using the data collection system on Earth Technology Satellite-1 to predict wheat leaf rust severity and resulting yield loss was tested.

Ground-based data-collection platforms (DCPs), placed in two commercial wheat fields in Riley County, Kansas, transmitted to the satellite such meteorological information as maximum and minimum temperature, relative humidity and hours of free moisture. Meteorological data received from the two DCPs from April 23 to 29 were used to estimate the disease progress curve. Values from the curve were used to predict the percentage decrease in wheat yields resulting from leaf rust. Actual decrease in yields was obtained by applying a zinc and maneb spray (5.6 kg/ha) to control leaf rust, then comparing yields of the controlled (healthy) and the noncontrolled (rusted) areas. In each field a 9% decrease in yield was predicted by the DCP-derived data; actual decreases were 12% and 9%.

¹Contribution No. 1387, Agronomy Department, Evapotranspiration Laboratory, and Contribution No. 595, Department of Plant Pathology, Kansas Agricultural Experiment Station, Kansas State University in cooperation with the United States Department of Agriculture. National Aeronautics and Space Administration provided partial support for this research. Date received

² Assistant Professor of Microclimatology, Electronic Technician, Research Associate, Research Plant Pathologist, USDA, ARS, NCR, and Associate Electrical Engineer, Department of Electrical Engineering, Engineering Experiment Station, Kansas State University, Manhattan, Kansas 66506.

INTRODUCTION

Epidemiological investigations have shown that the severity of wheat leaf rust (<u>Puccinia recondita</u> Rob. ex Desm f. sp. <u>tritici</u>) and subsequent loss in yield can be predicted (Eversmeyer and Burleigh, 1970; Burleigh et al., 1972a; Burleigh et al., 1972b). Such predictions would be most important for determining curative measures to reduce economic loss.

In the above mentioned investigations, stepwise multiple regression techniques were used to identify biological and meteorological variables useful in explaining variation in wheat leaf rust severities 7, 14, 21, and 30 days after the date of prediction (DP) and the relationship between those predicted severities and yield loss. Equations in the form $Y_i = K_i + b_1 x_{1i} + \dots + b_n x_n$ were formulated and tested. Variables which they reported to be most significant in the successful prediction of wheat leaf rust development were: leaf rust severity on DP, growth stage of wheat on the date predicted, average hours of free moisture during seven days prior to DP, number of days or precipitation greater than or equal to 0.25 mm during seven days prior to DP, a fungal growth function, and fungal infection function. The equations predicted leaf rust severity in test plots within ± 1, 3, and 12%, 14, 21, and 30 days in advance, respectively. They studied the relationship between leaf rust severity at several wheat growth stages and yield loss and constructed general equations to predict percent loss.

Successful prediction of disease losses for large remote areas would require continuous gathering of meteorological and biological data on widely separated fields, which using routine instrumentation would require an enormous maintenance capability. The recent launching (July 23, 1972)

of Earth Resources Technology Satellite-1 (ERTS-1) has permitted the use of spacecraft to collect data from ground-based transmitters placed in remote areas; in turn the satellite can retransmit data to one of three prime receiving stations: Goldstone, California; NASA Test and Training Facility; and Fairbanks, Alaska. (Detailed information can be found in the Data Users Handbook)³.

The satellite's data collecting capability offers a unique opportunity to test and evaluate the use of information gathered by data collection platforms to predict epidemics of wheat leaf rust.

MATERIALS AND METHODS

Two data-collection platforms (DCP) -- furnished by NASA as part of an ERTS-1 experiment (site 1, 39°07'N, 96°35'W; site 2, 39°08'N, 96°35'W) -- were located in two Riley County (Kansas) commercial fields (40 acres each) of wheat (<u>Triticum aestivum L. cv. Scout</u>). Site 1 and site 2 fields were a silty clay loam and silt loam, respectively. Both fields were planted to wheat in late September in 20-cm rows. The DCPs were installed by December 1, 1972 and were operational until July 23, 1973.

The data collection platform (DCP) is an automatic, data-relay terminal that accepts 8 channels of either analog or digital data from userfurnished electronics (sensor interfaces). Every 3 minutes the DCP interrogates the 8 input channels and transmits the data, regardless of the satellite's position. The satellite passed close enough to the Riley County DCPs to receive the transmission with a \pm 1 hour period at 1030

³ Available through General Electric, Space Division, Valley Forge Space Center, P. O. Box 8555, Philadelphia, Penn. 19101.

and 2230 local time. Because many of our sensors required interrogation at other times, we designed a sensor interface that interrogates sensors at the proper time, then digitally stores the data for transmitting later. (A detailed description of the interface appears in a NASA report)⁴.

The power supply (storage batteries) was enclosed in a box separate from the rest of the DCP to prevent corrosion by acid fumes. The transmitter and interface were enclosed in a double wooden box.

Table 1 gives sensor data transmitted and received by the satellite during the two periods of each day that the satellite was within DCP range. Information on channels 1 through 4 was obtained primarily for input into the disease prediction equations; the visible and near infrared reflectance data (channels 5-8) were used to analyze crop growth.

Relative humidity was measured by a sulfonated polystyrene sensor (PCRC-11, Phys-Chemical Research Corp.), and soil moisture was estimated by gypsum soil moisture blocks (CEL-WFD, Beckman Instruments). The signal conditioning consisted of an AC ohmmeter and a logarithmic amplifier for linearization. Free moisture was detected by measuring the AC resistance change of a bifilar array exposed to the atmosphere. When wetted, the electrical resistance of the array decreases and the resistance of the array was determined with a level-detecting AC ohmmeter. Air temperatures (maximum, minimum, and instantaneous) were determined by thermalinear thermistors (YSI 700, Yellow Spring Instruments). Maximum and minimum temperatures stored in the interface memory were compared with the current temperature every 3 minutes and updated. Visible (590 to 720 nm) and

⁴Report No. 2263-3, Kansas Environmental and Resource Study: A Great Plains Model. January, 1973. NASA.

near infrared (730-1000 nm) radiation streams were measured using silicon photocells filtered on their respective wavelengths ranges. (Details on sensors and signal conditioning can be found in a NASA report)⁴.

The relative humidity and temperature sensors were located in small ventilated weather shelters. The weather shelters were positioned at least 35 m from the edge of the field. Early in the season, the sensors were maintained at a height of about 30 cm above the soil surface but, as the plants developed, the shelters were raised to keep the sensors near the top of the canopy. The free moisture sensors were maintained at mid-canopy height. The photocells were located on stands approximately 2.5 m above the soil surface.

Beginning April 25, weekly applications of a zinc and maneb spray (5.6 kg/ha) were made on four randomly selected 2.2 m² areas (healthy) near each DCP for control of wheat leaf rust. Grain yields were obtained by harvesting four 1.5 m² plots from the sprayed areas and four adjacent 1.5 m² areas on which leaf rust was not controlled. Leaf rust severity estimates were made at the time of spray application using the modified Cobb scale (Peterson 1948).

RESULTS

The DCP can be used to collect and transmit data with minimal maintenance. Two 12V storage batteries, used to power the system, were replaced every four weeks, when they needed recharging. At the same time, sensors were routinely checked. Occasional down-time was experienced due to an electrical storm or rodents chewing transmission cables.

Data (IBM cards) were received from NASA 5 to 14 days after transmission to the satellite. Normally, 8 to 12 transmissions were received by the satellite each day from each DCP (Fig. 1). Figs. 2 and 3 show typical meteorological information acquired by the DCP.

Maximum and minimum temperatures and hours of dew occurring each day as recorded by the two DCPs for the seven day period April 23 to 29 were used together with other biological data taken in the test fields to predict leaf rust severities that would be expected on May 6, 13, 20, 29, near each DCP. These predicted severities were used in the leaf rust loss equations to predict the percent reduction in wheat yields to be expected due to leaf rust development. Using meteorological data obtained from the DCPs a 9% decrease in wheat yields due to leaf rust was predicted for each site, and compared favorably with actual decreases in yield of 9% and 12% (Table 2). Actual yield reductions were obtained by comparison of yields of the controlled (healthy) and the noncontrolled (rusted areas).

The manpower required for obtaining data in remote areas could be minimized by use of DCPs. Our results indicate DCP-derived data can be effectively used in existing disease prediction equations.

REFERENCES

- Burleigh, J. R., A. P. Roelfs, and M. G. Eversmeyer. 1972a. Phytopathology 62:944-946.
- 2. _____, M. G. Eversmeyer, and A. P. Roelfs. 1972b. Phytopathology 62:947-953.
- Eversmeyer, M. G. and J. R. Burleigh. 1970. Phytopathology 60: 805-811.
- Peterson, R. F., A. B. Campball, and H. E. Hannah. 1948. Can.
 J. Res. 26:496-500.

CHANNEL	9:00-11:00 TRANSMISSION	21:00-23:00 TRANSMISSION
1	instantaneous relative humidity cumulative hours free moistures	instantaneous soil moisture cumulative hours free moisture
3	minimum temperature 00:00-11:30	maximum temperature 11:30-00:00
4	instantaneous temperature	instantaneous temperature
5	instantaneous incoming visible	14:00 incoming visible
6	instantaneous reflected visible	14:00 reflected visible
7	instantaneous incoming infrared	14:00 incoming infrared
8	instantaneous reflected infrared	14:00 reflected infrared

.

· ·

:

Table 1. Data from DCPs in Riley County wheat fields transmitted at the two periods.

ŧ

. .

ocation	Rep.	Apri GS $\frac{1}{}$	11 26 %DS ² /	May GS	18 %DS	Maj GS	y 25 %DS	Jur GS	ne 4 %DS	June GS	2 11 %DS	kg/ha	% Loss actual	% Loss predicted
RICHSEN		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>												
Healthy	ı	EJ	0	Н	.5	A	.5	М	1	SD	3	2913		
Realting	1	EJ	õ	H	.5 .5 .5	A	•5 •5 •5	М	1	SD	3	2887		
	2 3	EJ	ŏ	н	5		.5	M	1 1	SD	3	2911		
	4	EJ	õ	н	5	A A	.5	М	1	SD	3	2975		
	Ave.	्रम्स	Ũ		•••		• -					2921	12.3	9.2
Rusted -	٦	EJ	0	Н	- 5	A	.5	М	20	SD	40	2627		• .
Rusteu	1 2	EJ	õ	н	.5 .5 .5	A	.5 .5 .5	М	20	SD	40	2690		
	3	EJ	õ	н	.5	A	.5	M M	20	SD	40	2424		
	4	EJ	õ	н	.5	A	.5	М	20	SÐ	40	2511		
	Ave.	20	·		-							2562		
ARTNER									_		~	0105		
Healthy	1	EJ	0	Н	•5 •5 •5	А	•5 •5	М	.5	SD	•5	3135		
	1 2	EJ	0	Н	. 5	A	•2	М	5ء	SD	.5	3050		
	3	ЕJ	0	н	•2	A	• 5	М	.5	SD	• 5	3227		
	4	EJ	0	н	.5	А	.5	М	. 5	SD	。 5	3143		c 1
	Ave.											3139	9.3	9.1
Rusted	1	EJ	0	н	.5	A	.5	М	15	SD	30	2882		
Aubeeu	1 2	EJ	0	н	.5	[•] A	.5	М	15	SD	30	2762		
	3	EJ	Ō	Н	.5	А	.5	М	15	SD	30	2391		
	4	EJ	0	Н	.5 .5 .5 .5	А	.5	М	15	SD	30	2854		
	Ave.											2847		

Table 2. Leaf rust severity estimates, wheat yields and percentages loss observed in commercial fields from which DUP data were obtained.

Growth stage; EJ (early joint); H (heading); A (anthesis); M (milk); SD (soft dough)

.

e/disease severity

...

N74-27798

-

Appendix B

Seasonal Reflectance Patterns of Wheat,

Sorghum and Soybean

SEASONAL CANOPY REFLECTANCE PATTERNS OF WHEAT,

SORGHUM AND SOYBEAN

by E. T. Kanemasu²

ABSTRACT

Reflectance characteristics of agronomic crops are of major importance in the energy exchanges of a surface. In addition, unique reflectance patterns may be an aid in crop identification by means of remote sensing. Our study suggests that the ratio of the reflectances of the 545-nm to the 655-nm wavebands provides information about the viewed surface, regardless of the crop. The reflectance ratio is less than unity early and late in the growing season. For all crops studied, the ratio closely followed crop growth and development and appeared to be more desirable than the near-infrared reflectance as an index of growth.

¹Contribution No. 1385 Evapotranspiration Laboratory, Agronomy Department, Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas 66506. This study was partially supported by the National Aeronautics and Space Administration. Received

² Assistant Professor of Microclimatology, Evapotranspiration Laboratory, Department of Agronomy, Kansas State University, Manhattan, Kansas 66506.

INTRODUCTION

Canopy reflectance patterns are important to the radiative balance of a crop and as possible discrimination features for remote sensing applications. Individual leaf reflectance can provide valuable information after a canopy cover becomes complete. However, in most cases the condition of the viewed surface is not known and discrimination analysis must be performed on canopy-reflectance data that may not be easily interpreted from leaf-reflectance data.

This study focused on determining canopy-reflectance patterns that would allow the surface condition to be determined.

METHODS AND MATERIALS

Two fields each of wheat (<u>Triticum aestivum L. cv. Scout</u>), sorghum (<u>Sorghum bicolor L. Moench Pioneer var. 846</u>) and soybeans (<u>Glycine max</u> L. cv. Clark 63) were selected in a bottomland area where one field was a dark-colored, silty clay loam (lat. 39°08'N, long. 96°37.5'W) and the other a light-colored, silt loam (lat. 30°08'N, long. 96°37'W).

Growing conditions were considered normal (compared to previous seasons) and adequate soil moisture was maintained by precipitation and irrigation. Specific growth stages and leaf area indices (leaf area to ground area) were recorded periodically. All the plants within a half square meter area were taken to the laboratory and leaf area was determined with an optical palnimeter.

To determine the spectral hemispherical reflectance of the canopy, the sensor head of a portable spectral radiometer (LI-187, Lambda Instrument Co.) was pointed upward and downward. The spectroradiometer has 9 full-scale

ranges from 0.3 to 3000 watts m^{-2} (μm^{-1}). The sensor head (8.2-cm diameter) consists of seven miniature sensors covering the visible and near infrared wavelengths (Table 1). The D, F, and G sensors (545, 655, and 750 nm) closely correspond to Earth Resources Technology Satellite (ERTS-1) bands 4, 5, and 6. During the measurements the sensor head was positioned approximately 1.5 to 2.0 meters above the canopy. Azimuthal direction was kept constant relative to the sun; the observer always faced the sun. Measurements were taken only on clear days.

RESULTS AND DISCUSSION

During a significant part of a crop's growing season, bare soil is exposed. As the plant grows, less soil is exposed and the soil's reflectivity becomes less important in overall canopy reflectance. In our study soil reflectance was strongly influenced by the surface moisture (% by weight) of the silty clay loam (Fig. 1). The near-infrared wavelength band was the most sensitive to surface moisture. The longer the wavelength, the higher was the reflectance, a relationship which was consistent with the findings of other investigators (Bowers and Hanks, 1965).

Fig. 2 shows the midday spectral reflectances for wheat, sorghum, and soybeans at growth stages early, middle, and late in the season. The highest reflectance was in the near infrared at midseason. In addition, at that time reflectance was greater at 545 nm than at 655 nm; the reverse was true early and late in the season. That suggests that the ratio of the reflectances at 545 and 655 may be an indicator of soil exposure early in the season and of crop maturity late in the season. B--4

The effect of solar elevation on reflectance usually hinders the interpreting of surface conditions from reflectance data (Suits, 1972). Therefore, the effect of sun angle on the reflectance ratio must be known before reflectance data can be interpreted correctly. Fig. 3 shows the ratios of 545 and of 655 nm reflectance with solar elevation for wheat, sorghum, soybeans, and bare soil. For each canopy, the ratio remained constant with increased solar elevation. For a mature crop, the ratio was about 1.3; for a bare soil, about 0.8. The near-infrared reflectance for wheat and sorghum decreased with increased solar elevation; but that for soybeans varied somewhat, perhaps because leaf angles changed with solar elevation (Fuchs et al. 1972).

Because the reflectance ratio apparently is not influenced by solar elevation, reflectance ratios for wheat, soybeans, and sorghum can be compared over a large portion of the growing season without serious error due to changes in sun angle. The results of such measurements are shown in Fig. 4. Fig. 4a shows that the wheat on the light-colored soil had higher near-infrared reflectance than that of the dark-colored soil (early in the season); the near-infrared reflectance did not start to increase until the late-joint growth stage. The reflectance ratio apparently followed the leaf area index curve (Fig. 5a). The ratio increased above unity at a leaf area index of about 1.0 and remained above unity during maximum growth, then decreased below unity at maturity (leaf area index < 1.0). The reflectance ratio was greater for the field with the greater leaf area index. Similarly, Fig. 4b shows the same trends in the near-infrared reflectance and the reflectance ratio for soybeans. At 120 days after planting, the soybean leaves yellowed from an infection of bacterial pustule and the reflectance

B~5

ratio decreased to less than one on the infected soybeans. Thus, the reflectance ratio may serve as an indicator of physiological stress, such as brought about by disease, insects, drought or by normal maturation of the plant.

Measurements on narrow-row (46 cm) and wide-row (92 cm) sorghum (grown on dark-colored soil) which were made over the entire growing season (Fig. 4c), showed the effect of canopy cover more clearly. Plant density was maintained at 17 plants per square meter in each field (2 ha). The closerow spacing closed its canopy early in the season while the wide-row canopy never completely closed; both fields had similar leaf area indices. Nearinfrared reflectance varied greatly early in the season, presumably because of changes in surface-moisture content. The reflectance ratio of the narrow-row sorghum increased to above unity at a leaf area index of about 1.0 (Fig. 5b) which also corresponded to near 90% cover (visual estimate); the wide row sorghum did not reach a ratio of unity until a leaf area of 2.5 (approximately 85% cover). The reflectance pattern for the sorghum (76-cm rows) on the light-colored field (not shown) closely followed that of the wide-row sorghum, illustrating that reflectance ratio may follow percentage cover more closely than leaf area index. The reflectance ratio decreased to below unity late in the season, even though the leaf area index was greater than one. The percentage cover at that time was about 60%.

Table 2; shows the linear regression equations derived from Figs. 4 and 5. They were obtained from single-field measurements for soybeans and sorghum (because leaf-area measurements were incomplete on the light-colored field); for wheat, data from three fields were pooled. The percentage cover was continuously estimated only for the wheat fields. Neither reflectance ratio nor near-infrared reflectance (NIR) offered a unique equation for relating reflectance to leaf area index (LAI) for all crops. The correlation coefficients were highest for soybeans and lowest for wheat. Where data from several wheat fields were examined the correlation coefficient was greater for the ratio than for the near-infrared reflectance.

This study suggests that the reflectance ratio of the 545- to 655-nm wavelengths may serve as benchmarks for crop growth and possibly for indicating percentage cover. When the ratio is less than unity, soil reflectance dominates canopy reflectance. When the crop matures, the ratio decreases to less than one. The ratio apparently is a better indicator of crop growth than is the 750 nm reflectance. The reflectance ratio alone does not appear to discriminate between crop species, but should be a valuable parameter when used with other recognition processes. The two wavelengths involved in the ratio correspond to multispectral scanner bands 4 and 5 (MSS4 and MSS5) of ERTS-1. A study is underway to test the feasibility of using the ratio of MSS4 and MSS5 for wheat growth and disease detection.

B--7

REFERENCES

1.	Bowers.	S.	Α.	and	R.	Л.	Hanks.	(1965).	Soil	Sci.	100:130-138.

- Fuchs, M., G. Stanhill, and A. G. Waanders. (1972). Israel J. Agr. Res. 22:63-75.
- 3. Suits, G. H. (1972). Remote Sens. of Env. 2:175-182.

Sensor	Center wavelength (nm)	Band width (nm)
A	415	40
в	450	32.5
С	500	45
D	545	35
È.	600	40.2
F	655	45
G	750	80

:

· ·

Table 1. Optical characteristics of the spectral radiometer

• •

1

.

. ·

Table 2. Linear regression equations and correlation coefficients for wide-row and narrow-row sorghum, wheat and soybeans. LAI is leaf area index; NIR is near-infrared reflectance.

	Linear regression equation	Correlation coefficient		
Sorghum (wide-row)	LAI = 10.93 x (ratio) - 8.37 LAI = 0.26 x (%NIR) - 2.70	0.89 0.84		
Sorghum (narrow row)	LAI = 9.18 x (ratio)- 6.90 LAI = 0.23 x (%NIR) - 3.24	0.80 . 0.87		
Wheat	LAI = 5.06 x (ratio)- 4.07 LAI = 0.13 x (%NIR) - 1.67 % cover = 109.88x(ratio)-63.71 % cover = 2.85x(%NIR) -19.24			
Soybean	LAI = 13.67 x (ratio)- 11.28 LAI = 0.296 x (%NIR)- 5.10	0.96 0.98		

:

.

• .

B-20 .

N74-27799

Appendix C

Flexible DCP Interface

C-1

•

FLEXIBLE DCP INTERFACE

Ъy

H. Schimmelpfennig and E. T. Kanemasu²

ABSTRACT

A user of an ERTS data collection system (DCS) must supply the sensors and signal-conditioning interface. The electronic interface must be compatible with the NASA-furnished data collection platform (DCP). We describe here a "universal" signal-conditioning system for use with a wide range of environmental sensors.

The interface is environmentally and electronically compatible with the DCP and has operated satisfactorily for a complete winter wheat growing season in Kansas.

¹Contribution No. 1397, Agronomy Department, Evapotranspiration Laboratory, Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas 66506. This study was partially supported by the National Aeronautics and Space Administration. Received

²Electronic Technician and Assistant Professor of Microclimatology, Evapotranspiration Laboratory, Department of Agronomy, Kansas State University, Manhattan, Kansas 66506.

INTRODUCTION

The Data Collection Platform (DCP) is a field-deployable, automatic, data-relay terminal that can be located in remote areas to gather information for specific applications or to complement imagery information received from the ERTS system. The DCP (which consists of an electronic unit, an antenna assembly, and an interconnecting cable) accepts sensor input data. The accepted data can be in the format of eight analog inputs; eight 8-bit, serial-digital inputs; eight, 8-bit, parallel-digital inputs; or combinations of these formats. To gather these data, the user must supply a power source, sensors and signal-condition system for his specific requirements³.

The data collection platform interface (DCPI), described here, is a "universal" signal-conditioning system that accepts inputs from 8 sensors of almost any type and interfaces them to the DCP. The DCPI contains power supplies, control logic, memory, and signal-conditioning modules for each sensor. An alteration in a signal-conditioning function can be easily affected by inserting the proper module in the DCPI. Modules can perform a variety of signal conditioning functions such as amplifying, linearizing, integrating, totaling counts, sample-hold, and comparing previous readings. Appendix A lists the sensor and signal-conditioning system used in our wheat study.

TECHNICAL DESCRIPTION

Figure 1 is a functional block diagram of the DCPI. Two 12-volt car batteries power both the DCP and DCPI. Time between recharging the battery

³Earth Resources Technology Satellite Data Collection Platform Field Installation, Operation and Maintenance Manual. NASA. Goddard Space Flight Center.

is dependent on the particular function modules; for our study, it was about 2 months under average conditions.

The 24-hour clock sends time data (in 10 minute increments) to the modules. The main controller sequentially interrogates the signalconditioning modules and controls the data storage cycle. The analog to digital converter converts analog to digital data for storage in the memory.

The 64-bit memory stores the data from the 8 sensors (8 bits for each sensor). Data are transferred to the DCP for transmission, or back to the modules for comparison to current data.

Light emitting diodes on the instrument panel monitor the data and provide information during routine field inspections. The DCP transmits at 3-minute intervals 24 hours a day. The TRANSMIT CLOCK from the DCP shifts 64 data bits (8 per sensor) from the memory to the transmitter. After the transmission, the DCPI scans the eight channels and stores any new data in the memory. The logic flow in a scan cycle is best illustrated by specific example, like maximum-minimum temperature.

Example Logic Flow. At the start of a scan, the main controller turns on the power supply and, after a 5-second delay, interrogates channel 1. Following interrogation, logic control shifts from the main controller to the interrogated module, which then connects itself (via a set of CMOS switches) to the 10 control-buss lines. Assume that the sensor is a temperature sensor and the module is designed to find the maximum air temperature during the day. The maximum temperature module converts the resistance of the temperature sensor to a properly scaled, analog voltage, and then generates a START OF CONVERSION (SOC) command, causing the ANALOG- TO-DIGITAL CONVERTER (ADC) to convert the analog voltage from the module (ADO) line to digital data. After the digital conversion, the ADC generates an END-OF-CONVERSION (EOC) signal informing the module that the conversion process is complete.

Previous maximum temperature is stored both in an 8-bit, parallel output shift register on the module and also in the main memory. These digital data are converted (at the module) to analog and compared with current temperature. Two cases present themselves: (1) the present temperature is higher than the maximum or (2) the present temperature is lower than the maximum.

<u>Case 1</u>. The module sets the DATA, REPLACE-SAVE (D, R-S) line to REPLACE and generates a START-OF-STORE (SOST) command. The main controller accepts the command and generates an 8-pulse, shift-clock train (SHFT CLK). The SHFT CLK shifts the digital data from the ADC to the input of the memory and shifts the memory 8 places, thus transferring the new data into memory. The DIGITAL DATA in (DDI) line transfers the new temperature reading from the ADC to the module using the SHFT CLK signal for synchronization.

<u>Case 2</u>. The module sets the D, R-S line to SAVE and generates an SOST command. The main controller again generates SHFT CLK. The replace-save switch at the memory input is now set at SAVE and the memory cycles the stored data, leaving them unchanged in memory.

At the end of the storage cycle the main controller generates an END-OF-STORE (EOST) command, which resets a latch on the maximum temperature, and then interrogates Channel 2. The same type of control chain now occurs with module 2. This sequence continues until all 8 channels have been scanned. Digital data also can be gated from the module to the main memory. Module 2, hours of free moisture, would set the DATA, ANALOG-DIGITAL (D,A-D) line to digital. Digital data gated by SHFT CLK proceeds from the module on the DIGITAL-DATA-OUT (DDO) line, through the analog-digital switch, directly to the memory. The replace-save function is operable in the digital as well as the analog data mode.

The sequence of INT, SOC, EOC, SOST, and EOST is repeated for each module. After the last module is interrogated, the interface turns off everything except the continuous power.

Control Cards Al and A2 (Figs. 2 and 3).

The DCPI control section includes two circuit cards, A1 and A2. A1 contains the 64-bit memory and most of the control logic. A2 contains the analog-to-digital converter and display drivers.

At the start of a DCP transmission the DATA GATE drops low and remains for its 80 ms warmup-transmit cycle. Q1, Q2, and Q5 interface between the 5-volt DCP TTL logic and the 12-volt DCPI CMOS logic. U10D turns on V_x , a 5-volt supply for Q5 (needed during transmit only).

If a manual scan is not in progress, the LOW at the output of U9D is gated through U13B to the mode control on the 64-bit memory (U12). U12 is now in the recirculate mode and, when clocked, its data bits will leave \bar{Q} , through U17 to the DCP.

At the end of the transmission U18 latches turning on a 5-volt supply (V_5) and the main \pm 15-volt supply (V_S) . After a 5-second warmup, counter U26 is reset and advanced to channel 1, sending a HIGH interrogate signal to module 1. Module 1 returns its analog data (if any) to the analog-to-digital converter on control card A2. Module 1 next returns a high SOC

command to the ADC. The network of U3, U4, and U5 provides a delay, after the analog signal reaches the LH0042 buffer amplifier, before the A to D conversion can start. This network also assures that SOC commands from two consecutive modules will be "see" as two HIGHS, not one long continues HIGH.

Upon completing the A to D conversion, the ADC returns an EOC pulse to the module. When ready, the module sets the D, A-D line to l if it is to send digital data for storage. It sets the D, S-R (DATA, SAVE-REPLACE) to 0 or 1 depending if the new data (either from the ADC or digital data from the module) are to be retained. Next, the module returns a START OF STORE (SOST) command. The 8-pulse, shift gene ator (U19, U15, U20) sends 8-clock pulses to the memory (U12); the modules; and on card A2 to U1, the ADC to serial shift register, and to U5, the memory-to display shift register. U24 gates the digital data from the ADC shift register or the module to the memory. When the storage cycle is complete, an END OF STORE (EOST) signal is sent back to the module and U26 is advanced to interrogate the next module. After the last module has been interrogated, U14B resets latch U18A, turning off the power supplies and ending the scanning cycle.

The scanning cycle can be run under manual control to observe data and control states at each important step, thus facilitating trouble shooting.

Pressing the MANUAL SCAN START button sets latch U18B, which blocks out interferring signals from the DCP transmitter and SOST signals from the modules. U18A latches on and U26 advances to interrogate module 1. Panel LED's now display the output of the analog to digital converter, whether the data in memory will be saved or replaced, and whether analog

or digital data from the module will be stored. Pressing the STEP button starts the store cycle. The LED's now display the memory contents for channel 1: either the new channel 1 data, or the previous channel 1 data which have been retained. Pressing the STEP button again advances U26 to channel 2. Switching the DCAN, MEMORY CYCLE switch to the MEMORY CYCLE position locks the memory in the recirculate mode, thus allowing a review of the memory contents unaltered by a scan cycle.

TIME CLOCK (Fig. 4).

A crystal-controlled clock sends 24-hour time information to each module. This enables the modules to operate on time dependent data.

Crystal-controlled oscillator Ul runs at 27.96 KHz. U4 and U8 divide this frequency down to 1 pulse per 10 minutes. U3, U6, and U10 give time outputs in 10-minute increments through 24 hours. The time outputs are bussed in parallel to all the modules.

U7 gives a 14:00 signal to the four radiation modules to avoid adding identical decoding circuitry to the four modules.

MODULES

RADIATION MODULES (Fig. 5).

The radiation module is designed for silicon photocells. Ul is a current-to-voltage converter. Rl sets the gain. U2 is a buffer for the 100-second, RC network R7, C2.

A time signal to Pin 9 causes the 14:00 data to be retained in memory for the evening transmission. From 00:00 to 13:59 the DCP transmits instantaneous data.

MAXIMUM-MINIMUM-INSTANTANEOUS TEMPERATURE (Fig. 6).

This module is divided into two circuit cards and supplies data to two channels. The module outputs instantaneous temperature on one channel. The other channel is the maximum temperature between 11:30 and 23:59, or the minimum temperature between 00:00 and 11:30. Unless a front passes through, the true maximum and minimum temperatures are transmitted.

U8 and U9 form a linear thermistor thermometer using a YSI (Yellow Spring Instruments) thermalinear network. When Pin 19 is interrogated, instantaneous temperature is sent to the controller, which converts the instantaneous analog signal to digital data. The digital data are passed back on 10 parallel lines to the input of 10-bit latch.

The returning EOC signal strobes U26, latching SAVE-REPLACE LATCH U6A and U6B if a new maximum or minimum is present. This enters the new maximum or minimum in U3. The DAC converts this to analog data. When the next channel is scanned, U4B passes the maximum or minimum to the controller.

RELATIVE HUMIDITY AND SOIL MOISTURE (Fig. 7).

This module transmits relative humidity from 00:00 to 13:59 and soil moisture from 14:00 to 23:59.

Ul is a 1200-Hz oscillator. UlC gives a high pulse during the last 1/4 of the 300-Hz square wave at the output of U2B. U3's output is a ± 1 volt square wave which drives the RH and SM sensors through DC blocking tantalum capacitor pairs. U4 and U5 convert current through the sensor to voltage.

The output of U4 and U5 is a square wave with a high spike on the front. The spike width is proportional to the lead wire capacitance and is an error term.

U6 and U7 are precision full-wave rectifiers. U8 C and D and U9 form a sample-hold circuit that eliminates all but the last 1/4 of the wave form. This technique gets rid of the lead-wire capacitance error. U8A and -B gate the RH or SM data to the next stages, depending on time of day.

LOG AMP is a logarithmic amplifier, which straightens the RH and SM curves. U10 and U11 add offset and gain to put the signal in the final form.

The relative humidity sensor works over a 2,000 ohm to 2 megohm range. Soil moisture is read over a 200-ohm to 20,000-ohm range.

HOURS FREE MOISTURE (Fig. 8).

The presence of dew or rain is sensed by the lowered resistance of a bifilar grid. Ul drives a 27 Hz square-wave through the sensor and Rl, R2. Cl, C2, and R4 rectify and filter the output. Operational amplifier U2 compares this signal with a fraction of the logic supply.

If the sensor is wet, a 36.621 ms/cycle signal from the time clock is gated into 20-stage ripple counter U3 and U4. The last 8 bits of the counter total 256 bits at 5 minutes per bit. Hours of free moisture are obtained by subtracting successive transmissions.

POWER SUPPLIES (Fig. 9).

Two 12-volt storage batteries are the main power source. The DCP requires 24 volts and the DCPI 12 volts (Fig. 9).

Continuous 12-volt power runs all the CMOS logic in the DCPI. A 12 volt to \pm 15 volt converter supplies continuous operational amplifier power if needed (Fig. 9). During a transmission, a 5-volt supply turns on to interface the CMOS to TTL. During a scan, a high power 12-volt to \pm 15-volt converter supplies power to the operational amplifiers, while a high power 5-volt supply powers the ADC and some TTL logic in the DCPI.

APPENDIX C1

DCP SENSOR AND SIGNAL CONDITIONING CHARACTERISTICS

CH 2. Hours of free moisture (dew and rain)

Position: above canopy

Sensor: Type, Bifilar array on printed-circuit board (G-10 epoxy

base)

Signal Conditioning: Type, level-detecting, AC ohmmeter

Accuracy, \pm 20 MS per change of sensor state

with no additional cumulative error.

CH 3. Maximum and minimum temperature

Position: at top of canopy

Sensor: Type, YSI series 700 thermalinear thermistor probe. (Yellow Springs Instruments) Accuracy: ± 0.25°C

CH 4. Instantaneous temperature

Position: at top of canopy Sensor type and accuracy: same as channel 3. Signal conditioning: Type, thermalinear thermistor bridge Accuracy: ± 0.15°C.

CH 5. Incoming visible radiation

Position: approximate 2m above soil surface Sensor: Type, silicon photocell SBC 255 Instrument: (1) cosine corrected head

- (2) 6 mm heat adsorbing glass (KG-3)
- (3) diffusing plastic
- (4) wratten 26 filter

Response: 590 to 720 nm

Construction: Built by E. T. Laboratory

Signal Conditioning: Type, Signal averaging filter

Accuracy: $\pm 0.3\%$

Response time: 10 to 90% - 220 seconds

CH 6. Reflected visible Same as Ch 1 except sensor is faced downward

CH 7. Incoming near-infrared radiation Position: 1.5 m above soil surface Sensor: Type, Silicon photocell Instrument: (1) cosine corrected head

- (2) diffusing plastic
- (3) wratten 88A

Construction: Built by E. T. Laboratory

Response: 730 to 1000 nm

15

CH 8. Reflected near infrared

Same as Ch 3 except sensor faced downward.

APPENDIX C2

PARTS LIST FOR CONTROL BOARDS A1 AND A2

U2 - Noninverting buffer, RCA CD4050AE (schematic shows this as an inverting buffer) U12 - 64-bit shift register, RCA CD4031AE U17, U18, U20 - dual flip-flop, RCA CD4013AE U19 - counter, RCA CD4022AE U26 - counter, RCA CD4017AE R1, R4 - 180K and R2, R40 - 120K R3, R11, R12, R14, \$17, \$19, \$27, \$28, \$35, \$37, \$38 - 100K R5, R6 - 390K R7, R8, R9 - 82K R10 - 39K R13 - 12K R16, R18, R26, R29, R34, R39 - 1.2K R21 - 470K R23 - 1K R24 - 68K R25, R30, R31 - 270K R32 - 560K R33 - 220K R41, R42 - 1.5M C1, C6, C7, C8, C10, C11, C12 - .01µF C2, C3 - $10\mu F$ C4, C5 - 470 pF C9 – .002 μF

Notes: (1) All digital logic parts are RCA COSMOS except where noted differently on schematics

(2) COMOS CD4016AE transmission gates are shown as

(3) NPN transistors are 2N222A PNP transistors are 2N2907A

.

Fig. 1. DCP Interface Functional Block Diagram

Fig. 2. Control Board Al

Fig. 3. Control board A2

RADIATION MODULES

Fig. 5. Radiation Modules

TEMPERATURE

Fig. 6. Max-Min-Instantaneous Temperature

Fig. 7. Relative Humidity-Soil Moisture Module

HOURS FREE MOISTURE

Fig. 8. Hours free moisture

POWER SUPPLIES

Fig. 9. Power Supplies

N74-27810

Appendix D

:

Master's Thesis: Predicting Soil Moisture

and Wheat Vegetative Growth from

ERTS-1 Imagery

PREDICTING SOIL MOISTURE AND WHEAT VEGETATIVE GROWTH FROM ERTS-1 IMAGERY

÷,

ي د و د قر دي بري

Ъy

JOHN WAYNE KRUPP

B.S., Kansas State University, 1972

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agricultural Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1974

Approved by:

Major Professor

ACKNOWLEDGEMENTS

The National Aeronautics and Space Administration provided much appreciated financial support for this research project. The author is also grateful to Dr. E. T. Kanemasu and Dr. D. H. Lenhert, committee members, for their advice and cooperation, and a special thanks goes to Dr. Harry L. Manges, my major professor, for his patience, advice and encouragement in coursework as well as research.

TABLE OF CONTENTS

	Page
INTRODUCTION	D-7
REVIEW OF LITERATURE	D -8
Remote Sensing	D-8 D-8 D-10 D-14
INVESTIGATION	D-16
Objectives Equipment Equipment Methods of Procedure Data Collection Equipment	D-16 D-16 D-18 D-19 D-20
RESULTS	D-24
Prediction of Vegetative Growth	D-24 D-27 D-34
	D-46
CONCLUSIONS	D-48
SUMMARY	D-49
SUGGESTIONS FOR FUTURE RESEARCH	D-52
REFERENCES	D-53
APPENDIX	D-57

Ĵ

LIST OF TABLES

			Page
Table	1.	ERTS-1 Data for Field A	D-21
Table 3	2.	ERTS-1 Data for Field B	D-22
Table .	3.	Weather Conditions at Flight Time over Test Fields	D-25
Table	4	Leaf Area Index Data for Fields A and B	D-26
Table	5.	Soil Moisture Percentages for Field A	D29
Table	6.	Soil Moisture Percentages for Field B	D-30
Table	7.	Predicted Soil Moisture Percentages at 0 to 15 cm from ERTS-1 Data	D-32
Table	8.	Climatic Data	D-35
Table	9.	Soil Moisture Information	D 38
Tab1e	10.	Soil Moisture Depletion Using the Model Developed by Jensen, <u>et al</u>	D 39
Table	11.	Computer Model of Evapotranspiration by Jensen, <u>et al</u>	D-58

LIST OF FIGURES

Figure	1.	Reflectance from Newtonia Silty Clay Loam at Different Soil Moisture Percentages	D-9
Figure	2.	Characteristic Spectral Reflectance Curve of a Green Leaf	D-12
Figure	3.	Energy Emitted in the Solar and Thermal Spectrum	D-17
Figure	4.	Prediction of Leaf Area Index	D-28
Figure	5.	Actual and Predicted Soil Moisture Percentage at 0 to 15 cm	D-33
Figure	6.	Measured Leaf Area Index from Field A	D-40
Figure	7.	Winter Wheat Crop Coefficient	D-41
Figure	8.	Soil Moisture Depletion Measured and Predicted for Field A	D-42
Figure	9.	Soil Moisture Depletion Measured and Predicted for Field B	D-44
Figure	10.	Measured Leaf Area Index from Field B	D-45

D-6

Page

٢

INTRODUCTION

An expanding population has brought about an awareness that there are only limited resources on the Earth. This realization comes at a time when resource use is greater than ever before. Adequate informational techniques are necessary for improved resource development. These techniques can aid in wise resource management.

The magnitude of the data required for improved resource management has led to the development of automatic recognition techniques for agriculture. These systems utilize remote sensing from aircraft and spacecraft. Earth Resources Technology Satellite program is a major step in combining space and remote sensing technologies into a system for developing and demonstrating the techniques for efficient management of the Earth's resources (NASA Earth Resources Technology Satellite Data Users Handbook, 1972).

Over 400 million acres of land are irrigated in the world (Israelsen and Hansen, 1967). Some of the water applied is needlessly lost by excess applications. Irrigation scheduling can help to better conserve this valuable resource. One method of scheduling irrigation requires the determination of crop water use (evapotranspiration). Actual evapotranspiration is dependent upon potential evapotranspiration and a crop coefficient. One possible approach to predicting the crop coefficient is the use of a plant's actual growth which may be determined by its reflection of solar radiation from the plant canopy (Myers <u>et al.</u>, 1966). If this method is to be used, the relationship between reflectance, soil moisture and vegetative growth must be established.

The purpose of this research is to evaluate reflectance for prediction of soil moisture and vegetative growth, and to determine the feasibility of using vegetative growth to evaluate the winter wheat crop coefficient.

REVIEW OF LITERATURE

Remote Sensing

Remote sensing refers to the acquiring of data at a distance by detecting the radiant energy which the object either reflects or emits. Detection devices can be field spectrometers and cameras or instruments designed for installation in aircraft and space vehicles.

Albedo is the ratio of the entire solar radiation spectrum reflected from a body to the total incident radiation (Ashburn and Weldon, 1956), while reflectance is the ratio of reflected radiation to the total incident radiation at a specific wavelength. At any specified wavelength, Reflectance + Absorptance + Transmittance = 1. Transmittance of any opaque material is zero; thus a decrease in reflectance will cause an equal increase in absorption.

Physical Properties that Affect Reflectance

Soil Factors

The albedo of various soil surfaces was compiled by Kondrat'yev (1965). The soils had extremely variable albedos. The variability was attributed to the different soil color, soil moisture content, organic matter and particle size. The soil moisture content was considered the most important factor. He pointed out that a decrease in albedo with an increase in moisture was due to water's low albedo. Bowers (1971) indicated that the relationship between soil moisture and reflectance is precise enough to utilize reflectance techniques to measure surface moisture (Fig. 1). However, due to the soil color, a calibration is necessary for each soil type.

Allen and Sewell (1973) concluded that the use of infrared films and electronic scanner detectors could detect fallow soil moisture over a range of 1 to 24 percent dry weight. Their prediction equations for both the surface soil moisture and soil moisture at the 4 inch depth had regression coefficients (\mathbb{R}^2) of at least 0.94.

Organic matter also influences reflectance. A study by Bowers (1971) shows that an oxidized soil sample compared to the check or control sample has a greater reflectance. He also states that some of the change could have been due to oxidation of the carbonates, although in one soil no carbonate was detected.

Bowers (1971) and Myers and Allen (1968) also reported that particle size has an effect on reflectance. In most cases an increase in particle size decreased the reflectance. This was due to the fine particles filling the volume more completely, thus a more even surface. Coarse aggregates, having an irregular shape, formed a large number of pores and cracks in the surface. When the soil surface was wet and pulverized there was very little difference in reflectance from soils, instead the real contrast was at a low moisture content.

Vegetative Factors

The main factor that causes variation in reflectance from crop canopies is leaf density or leaf area index. Leaf area index is defined as the ratio of the leaf area to soil area. Stanhill <u>et al.</u> (1968) reported that leaf area index is linearly correlated to albedo or shortwave reflection. The plant albedo increases with increasing plant development to a maximum at full plant canopy. The suggested model indicates internal trapping of radiation, which decreases albedo. Internal trapping is almost complete after the second reflection with hardly any effect by height after a minimum value. In the near infrared region, reflectance increased 17 percent with two leaf layers and only slightly more for each additional leaf layer. When the crop cover is incomplete all of the soil factors mentioned previously, including soil color, soil moisture, particle size and organic matter, caused variation in reflectance. In addition, leaf reflectance also is affected by stand geometry and leaf morphology, most significantly in the near infrared region (Gates, 1965), as well as the variety and relative maturity of the crop (Remote Multispectral Sensing in Agriculture, 1970).

A comparison of different varieties of a crop by Interpretation of Remote Multispectral Imagery of Agricultural Crops (1967) and Remote Multispectral Sensing in Agriculture (1967) indicated that the spectral responses were statistically different. These differences could also have been attributed to variations in crop canopy or leaf area index and crop maturity. In mid-season it could have been due to weed infestations, diseases or farming practices.

Variations of reflectance were found with spectral bands. In the visible region, the striking feature of the leaf spectrum was the high absorptance from 0.4 to 0.5 μ , the reduced absorptance from 0.5 to 0.6 μ , the high absorptance from 0.6 to 0.7 μ and the low transmittance in the entire region (Fig. 2). This was mainly due to the chlorophyll and carotene absorption that predominates in this region (Remote Sensing, 1970). Sinclair, <u>et al</u>. (1973) reported that cell walls scatter the light diffusively, but the chlorophyll or other pigments are present to absorb the light. The absorbing process is a dominate factor in influencing the spectral response in the visible region. If water deficits occur, the metabolic

Fig. 2. Characteristic Spectral Reflectance Curve of a Green Leaf (Figure reproduced from Remote Multispectral Sensing in Agriculture, 1970).

processes slow down resulting in the breakdown of carbohydrates and protein within the plant cell. As the stress becomes more severe, accelerated migration of soluble leaf phosphorous and nitrogen compounds to the stem occurs. The loss of chlorophyll accompanying the breakdown and migration results in higher reflectance (David, 1969). Therefore, reflectance is related to the amount of plant pigments. Other factors may result in the loss of chlorophyll such as leaf maturity, salinity, disease or mineral deficiencies. Severe nitrogen deficiences increase reflection (Remote Sensing, 1970), but differences in available nitrogen produce differences in vegetative growth (Bhangoo, 1956, Bolaria, 1956, and Monteith, 1959).

In the near infrared region (0.7 to 1.3 μ) reflectance is caused by the lack of pigment absorption and by the lack of absorption by liquid water (Remote Sensing, 1970). Sinclair, et al. (1973) suggested that reflectance had to occur at interfaces within the leaf where total or critical reflectance was possible. The requirements for total or critical reflectance are that the radiation pass from a material with a high index of refraction to a material with a low index of refraction and that the angle of incidence must be sufficiently large. The increase in reflectance as the leaves become more nitrogen deficient suggests that the leaves are thicker since reflectance increases exponentially as leaf thickness increases. Moisture stress causes physiological changes in the leaf that cause the infrared reflectance to decrease with an increase in moisture stress. The low absorption or high reflectance in this region is a distinctive feature of vegetative. Remote Sensing (1970) reports that of the total incident radiation which strikes a leaf, about 50 percent is reflected, 45 percent is transmitted and the remaining is absorbed. Sinclair et al. (1973) provide a more detailed explanation of the reflectance of an individual leaf in both the visible and near infrared regions.

Sun angle and attenuation are two factors that affect reflection from an object. At low sun angles the reflectance of an object increases compared to a large sun angle. Attenuation is defined by Remote Sensing (1970) as including losses from a beam of radiation by either atmospheric absorption or scattering. In the visible region absorption plays only a minor role compared to scattering. Scattering is caused by interaction between radiation and small particles (dust or water droplets usually in the form of a cloud or haze).

Estimating Soil Moisture

A large amount of time and effort has been expended in the research of transpiration and evaporation with only recent applications in the modeling of evapotranspiration for management of irrigated land. This comes at a time when studies indicate that the timing of irrigations and the amount of water applied have changed very little (Jensen <u>et al.</u>, 1971). If a model is to be used on a practical basis for irrigation scheduling, necessary information must be relatively simple to obtain.

Jensen <u>et al</u>. (1971) have developed a computerized model to estimate soil moisture depletion. One of the model's primary objectives is the orientation for the user instead of the researcher. To calculate the potential evaporative flux, the Penman combination equation is used (Penman, 1963). The meteorological data necessary to evaluate the equation include minimum and maximum daily air temperatures, daily solar radiation, dew point temperature at 8 AM and daily wind run.

The crop coefficient used in the computer model represents the effects of the resistance of water movement from the soil to the evaporating surfaces, the resistance to the diffusion of water vapor from the surfaces to the

atmosphere and the amount of available energy compared to the reference crop (Jensen, 1968). Thus the crop coefficient is limited by the available soil moisture as well as the daily meteorological conditions and stage of plant growth. For each separate crop a coefficient must be developed for the model. A more detailed explanation can be obtained from Jensen <u>et al.</u> (1971).

Ritchie and Burnett (1971) and Ritchie (1972) determined a nonlinear relationship between the leaf area index of a crop and the ratio of the plant's evapotranspiration to the potential evapotranspiration. They reported that while an adequate supply of water is available in the soil, plant factors influence evapotranspiration rates.

INVESTIGATION

Objectives

This work was concerned with problems dealing with utilizing remote sensing data. The objectives of the study were: (1) to evaluate reflectance for prediction of soil moisture and vegetative growth, (2) to determine the feasibility of using vegetative growth to evaluate the winter wheat crop coefficient, and (3) to evaluate the winter wheat crop coefficient in the mathematical model by Jensen <u>et al.</u> (1971) for irrigation scheduling.

Equipment

ERTS-1 satellite revolves in a circular orbit around the Earth every 103 minutes at 914 km above sea level. The satellite travels over the research area in midmorning in a north to south direction. It passes over any location on the Earth's surface once every 18 days at the same time of day.

The Multispectral Scanner (MSS) is a line-scanning device that operates in two bands of the visible spectrum and two in the near infrared. Band 4 included the spectrum between 0.5 and 0.6 μ , band 5 between 0.6 and 0.7 μ , band 6 between 0.7 and 0.8 μ and band 7 between 0.8 and 1.1 μ . Fig. 3 shows the 4 bands with the energy emitted in the solar and thermal spectrum. An oscillating mirror in the MSS causes light energy from a 185 km swath to be swept across the focus of a small telescope. At the focus is a four-bysix array of 24 optical fibers (6 for each band). The fibers carry the energy from the light through spectral filters to detectors that convert it to an electrical signal. An area of 79 meters square is contained in each

Fig. 3. Energy Emitted in the Solar and Thermal Spectrum.

fiber. The MSS image covers 185 km square with 4 images per area. The imagery is relayed to ground stations and then is processed into photographs at Goddard Space Flight Center in Greenbelt, Maryland. The resolution capability reveals surface features at a scale of 1:250,000 and information at a scale of 1:30000. Further details of the equipment aboard the ERTS-1 satellite are given by NASA Earth Resources Technology Satellite Data Users Handbook (1972).

Methods of Procedure

The research was conducted on winter wheat fields approximately 30 kilometers northwest of Garden City, Kansas. Two soil moisture treatments, one dryland wheat field (A) located 38° 9.6' North latitude and 101° 5.9' West longitude and one irrigated field (B) 38° 8.5' North latitude and 101° 4.9' West longitude, were used with approximately 60 hectares in each. Field B was irrigated by a center pivot sprinkler system. The two fields were located within 3 km of each other. The area's normal annual precipitation is 43.6 cm with about 70 percent of the precipitation during September through June.

The two fields were located on Ulyssess-Richfield silt loam with an average organic matter of 1.5 percent and soil pH of 6.9. The exchangeable potassium was in excess of 560 kg per hectare. Available phosphorus in field A was 117 kg per hectare and in field B was 64 kg per hectare. Particle size analyses revealed that both field's soils contained an average of 50 percent silt and 20 percent clay.

Field A had been in fallow the previous year. Scout wheat was planted at a seeding rate of 29 kg per hectare on September 15, 1972. The grain drill used had a 25.4 cm spacing between rows. By May 24, 1973, the wheat was completely headed and was harvested on July 5.

Since field B had been in wheat the previous season, the field was preirrigated. Anhydrous aumonia at a rate of 90 kg of nitrogen per hectare was applied to the field. On September 22, 1972, Eagle wheat was seeded at a rate of 50 kg per hectare with a row spacing of 30.48 cm. According to Variety Tests with Fall-Planted Small Grains (1971), Eagle wheat was a selection of Scout with nearly identical vegetative characteristics. Water was applied with the center pivot irrigation system on May 23 (3.05 cm) and June 2 (3.05 cm). Harvest of the wheat was completed on July 5.

Data Collection

Both fields A and B were divided into four square equally sized plots with a sampling area in the center of each plot. An additional sampling area was also set up in two of the plots in field A where the corners had been double drilled. This gave a total of six sampling areas in field A and four in field B. By the use of random sampling techniques, the areas were broken down into one meter squares, where the leaf area index and soil moisture were measured.

The soil samples were gathered at the surface and at intervals of 0 to 15, 15 to 30, 30 to 60, 60 to 91, 91 to 121, 121 to 152 and 152 to 182 cm with a soil sampling tube. The samples were later dried in an oven at 105°C until they reached a constant weight. Then the soil moistures were calculated.

The leaf area was determined by measuring the length and breadth of each leaf from randomly selected plants in the one square meter and using the following equation (Teare and Peterson, 1971):

$$LA = -0.64 + 0.813 X$$
 (1)

where:

LA = leaf area (cm^2)

X = product of length times breadth of leaf (cm^2).

The leaf area index is the total leaf area divided by the land surface area. Both soil moisture and leaf area index data were obtained within one day of the flights over.

The meteorological data were from the Garden City Experiment Station. These data included maximum and minimum temperatures, dew point temperatures and wind run. Also the field capacity, permanent wilting point and bulk density for Ulyssess-Richfield silt loam were obtained from the experiment station. This information was determined by laboratory measurements and may not describe the test fields accurately. Solar radiation was obtained from the Dodge City Weather Service while rainfall readings were taken near the research area.

Data Analysis

Using a negative transparency from ERTS-1, the general area of fields (A and B) was located. Then the specific fields were found by the use of computer printed gray scales. From the gray scales the coordinates were located and the numerical values were stripped off the magnetic tapes. To prevent any overlapping outside of the research area, one row of data points around the edge of the fields was eliminated. The mean and standard deviation of the remaining data of the four bands were calculated (Tables 1 and 2). Also the mean and standard deviation of point by point ratios were determined (Tables 1 and 2). Stepwise Deletion Multiple Regression (1973) was used to evaluate the relationship between reflectance, soil moisture and leaf area index.

The meteorological data, as well as the soil moistures on March 22, were used in the computer model of evapotranspiration (Appendix, Table 11) developed by Jensen <u>et al</u>. (1971). The original wheat crop coefficient

Table	1.	ERTS-1	Data	for	Field	A.	

Date		MSS4	MSS5	MSS6	MSS7	MSS4/5	MSS4/7	MSS5/7
9/22/72	Mean	34.75	37.89	38.64	19.55	0.918	1.779	1.939
	S.D.*	1.41	1.90	2.18	0.86	0.040	0,068	0.080
3/22/73	Mean	33.26	32.29	45.87	25.25	1.031	1.318	1.280
	S.D.*	1,28	1,58	1.74	0.69	0.040	0.055	0.069
5/14/73	Mean	29.74	24,50	48.11	28.08	1.218	1.064	0.877
	S.D.*	1,69	2.12	1,79	1.66	0.066	0.101	0.104
6/1/73	Mean	33.43	29.48	52.32	29.87	1.138	1.121	0.990
	S.D.*	1.72	2.42	1.84	1.04	0.062	0.083	0.104
6/19/73	Mean	41.14	49.33	55.26	28,70	0,835	1.436	1.722
	S.D.*	1.62	2.07	1.49	0.92	0.033	0.074	0.090
7/7/73	Meian	59.46	78,53	77.68	36,36	0.758	1.636	2.161
	S.D.*	2.14	4.25	2.72	1.49	0.030	0.061	0.115

*Standard deviation.

Table 2. ERTS-1 Data for Field B.

Date		MSS4	MSS5	MSS6	MSS7	MSS4/5	MSS4/7	MSS5/7
9/22/72	Mean	37.05	40.41	40.96	20.78	0.919	1.786	1.947
	S.D.*	1.62	2.54	2.37	1.02	0.038	0.094	0,128
3/22/73	Mean	33.54	32,99	41.47	22.57	1.019	1,488	1.463
	S.D.*	1.09	1.91	2.15	0.96	0.049	0.073	0.088
5/14/73	Mean	27.63	19.22	56.66	36.78	1.454	0.760	0.532
	S.D.*	1,60	2.68	3.56	3.18	0.132	0.109	0.129
6/1/73	Mean	26.93	20,03	48,66	31.61	1.355	0.858	0.638
	S.D.*	1.32	2.23	3.43	2.54	0.111	0.083	0.094
6/19/73	Mean	36.68	37.94	52,00	29.97	0.971	1.227	1.270
	S.D.*	1.21	3,11	2.05	1,56	0.060	0.079	0.131
7/7/73	Mean	54.46	73.87	77.48	38.24	0.739	1.425	1.932
	S.D.*	2.30	4.37	3.39	1.31	0.033	0,060	0.100

*Standard deviation.

.

ì

.

.

.

RESULTS

Prediction of Vegetative Growth

ERTS-1 passes over any location on the Earth's surface once every 18 days at the same time of day, but some dates had high percentages of cloud cover. Neither aerial nor ground data were collected on those days (Table 3). These data (Table 4) were used as a means for determining vegetative growth with Stepwise Deletion Multiple Regression (1973). The July 7 data were not used because of the alteration of the natural vegetative growth by harvesting the wheat. The wheat threshed straw provided a stubble mulch compared to the uncut wheat. The equations that best describe vegetative growth were:

LAI =
$$2.92MSS4/5 - 2.63$$
, $R^2 = 0.95$ (2)

LAI =
$$-0.065MSS5 + 2.66$$
 , $R^2 = 0.86$ (3)

LAI =
$$-1.22MSS5/7 + 2.08$$
, $R^2 = 0.85$ (4)

where

LAI = Leaf area index MSS4/5 = Ratio of band 4 to band 5 MSS5 = Band 5 MSS5/7 = Ratio of band 5 to band 7 R^2 = Regression coefficient.

For the predicted values of leaf area index to have meaning, it is necessary that a minimum or maximum value of MSS4/5, MSS5 and MSS5/7 be set so that the predicted leaf area index is never negative.

The general trend from equation 2 indicates that as the ratio of band 4 to band 5 increases the leaf area index increases linearly. This

Date	Weather Condition	Data Acquired*
September 4, 1972	Cloudy	
September 22, 1972	Clear	X
October 10, 1972	Partly Cloudy	
October 28, 1972	Cloudy	•
November 15, 1972	Cloudy	
December 3, 1972	Partly Cloudy	
December 21, 1972	Partly Cloudy	
January 8, 1973	Cloudy	
January 26, 1973	Cloudy	
February 13, 1973	Rain	
March 3, 1973	Foggy	
March 21, 1973	Clear	x
April 8, 1973	Heavy Snow	
April 26, 1973	Rain	
May 14, 1973	Clear	х
June 1, 1973	Clear	x
June 19, 1973	Clear	X
July 7, 1973	Clear	X

Table 3. Weather Conditions at Flight Time Over Test Fields.

. .

...

*Indicates both ERTS-1 and field data taken.

	Fi	eld A	Field B		
Date	Mean	Standard Deviation	Mean	Standard Deviation	
9/22/72	0.00	0.00	0.00	0.00	
12/21/72	0.33	0.00	0.12	0.07	
3/22/73	0.37	0.10	0.44	0.07	
5/14/73	0.97	0.26	1.53	0.39	
6/1/73	0.89	0.25	1.23	0.36	
6/18/73	0,00	0.00	0.00	0.00	
7/7/73	0.00	0.00	0.00	0.00	

Table 4. Leaf Area Index Data for Fields A and B.

.

٠

.

...

means that reflectance due to plant growth in band 4 increases faster than band 5 since the vegetation reflects less radiation in band 5. Equation 2 (Fig. 4) best describes leaf area index because of its high regression coefficient. The ratio appears to have cancelled any soil moisture variations.

Equation 3 shows a linear relationship between leaf area index and band 5. From the equation it appears soil moisture is not significant in band 5. Of the three equations presented, an error in band data would have the least effect on leaf area index as represented by the low coefficient of the band in equation 3. Equation 4 uses the ratio of band 5 and band 7 to evaluate leaf area index with no significant variation from soil moisture. The reflectance due to vegetation of band 7 increases at a much faster rate than band 5 as plant growth continues, causing a decrease in the ratio.

Prediction of Soil Moisture

The Stepwise Deletion Multiple Regression (1973) was used to help interpret the aerial and ground truth data available (Tables 5 and 6). The information for field B on March 22 was eliminated since rain fell before the soil moisture could be measured. Again the July 7 data were not used due to the stubble mulch caused by harvesting the wheat crop. The equations determined were:

$$SM2 = 164.44 - 4.00MSS4 - 24.08LAI$$
, $R^2 = 0.93$ (5)

$$SM2 = 80.70 - 1.41MSS6 + 10.00LAI$$
, $R^2 = 0.80$ (6)

$$SM2 = 77.92 - 2.56MSS7 + 20.36LAI$$
 , $R^2 = 0.79$ (7)

Fig. 4. Prediction of Leaf Area Index.

Date		Surface	0 15	Soil Mo	isture a		ents (cm)		
		Surface	0-15	15-30	30-61	61-91	91-122	122-152	152-183
9/22/72	Mean	10.43	22.97	23.70	21.35	17,65	14.35	12.85	13.55
	S.D.*	2.18	0.99	2.58	0.93	3.10	1.87	0.75	0.97
12/21/72	Mean	34.30	30.40	27.70	26,50	24.30	21.10	15.70	13.80
	S.D.*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3/22/73	Mean	8.13	22.98	25.42	23.82	20.70	16.63	14,62	14.98
	S.D.*	2.59	1.27	1.81	1.26	2.02	2.70	2,61	2.61
5/14/73	Mean	3.82	16.92	17.20	19.12	20.35	20.03	18.52	16.45
	S.D.*	0.75	1.87	1.61	1.15	1.61	1.52	1.99	2.40
6/1/73	Mean	2.87	11.12	13.45	15.22	15.72	15.95	16.38	15.97
	S.D.*	0.84	1.50	0.63	1.22	2.04	2.19	2.00	2,28
6/19/73	Mean	0.85	6.35	9.80	11 .1 2	10.13	11.08	12.47	13.32
	S.D.*	0.44	0.73	1.55	1.31	1.68	1.41	2,06	2,01
7/7/73	Mean	1.77	15.65	11.45	12.92	14.15	15.20	16.33	17.33
	S.D.*	0.21	1.73	0.89	0.39	1.00	2.30	2.65	2.51

Table 5. Soil Moisture Percentages[†] for Field A.

[†]Soil moisture percentages on dry weight basis

*Standard deviation

Data							ents (cm)		
Date		Surface	0-15	15-30	30-61	61-91	91-122	122-152	152-183
9/22/72	Mean	8.35	22.40	20.75	16.93	13.43	13.00	14.70	16.05
	S.D.*	1.81	1.30	0.34	2.99	2.81	4.13	3.62	2,40
12/21/72	Mean	16.28	30.10	26,27	24.90	19.25	14.83	15.70	16.70
	S.D.*	3.71	5.60	2.11	3.19	2.83	3.41	2.75	2.88
3/22/73	Mean	19.00	27.05	23,97	24.15	20.02	14.78	15.00	15.97
	S.D.*	6.44	4.11	1.68	4.16	3.49	4.56	3.43	3.18
5/14/73	Mean	5.58	21.20	16.33	18.15	18.38	17.73	16,70	16.90
	S.D.*	0.93	3.27	2.06	3,53	3.85	3.75	3.85	2.58
6/1/73	Mean	25.10	25.47	18,93	15.48	13.88	13.68	15.55	16.62
	S.D.*	12.43	4.10	5.16	3.70	2.85	2.40	4.12	2.81
6/19/73	Mean	2.28	9.63	9.23	11.98	10.78	11.18	11.48	13.50
	S.D.*	1.13	2.19	1.73	3.88	3.02	1.72	1.68	1.91
7/7/73	Mean	2.60	17.20	9.40	11.43	11.10	10.50	10.38	13.15
	S.D.*	1,25	1.81	2,23	1.53	0.67	1.39	1.27	1.64

Table 6. Soil Moisture Percentages[†] for Field B.

⁺Soil moisture percentages on dry weight basis.

*Standard deviation.

where:

SM2 = Soil moisture dry weight at 0 to 15 cm (%) LAI = Leaf area index MSS4 = Band 4 MSS6 = Band 6 MSS7 = Band 7 MSS4/5 = Ratio of band 4 to band 5 R^2 = Regression coefficient.

The soil moisture equation 5 indicates that an increase in leaf area index, with soil moisture remaining constant, decreases the reflectance in band 4. This could be caused by the reflectance of the soil being greater than the plant reflectance. Thus as the leaf area increased, more surface was covered by the plant canopy causing a decrease in reflectance monitored. The fact that soil moisture increases absorption is reaffirmed by equations 5, 6 and 7. Equation 5 is the best equation due to its high regression coefficient.

Equations 6 and 7 indicate that the reflectance of the plant is greater than the reflectance of the soil. An error in band reading or leaf area index would cause the least change in soil moisture in equation 6 due to the small coefficients.

Upon substituting equation 2 into equation 5, soil moisture at 0 to 15 cm depth became:

$$SM2 = 101.11 - 4.00MSS4 - 70.31MSS4/5$$
 (8)

Table 7 and Fig. 5 show a comparison of soil moisture predicted by equation 8 with the measured soil moisture. Equation 8 was developed for soil factors pretaining to the fields. Different soil factors would require a new equation to be developed for soil moisture. These factors include soil type, organic matter, particle size and cultural practices.

		F	ield A		Field B				
Date	MSS4	MSS4/5	Predicted ^a SM2	Actual SM2	MSS4	MSS4/5	Predicted ^a SM2	Actual SM2	
9/22/72	34.75	0.918	24.24	22.97	37.05	0.919	14,80	22,40	
3/22/73	33.26	1.031	22.25	22.98	33.54	1.019	21.85	27.05 ^b	
5/14/73	29.74	1.218	23.09	16.92	27.63	1.454	14.91	21.20	
6/1/73	33.43	1.138	13.86	11.12	26.93	1.355	24.69	25.47	
6/19/73	41.14	0.835	c	6.35	36.68	0.971	12.66	9.63	

Table 7. Predicted Soil Moisture Percentages at 0 to 15 cm from ERTS-1 Data.

^aCalculated by SM2 = 101.11 - 4.00MSS4 - 70.31MSS4/5.

^bPrecipitation fell after ERTS-1 flight but before measurement.

^CA negative value is predicted which has no meaning.

Fig. 5. Actual and Predicted Soil Moisture Percentages at 0 to 15 cm.

D-33

Soil Moisture Model

The original wheat crop coefficient curve developed by Jensen <u>et al</u>. (1971) was:

$$\mathbf{x} = \mathbf{0.233} - \mathbf{0.0114x} + \mathbf{0.000484x}^2 - \mathbf{0.00000289x}^3 \tag{9}$$

$$Y = 1.022 + 0.00853D - 0.000726D^{2} + 0.00000444D^{3}$$
(10)

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

Equations 9 and 10 in conjunction with climatic data (Table 8) and soil moisture information (Tables 5, 6 and 9), were used in the computer model developed by Jensen <u>et al</u>. (1971). The soil moisture depletion for both fields in most cases was overestimated (Table 10).

Regression analysis of leaf area index data for field A (Fig. 6) was used as the new winter wheat crop coefficient curve (Fig. 7). The equations of the curve were:

$$Y = 0.005 + 0.0165X - 0.000467X^{2} + 0.00000402X^{3}$$
(11)

$$\mathbf{Y} = \mathbf{0.998} - \mathbf{0.00297D} - \mathbf{0.000747D}^2 \tag{12}$$

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

Fig. 8 and Table 10 represent the results from the computer model with equations 11 and 12 on dryland (Field A) compared to the actual measured values. The actual soil moisture values compared very closely with predicted values of the model until near maturity of the wheat crop on June 19. At

Month	Day	Minimum Temp. (*F)	Maximum Temp. (°F)	Solar Radiation (cal/cm ² day)	Dew Point Temp. (°F)	Wind Run (miles/day)	Rainfall (inches)
March	20	28	52	561.5	28	144	
	21	31	53	492.6	36	113	
	22	39	56	505.9	36	327	
	23	39	63	33.8	39	157	1,10
	24	36	49	108.2	36	167	
	25	35	40	90.2	35	415	
	26	35	42	468.6	35	284	
	27	35	55	205.5	35	127	. 70
	28	42	51	163.4	42	200	
	29	32	50	91,1	32	160	
	30	32	39	47.7	32	166	1.00
	31	32	37	214.9	32	325	
April	1	30	45	588.5	30	2 39	
	2	30	58	428.7	34	79	
	3	31	54	429.0	32	187	
	4	31	48	642.3	31	274	
	5	22	54	634.0	30	163	
	6	31	63	627.3	28	164	
	7	37	70	44.7	35	124	0.25
	8	24	37	381.6	24	378	
	9	17	33	596.2	17	262	
	10	19	35	664.7	19	192	
	11	26	53	625.2	37	123	
	12	31	64	400.6	38	68	
	13	37	62	595.8	40	102	
	14	46	66	470.8	57	273	
	15	58	78	216.5	58	387	
	16	25	61	642.3	31	220	
	17	35	60	652.1	39	158	
	18	46	76	643.9	48	209	
	19	45	77	596.8	42	336	-
	20	36	60	693.4	23	219	
	21	38	72	672.7	37	259	
	22	36	65	612.9	38	98	
	23	33	67	655.0	42	78	
	24	46	73	162.5	50	117	0,80
	25	44	57	107.9	45	115	
	26	34	48	221.9	36	181	
	27	31	48	200.5	36	122	
	28	38	66	666.9	43	153	
	29	45	82	635.9	45	167	
	30	49	78	368.8	49	134	

3

Table 8. Climatic Data.

۰.

Table 8. Continued.

Month	Day	Minimum Temp. (°F)	Maximum Temp. (°F)	Solar Radiation (cal/cm ² day)	Dew Point Temp. (°F)	Wind Run (miles/day)	Rainfall (inches)
May	1	44	73	156.6	45	176	
	2	35	46	633.8	37	178	
	3	32	58	704.2	36	90	
	4	40	71	688.0	41	165	
	5	50	79	503.6	45	319	
	6	47	7 9	702.9	47	207	
	7	48	77	520.8	50	185	1,25
	8	42	68	682.7	44	160	
	. 9	48	79	706.0	45	109	
	10	44	77	698.4	45	106	
	11	, 50	77	681.7	48	140	
	12	46	70	674.5	40	144	
	13	42	68	672,1	37	67	
	14	38	65	728.4	42	59	
	15	38	66	727.4	38	84	
	16	45	78	718,4	39	123	
	17	42	71	568.8	42	127	
۲	18	48	88	708.2	46	77	
	19	54	87	705.3	49	102	
	20	54	84	633.4	52	109	
	21	57	86	689.5	61	201	
	22	51	85	611,9	50	148	
	23	51	68	672.9	53	79	
	24	54	80	738.7	50	79	
	25	47	72	641.0	47	143	
	26	55	80	488.7	56	249	
	27	46	68	107.2	37	266	
	28	50	53	624.3	48	490	
	29	40	73	674,8	42	208	
	30	46	70	406.9	44	125	
	31	42	62	751.1	44	43	
June	1	48	77	623.8	60	133	
	2	57	82	659.7	56	247	
	3	53	86	645.8	53	192	
	4	53	80	599.6	54	94	
	S	47	68	667.5	48	133	
	6	50	79	736.5	46	70	
	7	51	88	729.0	49	78	
	8	56	94	719.4	53	87	
	9	57	97	739.9	56	98	
	.10	60	92	734.1	58	182	
	11	62	90	707.2	59	277	

Table 8. Continued.

.

Month	Day	Minimum Temp. (°F)	Maximum Temp. (°F)	Solar Radiation (cal/cm ² day)	Dew Point Temp. (°F)	Wind Run (miles/day)	Rainfal (inches)
June	12	64	91	498.0	60	210	
	13	64	82	627.2	66	102	
	15	59	89	737.1	52	216	
	16	57	94	743.0	46	215	
	17	53	84	740.3	49	121	
	18	48	95	757.4	32	239	
	19	54	78	695.6	35	170	
	20	45	7 9	738.7	41	113	
	21	52	85	683.0	54	85	
	22	55	86	725.5	51	62	
	23	57	91	723.3	51	84	
	24	64	98	729.4	46	126	
	25	61	98	663.5	49	186	
	26	63	101	701.2	51	130	
	27	62	102	690.7	50	156	
	28	63	93	594.5	61	106	0.90
	29	64	87	646.0	66	97	
	30	65	88	647.8	68	82	
July	1.	66	94	668.4	68	146	
	2	70	102	613.5	63	197	
	3	67	92	639.6	63	75	
	4	66	102	661.3	65	160	
	5	62	95	702.4	62	94	
	6	65	97	715.1	62	102	
	7	68	101	714.1	64	170	

Depth (cm)	Field Capacity (%)	Permanent Wilting Point (%)	Bulk Density (gm/cm ³)
0-30	28.5	14.5	1.29
30-61	28.0	14.0	1.37
61-91	27.5	13.5	1.39
91-122	27.0	13.0	1.16
122-152	26.5	12.5	1.16
152-183	26.0	12.0	1.16

Table 9. Soil Moisture Information.*

.

•

ч **4**.,

*Obtained from the Garden City Experiment Station.

Date	Field A (cm)			Field B (cm)			
	Actual ^a	b Jensen	Revised 1 ^C	Actual ^a	Jensen ^b	Revised 1 ^C	Revised 2 ^d
3/21/73	17.65			19.28			
5/14/73	19.84	25.07	19.35	23.44	26.14	20,80	26.52
6/1/73	27.74	31.24	27.86	27.15	29,24	26,56	32,66
6/19/73	37.52	32.16	34.65	37.77	27.61	31.52	37.90
7/7/73	28.68	31.29	34.51	34.21	26.75	31.70	38.07

Table 10. Soil Moisture Depletion Using the Model Developed by Jensen et al.

^aActual field measurements of soil moisture depletion.

^bOriginal wheat crop coefficient suggested by Jensen <u>et al</u>.

^CWheat crop coefficient using leaf area index of Field A.

^dWheat crop coefficient using leaf area index of Field B.

Fig. 6. Measured Leaf Area Index from Field A.

Fig. 8. Soil Moisture Depletion Measured and Predicted for Field A.

this date soil moisture depletion was underestimated, but still the difference in values were insignificant compared to the available moisture. After the June 19 date, comparison became difficult due to the discrepancy of actual soil moisture increasing 8.84 cm while rainfall only totaled 2.29 cm.

Fig. 9 and Table 10 show the results of the irrigated Field (B) using equations 11 and 12. The computer model consistently underestimates the evapotranspiration. For the time period up to June 1, the differences were not significant in relation to the available soil moisture, which included an irrigation on May 23 of 3.05 cm. By June 19 the two had considerably different values with another unexplained increase of 3.56 cm in soil moisture and only 2.29 cm of rainfall.

Regression analysis was used to develop a third wheat crop coefficient curve from the leaf area index of Field B (Fig. 10). The equations for the curve were:

$$Y = 0.0109X - 0.000288X^{2} + 0.00000333X^{3}$$
(13)

$$Y = 1.52 - 0.000834D^2$$
(14)

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

The computer model's results using equations 13 and 14 indicate that the soil moisture depletion was overestimated meaning the crop coefficient used was too large.

Fig. 9. Soil Moisture Depletion Measured and Predicted for Field B.

Fig. 10. Measured Leaf Area Index from Field B.

DISCUSSION

The computer model of irrigation scheduling developed by Jensen <u>et al</u>., (1971) uses a crop coefficient which represents the effects of the resistance of the water movement from the soil to the evaporating surfaces, the resistance of the diffusion of water vapor from the surfaces to the atmosphere and the amount of available energy compared to the reference crop. The model predicts percent effective cover by assuming that it is equal to days after planting divided by the days from planting to heading for small grains. This proves to be a poor assumption for winter wheat.

An alternative to this method of crop coefficient determination would be the direct use of wheat vegetative growth or more specifically leaf area index. If a leaf area index versus the crop coefficient curve was developed, vegetative growth would then indicate a specific value for the crop coefficient at a certain point in time. This would eliminate problems due to seasonal variation of weather conditions such as an early fall or late spring.

From this study it appears that a further step can be taken to utilize remote sensing. The winter wheat leaf area index has been described, with high correlation, by reflectance readings. These readings could be used as a direct input into a computer model instead of the original percent of effective cover.

If remote sensing data were available within hours after flight over an area, the following procedure might occur. Data direct from the remote sensing device would be fed into the computer containing an irrigation scheduling model. Meteorological data and a weather forecast for the prediction period would be the other inputs. From a leaf area index curve averaged over many years and the value from the remote sensor, the growth of the crop could be estimated for the prediction period. Knowing the growth or water use, the computer model would then be able to predict the irrigation requirement necessary. This process could be handled by one manager for large areas of irrigated wheat land.

CONCLUSIONS

Results from this study indicate:

- Vegetative growth was best predicted by a linear relationship between leaf area index and the ratio of band 4 to band 5. All significant soil moisture effects were cancelled by the ratio.
- 2. Soil moisture at a depth of 0 to 15 cm, with specific soil factors, was predicted by band 4 and leaf area index with a high regression coefficient.
- 3. Vegetative growth, measured by leaf area index, was one of the necessary inputs in evaluating the winter wheat crop coefficient from March to maturity.

SUMMARY

A realization that wise resource management is necessary comes at a time when resource use is greater than ever before and the population is still increasing. With the use of remote sensing large quantities of data are available for resource management. These large quantities of data have led to the development of automatic recognition techniques in agriculture. Earth Resources Technology Satellite program provides a system for developing and demonstrating the techniques for efficient resource management.

With the large amount of irrigated land in the world, excess irrigation applications means large quantities of water needlessly lost. This valuable resource could be better utilized through the use of irrigation scheduling. Irrigation scheduling predicts the consumptive use (evapotranspiration). The actual evapotranspiration is dependent upon potential evapotranspiration and a crop coefficient which may be predicted by the plant's actual growth. The plant's growth can be determined by reflection of solar radiation from the plant canopy.

The objectives of this study were to evaluate reflectance for prediction of soil moisture and vegetative growth; and to determine the feasibility of using the plant's actual growth for use in determining the winter wheat crop coefficient curve and using it in a computer model developed by Jensen et al. (1971).

The study was conducted on winter wheat fields located northwest of Garden City, Kansas. Two soil moisture treatments were used, one dryland wheat field and one irrigated wheat field. Both fields were on Ulyssess-Richfield silt loam.

D-49

ERTS-1 satellite passes over any location on the Earth's surface once every 18 days at the same time of day. The satellite contains a line scanning device (Multispectral Scanner) that operates in two bands of the visible region and two in the near infrared region. Band 4 includes the spectrum between 0.5 and 0.6 μ , band 5 between 0.6 and 0.7 μ , band 6 between 0.7 and 0.8 μ and band 7 between 0.8 and 1.1 μ .

The ground truth data were gathered within one day of the aerial flights by ERTS-1. The ground truth data included soil moisture at various depths, leaf area index measurements and rainfall readings. The meteorological data were from the Garden City Experiment Station with the exception of solar radiation which was obtained from the Dodge City Weather Service.

Stepwise Deletion Multiple Regression (1973) was used to formulate equations with the use of reflectance data for vegetative growth and soil moisture. The equation that best described the relationship between reflectance and vegetative growth was:

LAI =
$$2.92MSS4/5 - 2.63$$
, $R^2 = 0.95$ (2)

where:

LAI = Leaf area index

MSS4/5 = Ratio of band 4 to band 5

 \mathbf{R}^{2} = Regression coefficient

Soil moisture at a depth of 0 to 15 cm was best predicted by;

$$SM2 = 101.11 - 4.00MSS4 - 70.31MSS4/5$$

where:

SM2 = Soil moisture dry weight at 0 to 15 cm (%) MSS4 = Band 4

MSS4/5 = Ratio of band 4 to band 5.

(8)

The best winter wheat crop coefficient curve was developed by regression analysis on the leaf area index data of the dryland field (A). The crop coefficient curve was:

$$Y = 0.005 + 0.0165X - 0.000467X^2 - 0.00000402X^3$$
(11)

$$Y = 0.998 - 0.00297D - 0.000747D^2$$
(12)

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

Meteorological data, starting soil moistures and crop coefficient curve were used in the computer model by Jensen <u>et al.</u> (1971). From results obtained, vegetative growth provides a feasible method for evaluating the winter wheat crop coefficient from at least March through maturity. Within the limits specified by Jensen <u>et al.</u> (1971), the model and modified coefficient proved to be a good estimator of soil moisture.

SUGGESTIONS FOR FUTURE RESEARCH

The research on evapotranspiration modeling and determining the crop coefficient by leaf area index should be expanded to include other crops and the whole growing season as well as increasing the number of test fields. More frequent sampling of soil moisture and leaf area index may be helpful. The neutron probe method for determining soil moisture measurement would provide a more representative indication due to the increased area of sampling. Continued research in using remote sensing for predicting vegetative growth with an emphasis on its use as an input in evaluating the crop coefficient in an evapotranspiration model may prove beneficial.

Additional research in the area of detecting soil moistures at depths greater than 15 cm with thermal energy could prove productive.

D-52

REFERENCES

- Allen, W. H. and J. I. Sewell. 1973. Remote sensing of fallow soil moisture by photography and infrared line scanner. Transactions ASAE. 16(4): 700-706.
- Angstrom, A. 1925. The albedo of various surfaces of the ground. Geografiska Annaler. (7):323.
- Ashburn, E. V. and R. G. Weldon. 1956. Reflectance of Spectral Diffuse Desert Surfaces. Optical Society of America Journal. (46):583.
- Bauer, Kenneth G. and John A. Dutton. 1962. Albedo variations measured from an airplane over several types of surfaces. Journal of Geophysical Research. 67(6):2367-2376.
- Bhangoo, M. S. 1956. Fractionation of total supplies of nitrogen, phosphorus and potassium in certain Kansas surface soils and subsoils and their effect on the yield and composition of wheat. Kansas State University Library. Manhattan, Kansas.
- Bolaria, T. S. 1956. Cold hardiness, growth and yield of winter wheat as influenced by mineral nutrients. Kansas State University Library. Manhattan, Kansas.
- Bowers, S. A. 1971. Reflection of radiant energy from soils. Kansas State University Library. Manhattan, Kansas.
- Carlson, Richard E. 1971. Remote detection of moisture stress: Field and laboratory experiments. Iowa State University Library. Ames, Iowa.
- Cole, F. W. 1970. Introduction to meteorology. New York. John Wiley and Sons, Inc.
- Coulson, L. 1966. Effects of reflection properties of natural surfaces in aerial reconnaissance. Applied Optics. (5):905-917.
- David, W. P. 1969. Remote sensing of crop water deficits and its potential applications. Texas A&M University Remote Sensing Center Technical Report RSC-06.
- Earing, Dianne L. and I. William Ginsberg. 1969. A spectral discrimination technique for agricultural applications. Sixth International Symposium on Remote Sensing of Environment Proceedings.
- Economic Research Service. 1965. Agricultural application of remote sensing--The potential from space platforms. U.S. Dept. of Agri. Bulletin 328.
- Fritschen, L. J. 1967. Net and solar radiation relations over irrigated field crops. Agri. Meteorology. (4):55-62.

D-53

- Fry, A. W. and Alfred S. Gray. 1970. Sprinkler irrigation handbook. Glendora, California. Rain Bird Sprinkler Mfg. Corporation.
- Gates, David M. 1965. Characteristics of soil and vegetated surfaces to reflected and emitted radiation. Third Symposium on Remote Sensing of Environment Proceedings.
- Gates, David M. and R. J. Hanks. 1967. Plant factors affecting evapotranspiration. Irrigation of Agricultural Lands. American Society of Agronomy Monograph No. 11.
- Geiger, Rudolf. 1965. The climate near the ground. Cambridge, Massachusetts. Harvard University Press.
- George, Theodore A. 1970. Unmanned spacecraft for surveying earth's resources. Princeton University Conference on Aerospace Methods for Revealing and Evaluating Earth's Resources.
- Heermann, D. F. and H. R. Gardner. 1970. Evapotranspiration model for dryland crops for the Great Plains. Evapotranspiration in the Great Plains Seminar.
- Hoffer, Roger M., Roger A. Holmes and J. Ralph Shay. 1966. Vegetative, soil and photographic factors affecting tone in agricultural remote multispectral sensing. Fourth Symposium on Remote Sensing of Environment Proceedings.
- Interpretation of remote multispectral imagery of agricultural crops. 1967. Purdue University Agri. Exp. Sta. Bulletin 831.
- Isralsen, Orson W. and Vaughn E. Hansen. 1967. Irrigation principles and practices. New York. John Wiley and Sons, Inc.
- Jensen, M. E. 1968. Water consumption by agricultural plants. Water Deficits and Plant Growth. (2):1-22.
 - and J. L. Wright. 1970. Irrigation-oriented et models for the Great Plains. Evapotranspiration in the Great Plains Seminar.
 - and B. J. Pratt. 1971. Estimating soil moisture depletion from climate, crop and soil data. Transactions of ASAE. 14(5):954-959.
- Kanemasu, E. T. 1973. Energy from solar and thermal radiation. (Private Communication).
- Kohnke, Helmut. 1968. Soil physics. New York. McGraw-Hill Book Company.

Kondrat'yev, K. Y. 1965. Actinomentry NASATT F9712. National Aeronautics and Space Administration, Washington, D.C. Lowry, W. P. 1969. Weather and life. New York. Academic Press.

- Luxmoore, R. J., R. J. Millington and H. Marcellos. 1971. Soybean canopy structure and some radiant energy relations. Agronomy Journal. (63):111-114.
- Monteith, J. L. 1959. The reflection of short-wave radiation by vegetation. Quarterly Journal of the Royal Meteorological Society. (85):386-392.

and G. Szeicz. 1961. The radiation balance of bare soil and vegetation. Royal Meteorological Society of London (87):159-170.

- Myers, Victor I. and William A. Allen. 1968. Electrical sensing as nondestructive testing and measuring techniques in agriculture. Applied Optics. (7):1819.
- Myers, V. I., C. L. Wiegand, M. D. Heilman and J. R. Thomas. 1966. Remote sensing in soil and water conservation research. Southern Plains Branch Soil and Water Conservation Research Div. Agri. Research Service U.S. Dept. of Agri.
- NASA Earth Resources Technology Satellité Data Users Handbock. 1972. Goddard Space Flight Center Document 71SD4249.
- Nicodemus, F. E. 1965. Directional reflectance and emissivitiy of an opaque surface. Applied Optics. (4):767-773.
- Penman, H. L. 1963. Vegetation and hydrology. Commonwealth Bureau of Soils Technical Communication No. 53.

, D. E. Angus and C. H. M. Van Bavel. 1967. Microclimatic factors affecting evaporation and transpiration. Irrigation of Agricultural Lands. American Society of Agronomy Monograph No. 11.

- Remote multispectral sensing in agriculture. 1967. Purdue University Agri. Exp. Sta. Bulletin 844.
- Remote multispectral sensing in agriculture. 1970. Purdue University Agri. Expt. Sta. and Purdue University Bulletim 873.

Remote Sensing. 1970. Washington, D.C. National Academy of Sciences.

- Rijks, D. A. 1967. Water use by irrigated cotton in Sudan. I. Reflection of short-wave radiation. Journal of Applied Ecology. (4):561-568.
- Ritchie, J. T. 1971. Dryland evaporative flux in a subhumid climate: I. Micrometeorological influences. Agronomy Journal. (63):51-55.

.

. 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research. 8(5):1204-1213.

and Earl Burnett. 1971. Dry land evaporative flux in a sub humid climate: II. Plant influences. Agronomy Journal (63):56-62.

- Savage, R. G. 1949. Moisture determinations in hay yield. Sci. Agri. (29):305-329.
- Sewell, John I., William H. Allen and Robert S. Pile. 1971. Visible and near infrared remote-sensing of soil moisture levels. Transactions ASAE. 14(6):1163-1166.
- Sinclair, T. R., R. M. Hoffer and M. M. Schreiber. 1971. Reflectance and internal structure of leaves from several crops during a growing season. Agronomy Journal. (63):863-868.
- , M. M. Schreiber and R. M. Hoffer. 1973. Diffuse reflectance hypothesis for the pathway of solar radiation through leaves. Agronomy Journal 65(2):276-283.
- Stanhill, G., G. J. Hofstede and J. D. Kalma. 1966. Radiation balance of natural and agricutlrual vegetation. Quarterly Journal of the Royal Meteorological Society. (92):128-140.

J. H. Cox and S. Moreshet. 1968. The effect of crop and climate factors on the radiation balance of an irrigated maize crop. Journal of Applied Ecology. (5):707-720.

- Stepwise deletion multiple regression (STEPDEL) description 4. 1973. Kansas State University Statistical Laboratory. Manhattan, Kansas.
- Teare, I. D. and C. J. Peterson. 1971. Surface area of chlorophyllcontaining tissue of the inflorescence of triticum aestivum 1. Crop Science. 2(5):627-628.
- Variety tests with fall-planted small grains. 1971. Kansas State University Agri. Exp. Sta. Report 180.
- Werner, Hal D., Fred A. Schmer, Maurice L. Horton and Fred A. Waltz. 1971. Application of remote sensing techniques to monitoring soil moisture. Seventh International Symposium on Remote Sensing of Environment Proceedings.
- Winkler, Erhard M. 1966. Moisture measurements in glacial soils from airphotos. Ecology. 47(1):156-158.

. . .

۰ ۰

· ·

APPENDIX

D-58

Table 11. Computer Model of Evapotranspiration by Jensen et al.

	Table 11. Compared model of the
÷	
	\$JOB JK,TIMS=(51,PAGDS=20
1	DEAL METHLEIGEN COMPANY CLUB CM DEFTT (DESEN CHEERMANN)
	C## "IRRIGATE" WITH 1971 FIVISIONS BY PRATT, JENSEN & HEERMANN
	C******* PLUS KSU MODIFICATIONS FOR IBM 360/50
	CAR MAIN PROGRAM
2	COMMON A(4,5), CTR(4), TXR(4), MO(4,30).
	1X(15,4,30), DESC(5), DATE(4), CODE(5), ATER(2), FERC(15),
	2N(4), NDB(4), RSG(4), PHONY(4), W1(5,100), C(5,8), RFEG(4,20), P(30)
3	CUMMON / MON/ - H(4), MUR(131, 10, NUR, NUE, NUE, H(4,6), ETAF(4), TP(4).
-	1DT1(4),DT2(4),FCT(4),ETP5
4	DINENSION CW(4)
. 5	OATA METRI ZARHEGAZ
. 🤉	and the second se
	C READ NUMBER OF REGIONS C** PEAD CROP COEFFICIENTS REFORE EFFECTIVE COVER, C(1,1) TC C(0,4)
	ET AD CRUD CONTRACTOR TO A THE OFFICE TOURT A CONTACT
	C## II=CFAP NO. JJ=NO. OF TELM IN POLYNOMIAL EQUATION
6	16 FORMAT (5X, F15.3, 3F20.3)
7	17 EORMAT(1H ,4E15.8)
8	00 18 13=1,8
9	15 PEAN(5,16)(C([],JJ),JJ=1,4)
10	18 WRITE(6,17)(C(II,JJ),J=1,4)
	C** READ CECP CDEFFICIENTS AFTER EFFECTIVE COVER, C(1,5) TO C(8,8)
11	$90 \ 21 \ 11 = 1.8$
12	20 85AD (5,16) (C(11,JJ),JJ=5,8)
13	21 WRITE(6,17)(C(II,JJ),JJ=5,8)
	PEAD (5,1) NREG, RNRD
14	
15	1 50RMAT (5X,15,1X,44)
	C FEAD FEGIONAL DATA
16	DD 2 J=1,NREG
17	PEAD (5,3) (4(1,J), J=1,5), CTP(1),TXF(1),CW(1)
18	3 FDPMAT(5X,5A4,3F7-3)
19	FEAD (5,103) STAP(1), TP(1), DT1(1), DT2(1)
20	103 FORMAT (5x,F5.2,3F5.0)
21	2 READ (5,104) (8(1,J),J=1,6)
22	104 FORMAT (5X,6E10+2)
	C PEAD CLIMATIC DATA - NUM. OF DAYS PLUS THESE PREVIOUS DAYS
23	DO 7 I=1.NREG
24	READ(5,11)#(1),NDB(1), FCT (1),RSO(1)
25	11 FORMAT (5X,215,F5.2 ,F5.0)
26	K = N(1) + 3
20	C** IF RNRD=METH1 THEN RAIN IS PEAD BY REGION RATHER THAN BY FARM
	C** I=PEGION. K=NO UF DAY. K=4 IS FIRST DAY OF AMALYSIS PERIOD.
	C** K=1 IS FIRST DAY OF THREE PREVIOUS DAYS.
27	IF (RNRD.EQ.METH1) GU TO 12
23	00.4 J=1+K
29	4 FEAD(5,5) ND(I+J)+X (1,I+J)+X (2+I+J)+X(3+I+J)+X(4+I+J)+X(5+I+J)
30	GO TO 7 .
31	12 09 9 J=1,K
32	8 P=40 (5,25) NO(1,J),X(1,T,J),X(2,1,J),X(3,1,J),X(4,T,J),X(5,T,J)
	1,9256([,])
33	7 CONTINUE
34	25 FORMAT (5X, 15, 6F5.0)
35	(FITE (A, C)
36	7 F(IF 44T(1H1)
37	5 FUEMAT (5x, 15, 5:5.0)
38	0.7 6 I=1,3366
	(1) = 0 $(1) + 3(reproducing the second second$
39	7 FOFMAT(1H1) 5 FOFMAT(5x,15,5*5.0) D7 6 I=1,000 K=N(1)+3 2980 FOFMAT(1H,4F15.8) Reproduced from Reproduced from Best available Best available
40	
41	WRITE (6,2339) C(1,1), C(1,2), C(1,3), C(1,4)
42	CALL EVAP (I,K)
43	W%1T5(6,2337)C(1,1)+C(1,2),C(1,5),C(1,4)

••.

445 445 47 490 51 53		CALL VAPO4(1,4,6) APITE(6,2380)C(1,1)+C(1,2)+C(1,3)+C(1,4) 6 CALL PRINTA(1,4) 4PITE(6,280)C(1,1)+C(1,2)+C(1,3)+C(1,4) CALL FARMS(NREG,METH1,FMRD) WEITE(6,280)C(1,1)+C(1,2)+C(1,3)+C(1,4) CALL PRINTS(NAUG,METH1,PMRD) ARITE(6,280)C(1,1)+C(1,2)+C(1,3)+C(1,4) 979 SIDP END
54		SUBRUUTINE FARMS (NREG, METHL, RNRD)
	С	SUBRONTINE TO CALCULATE INRIGATION DATES REAL METHI-IRP
55 56		COMMON A14.51. CTR(4).TXP(4).ND(4,30).
20		1X116-6-301-0650(5).DATE(4).CPOP(5)./IRR(2).FOPC(15).
		\$NIA4,KDBIA4,RSU(4),X0DAY(4),W1(5,100),C(8,8),FFEG(4,30),X(20)
57		COMMON /NEW/ W(4),MON(13),10,NCR,NDE,NDP, B(4,6),ETAP(4),TP(4),
58		1DT1(4),DT2(4),FCT(4),ETP5 DIMENSIDN UPAKSU(6),AIPKSU(6),NXDKSU(6)
- 20 59		DIMENSION D(8). SUMP(30), ET(30), DPL(30), D1(8)
60		DIMENSION FIRSET(8.30), ETSET(8,30), AKC11(6,30), AKCSET(8,30),
	-	1RSET(4,8,3C), AETFLD(3), CROPST (8,3), UPLSET(8,30)
	C C	D'ARRAY -LOWER LIMIT FOR CRUP COEFES. DIARRAY-UPPER LIMIT FOR CRUP COEFES.
61	U	DATA C1/1.1,1.1,1.1,1.1,1.1,1.0,0.87/
62		DATA NCRIPS/3/,0/7*0-1,-87/
63		DATA SUMR, ET, DPL/30*0.0, 30*0.0, 30*0.0/
	C	READ DATE READ(5,14) (DATE(K)+K=1+4)
64 65		N6#1
66		F=0+9
67		00 100 I=1,NREG
63		WRITE(6, i3)(A(1, J), J=1, 5)
69 70		13 FARMAT(191,) REGION: (,584,//) 14 FARMAT(5X,1584)
70 71		READ(5.10)LL
72		10 F09MAT(25X,15)
73		M=N(I) +3
74		
75 75		DD 100 L=1,LL READUS ,101WEN
77		READ(5 -14)(DESC(K)+K=1+5)
73		W31TF(6 .15)(') SC(K), K=1, 5), (DATE(K), K=1, 4)
79		15 FOP 44T (+1FAR'1: +, 544, 3X, + DATE OF COMPUTATION: +, 444, /)
80 81		WRITE (6,16) 16 FORMAT (101,T11,11,11,118,116年来9年 COIL MEISTURE DEPLETION: 米市京市市会計一一 16 FORMAT (101,T11,111,111,118,116年来9年 COIL MEISTURE DEPLETION: 米市京市在会計一一
0 L		1 IRNIGATIONS INCHES [!;/;! ";T11;!!;T18;!!;T20;!!;
		2 T37, 11, T48, 11, T55, 11, T64, 11 IF 1 WITH
		3 TO - 11+7+ 4 + CRAPHELD COBE E TO DATE TYPEHO DETINUM RATE LAST', '
		5 RAIN=0 RAIN APPLY REG FM FLOT)
32		24 D0 110 F=1
83		IF(RNRD.FO.PETHE) CO TO 1
84		60 TO 2
85		1 (b) 26 J = 1 + 1
- 96 - 87		26 R(J)=PREG(I,J) - 2 READ(5,17)NCP, GROP(1), CPDP(2), CROP(3), NUP, NDP, LOH, E, AVM
93		17 FORMAT(5X,12,244,42,315,205,2)
B 9		IE (RNRD. FO. METHI) GO TO 23

.

٠

90	READ(5,13)(AIRR(J),J=1,2),004,45,(R(J),J=4,M))
91	19 FORMAT (5X, 2A3, F4.1, 14, 10F+. 2/2054.2)
-	$R_{TAD}(5,19)$ DOL(NE), SUVR(UE), (E(J), J=1,3)
92	
93	19 FGPMAT(5F10.2)
94	GUTO 22
95	23 REAU (5,20) (AIRR(J), J=1,2), DPA, N5, IPR
96	20 FORMAT (5X+2A3+F4+1+14+F4+1)
97	READ (5,19) DPL(NE), SUME (NE)
93	1F (N5.55.1) R(N5+3)=P(N5+3)+18R
39	22 CONTINUÉ
100	$A \times C = O \bullet O$
101	4×C1=0.0
	PC T=0.0
102	DT=9+0
103	
	C
	C## RUN
104	
105	ET(J) = 0.0
106	ETB=0.0
107	RX= R(J)
109	$SU \neq R(NF) = SU = SU = (NF) + R(J)$
109	1 51 1- 15- 31 76. 75. 76
107	C** DPL AND SUMR ARE SET TO ZERO ON THE DAY OF INRIGATION
110	75 DPL(NF)=0.0
110	SUMR(NF)=0.0
111	
112	· 69 TA 99
113	75 IF(MDB(I)-NDP)109,176,176
114	176 IF(N08(1)-N0H)29,29,109
115	29 1F(NCB(I)+J-4-NDE) 30,30,31
116	30 PCT=100.0*(NOB(1)+3-4-NDP)/(NDE-NDP)
117	AKC1=C(NCR, 1)+C(NCP, 2)*PCT+C(NCP, 3)*PCT*#2+C(NCR, 4)*PCT*#3
118	IF(AKC1-01(NCR))231,232,232
119	232 AKC1=D1(NCR)
120	231 AV=(1.0-DPL(MF)/AVM)*100.0
121	IF(AV)130,131,131
122	130 AV=0.0
123	131 AV3=1.0+AV
-	AKC=AKC1*ALOG(AV3)/ALOG(101.0)
124	
125	
126	31 DT=NDB(I)+J-4-NDE
127	PCT=100.
128	$AV = \{1, 0 - CPL(NF)/AVM\} \neq 1CC \cdot 0$
129	AKC1=CIHCR, 5)+CIHCR, 6)*DT+C(MCR, 7)*DT**2+CINCR, 8)*DT**3
130	IFLAKC1-0(NCR1)88,235,235
131	235 [F[AKC1-D1(NCR])242,241,241
132	241 AKC1=D1(NCR)
133	GO TO 242
134	38 AKC1=D(NCR)
135	242 IF(AV)233,234,234
135	233 AV=0.0
	234 AV3=1.0+#V
1 37	ΔKC=AKC1+AL0G(AV3)/ALCO(101.0)
138	
139	32 FT(J) = A K C * X (16, I, J)
140	IF(4K(-F) 38+121+121
141	33 1F(F(J-1))42+42+43
142	43 FIR=0.3#(F-ARC)#X(16,1.J)
143	x(J-1)=r(J-1)-FTF
144	IF (0 (J-1)) 49, 121, 121
145	49 P(J-2)=R(J-2)+R(J-1)

D-60

C,

146		v(J-1)=0.0
147	45	14(3(J+2))46+121+121
148		$\mathbb{P}(J-3) = \mathbb{R}(J-3) + \mathbb{R}(J-2)$
149		P(J+2)=0.0
-	1.0	
150		1F(P(J+3))53,121,121
151	53	FTR=ETR+R(J-3)
152		₽(J−3)=0.0
153		GD TO 121
154	42	17(2(J-2))44,44,47
155		ET = 0.5*(E - 4KC)*X(16+1+J)
		$P_{(J-2)=P_{(J-2)}-ETR}$
156		
157		GO TO 45
158	•	1 F (R(J-3)) 121, 121, 48
159	43	FTR=0.3*(F-AKC)*X(13,1,1)
160		R(J-3)=R(J-3)−ETR
161		G0 T0 40
162	1 2 1	IF(ETR)50,51,51
163	-	
164		ET(J)=ET(J)+ETR
165	91	DPL(NF)=OPL(NF)+ET(J)=8X
166		IF(DPL(NF))115,99,99
167	115	(VF)=0.0
168		CONTINUE
169		ETRSET(VF, J)=ETR
		•
170		FTSET(NF,J)=ET(J)
171	•	AKCI1(NF,J)=AKC1
172		AKCSET(NF, J)=AKC
173		DO 890 NM=1,4
174	890	RSET(NM,NE,J)=R(J-NM+1)
175		DPLSFT(NF+J)=UPL(NF)
176	98	CONTINUE
_	20	SUMET=0.0
177		
178		D3 57 J=4,M
179	57	SUMET=SUMET + ET(J)
180		R01F=M-3
1 3 1		AET=SUMET/RDIF
182		AETFLD(NF)=AET
183		PT 890 J=1,3
184	800	CROPST(NF,J)=CRUP(J)
-	000	
185		MBD=NDB(1)+N(1)
186		IF (NDB(I)+N(1)+3-MDE) 250,250,255
187	250	PCT=100.C*(NOB(I)+h(I)+2-MOP)/(NDE-NOP)
188		AKC5 = C(HCR,1)+C(NCR,2)*PCT+C(NCP,3)*PCT#*2+C(NCP,4)*PCT#*3
189		GD TO 260
190	255	DT = NDB(I) + N(I) + 3 - NDE
191		PCT=100.0
		AKC5 = C(NCR,5)+C(NCR,6)*DT+C(VCR,7)*DT*+2+C(NCR,0)*DT**3
192		
193	260	IF (AKC5 .LT. D(NCP)) AKC5=D(NCR)
104		IF (AKC5 .GT. DI(NCF)) AKC5=DI(NCF)
195		AJJ5=ND0(I)+3
196		IF (AJUS .GT. TP(I)) GU TO 7034
1.97		DLT=0T1(1)
1.98		Gu T0 7341
-	74-1	
199		
2.10	7341	ETP5= (ETAP(I)/(EXP(((AJJS+TP(I))/OLT)**2)))*FCT(I)
201		ETAS = AKCSAETPS
202		OPLA = DPL(RF)
	Ç≉≉	SUBSCRIPT J=1 IS 2000 J=2 IS 3000 J=3 IS 4000
	C * ⇒	- J=4 IS 50%0 +- J=5 IS 60%D
203		NPCT=100.04(NOR(1)+N(1)+2-NPP)/(NPS+33NDP)

.

D~61

.

. .

.

204	1 F (N°CT-100) 248, 248, 249
205	249 NPCT=100.0
206	248 CONTINUE
207	DC 108 J=1,5
208	1+L=LLA
209	DPAKSU(J)=NPCT=AVM=RJJ+.001
210	IPC=(J+1) € 10
	AVW=EPAKSU(J)-DPL(NF)
211	CALL SCHED (MOD, AVW, ADH, NXC, NXOP, I, DPLA, AVM, P, D1)
212	CALL DATES (NXD+IX+IY+NOH)
213	CALL DATES (NADE, JA, JY, NOR)
214	
215	59 IF (DPAKSU(J) - DPL(NF)) 60,61,61
216	60 ATR = DPL(NF)/E
217	60 TO 63
218	61 AIR = DPAKSU(J)/E
219	63 IF (J .GT. 1) GO TO 65
220	WRITE (6,54) CROP, AKC5, DPL(NF), DPAKSU(J), ETA5, AIRR, PON(IX), IY, MON
	1 (JX), JY, AIR, I, L, NF
221	64 FURMAT (101,244,A2,F5.2,F9.2,5%, 20% D1,2F9.2,1 1 1,2A3,212X,A4,1
	23), • 1 •, F4.1, 17, 214)
222	CO TO 108
223	AS WRITE (6.63) IPC.OPAKSU(J).ETAS.AIPR.MON(IX).IY.MON(JX).JY.AIR
224	68 FURMAT (* +,T31, 12, *% D+, 2F9.2, * 1 +, 243, 2(2X, 44, 13),
624	1 • 1 • F4.1,17,214)
225	103 CONTINUE
225	103 CONTINUE
226	
227	Wl(1,N4) = DPL(NF)
228	W1(2+N4)=SUMR(NF)
229	W1(3,N4)=R(M-2)
230	W1(4, N4) = R(M-1)
231	W1(5, N4) = R(M)
232	N4=N4+1
233	110 CONTINUE
234	WK = (NDR(I) + N(I) - 53)/7
235	PP = 14. + (H(I,1) + H(I,2) + WK + H(I,3) + WK + 2 + H(I,4) + WK + 3 + H(I,4) + H(
	1 B(1,5)*WK**4 + B(1,6)*WK**5)
236	IF (PP .LT. 0.0) PP=0.0
237	WRITE (6,163) PP,1,L
238	163 FORMAT (*OPPOBABLE RAIN NEXT TWO WEEKS=*, F5-2, 2X, *INCHES*, 30X, 212
	TOD FURGET A ASSAULT REPAIRS THE SECOND SECOND SECOND SECOND
239	1) WRITE (6,801)
239	1) WRITE (6,801)
240	1) WRITE (6,801) 801 FORMAT (1-###TABLE OF DAILY VALUES###!)
240 241	1) WRITE (6,801) 801 FORMAT (1-***TABLE OF CAILY VALUES*****) DO 930 NF=1.NEN
240 241 242	1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VALUES***') DO 930 NF=1.NEN WRITE (6,803)(CROPST(NE.K).K=1.3)
240 241	1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VALUES***') DO 930 NF=1.NEN WRITE (6,803)(CROPST(NE,K),K=1,3) 803 FOPMAT ('0',2A4,A2./, 100 PTD FTD FT FTD FT AKE)
240 241 242	1) WRITE (6,801) 801 FORMAT (*-***TABLE OF DAILY VALUES*****) DO 930 NF=1.NEN WRITE (6,803)(CROPST(NF.K).K=1.3) 803 FORMAT (*D*.2A4.A2./. 1 *0 DAY FTR ET ED AKG1 AKC*.
240 241 242 243	<pre>1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VALUES****') D0 930 NF=1.NFN WRITE (6,803)(CROPST(NE,K),K=1,3) 803 FOPMAT ('D',244,42;/, 1 'O DAY ETE ET EO AKC1 AKC', 2 RX P(J-1) R(J-2) P(J-3) DPL',/) D0 830 I=6 M</pre>
240 241 242 243 243	<pre>1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VALUES****') D0 930 NF=1.NFN WRITE (6,803)(CROPST(NE,K),K=1,3) 803 FOPMAT ('D',244,42;/, 1 'O DAY ETE ET EO AKC1 AKC', 2 RX P(J-1) R(J-2) P(J-3) DPL',/) D0 830 I=6 M</pre>
240 241 242 243	<pre>1) WRITE (6,801) 801 FORMAT (*-***TABLE OF DAILY VALUES*****) DO AGO NF=1.NEN WRITE (6,803)(CROPST(NF,K),K=1,3) 803 FOPMAT (*D*,2A4,A2+/, 1 *0 DAY FTE ET ED AKC1 AKC1, 2 RX R(J-1) R(J-2) P(J-3) DPL*,/) DO AGO J=4,M WRITE (6,402) ND(1,J).ETRSET(NF,J).ETSET(NF,J).X(16,1,J),</pre>
240 241 242 245 245	<pre>1) WRITE (6,801) 801 FORMAT (1-###TABLE OF DAILY VALUES###1) DO 930 NF=1.NFN WRITE (6,803)(CROPST(NF,K),K=1,3) 803 FOPMAT (101,244,A2+/, 1 10 DAY FTP ET ED AKG1 AKC1, 2 RX P(J=1) R(J=2) P(J=3) DPL',/) DO 920 J=4,M / WRITE (6,402) ND(1,J),(TRSPT(NF,J),ETSET(NF,J),X(16,I,J), AKC11(NF,J),AKCSET(NF,J),(RSET(NM,NF,J),NM=1,4),DPLSET(PF,J)</pre>
240 241 242 245 244 245 246	<pre>1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VALUES***') D0 930 NF=1.NFN WRITE (6,803)(CROPST(NE,K),K=1,3) 803 FOPMAT ('0',244,42.7, 1 '0 DAY ETE ET EO AKC1 AKC', 2 RX P(J=1) R(J=2) P(J=3) DPL',/) D0 920 J=4,M WRITE (6,402) ND(1,J),(TRSPT(NE,J),ETSET(NE,J),X(16,1,J), 14KC11(NE,J),AKCSET(NE,J),(RSET(NM,NE,J),NM=1,4),DPLSET(NE,J) 802 FORMAT ('',15,2X,F8,44,63,3,dF3,2)</pre>
240 241 242 243 244 245 246 247	<pre>1) WRITE (6,801) 801 FORMAT (1-***TABLE OF DAILY VALUES****) D0 A30 NF=1.NFN WRITE (6,803)(CROPST(NE,K),K=1,3) 803 FOPMAT (10*,244+A2+/, 1 *0 DAY ETE ET E0 AKG1 AKC1, 2 RX P(J-1) R(J-2) P(J-3) DPL',/) D0 A20 J=4,M / WRITE (6,402) ND(1,J),ETRSET(NE,J),ETSET(NE,J),X(16,1,J), 14KC11(NE,J),AKCSET(NE,J),(RSET(NM,NE,J),NM=1,4),DPLSET(NE,J) 802 FORMAT (1*,15,2X,E8,4,E8,3,0E3,2) 820 CONTINUE</pre>
240 241 242 243 244 245 246 247 248	<pre>1) WRITE (6,801) 801 FORMAT (1-###TABLE OF DAILY VALUES###1) DO ABO NF=1.NEN WRITE (6,803)(CROPST(NE.K).K=1.3) 803 FOPMAT (101.244.A2./, 1 10 DAY ETE ET ED AKC1 AKC1, 2 RX P(J-1) R(J-2) P(J-3) DPL',/) DO ABO J=4.M , WRITE (6,402) ND(1.J).(TRSPT(NE.J).ETSET(NE.J).X(16.I.J), 1AKC11(NE.J).AKCSET(NE.J).(PSET(NM.NE.J).NM=1.4).DPLSET(NE.J) 802 FORMAT (1.1.5.2X.F8.4.4.8.3.8E3.2) 820 CONTINUE WRITE (6.821) AETELD(NE.)</pre>
240 241 242 243 244 245 246 247	<pre>1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VAL'JES****') D0 930 NF=1.NFN WRITE (6,803)(CROPST(NF,K),K=1,3) 803 FOPMAT ('0',244+A2+/, 1 '0 DAY ETE ET EO AKC1 AKC', 2 RX P(J=1) R(J=2) P(J=3) DPL',/) D0 920 J=4,M / WRITE (6,402) ND(1,J),(TRSET(NF,J),ETSET(NF,J),X(16,1,J), 14KC11(NF+J),AKCSET(UF+J),(RSET(NM,NF,J),NM=1,4),DPLSET(PF+J) 802 FORMAT ('',E5+2X,F8+4+E+3,dF3+2) 820 CONTINUE WRITE (6,821) AETFLD(MF) 821 FOPMAT (13X,*AET=',F7-3)</pre>
240 241 242 243 244 245 246 247 248	<pre>1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VALUES***') D0 930 NF=1.NFN WRITE (6,803)(CROPST(NF,K),K=1,3) 803 FOPMAT ('0',2A4+A2+/, 1 '0 DAY ETP ET ED AKC1 AKC', 2 RX P(J-1) R(J-2) P(J-3) DPL',/) 00 920 J=4,M , WRITE (6,402) ND(1,J),(TRSET(NF,J),ETSET(NF,J),X(16,I,J), 1AKC11(NF,J),AKCSET(NF,J),(RSET(NM,NF,J),NM=1,4),DPLSET(PF,J) 802 FORMAT ('',I5,2X,F8.4+E8.3,dF3.2) 820 CONTINUE WRITE (6,821) AETFLD(NF)</pre>
240 241 242 243 244 245 244 245 246 247 248 249	<pre>1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VAL'JES****') D0 930 NF=1.NFN WRITE (6,803)(CROPST(NF,K),K=1,3) 803 FOPMAT ('0',244+A2+/, 1 '0 DAY ETE ET EO AKC1 AKC', 2 RX P(J=1) R(J=2) P(J=3) DPL',/) D0 920 J=4,M / WRITE (6,402) ND(1,J),(TRSET(NF,J),ETSET(NF,J),X(16,1,J), 14KC11(NF+J),AKCSET(UF+J),(RSET(NM,NF,J),NM=1,4),DPLSET(PF+J) 802 FORMAT ('',E5+2X,F8+4+E+3,dF3+2) 820 CONTINUE WRITE (6,821) AETFLD(MF) 821 FOPMAT (13X,*AET=',F7-3)</pre>
240 241 242 243 244 245 244 245 246 247 248 249 250	<pre>1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VALUES***') OG AGO NF=1,NEN WRITE (6,803)(CROPST(NE,K),K=1,3) 803 FOPMAT ('0',244,A2;/, 1 '0 DAY ETF ET EU AKG1 AKC', 2 RX P(J=1) R(J=2) P(J=3) DPL';/) DO AGO J=4,M / WRITE (6,802) ND(1,J)+ETRSET(NE,J),ETSET(NE,J),X(16,1,J), 14KC11(NE,J),AKCSET(NE,J)+(RSET(NM+AE,J),NM=1,4),DPLSET(NE,J) 802 FORMAT (''+15;2X;E3:44£8:3;dEG:2) 820 CONTINUE WRITE (6;821) AETFLD(ME) 821 FOPMAT (13X;*AET=',E7:3) 830 CONTINUE 100 CONTINUE 100 CONTINUE</pre>
240 241 242 243 244 245 244 245 246 247 248 249 250	<pre>1) WRITE (6,801) 801 FORMAT ('-***TABLE OF DAILY VALUES***') OG AGO NF=1,NEN WRITE (6,803)(CROPST(NE,K),K=1,3) 803 FOPMAT ('0',244,A2;/, 1 '0 DAY ETF ET EU AKG1 AKC', 2 RX P(J=1) R(J=2) P(J=3) DPL';/) DO AGO J=4,M / WRITE (6,802) ND(1,J)+ETRSET(NE,J),ETSET(NE,J),X(16,1,J), 14KC11(NE,J),AKCSET(NE,J)+(RSET(NM+AE,J),NM=1,4),DPLSET(NE,J) 802 FORMAT (''+15;2X;E3:44£8:3;dEG:2) 820 CONTINUE WRITE (6;821) AETFLD(ME) 821 FOPMAT (13X;*AET=',E7:3) 830 CONTINUE 100 CONTINUE 100 CONTINUE</pre>
240 241 242 243 244 245 244 245 246 247 248 249 251	<pre>1) WRITE (6,801) 801 FDRMAT (*-***TABLE OF DAILY VALUES****) D0 930 NF=1.NFN WRITE (6,803)(CROPST(NF,K),K=1,3) 803 FDPMAT (*0*,2A4,A2./, 1 *0 DAY ETE ET EO AKC1 AKC*, 2 RX P(J-1) R(J-2) P(J-3) DPL*,/) D0 920 J=4,M / WRITE (6,802) ND(I,J),ETRSET(NF,J),ETSET(NF,J),X(16,I,J), 1AKC11(NF,J),AKCSET(NF,J),(PSET(NM,NF,J),NM=1,4),DPLSET(PF,J) 802 FDRMAT (**,I5,2X,F8,44,E8,3,dF3,2) 820 CONTINUE NOITE (6,821) AETFLD(MF) 821 FDPMAT (13X,*AFT=*,F7.3) 830 CONTINUE 100 CONTINUE</pre>
240 241 242 243 244 245 244 245 246 247 248 249 250 251 252	<pre>1) WRITE (6,801) 801 FORMAT (*-**TABLE OF CAILY VALUES****) ON 930 NF=1.NFN WRITE (6,803)(CROPST(NF,K),K=1,3) 803 FOPMAT (*0*,244,A2;/, 1 *0 DAY ETE ET EO AKC1 AKC*, 2 RX P(J=1) R(J=2) P(J=3) DPL*;/) 00 920 J=4,M / WRITE (6,402) ND(I,J);(TRSET(NF,J),ETSET(NF,J);X(16,I,J); 14KC11(NF,J);AKCSET(NF,J);(RSET(NM,NF,J),PM=1,4);DPLSET(PF,J) 802 FORMAT (**,I5;2X;F8:44;F8:3;dF3:2) 820 CONTINUE WRITE (6,821) AETFLD(MF) 821 FOPMAT (I3X;*AFT=*;F7:3) P30 CONTINUE 100 CONTINUE (C** ND9(1)= N0. CF FIELDS FOR WHICH ANALYSIS WAS FUN NP3(1)=N4-1</pre>
240 241 242 243 244 245 244 245 246 247 248 249 251	<pre>1) WRITE (6,801) 801 FORMAT (*-###TABLE OF CAILY VALUES###*) OO R30 NF=1,NFN WRITE (6,803)(CROPST(NF+K)+K=1,3) 803 FOPMAT (*0*,244,A2+/, 1 *0 DAY ETE ET EO AKC1 AKC', 2 RX P(J=1) R(J=2) P(J=3) OPL*+// 00 R20 J=4,M WRITE (6,402) ND(1,J)+(TRSET(NF,J)+ETSET(NF,J)+X(16+1,J), 14KC11(NF+J)+AKCSET(UF+J)+(RSET(NM+AF+J)+NM=1+4)+DPLSET(UF+J) 802 FORMAT (**+15+2X+F8+4+E*+3+0F3+2) 820 CONTINUE WRITE (6,821) AETFL0(MF) 821 FOPMAT (*13X+*AET=*+F7+3) R30 CONTINUE 100 CONTINUE (C C ** NDR(1)= NO. OF FIELDS FOR WHICH ANALYSIS WAS FUN</pre>

.

(

(

Ļ

254	END
255	SUBROUTINE EVAP(1.K) C SUBROUTINE TO CALCULATE EVAPOTRANSPIRATION POTENTIAL
256	SEAL WETHI
257	COMMON A(4,5), CTR(4), TXF(4), MO(4,30),
221	1 Y / 1 6. 4 - 3 C) - DESC (5) - DATE (4) - C. C.P (3) - AISE (2) - FURC(15) -
	ZN(4),NON(4),SO(4),MCMAY(4),M1(5,100),C(3,6),RFEG(4,20),F(30)
258	03 10 J≖4∗K
259	$x_{10}, t_{-1} = (x_{1}, t_{-1}) + x_{12}, t_{-1})/2.0$
260	15 X(7,1,J)= CTR(1)*(X(6,1,J)-TXR(1)) *X(3,1,J)* 0.000673
261	10 CONTINUE
262	RETURN
263	END
264	SUBROUTINE VAPOR (I,K,CW)
	C SUBROUTINE TO CALCULATE HEAT FLUX, ED POTENTIAL, NET RADIATION
265	REAL METH1
266	COMMON 4(4,5), CTR(4), TXP(4), NO(4,30),
	1X(16,4,30), DESC(5), DATE(4), CRO ^P (3), AIRR(2), FCRC(15),
	2N(4),NDP(4),RSO(4),MODAY(4),W1(5,100),C(8,3),RREG(4,30),R(30)
267	COMMON /NEW/ W(4),MON(13),ID,NCR,NDE,NDP,B(4,6),ETAP(4), P(4),
	1DT1(4),DT2(4),FCT(4),ETP5
268	DIMENSION CW(4)
269	DA 30 J=4,K
270	<pre>+ IF(X(4,1,J).5Q.0)G0T0 35</pre>
271	X(8,1,J) = X(5,1,J)/24.0
272	VPS1= -0.6959+0.2945*X(2,1,J)→0.005195*X(2,1,J)**2+0.000039*
	1X(2+1+J)**3
273	<pre>VPS2= -0.6959+0.2946*X(1,I,J)-0.005195*X(1,I,J)**2+0.000089*</pre>
	1X{1,1,J}##3
274	X(9, I, J) = (VPS1+VPS2)/2.0
275	X(10,I,J)=-0.6950+ 0.2946*X(4,I,J)+0.005195*X(4,1,J)**2 +'
_	10.000039* X(4,I,J)**3 X(11,I,J)={X(6,I,J)-(X(1,I,J-1)+X(2,I,J-1)+X(1,I,J-2)+X(2,I,J
276	$X(11, 1, j) = \{X(0, 1, j) = (X(1, 1, j) = j) \neq X(2, 1, j) = (X(1, 1, j) = j) \neq X(0, j) = X(0, $
	1-2)+X(1,I,J-3)+X(2,I,J-3))/6.0)*5 T1= 0.041 + 0.0125*X(6,I,J)-4.534*X(6,I,J)**2/10**5
277	T2= 0.959 -0.0125*X(6,I,J)+4.534*X(6,I,J)**2/10**5
273	X(12,1,J) = ((X(1+I,J)-32)/1.8 + 273)/100.0
279	$X(12,1,J) = ((X(2+1,J)-32)/2 \cdot 8 + 273)/100 \cdot 0$
280	Y = X(10, 1, 3)
281	JJ = NDB(I) + J - 4
282	EMT=0.325+0.045*SIN(30*(.4J/301.5)*3.1416/190.)
283	X(14,J,J)= (EMT -0.044*SORI(Y))*11.71*(X(13,I,J)**4+X(12,J,J)
284	14#41#0.5
285	X(15,I,J)= 0.77*X(3,I,J)-(1.22* X(3,I,J)/#SC(I)-0.13)*X(14,I,J)
286	30 X(16, I, J)=(T1*(X(15, I, J)-X(11, I, J))+T2*15.36*(.75+CW(I)*
104	1x(5,1,J))*(X(9,1,J)-X(10,1,J)))*0.000673
287	AJJ5=NDE(I)+N(I)+3
285	IF (AJJ5 .GT. TP(1)) G0 TO 34
282	DIT=DT1(I)
290	G1 T0 341
291	34 GLT#072(1)
292	341 FTP5= (51AP(1)/(EXP(((AJJ5-TP(1))/0LT)**2)))*FCT(1)
29?	35 RETURN
274	END
295	SUPROUTINE PEINTR(I,K)
	C SHARDUTINE TO PRINT REGIENAL DATA .
296	REAL METHI
	· · ·

277	C/1MM/DA (4,5), CTR(4),TX4(4),MU(4,30),
2	18616~~~201~0050800~0~10~100~2~~2~~2~~2~~2~~
	やれたより」がやりたより」やられたより、おいいちがたろう。少し(きょうひら)。しくぎょぎ)。やおだらしちょうひきょうくぶつき
298	C THMON /MEA/ W(4), MOR (13), ID, DCC, NOE, DOP, P(4,6), CTAP(4), TO(4),
2.0	19T1(4), 9T2(4), FCT(4), E1P5
299	JJ = NDR(1)
300	CALL DATEE (JJ, MH-NID, 530)
301	WRITE(5,10) (A(1,J), $J=1,5$), MGN(MN), NID
	10 EGPMAT(1H-,5X,*REGIOM:*,5A4,5X,*REGINNING DATE=*,44,13)
302	
303	WRITE(6,15) 15 EURMAT(1H-1) DAY TAVG RS UA VPS VPU RN G
304	12 FORMATCHEA, DAT 1440 F3 OF 310 FT0
	1 ETP EO')
305	WRITE(6,27)
306	27 FÜRMAT(1H)
307	D1 20 J=4,K
308	WRITE(6,25)ND(I,J),X(6,1,J),X(3,I,J),X(8,1,J),X(9,1,J),X(10,I,J)
	1 • X (15 • I • J • X (11 • I • J • X (7 • I • J • X (16 • I • J)
309	20 CONTINUE
310	35 WRITE(6.40) FTP5
311	40 FORMAT(1H , FORECAST : POTENTIAL ET NEXT 5 DAYS= +, F5.2)
312	25 FDRMAT(1H , 15,F7.1,F6.0,F6.1,F7.1,F8.1,F7.0,F8.1,2F7.2)
313	RETUPN
314	END
315	SUBPOUTINE ETAVG(II, ETA, MBD, J, D, D1, AVM, DPL)
316	• COMMON A(4,5), CTR(4), TXR(4), ND(4,30),
	1X(16,4,30), DFSC(5), DATE(4), CROP(3), AIRR(2), FCRC(15),
	2N(4),ND3(4),RS3(4),MOD4Y(4),W1(5,100),C(8,8),RREG(4,30),R(30)
317	COMMON /NEW/ W(4), MON(13), ID, NCR, NDE, NDP, B(4,6), ETAP(4), TP(4),
	10T1(4),0T2(4),FCT(4),CTP5
318	DIMENSION D(8), D1(8)
319	AI=II
320	AV=(1.0-DPL/AVM) *100.
	IF (AV .GT. 0.0) GC TC 300
321	AA=0°C
322	,
323	300 AV3=1+AV
324	5 IF (II +GT. NDE) GO TO 2
325	AP≠NDP
326	AE=NDE
327	PCT=100.*(AI+AP)/(AE-AP)
328	AKC1=C(NCR,1)+C(NCR,2)*PCT+C(NCR,3)*PCT**2+C(NCR,4)*PCT**3
329	60 TO 1
330	2 DT=II-NDE
331	AKC1=C(NCR,5)+C(NCF,6)+DT+C(NCR,7)+DT++2+C(NCR,8)+DT++3
332	1 1F (AKC1 .LT. D(MCP)) 4KC1=D(MCR)
333	IF (AKC1 .GT. D1(MCR)) AKC1=D1(NCR)
334	IF(I1 .GT. TP(I)) GG TO 7
335	DLT=DT1(1)
	GO TO 8
336	
337	7 OLT=DT2(1)
338	B AKC=/KCl#ALGG(AV3)/ALCG(101.0)
339	ETA=4KC + (ETAP(1)/(EXP(((41-TP(1))/D(T)**2)))
340	IF (II-MOD .LT. 5) ETA=ETA*FCT(T)
341	RETURN
342	END
343	SHARDUTINE DATES (II, MD, IID, NOH)
	C CALCHEATES MONTH AND DAY FROM JULIAN DAY
344	わしえたはちしいだい ほしょうし
344 345	DIMENSION (44) (12) DATA NUD70,31,60,91,121,152,182,213,244,274,205,3357

.

1

Ç

:

Ć

Ċ

ί.

Ć

í

f

i

345		nn 10 J=2,12
347		TF (TI .EE. NNO(J)) SE TO 12
348		10 CONTINUE
349		J=13
350		12 MN=J-1
351		110 = 11 - N(0(J-1))
352		IF (TI .LT. NDH) GO TO 14
353		M/J=13
354		110 = 0
355		14 SETURN
356		END
357		BLOCK DATA
359		BLOCK UATA COMMON /NEW/ W(4),MON(13),ID,NCR,NDE,NDP,B(4,6),ETAP(4),TP(4),
359		DATA MIN / JANI, FEBI, MARI, APRI, MAYI, JUNI, JUNI, MUNI, SUP
		1 +0CT+, +NOV+, +DEC+, +NUME*/
360		END
361		SUBROUTINE SCHED(MBD,AVW,NDH,NXD,NXDP,I,OPL,AVM,D,D1)
.362		COMMON A(4,5), CTR(4), 1XR(4), ND(4,30),
		1X(10,4,30), DESC(5), DATE(4), CPOP(3), AIRR(2), FORC(15),
363		COMMON /ME W/ W(4), HON(13), 10, NCR, NUE, NUE, NUE, NUE, NUE, NUE, NUE, NUE
		1DT1(4),DT2(4),FCT(4),ETP5
364		a such that a and b and b and b
201	С	CHECK TO SEE IF THE FIFLD NEEDS IRRIGATING A' BEGINNING OF DAT
365	-	1F (AVW.LE.0.0) GO TO 10
366		
500	С	CALCULATING ESTIMATED DATE OF IRRIGATION WITHOUT PROB PRECIP
367	•	na 1 11=MAD.NOH
363		CALL ETAVG (II, FTA, MBD, I, D, D1, AVM, DPL)
369		AVW=AVW-ETA
370		IF (AVN.LE.0.0) GC TO 2
371		1 CONTINUE
	С	IF AN IPRIGATION IS NOT REQUIRED BEFORE HARVEST
372	•	60 TO 12
373		2 NX0=II
. 374		NYOPENYD
	С	CHECK TE RATHEALT PROBABILITY IS TO BE USED
	č	BETTIDED TE RAINFALL PROBABILITY IS NOT DESIRED
375	Ť	T = (ABS(2)(1,1)) = (T, 0,0000) GU TO 11
	c	DETERMINE NUMBER OF DAYS FOR EXPECTED PRECIPITATION
376	-	WK=(480-53)/7
. 377		16 AT=II
373		T=AT-BD
379		B(1≠SD+T
300		1F (T .LE. 14.) GO TO 15
381		A(3=3(3-T+14.
382		T=14.
383		15 AVH=AVH+PAMT(T,HK,I)
384		L=[[+]
385		O(1 3 TT=1.4DH
386		CALL ETAVG(II, FTA, UBE, I, D, D1, AVM, UPL)
397		A V M = A V M - FTA
388		IF (AVW .LE. 0.0) GC TO 4
389		
207	c	IRRIGATION NOT REQUIRED BEFORE MARVEST
390	·	
	с	CHECKING IF EACH EXTENDED DERIGATION DATE USING PROBABILITIES

ŕ

(

ί,

C

£

Ţ

Ċ

÷.,

Ć

{

Ę

345		DO 10 J=2,12
347		1F (11 + LE- NAD(J)) GO TO 12
348		10 CONTINUE
349		
350		12 MN=J-1
351		IID = II-NAD(J-1) IF (II +LT, NDH) 60 TO 14
352		MN = 13
353		11D = 0
354 355		14 RETURN
356		END
500		
357		BLOCK DATA
358		COMMON /NEW/ W(4),MON(13),ID,NCR,NDE,NDP,3(4,6),ETAP(4),TP(4),
		・ いかえ ノノキー ヘアウオ ムキー 丘丘 エイム とうご 正日 ち
359		DATA MON /*JAN', 'FEU', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP',
		1 *GCT*, *NOV*, *DEC*, *MUNE*/
360		ENU
		AVM 9.011
361		SUBROUTINE SCHED(MBD,AVW,NDH,NXD,NXDP,I,OPL,AVM,O,D1)
362		COMMON A(4,5), CTR(4),TXR(4),ND(4,30), 1X(16,4,30),DESC(5),DATE(4),CMCP(3),AIRR(2),FDRC(15),
		1X(16,4,30), DESU(5), DATE(4), NDF(5), NARC(2,3), REEG(4,30), F(30) 2N(4), NUB(4), RSO(4), MDEAY(4), W1(5,100), C(8,3), REEG(4,30), F(30)
		COMMON /AEW/ W(4), AOM(13), ID, NCR, NDE, ADD, B(4,6), ETAP(4), TP(4),
363		10T1(4),DT2(4),FCT(4),ETP5
		OTHENSTON D(9).01(8)
364	с	CHECK TO SEE IF THE FIELD NEEDS IRRIGATING AT BEGINNING OF DAY
365	C	IF (AVW.LE.0.0) GO TO 10
366		
500	С	CALCULATING ESTIMATED DATE OF IRRIGATION WITHOUT PROB PRECIP
367	v	DO 1 11=MAD,NDH
368		CALL ETAVG (II,FTA,MBD,I,D,D1,AVM,DPL)
369		AVW=AVW-ETA
370		JF (AVM.LE.0.0) GC TO 2
371		1 CONTINUE
	C	IF AN IPRIGATION IS NOT REQUIRED BEFORE HARVEST
372		60 TO 12
373		2 NXD=II
374	~	NXDP=NXD CHECK IF RAINFALL PROBABILITY IS TO BE USED
	ç	B(I,1)=0 IF RAINFALL PROBABILITY IS NOT DESIRED
775	C	IF (ABS(8(1,1)) .LT. 0.00001) G0 TO 11
375	с	DETERMINE NUMBER OF DAYS FOR EXPECTED PRECIPITATION
376	v	WK=(48D-53)/7
377		15 AI=II
373		T=4T+PD
379		8.D=9D+T
340		IF (T.LE. 14.) GO TO 15 BD=BD-T+14. T=14. 15 $AVW=AVW+PAMT(T,WK,I)$ L=II+1 Reproduced from Best available copy.
381		HD=BU-T+14.
332		T=14.
383		15 AVW=AVW+PAMT(T,WK,I)
384		L=II+1 D/I 3 TI=L, 10H
385		CALL ETAVG(II,FTA, MBC, I,D,D1,AVM,DPL)
386 387		AVW=AVW-ETA
386 386		1F (AVW -LE. 0.0) GC TH 4
380		3 CONTINUE
ر برب ا	C	IRRIGATION NOT REQUIRED BEFORE PARVEST
390	-	
••	C	CHECKING IF EACH EXTENDED INRIGATION DATE USING PROBABILITIES

¢X.

(

l

	C. OF WAIN RESULTS IN EUCTHER OXICNSILN OF INFIGATION PERIOD
391	4 IF (11-1 .00. 4X0P) 65 TO 11
392	WK=4K+1/7
	NXDP=II
393	
394	リー・ション ション・キャー・ウェン・セウロー すわりすび カチギ (1)レーカモー (1)ト (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
395	10 WX0=MB0
396	NXJP=NXN
397	GO TO 11
	C STITUATION WHERE AN IRRIGATION IS NOT REDUIRED BEFORE HARVEST
398	12 NXD=3CH
399	13 VK0P=NDH
400	11 RETURN
4 01	END
6.03	FUNCTION PANT(T,WK,I)
402	ϕ -
	CUMMON /NEW/ W(4), MON(13), ID, NCR, NDE, NDP, B(4,6), ETAP(4), TP(4),
403	LUMMER / / EM/ HITT CALE FIRE
	1DT1(4),DT2(4),FCT(4),ETP5 PAMT =T#(8(1,1)+8(1,2)*WK+8(1,3)*WK*WK+8(1,4)*
404	$PAMT = T \pi \{B\{I, I\} + B\{I\} \} = T \pi \{B\{I, I\} + B\{I\} \} = T \pi \{B\{I\} \} = T$
	1 WK # # 3+B(1,5) + WK # 4+B(1,6) + WK * # 5)
405	RETURN
406	END
407	SUBROUTINE PRINTS (NEEG,METH1,RNRD)
401	C SUBROUTINE TO RETAIN INFORMATION IN "SAVE" FER MEXT RUN
408	REAL METHI
	COMMON (A14.5), CTR(4), TXR(4), NO(4, 30),
409	19717 A 201 0550751,0ATE(4),CROP(3),ATER(2),UUU(40),
	2N(4), NOB(4), SO(4), MUDAY(4), W1(5,100), C(8,8), REEG(4,30), F(20)
	COMMEN /NEW/ W(4), MON(13), ID, NCP, NOE, NOP, B(4, 6), ETAP(4), TP(4),
410	
	10T1(4), DT2(4), FCT(4), ETP5
411	NRITE(6,11) NOB(1)
412	11 FOPMAT(1H1, * NO. OF FIELDS = *, 15)
413	DO 40 I=1.NREG
414	K1=H(I)+3
415	K≖K1-2
416	VE LONGOLOGMETHII GO TO 15
417	WRITE(7,10) (MD(1,J),X(1,I,J),X(2,I,J),X(3,J,J),X(4,I,J),
411	$1 \times (5, 1, 1) = 1 = K + (5, 1)$
	WR[TF(6,10)] (ND(I,J),X(1,I,J),X(2,I,J),X(3,I,J),X(4,I,J),
418	1x(5,1,J),J=K,K1)
	$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right)$
419	10 FURMAT(5X,15,5F5.0)
420	$G_{1} = \{0, 0\} = \{0, 0\} = \{1, 0\} = \{1, 1\} = \{1, 1\} = \{1, 1\} = \{1, 2\} = \{1$
421	15 WRITE (7,20) (ND(I,J),X(1,I,J),X(2,I,J),X(3,I,J),X(4,I,J),X(5,I,J)
	3 DOCC11. H. LEK.K.)
422	$\begin{array}{c} 1 \\ \text{MOTTE} & (6,20) \\ \text{MO(I+J), X(1,I+J), X(2,I+J), X(3,I,J), X(4,I+J), X(5,I+J) \\ \end{array}$
	1, RP[G(1,J), J=K,K1)
423	40 CONTINUS
424	20 FORMAT (5X,15,5F5.0,F5.2)
425	K=MOR(1)
426	01 50 J=1+K
	MOTTE(7, 55) MI(1, J), VI(2, J), VI(3, J), VI(4, J), VI(5, J)
427	WRITE(6,55) WI(1,J),WI(2,J),WI(3,J),WI(4,J),WI(5,J)
428	
4 ? 9	50 CONTINUS
430	55 FORMAT(5F10.2)
431	FI: TUF 'A FND Reproduced from hast available copy.
432	EVD Reproduced copy.
	EVD EVD Reproduced from best available copy.
	SENTRY LO

.

.

PREDICTING SOIL MOISTURE AND WHEAT VEGETATIVE GROWTH FROM ERTS-1 IMAGERY

by

JOHN WAYNE KRUPP

B.S., Kansas State University, 1972

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Agricultural Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1974

ABSTRACT

Wise resource management techniques are necessary if the population of the Earth is to continue to expand. The Earth Resources Technology Satellite program combines remote sensing in space with efficient resource management. Water is a valuable resource needlessly lost by excessive irrigation applications. If needless loss of water is to be lessened, determination of evapotranspiration will be necessary. Actual evapotranspiration is dependent upon potential evapotranspiration and a crop coefficient. One method of predicting the crop coefficient is to use the plant's vegetative growth which may be determined by reflection from the plant canopy.

The relationship between soil moisture, vegetative growth and solar reflectance was studied. Vegetative growth was evaluated by leaf area index with the equation:

LAI =
$$2.92MSS4/5 - 2.63$$
 , $R^2 = 0.95$

where:

LAI = Leaf area index

MSS4/5 = Ratio of band 4 (0.5-0.6 μ) to band 5 (0.6-0.7 μ)

 R^2 = Regression coefficient.

It appears that the ratio eliminated soil moisture effects. At a depth of 0 to 15 cm soil moisture was predicted by:

$$SM2 = 101.11 - 4.00MSS4 - 70.31MSS4/5$$

where:

SM2 = Soil moisture dry weight at 0 to 15 cm (%)

 $MSS4 = Band 4 (0.5-0.6 \mu)$

MSS4/5 = Ratio of band 4 (0.5-0.6 μ) to band 5 (0.6-0.7 μ).

The equations of the wheat crop coefficient for the evapotranspiration model of Jensen and associates, developed by using leaf area index of dryland wheat, were:

$$Y = 0.005 + 0.0165X - 0.000467X^2 - 0.00000402X^3$$

$$Y = 0.998 - 0.00297D - 0.000747D^2$$

where:

Y = Wheat crop coefficient

X = Percent of crop cover

D = Days after 100 percent crop cover.

This method of evaluating the crop coefficient provided reasonable estimates of soil moisture depletion.

Appendix E

• •

Computer Program to Generate the Mean and Standard Deviation for the Interior of a Field

E -1

	\$J ^A R	
٩	1 .	DIMENSION LINE(010), NCELL(010), SLOPE(010), THETA(010), ALINE(010)
2		DIMENSION 8(010), ACELL(010)
3		TNTEGER#4 DATE. TAPE
4		INTEGER#4 SEG, DX
۴,		INTEGER#2 XDATA(5,64,64)
6		INTEGER*4 HICFLI
7		DIMENSION CELL(7)
		DTMENSION TERFO(128,16)
q		DIMENSION AMIN(16), AMAX(16), SUM(16), PROD(16,16), R(16)
10		DIMENSION RAVE(16), RSTU(16), RCOP(16, 16), AN(4)
11		REAL FIELD/ ALL /
12		NREAD=9
13		NTERM=13
14		<u>D=1.0</u>
15		NCN=0
16		NWIND=0
17		NSFG=0
18		MAXC=64
19		
20	444	READ 444, D. NSW, NSWI FORMAT(F5.2.11,11)
22	 5	READ(5,500,END=999) NOATE,NTAPE,NID1,NID2,NCELLB
23	500	FORMAT(14,1X,15,2A4,2X,15)
24	100	CONTINUE
25		IF(NSWI.E0.1) GO TO 101
26		READ(5,1000,END=999) SEG, NPTS, (LINE(1), NCELL(1), 1=1,4), NFILE, NC,
		INTAPEA, FIELD
27	1000	FORMAT(11,11,4(14,13),1X,11,11,2X,14,3X,43)
28		PRINT 1102, SEG, NPTS, (LINE(I), NCELL(I), T=1,4), NFILE, NC, NTAPEA, FIFLD
29	1102	FORMAT(1H , *SFG=*, 12, *PTS=*, 12, 4(15, 1X, 14, 1X), *FILE=*, 12, *NC=*,
		112, "TAPE=", 15, "FIELD=", 14)
30		<u>GD_TD_202</u>
31	101	CONTINUE READ(5,1003,END=999)SEG,NPTS,(LINE(I),NCELL(I),I=1,8),NFILE,NC,
32		
	1003	INTAPFA, FIELD 3 FORMAT(11,11,8(14,13),2X,11,11,1X,14,1X,A3)
33 34	100	PRINT 1101, SEG, NPTS, {LINE(I), NCELL(I), I=1,8), NEILE, NC, NTAPEA, FIELD
35	1103	FORMAT(1H ,*SEG=*,12,*PTS=*,12,8(15,1X,14,1X),*FILE=*,12,*NC=*,
	110,	112,°TAPE=°,15,°FIELD=°,A4)
36	202	CONTINUE
37		IF(NTAPEA.NE.NDATE) GO TO 991
38		IF(NCN- Q.11 GO TO 10
39		NO=0
40		NO 220 1=1,NTERM
41		0n 190 J=1,128
42	190	$I \in R \in O(J, I) = O$
43		AMIN(1)=128
44		AMAX(Î)=0.
45		SUM(f) = 0.
46		DO 210 J=1,NTEFM PROD(1,J)=0.
47	210	CONTINUE
4 ዓ ፋባ	220	CONTINUE
51		IF(556.50,NSEG) GD TO 870
51	10	READ (NREAD) DATE, TAPE, JD1, TD2, LINET, NCELLY
52		(F(DATE NE NOATE) CO TO 990
53		IF(TAPF.NF.NTAPF) GO TO 990
54		1F(101.ºVE. NID1) 60 TO 990
55		16(102.VE.NID2) 60 TO 990

E-2

56		READ(NREAD) XDATA	
57	370	CONTINUE	
58	010	NCN=NC	
59		NSFG=SFG	·
60		IF(LINE(1).LT.LINET) GO TO 994	
61		IF(LINE(1).GT.(LINET+64)) GO TO 10	
67		NCB=NCELLB+64*(S=G-1)+64#NCELL(1)/77	
63		PRINT, NCELLB, SEG, NCELL(1), MCR	
		JF(NCFLLT.GT.ANCR) GD TO 995	
<u> </u>		IF (NCELL T.LT. (NCB-63)) GD TO 10	
66		DO 900 J=1.NPTS LINE(I)=LINE(I)-LINET+1	
67		CFLL(I)=64.*NCFLL(I)/77.	
68			
6 9	800	DD 900 1=1,NPTS	
70			
71		II=I+1 REAL FO NOTS) II=1	· · · · · · · · · · · · · · · · · · ·
72		IF(I.FQ.NPTS) II=1	· · · · · · · · · · · · · · · · · · ·
73		DX=LINE(II)-LINE(I) DY1=CFLL(II)-CFLL(I)	
74			
75		DX1=FL0AT(DX) ▼F(DX₀EQ₀O) GO TO 880	
76			
77		$\frac{SLOPE(I) = DY1/DX1}{THETA(I) = ATAM2(DY1, DX1)}$	
78			
79		<u>GD TO 890</u> SLOPE(1)=999.	
80	890	SCHPE(I)=999. THETA(I)=ATAN2(DY1,.001)	
81	000		
	890	CONTINUE B()=CELL()-SLOPE()+LINE()+D/COS(THETA())	
83			
84	900		
85		ΔΔΜΔΧ=0.	· · · · · · · · · · · · · · · · · · ·
86		00 910 1=1,NPTS	
87		II=I+I	
88		I[=!VI IF(I.EQ.NPTS) []=1	
89 90		DS = St OPE(1) - SLOPE(11)	
90 91		ALIME(I) = (B(II) - B(I)) / DS	
		ACELL(1)=(B(11)*SLOPE(1)-B(1)*SLOPE(11))/DS	
92 93		IF(AAMIN_LT_ALINE(I)) GO TO 909	
93		MINI=I	
95		AAMIN=ALINE(I)	
90	909	IF(AAMAX_LT_ALINE(I)) AAMAX=ALINE(I)	
98		CONTINUE	
99	719	LINMIN=IFIX(AAMIN+1.)	
		LINMAX=IFIX(AAMAX)	
99 100		I = MINI-1	
100		YY=MYNY0Y	
101		IF(I.FO.O) I=NPTS	
		$IF(II_{OT}, NPTS)$ $II=1$	•
103		$\frac{1}{1} \frac{1}{1} \frac{1}$	
104		IF(LINMAX.GT.MAXL) LINMAX=MAXL	
105		IF (LINMIN. GT.LINMAX) GO TO 2100	
106		DO IICO JELINMIN, LINMAX	
105		$IF(J_{\circ}GT_{\circ}I \in IX(A(INE(TI))))$ $II = II + 1$	
105		1F(J.GT.IFIX(ALINE(ID)) I=1-1	
		1F([.rn.n]]=NP15	
- 11		$IF(II_{O}, T_{O}, V)$ $II=1$	
11)		[[]]=]~]	
11?		TELLIA SAL DELSE ILLEVELS	
114		- 「「「」」「」」「」」「」」「「」」」」」」」」」」」」」」」」」」」」」	
114 114 115		LOCHIL#7FIX(SLOP2(117)*J+F(111)*1) HICELL#IFIX(SLOP2(11)*J+F(11))	

ا میں ایک میں بار میں میں ایک میں ایک میں میں میں ایک ایک ایک ایک ایک ایک میں ایک ایک میں ایک ایک ایک ایک ایک م ایک ایک ایک ایک میں میں ایک میں میں ایک میں میں میں میں ایک میں میں ایک ایک میں ایک میں ایک میں ایک ایک ایک ایک

-

E-3

* * /		· · · · · · · · · · · · · · · · · · ·
116		CCELL=SLOPE(II)*J+B(II) BCELL=SLOPE(III)*J+B(III)+I
$\frac{117}{118}$		BC2LL=SLDP::(1117*J+B(1117+1 TF(LDC5LL_LT.I) LDCFLL=1
119		IF(HICELL.GT.MAXC) HICELL=MAXC
120		IF(LOCELL.GT.HICELL) GO TO 1105
121		DO 1104 L=LOCELL, HICELL
122		$XDATA[1_{9}L_{9}J]=1$
123		NO=NO+1
124		<u>DN 240 K=1,4</u>
125		K = K + 1
126		$NA = XDATA(KK_{0}L_{1}J)$
127		$\frac{\Delta N(K) = FLOAT(NA)}{CONTINUE}$
128	240	CONTINUE P(1)=AN(1)
129 130		R(1) = AN(1) R(2) = AN(2)
131		R(3) = AN(3)
131		R(4) = AN(4)
132		R(5) = AN(3) + AN(1)
134	<u></u>	$R(6)=2_{o} \neq AN(4) - AN(1)$
135		R(7) = AN(3) - 4N(2)
136	——	R(8)=2.*AN(4)-AN(2)
137		R(9) = AN(1) / AN(2)
138		$R(10) = \Delta N(1) / \Delta N(3)$
139		P(11)=AN(1)/AN(4)
140		R(12) = AN(2)/AN(3)
141		R(13) = AN(2)/AN(4)
142		DO 250 K=1, NTERM
143		PA=R(K) NA=INT(RA)
144 145		NA = INI(RA) [F(RA_LT_AMIN(K)) AMIN(K)=RA
145		$IF(RA_{C}) a MIN(R) A MIN(R) = RA$
147		$IF(K_{\bullet}, I_{\bullet}) = GO = TO = 242$
149		NA=INT(10.*RA)
149	242	IF(NA.LE.0) NA=1
150		IF (NA .GT.128) N4=128
151		IFPEQ(NA,K)=JFREQ(NA,K)+1
152		SUM(K) = SUM(K) + PA
153		DO(250 KA=1)K
154		$\frac{PPOO(KA,K) = PROO(KA,K) + R(K) + R(KA)}{CONTINUE}$
155	250	
156	1104	CONTINUE
157	<u>1105</u>	CONTINUE CONTINUE
158 159	2100	CONTINUE
160	6. L	IF(NO.LE.1) GD TO 992
161	<u> </u>	IF(N(N.E0.1) GG TO 100
162		PO=FLDAT(NO)
163		DO 320 1=1,NTFRM
164		RAVE(I)=SUM(I)/PO
165		RSTD(I) = SORT((PROD(I,I) - RO * RAVE(I)) * RAVE(I)) / (RO-1.))
166		DD 321 J=1,1
167	_	RCOQ(J,I)=0.
168		IF(RSTD(1) .EQ.0.) GO TO 321
169		IF(RSTD(J) .F0.0.) GO TO 321 RCOP(J.1)=(PROD(J.1)/PO-RAVE(J)*RAVE(I))/(RSTD(I)*RSTD(J))
170		
171	321	CONTINUE Continue
172	320	FORMAT(1H1, "NUMBER OF POINTS = ", 15, "IN FILE ", 44, "WITH INSET OF
173		1° ${}^{\circ}$ ${}$
		$\frac{1}{21} = \frac{1}{21} \frac{1}{21} = \frac{1}{21} \frac{1}{21} = \frac{1}{21} \frac{1}$

.

...

.

.

E-4

174		WRITE(6,102) NO,FIELD,D,DATE,TAPE,ID1,ID2,LINET,NCELLT
175		DETNT 103
176	103	EARMAT(00 , 10X, MSS4 , 4X, MSS51, 4X, MSS6 , 4X, MSS71, 3X, MSS6-4 2M
		1557-4 MS56-5 2MS57-5 MS54/5 MS54/6 MS54/7 MS55/6 MS55/7')
177		PRINT 104, (RAVF(1), 1=1, 13)
178	104	FORMAT("C", "MEANS 1, 3X, 16F8.3]
179		$PRINT 105_{0} (AMIN(1), I=1, 13)$
180	105	FORMAT(+0) + 4IMIMUMS(+16F8.3)
181		PRINT 106,(AMAX(I),1=1,13) FORMAT(*0*,*MAXIMUNS*,16F8.3)
182	106	$PRINT 107_{*}(RSTD(1)_{*}I=1,13)$
185	107	FORMAT(*0*, *STD DEV *, 16F8.3)
185	101	PRINT 116
186	116	FORMAT(*-*,*CORRELATION COFFICIENTS*)
197		PRINT 111, (RCOP(01,1), T=01, NTEPM)
188	111	FORMAT(°0', 'MSS4', 4X, 16F8.5)
189		PRINT 112, $(PCOP(02, I), I=02, NTERM)$
190	112	FORMAT("D', "MSS5', 12X, 15F8, 5)
191		PRINT 113, (RCOR(03,1), I=03, NTERM)
192	113	FORMAT(+0+, +MS56+, 20X, 14F8.5)
193	<u> </u>	PRINT 114, (RCOR(04,1), I=04, NTFRM)
194	114	FORMAT(*0*,*MSS7*,28X,13F8.5)
195	•••	PRINT 115, (RCDR(05,1),I=05,NTERM) FDRMAT(*0*,*MSS6-4*,34X,12F8.5)
196	115	PRINT 121, (RCDR(06,1),1=06,NTERM)
197 198	121	FORMAT(*0*,*2MSS 7~4*,41X,11F8.5)
198	14:	PRINT 122. (RCOR(07.1).1=07.NTERM)
200	122	FORMAT(• 0 • , • MSS6-5 • , 50X, 10F8.5)
201	2 - -	PRINT 123, (RCOR(08,1),1=08,NTERM)
202	123	FORMAT('0', '2MSS7-5', 57X, 09F8.5)
203		PRINT 124, (909,1),1=09,NTERM)
204	124	FORMAT("0","MSS4/5",66%,8F8.5)
205		PRINT 125, (RCOR(10,1), J=10, NTERM)
206	125	FORMAT("01, "MSS4/6", 74X, 7F8.5)
207		PRINT 126, (RCOR(11, I), I=11, NTERM)
208	126	FORMAT(*0*,*MSS4/7*,B2X,6F8.5) PRINT 127, (RCOR(12,1),1=12,NTERM)
209	1 2 7	FORMAT(*0*,*MSS5/6*,90X,5F8.5)
210	127	PGINT 128, (RCOR(13, 1), 1=13, NTFRM)
211 212	128	FORMAT (00°, • MSS5/7°, 98X, 4F8.5)
212	14	IF(NSW_EQ.0) G0 T0 399
215		WRITE(7,130) FIELD, DATE, (RAVE(1), I=1,13)
215	<u></u>	WRITE(7,131) FIELD, DATE, (RSTD(1), I=1,13)
216		WRITE(7,132) FIELD,DATE,(AMIN(1),I=1,13)
217		WRITE(7,134) FIELD,DATE,(AMAX(I),I=1,13)
218	130	FORMAT(1 + A3, 14, 8F5.2, 5F4.2)
219	131	FORMAT(929, A3, 14, 8F5, 2, 5F4, 2)
220	132	FORMAT(131, A3, 14, 4F5.2, 4F6.2, 5F4.2)
221	134	FORMAT($^{0}4^{\circ}, \Lambda 3, 14, 8F5.2, 5F4.2$)
222	299	CONTINUE PRINT 108,FIFLD,DATE,TAPE,ID1,ID2,LINET,NCFLLT
223	100	FORMAT(1H1, "HISTOGRAM", 3X, "FIELD =", A4, "TAPE =", 14, "-", 15, 2A4,
224	108	FORMAT(THE THIS THERE ANT $3x_0$ FIELD = $3x_0$ (AFC - $3x_0$ + $1002AT$
225		LMIN=MINI (AMIN(1), AMIN(2), AMIN(3), AMIN(4), AMIN(5), AMIN(6),
225		1AMIN(7), AMIN(9), AMIN(9)*10., AMIN(10)*10., AMIN(11)*10.,
		$2\Delta M$ (N(12) + 10 ΔM (13) + 10.)
226		L MAX=MAX1(AMAX(1),AMAX(2),AMAX(3),AMAX(4),AMAX(5),AMAX(6),
464	<u> </u>	[AMAX(7), (MAX(8), ^ MAX(9) * 10., AMAX(10) * 10., AMAX(11) * 10.,
		2AMAX(12)*10., AMAX(13)*10.)
		1 F(LMIN_IF.O) LMIN=1

E-5

.

- - -- --

.

. . . .

.

.

٤.

E--6

	228		IF(LMAX.GT.128) LMAX=128	
	229		DO 400 I=LMIN.LMAX	
·	230	<u>400</u>	PRINT 109,1, (IFR TO(1, J), J=1, NTERM)	
į	231	109	ENPMAT(1H,15,16(3X,15)) WEITE(6,1001)LUNMIN,FIELD,DATE,TAPE,TD1,102	
!	232 233	1061		
<u> </u>	235		114, 1-1, 15, 244]	
	234		$00 1110 J=1_{2} MAXL$	
	235		WRITE(6,1002)(XDATA(1,1,J),I=1,MAXC)	
:	236	1092	FORMAT(* * ,6411)	
	237	1110	CONTINUE	
	<u>238</u> 239		<u>NVIND=0</u> GD TO 100	
	240	991	WRITEIS, 1201 NTAPEA, NDATE	
	241	120	FORMAT('0', 'FIELD CARD REQUESTS TAPE ', 14, ' BUT TAPE USED 15 ', 14)	
	242		GD TO 100	
	243	990	WRITE(6,503) NDATE,NTAPE,NID1,NID2,DATE,TAPE,ID1,ID2 FORMAT("1", "TAPE REQUESTED(",I4,"-",I5,244,") DIDNOT MATCH TAPE MD	
	244	503	FORMAT('1', 'TAPE REDUESTED(', 14, '-', 15, 244, 'T DIDNST 14, OU THE STORE	
	245		1011ED(*,14;*-*,12;244;*)*) G0 T0 999	
	245	992	IF(NCN.EQ.1) GO TO 100	
·····	247		WRITE(6.119) FIELD	
	248	119	FORMAT(1H1,*FIFLO *, A4,* TOO SMALL*)	
	249		GO TO 100 IF(NCELLT.NCELLB) 60 TO 10	
	250 251	994 995	WRITE(6,110) LINE(1),LINET,NCB,NCELLT	
	251	995 110	FORMAT(1H , 'ERROR TAPE TOD FAR:LINE =', 15, 'TAPELINE=', 15, 'CELL =',	
			115, 'TAPF CELL = ',15)	
	25 3		IF(NWIND.E0.1) GO TO 999	
	254		PEWIND NREAD	
	255 256		NWIND=1 Go Tr 10	
	250	999		
	and the second se			
	258		END	
	258			
	258			
	258			
	258			۰.
	258			۰.
	•			• •
	258			۰.
	•			۰.
	•			۰.
	•			۰.
	•			•.
·	•	• • • •••,		
·	•	· ·		•
	•	* *••,		•••
	•			
	•			•
	•			
	•			
	•			
	•			•••
	•			
	•			•.
	•			
	•			
	•			
	•			

and the second second

E-7

	\$JOR
1	DIMENSION LINE(010), NCELL(010), SLOPE(010), THETA(010), ALINE(010)
, ,	
	DIMENSION B(010), ACELL(010)
3	INTEGER*4 DATE, TAPE
4	INTEGER#4 SEG, DX
<u> </u>	INTEGER*2 XDATA(5,64,64)
6	INTEGER*4 HICFLI
7	DIMENSTON CELL(7)
9	DIMENSION IFRED(128,16)
	DIMENSION AMIN(16), AMAX(16), SUM(16), PROD(16,16), R(16)
10	DIMENSION RAVE(16), RSTD(16), RCDR(16, 16), AN(4)
11	REAL FIELD/* ALL*/
12	NREAD=9
12	
<u> 14 </u>	
15	
16	NWIND=0
	<u>NSFG=0</u>
18	MAXC=64
10	MA XL = 64
20	READ 444, D. NSW, NSWI
21	444 FORMAT(F5.2+11,11)
22	5 READ(5,500,END=999) NDATE,NTAPE,NID1,NID2,NCELLB
23	500 FORMAT(14,1X,15,244,2X,15)
24	100 CONTINUE
25	TE(NSWI.FQ.1) G0 T0 101
25	READ(5,1000,END=999)SEG,NPTS,(LINE(1),NCELL(1),I=1,4),NETLE,NC,
<u> </u>	
~7	INTAPEA, FIELD
27	1000 FORMAT(11,11,4(14,13),1X,11,11,2X,14,3X,A3)
29	PRINT 1102, SEG, MPTS, (LINE(1), NCELL(1), I=1, 4), NFILE, NC, NTAPEA, FIELD
29	1102 EDRMAT(1H , 'SEG=', 12, 'PTS=', 12, 4(15, 1X, 14, 1X), 'EILE=', 12, 'NC=',
	112, *TAPE=*, 15, *FTELD=*, 44)
<u> </u>	<u>60 TO 202</u>
31	101 CONTINUE
32	READ(5,1003,END=999)SEG,NPTS,(LINE(1),NCELL(1),I=1,8),NFILE,NC,
	INTAPEA, FIELD
33	1003 FORMAT(11,11,8(14,13),2X,11,11,1X,14,1X,A3)
34	PRINT 1101,SEG,NPTS,(LINE(I),NCELL(I),I=1,8),NFILE,NC,NTAPEA,FIELD
35	110' FORMAT(1H , *SEG=*, 12, *PTS=*, 12, 8(15, 1X, 14, 1X), *FILE=*, 12, *NC=*,
	112. *TAPE='*15.*FIELD='*A4)
36	202 CONTINUE
	LE(NTAPEA.NE.NDATE) GD TO 991
37	IF(NIAPER.ME.NDASE) 60 10 991 IF(NON.SQ.1) 60 TO 10
38	
39	
40	DD 220-1=1+NTERM
41	00 190 J=1,128
42	190 IFREO(J,I)=0
43	AMIN(I)=128 *
44	AMAX(1)=0.
45	SUM(1)=0.
46	DO 210 J=1,NTERM
47	PPOD((,))=0.
49	210 CONTINUE
40 40	220 CONTINUE
50	1F(SFG. TRANSEG) RD TO 970
51	
	TELDATC.NE.MOATC GO TO 990
53	IF (TAPE, NE, NTAPE) OF TO 990
54	IF(ID1.VE.MID1) 60 TO 990
55	IF(102.NE.N102) AD TO 990

Appendix F

Computer Program and Flow Chart to Create

Contour Plots on Calcomp Plotter

CONTUR

CREATE CONTOUR PLOT ON CALCOMP PLOTTER

- Programmer: Jay Alloway, Kansas State University Computing Center, May 1973.
- Language: FORTRAN IV for 360/370 with calls to CALCOMP plot subprogram PLOT.
- Purpose: This subroutine prepares a contour plot from a rectangular grid of uniformally spaced values.

Calling sequence:

CALL CONTUR (GRID, ROW, COL, CU, NV, XLEN, YLEN)

where

- GRID contains the values (REAL*4) to be plotted. These could be reflection intensities, levels of radiation, etc at equally spaced points.
- ROW is the number of rows to be plotted down the paper and the size of the first dimension of GRID. ROW is integer.
- COL is the number of columns to be plotted across the paper and is the second dimension of GRID. COL is integer.
- CU is a vector (REAL*4) containing the desired contours.
- NV is the number of contours in the CU vector.
- XLEN is the length (REAL*4) of the x-axis (down the paper) in inches.
- YLEN is the length (REAL*4) of the y-axis (across the paper) in inches.
- NOTE: CONTUR assumes the pen is located at location (0.0, 0.0) when called and does not reorigin before returning. Location (0.0, 0.0) is GRID(1,1). Location (XLEN, YLEN) is GRID(ROW,COL).
- Hethod: CONTUR looks at the grid point by point forming a square at each point consisting of the points to the right, below, and right and below the point is question. Except for two cases where two lines may be drawn, only one contour line may appear in a square. CONTUR assumes a uniform media within a square. The line drawing technique outlines flat (equal contour) areas. There is a total of (ROW-1)*(COL-1) squares in GRID.

		SUBROUTINE CONTUR (X,N,M,CU,NC,XSIZE,YSIZE)	CNTROO10
	Ċ	•	CNTR0020
I	C	SUBROUTINE CONTUR CREATES A CONTOUR PLOT ON THE CALCOMP PLOTTER	CNTR0030
	C	FROM AN ARRAY OF POINTS.	CNTR0040
	C		CNTR0050
	С	WRITTEN BY JAY ALLOWAY, KANSAS STATE UNIVERSITY COMPUTING CENTER	CNTROOGO
	C	IN MAY 1973.	CNTR0070
I	С		C1NTR0080
		DIMENSION $X(N,M)$, $CU(NC)$	CNTR0090
		LOGICAL*1 ISW	CNTRO100
		INTEGER UP, DUWN	CNTROILO
		DATA TOL, UP, DOWN /1E-7,3,2/	CNTR0120
and a second	C		CNTR0130
	Ċ	CALL CONTUR (GRID, ROW, COL, CU, NV, XLEN, YLEN)	CNTR0140
	Ċ	WHERE GRID CONTAINS THE VALUES TO BE PLOTTED.	CNTR0150
	c	ROW IS AN INTEGER GIVING THE NUMBER OF ROWS TO BE	CNTR0160
	Ċ	PLOTTED AND THE 1ST DIMENSION OF GRID.	CNTR0170
	č	COL IS AN INTEGER GIVING THE NUMBER OF COLUMNS TO BE	CNTR0180
······································	c	PLOTTED AND THE 2ND DIMENSION 60 GRID.	CNTR0190
	č	CU CONTAINS VALUES OF THE DESIRED CONTOURS.	CNTR0200
	č	NV IS THE NUMBER OF CONTOURS IN CU.	CNTR0210
	č	XLEN IS THE LENGTH OF THE X-AXIS (ROWS).	CNTR0220
	č	YLEN IS THE LENGTH OF THE Y-AXIS (COLUMNS).	CNTR0230
	č		CNTR0240
	č		CNTR0250
	č	DEFINE BASIC FUNCTIONS NEEDED	CNTR0260
	č		CNTR0270
		XLOC(AI) = (AI/AN)*XSIZE	CNTR0280
		YLOC(AJ) = (AJ/AM) * YSIZE	CNTR0290
		AINC(AS,AE) = (C-AS)/(AE-AS)	CNTR0300
		= EQUAL(PT) = ABS(C-PT)	CNTR0310
		BETWEN(AS,AE) = (C-AS) + (C-AE)	CNTR0320
	с		CNTR0330
	č	INITIALIZE CONSTANTS	CNTR0340
	č		CNTR0350
	~	NX = N-1	CNTR0360
		MX = M - 1	CNTR0370
		AN = NX	CNTR0380
		AM = MX	CNTR0390
	τ		CNTR0400
	č	LOOP THROUGH ROWS	CNTR0410
	c		CNTR0420
	<u> </u>	DD 215 IX=1,NX,2	CNTR0430
		I = IX	CNTR0440
		ISW = .FALSE.	CNTR0450
			CNTRU450
	10	I = IX+1	CNTR0470
	10	IF (I.GT.NX) GO TO 215	CNTR0480
		15W = .TRUE.	CNTR0490
	15	IPI = I+1	CNTR0500
	15	AIMI = I-I	CNTR0510
	····		CNTR0520
	r		CNTR0520
	C		
	<u> </u>	LOOP THROUGH COLUMNS	CNTR0540 CNTR0550
	С		• • • • • • •
		DO 210 JX=1,MX	CNTR0560
			CNTR0570
	C	FOR FASTER PLOTTING, PLUT EVERY OTHER ROW BACKWARDS	CNTROSRO
		[F (ISW) J = M - JX	CNTR0590
		JP1 = J+1	CNTR0600

4

.

AJM1 = J-1	CNTR0610
$\dot{\mathbf{L}} = \mathbf{L}\mathbf{A}$	CNTR0620
C GET VALUES OF CORNERS OF SQUARE	CNTR0630
A1 = X(1, J)	CNTR0640
$\Delta 2 = X(I, JP))$	CNTR0650
A3 = X(IP1,J)	CNTRO660
$\Delta 4 = X([PL, JPL])$	CNTR0670
C	CNTRO680
C LOOP THROUGH CONTOURS	CNTR0690
C	CNTR0700
DO 205 K=1+NC	CNTR0710
C = CII(K)	CNTR0720
C PLOT BEST CURVE THROUGH THIS SQUARE	CNTR0730
IF (EQUAL(A1).GT.TOL) GO TO 70	CNTR0740
IF $(EQUAL(A2),GT,TOL)$ GO TO 35	CNTR0750
IF (EQUAL(A3).GT.TOL) GO TO 20	CNTR0760
IF (EQUAL(A4).LE.TOL) GO TO 205	CNTR0770
, CALL PEOT (XLUC(AI),YLUC(AJM1),UP)	CNTR0780
CALL PLOT (XLOC(AIM1),YLOC(AJ),DOWN)	CNTR0790
GO TO 205	CNTROBOO
20 XX = XLOC(AIML)	CNTR0810
CALL PLOT (XX, YLOC(AJM1), UP)	CNTR0820
$YY = YLOC(\Delta J)$	CNTR0830
IF (EQUAL(A4).LE.TOL) GO TO 30	CNTR0840
IF (RETWEN(A3,A4).LE.0.0) GU TO 25	CNTR0850
CALL PLOT (XX,YY,DOWN)	CNTR0860
GO TO 205	CNTR0870
25 CALL PLOT (XLOC(AI),YLOC(AJMI+AINC(A3,A4)),DOWN)	CNTRO880
CALL PLOT (XX,YY,DOWN)	CNTR0890
GO TO 205 30 CALL PLOT (XLOC(AI),YY,DOWN)	<u>CNTR0900</u>
GO TO 205	CNTR09L0
35 XX = XLOC(AIML)	CNTR0920
$\frac{33 \times 1 - 100}{\text{YY} = \text{YLOC}(\text{AJM})}$	CNTR0930 CNTR0940
IF (EQUAL($A4$).GT.TOL) GO TO 45	CNTR0950
IF (EQUAL(A3).GT.TUL) GO TO 40	CNTR0960
CALL PLOT (XX,YY,UP)	CNTR0970
CALL PLOT (XLOC(AI), YLOC(AJ), DOWN)	CNTR0980
GD TO 205	CNTR0990
40 IF (BETWEN(A2,A3).GT.0.0) GO TO 205	CNTR1000
CALL PLOT (XX,YY,UP)	CNTRIOIO
DIFF = AINC(A2,A3)	CNTR1020
CALL PLOT (XLOC(AIMI+DIFF),YLOC(AJ-DIFF),DDWN)	CNTR1030
CALL PLOT (XLOC(A1),YLOC(AJ),DOWN)	CNTR1040
GO TO 205	CNTR1050
45 IF (EQUAL(A3).LE.TOL) GO TO 60	CNTR1060
LF (BETWEN(A2,A4).GF.0.0) GO TO 50	CNTR1070
IF (BETWEN(A3,A4).GT.0.0) GO TO 55	CNTR1080
CALL PLOT (XLOC(AI), YLOC(AJM1+AINC(A3,A4)), UP)	CNTRI090
CALL PLOT (XLOC(AIM1), YLOC(AJM1), DOWN)	CNTR1100
CALL PLOT (XLOC(AIM1+AINC(A2,A4)),YLOC(AJ),DOWN)	CNTR1110
	CNTR1120
50 IF (BETWEN(A2,A3).GT.0.0) GO TO 205	CNTR1130
IF (BETWEN(A3,A4).GT.0.0) GU TO 205	CNTR1140
CALL PLOT (XX, YY, UP) $DIFF = AINC(A2, A3)$	CNTR1150
	CNTR1160
CALL PLOT (XLOC(AIM1+DIFF), YLOC(AJ-DIFF), DOWN)	CNTR1170
GU TO 205	CNTR1180
55 IF (BETWEN(A2,A3).GT.0.0) GU TO 205	CNTR1190
11 1011011010101010101010101010100000000	CNTR1200

Nerrowan Nerrowan

.

۰.

		CNTR1210
	CALL PLOT (XX, YY, UP)	CNTR1210
	DIFF = AINC(A2,A3)	CNTR 1220
	CALL PLOT (XLOC(AIM1+DIFF), YLOC(AJ-DIFF), DOWN)	CNTR1230
	CALL PLOT (XLOC(AIM1+AINC(A2,A4)), YLOC(AJ), DOWN)	CNTR1240
	GO TO 205	CNTR1250
60	CALL PLOT (XX,YY,UP)	CNTR1260
	IF (BETWEN(A2,A4).LE.0.0) GO TO 65	CNTR1270 CNTR1280
	CALL PLUT (XLOC(A1),YY,DOWN)	CNTR1290
	GO TO 205	CNTR1300
65	CALL PLOT (XLOC(AIM1+AINC(A2,A4)), YLOC(AJ), DOWN)	CNTR1310
	CALL PLUT (XLOC(AT),YY,DOWN)	CNTR1320
	60 TO 205	CNTR1330
10	TF (EQUAL(A2).GT.TOL) GO TO 105 IF (EQUAL(A4).GT.TOL) GO TO 85	CNTR1340
	IF (EQUAL(A3).GT.TOL) GO TO 75	CNTR1350
	CALL PLOT (XLOC(A1),YLOC(AJM1),UP)	CNTR1360
	CALL PLOT (XLOC(AIM1),YLOC(AJ),DOWN)	CNTR1370
		CNTR1380
	CALL PLOT (XLOC(AI),YLOC(AJ),UP)	CNTR1390
15	1F (BETWEN(A1,A3).GT.0.0) GD TO 80	CNTR 1400
	CALL PLOT (XLOC(AIM1+AINC(A1,A3)),YLOC(AJM1),DOWN)	CNTR1410
on	CALL PLOT (XLOC(AIMI),YLOC(AJ),DOWN)	CNTR1420
00	GO TO 205	CNTR1430
85	IF (EQUAL(A3).LE.TOL) GO TO 100	CNTR1440
	IF (BETWEN(A1,A3).GT.0.0) GO TO 90	CNTR1450
	IF (BETWEN(A3,A4).GT.0.0) GO TO 95	CNTR1460
	CALL PLOT (XLOC(AIM1+AINC(A1,A3)),YLOC(AJM1),UP)	CNTR1470
	CALL PLOT (XLOC(AIM1), YLOC(AJ), DOWN)	CNTR1480
	GALL PLOT (XLOC(AI), YLOC(AJM1+AINC(A3,A4)), DOWN)	CNTR1490
	GO TO 205	CNTR1500
90	IF (HETWEN(A1,A4).GT.0.0) GD TO 205	CNTR1510
	IF (BETWEN(A3,A4).GT.0.0) GD TO 205	CNTR 1520 CNTR 1530
	CALL PLOT (XLOC(AIM1), YLOC(AJ), UP)	CNTR1540
	DIFF = AINC(A1,A4) CALL PLOT (XLOC(AIM1+DIFF),YLOC(AJM1+DIFF),DOWN)	CNTR1550
	CALL PLOT (XLOC(AIMI+DIPP), YLOC(AJMI+DIP), DOWN)	CNTR1560
	GO TO 205	CNTR1570
05	IF (BETWEN(A1,A4).GT.0.0) GO TO 205	CNTR1580
ر ب	CALL PLOT (XLOC(AIM1+AINC(A1+A3)),YLOC(AJM1),UP)	CNTR 1 590
	DIFF = AINC(A1,A4)	CNTR1600
	CALL PLOT (XLOC(AIM1+DIFF),YLOC(AJM1+DIFF),DOWN)	CNTR1610
	CALL PLOT (XLOC(AIM1), YLOC(AJ), DOWN)	CNTR1620
	GO TO 205	CNTR1630
100	IF (BETWEN(A1,A4).GT.0.0) GD TO 205	CNTR1640
-	CALL PLOT (XLOC(AI), YLOC(AJM1), UP)	CNTR1650
	DIFF = AINC(A1,A4)	CNTR1660
	CALL PLOT (XLOC(AIM1+DIFF),YLOC(AJM1+DIFF),DOWN)	CNTR1670
	CALL PLOT (XLOC(AIM1),YLOC(AJ),DOWN)	CNTR1680
	G0 T0 205	CNTR1690
105	IF (EQUAL(A3).GT.TUL) GO TO 130	CNTR1700
	IF (EQUAL(A4).LE.TOL) GO TO 120	CNTR1710
	IF (BETWEN(A1,A2).GT.0.0) GD TD 110	CNTR1720
•	IF (BETWEN(A2,A4).GT.0.0) GD TO 115	CNTR1730
	CALL PLOT (XLOC(AIM1), YLOC(AJM1+A1NC(A1,A2)), UP)	CNTR1740
	CALE PLOT (XLOC(AI), YLOC(AJMI), DOWN)	CNTR1750
	CALL PLOT (XLOC(AIM1+AINC(A2,A4)),YLOC(AJ),DOWN)	CNTR1760 CNTR1770
	GO TO 205 -1F (BETWEN(A1,A4).GT.O.D) GO TO 205	
110) 17 (1011)10月11日4月(10月)10日(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)	CNTR1780
	ー ドビーズ いたし ほたいし ひとう ふうしょうしょうしょう しっし コント アンフラ	
	[F (BETWEN(A2,A4).GT.0.0) GO TO 205 GALE PLOT (XLOC(AT).YLOC(AJM1).UP)	CNTR1190

. .

.

F-6

· ·

	DIFF = AINC(AL,A4)	CNTR1810
	CALL PLOT (XLOC(AIM1+DIFF),YLOC(AJM1+DIFF),DOWN)	CNTR1820
	GALL PLOT (XLUC(AIMI+DIPF), VLUC(AJMI+DIPF), DUWN)	
	GO TO 205	CNTR1840
115.	IF (BETWEN(A1,A4).GT.0.0) G0 TO 205	CNTR1850
115	CALL PLOT (XLOC(AI),YLOC(AJM1),UP)	
	$DIFF = AINC(Al_{1}A4)$	CNTR1870
	CALL PLOT (XLOC(AIM1+DIFF),YLOC(AJM1+DIFF),DOWN)	CNTR1880
	CALL PLOT (XLOC(AIM1),YLOC(AJM1+AINC(A1,A2)),DOWN)	CNTR1890
	GO TO 205	CNTR1900
. 120	$XX = X \downarrow OC(AI)$	CNTR1910
120	CALL PLOT (XX,YLOC(AJM1),UP)	CNTR1920_
	IF (BETWEN(A1,A2).GT.0.0) GO TO 125	CNTR1930
	CALL PLOT (XLOC(AIM1), YLOC(AJM1+AINC(A1,A2)),DOWN)	CNTR1940
125	CALL PLOT (XX, YLOC(AJ), DOWN)	CNTR1950
L 4 2	GO TO 205	CNTR1960
130	IF (EQUAL(44).GT.TOL) GO TO 145	CNTR1970
120	IF (BETWEN(A1,A2).GT.0.0) GO TO 135	CNTR1980
	IF (BETWEN(A1,A3).GT.0.0) GO TO 140	CNTR1990
	CALL PLOT (XLOC(AIM1+AINC(A1,A3)),YLOC(AJM1),UP)	CNTR2000
	CALL PLOT (XLOC(AI), YLOC(AJ), DOWN)	CNTR2010
	CALL PLOT (XLOC(AIM1), YLOC(AJM1+AINC(A1,A2)), DOWN)	CNTR2020
	GO TO 205	CNTR2030
135	IF (BETWEN(A2,A3).GT.0.0) GO TO 205	CNTR2040
	IF (BETWEN(A1,A3).6T.0.0) GO TO 205	CNTR2050
	CALL PLOT (XLOC(AIM1+AINC(A1,A3)),YLOC(AJM1),UP)	CNTR2060
	DIFF = AINC(A2,A3)	CNTR2070
	CALL PLOT (XLOC(AIM1+DIFF), YLOC(AJ-DIFF), DOWN)	CNTR2080
	CALL PLOT (XLOC(AI), YLOC(AJ), DOWN)	CNTR2090
	GO TO 205	CNTR2100
140	IF (BETWEN(A2,A3),GT.0.0) GO TO 205	CNTR2110
	CALL PLOT (XLOC(AIM1), YLOC(AJM1+AINC(A1,A2)), UP)	CNTR2120
	DIFF = AINC(A2,A3)	CNTR2130
	CALL PLOT (XLOC(AIM1+DIFF), YLOC(AJ-DIFF), DOWN)	CNTR2140
	CALL PLOT (XLOC(AI), YLOC(AJ), DOWN)	CNTR2150
	GO TO 205	CNTR2160
145	IF (BETWEN(A1,A3).LE.0.0) GO TO 170	CNTR2170
	IF (BETWEN(A1,A2).LE.0.0) GO TO 150	CNTR2180
	IF (BETWEN(A3,A4).GT.0.0) GO TO 205	CNTR2190
	CALL PLOT (XLOC(AI), YLUC(AJM1+AINC(A3,A4)), UP)	CNTR2200
	DIFF = AINC(A1, A4)	CNTR2210
	CALL PLOT (XLOC(AIM1+DIFF), YLOC(AJM1+DIFF), DOWN)	CNTR2220
	CALL PLOT (XLOC(AIMI+AINC(A2,A4)), YLOC(AJ), DOWN)	CNTR2230
	GO TO 205	CNTR2240
150	IF (RETWEN(A2,A4).GT.0.0) GO TO 155	CNTR2250
	CALL PENT (XLOC(AIMI), YLOC(AJM1+AINC(A1+A2)), UP)	CNTR2260
	DIFF = AINC(A2,A3)	CNTR2270
	CALL PLOT (XLOC(AIM1+DIFF),YLOC(AJ-DIFF),DOWN) CALL PLOT (XLOC(AIM1+AINC(A2,A4)),YLOC(AJ),DOWN)	CNTR2280 CNTR2290
		CNTR2300
	GO TO 205 IF ((ABS(A4-AL).GT.ABS(A3-A2))) GO TO 160	CNTR2310
	$= 1F ((ABS(A4-A(1),G1,ABS(A3-A2777),G0,10,16)) \\ = 1F ((BETWEN(A2,A3),G1,0,0)) G0 TO (205)$	CNTR2320
	DIFF = $AINC(42, A3)$	CNTR2330
	XX = XLOC(AIM1+DIFF)	CNTR2340
	XX = XLOC(AIMI+O)FF) $YY = YLOC(AJ-DIFF)$	CNTR2350
	GO TO 165	CNTR2360
	GU 10 165) [F (BETWEN(A1,A4).GT.0.0) GO TO 205	CNTR2370
[6]	D1FF = A1NC(A1, A4) = 01 = 02 = 01 = 02 = 02 = 02 = 02 = 02	CNTR2380
	XX = XLOC(AIM1+01FF)	CNTR2390
	YY = YLOC(AJM1+DIFF)	CNTR2400
		0.41.72400

.

165 CALL PLOT (XLOC(AI),YLOC(AJM1+AINC(A3,44)),UP)	CNTR2410
CALL PLOT (XX, YY, DOWN)	CNTR2420
CALL PLOT (XLOC(AIMI), YLOC(AJM1+AINC(A1, A2)), DOWN)	CNTR2430
GU [1] 205	CNTR2440
170 IF (BETWEN(A1,A2).GT.0.0) GO TO 185	CNTR2450
IF (BETWEN(A1,A4).GT.().0) GU TO 175	CNTR2460
CALL PLOT (XLOC(AIM1+AINC(A1,A3)), YLOC(AJM1), UP)	CNTR2470
DIFF = AINC(A1, A4)	CNTR2480
CALL PLOT (XLOC(AIM1+DIFF), YLOC(AJM1+DIFF), DOWN)	CNTR2490
CALL PLOT (XLOC(AIM1),YLOC(AJM1+AINC(A1,A2)),DOWN)	CNTR2500
GO TO 205	CNTR2510
175 CALL PLOT (XLUC(AIM1), YLUC(AJM1+AINC(A1,A2)), UP)	CNTR2520
$I = ((C - 41) \cdot 61 \cdot 70 \cdot 180)$	CNTR2530
CALL PLOT (XLOC(AIM1+AINC(A2,A4)), YLOC(AJ), DOWN)	CNTR254D
CALL PLDT (XLOC(AI)+YLOC(AJM1+AINC(A3,A4)), HP3	CNTR2550
CALL PLOT (XLOC(AIMI+AINC(AI+A3)) YI OC(AIMI) DOWN)	CNTR2560
GU TO 205	CNTR2570
180 CALL PLOT (XLOC(AIM1+AINC(A1,A3)), YLOC(AJM1), DOWN)	CNTR25R0
CALL PLOT (XLOC(AI),YLOC(AJM1+AINC(A3,A4)),UP)	CNTR2590
CALL PLOT (XLOC(AIM1+AINC(A2,A4)), YLOC(AJ), DOWN)	CNTR2590
GO TO 205	CNTR2610
185 IF (BETWEN(A3,A4).GT.0.0) GU TU 190	CNTR2620
CALL PLOT (XLDC(AIM1+AINC(A1,A3)), YI OC(AJM1), HP)	CNTR2630
DIFF = AINC(A2,A3)	CNTR2640
CALL PLOT (XLOC(AIM1+DIFF), YLOC(AJ-DIFF), UNWN)	CNTR2650
CALL PLOT (XLOC(AI),YLOC(AJM1+AINC(A3+A4)),DOWN)	CNTR2650
GO TO 205	CNTR2670
140 IF (BETWEN(A2,A4).GT.0.0) GD TO 205	CNTR2680
IF ((ABS(A4-A1).GT.ABS(A3-A2))) GO TO 195	CNTR2690
IF (BETWEN(A2,A3).GT.0.0) GD TO 205	CNTR2700
DIFF = AINC(A2, A3)	CNTR2710
XX = XLOC(AIM1+DIFF)	CNTR2720
YY = YLOC(AJ-DIFF)	CNTR2720
<u>GO TO 200</u>	CNTR2740
195 IF (BETWEN(A1,A4).GT.0.0) GD TO 205	
DIFF = AINC(A1, A4)	CNTR2750
XX = XLOC(AIM1+D1FF)	CNTR2760
YY = YLOC(AJM1+DIFF)	CNTR2770
200 CALL PLOT (XLOC(AIM1+AINC(A1,A3)), YLOC(AJM1), UP)	CNTR2780
CALL PLUI (XX,YY,DOWN)	CNTR2790
CALL PLOT (XLOC(AIM1+AINC(A2,A4)), YLOC(AJ), DOWN)	CNTR2800
t,	CNTR2810
	CNTR2820
C	CNTR2830
205 CONTINUE	CNTR2840
210 CONTINUE	CNTR2850
IF (.NOT.ISW) GO TO 10	CNTR2860
215 CONTINUE	CNTR2870
RETURN	CNTR2880
END	CNTR2890
	CNTR 2900

SUBROUTINE CONTUR

001

•

2

Þ

• • RETURN •

1=1+1

Appendix G

Ages.

Algorithm to Enhance Variations

Within a Category

G -1

Let u_i , S_i be the mean and covariance of category i, i = 1, ..., k. Define $B_{ik} = (u_i - u_k) (u_i - u_k)^i$. We would like to bring to zero all points from categories other than c_k , enhance all the variation in category c_k , and show this variation about a point away from zero.

The Algorithm

Compute t_i , i = 1, 2, ..., k, $i \neq k$ where t_i is the eigenvector of $S_i^{-1}(S_k + B_{ik})$ with largest eigenvalue.

Normalize t_i so that

$$t_{i}^{\prime}(u_{k}^{\prime}-u_{i}^{\prime})=1$$
 $i=1,...,k, i \neq k.$

This normalization makes it so that

if $\mathbf{x} \in \mathbf{c}_k$, $\mathbf{E} \left[\mathbf{t}_i \left[\mathbf{x} - \mathbf{u}_i \right] \right] = \mathbf{t}_i \left(\mathbf{u}_k - \mathbf{u}_i \right) = 1$

and

if
$$x \notin c_k$$
, $x \notin c_j$ for some j, and $\mathbb{E}[t_j'(x - u_j)] = 0$

For any x compute $t_i^{\dagger}(x - u_i)$. Define $f(x) = \min \quad t_i^{\dagger}(x - u_i)$. i $i=1,\ldots,k$ $i \neq k$

, **4**73**5**

The following theorem and proof show how t_i is determined. In this

theorem the covariance S_k of dategory c_k is used rather than the combined

¹Private Communication from R. M. Haralick, Remote Sensing Laboratory, University of Kansas, Center for Research, Inc. covariance S_k , within category c_k , and B_{ik} , between categories c_i and c_k .

Hence the theorem obtains t_i from $S_i^{-1}S_k$ rather than from $S_i^{-1}(S_k + B_{ik})$. Inclu-

sion of the between-category variance term B_{ik} makes use of the separation of the category sample means.

Theorem: Let f: $\mathbb{R}^{N} \longrightarrow \mathbb{R}$ be defined by $f(t) = \frac{V[t^{t}x|c_{2}]}{V[t^{t}x|c_{1}]}$. Then f has a

global maximum of e where t is the eigenvector of $S_1^{-1}S_2$ having largest eigen-

value e. (S_i is the covariance matrix for category c_i , i = 1, 2).

Proof: To maximize $\frac{V[t'x|c_2]}{V[t'x|c_1]}$, we will maximize $V[t'x|c_2]$ under the

constraint V $[t^ix | c_1] = k$.

Consider $g(t) = V [t'x | c_2] - e (V [t'x | c_1] - k)$.

$$= E\left[\left| \left| t'x - E[t'x | c_2] \right| \right|^2 | c_2 \right] - e\left(E\left[\left| \left| t'x - E[t'x | c_1] \right| \right|^2 | c_1 \right] - k \right) \right]$$

Expanding the norm and letting $u_2 = E[x | c_2]$ and $u_1 = E[x | c_1]$, we obtain

$$g(t) = E [(x - u_2)'t t'(x - u_2) | c_2] - c \left(E [(x - u_1)'t t'(x - u_1) | c_1] - k \right) \\ = E [trace (tt' (x - u_2) (x - u_2)' | c_2] \\ - c \left(E [trace (tt' (x - u_1) (x - u_1)' | c_1] - k \right) \right)$$

Since trace is a linear operator, we may interchange the expectation with the trace.

2

G-3

•

Ļ

•

٠,

•

 $i \neq n$ $i \neq n$ $j \neq n$

.

. .

ŧ

;

.

+
$$t_n \sum_{\substack{j=1\\ j \neq n}}^{N} t_j (s_{jn}^{(2)} - c s_{jn}^{(1)})$$

+
$$\sum_{i=1}^{N} t_i t_n (s_{ni}^{(2)} - c s_{ni}^{(1)}) + c k$$

i/n

+
$$t_n t_n (s_{1n}^{(2)} - e s_{nn}^{(1)})$$

Hence,

$$\begin{split} \partial E \\ \partial t_{N} &= \sum_{\substack{j=1 \\ j\neq n}}^{N} t_{j} (s_{jn}^{(2)} - e s_{jn}^{(1)}) + \sum_{\substack{i=1 \\ i\neq n}}^{N} t_{i} (s_{ni}^{(2)} - e s_{ni}^{(1)}) \\ &+ 2t_{n} (s_{nn}^{(2)} - e s_{nn}^{(1)}) \\ &+ 2t_{n} (s_{nn}^{(2)} - e s_{nn}^{(1)}) \\ &= 2 \left\{ \sum_{\substack{i=1 \\ i=1}}^{N} (s_{ni}^{(2)} - e s_{ni}^{(1)}) t_{i} \right\}, \text{ by symmetry of } S_{1} \text{ and } S_{2} \\ &\text{Setting } \frac{\partial g}{\partial t} = 0, \text{ we have} \\ &\sum_{\substack{i=1 \\ i=1}}^{N} (s_{ni}^{(2)} - e s_{ni}^{(1)}) t_{i} = 0, n = 1, 2, \dots, N; \end{split}$$

or in matrix form

 $(S_2 - eS_1) t = 0.$

Hence, $S_2 t = e S_1 t$ or $S_1^{-1} S_2 t = e t$ so that it is necessary for t to be an eigen-

vector of $S_1^{-1}S_2$ having corresponding eigenvalue e.

To see which eigenvector, we will evaluate f(t) for those cases when t is an

eigenvector of S₁⁻¹S₂.

4

$$f(t) = \frac{t'S_2t}{t'S_1t}$$
 and $S_1^{-1}S_2t = ct$.

$$f(t) = \frac{t'S_2t}{t'S_1\frac{s_1^{-1}S_2t}{s_1}} = \frac{t'S_2t}{t'S_1S_1^{-1}S_2t} = e\frac{t'S_2t}{t'S_2t} = e$$

Therefore it should be that eigenvector of $S_1^{-1}S_2$ with largest eigenvalue e.

G~6

Appendix H

Computer Programs to Implement the

Algorithm of Appendix G

H-1

C
C THIS PROGRAM IS AN IMPLENTATION OF AN ALGORITHM TO ENCHANCE CATEGORY C VARIATIONS. PERIODIC REFERENCES ARE MADE TO A PAPER ENTITLED ENCHANCING
THE REPORT OF TH
C TO AS THE ECV PAPER.
REAL IAA, IAB, IAC, IAD, IAAS, IABS, IACS, IADS
REAL IARM, IRCM, ICDM, IACM, IBDM, IADM
INTEGER*2 CATEG,CLEN,COL,ROW,MCOLL,MROWL,CAT,HOWRED
INTEGER*2 X(5,128,128),FLAG(100)
DIMENSION B(10), WORKV1(4), WORKV2(4)
DIMENSION BUIK(4,4)
DIMENSION FMT(15)
DIMENSION S(5,4,4)
DIMENSION SI(4,4)
DIMENSION SK(4,4)
DIMENSION SKA(4,4)
DIMENSION TI(4,4)
DIMENSION U(4,2)
DIMENSION UA(4)
DIMENSION UCATEG(4)
DIMENSION $U1(4), U2(4)$
C C THE FIRST DATA CARD CONTAINS THE NUMBER OF THE CATEGORY OF INTEREST,
C THE FIRST DATA CARD CONTAINS THE NUMBER OF THE CATEGORY OF INTEREST? C THE NUMBER OF CATEGORIES, THE NUMBER OF COLUMNS AND ROWS IN THE INPUT
C MATRIX, AND A NUMBER FOR THE READ TYPE FOR THE INPUT MATRIX.
READ (5,200) CATEG, CLEN, MCDLL, MROWL, NREAD, HOWRED
WRITE (6,211) CATEG, CLEN, MCOLL, MROWL, NREAD, HOWRED
С
C READ THE FORMAT FOR READING IN THE INPUT MATRIX X.
READ (5,210) FMT
C
C INITIALIZE THE INPUT MATRIX X.
DO 121 K=1,128
00 120 J=1,128
X(1,J,K)=1
DO 120 I=2,5 x(I,J,K)=0
120 CONTINUE
121 CONTINUE
C
C READ IN THE MATRIX DATA IN THE FORM X(CAT,ROW,COL).
IF (HOWRED.NE.T) GO TO 450
READ (NREAD) X
GO TO 451
450 READ [NREAD, FMT] [[[X[1,J,K],[=1,5],J=1,MROWL],K=I,MCOLL]
C · · ·
C GO THROUGH THE INPUT DATA FOR EACH CATEGORY.
451 DU 100 CAT=1,CLEN
NUMBER=0
$\frac{1 \text{AB}=0}{1 \text{AC}=0}$
IAC=0 IAD=0
IA0=0 IA4S=0
[ABS=0
IA03=0
1403-0 1ABM=0
18CM=0

·

.

н-2

.

.

1CDM=0
IACM=0
IBDM=0
IADM=0
C GO THROUGH THE INPUT MATRIX TO GET EACH DATA POINT IN THE CATEGORY.
DO 101 COL=1,MCOLL
DO 102 ROW=1,MROWL
IF (X(1,ROW,COL).NE.CAT) GO TO 102
NUMBER=NUMBER+1
11=X(2,ROW,COL)
12=X(3,ROW,COL)
13=X(4,ROW,COL)
14=X(5,ROW,COL)
$\mathbf{I} \mathbf{A} \mathbf{A} = \mathbf{I} \mathbf{A} \mathbf{A} + \mathbf{I} \mathbf{I}$
IAB=IAB+I2
IAC = IAC + I3
$\mathbf{I} \Delta \mathbf{D} = \mathbf{I} \Delta \mathbf{D} + \mathbf{I} \mathbf{A}$
$IABS = IABS + I2 \times I2$
$IACS = IACS + I3 \times I3$
$IABM = IABM + I1 \times I2$
IBCM=IBCM+I2*I3
ICDM=1CDM+13*14
IACM=IACM+I1*I3 IBDM=IBDM+I2*I4
$1 \text{ ADM} = 1 \text{ ADM} + 12 \times 14$ $1 \text{ ADM} = 1 \text{ ADM} + 11 \times 14$
102 CONTINUE
101 CONTINUE
fLAG(CAT)=0
C THIS TEST IS TO PREVENT DIVISION BY ZERO.
IF(NUMBER.NE.O) GO TO 400
FLAG(CAT)=1
GO TO 100
C FORM THE MEAN FOR EACH BAND.
400 AN=IAA/NUMBER
BN=1AB/NUMBER
CN=IAC/NUMBER
. DN=IAD/NUMBER
WRITE (6,202) AN, BN, CN, DN, CAT, NUMBER
C FORM THE MEAN MATRIX
U(1,CAT) = AN
U(2,CAT)=BN U(3,CAT)=CN
U(4,CAT)=CN -
C FORM THE COVARIANCE MATRIX
S(CAT+1+1)=IAAS/NUMBER-AN*AN
S(CAT, 1, 2) = IABM/NUMBER-AN *BN
S(CAT+1+3) = IACM/NUMBER-AN*CN
S(CAT,1,4)=IADM/NUMBER-AN*DN
S(CAT, 2, 1) = S(CAT, 1, 2)
S(CAT, 3, 1) = S(CAT, 1, 3)
S(CAT, 4, 1) = S(CAT, 1, 4)
S(CAT, 2, 2)=IABS/NUMBER-BN*BN
S(CAT, 2, 3) = I HCM/NUMBER-BN*CN
S(CAT,2,4)=IBDM/NUMBER-BN#DN
S(CAT, 3, 2) = S(CAT, 2, 3)
S(CAT,4,2)=S(CAT,2,4)
S(CAT, 3, 3) = IACS/NUMBER-CN#CN
S(CAT, 3, 4)=ICDM/NUMBER-CN*DN
·

н-3

S(CAT,4,3)=S(CAT,3,4) S(CAT,4,4)=IADS/NUMBER-DN*DN 100 CONTINUE DO 105 J=1,4 UCATEG(J)=U(J,CATEG) DO 106 K=1+4 SK(J,K)=S(CATEG,J,K) 106 CONTINUE 105 CONTINUE WRITE (6,203) CATEG WRITE (6,204) (UCATEG(I),(SK(I,J),J=1,4),I=1,4) DD 103 CAT=1.CLEN IF (CAT.EO.CATEG) GO TO 103 [F(FLAG(CAT).E0.1) G0 TO 103 DO 104 J=1,4 U1(J)=U(J,CAT) U2(J)=U1(J) 00 107 K=1,4 SI(J,K) = S(CAT, J,K)107 CONTINUE 104 CONTINUE WRITE (6,205) CAT WRITE (6,206) (U1(I),(SI(I,J),J=1,4),I=1,4) С SUBTRACT THE MEAN MATRIX. C CALL GMSUB(U1,UCATEG,UA,4,1) UT NOW BECOMES THE TRANSPOSE OF UA. σ CALL GMTRA (UA,U1,4,1) С FORM THE PRODUCT WHICH IS B(IK) IN THE ECV PAPER. C CALL GMPRD (UA,U1,BUIK,4,1,4) C ADD THE SK MATRIX AND B MATRIX WHICH WAS JUST FORMED. C CALL GMADD (SK, BUIK, SKA, 4, 4) С FORM THE INVERSE OF THE SI MATRIX. Ĉ CALL MINV (SI,4, DET, WORKV1, WORKV2) С FORM THE PRODUCT STITINV*(S(K)+B(I,K)). C CALL GMPRD (SI, SKA, TI, 4, 4, 4) С FORM THE EIGENVALUES AND EIGENVECTORS. C К=0 DO 113 J=1,4 DO 113 T=1,J K = K + 1113 B(K)=TI(I,J) ۳Ē. CALL EIGEN (8,TI,4,0) FORM A SCALAR TO NORMALIZE THE EIGENVECTOR. С SCALA1=-TI(1,1)*UA(1)-TI(7,1)*UA(2)-TI(3,1)*UA(3)-TI(4,1)*UA(4) WRITE (6,223) SCALA1,B(1) IF (SCALAL.NE.O) GO TO 401 WRITE (6,212) CAT, (TI(1,1), I=1,4) GD TO 103 401 00 114 1=1+4 C' FORM THE NORMALIZED EIGENVECTOR. 114 TI(I,1)=TI(I,1)/SCALA1 WRITE (6,201) CAT, (TI(1,1),J=1,4)

н-4

WRITE (7,215) (U2(J),J=1,4),CAT WRITE (7.215) (TI(I.1), I=1.4), CAT 103 CONTINUE CAT IS USED TO IDENTIFY THE CATEGORY IN DIFFERENT LOOPS THROUGH THE Ć PRUGRAM AND ALSO AS A SUBSCRIPT FOR ARRAYS. C CATEG IS THE CATEGORY TO BE ENHANCED. С CLEN IS THE NUMBER OF CATERGORIES. C COL & ROW ARE USED AS SUBSCRIPT VARIABLES IN A LOOP TO GET THE DATA С FROM THE INPUT MATRIX WITH MCOLL AND MROWL BEING THE LIMITS OF COL AND C. ROW IN THE LUDP. C HOWRED IS CODE FOR READING INPUT DATA: IF 1, READ FROM DISK UNFORMATED. С IAA IS THE SUMMATION OF THE VALUES IN BAND 1. IAB IS THE SUMMATION OF THE VALUES IN BAND 2. C. C TAC IS THE SUMMATION OF THE VALUES IN BAND 3. C IAD IS THE SUMMATION OF THE VALUES IN BAND 4. С IAAS-IADS ARE THE SUMMATIONS OF THE SOUARES OF THE INPUT NUMBERS. C IABM-IADM ARE THE SUMMATIONS OF THE CROSS PRODUCTS OF THE INPUT NUMBERS. С 11-14 ARE THE INPUT VALUES IN EACH LIGHT BAND. С NCOLL IS THE NUMBER OF COLUMNS IN THE DATA MATRIX. C NREAD IS USED TO SPECIFY INPUT TYPE. С NROWL IS THE NUMBER OF ROWS IN THE DATA MATRIX. С NUMBER IS THE NUMBER OF VALUES IN A CATEGORY. C С 200 FORMAT (13,3X,13,3X,13,3X,13,3X,13,3X,13) 201 FORMAT ('0',3X,'CATEGORY IS ',12,6X,'TI=',E14.7,3X,E14.7,3X,E14.7, 13X,E14.7) 202 FORMAT (', 'AN=', F6.2, ' BN=', F6.2, ' CN=', F6.2, ' DN=', F6.2, ' C LATEGORY IS ', 12, ' NUMBER=', 16) 203 FORMAT ('-',3X,'CATEGORY IS ',12,10X,'UCATEG',10X,'SK MATRIX') 204 FORMAT ('0',27X,F6.2,12X,F6.2,5X,F6.2,5X,F6.2,5X,F6.2) 205 FORMAT (-- +, 3X, 'CATEGORY IS ', 12, 10X, 'U1', 14X, 'SI MATRIX') 206 FORMAT (+0+,27X,F6.2,13X,F6.2,5X,F6.2,5X,F6.2,5X,F6.2) 210 FURMAT (20A4) 211 FORMAT (' ', 3X, 'CATEG=', 12, ' CLEN=', 12, ' MCOLL=', 12, ' MROWL=', I 12. NREAD='.I2. HOWRED='.12) 212 FORMAT (' ', 3X, 'FOR CATEGORY=', 12, ' THE SCALAR IS ZERD. ', 10X, 'TI=' 1.4(3X,E14.7)) 223 FORMAT ('O', 20X, 'SCALA1=', FB.4, 10X, 'EIGENVALUE IS ', E14.7) Ċ. B, WORKVI, AND WORKVZ ARE VORK AREA VECTORS. Ć BUIK REFERS TO THE B(IK) IN THE ECV PAPER. FLAG IS USED FUR A CONDITION CODE, WHEN A CATEGORY IS NOT USED. С C FMT IS READ IN AS THE FORMAT OF THE INPUT MATRIX X. C S REFERS TO THE COVARIANCE MATRIX IN THE ECV PAPER. SI REFERS TO THE S(I) MATRIX IN THE ECV PAPER. Ĉ SK REFERS TO THE S(K) IN THE ECV PAPER. C SKA IS THE SUM OF S(K) AND B(IK) IN THE ECV PAPER. С TI IS THE EIGENVECTOR WITH THE LARGEST EIGENVALUE. C U IS A MATRIX USED TO FIND THE MEAN. C UA IS THE DIFFERENCE OF U(I) AND U(K). UCATEG REFERS TO THE U(I) IN THE ECV PAPER. UI AND U2 REFERS TO THE U(I) IN THE ECV PAPER. C C X IS THE INPUT MATRIX STORAGE AREA. C STOP END //GO.SYSIN DD * //GD.FT18F001 DD DSN=COBLA2.ASHUAND.SEP19-72.DTSP=SHR 2 4 5 1 (12,12,12,12,12)

٠.

H-5

	C THIS PROGRAM USES THE EIGENVECTORS AND MEAN VECTORS, FORMED IN AN EARLIER
	C PROGRAM, TO FIND MINIMUM VALUES FOR THE INPUT MATRIX.
	INTEGER COUNT, FLAG, HOWRED, VECLEN
	INTEGER*2 COL, DEPTH, ROW
	INTEGER*2 CAT(99), CAT2(128, 128), XDATA(5, 128, 128)
	DIMENSION AMEAN(99,4), DIFF(99,4), EVECT(99,4)
	DIMENSION FMT1(15), FMT2(15), FMT3(15), FMT4(15), FMT5(15)
	DIMENSION PROD(99), PROD2(128,128)
	C THE FIRST DATA CARD CONTAINS: CODE FOR TYPE OF INPUT AND OUTPUT.
	C THE DIMENSIONS OF THE INPUT DATA, AND THE NUMBER OF INPUT DATA BLOCKS.
· .	READ (5.200) NREAD,ROW,COL,DEPTH,NWRITE,NUMX,HOWRED
	WRITE (6,402) NREAD, ROW, CUL, DEPTH, NWRITE, NUMX, HUWRED
	C READ THE INPUT AND OUTPUT FORMATS.
	READ (5,201) FMT1
	READ (5,201) -MT2
	READ (5,201) FMT3
	READ (5,201) -MT4
	READ (5,201) FMT5
	WRITE (6,411) FMT1
	WRITE (6,412) FMT2
	WRITE (6,413) FMT3
	WRITE (6,414) FMT4
	WRITE (6,415) EMT5
	VECLEN=ROW-1
	NUM=0
	100 COUNT=1
	NUM=NUM+1
	C READ THE EIGENVECTORS, THE MEAN, THE ASSOCIATED CATEGORY NUMBER, AND A FLA
	102 READ (NREAD,FMT1) (AMEAN(COUNT,12),12=1,VECLEN)
	READ (NREAD, FMT2) (EVECT(COUNT, 12), 12=1, VECLEN), CAT(COUNT), FLAG
	C PUT 999 IN COLUMNS 73-75 ON THE LAST DATA CARD AFTER CAT.
	C FLAG IS USED FOR ESCAPING FROM THE READ LOOP WHEN THE LAST EIGENVECTOR
	C IS READ.
	IF (FLAG.E0.999) GO TO 151 COUNT=COUNT+1
	COUNT = COUNT + 1
	<u>GO TO 102</u>
	C READ DATA IN THE FORM X(ROW+COL+DEPTH).
	151 IF (HOWRED.NE.1) GO TO 150 READ (NREAD) XOATA
	GO TO 101
	GO TO IDI 150 READ(NREAD,FMT3)(((XDATA(I1+I2+I3),I1=1,ROW),I2=1+COL),I3=1+DEPTH)
	101 DU 300 K1=1, DEPTH
	D0 301 K3=1,COL
	C SET VALUE USED IN FINDING THE MINIMUM VALUE.
	PRUD2(K1,K3)=999
	DO 302 $I = 1, COUNT$
	C CALCULATE THE DIFFERENCE (DIFF) FOR EACH POINT.
<u> </u>	DO 303 K2=1, VECLEN
	DIFF(I,K2)=XDATA(K2+1,K3,K1)-AMEAN(I,K2)
	303 CONTINUE
***	C CALCULATE THE SCALAR PRODUCTS.
	PROD(I)=0
	DU 305 J=1.VECLEN
ta ay a dari dalah sana ay ay ay ay ata salahan dari ay ay ay	305 PROD(1)=PROD(1)+EVECT(1,J)*DTFF(1,J)
	C FIND MINIMUM PROD.
	IF (PROD(L).NE.PROD2(K1,K3)) GO TO 103
and a second	C IF THE SCALAR IS EQUAL TO ANOTHER SCALAR FOR A POINT, PRINT BUT DON'T
	C CHANGE PROD2 OR CAT2.

WRITE (6,400) PROD(I),CAT(1),K1,K3,CAT2(K1,K3),I GO TO 302 103 IF (PROD(1).GT.PROD2(K1.K3)) GO TO 302 SAVE THE MINIMUM PROD2 AND THE RESPECTIVE CATEGORY. C. PRDD2(K1+K3)=PRDD(I)CAT2(K1+K3)=CAT(I) 302 CONTINUE 301 CONTINUE 300 CONTINUE WRITE (6,403) NUM WRITE (NWRITE, FMT4) ((PROD2(12,11),11=1,COL),12=1,DEPTH) WRITE (6.404) WRITE (NWRITE, FMT5) ((CAT2(12,11),11=1,COL),12=1,0EPTH) IF (NUM.NE.NUMX) GO TO 100 AMEAN IS THE MEAN VECTORS. C CAT IS A VECTOR WITH CATEGORY IDENTIFICATION FROM THE FIRST PROGRAM. С CAT2 IS USED TO STORE THE CATEGORY ASSOCIATED WITH THE MINIMUM PROD. COL IS A DIMENSION OF THE INPUT MATRIX XDATA. С C. COUNT IS THE NUMBER OF EIGENVECTORS AND MEAN VECTORS. Ċ DEPTH IS A DIMENSION OF THE INPUT MATRIX XDATA. C DIFF IS A VECTOR OF THE INPUT DATA MINUS THE MEANS. Ĉ EVECT IS THE EIGENVECTORS. C. FLAG IS USED TO STOP A READ LOOP. C FMT1 IS THE FORMAT FOR READING AMEAN. FMT2 IS THE FORMAT FOR READING EVECT, CAT, AND THE FLAG. C. EMT3 IS THE FORMAT FOR READING THE INPUT DATA (XDATA). C. FMT4 IS THE DUTPUT FORMAT FOR PROD2. Ĉ FMT5 IS THE OUTPUT FORMAT FOR CAT2. С HOWRED IS CODE FOR READING INPUT DATA, IF 1, READ FROM DISK FORMAT 4042. NREAD IS A CODE FOR THE TYPE OF INPUT. NUM IS USED TO TEST FOR THE LAST DATA BLOCK. C. Ĉ С NUMX IS THE NUMBER OF INPUT DATA BLOCKS. С. NWRITE IS CODE FOR THE TYPE OF OUTPUT. Ĉ PROD IS THE SCALAR PRODUCT OF THE EVECT VECTOR AND DIFF VECTOR. С PROD2 IS USED TO STORE THE MINIMUM PRODUCT (PROD). C ROW IS A DIMENSION OF THE INPUT MATRIX XDATA. C VECLEN IS USED AS A LIMIT FOR LOOPS AND IS THE NUMBER OF LIGHT BANDS. С XDATA IS THE INPUT DATA. С C 200 FORMAT (13,3X,13,3X,13,3X,13,3X,13,3X,13,3X,13,3X,13) 201 FURMAT (2044) 400 FORMAT (, 3X, PRDD= , F6.2, CAT= , 12, CAT2(, 12, , 12,)= 1,12,* I=++12) 401 FORMAT ('0',10X, 'THERE ARE TWO EQUAL MINIMUM VALUES.') 402 FORMAT (11,3X, NREAD= ,12,3X, RUW= ,12,3X, COL= ,12,3X, DEPTH= ,1 12,3X, 'NWRITE=',12,3X, 'NUMX=',12,' HOWRED=',12) 403 FORMAT (*0*,6X,*MINIMUM F(X) MATRIX FROM DATA SET NUMBER*,13) 404 FORMAT (TTT, 6X, CATEGORY MATRIX') 411 FORMAT (' '+' FMT1 +20A4) 412 FORMAT (.... 1,20A4) FMT2 +20447 FMT3 -413 FORMAT (**** EMT4 1,20A4) 414 FORMAT (* *,* FMT5 +,20∆4) 415 FORMAT (* *,* STOP END

H-7

//GD.SYSIN DD*

DSN=COBLA2.ASHLAND.SEP19-72.DISP=SHR //GO.FT18F001 00 5 5 4 4 6 1 (E14.7,3X,E14.7,3X,E14.7,3X,E14.7,15X) (E14.7.3X,E14.7,3X,E14.7.3X,E14.7.3X,I2.2X,I3.5X) (12,12,12,12,12) (1, E14.7, 3X, E14.7, 3X, E14.7, 3X, E14.7) (* *,12,3X,12,3X,12,3X,12) 0.1520000E+02 0.3050000E+02 0.1770000E+02 0.2250000E+02 0.6687719E-01 0.1727624E-01 -0.5513757E-02 -0.8726493E-02 2 999 22420 731 220311828 217191934 214231227 219231730 2 9141224 136301425 23223 931 213271133 129281826 127231533 13224 934 213222530 . 216232237 132251429 13423 934 /* .

H-8