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GEONETRICAL CORRECTION ?FATORS FOR HEAT FLUX METERS

Kenneth J. Baumeister
S. Stephen Papell

ABSTRACT

General formulas are derived for determining gage averaging

errors of strip-type heat flux meters used in the measurement 
of

one-dimensional heat flux distributions. The local averagibng error

e(x) is defined as the difference between the measured 
value of the

heat flux and the local value which occurs at the center of the gage.

In terms of e(x), a correction procedure is presented which allows

a better estimate for the true value of the local heat flux. For

many practical problems, it is possible to use relatively large

gages to obtain acceptable heat flux measurements.

INTRODUCTION

The aviation and power-generation industries have been

concerned with heat flux measurements (refs. 1 and 2). Prior

to 1960, measurements of heat flux (ref. 3) were generally 
concerned

with average values taken over large areas. However, because of

interest in prediction of local temperature gradients and thermal

stresses, such as in the thermal design of turbine blades, 
recent

work has been concerned with local heat flux measurements.

A heat flux gage measures the average heat flux across its face,

rather than a local value at its center (see Fig. 1). In principle,

the smallest possible heat flux gage should be used for accurate

local heat flux measurements because the averaging error e(x)

(difference between the center value and the average 
value of the

heat flux) will decrease for smaller gage sizes. dowever, the smaller
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the size of the gage the greater will be the fabrication, handling,

and calibration costs. Clearly, some optimum choice of gage size

will generally be required, depending on the heat flux distribution

and accuracy required. In choosing a heat flux meter, such as a

slug-type, Gardon, or ablation calorimeter, the experimenter is

faced with the choice of gage size. The motivation for this paper

is to provide the experimenter with a simple means of estimating

the effect of gage sizeon the accuracy of his experiment.

Gardon and Akfirat (ref. 4) measured the local heat transfer

coefficient under impinging axisymmetrical and slotted jets.

They used a small 0.9 - millimeter - diameter Gardon type heat

flux meter. Because of the small size of their meter, we would

naturally expect very good local measurements. However, they did

experience some calibration problems with their gages reported

in an earlier paper (ref. 5). On the other hand, Tabakoff and

Clevenger (ref. 6) used relatively large (3.8 cm wide) heat flux

measurement devices (electrical heaters) to measure their heat

transfer distribution. As a result of the relatively large heater

size, the actual local heat transfer coefficient at the stagnation

point is higher than the average measured value.

A formula for correcting measured heat flux data to

account for gage size averaging is presented. As an example,

the correction procedure will be applied to the data of Tabakoff

and Clevenger (ref. 6).
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SYMBOLS

a constant

C,C0 ,C1 ,C2  constants

D diameter of hole

e probe averaging error (true value)

probe averaging error (estimated value)

H distance between holes

h heat transfer coefficiept

L characteristic lepgth (spe eq, (2))

Nu Nusselt number

Pr Prandtl number

q beat flux

imeas measured "averaged" heat flux

x distance from 4tignation point

Ax probe size (see fig. 2)

Zn  distance from slot jet to surface

/3 constant (see eq. (15))

77 dimensionless distance, x/L

717 dimensionless width of probe, Ax/L
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ERROR ANALYSIS

Averaging Errpr

Consider the one-dimensional hegt flux distribution q(x),

as shown in figure 2, which is being measured by a heat flux meter

of size Ax. For the purpose of this report, we assume that the

gage measures exactly the total heat flux that falls on it; .that

is, we assume that we can account for all losses from the heat flux

meter, such as temperature gradients along the wall, and

correct for them (for pxample- see ref 7), n this section, we are

concerned only with the problem of a large probe diameter washing

out local effects.

The average heat flux measured by the gagq pan be expressed

as

q 1 1+4771/2
S-- eas I) ,q(ci )~n (1)

S77- 1.A 7/2

where n is a dimensionless distance chosen as

x Ax7 =-; = (2)L

Thus, the error in the measurement of the local heat flux can

be expressed as

J 17+A71/2
e(7) qmineas(?-q7) - 1  4-/2 q(0)(3-1  ....... - ,- (3)

q(7/) A 71 q(?I)

By using equation (3), we can evaluate the errors associated with

some common q(n) distributions for various dimensionlesp probe

sizes An .



Correction Procedure

The application of corrections to raw data is commonplace

in engineering. The temperature distributions on the insides of tubes

are often determined from measurements taken on the outside of

tubes by appropriate consideration of the thermal conductivities

of the tubes and other operating parameters. In a similar manner,

the heat flux measurements can also be corrected tQ account for

the error due to probe averaging.

Rearranging the left hand side of equation (3) yields

q(7) - meas 
(4)

e() + 1

where the various expressions for e(n) will be given later in

this report.

This correctior technique is simple to use, Thus, relatively

large heat flux meters can be used to obtain acceptable local

data in many case if equation (4) is applied to the data.

General Case

Before we begin investigating specific heat flux distributions,

let us consider properties of q(n) which could lead to measurement

errors. The function q(n) can be expande' in a Taylor series

about any point "a" as follows:

2!

where (I and II) represent derivatives with respect to n.

Substituting equation (5) into equation (3) and performing the

integration gives

q(9)= 1 + -q( 77) ( - a) 4- _ 2 +  . . .(6)
ql 1) 2( 11) 12
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The location of the parameter "a" could be at some fixed point

in the coordinate system, such as n = 0, or at the center of the

heat flux gage. The simplest expression results when we expand about

the center of the gage (a = n). In this case, the error in

the heat flux meter can be expressed as

S ( II ) q (77) (7)

q(iq) 24

The error, therefore, is proportional to the square of the size

of the heat flux meter and to the second spatial derivative of

heat flux. Consideration of higher terms in the Taylor series

indicates that equation (7) is valid provided that

AI 7) 1 < <  (8)

I11 80

Peaks

The manner in which the heat flux gage is used is also

extremely important in sizing the gage. If the gage can be positioned

at all values of x, as was done by Gardon and Akfirat in

reference 4 by moving their plate and heat flux gage relative to

a fixed jet, then any local heat flux peaks have a much better

chance of being observed. On the other hand, if for a particular

experiment the gages must be placed in a fixed position, as

was done in reference 6, then it will not be possible to

determine if any local peaks occur within one gage size.

Also, for very small fixed gages, local peaks between the gages

will also go undetected. A local peak, for example, might occur if

the boundary layer changes from laminar to turbulent flow, that is,

if transition occurs.
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The expression for the error just derived in equation (7)

is inconvenient to use when any part of the heat flux gage crosses

a peak, such as might occur at a stagnation point, because of

the large number of terms that would be needed to express a

continuous function for the peak. In the previous analysis, it was

assumed that the odd derivatives were continuous across the gage

center, at n = 0, and thus did not contribute in the integration

of equation (3). However, at a flux peak, symmetry is now assumed

to exist for all terms in the Taylor expansion. This means that the

odd power derivatives are discontinuous at the origin. Hence,

equation (3) becomes f2 q(2)d (9)

e(0) = - 1J-1
A71 q(0)

For this special case, the parameter "a" in equation (5)

takes on the value of zero, and the Taylor series reduces to

a Maclaurin series. Substituting the Maclaurin series into

equation (9) and performing the specified integration gives

111 3 IV 4 (10)
e(O) q (0) Aj + qI(0) A?2 + qI(0) Aj 3  qIV(0) A4 (10)

q(0) 4 q(O) 24 q(O) 192 q(O) 1920

or to second order

e(O) I (O ) AU+ qI (0) A7 2  (11)
q(0) 4 q(0) 24

As can be seen from equation (11), both the odd and even

derivatives contributed to the error, in contrast to equation (7),

in which only the even order terms contributed to the error.

Note, if the heat flux is expanded in terms of even functions so that

the first derivatives are zero at the origin, then equations (7)

and (11) are identical
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CURVE FITTING

The heat flux distribution can be approximated in general

by a power series. Now, we will apply the general theory to a

simple second-order polynomial approximation to, q(n) and

an exponential approximation. These two distributions were chosen

because they can be used to approximate many practical heat flux

distributions.

Polynomial

In certain experiments the measured heat flux distribution

can be written in terms of a polynomial of the form

q(7) = Co + c177+ C2

Since the third and higher order derivatives of equation (5) are

zero, the trunzated serlas expressions for the errors are exact.

Thus, the errors are

2
C 2 Ai7 /12 fo

e(7) =  for 1 >
2 2 (13)

C0 + C 177+ C2 7

and

C1 A+ C2  2 for 0 (14)e(f ) o-r+ o()
CO 4 12 C0

Exponential

The exponential approximation for the heat flux can be expressed

as q(q) = Ce(15)

In this case, the series approximations for the errors as



given in equations (7) and (11) become

fA2o2 __ (16)
e(h) = for 77 > I

24 2

e() - + p2 for 71=0 (17)
4 24

In reference 8, a comparison of the exact solution for e(.n)

to the Taylor series approximation indicated that equations (16)

and (17) are valid for B< 2.

II~PINGING JET EXAMPLE

The results of the last section will be applied to the

problem of heat transfer from impinging jets. In particular, we

will examine the data of Tabakoff and Clevenger (reference 6)

shown in Figure 3 for a row of hole jets impinging on a curved

surface. In this experiment both the heat flux and the meters

are one-dimensional; thus, the one-dimensional analysis just

presented is directly applicable to this data.

As shown in Figure 4, the data of Tabakoff and Clevenger

can be fitted by a polynomial of the form

h oc 2. 65 - 3.7 71 + 1. 8 2 (18)

where

x (19)

7.6 cm (2 x heater width)

Since only three measured values are presented to the left of the

stagnation point, these values are fitted exactly by a second-order
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polynomial. It should be pointed out that the h given by equation (18)

is not the actual distribution as represented by equation (12),

but is the distribution that includes the error reprented by

equations (13) and (14).

We will assume that the wall-to-bulk temperature gradients are

negligible; thus, the heat transfer coefficient and the heat flux

will have a one-to-one correspondence in the expressions for the

error, and they may be used interchangeably. Reference 8 (eq. 12)

gives the added terms necessary to account for the variation

in the wall-to-bulk fluid temperature differences should they

be known.

If equation (18) is combined with equations (12) and (14),

the expression for the error at n = 0 becomes

2 (20)6(0) = -0.35 At 0.057 71(20)

In this particular case, An equals 0.5, and the error in the absolute

value at the stagnation point is -16 percent. Furthermore, using

equation (4) in conjunction with equation (20) gives a better estimate

of the true value of the actual heat transfer coefficient at the

stagnation point. The calculated value at the stagnation point

is labeled " calculated peak " in Figure 4.

The error at the second station in figure 4 can be evaluated

from equation (13) to be 3 percent. We see that the error in the

measurement for this relatively large gage is quite acceptable.

However, had any singularities or peaks existed in this range,

they would have gone undetected. If the gages were movable

instead of being fixed, some peaks might even be detected by

this large gage.



Finally, recall as prev5ouply discussed, equation (18)

was an approximation to the true h distribution. We could

use the new distribution as calculated from equation (4) to

reevaluate the coefficientq in equation (12). Then, we could rec

recalculate the error. 'Howgver, in aly cases this iteration

process is not necessary.

CONPLUDING REMARKS

General formulas are derived for determining gage averaging

errors of strip-type heat flux meters used in the measurement 
of

one-dimensional heat.flux distribution. ni addition, a correction

procedure is presented which allows A better estimate 
of the

true value of the local heat fjgx. or many practical problems,

it is possible to use a rejativel .large age to obtain

acceptable local heat fl x mpaugrp mnSp, provided that the gage

is small enough to detept a4 e aks whic1h might occur in the

heat flux distribution.
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-- Local heat flux at
gage center
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Distance from stagnation point, x

Figure 1. - Relation between local and "average" heat flux
for nonlinear heat flux.
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Figure Z - Heat flux distribution and meter geometry.



1 5
234

3x 103

-

01 23 4 5
Plate number

Figure3 - Heat transfer for impinging
hole jets on a concave surface. Hole
diameter, D, 0.635 centimeter
(1/4 in.); spacing-to-diameter ratio,
HID, 1; height-to-diameter ratio,
Zn/D, 8.8. (Data from ref. 6.)
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Figure *.- Heat transfer for row of holes impinging
on concave surface. (Data from ref. 6)


