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GEOMETRIZAL CORRAJTION FASTORS FOR HzAT FLUX METZRS
Kenneth J. Baumelster
3. Stephen Papell
ABSTRACT
General formulas are derived for determwlnling gage averagiag
errors of strip-type heat flux meters used in the wmeasurement of
one-dimensional heat flux distribvutions. The local averaglmg error
e(x) is defined as the difference between the meésured value of the
neat flux and the local value which occurs at the center of the gage.
In terms of e(x), a correction procedure 1s presented which allows
s better estimate for the true value of the local heat flux. rFor
many practical problems, 1t is possible to use relatively large

gages to obtain acceptable heat flux measurements.

INTRODUCTION

The aviation and power-generation industries have been
concerned with heat flux measurements (refs. 1 and 2). Prior
to 1960, measurements of heat flux (ref. 3) were geﬁerally concerned
with average values taken over large areas. HoweVer, because of
jnterest in prediction of local temperature gradients and thermal
stresses, such as in the thermal dgéign of turbine blades, recent
work has been concerned with local heat flux measurements,

A heat flux gage measures the average heat flux across its face,
rather than 2 local value at 1ts center (see Fig. 1). In principle,
the smalleét possible heat flux gage should be used for accurate
local heat flux measurements because the averaging error e(x)
(difference between the center value ani the average value of the

heat flux) will decrease for smaller gage glzes, However, the gmaller



thelsize of the gage the greater will be the fabrication, handling,
and callbration costs. Clearly, some optimum cholce of gage size
will generally be required, dépending on the heat flux distribution
and accuracy required. In choosing a heat flux meter, such as a
slug-type, Gardon, or ablatlion calorimeter, the experimenter 1is
faced with the choice of gage size. The motivatlon for this paper
i1s to provide the experimenter with a simple means of estliwating
the effect of gagze slzeon the accuracy of his experiment.

Gardon and Akfirat {ref. 4) measured the local Leat transfer
coefficlent under ifwpinglng axlsymmetrical and slotted jets.
They used a small 0.9 - millimeter - diameter Gardon type heat
flux meter. Because of the swmall size of thelr meter, we would
naturally expect very good local measgfements. dowever, they did
experience some calibration problems with thelr gages reported
in an earlier paper (ref. 5), On thelother hand, Tabakoff and
Clevenger (ref. 6) used relatively large (3.8 cm wide) heat flux
measurement devices (electrical heaters) to measure their heat
transfer distribution., As a result of the relatively large heater
size, the actual local heat transfer coe?ficient at the stagnation

point 1s higher than the average measured value.

A formula for correéting measured heat flux data to
account for gage slze averaging 1s presented., As an.example,
the correction procedure will be applied to the data of Tabakoff

and Clevenger (ref. 6).



SYMBOLS

a constant

C’CO?Cl’CE constants

D diameter of hole

e probe averaging error (true value)
é probe averaging error (estimated value)
H distance between holes

h heat transfer coefficient -~

L characteristic lepgih (see eq, (2))

Nu Nusselt number |

Pr Prandtl number

q heat flux

ameas measured '"averaged'’ heat f,lu-x-.

X distance from stagnation point

AX probe size (see fig. l2)

Zn distance from slot jet to surface

B constant (see eq. (15))

7 dimensionless distance, ‘x/L |

Ay dimensionless width of gi‘qbe, Ax/L



ERROR ANALYSIS
Averagling Erfpr

Consider the one-dimensional hegt ﬁlux distribution q(x),
8s shown in flgure 2, which is being measured by a heat flux meter
of size AX, For the purpose of this report, we assume that the
gage measures exactly the total heat flux that falls on 1t;-that
ls, we assume that we can account for all losses ffom the heat flux
meter, such as temperature gradients elong the wall, and
correct for them (for example- ses re£, 7),‘In'this gection, we are
concerned o¢only with the problem of a 1arge probe diameter washing
out locgl effects, 7

The average heat flux measur?d'by thé“gggq can be expressed

1 a2 R
q () = — : - - - Q
meag' " QU'AZ&WQ ‘mﬂMﬂ:. o ‘)

as

where 1 1is a dimensionless distance chosen as

; ap=52% I (2)
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Thus, the error in the measursment of-the‘ldcal heat flux-can

be expressed as

meéwz()d
e(n) = ﬁ*.‘l?gs(n) ~am) - ”’An{z.jq? i - 1. O (3)
q(n) Anqg(n) o

By using equation (3}, we can evaluate the errors assoclated with
gome common g(n) distributions for various gimensianless probe

sizes An .



Correction FProcedure

The application of corrections to raw data 1s commonplace
in englineering. The temperature distribﬁtions on the insides of tubes
are often determined from measurements taken on the outside of
tubes by appropriate consideration of the thermal conductivities
of the tubes and other operating paraweters., In a simllar nanner,
the heat flux measurements cen also be corrected to account for
the error due to probe averaging;

Rearrenging the left hand side of equation (3) ylelds

El‘meas(") (4)
e(n)+1

q(m =

where the varlous expressions for e{n) will be given later ln
this report.

This correctisr technlque is simple to use. Thus, relatively
large heat flux weters can be used to;obtéih‘aé¢ﬁptab1e local

data in many case if equation (4) is applled to the data.

General Case
Before we begln investigating specific hegt flux distributions,
1eét us consider properties of q(n) which could lead to measurement
errors. The function g(n) can be expanded in a Taylor serles

about any point "a" as follows:

2
a(n = a(a) + (1 - ﬂ)(11(3)+£y—;—‘1)—tln(a) L. (5)
where (I and II) represent derivatives with respect to n.
Substituting equation (5) into equation (3) and performing the
integration gives
1 II,, 2
e(n):.‘l(_"l)_- 1+5L_(_:ﬂ(7;— a) 4-51_ji}l (n - a').2 +.‘§_7?_ + . . .(6)
a(7) a7) 2q(7) 12



The location of the parameter "a" could be at some fixed polnt
in the coordinate system, such as n = 0, or at the center of the
heat flux gage. The simplest expression results when we expand about
the center of the gage {(a = n). In thls case, the error 1n
the heat flux meter can be expressed as

A' e(n) ~ 4 (m MZ (7)

11
aln) 24

The error, therefore, is proportional to the square of the slze
of the heat flux meter and to the second spatial derivative of
heat flux. Consideration of higher terms in the Taylor series

indicates that equation (7) is valid provided that

Vip sl oy (8)
qH(T]) 80 ' :
Peaks
The manner in which the heat flux gage is used 1s also

extremely important in sizing the gagé. If thé gagé can be positioned
at all values of x, as was done by Gardon and Akflrat in
reference 4 by moving their plate and heat flux gage relative to
g fixed jet, then any local heat flux peaks have a much better
chance of belng observed. On the other hand, 1f for a particular
efperiment the gages must be placed in a fixed position, as
was done in reference 6, thnen it will not be possibdle to
determine 1f any local peaks occur within one gage size.
Also, for very small fixed gages, local peaks between the gages
w11l also go undetected. A local peak, for example, wight occur if
the boundary layer changes from lamlinar to turbulent flow, that 1s,

1f transitlion occurs,



The expression for the error just derived 1ln equatlon (7)
is lnconvenlient to use when any part of the heat flux gage crosses
a peak, such as might occur at a stagnation polnt, because of
the large‘number of terms that woﬁld be needed to express a
continuous function for the peak. In the prevlous analysis, it was
assumed that the o0dd derivatlves were continuous across the gage
center, at n = 0, and thus did not contribute in the integration
of equatlon (3)., However, at a flux peak, symmetry is now assumed
to exist for all terms in the Taylor expanslion. This means that the
odd power derivatlves are discountinuous a£ the-origin. dence,

equation (3) becomes An/2 '
: 2_/ a(mdy )
e(0) = 20 -1

A7 q(0)

Yo" in equatlon (3)

For thls special case, the paraméter
takes on the value of zero, and the Taylor serles reduces to
a Maclaurin series, Substituting the Maclaurin series into
equation (9) and performing the specified integration gives

. I 2 I 3 v 4 1
e(0) = Q) A1, aT(0) A0 g (0) A1 g T(O) A, Ho)

q(0) 4 q(0) 24 q(0) 192 g(0) 1920

or to second order

e(0) ~ 40) An, Y0 arf (11)

q(0) 4 q(0) 24
As can be seen from equation (11), both the odd and even
derivatives contriduted to the erfor, in contrast to equation (7),
in which only the even order terms contributed to the error.
Noﬁe, 1f tne heat flux is expanded in terms of even functions so that
the first dérivatives are zero at the origin, then equations (7)

and (11) are identical



CURVE FITTING
The heat flux distribution can be approximated in general
by & power serles. Now, we will apply the general theory to a
simple second-order polynomlal apbroximation torq(n) and
an exponential approximation. These two distributions were chosen
because they can bg used to approximate many practical heat flux

distributlions.

Polynomial
In certain experiments the measured heat flux distributlen

can be written in terms of a polynomial of the form

_ I1R.)
4(m) = Cy+ Cyn+ C2’72 (
3ince the third and higher order derivatives of equation (5) are
zero, the truncated serics expressions for the errors are gxact,

Thus, the errors are

2
C, A /12
e(n) = 2 ; for 71:,553 13)
Coa—C1n4-Czn 2 (
and
C C
e(0) = “Lan, T2 An2 for n=20 (14)
CO 4 12 C0
Exponential
The exponential approximation for the heat flux can be expressed
as

a(n) = ce P (15)

In this case, the series.approximatlions for the errors as



given in equations (7) and (11) become

0 ‘
e(n) = a1 ﬁz for n>9—7—7 : : (16)
24
2 . .2
e(o) = 2B AN, B~ A1 for =0 (17
4 24

In reference 8, a comparison of the exact solution for e(n)
to the Taylor series approximation indicated that equations (16)

and (17} are wvalid for BX 2,

I¥PINGING JET EXANMPLE.

The results of the last section will be applied to the
problem of heat transfer from impinging jets. In particular, we
will examine the data 6f Tabakoff and Clevenger (reference 6)
shown in Figure 3 for a row of hole jets impinging on a curved
surface. In thls experiment both the heat flux and the meters
are one-dimensional; thus, the one-dimensional analysis Just
presented 1s directly applicable to thils data.

As shown in FigureAA, the data of Tabakoff and Clevenger
can be fitted by a polynomial of the form

he 2.65 - 3.7+ 1.8 1 (18)

where

X .
T.6 cm (2 x heater width)

! (19)

Since only three measured values are presented to the left of the

stagnation point, these values are fitted exactly by a second-order
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polynomial. It should be pointed out that the h given by equation (18)
is not the sctual distribution as represented by equation (12),

but is the distribution that inesludes the error reprented by

equations (13) and (14). |

We will assume that the wa11+£o-bu1k temperature gradlents are
negligible; thus, the heat transfer coefflclent and the heat flux
will have = one-to-one_corre5pondance in the expressions for the
error, and they may be used intéfchangeably. Reference 3 (eq. 12)
gives the added terms necessary to account for the variation

in the wall-to-bulk fluid temperature differences should they

be Xnown, | ‘ | '

If equation (18) iSVCmelned-with equatioﬁg (12) and (14),
the expression for the error at n = 6'bebomes
8(0) = -0,35 An+ 0.057 Asf | (20)

In this particular case, An‘equals_O,S, and the error in the absclute
value at the stagqation.ﬁognt is -16 perbent. Purtherwmore, usling
equation (4) in coﬁjunction with equatlon (20) gives a better estlmate
of the true value of th¢ acfual heat transfer coefflcient at the
stagnation point, The calculated ﬁalue at the stagnation point

i5 labeled " calculated peék " 4n Flgure 4,

The error at tne seqond statiﬁn in flgure 4 can be evaluated

from equation (13) to be-}'péréént,-ﬂe see that the error in the
Vmeasurement for thls relatively large gsge 1is qulte acceptable.
However, had any singularities or peaks exlsted in thls range,
they would have goﬁe ;qdetectéd. If the gages were movable

instead of belng fixed,\Sqme peaks m;ght even be detected by

this large gage.



Finally, recell as ﬁreviéﬁsly'discussed :equation (18)
was an approximation to the true h distrihution. He could
use the new distributlon a$ calculatad from equation (4) %o
‘reevaluate the coafficienta in equation {12). Then, we could rec
recalculate the error}_ Hewever, 1n many cases thls lteration

process is not necessary.

CONCLUDING RENMARKS
General formulas are derived for determining gage averaging

errors of strip-type heat fiﬁx-méteré used in the measurement of

one-dimensional heat flux distributions. In additlon, a correctlon

procedure 1s presented whien gllows a better estimate of the
true value of the local ‘heat flux. For many practical problems,
it is possible to use a relat;vely large gaae tq obtaln

l accepiable 1ocal heat flux mgasuramants, provided that the gage
is small enoagh to deteqt aqy peaks which mignt occur in the
neat flux distridution,

H



lza

REFERENCES

Turner, A. B., "Local Heat Transfer Measurements on a Gas Turbine

Blade," Journal of Mechanical Engineering Sclence, Vol. 13,
February 1971, pp. 1=12.
Northover, E. W., and Hitchcock, J. A., "4 Heat Flux Meter For

Use in Boiler Furnaces," Journal of Scientific Instruments,

Vol. 44, May 1967, pp. 371-374.

Freidman, S. J., and Mueller, A. C., "Heat Transfer to Flat
Surfaces," General Discusslon on Heat Transfer, London Conference,
September 11-13, 1951, Institute of Mechanical Engineers, pp. 138-
142,

Gardon, R., and Akfirat, J. C., "Heat Transfer Characteristics of

Impinging Two-Dimensicnal Alr Jets," Journal of Heat Transfer,

Vol. 88, February 1966, pp. 101-108.
Gardon, R.,, and Cocbonpue, J., "Heat Transfer Between a Flat Plate

and Jets of Air Impinging on It," Prpceedings, 1961-1962 Inter-

national Heat Transfer Conference, August 28 - September 1, 1961,
Pt. II, Sec. B, pp. 454=L60.

Tabakoff, W., and Clevenger, W., "Gas Turbine Blade Heat Transfer
Augmentation by Implngement of Air Jets Having Various Conflgura-

tions," ASME Paper 71-GT-9.

. Woodruff, L. W., Hearne, L. F., and Keliher, T. J., "Interpreta-

tion of Asymptotic Calorimeter Measurements," ATIAA Journal,

Vol. 5, April 1967, pp. 795-797.
Baumeister, K. J., and Papell, S. S., "Effect of Gage Size on the

Measurement of Local Heat Flux," NASA TM X-2943, November 1973.



Heat flux, g

,~ Measured average value

|~ kecal heat flux at
;- §age center

Gage
1

Distance from stagnalion point, x

Figure 1. - Relation between tocal and "'average' heat flux
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Figure 2 - Heat flux distribution and meter gecometry.
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