e https://ntrs.nasé.gov/search.jsp?R=19740020041 2020-03-23T08:04:01+00:00Z2

F7
b

NASA CR-132410-2

RELATIVE MOTION OF ORBITING PARTICLES
UNDER THE INFLUENCE OF
PERTURBING FORCES .

Volume II

(Analytical Results)

J.B, Eades, Jr.

“(§NRSA-CE-132410-2) RELATIVE MOTIGN OF N74-28154

%OEBITING PARTICLES UNDER THE INFLUENCE OF
iPERTURBING FORCES. VOLUME 22
(Analytical Mechanics Associates, Inc.} Unclas

215 p HC $13.75 CSCL 26H  G3/206 43112

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it,

Reproduced by

11 MATIOMAL TECHNICAL
B INFORMATION SERVICE

US Department of Cemmearce

Springtield, YA. 22)%1

T T T T

* (Report No, 74-3)
o for

‘LANGLEY RESEARCH CENTER
January 1974

- ANALYTICAL MECHANICS ASSOCIATES, INC.
10210 GREENBELT ROAD
SEABROOK, MARYLAND 20801



FOREWORD

This report was prepared under NASA Contract NAS1-11890. The
work was conducted under the direction of J. W. Drewry, Space Application

and Technology Division, Langley Research Center.

The Analytical Mechanics Associates, Inc, program was conducted

under the direction of Dr. J.B. Eades, Jr.

PRECEDING PAGE BLANK NOT FILMED

ii



TABLE OF CONTENTS

SUML‘IARY DDﬂl.Blﬂ.QBGDB.lnnI‘..DlﬁlGQ.GD.I'ﬂGDGOGDBBDGIGOIOOOD

SYMBOLS LEREREREERSISEEERNENENENSEERNEEENEEREEIENEIEN NS EINRSNENEEEEN]

Il

Ii.

1II.

INTRODUCTION 0% A00CD TS RO0O OO0 SGOR A O QO DRETOBODBEGEDAESN

KINEMATICS AND PROBLEM DEFINITION ....00cecasesans

Kinematics (An Inertial Frame of Reference) ...coecocacoess
Kinematic Definition of VeloCity ., voeeovvcevsescascnsascace
Kinematic Acceleration ,,,...ccceeoceaescosossssccsssssns
Concluding Remarks ... .ovsvoecsenssssscsonasssenaascnsns
Kinematies, for a Rotating Frame of Reference....coceeenee
Kinematic Velocity Definition ...o0eeeonscessssocccsessonsoas
Kinematic Acceleration .....ccceeceesosescccscnsosscososss
Motion of the Reference Particle (P)..vceecvonsvcosssnsnnss
The Relatively Moving Particle (Q) ...ce0ne0coeoconssosocne
Equations of MotiOn . .eosoececsesacoscasscasacsncanascnsss
Discussion on the Linearized Equations ... .ccececeosssccsss
The Relative Equations of Motion (for the Inertial Frame

Of REfETENCE) vcaeonnoosonscossaraooscsnoansnosonseranaes

Summary 09 C 000 VGO QPO ERNFIDAISFOECTRPO IRV GSETIPTIOIT SN IF S

PROBLEM SOLUTIONS eesseserdrosencbanssevioebtanenaCeENs S~

A Solution for the Relative Motion +oveeenscccoscssosassssss-

Relative Motion DisplacementS .e.cecevcocncsusccoccancosscens
The Relative Motion VeloCity.ceosococnvosasasssascsossasas
Non-Dimensionalization scceseesccessosscccuorssnsesavancas
State Equations in Dimensionless FOorms .ceecssccososscosas
Rearranging the State FquationS...ccseesecerescocsnsecasas
The Relative Velocity Equation...coceverescevecccsccccosss
SUMMATY vcveccsosncassancasssaancancansaasasnsasasossss
The Relative Mation, in Inertial Coordinates ..c.cecoscccoess

(Initial Values)...ececoecs00cecssocsvossessansconcs

{(Equation Transformations) ...cecececascoscconessss
The Inertially Described Relative Velocity ..vecersececoenen

Summa'ry..l‘nocBc-onc..l'b.!lcﬂ..lﬂﬁ‘l.llU'ﬂ...u-o.o..l.l

iii

Page
viii
ix
L
9

9
10
11
12
12
13
13
15
16
18
20

21
24

25

25
28
30
31
32
33
38
38
a1
42
43
44
45



VI,

VII.

GRAPHICAL DESCRIPTIONS g R o DO ED T sddaddOSDboeoaddess a0

Geometric RepresentationsS .ccecovecscssoscoossscosonassnes
(a) In-Plane Displacements; Rotating Triad cecsseans

() In-Plane Displacements; Referred to the
Inertial Triad..scceoccavcacoccacsscacasssoanca
(¢) In-Plane Hodograph; Rotating Frame .......0000
(d) In-Plane Hodograph; Inertial Frame .......0000-
Summary ...ccccecceasascsccsscaoscnnacnasssocaassascsns

DATA SUMMARY ¢ A B 0 DODGPE00PTOOAEOERO0SCAROBOOORDIOORS

A Compendium of Data for In-Plane Trace Geometries ,.,...
In-Plane Displacements, referred to the Rotating
Frame of Reference ..ccccceccnsonccecascnescasosns
In-Plane Displacements, referred to the Inertially
Oriented Frame of Reference c.ccecuccosvacsccsasse
Hodographs, In-Plane, referred to the Rotating
Frame of Reference ..cccc000000200000000000asanrs
An In-Plane Non-Secular Case for the Rotating
Frame of Reference ...ceocececcssccconconceancesasns
Hodographs, In-Plane, referred to the Inertially
Oriented Frame of Reference .,...e0v0c0essc0ac0saaes
An In-Plane Non-Secular Case, for the Inertial
Frame of Reference ......coccovevc00ss0nnc0nasnss

PROBLEM SOLUTION I FEEENE NN NN NEFERENRNYNERELERNNEERZJE RN NN

An mertially Aligned Force SystemM..ceoeccssascsecascaseses
A Solution for the Relative MotiONeoecoeeaocvsscvsccacoesce
The Relative Velocity Equation.c.ccececccsssccosasssaacons
SUMMATY . avoevscnnscsasasonouscconoencnonasssnasessesns
The Relative Motion in Inertial Coordinates ..cccecosescsess
The Displacement EQuation..cecoeeecoscosssvessscconassas
The Inertially Described Relative VeloCity .iccvovscocnsascen

Suznmary..”...,......o.......o.“..-.o-----ou-un-.-

GRAPHICAL DESCRIPTIONS

Geometric Representations «occeeosoocccacesscosscacoosasa
(a) In-Plane Displacements; Rotating Triad .........
(b) In-Plane Displacements; Referred to an .
Inertial Triad..eceoscecscscsessoosososassnosss
- {c) In~Plane Hodograph, Referred to the Rotating

Triad Y EEE RN EEEEEE NN E NN NN NI NN N BN BN A NN

iv

Page
48

48
48

54
60
63
68
70
70
71
75
79
83
85
89
91
91
99
96
97
99
100
101
102
105

105
106

108

111



VIIL.

VIIL,

XI.

- XIIL,

GRAPHICAL DESCRIPTIONS (continued)

{d) In-Plane Hodograph; Inertial Frame of
Reference n-n-oooonoao.ncn-.-tos.ooeo-onnonuoe

SummarYg.-.o.o-nauonnn--cootoooac-un-alocootoeooeuuunuo-

DATASUMMARY 'R EEEEREEERN I NI NN E I IR N SNSRI I B

A Compendium of Data for In-Plane Trace Geometries .......

In-Plane DiSplaCemeﬂtS dzcoose RO PEBNRBOPRERODeOSSDS
ID-PlaneHOdOgraphS S0 0O0BAT AL OOD S asoco0escesasGO RS

OUT-OF-PLANE TRACE DESCRIPTIONS ....ce00s000s00 ‘e

Out-of-Plane Motion Traces ..ccccccssnsccsosescovsrsserenane

(ta) Initial-Values Problem Displacements;

Rotating Frame of Reference .. ......cocveavoees
(b) Initial-Value Problem Displacements;

Inertial Frame of Reference ....c.eeoenvesnsoans
(Lc) Initial Values Problem Hodograph;

Rotating Frame of Reference .. ..evesssecnsanses
(Ld) The Initial Values Problem Hodograph;

Inertial Frame of Reference ....cveeoscesarsens
(2) Zero-Initial-Values Problem..scesecscocassscss

Summaryncoot...eol.-ll--n-.-.....u-n-o-n..lnt-o.l.ootol

DATA SUMMARYB....IIll...ﬂ..'.l....l.ﬂluﬂl.ﬂ.ll‘.ll....

A Compendium of Data for the Out-of-Plane Relative

Motionh Cases ,..ccevsosso000snsnosonaosssescnaaaceconccs
Qut-of-Plane Displacements, for the Rotating
Frame of Reference .....eececsssescccaoocsnsosacas
Out~of-Plane Displacements, for the Inertially
Oriented Frame of Reference ..cscooocacscssessssnse
Out-of-Plane Hodographs, for the Rotating
Frame of Reference .....coeevcoscaooossasassnacass

~ Qut~of-Plane Hodographs, for the Inertially

Oriented Frame of Reference .....cveceveessssscncnss

APPLICATIONS AND SELECTED EXAMPLES ... .ivvuveenes

CONCLUDING REMARKS ........ e e,

XIMI. REFERENCES AND BIBLIOGRAPHY +evuuvinivenenes

115
119

120
120
121
124
127
127
127
128
129
129
132
133

134

134
136
145
153
160
165
190

192



Page
APPEND‘ICES.,.,... ----- LI R R R R I N R N N Y TN 194
APPENDD{A'nu-u-o-ono--e--oooooo.ou-o---nnn--u-onn--.-o 195

Definition OfaRotatioﬂﬂ..ﬂﬂ.ﬂ-ﬂlﬂl.llo...l.‘ﬂ.-...- 195
The Consequence of 4 Rotation vu.evesesecescessosses 201

APPEND‘KB ﬂﬂ.l..‘.ﬁ'.-".ﬂﬂﬂ.ﬂ..ﬂ.l.-ﬁ..lﬂ...ﬂ..‘..l.... 203
Some Special Matrices ...... fneesesecessersssceneas 203

Ordered Unit Matrices ...cceesvsrsvsscncncsnsnnnsas 203
Operations with the Matrix, B2 seacssscsscessasscass 204

Operations with a Combination of the Special Matrices. 205

LIST OF FIGURES

Fig. IL.1 Geometry of a relative motion.....veeceovnonsreornss 9
Fig. I1.2 Sketch showing the inertial frame .,,...cccvveeeeenes 10
Fig, I1.3 Sketch depicting the moving frame of reference .,..... 12
Fig. 1.4 Sketch gshowing an in-plane trace produced by the

CoeffiCient, Aa 49 8000 ® o0 dE St PSP O DS DO R D D OPDE S 50

Fig. II.5 Graphs to illustrate the influence of initial values
on the in~plane relative motion displacements, as
referred to a rotating frame of reference .vv..c0uev.. 53

Fig. II.6 . Graphs illﬁstrating the effect of 7 on the relative

moti.on hodographSl.nunoucnﬂno-u-.olnl...onaon-.o-- 64
Fig, IL.7 A typical curve, depicting an in-plane displacement

trace as produced by the specific force 'TI cesancccasss 109
Fig. 1I.8 An in-plane, relative motion figure in an inertially

oriented frame of reference ....ceceereccesescsaseces 112

Fig. IL.9 The hodograph (£', 1") produced from the
applicationofTI I.OC‘..d.ﬂ.ﬂ.ﬂ‘..“..‘...‘ﬂFU‘..'.I. 116

Fig, .10 The hodograph, referred to an inertial frame ef
reference, resulting from the specific force, TI ssenss 118

vi



Fig.

Fig.

Fig.

Fig.

Fig.

Fig-

Fig.

II.11a

I1.11b
11,12
II.13
I.14a

. 14b

II.15

A sketch showing out-of-plane displacements

(8, Z; H, Z) for a non-secular situation with

motion originating from the origin ...ceceveeceoancacs

Sketch showing the out-of-plane hodographs
(2%, 2'; H', Z") corresponding to the non-
secular displacements on the preceding figure ..,.....

Sketch depicting the position angle (&, 6) ......0u0nts

- Sketch illustrating the in-plane angular separation

between two local triads of reference ......cc.u... ene

Sketch of a general, in-plane relative motion

trace meves e sduasmEn PR EEEEEEEE I I AN BRI B I N N R I I

Hodograph for the relative motion above ....... N

Sketch of the minimum time transfer operation........

vii

130

i31

i69

172

1856

186

187



p
RELATIVE MOTION OF ORBITING PARTICLES
UNDER THE INFLUENCE OF
PERTURBING FORCES

By J.B. Eades, Jr. *

SUMMARY

'This report describes the mathematical developments cérried out for this
investigation, In addition to describing and discussing the solutions which were
acquired, there are compendia of data presented herein which summarize the

equations and describe them as representative trace geometries.

In this analysis the relative motion problems have been referred to two
particular frames of reference; one which is inertially aligned, and one which
is (local) horizon oriented. In addition to obtaining the classical initial values
solutions, there are‘ results which describe cases having applied specific forces
serving as forcing functions. These forces are designated és having components
parallel to the triads of the reference frames; hence the analytical results ob-
tained are for motions referred to both frames and influenced by both forcing
function systems. Also, in order to provide a complete state representation the
speed components, as well as the displacements, have been described, These
coor;iinates are traced on representative planes analogéus to the displacement
geometries. By this procedure a complete description of a relative motion can
be developed; and, as a consequence range-rate as well as range information is

obtained,

*Senior Analyst apd Manager, ‘Seabrook Office, Analytical Mechanics Associates, Inc.
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SYMBOLS

a,b,c Constants (see Appendix A)

Aa,AS Constants (see Egs.IIL.25,I.26).

Al,A2 Constants (see Eqs. 11.43). |

aa’ ds Constants (see Egs. .H' 83)

B’BZ’Ji Special matrices (see Appendix B); i=1,2,3,
ér Unit radius vector,

e ,5 ,€ Unit vectors associated with the local horizon (rotating) frame of

reference.

EX’EY’ éz Unit vectors associated with the inertially (fixed) frame of
reference.

f; F General designation for force term,

G Universal gravitational constant,

G]_,Gr2 Constant terms (see definitions following Eq., ‘II.71b).

Ij Idem matrix (j = 2, 3: denoting rank).

Ko . Constant (see expressions following Eq. II.28).

K, K_,K! Constants (see Eqgs.IL, 24, II. 25),

Kl,K2 Constants (see Eqs, I1.45).
m Orbiting mass.
M ' Attracting mass.
Originating point (position). I,
P,Q Designatidn for orbiting particles of interest,
f’,é Position vectors, measured from M to particles (P,Q).
T Relative position vector, referred to the local horizon frame.



Relative position vector, referred te the inertial frame,

R
;r Relative position vector (locating '"Q" from "'P™),
y ;i L Dimensionless relative position vector, referred to the local
horizon frame of reference; dimensionless relative speed vector.
ﬁ;s_%’ Dimensionless relative position vector, referred to the inertial
(fixed) frame of reference; dimensionless relative speed vector,
B | Laplace transform variable,
t Time.
T(6%).; . . -
i Transform matrices (see Appendix A);i=2,3.
T(wi)l .
+) .3 ‘
T )i’ Transform matrices (see Appendix A);i=2,3.
T(-), |
XY, 2 Cartesian coordinates, in the local horizon ( rotating) frame of
reference. (Origin at P). :
X, Y,Z Cartesian coordinates, in the inertially ({fixed) frame of reference.
{Origin at P).
A, S Denotes "increment of"'.
£,1n:C; Dimensionless coordinates (displacement; speed) in the local horizon
Ev,n', L' frame.
E,H,7Z; Dimensionless coordinates (displacement; speed) in the inertial
E'H', Z' {rame.
M Gravitationéll parameter,
‘?‘;(;‘I) Dimensionless specific force vector referred to the local horizon frame;

(inertial frame).
© - Angle of transfer, measured along an orbit are from the £ = 0 position,

@ : Angular rate, referred to the base (circular) orbit,



@ _, &
T

v W
T T

Subscripts
()

0

()

”E,n,C

(g nz

L]

trig
[ ]i.v

Constants (see Eqs. IL.86, IL. 90).

Constants (see expressions foIloWing Eq. II,28).

Initial (reference) value.

An inertially defined quantity.

Refers to component direction ( dimensionless, local horizon frame).
Refers to comp_c_:_n.énin direction (dimensionless, inertial frame),
Refers to terms with trigonometric coefficients.

Refers to initial-values problem.

Superscripts

o

()
O

")
)
) )
()
()

Infers the (inertial) frame of reference.

Infers the (rotating) frame of reference; denofes differentiation
with respect to ©.

Unit vector quantity.
Vector _qua.ntity,
Ti‘me derivatives,
Inverse of { ).

Matrix transpose of ( ).
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I[. INTRODUCTION

Two bodies in motion, and in close proximify to one another during a
space flight follow trajectories which are relatively independent of one another.
Contrary to this, when physical connectors are in place, or 'attractive forces'
of sizeable magnitude are present, then these trajectories may be coupled so

that the ensueing motions are dependent on one a'nother.

The investigation reported here has considered several aspects of the
relative motion problem. In particular, the influence of initial state (position
and velocity), and the consequence of selected, applied force systems have been
7 examinéd. The applied forces assumed in this study were designed to have specific
orientations;m;;he consequence and purpose for this will become evident as the
results are brought forth and discussed. As a prelude to what follows herein,
it is noted that these individual forces,which are presumed to be acting on one
of the bodies, have components of fixed magnitude parallel to the reference
triads. By this mechanism it is demonstrated that analytical solutions may
be obtained for a "properly described' equation of the motion. Subsequently
the relative motion descriptions which evolve will exhibit an influence from
these particular forces. Also, in relation to this, the reader may recogﬁize
that a variety of simulated physical situations could be described in terms of
these same actions. In this regard it is apparent that the results from this
investigation represent a significant addendum to the present collection of in-

formation for the relative motion of orbiting particles.

As an aid to clarifying the physics of the present situation the sketches
shown below indicate the two particular frames of reference to be utilized, In
both drawings the mot.ion commences with the reference triads parallel to one
another. However, as time progresses the base particle (P) moves to a new
location, as does the relatively moving particle (Q). Throughout this time the
two masses may remain separated, as suggested by the relative displacement

vector {r). However, the main difference, as noted on these sketches, is.that



in one instance the displacement is referred to a moving frame of reference
(x, v, z) - see Sketch (A) - while in the second (Sketch (B)) it is referred to an
inertially aligned triad.

Incidentally, it is in reference to these triads that the applied forces a/re
assumed to have their fixed magnitude components. And, it is these forces
which are studied to learn how the relative state of motion is affected. In
substance, then, it is apparent that the position and velocity, at any time, re-
ferred to either triad, is a consequence of three input quantities. - One, the

initial state of relative motion (this case is hereafter called the "initial values



problem'}; and secondly, the two separate applied force systems (this will, here-

after, be referred to as the "zero initial values problem™).

In the discussions and descriptions which follow, here, there will emerge
some definite patterns regarding the relative motion state. Most noticeable are
the reactions produced by the applied force systems and by the initiﬁl state, In
particular the consequences of these inputs on motions referred to the two triads -
of reference, are primarily seen in the in-plane displacements and velocities,

As a general statement these in-plane relative motion components (displacements
and speeds), when referred to a rotating frame of reference, trace out figures
which are counter to the orbital motion. On the other hand, corresponding situa-
tions when referred to the inertially oriented frame of reference, trace out
figures which are in the direction of the orbital motion. Secondly, the initial
values problems are represented by different geometries in these two frames

of reference. In particular, for general inputs the geometries which result

show a divergence - as the time in motion progresses. However, the traces
representing these various cases are not alike when described in terms of

the various coordinates. The figures in a rotating frame are generally eycloidal -
and/or parabolic in éharacter., On the other hand, the motions expressed in
inertial (relative motion) coordinates are nominally spiral-like. This would
seem to imply that the relative state of motion is not hounded, except as it is
related to the central attracting mass. Fortunately this is not the case; there
are means available which will provide a '"closed' relative motion path. The
conditions by which this may be brought about are described in the report undér

"non-secular' cases,

\ As-a word d_gsq;;iptiqn, illustrative of this last condition, consider the 7"
following situation. Suppose a sub-satellife is to be "launched" from an orbiting
. vehicle; and, also, suppose it is desired that this sub-satellite remain in the
immediate vicinity of its parent. It can be shown that when the parent body is

in a circular orbit, one means of attaining the desired relative motion is to



impulsively launch the sub-satellite orthogonal to the parent's velocity vector.
Of course, the geometric shape of the subsequent traces will appear differently
on the planes for the two reference frames. For example, the in~plane trace

{ {referred o the rotating frame of reference) would appear as an ellipse*. On
the inertially oriented plane of reference the corresponding figure would trace
as a limacon*, (Necessarily displacement traces alone do not fully describe
the relative state of motion —- one needs the veloeity diagram, or hodograph,
as well. These are readily obtained and easily plotted; once the full state of
motion is described the investigator has a complete graphical representation of

the problem's actions),

One may wonder about the reasons behind the two reference frames. This
is easily reconciled when it is recognized that some spacecraft may be Earth-
oriented while others could be star-oriented; thus the two coordinate systems.

In addition there is, occasionally, some question regarding the need for both
the displacement and the hodograph traces of a given motion, Generally this is
most easily explained by noting -that the state of motion (absolute or relative)
ié comprised from both coordinates. Also, there may be a distinct need for
range aﬁd range-rate information, especially in conjunction with maneuvering
operations. Needless to say this information can be readily obtained from these
re}ative motion coordinates; and, in addition, the graphical display of both can

enhance the understanding of how contemplated flight operations might progress.

A few words regarding the out-of-plane motions would be worthwhile at
this point. As a general observation it can be verified that this aspect of the
relative motion, be it numerically defined, analytically described or graphically
represented, is more complicated and less easily defined than the in-plane case(s).
From an analytical point of view the main difficulty comes about from the over-
all dependence of the representative equations on the full initial state and/or all

the force vector components appearing in the input. As is demonstrated in the

*These situations are deseribed in the body of the report.



report, it is indeed difficult to estimate (say) the geometry of these motion
traces as an a priori piece of information. With some study, 'and a few example
situations, it is reasonable to expect that the reader could acquire some 'feel"

. for these problems; and he could develop a sense of prognostication with regard

to the motion traces, but only in a general manner.

For those readers who are not too well acquainted with the ideas and
applications of a relative motion study it would be worth the time and space
needed to mention a few examples. Probably the first example to come to mind
would be that of intercept and rendezvous between two orbiting vehicles. Whether
the situation should consider a one active-one passive pair, or two active
satellites, is of little consequence. When the two vehicles are cooperating, the -
rendezvous problem is straight forward and easily implemented {mathematically).
In the event that one body is "uncooperative" (an 'evade'' situation) the rendez-
vous is more difficult to achieve, but remains a problem in relative motion - one
which fits the overall concepts of this investigation. With_'the option, here, of
addiug "thrust" to the relative moving vehicle it is evident that (say) the rendez-

vous can be accomplished under this action rather than by impulsive means.

The use of sub-satellites, experiment packages, and other orbiting
particles come directly under the relative motion problem concept when one
seeks to track these bodies and/or predict where they might be at some subse-

quent ﬁme.

It should be remembered that in general the studies which could come
under this classification need not be considered simply as "external™ motions.
That is, the equations and procedures developed for this investigation can be
utilized to study the motion of particles inside a spacecraft aé well as outside
of the vehicle. By properly interpreting the physics of many problem situations,
and adapting these results to the conditions at hand, the ideas set down here |

have a wealth of applications possibilities, One somewhat trivial but interesting



example which comes to mind is that of 2 particle free to move about inside

a spacecraft. Recognizing that the most significant force which would be acting
(there) is that due to gravity gradient, then it is evident that the particle cannot
remain motionless —- in a relative seuse -- unless it is located at the dynamical
center for the spacecraft-particle system. Actually the particle is most likely

to be, and remain, in motion as a consequence of the gradient force, Necessarily,
the closer the particle is to this center the smaller the acceleration acting on the
body. It can be shown that the trajectories for such a particle, referred toa
moving frame of reference, would be regular hyperbolae. The particle would
tend to move toward* the dynamical center and in the gradient direction simultan-

eously.

Before leaving this section and moving to the mathematical developments,
it would be well to mention some pertinent facts regarding the following sections. ~
First, in the writing of many formulae in this report the matrix notations which
appear may be somewhat unusual o the reader. In this regard it is suggested
that those who may be interested in the details of develdpments, leading to and
represented in these various expressions, should consult the Appendices as a
first reading assignment. These will introduce the reader to the notation and
make the reading of the mathematics much easier and more understandable.

Also, the developments herein make ample use of matrix notation; and, the
solutions, per se, are carried out by the method of Laplace transforms., Those
who are unfamiliar with either or both of these notational operations may find

some difficulty in following the mathematics,

Finally, in conjunction with discussions of the various types of motions,
and those inputs x_:vhich influence them, the reader will find compendia of re-
sults sections. These data presented collections of results which are typical

of the various motion classificationg, as described. The purpose in presenting

*This suggests an idealized situation wherein the spacecraft flies a circular orbit,



II--.V “KINEMATICS AND PROBLEM DEFINITION

Kinematics (An Inertial Frame of Reference). In this section certain kinematical

relations are developed to describe a relative motion situation as it would be

viewed in an "inertially oriented" frame of reference.

it is assumed that the (~)°—fra1ﬁe
represents the inertial reference system,
On the other hand the (~)'-frame undergoes
angular displacements (@) for the regular,
orbital motion (particle P). Let an adjacent
particle (Q) have its motion defined relative
to P. Then, in this discussion, all motions
are described (kinematically) in the inertial

frame,

" - Accordingly, particle 'Q'" moves
. relative to "P", as both move about M (the

attracting center). Here Er locates Q"

with respect to "P", thus its position

€ o / : vectors is:
y p -

s 2 Q=P+r ; . (L 1)*

S : —~—-- - which can be described in either frame of
Fig. 1I.1 - Geometry of a re~
lative motion, The vectors P,
Q locate the two particles (of
interest) with respect to M
(origin). The relative position local inertial frame, and since '"P" {origin)
vector (r) locates "Q'" with res- '
pect to "P",

reference,

Assuming that ;r is measured in the

. moves along its own orbit, then the location

of "Q"in the inertial frame is given by,

*fr is a general designation for the relative position vector.

[ Preceding pageshlank \




Q =R +T@ )P. (1.2)

(Herein R is used to denote the inertially defined relative position vector;

r will be reserved as the description for ;r in a rotating frame of reference,
one attached to "P", Also, (~ )I will be attached to P and Q to denote their
inertially defined values. The {ransformation matrix, T{ ), transfers the
vector P @), back to the inertial frame, (.-)O; see Appendix A for a discussion

and development of the transforms).

Kinematic Definition of Velocity. From Eq. (Il 2) above, it follows that the

velocity of Q, defined in inertial space, is

(generally) given as:
L a

Q=R+ @)P+@)b. (IL. 32y

But, since "P" is assumed to move on a
circular path, and to have only planar ro-
tation (|P| is not changing), then it follows
that,

Q =R +(@-) P, | (11, 3b)

T

-sin¢ = -cos g 0

where ('i‘_)=q3 +Cos @ | -sin @ 0

VO et M L0 o | o
o z° , . BT, I 0
: : | -

Fig, II.2., This figure is a sketch . =9 (see Eq,. (A.6a),

showing the inertial frame, B i 0 I 0 Appendix A}

attached to P, used to locate "Q"

with respect to '"P', . Here (T“._)z is a "reduced matrix", as de-

I

: fined, in the Appendix.

*(1if ]13[ would be allowed to change, then this full expression would be used.
Also; here, and elsewhere, the notation (T_) means T(p"); a(T4) will be used
(subsequently) to denote the transform, T™).
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Making use of this description for T, then a more convenient form of

Eq. (II.3b) can be had; substituting Eq. (A.6d) leads directly tb,
;g | Q =R+¢ ®T)P, | (IL 3¢)*
wherein B is the constant matrix defined in Eq. (A.6c¢), Appendix A,

This last expression shows that the (kinematic) velocity of 'Q™ is com-
posed of the relative (but inertially desecribed) velocity (ﬁ), plus the velocity of

‘npt tpansferred back to the inertial reference system, "

~ Kinematic Acceleration. The "acceleration' for "Q'" is readily evaluated from

Eq. (II.3c), by differentiation. That is, as a general statement,
0 0
QI=§+)9/(BT_)13+¢ 'T_)13+95(BT_")/7/+:,E>[B:L]13;

here the deleted guantities are a consequence of the invariance of terms

(<;), lf;l , and B). Consequently, the applicable kinematic description is,
§ =R+e[BT 1P,

*ok
or, recalling that BB = - Iz,

- - 9 -
QI=R—§0 (IzT_)P. (I1.4a)

One- should: note that the (kinematic) acceleration for 'Q" is. composed. of the
relative value (ft) - for the displacement of "Q' with respect to "P" - plus a

centripetal term, proportional to q52.

A reorientation of Eq. (I 4a) shows the relative acceleration R ), ex-

pressed in the inertial frame of reference, written as:

' ﬁ=QI+q62 azT;')ﬁ. ' _ . (ILab)

*The symbol ""@" denotes equations of importance.

**See Appendix A.
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Here, the quantity (QI) is symbolic of the "specific accelerations' arising from
the forces acting on the particle (@); while the second term is a centrifugal

force component associated with the position of "P'|

Concluding Remarks, The expressions developed above describe a means for

representing a particle's relative motion, as this is expressed in an inertial
frame of reference. However, this case is restrictive in that it pertains to a
regularly circulating base particle (P). Of course, the analytical operations
introduced above are fundamentally geometric (or kinemaﬁc) in kind. In order
to apply these relations to a particular case it would be necessary to introduce
the "dynamical™ (Newton mechanics) aspects of the situation - ~ that is, to des-

cribe the "forces" which are acting on the test particle @).

Kinematics, for a Rotating Frame of Reference. In the next developments, to

follow, "motions' will be referred to a moving frame of reference - - one which
has a leg parallel to the radius vector locating the base particle (P). In this
rotating-frame vectors P and r will be defined relative to this moving triad;
hence, in order to refer these vectors _t_rg_g_lg to the inertial axis system, it

‘ x° | is required that the transform T @ ) be

applied to both. (See the sketch below
PO for a geometric representation of this case).
Here ;r Sr, y,z0and P =

|P] Ex,; hence, the position vector

Q (E; + 13, in general)

r
is written as,
M - - - - =
: Q=T )r+Tk )P,

zo

\ Fig, 1.3, Sketch depicting the
moving frame of reference,

k<

or

Q =T + P). (IL. 5)*

*Here r describes the relative position vector; the lower case letter is used
t o distinguish from the previous development.
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As before, the transformation matrix, (T_), is applied to rotate the vectors
¥, P back to the (éi)0 triad,
It must be remembered that these vectors are expressed in the rotating

frame; consequently, they relate to the moving triad.

Kinematic Velocity Definition, Differentiating Eq. (II.5) to obtain the velocity

of "Q" - as it would be referred to the inertial frame - one obtains the general

expression: o

él=cf_)[5+§]+(T_) [Iiyﬁu/], . (@m.6a)

wherein (ﬁ) vanishes due to the assumed invariance of |13| . In addition,
since (’i‘_) = <,o B(T.) (see Eq. (A.6a}, Appendix A) the velocity is most con-

veniently expressed as:
Q =(_lr] +o @®T_)[r+P]; (IL 6b)

recall that (T_) means T{p ™). This is the transformation used to rotate vectors

back to the (..}o-frame of reference.

An examination of Eq, {I.6b) indicates that the "local™ velocity (5), and
the associated rotational component(s), are added vectorally (but transformed
aléol ). It is worth noting that the rotational COmponeht is proportional to the
orbit angular rate ©), and to the vector position of 'Q", which is (; + 13). ,
Necessarily, to transform this part of the velocity back to the inertial frame

the operator (BTi_”), which is a geometric entity, is utilized,

In the next paragraphs the kinematic acceleration is defined,

Kinematic Acceleration., Carrying the differentiation one step further leads

directly to the acceleration definition. From this operation the quantity is

obtained as:

13



0 ]
& = ol + () F1oF BT (5 + 51 +6 @_ +BI) (7 + 5]

+¢ @T.) [T +}é’f,

wherein the vanishing components are due to those invariants previously

mentioned,

Making substitutions, and collecting terms, one finds that:
QI =(T)r +20 BTt - a,T-) [t +P]. - (IL7)

In this expression the three components (shown) are the familiar quantities:

(a) (r), the local acceleration,
(b) (2(,5 r), the Coriolis acceleration,
and
©) @52 [r + P]), the centrifugal term. (IL. 8)

Equation (II,7) defines the kinematic acceleration; this is a geometric

description; however, in solving the relative motion problem it will be necessary

to rearrange the expression in order to acquire an equation for r. That is,

{from Eq. (II.7)), one writes:

r= rl"':l)tfaI —o rr BT )T +el @) 1,T.) [r+ P], (1L 92)
whérein

@) =107)" =TE": (see Ea. (A.5), Appendix A).

Evaluating the matrix products in Eq. (II.9a), it is seen that (T; BT_)
= Bz and (T+12T_) = 12; consequently,

> r={TnQl-20@)T r @ a,) r+3]. (IL 9b)

14



In this last expression a.l.l gquantities, except QI’ are referred.to the local rotating
triad, The parameter (QI) is a symbolic representation for the specific accelera~
t_:.ions due to outside (or external) forces. E.g: for a central field attraction case
QI‘ would be replaced by the gravitational force, and/or the other forces which
would influence the motion of "Q". These particulars will be discussed in more

detail subsequently.

Motion of the Reference Particle (P), In order to examine the motion of "P", due

to-a central field of force, one should consider (first) the dypamical equation:

GM)m,

m P=- ——— P (I1. 102).

which assumes an inertial frame of reference.
Now, considering the kinematics of this motion, return to Eq. (Il. Sb);
but there lét r =>0, thence "Q" ~ "P", and

lim

QP r =(T+)QI"'2‘F:’ (Bz); +q.)2(12)|:i:+13‘]}-—>

* .9 -
{eo B +6% ) B},
therefore:

(-r+)13=-q'92 (12)13. o (1. 10b)

- (Note: here the quantity (T4) f’I represents the transforming of P to the

i
displaced position, and to the reference frame located by ).

Now, using Eq, (Il.10a) to describe f’I - - which applies solely to a.
simple field of attraction - - then Eq. (I1.10b) leads to

2= = 9, '  ([L10c)*

*It must be evident that c;o represents a {constant) angular speed for the
reference particle "P'" as it moves on its circular orbit.

15



This last result is the well known expression for the angular rate (qf)) on a
circular orbit (|1_5] ) due to the gravitational attraction (GM). This result
states that the circular veloecity, squared, is defined by the quotient GM/ Iﬁ |

The Relatively Moving Particle (). Having determined a motion for '"P",

the next situation to consider is that for "Q". Of course, this will quickly lead

to a description of the relative motion as it develops under the influence of

whatever force system(s) assumed, In this regard suppose (for the moment)

that only a gravitational force is present; then,

GM)m =
— 3 9> (Il 11a)
Q|

mQI = -
where m is understood to represent the mass of the particle located at "Q";
and where @ is its position vector (relative to M). Recalling that

QI =(r_) [r + P], see Eq. (I.5), then it follows that

= M : - - :
Q=- — (M), aylr+P1. (IL 11b)*
- =3
v+ P
({This models the specific force, or acceleration, acquired from a mass

attraction, M),

In aftempting to evaluate this non-linear expression it is evident that
an analytic solution cannot be had; however, a linearization (based on the
smallness of {r| with respectto |P|) will allow one to find an approximate -
analytical result. (it can be said that this formulation, acquired above, de-

fines the "gravity gradient' effect for Q!)

An expansion for the denominator term, above, is outlined below:
Since

(r + P| J(E+ﬁ)-(£+§) ,

then

*The transformation matrix, (T_), is not included in the denominator since it
does not influence the magnitude of the vector (sum}.
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PI
_ '— _ o - 2 - . -
[z +5]72 = |B| 3[:1-—2—(-'%'—) -3r_I;+....]. (IL 11c)
13 |P|
Now, making use of Eq. (IL11lc), in Eq. (I.11b), it follows that:
Q=2 ) {[(z+5)-35 _P - %(E+§) — )
15| 13]? |7 [p|
H.O.T
and, to first order in (E), the approximate expression is:
> QIE_%MI_ (T)[(r+P)-3P r"_,Pz ) (IL. 11d)
P

(It should be noted that as r- 0@ => P}, then

é-ﬂ»-ﬂ[— ) B.

B

This is equivalent to Eq, (II.10a). As before, this specifies a motion for "P"

as it would be described by Newtonian mechanics. A consequence of this last

result is that the two remaining terms in Eq. {I. lld)‘are "additions" to that

influence attributed to the attraction of M).

Of the two remaining "force" components, in the equation above, the

one guantity:
g _ ' M e 2 : - . '
AQI = —-_—-é' (T)r=- © (T_} r, : (II. 1ie)

has a same form as before. Therefore it behaves as a "restoring force™; i.e.,

a force tending to return 'Q" to the position of "P" during the motion.
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However, the remaining quantity,

o rl'_lpz ]= 36> (1) B (1 P1, (IL. 11£y*
B

— 13
[P

AQ =+3 (T )P [
has a different character (as compared to the others); this is a force which acts
opposite to the "attraction' of gravity. Consequently, since it is radially directed
(«P), it behaves like a "reduction in gravity and has the tendency to drive the

particle away from the origin (at P).

These two partial results define the basic relative motion of "Q', 1t is
apparent that one part of the motion is restorative while the other part tends to
the opposite effect, This combination leads to an interesting physical interper-
tation of the motion, for @, in the vicinity of P. Subsequently, a discussion of

this will be made,

Equations of Motion. Having obtained a kinematic expression for the relative

motion acceleration, Eq. (I, 9b), and having developed a (linearized) des-
cription of those effects aftributed to gravitational attraction, Eq. (I.11d) -
then, a combination of effects* leads to a descriptive estimation of the relative |

motion. That is: following Eq. {(I.9b),

A . 2 .9 - -
=(T+)QI‘2¢P (Bz)r +@ 12 (r +P),

i

wherein, now,

X GM - =T F.P
Ty Q=-— (T+T-)[(r+P)-3P —_-“]
T 5]

Taking into account that,

T, T)= I,, and GM/ 15 = qsz (see Eq. (II.10c)),

.

then r can be written as:

&’ (@, - 13)(5+§) +3P (¢ - P)] - ZqBBZE . (IL, 12a) **

]

r

*The description herein includes a force system aligned with the triad of reference.

** P is a unit vector corresponding to P,
' ' 18



~

In this expression P is a unit vector pointing toward "P' from the center

of attraction (M).

To be more precise with the format of Eq. (II.12a) it should be written
as shown below, (Recall that in this equation r =r (x, y, z), where the scalar
compdnents are described in the moving frame of reference). As a consequence,

.EQ.. (I1.12a) is expressed as:

[ %] 0 o 0] 1 0 0]
= . .2 - - B
r=|5l=2¢6d{ 0 o of g+P+3|0 1 o0 |P(r.P)
0 0 -1 0 0
£ i i ] 1]

wherein P = |§[ e ' = |13| Jl, and (r ° §)=x. Finally, then,

X
IE3 [3 o o 1[x] [0 a1 o ][=x]
y '3952 o 0 0 y | +20 ‘—71 0o 0 y . (II.12b)‘
z_] (0 0 :-lj_zJ _Olo OJLZ.'J-

Egs. (I1.12) describe a (linearized) form of the equations for- the @)
particle's relative motion. This motion is with respect to an orbiting particle
moving on a circular path about M. Of course, the equations are written in
terms of "rotating" Cartesian coordinates; also they are approximations for
the case wherein the test particle (Q) is acted on solely by the gravitational

attraction of M,

19



In a '"real life" situation the elementary mass (@) would be acted on by
forces gj_f}g than gravity, also, In order to represent these additive effects,
let any such specific accelerations be represented (symbolically) by a vector,
¥, Of course, to be compatible with Eq. (II.12), it is necessary that F be
described in the moving frame of reference. Consequently, a more complete

description of Q's motion is given by the equation:

by _ .2 _ - - r ~ _ . _. z f‘—
P r=0" [0 - L)@ + P+ 3P (r- P)]-20B,r +) F.
i
In Eq. (I.12c) the Z F—j would account for all of the perturbative forces which

)
could influence the relative motion of the test particle. For the Present these

forces are not described (other than symbolically); any particular descriptions

will be left for the reader to describe, as needed.

Discussion on the Linearized Equations. Most likely the clearest descriptions

of‘ the motion for Q, as given in Egs, {1.12) can be had by examining Eq.

(II. 12b), wherein the additive perturbations (Z fj) may or may not be included.
However, when the perturbing quantities are included, they should be described
in a manner such that they do not unduely complicate the solution procedure.
Having gone to the trouble of 'linearizing™ the gravity gradient term, one should

not model the perturbations in more than a linear format.

It might be expecied that a general solution to these equations would
evolve as an initial value problem; for such cases the results should be ex~

pressed in terms of elementary functions.

From Eq. (II.12b), it is seen that the in-plane (x,y) scalar differential
equations are coupled through the Coriolis terms while the out-of-plane ex-
pression is independent of the other two., This suggests that the one scalar
solution ean be (conceptually) acquired independent of the others; Ihowever, the

couple equations must be handled together and simuitaneously. (One approach

20
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to a typical solution will be suggested subsequently), Of course, one of the
simplest solutions to these expressions car be had by modeling the perturbations

as constants,

In view of the separability of the in~ and out-of-plane differential equations,

it would be both practical and convenient to recast {say} Eq. (II.12c¢) as follows:

(a) For the in—plané components, write:
= _TX7_-273 07 - . = (Z_)
=1, = - + . .
. [y] &*[% o T 2@ (0F) (L. 124)

i
wherein t e [ ] tp is the angular rate of the reference particle (P}, and

ZF ) ~ would be composed of the perturbing force(s) in~-plane components,

only.
b) The out-of-plane expression (a scalar) is given simply as:
2 +(ZF) ; (IL. 12€)
Z = - (p zZ j . ’ . o
}

or, as an equivalent mathematical operation,

- =z .2 -
e r=-0 (e ,-r)+e, (ZF ) .
Before outlining a solution procedure for the above expressions it is
felt advisable to develop a set of corresponding, linearized differential equa-
tions, for the motion. of Q, as it would be referred to the inertial frame of .

reference. Consequently, this is carried out in the following paragraphs,

The Relative Equations of Motion (for the Inertial Frame of Reference), Under

fhe' assumption that a relative position vector (;r) is known (and described)
in the moving frame of reference, then this information can be "transferred"
back to the inertial frame using the idea set down in Eq. (II.IS); that is, by the
application of:
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R=T )r. (IL 13a)*

On the other hand, having available the result set down in Eq. (II.12c) it
is expedient to begin there and to develop the desired differential equations of

motion, accordingly.

For present purposes rewrite Eq. (II.13) as
= T(qp_)—l R;
or, as an equivalent expression,

r=Tp)E. (T, 13b)

From this last statement it is seen that the (kinematic) velocity is

r = (TR + ()R, (IL 142)

where (’f‘_,_) and (T.) are given as Egs. (A.6e) and (A.3a, or A,7c), respectively.
Of course this can be simplified by intfroducing Eq. (A.6e); this leads to

r=-¢ BT)R+T,)R. (IL 14b)
Consequently, velocity, referred to the "moving frame', is expressed in terms
of the inertially defined state vector (g).
Carrying the differentiation another step (forward), the kinematic des-

cription of aceeleration is found to be:

:-: . 2 — o ] —. :

r=-¢ ITH)R-20 BTHYR +(THR, (1L 14c)
after suitable substitutions have been made,

Now, when Eq, (IL14c¢) is solved for R (the inertial-frame's des-

cription of the acceleration), the result is:

—

*Recall that R is the representation for r. Iinthe inertial frame, while T is
its designation in the "local" {rotating) frame.
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C R0 r 4 6% (o IR + 20 [y BT, IR

This expression is "symbolic' of the motion; to account for the force systems
which have (already) been assumed, it would be necessary to introduce Eq.
{I1.12c), for E, into the result above. As an outline on how to proceed (from

here), the following hotes are included, with explanations:
(a) When evaluating (T +)h1 r =T_ r), note that (12—13)§ vanishes

since Pa é—x’ and (I,-1.) Ex =0, Also, in the expression for r it is seen that
both r and r are present - these are obtained (for present purposes) from

Eqs. (I1.13b, and II.14b). Thus, with (T_) replacing (T+)h1,

(T =7 [, )T R + 30 P 1,8 - B ]

26 @) B, [ @a R+ )Y F,
. | .
o’ {[ea, 1y R +s[@ypay R - P}

+2p2 (1) BB (TR - 26 (T_B,TYR +(T)) F..
2 2 ]
)

and (’I‘;BZT+) =B_;

Here, it can be shown that (T,B 2BT+) = - (T; I2T+) =-1 5

2
50

:: o 2 o 3 0 0 —. . 2 — - —. -:
T)r=0 [(T_} 000 (T_,_)R]-Zqo LR-20B_R+(T.) ZF .
2 2 j
¢ 0-1 -
]
() Also, in Eq. (II.14d) there are transformation products which
must be defined, In this regard it is noted that (T_ I2 T,))= I2 and (T_BT,)

= Bz, as before.

Introducing all of these results into Eq. (II.14d), it is found that:
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(T,)-21, } R-268K+ (T_)Z F +¢” 1)K
J

or,
PR 30 0} ) _
R=¢p’{ayfoo oj@p~L,}R+a)) F, . (IL. 14e)
2 VAR
0 0 - j
Before leaving these expressions, it should be noted that the matrix
12 can be replaced by (T_) I2 (T;); hence a contraction of Eq. (II.14e)
follows, as:
:_. L] 2 2 0 0 — : —
B r-¢ {anjo-1 0| @p}R+[m))F ]. 149
0 0-1 =
J -
For those cases where the displacements are known (implicitly or ex-
plicitly), then the linear solution for the motion is (in concept) capable of
being determined. Of course here it should also be noted that the term "(T_)
ij" is a symbolic representation of the perturbative force(s) as it would be

expressed in the inertial frame of reference. *

Summary. To this point in these analytical developments, expressions have
been obtained, with a linearization introduced, which (in theory) can be

solved for the relative motion of "Q'" with respect to '"P'". As described,

these results are for both the moving frame of reference and the correspond-
ing inertial frame. Both representations spring from the classical (Newtonian}
equations governing the motion; and both contain symbolic descriptions for
forces other than the gravitational attraction. It must be recognized that the
appropriate representation for such forces must be made (in the described

frame of reference) in order for the equations to be valid.

*Any specific description of the forces, referred to this reference frame,
would modify Eq. (II.14f) accordingly.

24



II. PROBLEM SOLUTIONS

In the next few paragraphs a method of solution, for an initial value
‘problem, will be presented and discussed., For simplicitly and conciseness
~an added simplificaﬁon will be included, for these solutions, one which will re- )

duce the numbers of manipulations which will need to be carried out.

A Solution for the Relative Motion. In the next several paragraphs a solution

for the relative motion of "Q" with respect to "P'" will be described. . For
present purposes this solution is acquired from Egs. (II.12c); these equations
describe the relative motion (vector ;r) in reference to the moving frame of
reference. Also, since the solution is to be obtained as an "initial value™
.problem the method of Laplace fransforms is a natural and convenient mathe-

matical tool to use.

Before entering into the mathematics of the solution it is worthwhile
to study, somewhat critically, the governing differential equation, Eq. (II,12c).

In this regard, looking at

:-: - 2 - - A - ~ - b —
r=¢ [(12-13)(1‘ + Py + 313P - P)] - 2¢B2r+132Fj v (1.15a)
. J
It is evident that the variables (r, P, r and F) are all defined in the local

(moving) frame of reference, (~)'. The remaining quantities (including (;'3)

are constants; generally, matrices,

I

Recalling that P (the position vector for "P'™) |13| éx" then it is

apparent that:

@  @,L) P=0;

t) I3ﬁ =J 1 (see Appendix B, for the definition of J 1);
and, {c) r- ﬁ = x (the radial relative motion coordinate).

Introducing other special matrices, described in Appe:idix B, and as required,

it is easy to show that Eq. (II.15a) can be recast as:
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iy 2 - - . - Z -
= - = +1 . I.
p r=¢" [37 J3] r-20 B)r +1I;) F, (11, 15b)
i
{This is the general expression which will be manipulated for a solution,

r=r(t).)

The first operation to be undertaken in this solution is to transform
Eq. (I, 15b), by direct Laplace transforms*, wherein the only time-dependent
variables are those noted above. Now, aiter transforming and collecting

terms, the resulting expression is found to be: _
ILF

9 . _’.2 _ :]_ _ . ]_ z 3
[s1, + 26,5 - 6% @1,-1) |7) =[s1y + 20 B, [F + 1,7+ (IL. 162)

wherein s is the transformation variable, and the vectors roe T, represent

an initial state of the relative motion, (The special matrixes, J., J,, in-

1’ "3
cluded here, are defined in Appendix B. Also, in these operations the

perturbation acceleration term(s), F, are assumed to be constant(s)).

- In order to acquire a solution to Eq. (II.16a), the inverse transform
of the above algebraic equation is needed. However, it must first be solved

for f'(s) explicitly.

Defining the coefficient of r {s) as a matrix, A(s), then its inverse

(A_l) is needed since a symbolic form of the solution is expressed as:

T e Tl L
= + r |+——. .16b
Te) =AT s, +20 BZ] T +A [13r 0] = (1. 16b)
(Note that the matrix, A, has a same form as that described in Appendix B;
consequently its inverse is of the form shown there. That is; since
= + .
A =ad+ bJ, +cd g + eB,; (I1.172)
then ~ "
bJ, +aJ_ - eB J

ab+ti.=,2

*The transforms used here are the more familiar ones (see most standard
mathematical texts); the so-called "p-multiplied" transforms (see texis by
L. Pipes) are not used in this work.

26



where the coefficients (a, b, ¢, e) are identified from Eq, (Ii.16a). In this case,

when identifying the coefficients in A(g), recall that 13 =J 1 +d 9 +J g3 ; then,

[ ] 02 .
3532—3992, bEsz, cfszﬂp , and e =2@s). (II.1%7c)

Introducing Eq. (II.17c) into Eq, (II.16b) and collecting terms on powers

of s, an intermediate result is:

3 2, - ' .
2oy s 13 +s" [20 (IBBZ—Bz):] + 8 (él:I2 6(.0 J Bz]
) 2 92 .2
8 (S +€D)
2 = 2
s13-s(2<pB) 35> I, s, s(chB)Sqo I,
+[ o ]ro+[ ]F (IL. 18a)
(8" +¢ ) . S (S +<P )
wherein F is understood t6 mean Z Fj {sum of the perturbing specific forces).
i
A more meaningful collection of terms, from the above expression, in
preparation for taking the inverse transform, is as follows: (here, the rationalé
applied is obvious):
- .9 h - . - -
- - +1I
;(S)z( < )I -, 13r0 © (412 3J2)r0 2§DB21‘0 3F
2 . 92 . .
5° +fP2 3 0 __(S +¢2) ) [S (SZ +¢)2)]
<3 - W22 . - R
- 6p @ B )r +30°J.r +2B.F_- 30°JF
2270 270 2 2
‘{ 2 2 -2 Tr3,2 2. ° (. 18b)
[s™ " +¢ )] [e”(s“+0 )] ‘

(In this expression obvious. cancellations, ete. have been accounted for; also,
prior to the next step, the reader may wish to consult Appendix B regarding the
- special matrixes used herein). '
Recognizing that the solution (here) is to be expressed in terms of ele-
mentary functions; aﬁd, knowing the inverse transformation equivalents for
-~ these, it isA prudent to "reduce' some of the algebraic functions above, Using

partial fractions, the following equivalents are established:
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1
@) — = -
2+l ¢F ‘&8 sl +¢
1 AL _1(1 _s
2 2 -2[2 -2( 2)] (IL 19)*
o s @ 8+

Making use of the expressions above, transforming

3J F] [6(,0 (J B }ro+3J2r

Relative Motion Displacements
Eq. (I1.18b) and clearing terms, a solution for r(t) may be expressed as
T -
0 F -
+ —
I > + = 2

r(t) =|:(4I -3J )r -2B_ —
2 2" 70 2 3 -
© @ ©
. F 2 - I_‘o
+ 232 - ]t- I t +[(I —412+3J2)r0+2]32 - -
© ‘ ®
i _ r 2BF
+ 3J2) - ]cos {ot) +[6 (Jsz)ro+ (13 +3J,) —+ " :,sm t). (L. 20a)
¢ ¢
A more uniform representation of this result can be had by making use
of the matrix equivalents mentioned in Appendix B. Thus, after some manipu~
lgtlon Eq. (Il,20a) can be recast as '
‘ ‘ ;o F
= = ro- —_(J. +4dS +J
| ) [(4;[1 +3) T - 2B, ; G +4, +7,)
| :
[sJBr +35, =2+ 2B, E et - ](t)
T, = ]
- - (J1 +4J2 +J3) —-é]cos' t)
{1/32) =t

[(J3 -3J))r_ +2B,
(a/s) % a (cgnstant); £

{equation continued on next page)
hergz :ﬁ

*Some inverse transforms are noteg
(the independent variable); £-1(2/s ) =t & [cp/ % +¢ )] =sin @t);

2-1[s/(s2 + $2)] = cos (B t); and, £~ 1(st(s) - r(0)] = £ ).
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r -

- 0 ¥ o ’
+ + + — + — i . . *
[SJ2 B2 r + (J1 4J2 JS) - ZB2 — |sin ot) (1. 20b)
@ ©
Eq. {I1.20b) describes the relative motion of 'Q" with respect to "P",
in "ocal coordinates" (x, y, z), for the case where a central attraction and
fixed perturbative forces (z f‘j) are considered,
An expansion of the various matrices, ete. is instructive at this point
to illustrate the composition of the various terms involved. For convenience
in the resulting expansions, the specific force terms have been separated from
those involving the initial state vectors. Thus:
r - y r y 5 .
4 0 0 2 0. 0 0 0 0 0l -
_ . r, _ r.t.
r{)= 1 r0+ -2 0 0 |—-4|6 0 0O ro+ 3 —rket)
2 @
0 0 | 0 0 0 ¢ 0 0 _0 0
EAN] [0 -2 o] - foN o]
- ro - -
+ 0 ro+ 2 0 0 —fcos {pt) +416 0 ry
_ ©®
| 0 1] |00 0 0 0 O\
; 0 o L]
+ —>¥sin {pt) + { (1 - cos pt)
%)
(0 +2 0]
(IL. 20c)

(ot -sinot) -2 00 -%(@t)z

*Some of the quantities included here are in-prepafation for the non-dimensional~
zation to be introduced subsequently. '
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Here, the state vectors:

- = T
T v D, T TR, Y, )

M

= a . . T
o (Xo, Yo ZO) , are (each)

column Ve'ctors, as described, Incidentally, this result (above) may be checked

with that given as Eqs. (A.29b), in Reference [1]*.

The Relative Motion Velocity, Equations {{I.20) provide analytic expressions for

approximating to the relative motion displacements of 'Q" with respect to "P",
However, the corresponding relative velocity is needed if one is to complete a

description for the state of motion,

The simplest, and most direct, means for acquiring this latter informa-
tion would be to differentiate the displacements given above, When this procedure

has been carried out, on (say) Eq. (IL.20), it is found that:

—-{3.1 [213 ! '—]+2B2 =
(12 38
- 35, = (ét)
9 =g
®
| - r - . .
-{(J3 —‘3J1)r0 +2B2 -—- (J1 +4~J2 +J3) -—é} sin (pt)
@ _ @
] r, 7
+46] B r + (J, +4J _+ -+ -——-} ot). .20d
{Jz gt Uy +43, 439 = 28, — } cos (Gt) (11, 20d)

©

For clarity, and continuity, an expanded form of Eq. (II.20d) is presented
below with terms involving ¥ separated from those described in terms of the

initial state. (This is 2 companion expression to that given as Eq. (II.20c)).

*Reference [1]: "Relative Motion of Orbiting Satellites', by J.B. Eades, Jr.
NASA CR 112113, dated July 1972.
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2 r
I®- g o\ |7 - | \s\|—2- 0 P o+
o Q 0
© ©
0 0 o] 0 0 0 1|
02 0] - 0\ o] 1N\ o] -
r L - ro [-]
2 0 0 |—psin @t) +{|6 0 r 4 — 7 cos (ot)
© 2
0 0 o 0 0 0] 0 1Y
(02 0] o\ 0]
+ {(-1+cosot) |2 0 0l -@t - sinot) 3
[0 0 o] 0 0
1\ o]
+ 8in @t 1 5 o (IL 20e)
©
0 1

L] [ ] Y T _
Here, r@ - E s ¥ , E) > Ty = (xo, yo, zO)T, ete. By virture of the fact

® © 0
that this result is akin to that in Eq, (II.20c), then these scalar expressions

also may be checked against corresponding ones in Reference [1].

Non-dimensionalization. To this point in the development the state equations

have been expressed in terms of dimensional quantities, see Eqs, (II.20). For
‘many operations, and situations, it would be useful to have these expressed

in a dimensionless form,

For purposes of compatibility with past work, and for the convenience

of notation, ete,, non-dimensionalization will be carried out as follows:
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a) All distances, such as f(t) (= i-(x, v, z), and the initial value
;(0)), are normalized using the reference particle's radius, [f’l .

Y The velocity for "Q", and the associated initial value, will be non-
dimensionalized by division with |I3| cp (the speed of the "P" particle).

{c) To retain compatibility, the perturbing forces are normalized by

the quantity ,f’l ¢32 {the centrifugal force acting at the position of ""P"),

{d) Also, since ¢ is a fixed parameter (here), the time derivatives

will be replaced by position derivatives; this is accomplished by writing,

In explanation of this procedure the following variables (and associated

initial values) are introduced:

(¢ ] x| [&r] [ x ] Frg' [ F ]
Feinl=L Ay nl-== v |.| -5z || & @
|P] [Blo | || y

H
-C.I L 7] LCJ 2§ -TC_ _Fz.

o1

where c%p E(~) = ; here & {p), symbolically represents the dimensionless

S
&1a

relative position vector; corresponding to this, 4 '), will be used to describe

the associated dimensionless velocity vector.

State Equations in Dimensionless Forms. Making use of the definitions introduced

above one can easily recast the solution equations into appropriate dimensionless

forms. For instance, Eqs. (II.20b, II.20d) may be written as:

» = i _ ] -
2 @) [(4J1 +I)E -2B AT+ @ 4T, +3) -r]

-t =1 rs.-7.2
—[3.12 (2B2A0+JL0)+2B27]§0- 2J2-r]<p

{equation continued on next page)
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- ; L. 7 1 oos
+[@, -30)F +2B 8" -G +43,+7)T |cos e

A + !+ T {sin @,
+[6Jszj;,0 @, + 4, v I A" ZBZT]sm(p.

and

iy = _ n It -
R [3J2 (2B21,_0+12JL0)+2B21']
- T - - Y . 3y :
3[er]qo [(J3 330K, + 2B, A" (J1+4J2+J3)T]smqo
_ A
+[6J2B2j10+(J1+4J2+J3),,¢0 2B21']cosqo.

Due to the simplier notation introduced here, these expressions will be
the ones manipulated hereafter (in these developments), Needless to say, the
dimensional form(s) of these quantities may be recaptured by an application of

the transforms shown in Eqs. (IL 21).

Prior to describing the state of motion, in terms of the inertial relative
motion variables (ﬁ, ]E_;), a more compact and revealing form of the position ex-
pression, above, will be developed., This particular representation combines
* the terms in Eq. (II.22a), making a geometric description of the relative motion

traces easier to "see'. This development is outlined in the following parag‘rapﬁs.

Rearranging the State Equations. In this rearrangement of the state equations

(see Eqs. (II.22), above) it is expedient to commence with the dimensionless dis-
placement expression (.n_. }; and, to acquire the corresponding "Velocity" ex-
pression by direct mathematical means. Also, since the out-of-plane displace-
ments are uncoupled from the in-plane ones, then it is simplier to work with.the

corresponding separated expressions. Consequently, Eq., CI,ZZa) are separated

as seen below; see Appendix B for descriptions of the special matrices used here:

33

(1. 22a)

(1L 22b)



k@)= IZE+J3J-’Z) =[(4J.1 +J2)JE0 - 232,E:) @ +4l) 1"-]
_[3.12(2]3250 +I1) +232?]¢; [_g_Jz;](pz
+[-3J1.d“9—+ 232.4_; -— (Jl + 4J2)1_'] cos ¢
+[6J2B2Io TP 4J2)£; + 2B, ;'] sin @

| +{J3[1—'+(50-?) cosqo+.ff:)sinqo]} .

|

The first terms to be considered (here) are those involving the circular
trigonometric functions., It is to be demonstrated that these can be related to
the transform matrices, T(p ") and T(tp+) -~ - but when they have been reduced to
a second order form. Thus for the defined matrices (T)z, write;

=(T), +d

3 3’

T )= 12 (]o):] t,o+B2 sing+ J
and

+ o _ Ly = Ly .
T@@") Izcostp stintp J3 (T,,,)2 J3

Now, in Eg. (II.23) define coefficients (Kc, KS and/or K'S) as shown below:

=4 T i + T
Ich cosg { 3J1 ] o 2B24 o (Jl 4J2) 'r} cos @,
and

i = . 4+ g + P i
Iszsmqo {BJszj,o (J1+4J2)40 2B2'r}smcp.

A manipulation of the '""sine' expression is needed here; in particular the
"Bz" operator is removed (see Appendix B for the equivalent operations used
below). For this purpose the following operations are described:
Since '

] E . i~ -! pul a
IZKS sing {6(B2J1)!;0 + (Jl +4J2)( BZBZ)JL o+2BZT} sin ¢

then the right side is manipulated so that it becomes:
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{}32 63 +27) -[4J2 =3 ] B, (Bszo)} sin @

- - Ty ~} . .
BZ{BJlij [4J1+J2]Bz,&:o 27 rsin @ ;

or, this ts written as,

' qin e = T a3+ B‘r+z1'-}-, .25b
B,K! sin ¢ B2{6J1/},o @3 +3 )B4 sin ¢ (II. 25b)

Next, let it be assumed that:
' sing =(T_), A_+ A
Ich Cos¢Q + Bsz sin¢ {’If_)2 N (T+}2 o

(where AS and Aa are two matrices to be defined below). The present problem
is to determine the quantities (Aa, AS). By expanding the matrices '"T 2”, using

Eq. (II.24) above,

+ ! sino = + + A -A ing :
[ch cos © B2Ks sing 1-2 (Aa AS) cos @ BZ‘( N S) sing
then, by matching coefficients, it is found that:

K =A_ +A K, +K'=24 *
a s , or, . o {I1. 25¢)*

K' =A -A K -K'=2A
s a 8 ¢ s 5

Substituting from Eqs. (II,25b), it can he shown that

A =§- {3J1£0+ [JZ -23, ]BZ./: Y +[J1 ;2J2 ] ?} ) (1. 262)
and | |
A TE {—SJIEO ¥ [2J1 g ]Bz ‘7‘,'0 - [Jl tad, ] ;} . {1.28b)

It is quite apparent that these two matrices have a marked gimilarity;

~ they differ by a constant multiplier, and by a change in the sign of the matrix,

*Subscripts have been added to the matrix designation "A", indicating that they
are acquired by "addition' and by "subtraction' of the constant matrices, Kc

and K' |
s
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Jl' (Note that the matrix operator altering the sign of J 1 while retaining the

sign of J2 is
f1 o] [a2 o]
l . J = [ . . J = @,=J)) = (1,~2]));
hence
As =3(J2—J1)Aa.) (II. 26¢)
Therefore,

(Ich) cos ¢ + (BZK‘S) sing = (T‘)zAa+(T+)2 [3 (J2 -Jl):lAa
=[@a,+3w, 6, - )]A (. 27a)

This expression, Eq. (II.27a), describes the contribution to 4 {©) provided

by the trigonometric terms, Hence, this partial solution is expressed as:

(05 )i [0 200,05 Iy

trig
or, since (J 9~ J 1) is its own transpose;
[A 4 Ko)]trig - [Iz +30, 'Jl)] (T)gfy s 1. 270)

where Aa is defined above, in Eq. (Il.26a).

Next, consider the constant and first order secular terms in Eq, (IL. 23).

First, however, a manipulation of the secular term is needed. For this, write

qo[GJ f;, +3J /L' + 2B r] Bz[eg,e 3J1(BZZ'O)+2*F]¢.

Now, when the constant term in [sz: )] is multiplied by "% J 1",
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{(4J +INE 2B ) + @, +4d )-r} 63,k - 33 (B/L')-i*'?zl.]l?'

and, therefore, using these expressions, the two quantities can be combined as

follows: o i
@3, +3 )k -2®,01) +B ‘L [(4.1 +3 )k - 2B ]fp} + @ 4 }-r~213 )T
(Iz-gBJ cp)[(zw +I)F, - 2B ,:g'] [(J +4J)—2<pB2]

'Adding to this expression the remaining secular term, then the last part

of the in-plane partial solution, for I JE {v), can be joined together as:

Ak )= a, —%@B J )[(4;! +J ).f; - 2B /t' ]+{(J1+4J2)—”¢[232+§J2@]} . 27¢)

Finally, the zth component of this (positional) relative motion solution is

seen to be:
1 = - n ..- e it i
J3J£ ) J3 T+ (‘&o T) cos <p+.éosm<p} . {Ir.27d)

Now, collecting the various partial solutions, then, Eq. (IL,23) can be

smbolically represented by:
D L ) = [I +3(J -J )] (T ) A [I ——th 1]KO+\I€TT+J3 {'r+ (1,0— T)cos @

t4!  sin 90} ; (1L 28)

wherein,

35%{3.}1 +I:J - 23 ]B.,é' [J - 23 ] }

- + - - -'
KO" (4J1 Jz),io ZBZ.A,O,
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and

- " 3
V. =@, +4I)-e [ZBZ T2 qu’} y

Note that the terms Aa and Ko’ above, are constants ~ - they depend
mainly on the initial values; however, the last term, ‘If,r. {the coefficient of T),
is secular in its composition. It is important to keep this in mind since the
relative velocity will be determined (next) by differentiation. For this, ‘IIT

bears a derivative.

The Relative Velocity Equation., Rather than follow a procedure analogous to

that above, for the description of relative veloeity, a more direct approach is
taken, That is, by differentiation, Eq. (II.28) yields the corresponding velocity

equation,

. The result of differentiating the displacement can be written, generally, as:

g - - " _3 ’ I r Pt (A -Tai
K1) [12+S(J2 Jl)]('l‘_)zAa 2 BZJ1K0+ TT+J3{4 Dcosqo (do ’r)smgo}.

Of course, as shown in Appendix A, ('i‘_)2 = cp 132 (’1‘_)2; and hence, {T_)'z =
B2(T_)2. Also, from the definition of ‘IfT it is evident that:

v - _ .!
\IIT [2B2+3J2tp].‘
Therefore, 7
’ j;'((p}=[l +3( ---J )]}3 (T_).A ;E(B JIK +¥' T+J {I' cos - (4 -'F)Sinqo} (I1. 29)
2 2 1 2'V72%a 272V o0 7T 30 o 0 P
with \I'_'r as shown above,

Summary. Egs. (IL. 28, HI.29) describe the relative motion of a test particle "Q"
with respect to a reference particle "P" in terms of variables which are defined
in the local {rotating) frame of reference, Here, the initial state parameters

(&— s A" o2Te. dimensionless quantities as defined previously. Since this problem
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has been solved as an initial value situation, then the coefficients (Aa, KO) are
expressed in terms of the initial state parameters. Also, included here is a
representation for a "fixed value' perturbing force system (i.e., T, the dimen-

sionless specific force vector).

The expressions noted above are merely rearrangements of the (similar)
equations developed earlier (sée Egs. If.22). The purpose in presenting this last
set is that they provide a simpler and more direct means of representing the re-

lative motion state, geometrically,

In subsequent paragraphs a description of these geometries will be given;
however, prior to this, a parallel development for the inertial description of these

motions is to be obtained.

NOTE: Before moving on to these next developments it would be useful
to write the state equations (II .28, II.29) in their expanded scalar format. For

this, proceed as follows:

(a) First, from Eq. (ﬁ. 28), the in-plane position variables are de-

veloped from:
- o : '3 ] -
= - - +
L @) [Iz+3(J2 Jl)] (T, Aa+[12 p ©By7y KtV T
In mdtrix form this can be written as:

-cos¢p  sing ||[+3 © 0 +2 | 1 0| -

Lk @) = b+ kY o+ T
+2sing 2cose 0o 0 1 0 0 -2
1 o|ffs 0]  [o 2]_ 10 0 2
+ A +) At +
3¢ o o ®
-5 1o 1 2 0 0 4 2 0
0 o]
2 . -
+¢p -3 T ;
0 —
2.-
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This equation, when separated into its scalar form, gives:

= (- ''sinp-2n' - - ing)+ @€ +2n")+ (1. +20T ),
£ ()= (-3¢ cosp+L] sing-2n] cos-T,cosp-27, sing) g _+am)) (T +207, )
and

M) = (650 sincp+2£:J cos¢+4n; sing+ 2T€ sin¢- 4Tncosqo) - (sgoqp- no +2£(;'+3gon(;)

' 3 2
- [2901’5- -5 )Tﬂ] . (II.30¢c)
Finally, the zth-equation is seen to be:
() =TC (1-cos¢) +C0 cos@+ C(')sinqp. {I.30d)

Next, the velocity equation(s) will be expanded, and presented.

Beginning with Eq. (IL29), and separating the in- and out~of-plane com-

ponents, then the in-plane resultant is:
- 3 ' -
r =T + - JB —— + . ,
1,5'0)=[1,+3@,-7) |B, (T, A -3 1)K +¥T; (IL 31a)

this can be set down in matrix form as:

. -
_ | sing cosp [||3 0 | _ 0 2| _ 1o | |00
I_A'= S L+ ATt : Ty -= *
2 2cos ¢ -2 sin@fod © © 1 0 ] © 0 -2 2 1 0
4 0] [0 27 0o 21 [o o
i + AT+ - T (1I. 31b)
0 1] ° |2 o -2 0 |0 30

(It is recognized that the parameters 4 o A '0, and T (here) are necessarily

composed as the in-plane vectors only).

Next, when these matrix expressions are expanded into a scalar format

one has:
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E'p)= (350 sin@+ g; cos<p+2‘n; s_in<p+'rg sing) - 2Tn(cos<p— 1), (If.31c)
and

(o) = (6E G0 i 47 _sing) - ') - 2T, +30T ).,
- Nn') —(ﬁgocostp —2£.'Dsmcp+4n;cosqo+27'€cosgo+41'nsmgo) (6£0+3'r[o) { ¢ OT ).
| — (1L 31d)
Lastly, the zth velocity eguation easily yields: '

C‘(¢)=C:}cosso~(to-fc)sinqo. ' (II.VSIe)

The companion dimensional expressions,'to those shown above, are
readily deduced from Egs. (IL.20c, and I1.20e) presented earlier. Of course, one
major difference between these two resultants is the reformation leading to the

geometric interpretation provided by the latter expressions as compared to the

earlier ones,

The development procedures for a relative motion, referred to a local
frame of reference, are completed with this summary section. Following this,
a similar description of this relative motion, referred to an inertially oriented

frame, will be developed. This appears in the next few paragraphs.

The Relative Motion, in Inertial Coordinates. In determining the desired state

equations, here, those which have been described (above) will be modified - -
i.e. transformed - - according to results obtained earlier in the section(s) on
kinematics, Accordingly, using Eq. (1.13a), the relative position vector, re-
ferred to the inertial frame, is related {o the corresponding vector, described

in the loeal rotating frame, by:
R =T ) r.
From this single relationship it appears that the {ransformation could
be_carried out quite simply_ (in concept). However, it must be remembered
that the vector (i-‘) has been determined as an initial value problem: therefore,
it will be necessary to transform the initial state vectors, also, in this develop-

ment. This task will be undertaken first, below.
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{Initial Values). According to Eqs. (II .13b), I1.14a, and A.7), the variables

of interest here are described, and related, as follows:

Since r = T")R,
then r =THR+TEHR,
wherein T = 1,008~ B, sin ¢ +Jg. {I1. 32a)
Now, at the initial position (t = 0) these expressions are specialized to read:
r@=r =TOR,
and rO) =t = 'i‘(O)ﬁo +TO R . (1. 32b)
Herein, T(0) = I2 + J3 = 13; also, by definition, 'i‘(O) = q:':B213, These results
lead directly to:
To ™ I3 Eo’
and r = 13R0 - ch213R0. {il. 32c)
When these expressions are separated into in-plane and out-of-plane vectors,
one obtains:
(in-plane) Izro = IzRO, Izr 0 IZRO - szRO;
and,
—of~ s =IR - =7 R : 1,32d)
(out-of-plane) I r, = IR It JSRO. !
The corresponding dimensionless forms of these results are noted to be:
in-plane L& =1§a,1'n= St moh
{ ) ghy =R, LA =L® -B,R ;
and, |
(out-of-plane) J.A =3 R , J AT =T R, {1.32e)*

*Here R and R' are the dimensionless (state) variables, referred to inertial
axes; R =R(E,H,Z) and R' = (E",H', 2"), analogous to Egs. (IL21).
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(Equation Transformations), For the transformation from "local-coordinates"

~ to "inertial" ones, the relationship to be applied is given in Eq. (IL. 13a); namely,

R(@) = T ) T@);
wherein, generally,

- _ - ino+J .
Te) Izcosqo stmcp J3

For the actu_al use of Eq. (IL.33a), above, the expression for r @),
appearing as Eq. (IL 28), will be employed. Consequently, in dimensionless

format:

= _ - = - - - 3

RE) ST E ) = T, [1,+30,-3) [T, A +T )1, -2 oB3 Jx_
+T2((p') \I'T:r" +J3 {'T' + (6-%0—‘?') cos @ + é:} sin (p} .

Before proceeding, a closer look at the lead term on the right of the

equals sign is in order,

Expand the matrices shown there, as follows:
— = A ‘ . -— - . . :
(T3, [1,+ 36, =30 ] (T, = (P01, (T, +3(T), G, =3 )(T_), = (T),* (T2,

+3(T.), (T4), 0,-9.),

since the matrix (I 9 -dJ 1) is its own transpose. Thus, in view of the multiplica-

tion property noted in Eq. (A.Te);

Next, making the required substitutions, from Eq. (IL 32e), it is easy

to show that*:

 *Subscripts ("')I. are added to indicate that these matrices (now) infer a répre-
sentation in the inertial frame.
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=1l:1 R +(J -92J }B R'+(J1-—2J2)?:|

K =3 -J)R -213-6%' \
o, i 2 o 2 o
and

_o = - 3
\I'TI—\IIT—(JI+4J2) go[232+2 quo],

Introducing Eq. (II.34a) into Eq. (I, 33b), and noting that the appropriate
forms for Aa’ Ko, \IIT are those in Eqs. (IL.34b), then

- - i _ a . _ -
Ry = [1,207) + S(Jz_Jl)]AaI + T, @) [1,-5 ‘PBle]KoI FT )V T
+J3 {'r+ (Ro -T) cosqo+R(') sinqo} .

Eq. (IL.35) is the dimensionless, relative motion position vector referred fo the

inertial frame of reference, Note that T is the same vector as described before.

The Inertially Described Relative Velocity. Following the procedure used for

the development of Eq. (II.29), then the velocity vector, here, referred to an
inertial frame of reference, will be obtained by differentiation, (It should be

apparent that this is equivalent to the differentiation of Eq. (II.13a), and the

subsequent substitution for r and r {or their equivalent dimensionless form/ s)).

Taking the direct mathematical approach, that of acquiring the velocity
(ﬁ'), from the position vector (ﬁi), then (symbolically); ;

= - - 3 ] 3 -
] - 1 t - -—
R'ip)=2 [Tz(zqa )]AaI+T2(cp )[I2 2 qoBle KOI p I:Tz(tp )Ble]KOI
T IV T T @) - ot qD--.— _
* 2( ) TT+ 2( )[ r]T+J3{ﬁoc°S (ﬁo ) Sin¢}'
For this expression it should be recognized that (see Appendix A),

T'e) =B,T, ((p-). and Tg (2¢7) = 2B,T,(20) .
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Also, \IIT, being the secular coefficient of ?’, bears a derivative; namely,
yr=-[2B +3 ]E[\Iﬂ} . ' I .37b
T 2BZ J2§D TJI { )
When' these various quantities are inserted into Eq. (II.36), and some
manipulations are carried out, it is found that (one form of) the velocity vector
is: ‘

» R'@) = B, {[125-%(90)]4- [Tz(z(P') - 3(J2'-J1)]A31—T2(¢p') [g (J1K0I)+z(121"):’}

_ 3T, (") [chp] T+ J3'{é; cos ¢ - (ﬁo - T) sin <p} . | (II . 38)

In this expression the vector R = ﬁ(qo.) is the relative position vector given
by Eq. (II.35); also the coefficients (Aa . K0 ) are those quantities noted as
Egs. (II.34b). L :

Summary., The expressions for R and R?, given by Eqs. (II .35, and II.38), re-
present a linearized solution for the stated relative motion problem when it is re-
ferred to an inertially oriented frame of reference. These results describe the
same problem as that in Egs. (II.28 and II.29); the difference between these two
solutions is the frame of reference implied by each. As in the earlier solution, the
external force system,here, has the same fixed components as before; that is, each

component is parallel to one of the axes for the 'local rotating frame of reference!.

There is a second exception for these results. Here, the parameter co-

efficients (Aa’ KO) have been altered (necessarily) to describe the proper set of

. initial values, ‘those required for the inertial frame's representation,

In order to see the more definitive representation for the inertial frame's
results, the state equations are rewritten in the expanded format shown below,

That is, from Eq. (Il .35) write:
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(a) for the in-plane displacement solution:

[E ]
IRy = =
Fat

L¥ ]

bo =

[cosch—
lsin2tp
_
§1% -
T
7
B
R
Ht
0

3 _sin 20 ]

cos 20+ 3]

cos@ -sin¢@

singy cos @

cos¢p -sin¢ ]

sin @ cos

-

-

and; (b), for the out-of-plane displacement:

IR ) =

0 ]
0

Z

3 -

6 0 0

¢ 0 1

[0 0 0]

L r- .:
F'rg =
™|t | B
R

cosg + |H'

=)
b2
I
[

2 }

sin ¢

In place of the relative velocity (Eq. (II.38)), a more convenient ex-

pression, for manipulation, is:

R0) =B, {[Zthz‘p—)]AaI+T2(¢’_’[(Iz '%"D

“ 3 1) AR - T\ i
5 B39 KOIJ g {Ro cos @ - (R - T) sin “’} :

Written in matrix notation this becomes:

(a) for the in-plane solution:

LB ) =

1 0

¢ 1

.
IO}

Hl

(continued on next page)

Il

H' cos 2¢
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! -gin 2¢ -cos 2@

~sin 2¢

%

v
B2J1>K +

1

0

P} Tyen[% 7

Il

0

1|H

*

(II. 392)

(11. 39b)
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PRIEL 1 0
+

0 ||H! 0 -2

2 ][z 1
o1+

0 ) _H' -2

2 TE o

Tl

=3 T -—

. T’ 2

and, (b), the out-of-plane solution:

Jzﬂ'(fp) =

Equations {II1.39 and II .-40) are a more descriptive set of expressions for
this solution to the relative motion problem. Here, as previously, the displace-

ments and speeds depend on the initial state quantities (6-?:0, 6:3:)) and on the applied

Zl

0

L}

0

-

[0 0 o]
0 0 0
0 0 1

h o

T --simp ~COS
£ +
T cos -sing
n 5
20 rTE cos ©
3.2 *
4-— T sin
2(’Q L 7 4
0 2 0f[= 0
o1+
0 0 -1[{H -2
o
L F = -
) o Té‘.
1 — —
H0 cos ¢ H0 T
.' s,
_Zo ) _Z'o TC

~sin ¢

cos @

sin ¢

(fixed) specific force (;). It is seen, and expected, that these force components

are the same as those used earlier since these equations describe the same re-

lative motion problem but as it would be seen in the inertial frame of reference.

With one aim of this investigation being that of describing a geometry for

these motion traces, that task will be undertaken in the following sections,

For

the ilIustratioris to follow,both solution descriptions - i,e., the one represented

in the "local rotating" frame of reference, and the other referred to an inertial

(IT . 40b)

. (II.40c)

triad - will be examined. 'Subsequently, the geometric figures which these describe

on the various coordinate planes will be described graphically and analytically,
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IV, GRAPHICAL DESCRIPTIONS

Geometric Representations. In the following descriptions certain relative motion

traces will be examined. Those which are selected have been chosen so that com-

parisons may be made between representations found for the two reference frames.

The first geometries discussed will be those for in-plane displacements.
For convenience and conciseness all discussions and graphical representations

are cast in terms of dimensionless variables.

Only a limited number of problem situations are described, in detail, below;
however, a compendium of these results is included herein for reference purposes.
The details for constructing the various trace geometries is contained in another

report*, The first case study is that for:

(a) In-Plane Displacements; Rotating Triad, The general expression to

be investigated here was previously given in Eq. (II.30a); that result was:

- _ _ .?L - '
Ly & (‘p’_[12+3(J2 'J1’JT2(“° )Aa+[12 T2 ‘szJJKo MAPAE | (1. 41)

From this equation one sees the displacements expressed as three vectors;

one, each, to describe contributions from the parameters Aa’ Ko and ?, re-
spectively**, In order to describe a geometry which these produce, and to do so
in a systematic fashion, each vector statement will be examined separately; and,

then, in combination with the others.

The first component vector (that due to Aa) is noted below. I is recalled
that Aa EAa (j: o’ [,c;, ?); however, at present it is more convenient to let
Aa be expressed as a general two component vector; i.e., Aa EAa (Al, Az).

Then this contribution to 4 (@) is described as:

* "Construction of Relative Motion Traces" (an Interim Report), by J.B. Eades,
Jr., AMA Report No, 73-39, August 1973, ‘

**This composition is "mathematical' in its make~up; a more "realistic" con-
struction will be obtained in the following section. There the problem is recast,
to separate initial values from the effects of an "applied force'.
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o0& -cosy sing A,

|69 1 2sing 2cosE A2

where these two scalars (Ai)’ in terms of the initial values, are:
= +2n' + ,
Al 3€o ™ TE -
and (1. 43)

= L.
Az go zrn.

It is evident that the expression above describes a (2:1) ellipse on the
(£, m)-plane. This ellipse is centered at the coordinate origin and described by

the parametric equation
| 2 2
0, £) 6,1
+ =1. (I1. 44)
2 232 2 2\2
(,./A1+A2) (2,/A1+A2>

A general sketch of the trace is shown on Fig.II, 4 below*,

The second vector contribution, arising from the Ko term, involves

only initial value quantities; i, e., Ko = Ko (A o’ ,2(; ). However, for convenience,

this partial solution is expressed as:

5¢ y o[k K, =2@2¢ +7)
- ) 1 ‘ 1
81,75 ], = | T e , wherein N
- = - t
Mg 2 ALK, | Ky = M- 289

The parametric equation for this trace is readily determined as:
o], --22 o] '
[azn] K2 5 ng . - (I1. 45b)
The.equation describes a line on the (£, 77) plane which is parallel to the 1-axis,

Note that the line originates from 07(0) = KZ and that the expression is linear
in the independent variable ¢ (= tﬁt).

*This is a familiar result for a relative motion described on this plane; see 1
| Reference [1]. Also, note the direction of motion about this trace geometry, !
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FIG, 1. 4.
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Sketch showing an in~plane trace produced by the coefficient, A,. The figure is described
in the local, rotating frame of reference, Note that the trace's initial point (0), and
selected angle (@) positions as indicated. (Refer to Egs. (II .42) for a mathematical des-

cription of this figure).



The secular influence for the in-plane trace is eliminated when K1 vanishes.,
This condition could be achieved with either of the starting conditions: £O=n(;=0,
or ‘n{;= - 250. (Such constraints on the initial state parameters may occur in either

an "intentional' or "chance® situation),

The third component vector is expressed in terms of the applied force (‘7‘),

where ;E'F(Tg, T??’ TC)°

The trace for this part of the solution is obtained from:
3 1 (2¢) T

o1, 4 ©) ], = = , (IL 462)

3 .2
an 3 20 4—-2~<p T"?

A descriptive equation for the geometry is:

so-an g (55 Pl e 7 @

which describes a parabola on the (£, 7) plane; but, with its apex not at the

origin. The figure opens in the negative m-dircection*,

The full in-plane trace for this problem is constructed by adding the three
partial solutions above, It is apparent that the general figure would be an "ellipse''

which moves away from the origin at a "linear-plus-parabolic rate''.

Instead of examining these various figures in detail, now, a physically
more realistic study of this problem will be undertaken. This considers, as
separate entities, those influences which arise as a consequence of the initial |
values (;{ o ,I(;), and those due to the applied force system (1—'). The individual

effects are described below.

The influence of initial values (io, N (;) on the in-plane trace is obtained

from Aa and Ko’ collectively. In matrix format this partial solution is:

*This description assumes all ;'-components are positive valued,
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_ Ag -cos® sin¢g A
Al i ] = - +

1
AN 2sing 2cosy Az —%"2 1K

(IL. 47)

wherein, now,

=mE +onh= &£ A =¢1.
A SEE Fan)=K -£ 5 A =40
and

= 7. = - r
K, 226 +7); K,=n, 2€0,

as before,

The geometric figure describing the equation above is a "wandering
ellipse™; one whose center is continually moving from the coordinate origin*,
(This is typical of initial value problems; see Reference [1]). A quadric equa-
tion for the trace is:

(Alez-Kl)2 [(Aln-sz-u- g Ko 12
+ == =1, (IL . 48a)

gy Glnal)

= 0) the figure becomes

Note that when the secular term is eliminated (i.e., K 1

a closed locus. It is the (2:1) ellipse with its center not at the coordinate origin,
An appropriate cartesian equation for this figure is:
‘ 2 ' 2
(4,€) 4, 1-K))
5 2. .z ..z (I1. 48b)**
+ £t + &t
€ +E1%) 4 +61%)

{See Fig. II.5 for the traces).

The effects of an applied specific force (') produces an in-plane trace all
its own. For this study the initial state values are zeroed ( vy o /:‘; =0); con-
sequently, this partial solution is aequired from terms in Aa and from the T

solution noted earlier. The equation for this case is found to be:.

*A more definitive name for this figure would be ecycloid.

**Due to the linearization which has been imposed for these solutions, the closed
figures have a periodicity which matches that of the circular (base) orbit. It
must be remembered that this is an approximation to the more realistic case.
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~ Sketch (a)
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FIG. IL,5. Graphs to illustrate the influence of initial values on the in-plane
relative motion displacements, as referred to a rotating frame of reference.
Sketeh (a) describes the more general case (see Eqs. (II.48a)), wherein both
E(; and 7' are present. Sketch (b) illustrates the consequence of removing
the secular influence (i.e., 7 =0). The two ellipses (sketch (b)) describe
the influence of "+§' " (curve I) and a "—Eé '* (curve II) on the motion traces.

Sketch (b)

Note: All curves here originate from the origin (4 0" 0).

. 006
R
f £0=.001
T~ '
/ \
: /
.003 & / \
{ \
I
{
|
/]
0 L
~. 003} /
ks
-. 002 0

.002



At -cos® sing ‘I'E 1 (2¢) T

afll, & @], = - ' . Ts

+ (.49
An 9 2sinyY 2cos@ —z'r77 (-2¢) (4-3¢ " :

This expression suggests: (1), a (2:1) eilipse; couplied with (2), the para-
bolic figure found for the (‘I!T ;}—terms. (Note that this geometry is not a closed

figure; and that there are multiple secular influences present).

It is seen here that when T?? =0, the degree of divergence diminishes.

This constraint leads to a cycloid for the motion's trace; or:

Az‘E:Tg (L - cos ¥),

and {11. 50a)

Azn
= = -—'J'g {© - sin ¢).

On the other hand, when T, vanishes the figure is akin to both the ¢ycloid and a

3

parabola. The describing equations for this case are:

A2£
'—2—= 'rn {© - sin ©),

and 0 : (IL. 50b)
1 3P = -
1 (Azn+ 5 TT?) 'rn (1 ~-cose).

{A general quadric for this particular in-plane trace is:

@,0°  @nrir o) . 2
- —+ - . = [ -cosp)” +@p-sin®)”]) . (II. 50c)*
ar 2 )
T T Tn 4(1-E +41-n)

(b) In-Plane Displacements; Referred to an Inertial Triad. In this section

the motion's displacement traces are referred to an inertially-oriented triad.

The general analytical expression pertinent to this part of the study has

appeared previously as Eq. (II.35); its in-plane part is:

'*Geometrically this may be thought of as a "wandering ellipse", but, one which
has a time dependent coefficient, as shown on the right.
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LR @)=[30,-7)) 1,07 JA, +T,) {[1,-3 ® 70 K, * v} sy

It should be noted that here the displacement vector may be separated into three

component vectors,also; one for each of the coefficients: Aa , Ko and T. Each
I 1

of the components is described below so that the reader can become acquainted

. with how each adds to the overall geometry. For reference purposes the co-

efficient vectors (Aa . Ko and ?) are repeated below., Thus:
I

f—

“1[ R R -]
==|1 R +@_- R+ @ -
AaI 1L+, ~20 VB R + g ~20)7 |,

Ko = (2J1 - Jz) éo - ZBZQ(') . (1. 52a)

and .

On close examination one finds that the Aa and KO quantitiesr are not
precisely those noted above. This is because the initial state parameters have
been transformed into a form compatible with the present reference triad. How-
ever, the force vector (1_") (and its constant scalar components) are unchanged

since these are not "rotated" to the new frame of reference.

\
The first of the vector components is expressed in terms of Aa (= Aa !

¥ . i . ’ I . I ‘
(8,5 Ay); with: o | \
_1 [H ) ] -1 [ .
=—| = + = — =
Al 5 0+2H0 TE , and A2 5 H0+ o 21'1? . ) (I1. 52b)
This particular partial solution is given by:
(1,80 |, =[30, -7 +7 007 4, ;
JHO) |1 =[30,-9,)+T, 0" Aax’
and, may be set down as the matrix equation:
6= -3 0 cos2¢ -sin2¢ | !A :
- - ) i 1
G[Izﬂ(go):ll = = + . (I1.53)
6H 1 Lo sin2p cos2pjf A,
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The present displacement trace, on the (£, H) plane, is seen to be com~
posed of: (1), a constant vector, 3(J 5 -J 1).Aa : plus (2), a circular locus of

/TN !

radius \v Al +A2 K The full figure is a circle of double orbit frequency (2q5)

with its center located at (£, 'H)c = (-—3A1, 3A2). Analytically, the figure can be
. described by:

N ' 2; 2
(61~+3A1) +(61H—3A2) =(A

2
1 Ay )

This particular geometry is analogous to the ellipse found for the (£, 77)-plane, a
trace which evolved as a consequence of the coefficient, Aa'

The second contribution is acquired from the constant, Ko + The corres~-

ponding partial solution is: L

6[}2@@)]2 - Tz(“o_)[lz - %w (Ble)]KoI;

or, as a matrix equation:

In}

6 cos@ -sing singp 0 K
ST R = = 301 1

6H 9 sin® cos¢@ 2 -cos¢p O I<:2

The scalars Ki {above) are defined from:

EK
KOI o (Kl’ KZ}’

where, in terms of initial values:

=2 +H' =o +28
Kl 2('"0 Ho)’ and Kz (H +2&5*),

L3
o o
An analytical parametric equation for this trace is:

2 22 /30 \2
(6,517 + (8, ) _K1+( 2K, K2> .

Geometrically the figure is a spiral originating at a locus away from the

cocrdinate origin,
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On the (£, 1)-plane the trace due to K was a line parallel to the £-axis.

Here, one could show that the present trace is merely a transformation of the

uniformly moving point (on the (§, 77)-plane) into the spiral (on the (5, H)-plane).

Once more it is seen that a secular influence developes from one com-
ponent of Ko’ namely K 1" When this quantity vanishes the resulting geometry

is a closed figure.

The applied force system, T (= ‘7‘(7‘ £’ Tﬁ, TC)) contributes to the partial

This expression is recognized to be (simply) a transformation of the earlier so-

Iution (see Eq.' (II.46a)). In a matrix format the expression is written as:

o= cos¢ -sine || 1 20 TE

61 Re) |, = = 2 ;
[2 :’3 oH 3 sing cos@ |}-2¥ _(4-3%) TTJ

which can he expanded to:
- 2
535(‘.0)=Té. [cosp+2¢psing ] + T?? (2ocoso- (4 - :_3522__) sin¢g],

and

' 2
63H(qo)'='r§ (singp-20cosp] + 'rnl:zqosingo+(4 -:—3{‘20— yeosp] .

Apparently the specific force (1) leads to a divergent (or secular) condi-
tion which cannot be circumvented without removing the force, per se,

A quadric expression for the trace is:
: 2

2 2 2 39 2
6,8) +(6,H) =[r,+207 1" + 20T~ 4-——) 71, 1".
(3)(3) [Ew(p?}' _2<P€( 2)7’)
This expression describes the spiral-like influence typical to these
figures, Actually each force component, alone, leads directly to a spiral

(form) as its contribution to the overall geometry. -
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The general traces produced here, as in-plane displacement geometries,
are a composite of the figures generated from the partial solutions above. Thus
the curve found on the (E, H) plane would be a form of spiral,generally, but one

incorporating the circle described through Aa .
I
These vector descriptions provide a convenient, mathematical means to

represent this solution; however, this is not a scheme which is always consistent
with the physics of a problem. For instance, to show the influence of initial
values on this solution, one should include influences from both Aa and K0 . To
I I
clarify this situation, and that arising from the specific force (T), the next dis-

cussions are included.

The effect of initial state (ﬁo, R;) ), alone, on this solution is obtained by
setting T=0 in the analytical results, For this case a partial solution would
appear as:

A Izﬁ‘(‘p)]l = [3(‘]2 9y +'_I‘2(2tp.—-)][AaI]i.v. +T2(9°-)[I 2~ g(Ble)‘p:'KoI’ (IL 5%a)

" A ] = s , 2 :
wherein [ a, AB‘I (Al A 2) but with

As bhefore, it is assumed that

KOI =KOI(K1, Kz), (see Eqs. (II .55)).

In matrix form Eq. (II .5%a) is:
_ E -3+cos2¢ -sin2p A
A [Izﬂ(‘p) ]1 = - '

AH 1 sin 2¢ 3 +cos 2¢ Az

costp-%gsin(p -sin® Kl
+ . {I1.59D)

sin cpu%o-costp Ccos K2
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This expression suggest a geometry composed of: (1), a circle, dis-

placed from the origin, due to Aa ; plus (2), a spiral, from the K0 term. Here,
I I

again, the figure's divergence develops as a consequence of the scalar, Kl'

Therefore, if that term is removed the trace becomes a closed curve with a

period matching that of the circular base orbit.
The non-secular trace geomeiry, defined for K 1 =0, is described by:

AE @) -3 +cos 20 -sin2¢ Hc';:

"'\‘[Izw’(“’)]lE =%

AH () 1 sin 2¢ 3 +cos 2¢ H0+E(;

coscp—z—(’osingo -sin@ [} O

sin@- %‘g COS @ Cos{ K2

Generally speaking, this equation desecribes 2 limacon,

A special casge of the limacon arises when H(; =0. For this condition,

added_ _to K. =0, a symmetric cardioid results; one which is symmetrie about

1

the H-axis,
The in-plane displacements associated with the applied force (T), are

described in terms of Aa and the transformed vector,T 2(go‘) ‘I’T T. The matrix

. . . g Lo
expression for this partial solution is:

AE () -3+cos2p  -sin 20 T
= - 1
A[Izﬁ((p)]f =3 S
: AH®) 5 sin 20 3+cos2Q | -2Tn
302 |
cos +2¢Psing® 2pcosP- (4 - T) sin¢ -r€
+ 3902 .

sing-2pcos¢e 2¢0sinep+d -~ ~2—) cosQ TT)

Here the first matrix describes a displaced cirele (of double orbit fre-

guency, and radius =/ 7 £ + 4Tﬂ ). The second term represents a spiral~like
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figure; thus, the combination is a spiral-like trace typical of inertial, in-plane

displacements.

This-is the last description for in-plane traces referred to the two
reference triads, The next section describes some of the companion hodographs,
for the situations noted above. Since these discussions are restricted to the in-

plane cases, all considerations of out-of-plane traces are deferreduntil later,

(¢) In~Plane Hodograph; Rotating Frame. The hodographs, or velocity

diagrams, for this relative motion problem are obtained from Eg. (I1.29). The

in-plane portion of that expression is:
- 3 -
1 = —_ - - — + \Iﬁ
L, @) [Iz+3(J2 Jl)]Bz To@ 8, =5 B IR ™5 T

where the constant parameters Aa’ K.o and T have been set down in Egqs. (II .43)

and (II.45a).

The geometric figures to be deécribed here are obtained by a procedure
analogous to that used for the displacements. That is, ‘selected situations are

described to show how the various parameters affect the motion and its traces.

A first contribution to be examined here is that due to the quantity Aa .
Recalling that this term is acquired from the trigonometric parts of the dis-
placement éolution, then making use of the same definitions as before one finds

the partial solution:

6¢! sing cos¢ || A

6[12 o] 1 =
ont 1 2cos® -2sing Az

1

Here, also,

Ay T Aa (Al’ AZ)'
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It ig seen that this expression describes a (2:1) ellipse centered at the
coordinate origin. A cartesian equation for that figure is:

1 2 ] 2
(615 ) . (51?7 )

2 2)2 (\/2 2)2=
(./Al +A, 2./Al+A,

(This is an expected result also; its equivalent has been obtained and discussed

1,

in Ref. {1]).
The second component vector equation is, from Eq. (I .47):

X 0g * 0 0]2(2€ +n!)
o1, %) |,=- 2@, 3K = - o
2™ T2 27271 e | 23, Y |
Ml 2 M57%% %
This plots as a single point on the (£', 7") hodograph plane. Obviously,

this expression defines the motion rate associated with Eq. (II.45a),
Next, the influence of T on these hodographs is found from:

' ogr | 0 2 T

3 = _E = g
6&2’*"@):’3 ‘I”TT - :

én' 3 -2 -3 Tﬂ

Here the trace is a line parallel to the n'-axis; it represents a point
moving, continually, in a specified (+) direction. An equation for this line is
easgily found as:

6 nt
37?
2

+ T -- (gf) 08"

In summary,these three influences produce a trace which is composed
from an ellipse moving awéy from the origin (in an n'-direction), and which

has an offset central peint. The offset is due to the combined influence of K0

and ‘-f'.
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As noted earlier these component expressions, taken independently, do
not define a physically real situation. In order to clarify this and to illustrate a

. more realistic problem the equations are reformulated as shown helow,

Thé contribution of a prescribed initial state to the relative motion hodo-

graph can be expressed as:

A sing cos ¢ 3£ +2n! 0
= = - 0 0
A[Izﬁ '@)]1" + . (1. 65)

1 - H ! - +n!
An 1 2cos¢ -2sing Eo 3(2£0 'no)
Examining this result the figure is seen to be a (2:1) ellipse not
centered at the coordinate origin., If the secular factor is removed (i.e. Kl =0)

the hodograph trace reduces to the (2:1) ellipse,
2 2

1 H

(4,6 (Aa,n"

ey eRIw)

(Necessarily, the quantities describing this ellipse may be varied according to \

=1, . {I1.66)

how K1 is made to go to zero). - \

Finally, to determine the influence of T alone, on the hodograph,

consider the matrix equation:

ALt sing cosy || T o 2 ||T
'A[Iz.&"(gb)]z = = £ | . £
Ant 2 2cosp -2sin® -2'rn

(IL. 672)
-2 -3 T
1™

Here, the first matrix is obtained from Aa, while the second comes
directly from terms in (\Ilfr;l-') The geometry associated with the first part of
this expression is, again, a (2:1) ellipse while that defined from the second is

a line locus paralleling the 7'-axis. Consequently, the composite geometry would

appear as a "wandering ellipse'", or cycloidal curve. An analytical expression

for the trace is:
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Physically, one should recognize that each of the T scalars affects the

2 2 2
A nNY-1.(A £ = - ing -
-rn( 217) Tg( 25) (4Tn Tg)smlp (3-rn)<p.

hodograph differently, For instance, suppose that TF,' =0; then,

and

Azi'—ZTn= - 21'?1T cosQ,

AZ??"i' 3CP7n= 4Tnsin90.

These equations describe a regular cycloid on the hodograph plane,

Next, if Tn= 0, the hodograph’s trace is found to be the ellipse:

(Sketches of these curves are found on Fig. II.6 below). | N cﬁ:é that the |

"2 , 2
(AZEZ) . (Azn +22'r€) .
1'5 (21'5)

secular character of the hodograph vanishes when- 1'??- is zero.

This completes a discussion on this hodograph plane's geometry. In

the next paragraphs a parallel study, for the inertial triad's hodograph, will

be presented.

(d) In-Plane Hodograph; Inertial Frame. A general expression for the
relative velocity referred to an inertial frame of reference has appeared earlier

- in Eq. (II.40a).

_Since only the in-plane geometry is of interest here, then the applicable

equation is:

L&) =

s1)

H'@)

5,{[rm,ee0]a, 100 ({4 Fomn)

- 12 3
+T2((p )[\IITT— 5 (Ble) KOI].
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K +\If_r'1"]}

(IL. 67b)

(11.67c)

(1. 67d)

(I1. 68)



Sketch (a)

.01 ] T Sketch (b).
n' T17= .001 : T Y r
]
T.=.001
\ 17 ¢
0 . £ S
1 0 » g '
/2 0
-.01 L :
-, 001 \
27 Y 3m/2 )
~02 -.002}—3% 1T
2 2
¥an /
~08 -.003
i \_/
-.04 -, 004
T
-.05
0 .002  ,004 .006 -. 002 0 . 002
FIG. II,6. Graphs illustrating the effect of T on the relative motion hodographs,

Sketch (a) describes an influence due to T,,, while sketch (b} shows
the consequence of 'rg , applied separately (see Eqs. (II . 67)). Note:
These curves originate from the coordinate origin (jf(; =0).
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It should be remembered that Aa and Ko are primarily written in the initial,
. ' I I
inertial state of the motion (6_20, ﬁ;), though Aa does include the applied force,
I
(See Eqs, (II.34b), through (I1.37) for descriptions of these and other quantities

of interest in this expression),

As a first part to this study consider those contributions made by the

., three parameters, A , K and '-!". - g
| ar %
The vector Aa influences the velocity trace in the following manner:
I , :

i),

=Y

=2B, [TZ'@-'—)]A

6H! ! 4

-sin2¢ -cos 2¢ Al
=2 . (II. 69a)
cos 2¢ -~gin2¢p A2

= 1 — _1 et
o el + t = e LI
Here, A_ S 2'-—: 2H +T£ ', and A2 H += 27 1.

This geometry is recognized as a circle centered at the coordinate
origin, but having a motion‘frequejncy which is twice that of the base orbit,
{The quadric equation for this figure is:

2

=12 12
(6,277 + (6 BN =A,

2
+tA, ). : (1. 69b)
By comparison, the corresponding trace on the (£', %') plane was an
ellipse, traced over once during each orbit. '

The second partial solution for this hodograph is due to the éonstant,

Ko . With K -defined as K (K K )then

8[L,R ) |, = {[B 1,00 |[1,- 2080 |21 ¢ )[B 5 e,

5H' I

or,
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651 % (sin¢+3¢cos @} -cosg Kl

. =1 : (TI. 70a)
' = (-cos p+3@sin -sin K

H 5 2 ( p+3Psing) © 9

wherein, K = 2{50'-“5:3} and K, =- (Ho+“5:))'

The secular terms in this expression produce a trace which is the involute
of a circle: however, the trigonometric terms alone describe a circle. When the
components of Eq. (II .70a) are joined they lead to the following quadric equation:

1+99

2 2 2 .2 '
(62_.') +(62H') -(———»—--—2 Kl) +I~§2 . {1, 70b)

It is noted here that when Kl vanishes (a condition removing the secular

influence for the displacement geometry) the resulting figure is again a circle:

512 n2 - 2
(GZH) +(62H) K

, - (1. 70¢)

This figure is centered at the origin of coordinates and has a radius =K _.

For the converse situation, that of having K2 vanish, the figure reduces

to a spiral originating away from the coordinate origin,

The last quantity encountered in the relative velocity vector is the specific
force (;'). The particular solution describing its influence is:
i

oL@ |, = . ={[B,T,00 |y +T 00 ¥ } 7
3

cor, in an expanded format:
o=? [sinp+2¢cos ] [(—2'@— -2)cos<p+qosinqo:| T

| 3 11, 71a)
. . 32 . ' (i
6 H 3 [—costp+2<psm(p] [( p -2) SlH‘P—{OCOS(p] Tn

An examination of this result quickly shows divergence is present here.

{The scalar equations here can be cast into the equivalent form:

.
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=

2 "2 2 2 _ 2 2
(63H) +(53H) ~('r£) G(Tgfn)(p+[(27£) +6(-r€1'n)qo S(TT)) Jeo

|

i : + [5‘5-2— Tn:lz' (1. 71h)

This expressioﬁ is composed of the force constants plus various ordered secular

termasy.

Due to the explicit dependence of these equations on ¢ it is obvious that

the resulting geometry is a spiral, also.

Recalling that Aa and Ko lead to a circle and a spiral, respectively,

on the hodograph plane, it is obvious that the general figure will be spiral-like

too, .

The next task is that of determining the consequence of a prescribed initial

state (éo’ ﬁ'o), and applied specific force (1—'), on the trace geometry, when these

are independently applied, The two situations are examined below.

The consequence of initial values on the hodograph figure is described
by specializing Egs. (II .49). Grouping the state parameters as: G 1 E (EO+H'O)

and G_=S (HO+EL’), then for present definitions:

2 )
A[ . AET | sin 2¢ cosZﬁDr G1+H;)
I '(@)] = =- |
2 1 AH! 1 ~cos2p sin2p G, !
i
1, . ll
-E(smqo+3cpcos<p) -cos¢@ |1 2G1 n‘
+ R i
|

1 (IL. 72a)
E(—cos¢p+3<psin(p) ~sinp -(G2+E:))

Obviously the first matrix represents the (now familisr) circle of double fre-
quency, while the latter describes a spiral. Once more the resulting frace is

Iargely influenced by the spiral"s divergent characteristics,

Since secular effects are suppressed when Gl =0 (the condition 1ntro-

duced for the displacement case), the correspoudmg hodograph geometry ‘becomes

the closed figure described as:
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2 . , .
(AIE')2+(A1H')2=(H;) +2((}2+,=('))[G2(1—cosw)-H;smtp] . (IL. 'Tab)

This parametric equation defines a limacon.

In addition to the constraint noted above, when H::x =0 also, an asymmeiry
for the limacon is removed. Finally if G2 = E:) (only) the classic cardioid is found
as a hodograph trace. This is noted from a specialization of Eq. (II.72a); i.e.,

when the conditions indicated above are included, the equations become:
E'p)=-E"' +2E!
Al (®) . cos 20+ 2 L cosp, |
and : (II. 72c)
' =51 gi +9%51 g .
AlH ©) Osm.‘th 28! sin¢
(These expressions may be combined to yield the quadric:

el e 2[5 o
B 207+ 4 1Y = @R)) [2-cose |.) (I 72d)

Next, the influence of (;') alone on the hodograph's trace is examined,

Since components of T appear in Aa , the proper partial solution here is:

I
AE?
AlLR) |, =
B
2
~sin2p+sin+2@cos @ 2cos2<p+( 5 ~2 )} cos+psing 'rg

2

* .73
cos 2¢0 - cosP+2psing 2sin2go+(§%-2) sinp-¢@cose || T L. 73)

n .
Once again the explicit presence of <P,' seen here, eliminates the possi-

bility of acquiring a non-divergent trace, In fact the figure for this hodograph is

akin to a spiral; however, this one originates at the coordinate origin; and, it

does have a monotonically increasing radius.

Summary. Trace geometries for the initial values problem and the zero-initial

values problem have been examined briefly in the paragraphs above, There
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displacement and hodograph loci were described as they would appear on re-
présentative planes in the local rotating and inertially aligned frames of

reference.

One.limiting constraint imposed on these solutions was that of a constant
disturbance vector (1_'). This vector has fixed components paraIIeI to the coordi-
nate axes of the rotating triad. In order to examine an analogous case, but one
with fixed components parallel to the inertial triad's directions, a second problem
is formulated and solved next. In that solution one finds that only the disturbance
itself contributes new informgtion about the motion traces. Hence, an examina-
tion of these trace geometries will be 2 much simpler task., Therefore, in the
next section a formulation and solution of the problem will be carried out first;

then the trace geometries will be described, and discussed briefly.

Descriptions in the foregoing paragraphs have been brief, and the
illustrations there were limited in number, Recognizing that interested readers
would like to sée typical graphs for each of thése various contributions, a com-
pendium of results has been prepared. This catalogue of traces, for the various
in-plane cases, is attached belox-v. What one will find there is a set of typical
traces; each one obtained for positive valued parameters (components, etc.
from the vectors Aa’ K, and §). In most cases the matrix equations (only)
are noted; however, the corresponding scalar expressions are easily developed
from these; or, they may be found by locking into the volume describing trace

constructions#*,

Before leaving this section it should be mentioned that 2 similar collec-

tion of trace data (& compendium)- is found behind the next section also., There,

‘data are presented for the solution involving the gpecific force (:1-'1). Also, to
complete the catalogue one will find another data collection for the out-of-plane

traces. This is found attached to the other descriptive materials,

*Interim Report, "Construction of Relative Motion Traces-”,' by J.B. Eades, Jr.,
AMA Report No. 73-39, :
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V. DATA SUMMARY

A Compendium of Data for In-Plane Trace Geometries. The collected data,

which follows, illustrates in-plane motion trace geometries typical of those
found in both frames of reference. These curves describe both the initial-

values problem and the zero-initial values case where the disturbance is due
to ?(s'?(-rg, T Ted- '

Trace geometries appear in the following order:

(L). Displacements for the Rotating Frame of Reference

(2). Displacements for the Inertially oriented Reference Frame

(3). Hodographs referred to the Rotating Frame

(4). A Non-Secular Case, in the Moving Frame Notation

(5). Hodographs referred to the Inertial Frame

(6). A Non-Secular Case, in the Inertially oriented Frame

For these various representations, the individual mathematical com~
ponents are shown first (Cases 1, é, 3). Next, the initial-values problem and
the zero-initial values case (due to T) are shown. These more realistic cases
are numbered 4 and 5. The last situation, 6, illustrates the full trace geo-

metry ~- that due to both the initial values and the disturbance, T.

Following the hodograph sections the reader will find a case study illus-

trating a non-secular condition for each of the reference frames,

It should be remembered, throughout, that all of these geometries re-
sult from an arbitrary selection of initial value parameters (§, 7, C)o and
&* ', C ’)o and disturbance components (Tg . Tn, Tc). In all instances these

quantities were chosen as positive valued constants.
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In-Plane rDisplacements 5, referred to the

Rotating Frame of Reference
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In-Plane Displacement Diagram; Local, Rotating Frame of Reference.

The describing equation:
- _ _ - _§ ] _
L& ) [12+3(J2 Jl)JTz(qo )Aa+[12 5 P By JK + T,

Partial Solutions,

1. The constructiondue to A (the ""Trigonometric’ Solution Part).
The expression for this partial solution is:

3 = + - - = - - :
6[121”';0)] [Iz 3(J2 Jl)JTz(‘p )Aa Z[ZJZ J1]T2(cp )Aa’

wherein
_1[ - - : _]
== + - ' 4 -

Aa P 3J1}LO (Jz 2J1) Bz.z’k0 (J1 2J2)'r .

and

2. Construction due to the Ko-term {the Constant Iitial Values).
This partial solution is defined by:

- - "31 ]
5[12’,’ (‘p):’— [Iz "2 P By K

wherein
= + - Ko
K0 (4J1 Jz) o 2B2ﬁ_0

-

*Q -describes the ¢ = 0 locus;
P is a general point on the trace.

= oy

4 ~~ ; N,
n —— ¥ 1
\ /
LY ’

\ /

hJ r'd
S -~
. "_/

-
L
-
- -

1. This trace geometry is an Ellipse (2:1)

~ centered at coordinate origin. Rate of
"motion over this trace is ©.

1] -

2, This trace is a straight line, parallel to
the n-axis.
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In-Plane Displacement Diagram (continued)

3. The construction due to ‘I'T; fan influence due to

"Applied Thrust" alon_e). él-
This partial solution is obtained from: p ‘__.___..--""""'—
6[12£ (r,o)}*— \I'T'F,
wherein n _‘O
U= +a3) - 2B+ 200 )0,
and , 3. This geometry shows a parabolic trace

on the (£, 77) plane of motion,

_— -

TET(T, rn,' Te)-

4, The Initial Values Solution (T =0); described by: Jé
- . 3 : P
=[] + - ] . +[ -— ‘ ] - -
A[Iz 4 (‘D)] [2 3Ug=I ) [y, T "2 By i@ | Ky 7 < N
] . "'\ 7/ L \\
wherein ' { \
1 . O / { }
. == n + _ ol ] !
@iy, T2 [3J1J‘o (o =20 By by N - L
and 4, This trace is a combination of 1, and
=4 T ) 2. above,
K =@ +J,) 4 o 2B 4! .

~ *Q ig the initial trace locus; P is 2 general point on the curve,



In-Plane Digplacement Diagram (continued)

5. The Applied Force Solution (with £ 0', ﬁ:), = 0) o L.

is obhtained from:

A[Izj:@)]% [12+3(J2"Jl)]_Tz((p-)(Aa)r“pr;‘ N —

5. (The trace geometry here is a des~

wherein
cription from 1. and 3. above).

=1F -
Br =3 [Jl ZJz]T’

=]
Iy
V= (3 +47 )-[213 307 ]:p ¢
L B 2" 2% 1% 4
and ' 7 P___ -
TET T,) | | N
TET(T,, T,» .
Ter T T : o} {
6. A Full Solution (i.e., a combination of 4. and 5. above), N -
is described from: 6. This figure is obtained as a combina-

tion of 1, 2, and 3, or 4 and 3, above,

© Lie)= [12 *3, —Jl)]Aa+|:12 B %Blegd]Ko“I'r?‘

*() is the initial point for the trace; P is a general position on each curve.



In-Plane Displacements, referred to the

Inertially Oriented I'rame of Reference
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In~Plane Digplacement Diagram; Inertial Frame of Reference

The describing equation:

+ \IfT?} .

Partial Solutions.

1. The construction due to Aa (the "Trigonometric' part of

the solution). 1

The descriptive expression for this partial solution is:

6 [Izﬁ ((p)]= [3 a, ~;Tl) +T2(2qc")] AaI.

94

wherein

o

=55 : ]
=E—~II R + - R+ -
2 BZ(Jl 2J2) o {Jl 2J2)‘r s

a 20

—

and o
'r_='r('r£, 'rn, TC)'

2, Construction due to the K_(the Constant Initial Values quantity).
I

This partial solution is defined as:
= - 3
o iyl § @0
wherein
= “JIR ~ R,
KOI (:2J1 J2) 6%0 2B2 °

*O is the initial point for this trace; P is a general locus,

I

1. The trace is a circle with its center off-
set from the coordinate origin. Offset
is due to fixed terms in Aa; the circle is
a consequence of the transform, T.

i
I

Hee— O/r )"‘
\95 /
| P \I___/

}

e Wy v

2. This trace is a spiral-like chrve; itisa
consequence of the secular form of the
expression. A displaced initial locus is
due to IZKo'
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In-Plane Displacement Diagram (continued)

3. A Construction for the \IJT? Solution, =

This partial solution is obtained from: @ ‘ /

6':12@(@)]=T2@-) [‘I’r;] | B \/\/wl

wherein . ~—, |
P
3
¥ = +4J ) - + =
T (Jl J2) (232 5 P JZHG ‘
and 3. A spiral-like trace primarily due to the
' secular nature of ¥ _p
TERTLL T, T |
ST Ty T
4. The Initial Values Solution (T = 0), described by: =
All R H o /
I :’E[ - + - ] + - [ : :
AlLRe)]=[30,-1)+1,007) ay)  +Tye0[l, ;
- .V, /
i /
3 /
'E‘D(Ble)]KO e -
wherein |
(A ) E.;-[Izﬁ +B2(J1 _ggz)év :l 4, This spiral trace is a combination of the
v © ° types shown as 1. and 2. above, Origin
and offset relates to initial state,

= - D - @1
KOI (2J1 Jz)ﬂzﬁ0 2]32&0.

*Q defines the locus for ¢ = 0; P is a general trace point,
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In-Plane Displacement Diagram (continued)

5. The Applied Force Solution (with ﬁo = é:} =0);
defined by '

@ o

4 [12 é@):lz [3 SPREL +T2(2“°-):| (AaI) r +T2«D—)[‘I’T;]

wherein

and

TET(T

3

,T’T
n

C)'

6. A Complete Solution (i,e. Combination of 4./and 5, above).

Izﬁ(ep) = [3(J2 - Jl) + Tz(ch'}]AaI + TZ(@f){[Iz

- %(‘D (Ble)]KoI N \Ir'r;}

H

5. This spiral trace is related to the geometries

described as 1. and 3. above, Note the
curve originates at the coordinate origin;
thig is due to the null initial state,

I

6. (The special case of motion beginning at
the origin (Particle Ejection Problem) is
not shown here. This figure is, also, the
combined solutions for 1., 2., and 3, above),



Hodographs, In-Plane, referred to the

Rotating Frame of Reference
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In-Plane Hodograph Diagram; Local, Rotating Frame of Reference,

The general hodograph equation here is:
- - 3 [ ] -
T = - -2 '
IZJL @) [IZ *3 (JZ J1 ) ][BZ TZ 2 )] Aa 2 B2 J1 KO * ‘I’T T

e, (i 96,1y Iy, -2 Je o

Partial Solutions

1. Trace geometry due to Aa (the "Trigonometric'’ Solution),

The equation describing this trace is:

o0
(=] . - _ -
6[12:';.'((;9)] [12+3(J2 Jl)]Bsz((p )A,
wherein
. =l - _ — _ -
Aa~2[3J1.fgo+(J2 2J1)B2J£;?+(J1 2J2)'r:|,
and
7

=TT, T, W)
Te» T T
2. The Contribution for K‘0 (the Constant Initial Values term).
This partial solution is given by:
6[1 ./Z'(t.o)]= -3p 1K
2 2727170
wherein

= ‘ e - PR
KO (4.11+.;r2),r.~,0 2B2_,&0.

*Q0 ig an initial point for the trace; P is a general locus,

n‘r

This trace is a 2:1 ellipse, centered at
the coordinate origin. The motion rate

over the trace is .

gl

P

r['--‘—‘

The solution produces a single point on
the hodograph plane. (Note that the
point lies on the #'-axis).
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Hodograph Construction {continued)

3. The Construction for the term \If',r?'.,

The describing équation is:

G[Izk’(qo)]= \Ir;r'r,
wherein

"= + .

\IIT (2}32 3J2<p),

and

.

4. The Initial Values Sclution {for TE 5) is described from:
- - 3
1 -— - ——
A[Iz"" (‘p)] By {[Iz+3(J1 Jz’]Tz(“:’ )[Aa]i,v. 2186
wherein ‘
El[ Torr - n .]
[AaJi.v. 2 3J1'& 0+(J2 2J1)13:2J£'0
and

= + - LY
K, =@ +I)k -2B,A!.

*Q is the initial point for a trace; P is'a general locus.

7' —-

3.

This trace appears as a line, parallel
to n'-axis; trace motion is as shown,
typically.

£ 1 P
|
\,..\\
O *a
t, x . \\
' l' I T~ \/ e \
T 1 ) g 'l
\\ /
\ 7
\ s
\\ »
\\‘\ "’4’
This trace is a 21 ellipse, with center

shifted due to K,-term. Motion and
rate, over hodograph are as shown.
(This geometry is a combination of 1, .
and 2. above).
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Hodograph Construction (continued)

. 5, The Applied Force Solution {£ o’ j

=0) has its trace

‘defined by:

A[Izi' ((p)]= Tz(qo')[Iz +34, -Jl)]LB2 I:Aa] -t \Pjr‘?.

wherein

and

(J1—2J2)T,

N

[ ] "

t =_ +
V1 =-(B,+33,0),

r="T (Tg' 'rn, Te)e

6. A Full Solution (i.e., the combination of 4. and 5. above).

ig defined from:

Izj"-' 0) =B, {[12 *3dy 'J_z)]Tz(@-} Ay~ % J1Ko}

+ ¥ T,
T

*() is the initial point for the trace; P is a general position on the curve.

5, The trace is now a meandering (2:1) ellipse;
the center is shifted and moving in the
negative 7'-direction, .
(This is a combination of 1. and 3. above).

. -
-

6. The geometry is also a combination of 1, 2,
and 3, above,



An In-Plane Non-Secular Case for the

Rotating Frame of Reference
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Noil-SecuIar Traces; Local, Rotating Frame of Reference

To remove the divergent nature of these in-plane displacements it

is necessary for (250 + nz) =0).

The resultant defining equation is:

P ~A WL L8 (1)
LA (@)'[12+3(J2'J1)]T2(‘p YA, +[12"2‘°B2J1]Ko ’

wherein

(1)5_1_[_ s -,]

Aa' 2 Jlﬁ'o J232""0 ’

and
kW=7 f 2B T 41 =3 [jZ -2B i'].
0 27 0 2 170 2 0 20

(These are reduced forms for Aa and Ko, needed to eliminate the

secular influence).

The Hodograph corresponding to the non-secular requirement(s)

noted above is obtained from the expression shown below:

Fn) = ra T ey a3 @)
szz'(qo)—Bz{[Iz+3(J1 Jz):'Tz((p )Aa ZJlKo '

wherein

A0 (@
a 0

are as defined above.

*Q ig the initial locus in this plane; P is a general point on the trace.

DISPLACEMENT ' ¢
D(. -\}'ﬁ\
/ ¢ AN

/ ™~ \I \
" :r \I/ \

Y

— a—
T . ——

This trace is a 2:1 ellipse with a shifted
center (shift due to IzKo(l)). Motion on
the figure is as shown,

(A special combination of the displacement
constructions 1, and 2. (or 4.) above.
Another geometry for this case arises when

g=m = 0).

HODOGRAPH £rh

-~ -
e

This trace is also a 2:1 ellipse but centered
at the coordinate origin,

(This is a special combination of the hodo-

graph construction 1. and 2. (or 4.) above.



Hodographs, In-Plane, referred to the

Inertially Oriented Frame of Reference
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In-Plane Hodograph Diagrams; Inertial Frame of Reference

The general hodograph equation is:
o) 0] {[ Jeo
LR') Q[BZTZ 2o7) AaI+B (qo M- chB I K

+ WT?}+T2(¢') {\I';_? - %[BZJJL]KOI} .

Partial Sclutions,

H
1. Trace construction due to A, (""Trigometric' Solution) H ——

The def ining equation for this solution is:

6[1 R (qo)] Z[B 20 ):'Aa ;

1, Trace for this partial solution describes a
wherein , , circle with center at the coordinate origin.
s =1 [I 5 +B (G —25 VR! +(J. 23 -:! The trace motion is at double orbit

aI_ 2k2 o 2( 1 2) o ¢ 1 2)1- ‘ . frequency,
and _  _
TET(T,., T, Te).
: ¢ f =
2. The construction for K, (the constant initial value partial solution) : : N
I .
: hY
This solution is described by: , \\
- 3 3 \
o]0l e w3 oy5) ~
6[1,2'0) | =T, 0By 1, " 5 @ B3 |- 5 By ) o, _ i
i _
wherein i \ (,o K
_ - f—— —‘\/ ,’
= - R -2B_RY ,
o~ ¥ T9) %67 2B5 %o P
*O is the initial locus point, while P is a general point on the trace, 2. This hodograph trace produces a spiral-

like curve. The divergence is linked to
the secular coefficient (BzJ 1@).
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In~-Plane Hodograph Diagrams(continued) _ :

: . : .,
- . A3
3. A Construction dueto the T-terms alone (Explicit Applied :

R )
Force Terms).

The describing equation for this partial solution is:

O\_/
\-n-..____-"

HI
5[1 ﬁ'«n)]ﬂ‘ @) {B o +‘If'}?- o \: ) y
2 A N A A £ ' & L
wherein _ - ~—
= (J +4J ) (2B qo) 3. This trace produces a gpiral; the

divergence here results from terms

o ' in both \I'T and ‘I':r .
-1 f = .
| \If_r (232+3J2qo),
and
;E;(TE, T , TC)
4. The Initial Values Solution (T = ﬁ) is obtained as:
[I w(‘o)] {E[T 2 ):K )1 v. FT,® )[I ) ‘szJl]K }
- —T [B2J1]K .
wherein

D =

(2 )1

1R +B,@, -27,)K ] dK =@J -J )R -2B_R'.
[ p¥y "2 Ko Jand Ky = (T, IR 2B R

4, The trace appears as a form of the
. ' . archimedian spiral coupled with
* O is the initial locus point, while P is a general point on the trace. circles
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In-Plane Hodograph Construction (continued) , J g2

wherein

and

5. The Applied Force Solution (ﬁo, ﬁ(’) = 5), where the motion *

trace is described by: ' )

Al i) ] [Bz{z[Tz(Z‘P_)](AaI')T+T O 1+ 07) Tk

H' @ J
X
‘I
(A )E-l*(J -23,) -\Ir=(J+4J)-[2B+§J ] F
af. 271 72 ' Tt Y17 o tg Yo P, _ .
5, This trace is produced as a spiral-like
Ot o= o geometry. Secular terms appear in both
\I:,r [2B2+3J2<p:’, ¥ and V',
T T
- - + =t
TET(T,., T, T.).
-( £ L : ‘ \‘\\
0N
6. A Full Solution {or, the eombination of 4, and 5. abgve), \‘
\
The hodograph is obtained from: "s
1
3 3 - H "
t = - - _2 :
L) B2{2T2(2<p_ )AaI-f-Tz(qo )|:(12 2¢B2J1)KOI+‘I'T'I::'} ',I
o 13 v
‘-.,..-.._—-_._/

~[gr1= 3
tTe )[\I"!"T'E (Ble)'KOI:"

6. This geometry is composed from traces
in 4, and 5. above; or, a combination of
1., 2., and 3,
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An In—-Plane Non-Secular Cage, for the

Inertial Frame of Réference

89



Non-8ecular Traces: Inertial Frame of Reference

To remove the divergent nature of the in~plane displacement

trace it is necessary for (= 0+H;)E 0. The resultant defining equa-

tion is:

L) = [3 =91y (z‘p“)]Aa(Il) Ty {[Iz '%‘szJl]Ko(Ilj} ;

wherein
AL =1, [E% +B é'], and K-(]')E—[J R +2B_J é'].
a 2 20 20 o 2 0 21 o

(These coefficients are reduced forms of the like expressions noted above),
8 | -
The hodograph, corresponding to the non-secular requiremeﬁt(s)

indicated above,is defined as:

12@,'@) = 2[BZT2(2¢“)]Aa(II) T, {.Bz[lz - % (Ble)w]

3 (1)

wherein

A @) and K @) are as defined above.
4 1

¥On these traces O is the initial point while P is a general position on the curve,

Il '

DISPLACEMENT

p—— i
I” \\\
, \
/ N\
" 1
' l
1 I
0} "
QA
P/
H .
(A General Construction:
Special cases not shown).
HODOGRAPH j =
TN
I/' \\
/! »” —-JI\‘
H':-‘- l" r’_ t \\
i NI
| SN
¢ L P
\ @
\

il -~
L S—"1 O

(A General Construction; Special

cases not shown).

These curves are limacons, in general;
the special cases are noted to be varied
forms of the limacon (e.g.,the cardioid).



VI, PROBLEM SOLUTION

An Inertially Aligned Force System. In the foregoing sections of this report

~ the relativé motion problem was solved for the case of a disturbing force
with components parallel to the local rotating frame of reference. The study
which follows, below, will differ from the former one in that now the forkce is
assumed to have components in the inertial frame of reference. As with the
former case, each of these éomponents is assumed {o be fixed in value, This
will allow for an analytical selution to be obtained, directly, and will form a

basis of comparison with the previous solution.

Return, for the moment, to the differential equation for this problem

(Eq. (1I.12c)); there the relative motion's acceleration vector is expressed by:

:_ -2 - -— L - — . ° - -
r=¢ [(12-—13)(1'+P)+313P (T - P)]-—Z@Bzr +EjF,

wherein the summation on F represeﬁfs all the external forces which may be
a_pplied to the test particle (@). ‘Also, here, r is the relative position vector
(for Q with respect to P); and, I; = éx’ is the unit position vector for the -

base particle (P). Other terms are as defined for Eq. (II.12¢).

The force system of interest now is represented in the inertial frame,

hence:

i
|

S F=F

iF [FF (Fy. F, F ),

XY "z

where the Fi scalars are the projections of F onto the inertial triad of
reference. Recognizing that Eq. (II .74) can be written (for solution) in terms
of local, rotating coordinates, then it will be necessary to relate ﬁI to the
same triad of reference. This is most easily done by means of the transforms
described in Appendix A. There, Eg. (A.3a) relates the rotating triad (e ) to
the inexrtial one [(e ) ] accordingly, an inertial vector is transformed back
to the local frame by this transformation. As a consequence one finds that the

components of F_, which are "seen" in the rotating triad's frame, are:

I’
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F)'=[T(6%)] F, (I1. 762

where T(0%) = T(p™), since ¢ is the transfer angle here. Therefore, Eq.

{I1.76z) is expanded to:

r 7 r : Tie

Fx cos¢e sing 0 FX

Fy 2 |~-sing cosep 0 FY . (I1.76h)
e FZ -l - 0 O 1 vl -FZ -

Probably a more meaningful statement for T@@™) is that noted in Eq. (A.7¢),

Appendix A; that is:

T’ = 12 cos¢@ -Bsingp + (13 - Iz). (’IL’??)*

A Solution for the Relative Motion, The solution which is found here follows from

Eq. (IT.74) after Eq. (II .76a), or Eq. (II.76b), has been included, Making use
of the simplifying interpretations to terms in the differential equation (see the
statements following Eq. (I ,15a)), it is apparent that a solution is to be chtained

for the expression:
.2 - . - = _
r=¢ [3(J1-J3)r]—2qo]321‘ +TE")F, . (II.78)

It should be evident that this equation differs from that in the previous case only
in the last term -- the disturbance function F, Here, as noted above, the
scalars describing F-I are constants; however, the disturbance term itself is

a variable through T ™).

Before the formal solution is attempted it should be noted that for this
case the relative motion displacement (r) is referred to a triad moving uni-
formly @ = constant) with the base particle (P). The constant matrices (J v B)

are employed to properly "locate' the associated vectors in the triad space,

*It should be recalled that (13 —12) =g 3; this is one of the special diagonal
matrices used here,
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The state vectors (E, ;) ave those of primary interest; however, the initial
state (;o’ ;0) is arbitrarily set so that the full solution is obtained as a com-
bined "initial~values problem' and a solution for a forcing function (hereafter

called the "zero-initial-value problem™,

Again, applying the method of Laplace Transforms, Eq. (I1.78) is cast

into the following transformed format:

1) -1 [s7 + 1':0]-— qéz[le -Js] T(s)~20B {13[5 I(s) - 50]}

Is B O J .
r2 2 3] — . *
+ - — + = |F_ . (I1. 79a)
L 2. - ’
g 2 S2+‘pz s I

or; in a more concise zlgebraic form:

[Issz ~p2 (33, -3,) +2¢>st] r(s) {E Als) E(s)}= [ISS +2¢3132J 50”31-:0

I8 B_© Toq
+f . + 215 . (IL. 79b)
SZ_H;Qz 2+¢2 | 8 1

Formally, the sclution for F(s) is recognized to be:

r(s)= ]:A(S)]-l[lss +2t;JB2]fo+[A(s)]-1[13i-:o] +[A(s):’_1[ 1225_2 - Bzz"”z +J;3_] F, \(in.?gc)
5 Hp 8 +¢ L\

' \ wherein [A(s)]hl is the inverse of the matrix A(s) defined in Eq. (II.79b). | il

(This inverse matrix is set down in Egs. (II .17).

After manipulating and rearranging, and finding appropriate inverse

transforms, a solution for- ;:(t) is found as:
— _ - + _ - - - _ R - -—
r(t) {13 coscpt+[4J1 Jz:l(l cogpt) B[Jsz] ot stnt,ot)} ro

T
+‘{I3 sin ¢t --3J2 (ot ~sin@t) —2B2(1 —cosﬁDt)} ~;~9
(equation continued on next page) ' @
*For reference purposes, one should recognize that T *5 is transformed as:

I,s
2 - 3 . .
37 3 = - Trg 11
L{T(® )}—£{Izcos<,o:Fstmqo+J3}_m s —z—z-sz -2+ — , Wherein "s" is

the transformed variable.
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{J (1 cost,ot)+—l (t,otsmgot)-—-B (smtpt qotcoqut)

-[ZJ +5J ](1-cosqét-l¢'>t sin®t)+=> J B (2¢t+¢tcosq5t-3singét)}_—1. (IL. 80)
17%9 2 2 Y2 o2

Introducing the dimensionless variables shown in Eq., (II.21), and re-
grouping the above expression in ferms of its in- and out-of-plane components,

a more useful form of this result is:
= = =1 = - -
£ ©) {[4J1+J2]..&0 2B2¢0} {SJI.&O 2B, £ ! }cosqo+{s[13 JIJJL
- L1 cinm- -
Bz[J2+4Jl]B2,4,O} sing-3B,7 {21240 B, }<p+{ er +5J ]
-3B_J (ﬁD-—sin‘P)+§[:J +2J :”:I +PB :'[I cosp-B s'mqo]
21 ZL1 2 2 2 2 2
+1[J +4J ]coscp}-? +3 {.fZ cosp+4 ! sing +T (1-cos:,o)} (L. 81)
2L1 2 I '3 o o} I *

In this expression it must be remembered that ¢ plays the role of the independent

variable { = ¢t), and that all state and disturbance parameters are now in non-

dimensional form.

Eq. (II.81) is rather difficult to study and interpret due to its complicated
form, Thus, it will be presented in a more compact format; the scheme followed

here is directly analogous to that noted by Eqs. (II.24) through (II .27).

First, the trigonometric terms having initial values as coefficients are
consolidated, and grouped, using the matrices T((,oi}. Secondly, the constants

and the first ordered secular terms are separately grouped and named.
(1). For the trigonometric terms, write:

1212c cos @ +13217:S SN =T, (@) [a?a] + Tz(qo+) l:ds]

=1, [da+as]coscp+132 [c?a - fg]sincp, (11, 82)
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where E and Es are rnpresentatibns for the cosine and sine coefficients. in
Eq. (II. 81), r«espectwely° Recognizing that, now, 2Q = k + k and Zﬂs =
kc - k then it is easy to show that

aa=%{3J1’io+[J2'2J1]sz<;}’

ead [, |8 00}
E et + + 1
Qs {89k 3,20 B g h.

and

On examining these coefficients it is found that:
=3 -d :
as (-JZ 1) aa
here the matrix [J 5 -J 1] provides a proper change in signs, while the three (3)
is a needed multiplier.

Incorporating Eqs. (II.83) into Eq, (II.82) it is easy to show that:
F o003, simom 07457, 1,0, 14,
Lk, coso+Bk sing={T,(@")+3T,0")|J, Is da

<y 3l -0, ]}y Ja,

after some manipulations.

(2). Next, when the first term {the constant parameter) in Eq, (II.81)
is multiplied by -z-J 1 the result assumes a form which is very similar to the

secular coefficient in the equation. Consequently, these two quantities can be
19,03, )i -om, i1} -om [, 5 oy Jo
{[Jl J2 40 2B240 3B 21 B A' @

[Iz ) ‘szJl:I{[‘LJlJrJz]Eo_ZBz'EE} :

combined as follows:

(3). Finally, for conciseness and uniformity of notation, the coefficient .

of ;I is replaced by (the equivalent set of terms):

*When this result is compared to Egs. (II.26), it is seen that (&Z,, (2 JE@A

(II. 83a)*

(11. 83b)

(IL. B4)**

(II. 85)

A
7? i. V. 3
i.e., the previous definitions, but now only initial value parameters are contamed

**When this result is related to the previous one it is noted that the two are identical

if in A the T term is removed (see Eq. (I .27)). Hence, here, the ‘?a term is re-

placed by [A ] . signifying this constraint on Aa-.
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oy, ey, 20, w00, oy om0 1 [y o2, g

- Tz((p+):' . (I1. 86)

When due account is given to all of the results noted above then the

solution, Eq. (II.81),can be replaced by:
B te= I:Iz+3(J2 _Jl)] T, )[Aa]i.v. ¥ [ 2" E"o B Jl]Ko+ 2T

7, {4— Ocnsfp+£ ! sin@+ ;I (1-cos qo)} , (I1. 87a)
wherein

[a]iv, =a[mnd ray-pmydy |

= T Zt
[4J1+J2] A o 2B2.¢0 s (11. 88)

and @T is the quantity given by Eq. (II.86). This solution should be compared
to Eq. (If .30a), the solution for 4 @) when T (the specific force, referred to
the rotating triad) was the "disturbing function'. A comparison of these two
mathematical statements will show that the only new information provided here
is associated with the ;I terms, Hence, the initial value problem has remained
intact (as would be expected) while the "zero-initial-value problem" is altered

accordingly.

The Relative Velocity Equation. The equation in question, now, is most

readily obtained by the differentiation of (say) Eq. (II .87). One must be care-
ful,noting that: (1), the ’]E‘2 (goi) terms bear derivatives, as does the coefficient,
@ . Infact it is only the trigonometric quantities which are involved in this
operation. Now, after differentiating and clearing, the resulting {velocity)

equation is: ‘_
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+J3 {.é:)coscpﬂTI-.&o)sincp}, (Il . 89a)*
wherein 7
= _ o, 8 I- - +
q):r [2J1+5J2:’B:2T2("° )+2[J1+2J2]LJ2B2+(12 "oBz)Bsz((’D }]

" i[‘ll B 2-J2]B2 [Tz("’_) +T2((p+)J y (L. 90)

Summary. The descriptive equations for 4 o) and 4 ') above denote a time
history of the state of relative motion for the particle (Q), relative to the base
particle (P). Here "P" is assumed to move on a circular orbit about a simple
attracting center (L), There are no mutually reacting forces between the
particles; however, @ is presumed to be acted upon by an external force

which has constant valued projections referred to the inertial frame of reference.

The state equations are given in a dimensionless form: nevertheless the X
dimensionality of the problem can be recaptured by noting and applying proper
multipliers (see Egs. (I1.21)). Also, the expressions above define the relative
motion in the local, rotating frame. Consequently, when the motion is to be
described iﬂ an inertially oriented frame of reference it will be necessary to

take a proper accounting of the transformation which can accomodate this re-
sult. (This is the task to be undertaken in the next section; comments are de-

ferred until that time).

A study of the expressions thus far developed shows that the separating
of these results into an initial-value problem and a zero-initial-value problem
is a natural division. In fact, there is no coupling between these solution types;
hence, any new information Which is to be gained here must arise as a conse-

. quence of fhe applied force ('?'I) alone, This reduces the number of situations to

*See Eqs. (A.6), Appendix A, for a description of the derivative forms of T((p‘:*’).
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be discussed, now, and allows problem solutions to be added to one another

for a more complete definition and accumulation of effects and simulations., By
combining the results here (for ?1) with the previous cases it is possible to
imply a variety of applied force situations, in addition to the initial values
effects, Of course, the reliability of these answers cannot be expected to ex-
tend too far, into physical space around the base particle, or into time, since
the analytical solutions are a consequence of the linearization imposed on the
governing differential equation. This is a constraint on the problem; neverthe-
less it is obvious that these formulae do provide an excellent insight into and
understanding of the several situations studied herein, In this regard the reader
can become much better acquainted with these classes of relative motions than

he would otherwise have through {say) discreet numerical examples.

In order to provide a befter view of these solution equations the primary
results, Egs. (II.87a) and (II.B89a} are written below in matrix format. Recall-
ing that the initial-values solution, now, is the same as before then the principal
added effects are to be found in terms of the T,. Nonetheless, to avoid confusion

I
the full expressions are written here.

(2. From Eq. (II.87a) the in-plane displacements are given by:

. 1 !
i £p) ) ~cos¢ 8ine 3§0+2??0 . 1 0 4EO+27?:)
2 . 3
np) 2sing 2cose]]. ij:) -—2£ 1 no-zé;;
~-2(1 -cos ) -‘;1 sing 3 sinp -cos¢ Te
+ +—29 | .8
-Gsing = ~b5{l-coso) 21 +cos®)(2 sin®) T

H

(). The out-of-plane coordinate is:

J3£(¢)EC(¢)=COcoscp+C; sin<p+1'z(l—cosq3). (11.87c)

{c). From Eq, (II.89a) the in-plane velocity is described as:
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&) sing  cos@ |[36 +2n!

_ 0 0 ||4& +27!
LA'®) = = -1 5 °
') 2cos -2sing 5(; 5 0 no—zéj(;_
’-—ésinqo 0 %cpcosﬁo -;—tpsinfp T
+ +3 - . (I . 89b)
| -3cosp -2sing (L -¢sing@) (pcosP) TI—I ‘
{d). The out-of-plane component is: )
JSE'(cp)EC'(tp)=c'cosqa+(rz—Q’O)sinqo. (IL. 89¢)

In the next section the case just studied will be reexamined but, then,
with the motion referred to an inertially oriented frame of reference. For that
analysis the state variables in use will be a dimensionless set; these are to be ac-

quired by the same scheme as was used in the foregoing case study.

The Relative Motion in Inertial Coordinates, In this section a solution to the

relative motion problem is developed with the state variables described in
reference to an inertial frame of reference. The method used to acquire these
results is identical to that employed earlier; that is, the solution expressed in
a rotating frame is transformed to the inertial frame, It should be remembered
that the initial values appearing in the various parameter coefficients are also
subject to the same transformations. (This operation has been carried out
pfeviously (see Egs. (II.32))). The basic operation in this transformation is

carried out according to:

Rt) = T@") rit), (1., 91)*
where h

R{t) =R, Y, Z).
Here R(t) is the inertially described displacement vector while T(t) is the
vector in a local coordinate representation. The operator, T(p ), is the trans-

form matrix needed to obtain the desired resulis,

*It should be noted that R and 5, here, are not dimensionless; for symbholic
representations the physical coordinates are used. Thug time is the independent
variable, etec,
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Once this transformation is completed, and the position vector is properly
expressed, then it is a simple task to develop the relative velocity equation.
Mathematically this is accomplished by differentiation; symbolically this follows
from Eq. (IL.91), a.bove as:

R({t)=T@" )[r +@BT], . (11, 92)

having taken into account the derivative of Eq. (A.6d), Appendix A. These ex-
pressions represent the transformed state equations in dimensional form; the

corresponding equations, expressed in dimensionless variables, are:

R)=T ") £ (©),
and . _ _ (I1. 93)*
R'@) =T ) [L"+B 4],

Recall,in these formulae,that & and 4 , and their derivatives, (ﬁ', n )

| are written in the previous dimensionless form; the derivative here is with

respect to ¢ {the independent variable for the dimensionless notation).

The Displacement Equation. A direct application of the first of Eqs. (II.93)

leads to the following expressions:
B 1,%0) = {Tz(z‘p-) +3[Jz "Jl]} [AaI]i.V. @) {Iz ‘p[Ble]}K +T, ML S

wherein [Aa :’i v’ Ko and @T may be deduced and/or are defined in Eqs.
s I L] - I

(I1.34b), and (II . 86), respectively; and, for the third component:
Ro)=J 1R Rt sin@+T (1~ }. .94
b Jsﬂ(go) J3{ ocos(p+ Os1ntp+‘rl(1 cos P) (I1. 94)
For quick reference the coefficient matrices are repeated below:

1y, T
[Aal:'i.v. 2 I2&0+ J2 2']1 BZRO}’

= - R - A
[le Jz] o8,

and

*The nomenclature here is such that !z(tp) = €, n, C), J:.'(SD) -4:'(5' n, £";
and Rip)s=RE, H, Z); Re)=RYE , ZY).
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@T = [2.11 +5J2][T2{<p+) -12] + %‘9 [Jl +2J2:H:L]2Bz +B2T2(9°+):|

_ +%[J1"2J21[T2@_);T2(@+)]'

(The reader should remember that the previous Aa and Ko matrices have been
revised by including a proper set of initial values; the consequence of those mani-
pulations is noted above as Aa and K0 . Also, for this analysis the T terms

I I
of Aa are absent; the new matrix contains only initial values (i.v.) - - thus the

subscript).

Equations (II.94) are to be used for the development of in-plane and out-
of-plane trace geometries., Subsequently there will be some desecriptions of

these presented herein,

The Inertially Described Relative Velocity., Following from Eqs. (II . 94) one can

obtain the velocity definition for the present problem situation. Once again the
analytical expressions may be arranged so that there is a logical separation,

within the equations, to describe both the Initial-Values Prcblem and the Zero-

Initial-Values Problem, By the application of Eq. (II.93), or by differentiation,

it can be shown that one form of the dimensionless velocity equation, referred to

the inertial frame, is:

(a), the in-plane component:

S X (W R X SR oy

* Tz(w_)[(pr ];I} *T,0) [q)-;- ] T

and, (b), the out-of-plane coordinate:

S ) _ R sin0+F i }
@ J3R {©) JS{RO cos @ osmﬁ? TI sing .,

*See Egs. (A.T7), Appendix A, for the general form of the equations (T@¥). The
subscript (~)2, attached to these, infers the two-dimensional form of T

(e.g., T2 = IZT)°
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The coefficient matrices Aa . K':J and CPT are noted in Eqs. (II.95). The
I I
tI>,'r matrix, a derivative of <I>T, is found to be:

@;_=-[2J1+5J2]B (0 )+3[J +2J ]{J B +l_1 -¢B2]BzT2(qo+)}
+ i[Jl -2,12]132 [Tz(tp‘) +T2(<p"*‘)] . ' (IL. 97a)

Summary, Equations (I11.95) and ( IT.96) represent an analytical solution to the
relative motion problem for that case when the particle of interest (Q) is acted
upon by the central-inverse-square gravitational attraction field of force, and by
an externally applied force. This external force is presunied to have fixed com-
ponents in an inertial frame of reference. Also the state variables here are de-

fined in this inertial frame,.

The previously studied problem parallels the present case, except that
there the force had its fixed components referred to the rotating frame of reference.
When these two situations are compared, directly, one noteg that the initial-value
problem (i.e. the solution in terms of s?ao and ﬁ'o) is found in both, Some re-
flection on this will lead to the conclusion that this is a natural consequence,and a
logical happening, in view of the methodology applied for both situations. The con-
clusion then, is that here the only new information which is provided is directly
traced to the effects found for terms in ‘T‘I. (Remember that ;I E‘T'I('J'E, TH’ TZ)).
Once again the ability to separate the initial-values problem from the foreing
function solution (Zero-Initial-Values Problem) is found to be of advantage, An
obvious conclusion reached is that now one has the ability to consider the influence
of initial values disturbances in the rotating frame, and disturbances in the inertial
frame simultaneously or separately, This enhances the investigator's chances to
simulate a larger variety of conditions and situations in his analysis, The added

ability to combine influences and to examine multi-case situations will lead to a

much better understanding of the overall relative motions problem. Of course
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the specifics of various cases may not be in evidence, but the intuitive grasp of

the problem can be significantly increased.

As an aid to understanding the makeup of these solution equations the
general fbfmulae, Egs. (II .95) and (II . 96) ,are expanded and presented below
in matrix format. There each coeflicient matrix is expressed in terms of - -

appropriate initial-values, (Recall that Aa and K do not involve the FI
I b
components, Also, it should be remembered that the initial-values solufion

here is the same as that for the former case (see Eqs. (I .39) and (II .40);

these are repeated for completeness)).
(8). The in-plane displacements may be expressed as:

— 1
= - == t
() cos 2¢ sin 2¢ 2( 0+2H0)

L&) = :
H@) sin2¢0 cos20+3 -2-(H0+5r0) .

cos¢ -ging 1 0 2(Ed+H<')) 4-2 cos@ 5 sing
+ + :

; -3¢ 4 |{-@ +a= -2 si 3.
| sing  cos 5 1 (H0 o) 2sin® ’ Secose

[ -2 Ccos 20 f% sin2¢p -(sincp+i sin 2¢) i (cos 20=3Y1| T
+ 3¢
7

4cos:aqo cos<p+%(cosz¢d+3) isinztp . 'TH

It

. (I1.97b)

-2s5in2¢

(). The out-of-plane component is:

Jaﬁ-?.(:p) = z(gp)-—:zocos @+ Z(') sing+ Tz {1-cosq), | {11, 97¢)

{c}. The in-plane velocity components are, from Eq. (II .96):

it

') -sin2¢p -cos 2 +2H(‘)

o

LR@)=
H'{p) cos2¢ -sin2p HO+EIO

(equation continued on next page)
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-sin¢g -cos¢ 1 0 2(EO+H')

+ ) o
. 39 -
- -— 1 |]|-H +28°7
cos ¢ -sin® 9 (HO o)
[, 13sin2@  -(9+1lcos 2@)‘] -sin@ 5 cosqo'l
+ 4= + '
14 (9-13 cos 2¢) -(11sin2¢) _I cos( 5singo_|
1 -
cosP+ 9 cos2¢ sin2¢p T _
-3¢ . (IL. 97d)
i = si - T
sin (p+2 sin 2¢ cos 2¢ -
(d). The out-of-plane component is given as:
Ry S 7o =71 + - ing.
J3R (@)= Z'(Q)=2] cos@+ (T - Z ) sing (IL. 97e)

Following the pattern established earlier, a next task is that of describing
geometries which represent motions on the various displacement and hodograph
planes, In the next section this is done; there,graphs and mathematical definitions

will be displayed.
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VII. GRAPHICAL DESCRIPTIONS

Geometric Representations, For the previously described traces, the relative |

motion figures represented a particular family of general solutions, There the
complementary function had added to it results acquired by allowing the specific
(perturbative) forece play the role of a forecing function. For that case, however, .
the applied force term was represented by a system of components which were

aligned with the local horizon frame of reference. L

In this, the present case, the orily new information which is to be acquired
arises solely from the forcing function ~- the applied force which isl to be considered.
Necessarily the new seolution is altered in view of the fact that the '"force! is repre-
sented, now, by components parallel to the inertially aligned frame of reference.

(It is recognized that the complementary solution is not altered; thus, the initial

values problem retains its singular identity for both cases).

Assuming that the foreing function is representative of the inertially aligned
disturbing force, then the consequences of this, on the ge_ometrically described
trac'es’ for the motion, will be ascertained. Of course, one must recognize that
this quantity will affect motion traces in both frames of reference; therefore, a
full investi-gatibnal expose will evolve and be discussed in the next few paragraphs..
Here, then, will be descriptions of the displacement traces and the hodographs,

. for bbth frames of reference; but, only the consequence of the disturbing force
will appear. Generally speaking, these .descfiptions will be presented primarily
‘in an analytical format; nevertheless, a few figures are shown to indicate the
trends which have been found, For a more complete graphical description the

reader is referred to the compendia of results found at the end of this section.

It should be mentioned that for the present only in-plane results are dis-
cussed and described. The out-of-plane motions, traces, etc. are deferred until
later; at that time all of the out-of-plane motions and geometries will be pre-

sented, in one section.
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(a). In-Plane Displacements; Rotating Triad. The general analytical

equation for this problem is:

- _ 3 :l -
= - + - + ¢
4 ®) [12+3(J2 Jl):ITz(tp )[Aa]i.v. [12 2‘9?2:11 K +@.7%. (I1. 98)
However, here, only the partial solution dealing with "!"I is of conseguence;
therefore interest is focused on:
L) (=9 T ; .99
A[Izja (go)] @TTI ; (IL. 99a)

wherein
@ = [2J1 +5J2][T2(<p+) -12]+§29 [J1+2J2][J2 B,+B,T, (-‘p+):]

+i [Jl "2J2][T2«°_) “Tz(‘pﬁ} ;

and |

T

T (T -

;I 1T TZ), with each scalar being a constant,

Examining Eg. (I1 ,99a) one finds that, geometrically, the trace is
conveniently constructed as a four vector sum, One vector for loci on an
ellipse; two describing line positions; and, one, an archimedian spiral, When
the full geometry is displayed it is found that the figure looks as “spiral-like™;
hence, it will be classed as such. A description of this system of vectoi‘s is

developed below:

(). The first partial solution (vector) will be described by:
- - _ -
61[IZJL ((p)] [2J1+5J2:][T2(93 ) 12] T . (11 .100a)

Expanded into a matrix format it becomes:

6 @) 2(1-cosp) -2 sin¢g T

. (i1, 100b)

5 ni) ) ' 5sin¢g 5(1-cos@)|| T
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It is an easy exercise to show that this represents a (2:5) ellipse with an origin

at (‘Es Tl)c = (—ZTE ’"5TH)-

An analytic equation for this figure is expressed by the guadric equation:

G .

1£+21'E 9 61n+5'rH 0
——-—2—"—2 + ——2"""“"—2"" =1. (I1.100c¢)
2 = +TH 5 TE"FTH .

Necessarily this in-plane trace originates at the coordinate origin; however,
the figure size is explicitly dependent on the force magnitude ( I'r l ); and, it

has a periodicity matching that of the reference orbit,

(2). One of the "line'' loci found here comes from:
- 3 - '
ol ]2 1,020, ][5,m, )7, 30
o 2A(qo) 9 -_T1 2J2 J2B2 TI (11.1.01a)
As a matrix equation the expression is expanded to:

0L(p) 0 0 T
' = S (1.101b)

0 ) 3p 0 TH
2 .

This is a line parallel to the 7-axis; its direction is controlled by sgn (TH);

and, the rate of displacement along the line is |37‘H| .

3). A second "line" trace is developed from the partial solution:

& [1 r (qo)]- =|J -2J2][T ®-)- T Sl )J : (11.102a)
or': R

6& ) |0 s12n Ty

. = - B . (I1.102b)

Sn) 3 sing 0 Ty

These points (§, 1) describe a line passing through an origin once each half

orbit. The amplitude of oscillation here is:

| >
18 1 = _\/(rE)EJr(f)z :
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4)., The remaining vector from Eq. (II. 99a) is:

)] =32 3,029, 1By T |7 -
64[12¢ (<p):’ 5 71729, [[By T,®@) |7y - (I . 1032)
As 2 matrix, this equation can be recast as:
0& () 3¢ gin®  -cosg Te
2 . (II . 103b)
dnw) 4 2cos¢ 2sing s

Geometrically the equation is represented by r =k, when a new set of

coordinates (£, 7/2) is used. That is:

1.2 '
_— 2 124" 3 3
|54| —/(546) +( 5 ) =SV Ty . (11 . 103c)

It is seen that, here, the spiral's parameter (k) is % |?I (in-plane) ] ; the figure

completes a circuit once each orbit; and, this solution deseribes a divergence
for the full trace geometry. It is evident from Eq. (II .103b) that the secular in-
fluence of ;I cannot be removed, without eliminating -;I itself,

When these partial solutions are added the complete in-plane trace, due
to ;I’ is obtained, Obviously, as the particle moves under this (.1_'1) action the
gecular influence plays the more dominant role. Therefore, in time, the over-

all trace becomes "spiral-like", and ultimately it will exhibit this characteristic*

alone, (See Fig. IL. 7 for an illustrative sketch).

(b). In-Plane Displacements; Referred to an Inertial Triad. When the

above problem is referred to an inertially oriented frame of reference the in-
plane trace geometry is found to be significantly altered. In order to examine
this in some detail a solution corresponding to (see Eq. (II.94)) must be de-

veloped, Thus, the partial solution to be studied next is:

A[Iz é(go)] =T, (@) [@TFI] . (1. 104a)

*A more detailed discussion of these figures can be found in Reference [2].
There it is shown that the individual components of T leads to spiral-like
figures also.
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FIG.IL.7. A typical curve, depicting an in-plane displacement trace as produced by the specific force ;I'
The sketch is for one orbit of motion; it originates from the coordinate origin; and is spiral-

like in character. (See Egs. (I1.103)),



When the coefficient function, Tz(tp') {@T] , is examined it is found that a con-~
venient description of this trace geometry is acquired as a sum of six vectors*,
These vectors are developed from an expanded form of Eq. (II ,104a). The com-

binations, which are suggested here, are as follows:

(a). First, taking into account the form of <I>T, one part of the sqlution is:

6 [Izé“")] =Ty @7) {[2J1 +5J2J[T2(‘p+) B Iz:]+ i{Jl } ZJzJ[Tz{‘p-)." T, “P+)]} T

This equation leads to a three vector sum, Deleting details for expanding to ob-

tain these, a convenient grouping of terms leads directly to the following three

vectors:
_ 8E () } 4 0 -2 cos 2¢ -%siano
6i[Izbz""("o)] = = 13 7F 7
dH(p) i=1 9.3 0 e ~2 5in 2¢ + cos 20

-2cos¢ OHsing [T

-2g8ingy -5cos¢ T

From this expression one can see that 51 [Izﬁ(tp)] describes a fixed
position in the plane of motion, The second component solution represents a
circle; (525)2 + (62 H)2 = (2TE)2+ (i T I41)2; and, the last partial result suggests
a second circle, Here, then, one has a c¢ircle whose center is shifted fromthe
origin, plus a second circular locus to complete the trace. (This grouping, now,

actually represents a two-vector sum).

Yet to be considered is the remainder of Eq. (II.104a). That part of

the solution has the secular coefficient; it is:
| 6[126'-'&((,0):’ i %(E[Tz(‘p—)]{[']l +2J2 ] [Jz BZ +B2 Tz(“’+)]} ;I )

Written in matrix 'format, this expression expands into:

*As seen following Eq. (II.104c) the first three vectors condense to a two-
vector system; consequently the full solution is described by a five-vector sum.
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SE @) 0 -3 ~4sin® 0
= - 3
% I:Izﬁ(‘p)] ) = _42 Y
0H(p) - 5,6 3 0 4cosep O

"-sin2¢ cos20 AT

Il

cos2¢ sin2¢ TH

Examining this result one finds that the first {3 4)-Vector (which makes

use of the constant matrix) describes a line~locus, one which moves monotonically

from an origin. The second and third parts of the solution represent spirals; i.e.:

6 =
5

IS5I ) [(—r_—

=

ry o2 2 ’3 2
|66|E \ﬁGG.:) +(66H) =Z‘}TE +'r}f ®.

Unfortunatély the spiral |35| is not defined in the coordinate space, per se,

LI

and

but the modified space shown by Eq. (I[.104f).

The last trace geometry (3 6) is an archimediari spiral, with a parameter .

which is proportional to the magnitude of ;I (in-plane),

The figure for the full solution here is found to be spiral-like, in the large;
however, it does exhibit some unusual characteristics near the origin of motion.
(A more detailed study of these partial solutions will identify which component
(vector) is responsible for this)*. As an example of the trace produced here
Fig, 1.8 shows a sketch for this case, but with the Ti-—scalars chosen as positive
numbers. Incidentally, it can be shown that if T =0 the resulting trace is a

spiral-like curve without the "“wiggles™ found otherwise present,

(¢). In-Plane Hodograph; Referred to a Rotating Triad. An apalytical

solution for the in-plane relative velocity, referred to a rotating frame of

reference, has been obtained as:

1212 "p) = [12 +3(7,~ Jl)]Bsz(tp')[Aa]LV- - %[BzJJKO+¢_'r'?I .

" *See Reference [2] for more details on the construction of these traces.
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. 006

FIG, 1L, 8,

.004 . 002 0
H
An in-plane, relative motion figure in an inertially oriented frame of reference. These dis-

placements resu}t from the application of a specific force, 'T'I. See Eqs. (II .104) for a
description of this case.
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However, the partial sclution pertaining to 'l_'I is all that is of interest here;

thus, this investigation will examine only the result:
2t =@ty - .106
wherein,

‘P"I' B ;-[2J1+5J2] BZTZ@-'—) * SI:J1+2J2:|[J2 B2 +(12 -B2<P)B2 T2((‘D+):|

300729, B, 1y 00" |
T, By [T, T, 00 -

An analysis of this exﬁression finds that the trace, on the hodograph plane,
is composed of a four vector sum. The individual vectors have been selected so
that each can be described by a simple geometric figure. The addition of these

vectors defines the full trace on the (£', n')-plane. The selected vectors are

~described below:

(1). A first vector, extracted from Eq. (1I.106}), locates a fixed point
on the hodograph plane; i.e.,

D)=2[5, 25, 2, 17 |
T o -
61[121., (qa)] ' J1+2J2 J2B2 T (I1.107a)
or, as a matrix expression:

6€(p) VI

jiig

5n? 3 0§iT
n' @)} 1 . H
It is seen that this fixed locus lies on the 7'-axis at a distance 3 '7':: | from the
' origin,
(2). A second function locus, obtained here, represents an oscillating -

line point of bounded magnitude which passes through the origin. The partial

resultant is:

6'2[12;{ '(qo)]fi—[Jl -2J'2 ]132 [Tz(qa‘) +T2(<P+)] 7. - @10t
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Expanded into matrix form, it can be shown the eguivalent equation is:

6¢@) o -2
dn' ) 9 -Cos @ 0 TI-I

(3). Next in complexity is the expression:

6y 1y v ]2 {-[oay vss, | 3l e, [} B, 700 Iy

or, in 2 matrix form:

51 (©) sizn_.ug _czsgg g
dn'w) 3 2cos¢ 2sing Ty

The point loci, defined here, describe a (4:1) ellipse whose principal axes
parallel the hodograph axes, Also, it should be noted that if the two vectors,
5 and 53, are combined the resulting geometry defines the same ellipse, but

1
with its center shifted to the point located by &

*

1
(4). The remaining partial solution, from Eq. (II.106), is:

64[12‘E '(‘”)] E{g“’["l +2J2:’ Tz(‘p+)} T

which can be rewritten as:

08" 2 2|
=3p |- o
Sn'@w) 4 -singp cos¢ TH

A guadric equation develo_ped from this is found to be:

\/[2(645')]Z+E6n']2 = |64l = 390,/1'32+1'H2 ;

it describes an archimedian spiral in the (2£', n")-space.

114

(IL.107¢)

(I1.107d)

(I1.107e)



If the four vectors (above) are summed they will describe the overall
hedograph trace on the (€', n')-plane. Basically this curve is a spiral type
(as shown on Fig.II.9, below}. It is seen that the secular influence is apparent
only in the & 4-vector; however, this divergent character cannot be removed
without eliminating the in-plane force, per se., Such a condition should not be
unexpected in view of the faet that the force acts continually, in "fixed" directions;

and, the divergence is obvious,

-(d). In-Plane Hodograph; Inertial Frame of Reference. A description

of the (E.’, H')-hodograph trace is obtained from the analytical expression:
o]0 (0,8, 9117, -
6[12 @ |=T,07) (B0 + o |7, (I1.108)
wherein @T and CI’;_ are to be found in expressions following Eqs, (II.99a) and
(IL.106), respectively.

After studying the full equation above it has been ascertained that this
hodograph trace is most conveniently defined by a four veector sum, also. The

vectors selected for these representations are set down and discussed below:

(1). The first vector used here defines loci on a circle; one whose

center is removed from the coordinate origin. The circle is found in the partial

solution:

HENP) 1 13 sin2¢ -(9+1lcos2¢)] [T,

=3 : n . (I1.109)

SH' @) 1 (9-13cos 2¢) -11sin2¢ 'rH

(Note that the circle’s center is shifted to a position ', HY) = (- 2 T ., 2 T-):
c 4 H 4 =
its radius is J(ET )2+(£‘r )2 '
P 4w/ )

(2). A second circle, 6f single orbit frequency, is also acquired from

the general expanded form of Eq. (Il ,108), This one can be shown to be:

115



911

FI1G. 1.9, The hodograph (§', n") produced from the application of ;I' See Eqs. (II .107).
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6E'(p) [-sing Scosp [T

Il

6H () 9 cos¢ Ssing || T

H
. o . . 2 2
it describes a circle of radius, ./ T. +(51’H) .

The secular aspect of the more general equation will produce two spiral

geometries. The simplest of these is:

E'p) cosp O[T,

—

8H () 3 : sing 0 s

which can be reshaped into the archimedian spiral equation: -

lésl =379,

Finally, the remaining terms of the solution equation can be set down as:

It

dE ) 30 cos2¥  sin2p T

OH" ) 4 .2 -sinrzqo ~cos 2¢ TH

It should be pointed out that this spiral has double orbit frequency; also, the

spiral’s parameter (k) is determined to be:

k E% ]?’I (in—plane)l .

Summing the four vectors (above)} it can be shown that the hodograph's
geometry is "'spiral-like", generally, but has a frequency of traverse which
is double orbit frequency. (See Fig. I1.10, below. Since the vector summing
introduces considerable geometric complexity, the interested readers should
consult Reference [2] for more details on the construction). An observation
worth noting is that the trace for T = 0 is of single frequen(;y and has the
appearance of a regular spiral. However, the converse situation (T a = 0).

produces a spiraling trace also, but one of double orbit frequency,
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FIG.11.10, The hodograph, referred to an inertial frame of reference, resulﬁng
from the specific force, T;. See Egs. (I .109) through (I .112) for
a description of this double frequency spiral-like figure.
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Summary. The material presented in this section p_a.s been given to the des-

cription of how the specific force 7. affects the in-plane state of a relative

motion, Primarily, the informatio; set down above has been descriptive, yet
the graphical representation of these results is limited, In order to expand
this aspect of the investigation, a compendium of results (equations and figures)
is presented below, There the reader will find typical traces constructed

uging positive valued coefficients. This collection of data should provide a more

complete and comprehensive understanding of this aspect of the overall problem,

In the section to follow, some comments on out-of-plane traces will be
m_ade and some sample situations illustrated and discussed. Following that

descriptive material another collection of data will be found; these will pro~

'k vide a compendium for that phase of the motion study,
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VIII, DATA SUMMARY

A Compendium of Data for In-Plane Trace Geometries. The following illustra-

tions and information describe the influence of a disturbance 'r'I (= TI {T= s TH’ T
= 4
on the in-plane trace geometries. These graphs describe typical situations only;

they are the consequence of a set of arbitrarily chosen positive valued parameters.
Shown herein are: (1) the general case; and (2) special situations wherein

each ‘J_'I component is applied separately,
These data appear in the following order:
(1). In;Plane Displacements, referred to the Rotating Frame of Reference
(2). In-Plane Displacements, referred to the Inertially Oriented Frame
(3). In-Plane Hodographs, referred to the Rotating Frame

(4). In-Plane Hodographs, referred to the Inertial Frame,
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In-Plane Displacements

(a) Referrcd to the Rotating Frame of Reference

(b) Referred to the Inertially Oriented Frame of Reference.
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In-Plane Displacement Diagram; Local, Rotating Frame of Reference.

The describing equation:
I, & @)= [1 +3(3,-J )]T @ ){ ]1 v [ ——(pB J1]KO+<I>T?I.

Partial Solutions

l.l The constructions due to [AaJi v and K0 are identical to those

obtained and described earlier. These are not reported here.

2. 'The Applied Force Solution (with 2 0=»{::) =0)* is obtained from:
A’:I2 4 ((p)] s <I>,’_1'I ,
wherein

:st[J +5J2:”:T @™ - Iz]J’—‘E[J +2J2:”:J By tB, 7T (‘p+):|
J& [J1 '2J2J[T2(¢-)'T2(¢+)]’

‘TI ‘I"I(E ‘TH,

and

I!l

TZ).

(a). Special Cases.

The gituations implied here result in traces
due to 7. and to TI-I alone. Each component is applied
separately, producing a trace on the displacement plane.

(See sketch 2a).

*The motion traces originate at the coordinate origin.

e

~—~—
‘&
gy, -
. gy ot S e

P

2. A typical in-plane trace, due to ?I'

g
TH
— 0 ..:\'
n /
TH

2a, Typical traces, in the (£, 7) plane,

due to T and TH’ respectively.



134§

In-Plane Displacement Diagram; Inertial Frame of Reference.
The describing equation: o .
- - _ 3 —
e1=[,007 096, 59 [ Lo, 10 - Somyr T o, 7
I2 ©®) TZ(Z:p )+3(J2 Jl) AaI i.v, TZ@ ) 2 2 ¢B2 J1 KOI+¢T Ty

Partial Sclutions

I
T

1, Constructions due to [A _‘J and K_ have been
ardi.v, °1

obtained previously. These are unaltered, in this problem, and

, — °

do not appear here. H

2. The Applied Force Solution (with ﬁo=5§;=0)*,

‘ This'partial sql_ution is described from: , 2, Displacement diagram for Ty and Ty applied
. _ _ simultaneously; this is the combined trace
A[I R@):]:T @ )[q’ T ], | from below.
2 2 T1 .
wherein: o _ ;
3
@ = [o3,+51, ][1,007 -1, J+ 52 (5, +27, ][
r ‘2J1+5J2. T 0" -1, |+5 qu- 27, J,B,
1
+B_T +]+.—[ - :”: “y~T. J
9 2@ 1+ Jl 27, || T,67) Tz(qo*) ,

and ‘ = ]\

- - ST

= ws T T ) ' —
TI TI '(1"5 > H z) T’* .‘\
] , N 2a, Examples of the
(2) Special Cases. \\ traces, due to T
. ‘ _ and Ty; applied

The cases 'exammed here lead to traces produced 1 separ%tely,
by the components T_ and TH’ considered separately. /
{See sketch 2a}, -d 0
*The traces originate at the coordinate origin, t ."}



In-Plane Hodographs

(a) Referred to the Local, Rotating Frame of Reference

(b) Referred to the Inertially Oriented Frame of Reference,
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»

In-Plane Hodog;‘aph Diagram: Local, Rotating Frame of Reference,

J ¢

. .-‘-__..-"'
’f
This general hodograph equation is: B rad -
' - ”
, . P
- - 3 -
' = + - ] } A [ J ]K +&B1 . e
Tt {I:Iz 30y =3 IBy T Ay - —5 BT Koo Ty /
k. Ve /
Partial Solutions 'l
--—‘ 0
1, Hodographs due to A, and K have been described n' \\
\
ok caviously. The contribution due to <I>' is the only new information N
~
to be obtained here, \""--...._‘_
2. The Applled Force Solution ( .&, '(; = 0)* has its trace P
descrlbed from: ‘ , ‘ -
[ '((p)] - | 2. Typical hodeograph trace, due to TI'
+ T :
wherein 1 £
1 = . . +
*r [2J1+5J2]B (‘p Ity [J +252:HJ2 B, e ———
. - ”
- +=|J, - Y+ * :I -~ T
+[1, qu’]Bz Tp® ’} 1 [Jl 2J2] I:Bz To0 1B T,00 s o E
and o . /’
= [ T ) .
. / .
(a). Special Cases. — I - H
These situations lead to traces due to T and TH , n’ \\ , 0 /'/
Lad i \ ) 4
as applied separate forces. Typical trace sketches are shown S P
on the right. - \ N —————
*The traces originate at the coordinate origin. ' 2a. Hodographs for 7. and Tﬁ

applied separately.



In-Plane Hodograph Diagrams; Inertial Frame of Reference.

The general hodograph equation is:
wor=n,{[m,e0lla, ], +57y00 (2,75, - 3033, ] 2,7 ]} rryen[e ]
I2 ) 32 2T2(2tp) AaI i.v.+2T2«o ) 2J2 J1 3<,c:)B2Jl KOI+T2(@ } q)'rTI . +T2(<p ) q}'rTI .
Partial Solutions

1. Hodographs due to [Aa :l and K, have been des- o
I * Ve
cribed previously. These are not altered in this solution; they TN
are not repeated here. | , // ?P
2. The Applied Force Solution (for ﬁ0=-;=6)*, has a trace H!' --—-h/ C 2. Hodograph des-
, O cribed for T
. . 1
described fr?m. [ applied to the
o ]1,00 5,0, 401 | |
f.‘.i;[I2 @) "Tz(tp ) B2 @T <I>T Tes , \ test particle.
wherein: 30 \
o[ 0,001, 2072 Jrymy )
b . ZJl 5J2 Tz((p } 12 2 Jl 2J2 J232 B2T2(cp ) \\
°° AR "]
+=135 - -y - ~N
2 Jl 2J2 T2(¢P ) Tz(‘P ) > ~
@t E—[:ZJ +5J ]B T (qo‘*‘)+-3-[J +2J ][J B ~~
T 1 207272 zL1 24L272
: 1 -
- RIEALACA "]
+(1,-B,9)B,T,0" |+ 13, -23, |[B,T,007)+B, T, 00" |, =
o—— =
and T =T (., T, T ) ' // \\
I I'E H z / \
(a) Special Cases. 4 ,[
These cases lead to traces produced by the separate — ,/ H ﬂ'.__:\, __2a, S?;‘)raratz (:ffects
H! Oof Tw an H
actions of T and TH' Sketches are shown at the right. | \‘_I_,/T on hodograph,
*The traces originate at the coordinate origin. \\
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IX'. QUT-OF~-PLANE TRACE DESCRIPTIONS

Qut-of-Plane Motion Traces. 8o far, in these discussions, the relative motion

‘have been restricted to the in-plane cases. Now, in thig section, the corres-
ponding out-of-plane representations will be examined and illustrated. Once
again the motions, as seen in both frames of reference and for the various

problem types previously noted, will be discussed.

Earlier in this investigation if was noted that the in-plane coordinates-
were coupled, hence there was a convenient and compact method of notation
available to describe those relative motions. For the situations to be examined
here, howsever, the coordinates and results are not coupled; this leads to an
inconsistency in notation, one which adds a degree of complexity to the present
case studies., In this regard it is not so conveient, now, to describe the geo~
metric traces' ag simple vector sums; nor is it convenient to represent these in
terms of elementary curve forms. Thus, ouly a selected number of cases will
be detailed below; for a more comprehensive discussion of these geometries the

interested reader should consult Reference [2].

After a review of the various situations described earlier it seems that
a hest grouping, for present purposes, would be according to physical conditions,
That is, the initizl-values-prohlems will be considered separate from the force
di.sturbance cases, In addition, within each of these categories the‘ graphical
representations in the two reference frames will be described, Finally, in-
cluded in with these will be discussions of the displacement and hodograph traces

which deveiop for each.

{la). Initial-Values Problem Displacements; Rotating Frame of

Reference. The analytical solution for this problem type can be acquired
directly from the general results, Eqs. (Il .22) or (II .28}, Since here,
T=0 , necessarily, it follows that the out-of-plane traces retain those gen-
eral characteristics which are typical of the in-plane cages. That i, these

traces will exhibit the secular character found earlier; however, this effect
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can be deleted by imposing the same restrictions as before. In this regard, if
Ky =0 (le.; 2Jlj£ 0" Bzi'o =0), by either of the cbvious means, then the geo-
metric divergence is removed and closed figures result. Then, if an added
constraint is imposed, one whereby motion originates at the origin (.Eo = (_)),
the resulting out-of-plane curves are found to be line traces* and ellipses*.

On the other hand, if the non-secularity restriction is relaxed, bere, but the
condition of o =0 is retained then the line trace becomes an s-shaped on the

(n, £)-plane and the divergence reappears.

The several traces described above are not shown below in graphic
form. Rather, the interested reader should examine the compendium of re-
sults, located at the end of this section, or he may consult either Reference
[1] and/or [2]. These documents are more explicit regarding the geometric

construction of figures which evolve from the various situations noted above.

(1b). Initial-Value Problem Displacements; Inertial Frame of Reference.

This study also exhibits a secular characteristic for the out~of-plane traces.
As was mentioned in the earlier discussions the geometric divergence can be
removed if a particular combination of initial values is introduced. In terms

of the solution format which has been developed, this secular influence vanishes
fqr {Kl)I =0 (i.e.,, when JlﬁoTJleé:) =0), To see the consequence of this a
bit more clearly, consider the situation of a relative motion originating at the
origin (ﬁo =0). For this situation the geometry's divergence is removed when
H‘o =@, Physically, this implies that the test particle @) is set into motion by
an impulsive action applied normal to the motion of the main (or reference)

particle, The subsequent displacement diagram traced out by the test particle

will be a closed curve, one which returns to the brigin periodically.

Analytical expressions describing these various out-of-plane traces,
for those conditions indicated above, are acquired from the general solution,

Egs. (II .35); this particular non-secular case, for H'o =0, is expressed by:

*From a broad point of view this motion may be considered as being represented
by two ellipse-like traces; one a true ellipse, the other (the line) being a limit
case for the ellipse.
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1
= =951 (g5} -~ 8i
_ w)=2 o(sm@ 431112<,c:J),

we (1
= 2= (Z €os 2qo—cos<,0) . (I1. 113)

and _ Z((,O)=Z(') sine.
{(Note that the speed components Which appear here satisfy those non-secular

initial conditions mentioned above, Sketches developed from these expfesSions

are found on Fig.II.11, below).

(Lc). Initial Values Problem Hodograph; Rotating Frame of Reference.

The hodographs for this motion bears the same constraints and restrictions as
did the displacement diagrams in paragraph ﬁa) above, The general expressions
for this case (with T= 5) are given by Eqs. (II.22) or (II.29); consequently the

restrictions imposed on this system will modify these equations accordingly,

The general trace geometries which evolve here are found to be skewed
ellipses. However, the non-secular cases are found to be ellipses symmetric

to the coordinate axes,

Following with the comments noted in paragraph (la), above, curves for
these traces are not included below, This graphical information is also found in
References [1] and [2]; however, for reference purposes, there are sketches

in the data compendium aftached to this section.

(1d). The Initial Values Problem Hodograph; Inertial Frame of Reference.

‘ Equation (II. 36} is the general éxpression for the relative speeds; that ex-
pression includes T as well as the initial state parameters. Of course, in this,

the present case, T=0.

Hodographs for the initial values problem generally exhibit a divergent
shape. Nevertheless, as indicated in paragraph (1b) this characteristic can be
removed by setting (Kl)I = 0, Sinece these traces are not too well known, a

sample set is included below, for references purposes*, Interestingly, the

*Also, see Reference (2], and the data compendium at the end of this section.
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FIG. Il.11a. A sketch showing out-of-plane displacements (2, Z; H, Z) for a non~
secular situation with motion originating from the origin.
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FIG.II.11b. Sketch showing the out-of-plane hodographs (E', 2'; H', Z') corres-
ponding to the non~secular displacements on the preceding figure,
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graphs exhibit a definite skewed appearance, for the parameter inputs used.
(It is mentioned that these initial inputs were arbitrarily chosen as positive
quantities; obviously, varying these terms would introduce a change in the

geometry of these figures).

2. Zero Initial-Values Problems, The problem types referred to here

are a consequence of the forcing quantities, T and ‘-J"‘I . It should be reecalled
that these vectors represent specific (dimensionless) force systems which are

aligned with the rotating and inertial triads, respectively.

(a). In this first situation T = 1_'(1'€ ' T_n, C). The analytical expressions
illustrating the influence of this parameter on a relative motion are acquired
from the same general equations noted earlier, As a result, the general state-

ments set down below follow accordingly.

First, the effect of T (alone) on the motion traces, that is both displace-
ment and hodograph traces, is one of a secular nature. There are no non-
trivial force component relationships which can be intr-oduced to remove this
divergence. Likewise the curve forms which result here are not simple ones,
Therefore, it is quite difficult to postulate, a priori, the shape of the various
curves which are to be found*. (Incidentally, the comments above are not
directed to either frame of reference, in particular; these generalizations

hold for both},

In view of the geometric complexities which arise for this class of
problems, it is not advisable to attempt an in depth analysis of the traces.
However, as an alternate, typical curves are included in the data section
which follows this; also, some generalizations may be gathered from a study

of those figures,

(b). The specific force system aligned with the inertial reference triad,

- -

= (T

1 7= T

0’ TZ) has much the same influences on the relative motion as does

*See the data compendium for representative sketches.
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;. That is, the displacements and speeds are found to exhibit a secular
character when either or both in~plane components are present. Therefore,

the only means available to nullify this influence i{s to eliminate both 7_ and ‘rH

simultaneously.

(As noted before, these comments apply to both coordinate reference

systems; also, the trace geometries*, for both, are affected accordingly).

From the discussions above it should be evident that these disturbance
force systems lead to rather complicated relative motion figures, Consequently
no concerted effort has been made, herein, to codify and classify them. Instead,
as mentioned elsewhere in these paragraphs, a collection of representative

sketches has been made; these are found in the data compendium.

In the event that a reader wbuld like a more in-depth discussion and des-
cription of these traces he should consuli Reference [2]. That document con-

tains added details on these constructions.

Summary. In the foregoing paraigraphs the various ouf—of—plane traces have

been broadly referred to. Generally, it is known that these figures are more
complicated, in makeup, than the companion in-plane curves. Also, mathe-
matically, the functional form for these graphs is more complex than that for

the in-plane cases. However, when one studies these it is found that there is

a geometrice 'pattern present; and that some estimation of a particular trace

may be made, a priori. Unfortunately, it would be rather cumbersome to

attempt to develop a sense, or feeling, for these by means of written descriptions.
Consequently, the reader is advised to study the attached sketches and to ac-

quaint himself with their overall particulars.

*See the data compendium for typical traces..
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X, DATA SUMMARY

A Compendium of Data for the Out-of-Plane Relative Motion Cases. The in-

formation presented in the following section is a condensation and illustration

of the trace geometries which could appear as the out-of-plane displacement
and hodograph diagrams. Since the case studies provided here include the full
range of problem types considered in this investigation, there is a fairly large
number of figures, ete. which appear. As an zid toward clarifying the arrange-

ment of materials presented here, a brief indexing is included below:

(2). The several subsections are arranged in the following order:

1. Displacements referred to the Rotating Frame of Reference,

2. Displacements referred to the Inertially Oriented Frame of
Reference,

3. Hodographs for the Rotating Reference Frame,

4. Hodographs for the Inertial Reference Frame,

Within each of the above subsections the material is arranged as follows:

1. Initial Values Problems (T, 1-'1 ={Q),

2. Zero Initial Values Problems (T # 0; ;I = 0; Initial relative
motion state set to zero.)

3. Cases for Non-Secular Displacements.

4, The influence of "7"'1 (alone) on the relative motion. (Some
special sitfuations are noted.)

For all of the illustrations shown below, the input parameter {initial

state values, 7 and T. components) were arbitrarily selected as positive

I
valued constants. In this regard the "typical trace geometries' will have
characteristics related to this selection of quantities, However, it is not

too difficult a task to examine the pertinent analytical expressions and ascertain
the effect of (say) a particular negative valued constant. What does present
difficulties is a determination of how the magnitude of the various inputs would

influence the traces. In many cases it would be necessary to examine the out-

put, in detail, to find an adequate answer to these conditions. Nevertheless
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one should be aware that the figures found herein are typical of these various
influences; and that these general shape characteristics are representative of
the various cases studied. One final comment regarding the illustrations: in all
instances the figures represent the relative motion for one orbit of the reference
particle, only. Also, the various trace geometries are not reproduced here to
a consistent scale; the primary motivation for this collection of data is to pre-

gent, in concise format, illustrative information, primarily.
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Qut-of-Plane Displacements, for the

Rotating Frame of Reference
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LET

Out-of-Plane Displacement Diagrams; Rotating Frame of Reference

The expressions defining these displacement diagrams are:
(a) the in-plane equation, and (b) the third component relationship;
@) 121(¢)=[4J2-2J1:|T2(<p )Aa+[12 *Z"(PB J ]K +\Il T.
) = y Bt { e -
() JS.,}_((,O) Js[hocosqrrf(,osmqo-b'r(l cosqa)}.

Partial Solutions:

1. Construction for Initial State Values (T = 6).

The scalar displacement equations are:

Ew)=2 (-Al COoS <,4:>-!-A.2 sing)+K
. 3

n(qo)~4(A1 smqa+A2 cos Q) - > anl,

= 4T .
L&) Cocoswt’osmﬂo,

wherein

1

Al—Z[K -3, ] A, [JB ]

= £ -J B J&':l; =J A - £,
K 2[2J1 o Jl ot K J o 2J2B2 o



t~of-Plane Displacement Diagrams; Rotating Frame of Reference (continued)

Quadric equations for these planar traces are:

(a) For the (£, {)}-plane;
.2

Pl r@leerd) ]
ir,.2 .2 2 .2 ] [ . J .

+ 2[(A1+§0)-(A2+Cc; ) | cog 2+ Coco A2 8in 2¢

This trace is a skewed ellipse with its geometric center not at the

coordinate origin, The principal axes of the figure do not coincide

with the coordinate a;sces.

(by For the (17, £)-plane;
nep)-K
[P s e Peret-d

88T

- 2 o 2 .2
@lrr?raiee) ]

ir.2 ,2 2, .2 -
+2[(A2+C0)—(A1+C0 )]coszm+[A1A2+C0C0_] sin2¢.

2. Traces for the Zero Initial State (_4? 0=.’L(’)=
are defined from:

0; ?E?(Tg,rn,r

£ (<p)='l'g 1 -cos) +2‘rn{<p-sintp),

]

2
- _ - —sine) - 22—
Nko) 47‘77(1 cos ) 2?‘g {-siny) 5 TTI

C((,O}=TC {1 ~cosyp).

C)) ,

{1b}.

- lefz)

.(la). O is the initial locus of the trace;

P is a general position on the curvel

-n.._,,..-ﬁ'

This trace is not a closed curve due to the
secular effect of 7. The figure produced is
a "moving" ellipse, skewed with respect

to the coordinate axes. Note that the secular
influence vanishes if Kl =0,
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Out-of-Plane Displacement Diagrams; Rotating Frame of Reference (continued) i ¢

Equations for the Planar Geometries

hence,

(a) Traces for {r ¢ 2_1"‘\:[ only. (T components > 0) defined from:

£(¢>)=‘r£ (1 -cos®¥),
ne)=-27, -sing),

t'(@)FTz: (1-cos);

(a,1).

@1 S8_L@) 4 RO 4 i),

‘Tg ‘1"C 2T€
(2, 2) Q(Séll =1-cosop.
) Traces fo_r ( ,__‘T C) only,

Ef)= =27, fp~siny),

ne)= 41" - cosqo)-—qo—]

C'(ﬁ")'-‘-‘rt(l - CO5 Q);

11_(521__!91_‘&_

{T components > 0)

27
n

Te

hence . .
T i)
ZTI =@p-sing,
and : and
igﬁl:l-cosm«
-
¢
(b, 1)

2
ne) se”_£@)

T
41‘7? 8 e

{b,2)

This is a:

1

This trace is:

- A line, originating at
the origin; frequency
of motion is equal to
orbit frequency.

(a,

¢

1

(,1). Cycloidal trace, beginning

at origin; its frequency equals

! the orbit frequency.

2). This trace is:
A cycloid, originating at
the origin, incrementing
in the negative n-direction.

B

-
-

The trace Ls e B
(b, 2). A positive sloped line, With
an accelerated inerementing locus,!
in the negative 7~direction. |



Note:

Qut-of-Plane Displacemeht Diagrains; Rotating Frame of Reference (continued)

(c¢) Displacement Geometries for (TE’_T ; TC)"

The resulting traces (here) are combinations of

the effects exhibited in (a) and (b) above.

I\
/’I”‘\\
i
Pt
On the (£, {) plane, the displacement curve is described as
2T ¢
(c,l) .§i§9). - -1 (qo_sin(p).:.isgl . P\
Ty T _ Ty . \
£ - \
N The straight line trace here is modified by the cycloid ‘\‘
S
\
(due to 'rn); consequently, the £-symmetry of the cycloid is \
skewed (as shown). \\‘
\
On the {1, €) plane, the displacement curve is described by: '{
z L0
16) 2Li) 3027 |
©2) ey @-sing)s[ZLLI] T
3 g 3 (c,1).
Here, the eycloid (from T',;_) is modified (by the line-
with-accelerating secular effects) to produce the complex
geometry shown at right,

(€, 2).

Relative motion displacements, traced for one orbit,
illustrating a typical situation as produced by a fixed
specific force, T,
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QOut-of-Plane Displacément Diagrams; Rotating Frame of Reference {continued)

3. Traces for DiSpIacements, without Secular Terms;

Modification of the Initial Values Solution (T = 5).

Note: For the elimination of secular effects Kl’ of
Ko = KO(K K ), must vanish. Since K.1 =

223 1:0 —Jle .k’ 1, there are two means by

i = 1 A =J B &' =0, or,
WthhKl 0; namely, Jl o 1By * 4 , Or

B 4! = 2 .
J1 2""0 2J1'&0

The case to be illustrated below sets K 1 to zero without
regard to how this occurs; i.e., Kl is eliminated from all
coefficients, per se. Hence: (see part 1), A E-% [JI.EO] ,

- _ " .
A, 2|:J2B2.&, 1, K,=J, fL 2J,B, .4 !; and consequently:

=o| L Atk et g
£)=2 [2 £ocos(p+2go‘smqo],
{¢)=4[—%£osin¢:+%§;cosw]+

C(qo)=Cocostp+C(;sintp.
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Out-of-Plane Displacement Diagrams; Rotating Frame of Reference (continued)

Quadric Equations for the Planar Traces.

(a) For the Geometry on the (£, £)-plane,

[E@ P e @=L {[(Ger)3ep? ]+ [(Ge )+ e ]}

SGe) e -G

£ &

O

——— 1 3
+ 1 +C0Co} sin2p.

H
0

)2 + (C(;)z ]} cos 2¢

(b) For the Geometry on the (1, £)-plane.

n@)-K
[—T

LG e M Ge ) ey oo

{e e

ot Ge ) e [ e) e ]

EO%} sin 2@,

().

bé

: 7 \ P
£ —= ?\‘\
0N \ @ ';

\“-j-/’

(a). The (£, L) trace is a skewed ellipse, as shown,
Its frequency of motion is the same as the base
(circular) orbit. If the motion is constrained to
pass through the origin (./f = 0), the ellipse re-
duces to the line shown on t%is plane. ‘

The non-secular (17, {) trace is a skewed ellipse,
beginning at O, with a displaced center (KZ)' 4

the motion is further constrained to pass through
the origin (4 = 0), the skewed ellipse is replaced
by the symme?ric one, beginning at the origin, This
ellipse has its center located at (nc =—K2).



Out-of-Plane Displacement Diagrams; Rotating Frame of Reference ; ‘T‘I Influence,

The general expressions describing the displacements are:

(a) the in-plane equation, and (b) the third component expression,

). J3 A (tp)=J3[je, Ocos<p+.&.:)sin¢.+‘rl {i -costp)J .

Partial Solutions

1. The only partial solutions which wili provide new information

are those due to the @T -term(s). Only traces involving ?I are discussed

below,

2. Traces for Zero Initial State (J:O= AV=0;T E;'I (T, TH’ TZ)),*

are defined from:

- 3T
5 -'E(t;:i)=2'rE [%Egsinq:n-(l-cosq'o):|+—5~}-I sinqo-—(pcos(p],

np)=3T [cp(l+cos¢p) ~2 sincp:l + STH [Sy singp- (j. —costp)],

Clp)=7,1~-cos0).

Eguations for the Planar Geometries

~ (a) Traces for (T, T ) only (T components > 0), defined from:

Elp)=2rt, [%‘E sing- (1 -cosqo)]=

M
7’.’@):371; [(,o(l +eos@) -2 sinqo_},

C@)=7, (A -cosp); :
£@) + %@=§f sing,; and m""‘ g‘(m§°=2 (- sing).

henc
e a1 3Ty T

*The motion traces originate at the coordinate origin.

/

| o
II II
I

|
Q.
v

{ ———

I
I
l

2a. EXample of out-of-plane traces,
illustrating effects of 7w, T as
. L =Y e
applied force(s).



Out-of-Plane Displacement Diagrams; Rotating Frame of Reference (continued)

(b) Traces for (TH, __TZ) only (T components > 0), defined from:

3T :
€(qO)=-2-}-I sinso-ﬂocosqo].

3
n(qo)=51‘H [E"e sing- (1 -cosqo):’ ,

i:‘(qc>)='l‘Z (L -cos®);

hences
2
:fr(fﬂ) _ E_(GD) O =-{p-sing),
H Z
and
. :
S £
_n_(&o_l+ __(@_)_ =§SQ S'm(p.
5Ty T, 5

(¢) Displacement Geometries for ;14

Note: These traces are described by the

summing of coordinates in (a). and
(b). above.

Sketches depicting the trend, for the present
situation, are included at right.

(2b).

2¢).

£
|
¢ -\
0O
Traces for T__, \
_ H

z \

~
C-l/

Sketch of combined effects,

due to 1'I R

I :




Out-of-Plane _Di'splacements, for the

Inertially Ovicnted Frame of Reference
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Out-of-Plane Displacement Diagrams; Inertial Frame of Reference

These general solution equations are:

IR (@)= [3 (=3I )*+Ty 20 -)]Aal Ty *){[12 - -g-go ® Jl)JKo;’ \PTT}

R(p)= {Ei R' sing+T( - }
J3 () J3 Ocosq:+§%0 sing+T {1 -cos©)
Partial Solutions.

1. For the Initial State Values (~1"=5} Problem; the displacements are:
= — i 3 3@ ;
) 3A1 (A1 cos 2¢ Azstw)ﬂKl cos @ K2 sing) 2 Klsmcp,

= i i _.‘?L.(Q
H((,p)-SA2 (Alsm.2qo+A2c:032§p)+(Klsln<p+chosgo) 2 chosqo,

Zp) =Z cosP+ Z;sincp;
wherein

-1

== _1 0 E-]-‘-[ ) _f:].
= A Zl:Kl Jﬁo]’ Ay =5 Ia Rt BYRL |

=2[5 & - ﬁ'],KE-[é+ @v]
Kl 2[J1 I} Jle 0 2 JZ 0 2J2B2 0

Quadric equations for the planar traces are:

(a) For the (5, Z)-blane.

(E +3A1 - —2—qosinqo) +22 = (Az +K§ +Z(')2} + (Ai —Ag) cos 22<;:

+ (Ki —Ki +ZO - Z(')z) cos ztp—AlAz sin 4+ (ZOZL— Kle) sin 2¢
+2 ’:AlKl cos 2p cos‘P-Ale cos 2(,osintp-A2Klsin 2Qcos®
+A2K2 sinzrpsinqo:’ .

Note: O locates the initial position for each trace.

7 - y \
\ \
“ \
\ y
\
\
\\
\
\\ J |
A typical
Result

{la). This trace is secular {though appearing to be
closed)., Complex nature of the quadric
equation does not lend to generalization and
individual parameter influence descriptions,



Out-of-Plane Displacement Diagrams; Inertial Frame of Reference (continued)

LPT

(b) For the (H, Z)~plane.

3K
1 )2 2_,2 2 .2 2 2 2
(H 3A2+~——2 @peosp ) +2 (A1+K1+ZO )+(A2 Al)cos 20

2 2 2 2 2
+ ~K +Z2 -7t i " si
(K2 Kl ZO Z0 )_cos <,0+A1A251n4§0+ (K1K2+Zozo)sm2qa
. nO+A K si + .
+2[A1Klsm2tpsmqo Al zsmzwcostp Azchosmosmqo

+ Asz cos 24000590] .

2. The Zero Initial State Solution
R =R'=0; 7=7(r.,T ,T.))is expressed by:
L b (_ e Tn C)) Xp A\

(5(§G)+“23'Tg)=7'€ cosqa+i’-coszqo]-fn[4sinqa —siano] i

+ 2¢0 {Tg si'nqo+1'n [cosq:+ —12 sint,a]} .

Hie) +3Tn)='r€ sing+ % sianp] +Tn[4: cosqo-cos:?xp:l

59

+ Zqz{'rn[sinqa— 34 cos¢:,-1'g cosqo} ,

(Z (@) — TC) = - TC cos @,

Note:. O is the initial locus for each trace.

T
\\
~——

~——
\‘.‘-.—

(1b). A secular, open trace largely complicated and
influenced by the Initial Values present,
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Out-of-Plane Displacement Traces; Inertial Frame of Reference (continued)

Equations of the Planar Traces:

(a) The Influence of (T

- 3 .= 1 .
(= (40)+2 Tg)""g cosp+ o cos 2 +2¢ smqo]

. 1 . '
H{p) = TE sin¢ + 5 sin2¢Q - zwcosw]

(Z@@)-Ta= - Te COS @ -

Hence the describing expressions:

zZ-T
= o (3o (32

p
e
d H+ 2T, (©8in)=T,_sin [1- Z-TC]
an g © g © TC .
) only (T components > 0).

(p) Traces for (T , T
n—

By = - Tn[4 si.ntp—sinztp:l+21'n[cosqo+

£

stinQOJ P

39

H{p) +31’n= T"'I[4 Cos - COoS 2¢ :’+2'rn[8m¢3 oy cosQ

Z(p) - Tp=~ Ty 0050,

(¢) Combined effect of (7, 'rn, TC) would be represented by

E""IC! only (with T components > 0).i

Jo

—r—— ——
I

The secular nature of the describing equations
appear to indicate closed curves; howeirer, the
divergence is evident (by inspection),

J
i

the additive influences shown above, The general geometries would be i

amplified, in divergence, as is easily seen here,

N
\\

D

{H

{2a,b), The divergent nature of these traces is quite
evident from the descriptive expressions.
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Qut-of-Plane Displacement Diagrams, Inertial Frame of Reference (continued)

3. Traces, with Secular Terms Removed; Initial Value Solution (* = 6).

Note: To eliminate the divergent (secular) nature of these traces it is

i = R - Rt]. i=
only ne?essary to nullify Kl’ where Kl 2[J1 o J1 B2 OJ
Obviously this can be accomodated by either: (1) letting /"\ (a)
R =3 B R'=0; ngJ R =J B R,
3 R =3 B,R!=0; or, (2) by settingJ & =J B R’ {/(b) \\
(a) For illustration the case depicted below merely sets Kl ={ [/ (::\\ \
~
without stipulating how this was accomplished. As a conseguence: Z —-— N \\
O‘\ ‘
1 | AN
=.= R ; K =0, and A_ remain as before; and ~N
A =-5 0RO K =0, but K, 5 , N \
\\ |
= 3. IE et :I ‘ oy ek
= -=E =-=E + += A +
@ -5= 5 |5, Co8 20+ (H o)sianp) +(H *25!) sin® \J

L) 1 L= -y —
HE) -5 @ +51) =3[~ sinsprH +5!)cos2p |- +25!)coso

= Y ai
Zp) Zo cos@+ Zo sing.

| Cases 3(a) and 3(b) are shown, sketched
In general, these are not easy expressions to discuss, geometrically; on the- (2, Z)-plane. Case (b) describes
a non-secular situation; motion is initiated

they do represent closed curves on the coordinate planes; but they are nominally at the origin.

complex (of single and double frequency), with an initial point not at the (A typical situation)

coordinate origin.
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Out-of-Plane Displacement Diagrams, Inertial Frame of Reference (continued)

() I, in addition to the elimination of the secular influence, the motion

commences at the coordinate origin (ﬁo = 5), then the trace equations reduce to:

5 (p) =8 | sing[2 - cosp]

 H{p) -'Ec; = (; cosy [cosp - 2]

=+

Z(p) = 2! sing ;

(a)
or, the descriptive equations for the planar traces: / q
o H{p) - !
E@). 2O i _conpy; O =1-2c0s0- ( 2212, Voo
= A =21 . Al ]
o 0 ) ° / /

/
0// /

J./
/
, 1 (b)
O

3. Typical displacement traces for non-

secular state conditions.
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Out-of-Plane Displacement Diagrams; Inertial Frame of Reference; 1_'I Influence,

General expressions describing the displacements are:

(a) the in-plane equation, and (b) the third component expression.
- 3 - -
@ L= {T 20 }+3|:J2 Jl:l}[A ] +T, )[12-2¢(32J1>]K01+T2(¢ )[‘I?TTI],
and Py J R(tp) =J [:S% cosgo+5%' stntp+'r (1 cosﬁO):,

Paftial Solutlons.

those due to the <I‘-‘T -terms. Only traces involving "T'I are discussed below,

I

H
1. The only partial solutions which provide new information are : I

~Initi R =R1=0:7 =T *
2. Traces for Zero-Initial State (ﬂo RO 0; T TI(TE, TH’ TZ) ),
are defined from:
g @)=Tg [2(1 -cos@)+2( -cos2¢) ~ qu(smr,o+'-sm2<p)] /
+T [SSmgo- = 5in 2@~ JQ 3 - cos 2@)]

H®)=T= [—59 (4 cos©+3 +cosZ<P) 2(sm¢p+sm2cp)]

+T [5(1 cosqo)~—(1 cosz¢)+—gsm2§o]

b L —— e,

Equations for Planar Geometries,

/

I

and Zw)=T (-cos®) f
| z : ’
|

\

|
/
s

() Traces for (1, T ) only (T components > 0), defined from:
E@)=T. |:2(1 -cos@)+2(1 ~cos29) -3 (sin@+ 1 s'mZ(p)J,
H @) =Tx [%2 (3+4cost,o+cosztp)-2(sin<.0+sin2<p):|, l 0 : '
and Z((p)=1‘z {1 ~cos®);
hence, the expressions:
(continued on next page) 2a. Examples of trace geometry, on the displace-
*The motion traces originate at the coordinate origin, ment planes (8, z) and (H, Z) due to applied

force(s) T.., 'rz,



Out~of-Plane Displacement Diagrams ; Inertial Frame of Reference (continued)

(a) Traces for (T, -Iz ) only (continued)

I

ey 2
= yA Z
—7—_22) -2 (Fz@—l) -4 (—_f:» =—3qo(sinqo+4lsin2¢'), ._Z.._/'\ O
2 /
Hep) _3252[(%@) +4(1_%(Ql)]= - 2(sine+sin2¢). [\‘ .
= Z
{b) Traces for jTH, _IZ) only (T components > 0), defined from: | l \
E@)=T [5sintp-zsin2 -3 (l--'l'COS2 ):’ \
H 3 SMAP-3PLLmyeos P) ],
Hp)=T, [5(1-cosqo)-%(1-coszﬂ°)+%g S'ln29°]: * \
., and Z(cp)=7'z(1-003¢)i l \\
n .
® hence, the expressions:
0,90, (2] sy - Lo | 1
2
HP) - 20)  7(Z20)) _30
and T -5 T +2( - )-—%smzw. \ / \Jj
oo \V

(c) Displacement Geometries for ‘T‘I .

Note: These iraces are obtained by summing

coordinates from (a). and (b). above. L. .
2b. Trace geometries illustrating effects due to

T.
TH’ z



Out-of-Plane Hodographs, for the

Rotating Frame of Reference
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Out-of-Plane Hodograph Diagrams; Rotating Frame of Reference

The general expressions are:
- ) _
Iz‘L () [Ier-?’(Jz Jl)JBZTZ@D )Aa

J3 a;-'(@)=J3[E(;cosqo+(?—io)sinqo] .

E[ =
-3[BTy Kot ¥,

and

Partial Solutions,

1. Traces for the Initial State Solution (T = 6), may be acquired from:

S’(:,D)=2(A sing+A cos o)
n'@)= 4(A, coso- A sin@) - 2
C'p)= C(')cosqo Cosm(p.

= 7 E-:-L—[
[Kl Jlﬂo:l’ A2 2 J2B2JL

= b’ . == % -
2[2J ZJ.'..O], K2 [:JZJ'LO 2J

3k
&

wherein

A

K
1 1
Quadric Equations for the Planar Traces.

(a) Trace for the (£', £")-plane,
(52T e {[a] -2 ] [0}

L 12 st pg €, s
(b) Trace for the (n', ") -plane.

i SRS TR NERLS),

IR ooy, 5 e

@,a).

t
Bz.#.

1.

¥ST

"’o"J:LB 2

@,b).

This trace is an ellipse, symmetrically disposed
about the origin, Its principal geometric axes do
not align with the coordinate axes.

n
0
Cl
3
|,' 55
\
\\ . H P
N e )
\\, //

The trace here is an ellipse with its center displaced

- 3 . . .
=-~—K.. Note, this ellipse is also skewed.,

to Mo 2

10
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Out-of—PIanerHodograph Diagrams; Rotaﬁhg Frame of Reference (continued)

2. Trace for Zero Initial State £ =4 =0; TET(T, + T, T
( o o (€ n C))

The scalar expressions are: ~ . LE!
£) =27 (1 -cos9) + T, (sinp) 28
")=-27,. (1 -cosP)+4T (sin¢)-3¢T
n'e)=-27, . n | N o n
E1@) =T, (sin®). L'
T ¢ "I o
Equations for the Planar Geometries. {2a). S {'— 2 Rty
~ ~,
Fah Mo e 3 b
{4 Traces for (Tg-’—TC) only, (T components > 0) _ This trace is a line, symmetric about 3
are acquired from: §' axis, with frequency matching that \ ’}
of circular orbit, /
£'@) =7, s, P 7
7' @) =-2‘r§ (L-coso),
. ; g (2a). The trace here is:
r ((p):TCS[n(p; P f An ellipse with a displaced center
hence | '——"’-—"‘\\ (M,=-2Tg). Motion on the ellipse
i) _ Lo . and (Iﬂ.‘&! +1)2+(cr(¢,)>2=1 /’ \\ has a frequency equal to the orbit
T 7. ‘\9r T . ¢ frequency.
e Tt : Te ,
Z:IA __..—-" ‘L n
() Traces for (T ,_‘IC) only, (T components>0) > ™ o
n !t
defined by: gl o
Elqp)=2T_(L-cos®), (2b). This trace is an ellipse, with \
n . center at g‘c =2Tp- Motion's
77'(40):47',?(5“190) "3@7',?? frequency is the same as that P\ .
ﬁ'(¢)='rCsintp; of the base orbit. ‘ N
. | \
hence, the quadrics: \\
\
\ t .
2Tn 'rc n C o~

(2b), This S-shaped trace is produced
by a "line' modified by the secular
n-influence,r (3(,01'?7).



Qut-of-Plane Hodograph Diagrams; Rotating Frame of Reference (continued)

(¢) The Hodograph Geometries, for (T ¢ J__‘rn,__'rtg combined.

Note: These traces are due to the combined
effects shown in {(a). and (b). above,
On the (£, £')-plane the displacement curve

can be expressed by the quadric:

(,1). [5'(§o)~27n]2+[t'(q:]~(1'g C)+—[4r g )3(1+cosch)

A S
Here, the ellipse (due to T?’?’ TC) and the line (from
the Tf-; -effect) combine to produce the skewed ellipse shown
at right. '

.On the (n', {")-plane, the equation of the curve seen

96T

there can be written as: .
H T
4T 4 T 2T
U] q U]
Consequently, the ellipse (due to T 5’ ) is coupled
with the s-shaped curve (from Tn) leading to the trace shown
at the right.

3. Traces for S8ecular Terms Eliminated; a Modified

Initial Value Solution (T =0)
Note: It has been noted that the secular (divergent)
influence can be eliminated by setting Kl =0

{see discussion with displacement traces).

(c,1).

A7

s

{c,2).

Typleal hodograph traces developed
foxf the fixed thrust, T.
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Out-of-Plane Hodograph Diagrams; Rotating Frame of Reference (continued)

(&) When Kl vanishes it is found that one set of

hodograph equations is:
t = £ - o
£' @) EQ.COSGD Eosmtp,
n@)=-2L¢! sinp-§ cosol,
L'ep)=E) cosp-L 's'mcp;
these lead to the following quadrtc hodograph expressions: |

e eref 1= {[(e2eed) (622402 I+ [(ﬁ' +o?)

(52422)Jeon 2} [, 6,50, oo

(22 o ] {[ a2 )e (62 ) T [ (62 er)
._(5;2 +C§)]cos 2(,0}+[:£0€;-C0 §L]sin2§o

EiiBoth traces (here) su‘ggestl ellipses, but these figures have their

and

principal axes not parallel to the coordinate axes (i.e., skewed figures).

{(b) For the added specialization of motion commencing at the

origin (.fi- o = 6), the (above) equations reduce to the following set:
¥ T
%@) = C_c(?l (a line passing through the hodograph's origin)
and ° . °

. 2 14, )
(_;%Q) ) + (%(@)2 =1 (an ellipse, aligned with the hodograph's axes)
O .

I p
/-’“"‘\\
O \ @
/ \
/ i
/ \ !
l,’ \\(b) /,’
: V4
\‘ \
- y
L ,/
\\_-______. - (2& =-7

(Eoﬂn;=0)

Typical traces depicting a non-secular
solution.
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Out-of-Plane Hodograph Diagrams; Rotating Frame of Reference,

The general sclution equations are; (é) for the in-plane components, and

(b) for the third component:
- N 3 -
1 — - - -2 1
(z) 12 A1) [Iz+3(J2 Jl)JBZ TZ (5] )[Aa]i.v. 2 [Ble]KOHI)T‘rI .

and  (b) J3£'(tp)=[£(') cosqp+(€-1- Eo)sinqo].

Partial Solutions. i n' A
1. Only the partial solutions expressed _i.n terms of the ;I p¢
components provide new information. Consequently, only these
are described below, \ //
2, Traces for Zero Initial State (£0= E(’) =0; ;I = 7‘1(‘!'E . TH' 'rz))*, \ /[
are described by: /

: 3T
T
£'@)=_"_ [3<pcos‘+9-sinqo] + —-L;-g [tpsinqo] ,
| n'ip)=3"T [a--costp) -qasinqo]+ 2T [ESQ cosgo-sintp] C'--—( | ' l
) HL2Z ?
and C'{p)=T _ siny, \ | : y
z 0! e b
Equations for the Planar Geometries }/ 0
(a) Traces for (T, ;jz) only, (T components = 0),
-1 o i
§'0)=% 1. [3pcosp-sing |,
n')=37 [a*cosw)-qosinrp],and C'(¢)=Tzsimp;

hence, the parametric equations: 2a. Typlical hodograph traces due to T_ and T,
28'@) | C'e) _
~y + TZ pcose,
T t
37"5 TZ

*The motion traces originate at the coordinate origin,
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Out-of~Plane Hodograph Diagfams; Rotating Frame of Reference (continued)

b) Tragis for (TH,_TZI dnllr, (T components > 0),
H_.
- £'p) = psing,

| i
3 :
n'(qo)=2'rH[-fcoscp—smgo],, £ \
and C'(@)=T sing; (—\
‘ C'-‘—l\ © \
hence, the parametric equations: . _ \ 1
2£'0) _ L@ 4. ¢ | \\
3T T
a \
' t . \ Cl'-d-—-—' an S Y,
and nz';?) + E_("D) =32£ cos{. | ' \\, { ©
H Z %
(¢) Hodograph Geometries for ;I‘— \‘

Note: These traces are the composite |
of those diagrams described for

(@). and (b). above,
2b, Typical traces for the influence of TH’ TZ.



Out-of-Plane Hodographs, for the

Inertially Oriented Frame of Reference
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Out-of-Plane Hodograph Traces; Inertial Frame of Reference

General e(iuations for this solution type are:

Izﬁ'(“’) sz{ [ZTz(z‘p—) ]Aal +Tz(“°—)[lz - %Jl “735 (Bé‘rﬂ"’] KOI

It

)T )T 4
FT, 00 ¥ TH+T, 00 ULT

o _ s
Jsﬁ((p) J3 {ﬁocosqo-l-(‘r Ro)smtp}.

Partial Solutions

1. Traces for the Initial State Problem (T = 0), are obtained from:

) l(¢)=-2 [:Al sin2go+A2 cos 2<p]+ %Kl sintp—chosqonL%gKl cos @, P

H'@p)= ZI:A cos 20-A sm2§o]——K cosm-—Kzsin(p+§-2‘q Klsincp,

H —r71 - H .
Z' @) Zocoscp 2051nqa,

et
e et s T

wherein: . . /
B RN IR ;)
= = R . = — R -
Ay TolB 9N ds A T R TR }./
= R R R o+2 R']
=1 2[J1 oI BR 5 Ky == 1,8 var,B,
" Quadric Equations for the Planar Traces, (la)f These traces are necessarily secular, and

complexl, due to the make-up of the scalar
equations forming the quadrics, This com-
-, 30 9 2,12 . plexity eliminates the generalizing and
(= '-35 K cos@)" + ()’ =@a /T oK 2 )+4(A -a2 )COS 20 - prediction otherwise expected.

(a) For a trace on the E ', Z")~plane.

2 1.2 .2 .2 2 . _(;_ .).
-f'(K2 4Kl Zo Zo)cos §O+4A1A251n4¢> 2K1K2 ZOZO s8in2¢

1 . 1 e ]
—4[ A1K1s1n2<psm(p A sm2<pcosqo+2 AzchOSZQOSln,rp AZKZCOSZQDCOS(,D .

Note: O is the initial point for each trace.
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Out-of-Plane Hodograph Trace, Inertial Frame of Reference (continued)

(b) For the trace on the (H', Z')-plane

3¢ . 2 2 2 2 2 2 2 2
1o — +(ZH = +K_+ + -
H 5 Klsmtp) (z" (4A2 Kz Zo) 4(A1 Az)cos 2¢

1.2 2 2 2] 2 1 .
+| =K/ -K +Z "- + (5 - '
1 Kl K2 Z0 Zo cos ¢ (2 K1K2 Zozo) sin2yp

- 4A1A2 sin4¢@ —-4[-;— AlKl CO8 2 CcoB ¢+A1K2 cos 2psing

1 . _ N ]
2A2Klsm2qocos§0 Aszstqasmcp .

© 2. Trace for Zero Initial State R =R =6; T=T(T » T 3 Tl
( o o ( £ n C))

g '(¢)=T£ {sin@-sin2w) -2Tn(cosqo-cos 2¢) +¢>[2'r£cosqo
+‘!'?7 (sinp+ 2 cos:p):l.
H'(qo}=-‘r£(cosqo—cosch)-ZTn(sinqo-sinzrp)+<pl:2'r€sinrp
- _ 30
Tn(cosqo 2 smqo):].

Z'(<P)=‘rc sing .

Note: O is the initial point for each trace,

i

C—

(1b). This secular curve passes through
the initial point at ¢ = 27 - (this is
due to the parametric form of the
expressions).



Out-of-Plane Hodograph Trace, Inertial Frame of Reference (continued)

Parametric Equations for the Planar Traces

{a) Traces for ) only ( T components > Q),

TeeTe

') =T£-[sin<p-s_in2¢+2qocos;o]

H'(p)=- ‘r‘g cos - Ccos 2qo-2¢sinrp:|
(2a,b).

Z'(@)‘-‘TC sing.

{b) Traces for @7,_‘[ C! only (T components > 0),
L

€91

oy - - - foy ¢ _@3

E'p) = 'rn[Z(cosqo cos 2¢0) -9 (sin+ 5 coscp)]
- e & _20 .

H'({©)= Tn[:Z(sm‘? sin 2¢) +¢ (cos @ > smqo):l

Z' ) = TC sin®.

{¢) The combined effects of the full three components
of the specific force T is obtained by adding ordinates on the traces
del‘aicted here, Due to the close similai'ity of the curves it is quite
apparent that the geometries would not significantly be altered by

(2a,b).
this composition.

Note: O is the initial position for each trace geometry.

.,Al‘.
b1

£ ‘\
- e
Ny -
\\ /!
=7
It

The secular influence of these expressions

requires a divergent geometry.

(Combined

effects of T¢, Ty, Te would be provided by
adding displacements oathe curves).

The additive influence of total thrusting is found
by combining the ordinates of the curves.
Secular influences are predominant here,



Out-of-Plane Hodograph Diagrams, Inertial Frame of Reference (continued)

3. Traces, with Secular Terms Removed; Initial Value Solution (T = 0)

Note: The general requirement for removal of secular effects was
. g = 8- &1y,
found to be satisfied by nullifying Kl (=2(J = J 1 B 9 oJ }

It has been noted that this may be carried out in either of two ways.

. ‘ 1 =
(a) Again, for illustration purposes K1 =0, solely; then Al-':— E JIRO;
and, consequently:

E'(cp)=[E'.osinZQD-(HO+E'(;)cos2(,0:|+(H0+ZE(;)COS(;D
t - E Er = E‘:' .
H' @) [ Ocoszqq+(Ho+ o)sm2§o]+(Ho+2 o)stngo

Z'(tp]=Z(;cos<p-Zosincp.

As before, these expressions are not readily visualized for their
geometric interpretation, These equations represent closed curves

involving functions with single and double frequencies,

0\ N
\ A\ g
\\\\ /‘/

\5.4’:"4\

3. Typical traces produced for the
general and special non-secular
state conditions.



Out-of-Plane Hodograph Diagrams, Inertial Frame of Reference (continued)

{b) When these non-divergent relations are further specialized ’ q'
to pass through the origin, the equations reduce to: ' /7
| /4
E'(@):Eé[lwcosqo(l- cosq'o)] ' //
2 )

Hs(,p):E(') [2 sine (1 -cés(p):]

Z'@) = 2} cos | ‘ I
5 and, the representative planar trace equations are recast as: \ //
\ /
i | t H
B Q) _ Z ‘ Z
E—;(—l =1+2 -—Z—,@) (1 - -—é?L \/
0 0 o

and

3. Typical hodograph traces for the n‘on—
secular state conditions noted in (a)
and (), at left.
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Qut-of-Plane Hodograph Diagrams; Inertial Frame of Reference.

The general solution equations are: (a) for the in-plane components,

and (b) for the third component.
o 180172, r,207 o], 370 00 B oo, om0 7).
and (b} J35_%'(qo)=J3 {5735 cosrp-éosinqo+?lsin<p} . %

Partial Solutions.

1. Only those partial solutions expressed in terms of the ?I / l
components provide new information, Consequéntly, only these are /
described below, / l

- 141 3 :—| =1}+ - = - *
2, Traces for Zero-Initial State (Ro RO 0; T, TI(TE’ Ty 'rz)) , /

are described by:

st er [ 12 cin20- sine- 1
H'(¢)—TE|:4 sin2¢-sine 3qo(cos¢p+2cosz(p)] 0

30 9 | [
+TH[5cosgo- n cos 2¢ P sin2¢ 4], }

H'@)=T [cos:p+%(9-13coszqo)—3<p(sinqo+%sin2¢p):| j ' |l /

—
'
—

+T [Esinzp-l—lsinch+§-!ecos%°:|, l _UO. -
H 4 2 l VA \l_

and Z'(tp)=1'z sin¢g.

Equations for the Planar Geometries. ’ /
{a) Traces for (T, Iz ) only (T components > 0), defined from:
3 1
E'((p)=1‘=, s'mqo(%-s- cosw—l)—:}tp(costpi—-é- cosZgo)], /

H'(«',:::)=‘J'E [}f {1 -cos2¢)-(1l-cosy)-3psing (1 +cosqo):' . j

and Z') =‘rZ sing;

22, Hodographs illustrating the trace geometry due

*The traces originate at the coordinate origin. toT_., T
e 1o
="z
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Out-of-Plane Hodograph Diagrams; Inertial Frame of Reference (continued)

(2) Traces for (T , _'T_'Z) only (continued)

hence the pérametric'equations: |

and

and

hence,

and

2') , 2') 13 _. 1
" + Tz 1 2.cos;cp) 3qo(cosqo+2c052(,o),

T t
H—T((ﬁ) + 3¢ _Z_;(Q (L +cos)= }f- (1 -cos2p)- (1 -cosg).
& -4

(h} Traces for (TH R _IZ) only (T components > 0).

ol | = .].'l - - - _ s
=) "TH[-:L (1 -cos 29) -5(1 -cos®) 3qo(smgocos¢p)],

© . 11 .
t = =2 -—
H'(p) TH 5 cos 2(0+5sing 2 smqocostp],

Z'(p) =7,8nQ;
the parametric equations:

EJ;_SQL + 3¢ %ﬁ cosq:ir%il (L -cos2¢)~-5(1 ~cos),
H z '

!
EL((E)_.F_Z_JQL (Ecos(‘D—S):@COSZ‘p-
TH Tz 2 ¢ |

(¢) Hodograph Geometries for ;[_:

Note: These traces are defined as the summation

of coordinates from (a). and (b). above.

zbo

Zl.._\L-J___.__.. AR \

\/

Typical traces illustrating the ihﬂuence of "rH, T

on the inertially described hodographs:

T e

4



XI. APPLICATIONS AND SELECTED EXAMPLES

Introduction. This section of the report will be given to the development, des-
cription and solution of some selected examples recognized as problems in
relative mbtion; and, to a few application situations. In particular the problem
of intercept for a "trusting' particle is deseribed, but for the special case of

a fixed magnitude thrust aligned with the ipnertial triadic reference system,
Secondly, some generalizations of the point-to-point transfer problem will be
included, and descriptive solutions will be found, A third topic included here

is that of defining appropriate "look-angles' for the relatively moving particles,
Since these angles may be inferred for both representative coordinate frames,

it will be prudent to present a consistent analysis for the two systems,

Basically, the information found in this section is addressed to the pro-
blem areas set down above, However, in addition to this there will be found a
few illustrative cases noted which point to the utility of the results. Unfortu-
nately time and space limitations do nbt i)ermit for 2 more informative and en-
compassing expose of the analytieal (and numerical) capabilities of this work.
It will be left to the interested reader to describe and develop solutions, using

the current results, which will evolve from his own applications needs.

Look Angles. The concept of 'look angles', as the name applies here,. is illus-
trated in the sketch below. On the figure these angles are referred to the local
(horizon) frame; however, it must be recognized that the same geometry is

applicable in the inertially oriented coordinate system also.

The two angles shown were chosen because: (1) they represent a con-
sistent nomenclature; and, (2) they are relatively simply to describe mathe-
matically, Here the angle, «, ié referred to as the "'cone' angle, while 6 is
called the "clock' angle, It should be mentioned that the angular range for

these two quantities will be:

168



0=a=mw,
and
-T=0=+7,
In the illustration P is the reference (circular orbiting) particle while

Q is the relatively moving orbiter. Hence the angle pair (&, 0) locates @ re-

lative to P -- this is consistent with "location' as defined by the relative posi-

tion coordinates (%, y, z).
(Note: With the two

reference frames assumed
to be coincident,initially,
there is no initial angular

- separation between them;

therefore, the descriptions

for &, 6 will parallel one

another in both reference

schemes).

It is schematically
apparent that « plays the

role of a "cone angle', as

its name infers, However,
it should be noted that when
the coordinate y <0, then

Fig. 11.12. Sketch depicting the position a> /2.

angles (@, 8); « =cone angle, 9 = clock

) 13} H
angle; both angles are positive, as shown, The "clock angle",

0, will range over a full

‘cirele (27); also, its defi-

nition (below) is such that

8 is an angle consistent
with the algebraic sign of the coordinates (z, z). In addition, one should

recognize that 8 is measured in a plane whose normal is the unit vector, ey.

169



Taking account of the above information it is seen that when the relative

coordinates vanish, identically, these angles are undefined.

Cone and Clock Angles Defined. From the sketch one sees that the relative posi-

tion vector (r) can be described as:

1]

rEp+ yéy, ' (1. 114a)

p= xéx +z éz, (Il, 114b)

where

(and similarily for the inertially oriented reference system),

Making use of the appropriate vector and scalar products one sees that
the circular functions are ascertainable from the following operations:
rxe ~sina,
y
= T e ain B
P x e ~ sin®,
p+e ~cos 6,
P .4

and
P e ~cosO;
¥

therefore, a description of these quantities can be given by: ;
T |
8 =tan "~ (z/x), (IL. 1152}

and 1 .-
a =tan - ([p] /y); (IL 115b)

where |f)| is the magnitude of the vector in Eq, (I1.114b).

Expressed in non-dimensional form, and for corresponding frame(s)

of reference, these angle definitions may be recast as:

(a) for the local rotating (horizon) frame:
tan 0=/, (I1,116a)
and T
tan cz=./£ +8%/n; ' ' ' (11, 116b)
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b) for the inertially oriented frame;

tan 6= Z/% | (IL.116¢)
and

tan o= 82+ 722 /1. (IT. 116d)

The definitions stated above indicate where an observer in "P'" should
look -~ relative to his own frame of reference -~ to "locate” Q. Logically, one
would (as a first guess) expect that for the converse situation the angles should
be incremented by 7 radians. Unfortunately, this is not quite the case; a
"eorrection" shbuld be added (or accounted for) before a true definition can be
had, For instance, true imagery of these angles will exist only when the inertial
reference frame is used for observational information; and, only then if the
frames in "P" and "Q" are aligned. When these conditions exist, the corres-

ponding angles, from the two particles, are phased at 7 radians.

A Correction to Look Angles, For the "local™ rotating frame of reference the

clock angles are phaséd as noted above; however, the cone angles cannot be so
simply related due to an angular rotation needed in locating one local triad re-

lative to another (see Fig. II.13, below),

Assuming that only the in-plane angularity needs the correotion, then it

is easily shown that the reference triads are connected by the transformation:

e cos Ap sindp 0 |}e
X X
e =1 -8sinA¢ cos Ao 0 i} e . (1L 117)
Ly ¥y
e 0 0 1]]e
Z - 3 Z

L4 Q _ L. 1P

In this expression the subscripts "Q"- and "P" signify an appropriate origin
for the triads, Recognizing that the relative position vectors satisfy the relation,

;1 == f‘, then the positional coordinates, for P relative to Q are given by:
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if
1 ‘ T

x r =
4 {rl} [xl’ ¥y Zl] g
then
P
% X, “cos Ap sindAp o0l]x
v, | =- -sin AY cos Ap 0 'y

' 0 0
-Zl J ] 1 | Z-
(An evaluation for A¢ can be approximated

by the relationship:

a¢ A Etan_l(‘n).

[T For most application purposes, consistent
with the "smallness" of the relative dis-
placements, this is a valid approximation),

Fig. I1.13. Sketch, illustrating the Making use of the above transforma-
in-plane angular separation be- tion, and denoting the new position angles by
tween two local triads of refer-
ence. Note that the relative @,, 91), then it is evident that:
position vector, locating "P" -1
: 8 =tan (£./£.)
from 'Q" would satisfy the re- 1 ( 17540
lationship: r1 =~r, and

% =tan”’ ('J Rl /nl) :

Here the dimensionless coordinates are described in a manner consistent with

the definitions for (§, 7, £).

One statement of caution should be made before leaving this section,
That is, the expressions immediately above apply only to the relative positioning
of P as measured from Q; and, then only for the local rotating (or horizon
oriented) triad reference system. Normally, the premise would be that the
position coordinates are measui‘ed from P to Q; hence, the two.position angles

are appropriately defined in Eqs. (I1.116).
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A Powered (:FI) intercept Problem, Earliei‘, in Reference {11, the problem ofa
two-particle intercept was introduced, solved and illustrated. There, both the
impulsive action and a fixed magnitude thrust intercept case were documented,
However, with the introduction of a second frame of reference (the inertially
oriented one), in this present work, there is reason to go back and reexamine
the intercept problem. The purpose in doing so is to resolve it for the case of

a fixed thrust aligned with the inertial reference frame's triad.

For clarity and continuity in notation the previously solved thrusting-
intercept result will be restated (or alluded to) here. The reason for doing so is
to introduce the notational scheme employed now; but, to do so by means of a
known resultant. Hopefully this will alleviate any difficulties which could arise

in notational understanding.

The meaning of intercept, as inferred here, was described in Article
IIL. 6, Reference [1]; and, the powered intercept problem was solved in Appendix
- D (see Section D.6.2). Briefly, there one finds that Eq, (D.12b) represents ,
(symbolically) the linear solution for a relative motion with thrusting (f). Intro-
ducing the concept of intercept, then that solution was represented by Eq, (D.13);

and, the dimensionless resultant, corresponding to this, was written out in Eq.

(D.15).

Now, for the present case (an intercept to occur by an inertially directed

dimensionless thrust, FI) the solution equations to be manipulated are noted as

Egs. (II.30), herein. Symbolically, the general solution can be noted as:

X=AR +BA'+CT -
X=AR% +BR +CT . (1L 1204)

(Here X isa representation for position; %' represents velocity; and A, B, C
are the appropriate coefficient matrices. For reference purposes, the corres-

ponding velocity expression, Eg. (II. 31), is expressed as:

R'=AN +B™' +C'T . {I1. 120b)
0 o I
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The primes, here, infer differentiation, as before, The "zero" subscript is

used to signify an initial valued quantity). '

For a solution, the concept of intercept in applied (i = (), and the value
of 'I-'I is determined accordingly, For consistency in notation, the intercept is
assumed to occur in t* seconds {(or in a transfer of ¢* radians); thus, this

solution for ;I is denoted as- ‘T'"i . Consequently, the symbolic description for

the intercept is written as:

-1 - -
= - X +Bu’ .
T =-CU@AX B, (IL 121a)

wherein C-':l is the inverse matrix corresponding to C. An expanded repre-

sentation for this resultant is written as:

* ] e ]
TE go g0
| =-cay | n |-ty | (I 121b)
H o (o ) i
* r
A more useful expression, for present purposes, is set down into the following
form:
* * * .
1 "2 i3 &
Feasari opi = | ar ar ar | {5} ]} |
TI A 5 B : ::121 322 a23 A blj o) (IL. 122a)

* * *
31 %32 P33
A

wherein A is related to the determinant of Cnl, and A*, B* are the results

of matrix multiplication noted in Eq, (II.121b),

The details of the required matrix operations (above) are not included

here; however, the scalars for the two matrices tA*, B*), and the value of A

is noted immediately below. That is:
ay, =9 (pcos p-sing) + (1 - cos @) [6(1 - cos ) + 23] - 12¢sin @,

aZI = 3[3902 sin @+ 2(p cos @ - sin ) - (30 + 2 sin )L - cos )], -
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¥ .=,
31
g¥ == § (QO L08 O : sin (P),
12 2
3
* =222 + -
at, 5 Stn@+2(l - cos @),
%* = 0 = * 7= * ’
Aa0 %13~ %3
a?;g = - Acos 9/(L - cos @);

bi‘l =~(l -cos )3 - 2 sin @),

pr =4l sin © © - sin ©) - ol - cos qo)2]
21 2 !
* =

b31 0,

b;z =44 ~ cos ¢)1 - cos @) - -32—(‘9 (7 sin @ - 3V cos @),

2 ’ )
];.;2 = 2[2-(5— sin@ - (30 + 2 sin @)L - cos qo)]',

¥ = () =h* =h*
b32 0 b13 b23’

) ©
L S R -— .
b33 A/tan 5
and

A= 9(p - sin @)2 +%’2 {1 -cos¢)+10(1 ~ cos qD)Z,

Equations (II,122) deseribe the magnitude of "thrust™ needed to prdducé
aﬁ intereept from an initial state (io, ;tc:). As before, the "time'" required for
the operation is presumed known (2 priori). Once the resultant ‘r’I" is acquired
a "time'' history of the displacement (%) and the velocity (') is obtained from

Eqs. (I1.120)*. In Egs. (II.120) the proper value for T

I is (obviously) that

solved for above: namely, '?;‘ .

*These results, being analytical, infer a linear solution to this problem.
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This intercept solution describes the state of motion as it would be
"seen' in the local rotating frame of reference, even though the "thrust" (?‘I)
is aligned with an inertially oriented triad, There is a corresponding, or com-
panion, solution for this situation -- one which would refer the state to an inertial
EI_:E}_I_HE of reference, per se. In order to acquire this resultant one could proceed
in the same manner as is indicated by the generalization alluded to in Egs. (IL 33b),
and the procedure used to obtéin Eq. (IL.36). These particular operations are not

to be carried out here; the interested reader can obtain the desired results, readily,

but at the expense of some needed algebraic gyrations.

A General, Point-to-Point, Transfer, The general point~to-point transfer in-

volves the application of an impulse, and/or a specified thrusting action, which
will drive an orbiting particle from some initial state (J-to, ;t('))* to some final
state (t £ x%).. Normally, the final state is dgscribed in terms of either position
{1 f) or velocity (x%), as a priori information, but not both. This is the conse-
quence of preselecting the "time' (or transfer angle) during which the operation is

to occur,

In effect the solution(s) here follow, identically, the pattern set down in
the foregoing section. For this reason the procedures, here, will be abbreviated;
howe\fer, the cognizant results will be set down in sufficient detail to evaluate
solutions, if desired. Following the established pattern the present solutions
evolve, generally, from the state equations written in rotating frame coordinates;
nevertheless the companion solution (in inertial relative coordinates) can be ac-
quired as above, There is an exception to this procedure. This is for the case
of an impulsive transfer which is referred to the inertially oriented frame of

reference.

) The Impulsive Traﬁsfer. The impulsive point-to-point transfer

is developed from the results in Eqs. (I1.30) and (II. 31). For instance, denoting

the final state as (x o ;t%), then from these solutions, one can write:

*The quantities (%, i{) are employed as general relative motion state vectors.
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’ (II.123a)
and

i% = A')_co + B'i:} . | (IL. 123b)

Here it must be assumed that A, B, A', B' are known functions of the "time

required” to complete the intended maneuver.

In order to ascertain the impulse (;t(')) needed to reach 2 £ from ()_(0 . i;)

one should solve Eq. (I1.123a). The form of that solution is:

- -1- -1 -
xl = - .

5 B xf B "A) xo’ (I1.124)
wherein B_1 is the inverse of matrix B (see Eg. (II.123a)). Remembering
that the matrices are known functions of the transfer time (and/or angle), then

the resultant is acquired as follows:

Since ii =% &, n, ﬁ)i; i{') = i;(g(;, ng, C;), the solution is ex-
pressed as:
E(‘) ' Ef _ Fgo
To| © %&' [bi-j] Me ] ¥ zlx [aij] To| - (1. 125)*
R Y o
for (i, j) =, 2, 3). - o

Herein the various scalar components of the matrices are:

[ 4cos® 20 -cos®) o0 |
bij = | 2(1 - cos ) sin® 0 (11.126a)
0 0 4
L o sing |

and

*Subscripts (~ ).0 and ('")f denote initial and final values, respectively.
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21 M9 3
= . h '
aij 8, 8y, 254 | » Wwherein
431 239 233

a, = G- 4 cos @) +3(1 - cos ©)[(3P -4 cos V) - 4(p ~ sinP)],

a_ =2[30sin®-701 <cos®)], a__=0,

21 13
a21 =2(1 - cos ¢), a22=-sm‘P, gy =0,
=a = == A/t d
2, =a, 0, 2 A/tan ¢, an

A = 4{sin @ (cos ¢ - ii) + (1 —costp)z:l .

The consequence here is that the general point-to-point transfer is now

known; and that the sought for impulse is described by Eq. (II.125),

Should the desired solution have been one to determine an impulse (X :))

to reach a final velocity (i%); then, that the result would have appeared as:
- -1 - -1 -
H! = ? | - I t
1= @) [BY "At] %

(Recall that primes in this expression denote differentiation with respect to the

transfer angle).

The results above account, in general, for an impulsive transfer from-
an initial state to a prescribed final state. However, the specific case set down

here was for a problem referred to the local rotating frame of reference.

The corresponding results, cast in inertiallly described relative motion
coordinates, could be acquired by means of -the relations noted in Egs. (IL.32a);
or, the more direct approach could be taken using the solution expressions,
Eqs. (II.39), (11.40). Making use of these latter formulae, and applying to them
the concept noted in Eq. (Il.124) -- but introducting the inertially described

coordinates -- then:
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with ':Ei = x (2, H, Z) *

. the solution would be expressed as:

H =% [bij] H, +% [ajk] H |, for G,k =q, 2, é).

Herein the two coefficient matrices are:

(2 8in¢®+ sin 2¢p ~[2 cos @+ (cos 2¢0 - 3) 0 .1
-3¢ cog ¢ ) +3¢ sin¢ ]
r = . ;;— i - !'- i

L!)jk] 2 cos @ P (3 +cos 2¢) 2 sin ¢ 5 sin 2¢ 0 s

0 0 A/sin ¢
and 3Pcos®P-4s8in@ 3[@sinp~2(Q - cos )] 0
[aij = 3&Dsin90-2(1 - cos ) ] -sin®@ | 0 ;
0 0 ~-A/tan®

with the quantity A being: .
A =81 -cos¢)-30sing.

This last result describes the same transfer situation as does Eq. B
(11.125); the exception is that here the coordinates are iner.ti_ally oriented -- the

previous case was for motions referred to the rotating frame of reference,

These two solutions describe (in & linearized sense) the géneral impul-
sive transfer from one prescribed relative position to another. It must be
recognized that the primary piece of information acquired here is the required

initial impulse; the final impulse, and a time history for.the state variables -
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during these transfer maneuvers - must be obtained from the general expressions

(see Eqs. (I1.30), (II.31), (IL.40)).

The next problem area to be examined is also concerned with a point-to-
point transfer, but there the primary consideration will be a determination of
the thrust required to accomplish the maneuver. In this next sub—sectioﬁ the
resuits will be reported only for cases where the coordinates are described ina
local rofating frame. To determine the transfer in relative inertial coordinates
the reader should apply thg non~familiar transformations for coordinates and

speeds,

(b) The Thrusting Transfer, The outline which follows will show re-

sults obtained for a point-to-point transfer due to thrusting actions. Here, as
mentioned earlier, the two cases of interest will consider the thrust aligned with
one or the other of the reference triads. However, both solutions will be for the

state variables referred to the local rotating (horizon oriented) triad only.

Since the basic expressions to be manipulated stem from the formal
solution results, these will be symbolically represented, at first; the specific

equations will be noted when final statement formats are set down,

In this regard a general form of the state equations, referred to either
frame of referenée,can be written as:
A=An +Bi;+c%" (I 130a)

o

and

X = A'io + B'i; + Q7 , (I1. 130b)

where the ;'i are state vectors, T is the dimensionless specific "thrust",

primes denote derivative forms and A, B, C, etc. are coefficient matrices.

Quite simply, the solution, that of defining a thrust to accomplish the

maneuver, can be represented by:

F=c —C—l[A;tO+B;t(')] ) ‘ (I, 131)
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This result suggests that (now) a more general solution type is acquired since
th-e-complete beginning state (io, i(‘)) is present. The fact that only the terminal
position (% f) is preset is a necessary consequence of the general sclution. These
being fixed thrusts (T), then the terminal velocity (x%) will be acquired from a

time-history description of the motion state, per se.

To make Eq. (II,131) operationally useful it is necessary, next, to set
down the results in an appropriate algebraic/matrix format, This is carried

out below,

1) The solution for T=7 (1'6 ’—'T??’_TCL' On the assumption that T

has the designation indicated, then following the solution described in Eq, (I1.131),
it can be shown that the various coefficient matrices are obtained as indicated

below:

First, the solution is cast into the format;

T'S §f EO , g(;

=1 T \
Tn |~ AJ [cij_i Mg}t [aij] ntt [bij] n e (11.132)
.TC- . .cf_ _CO_ --C(;- J

for (i, §) = (L, 2, 3).

Here,

— —_— \ nsi_ = - ai -
cll 4(1 - cos ) 5 > c12 2 -sin®), c13-0,
‘021=2(QD-S[11§D), 022=(1-cos(p], 023=0, {I1.133a)
c31=0, 032=0, 'c33=A/(1-cos€0);
and

all=4[6<psmtp—’?(1—cos<p)], a12 =2(@~sin®), a13=0,

1=-2(<,0-sin<p), a,,=-{1-cos@), a__=0,

2y 29 23
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2, =0, a32=0, a33=-Acos<P/(1 - cos ).

Next, 3¢2
o sin@-4¢ (1 - cosP),

b21=2[2(1 -cosp)-®sing]l,

b__=0
31

) 3<P2
b12=2 [7¢sin<p—8(1 ~cos¢®)] - 5 (1 +cos ),

b22=— © ({1 -cosQ),

=0
b32 i

bg1=Pgq =05
a:nd
b33 =~ Asgin®/{1 ~cos®).

¢

For the gbove, the quantity A is defined by:

- 2
A=3(1 -cos@-9sine) +-5—;£-- (1+1;- cos ¥).

)  The solution for T = 1'-I (To o T2 Ty). In this solution example the
motion traces and the transfer arise from the application of a non~dimensgional,
specific, fixed thrusting action; but one where the components are aligned with

the inertially oriented triad of reference.

Once more the solution format is that described in Eq. (I1.131); however,
the coefficient matrices are not identical to those set down above, for obvious

reasons,

For identification, let the present solution be given in the form:
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’TE' r -ﬁf- -EO-' -gc;-«
TH = %4 [c]k] nf * [ajk__’ 770 + [bjk] 77(; >
-Tz_ . ,.Cf_ .§0- -C(;‘.J

for (j, kY =4, 2, 3).
The various scalar components of the coefficient matrices are:

_— : - - :2 -1 =
c11—3qosm§0 51 -cos®), o =% P cos¢-sine), 13 0,

2 22 23

c_,=0, ¢__=0, c33=A/(1—costp).

31 32
Next, _
all=9§0(<,Ocos§o-sinqo)+23(1-cos<p)+6(1—cos§0)2—12(Psin€D,
'a21ﬂ3[2(¢>cos¢—sintp)+3tp2sin<p—-(1—cos<p)(3(p+23'ln({))],
=0,
31
a =§(sin<P;-t,Ocost,D
12”2 )
. o - 22
a22—2(1 cos ) p sin®,
a32=0,
a13=a23=0, and 333=—Acosqo/(1—cosgo).
Lastly,

b11=_(1——cas‘P)(2 sing-3¢),
b =43 sin¢ (- sintp)—(l-cosrp)z:l
21 2 ' ?

b31 =0,
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b12 =4(l -cos®) (4 —cos¥) +§259 (3¥ cos ¥ -7 sin¢),
b .= gqoz sin® - 2(1 —cos@)(2 sin¢ + 3¢),
22 2
Pgg = 0-
b. =b_=0, and b__=- A/tan & . (I1.135¢)
13 23 33 2

In the above expressions,
2 -
- . 2 o 2
A =9(p - sinQ) o L -cos¢@) +10(1 -cos @), {I1.135d)

Equations (I1.132) and (II‘.134) describe a "thrust" vector needed to
accomodate some preselected point-to-point transfer -- one which is to cceur
in a known time (or, over a given transfer angle). To describe the "time-history"
of such a maneuver, it would be necessary to insert the T vectors into the
proper state equations (set down) and t(-) e-valuate those accordingly. Once again, it 'g
must be remembered that these are linear resultants and, correspondingly, they

have a limited applicability for prediction purposes.

Also, as mentioned earlier, these results are applicable for loeal horizon
state coordinate descriptions only; if the reader desires to have a similar result
in the inertially defined relative motion coordinates, it will be necessary to trans-

form these results over to that frame of reference.

In the next sub-section an operational type example will be described.
~ The purpose there will be to illustrate how the information developed here can

be put to use -- a mathematical solution is not set down.

Example: A Stationkeeping Mode, The idea of "stationkeeping" as it is inferred

here, has to do with maintaining some position* which is in close proximity to
(say) an orbiting vehicle. Previously, in Reference (1] , ideas were mentioned

which fit this concept. There the elimination of secular influences allowed for

*position, here, suggests a region rather than a point,
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adjacent relative orbits, which fit this idea, The "messenger’' transfer, as
depicted on Fig. I1.7 (Ref. [1]), could also be classed as a candidate operation -~

even though that maneuver was time restricted in its stationkeeping mode,

Td"bé more realistic and to present a rather general scheme of operation,
the maneuvering concept set forth in Reference [22] will be utilized here. This
will allow the reader to make ample use of the motion traces, described for a
general relative motion, and to ascertain how a stationkeeping mode could be

established.,

For present purposes "che reader is referred to (say} Fig. IIL.3 in Ref,
{1]; and, more specifically, to trace (4) on page 73, and to the hodograph
(trace (4) on page 81) of this report. These two sketches are reproduced below;
they will be utilized in describing an in-plane stationkeeping mode - one which

will "hold' a relative motion in the near vicinity of an orbiting spacecraft,

On Fig. II.14a, the origin (P) is assumed to be the locus for the orbit-
ing spacecraft while Q is an instantaneous position forl the relatively moving
orbiter, Fig, II.14b is the (relafive) hodograph corresponding to the trace on the
first sketch, |

In keeping with the geometry
shown here, the stationkeeping mode
ceiil meen will consist of the trace curve. (a, b,
s ' 'y c); the idea is to repeat this trace

o H geometry, in a continuous fashion,

—— - thereby retaining a closed local

b o "orbit" for @, near to P. Ob'viously,
. "if some corrective action is not in-

Fig. II,14a, Sketch of a general, troduced then Q will continue to

in-plane relative motion trace. P fall further and further behind P,

is the reference (spacecraft)
particle: @ is the local "orbiter", during its free motion,
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Focusing attention, now, on
Fig. II.14b, one notes that the hodo-
graph (for the trace (a, b, c¢)) is also
noted by a, b, ¢ (here). That is, at
position "a", the hodograph locus shows

particle Q to have a relative velocity

composed of (-ﬁat, -n;) speeds, At

position "b'" the hodograph suggests
speed components (0, ‘nb); while at
Fig. I1.14b. Hodograph for the position "e'" the hodograph is similar

relative motion above. Note that

. ) to that at "a'' except that now the
the velocity for "Q'" is shown, and :

that the speed at a, b, c are des- speeds are (+Eé ’ "'flé)-

eribed. Also, recognize that

ler) =& ]. To retrace the position plot
a o '

{(a, b, c) it is only necessary to re-
establish the hodograph locus at "a",
This can be simply done by adding an impulse at "¢ (of size -25;) -- then the

initial hodograph is reformed, and the trace (a, b, ¢) is followed again.

Consequently, each time particle @ reaches position "¢", the impulse
is applied again and path (a, b, c¢) is restored. This obviously establishes (in
a hueristic sense) the stationkeeping mode for this displacement configuration,
Some thought on this operation will convince the reader that a like stationkeeping
path {for Q, relative to P) could be determined for the entire (in-plane) spacé
adjacent to P. Of course, in a2 more restricted sense a stationkeeping mode
could be developed, adjacent to P, which would eliminate the repeative applica~
tion of impulses. Such a scheme would be reminiscent of the relative motions with
secular ferms removed. This stationkeeping operation would be repetitive and
without impulse input, but it would be ¢yclic in the spacecraft (P) period, The
operation described above does not utilize the entire hodograph, hence that opera-

tion is repetitive at less than orbit period.
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Needless to say, there are a variety of operational schemes which can

be:developed from these ideas -- the inventive reader could easily envision a-

number of such,

Here, a word description has been used to develop a stationkeeping mode.

The mathematics of such a scheme would readily follow from study and imple-

mentation of the accompanying sketches, coupled with several of the formulae

provided herein. It is hoped that by now the reader has acquired an appreciation

and use for the relative motion traces and hodographs,

Exzimple: A Minimum Time, Rélative Transfer, The problem to be solved, next,

has to do with a minimum time transfer. The transfer is to begin at an orbiting

spacecraft (P), and proceed to a lower altitude orbit; but, to a position which is

close by to P (close enough so that the linearized relative motion equations will

be applicable).

Such an operation, as that described here, could depict the "rescue" of

a stranded astronaut from a position below the parent vehicle (see Fig. IL 15).

If time would be of the essence, here, then the information gleaned (below)

could be of great value.

£
DU L

i N
,__,__J_Jz.i_ﬂ_

Fig. 1I.15, Sketch of the minimum
time transfer operation, P is the
~{eircular) orbiter; Q is the final
position to be achieved, Av is the
impulse, and B its direction.
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For mathematical manipu-
lations this problem will be cast
into the format set down in Egs,
(I1.30). That is, all state quantities
are non-dimensionalized, and the
minimum time requirement becomes
a minimum transfer (A¢@) require-

ent,

In the parlance of present
nomenclature, the following quantities

are employed:



€L= ;}—Y' sinf=vsinf,
P

- . 130.
ne VGOSB,CO

From Egs. (II.30) this relative motion problem will be expressed (in

general) as:

and, in particular, for the in-plane format, write:

-‘g, sing 2@ - cos@] [ -vsin 8

0 -2(1-cos@) 4sing-3¢p -V cos B

From this expression it is found that a general solution statement is:

i 2 cos B=sinysin 8 - 2cosPcos B.
Examining this expression for an extremal (presuming that‘ﬁ and ¥
are not variables) then the condition for an extremal is found to be:

e 1
tang —-thn B,

describing a requirement between the "aiming' angle and the transfer angle.

When this requirement is incorporated into Eq. (II.138), it is found

(after some manipulation) that the minimal maneuver must satisfy the con-
straint condition:
‘E. __4cos B
Yoo4- 3 coszﬁ

*No T-terms are apparent since "thrusting' is not assumed.
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(I1. 136)

(I1.137a)

(I, 137b)*

(I1.138)

{11.139)

(11, 140



{(Note that, according to this result, v = 4, in order to satisfy the minimal

condition),
With this r-equirement,' above, one sees that:

@) If fs and ¥ are known, a priori, then Eg. (II.140) shows a con-

straint on B for the minimum transfer (time).

@) If ‘R and B are known, a priori, the equation defines a constraint

on V for the minimum transfer (time),

This example concludes the work in this section, Here, the attempt
was to show how practical results could be extracted from the general solut'_lons;
and, to illustrate, by example, a few operational situations which could be
simulated and studied as by~-products of the more formal developments, With
this insight into relative motion, és might be gained herein, it is obvious that
there will be many opportunities and situations which can be examined and
studied -- each making ample use of the solutions which‘ have been found and set

down in this report.

In the following section a few remarks, as concluding statements, - will

be offered regarding this investigation,
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XII. CONCLUDING REMARKS

The work which has been reported in this document represents the
results gleaned from an analytical study on a class of relative motion problems.
The general case here considers two particles orbiting about a central attract-
ing mass. There is no mutual attraction between particles assumed, and, one
particle is designed to travel on a circular orbit; this serves as a reference (or

datum) basis for the system.

The major portion of effort in this part of the investigation was directed
to obtaining general solutions for the relativé motions. These evolved as a con~
sequence of an initial state (;0, V“O) and in response to a system of prescribed
forces. Of course the results must be considered as reliable only in the vicinity
of the reference particle; this is a condition which is imposed in addition to the
constraint of a simple central attracting center. Nevertheless, the equations
obtained here are invaluable to understanding the types of motions (variations in
state, relatively speaking) which do occur. And, in view of the fact that these
results describe variations in the two primary frames of reference, it is apparent
that what has been determined here represents a most complete and comprghensive

data base.

Aside from acquiring the equations, they have been put to use in describ-
ing traces of the motion on the principal coordinate planes. This graphical repre-
sentation adds a new dimension to the results, providing the reader with a pictorial
as well as analytic description of the influence played by initial values and by the
applied disturbing forces., It is the investigator's belief that the data summaries,
which are made up of these sets of information, will materially aid in the study

and understanding of relative motions.

Even though the results which have been acquired here are complete, as
far as they go, they have considered only one particular class of disturbing

forces, Consequently, it is not unreasonable to expect that the tasks commenced
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here should be continued; at least to the point of examining other input systems
to ascertain their influence of the motion. Hopefully this latter task will be

undertaken and completed.

In addition, the work described here, and that which is expected to come
later can be applied to real world problems -- or simulations ~- so that many
more realistic sifuations may be examined. It would be a2 mistake to presume
that the equations, developed from this investigation, have '"been used'; and,
that they can be discarded now. Instead, they should be put to use for explicit
and for implicit data acquisition. Here, in the body of this report, and in the
references cited, an interested reader can find other suggestions on how the in-

formation can be utilized.

Onece more the reader is reminded that this investigation has given equal
emphasis te the relative motion velocity,' as compared to the displacements,
This was done because it is felt that the full state of a motion is essential to a
complete understanding of these problems and for their manipulation. Generally,
orbital motions cannot be altered without a change in the total state; and many

"ehahges in state' are due to either a direct or implied change in the veloeity.

Finally, it is remarked that the work described here is complete insofar
as it goes. Obviously there are other areas and problems ;vhich should be )
examined; it is hoped that some of these, at least, can and will be carried for-

- ward to successful coneclusions.
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APPENDIX A

Definition of a Rotation. Consider an initially oriented Cartesian frame of

reference, (~)O, and a second reference frame, (~)', which is located by an
angle 81_ with respect to (~)0, Let this angular displacement be described as
a "right-hand rule' rotation; and, let the rotation take place about the z-éxis.

As a consequence of these conditions only the (x, y) plane will undergo a re-

orientation during the displacement,
PR AN

-]

For convenience, in the description
and representation of this situation, assume
that these Cartesian frames are assigned a
set of orthogonal unit vectors each, To
identify them, a superscript is added to
the rotated triad. Therefore, after a dis-
placement, of (say) 6‘1, the unit vector

e . is related to the inertial (éi) vectors

Xl
by:
Fig, A.1. BSketch of a displacement, -

= b= o . o + = - - - + - . o o
ex (eX ex,)eX (eY ex')eY (eZ ex,) eZ

=cos 0. e
1

+sin 6 e_+0e . :
5 Fsin 1-eY e, A.1)

In a corresponding manner the other unit vectors may be described by:

e

,=~sin91§ + cos 915

< +Déz,

Y
and
e ,=e ‘ ' (A.2)

Treated as a matrix operation the expressions above can be written as:
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- - po . T —_.I

ex, cos 91 sin 61 0 BX
ey, _ -sin 91 Ccos 61 0 eY
L ez, o N 0 0 3 4 L eZ J

or

6, =TON @)%,  (G=xy, 2

The notation in Eq, (A.3b) implies that a +-rotation is needed to locate
“the (~)'-triad from the (~)O-triad. In order to reverse this situation - that is, to
provide for a reverse rotation - or, to locate the (~)0-triad relative to the {~)'-

triad - one could write (symbolically),
- .0 _ o+ -1 - .
{ei) = T(e } ei' ’ (l- =X 0¥ Z).

Here T(6" )_1 is the inverse matrix (operator) obtained from T(6)! (Note:

since T(8%) is an orthonormal matrix, then its inverse is identical to its trans-

pose. Consequently,

B . - - 9 =
cos 61 sin | 0
TN, = sin 0 cos 8, 0 = T(67);
1 e 0 1

T
that is, the transpose, T(6")", is identical to the "transform matrix' developed

for an angular displacement, 6= - 91 )

There are some interesting and useful relations which can be developed

for these transforms., Several of these are shown below:

(2). Demonstrate that T(67) is indeed the inverse of T(6™).
Proof: If the statement is true then; T(687) s T(8H = 13;
that is,
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{A.4Db)



Tce ~56
I= s0 ch
i 0 0

-

c@
~s6

0

0

-

“wherein (~)q infers the full (3 by 3) unit matrix (Q.E.D.).

().

In this regard:

d

T(OT) = o

“Also, note that:

gty = 4
TO = 5

-

ch
sh

0

¢ch

-6

0

-0
cB

0

cb

0

1

-

D e

e

hae

-

-s6
-cB

0

-cB

-gf

ch
-sB

0

0

| Now, having the derivative(s), define a matrix, B, such that '.E‘(G_)

Using the assumed relationship it is apparent that,

at least symbolically. However, T(E)“)h':l

8B = T (67)r(61)=6

OBT(7) T(07) ! =BA = T8y T(67) Y,

which leads directly to,

*For these operations a shorthand notation is adopted for the circular functiohs;

-0

+c 68

here, s8 = gin Band c6 =cos §,

~cB8
-s6

0
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1-

0

0

0

ch
-s0

0

= T(9+), therefore;

sh

cB

1]

Evaluate the time derivative of the transform operator, T(67).

SBT(6) 6.

(A.5)*

(A.62)

(A, 6D)



w
i
i
<o
o
]

For reference purposes, it should be remembered that

T(87) = O BT(8").

For the converse operation define 'i‘(6+) in a similar manner, and re-

late this operator to the transform T(8™): that is, let

T(6%) = 6B T (6N,

then
[ 56 ch 0 |[eco -58 0
OB =T (6HT(67)=<6 | ¢80 -s8 0 6  c® 0|
0 0 0 0 0 1
or,
) 1 0]
6B*=90 x | -1 0 0| =0¢B);
0 0 0
therefore,.

T84 = - éBT(8) .

(e). Develop some properties for B:

First note that the product of B with itself is:

*In view of this definition one can recognize that 6B is a spema_hzatmn of the
matrix operator used to replace the vector operator " x ", where  is an
instantaneous 'rotation vector". For the present case 8B represents an
W= w(&), thus the two elements in this skew-symmetric operator (B).
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[ 0 -1 o ] To -1 o1 [-1 0 0]
BBEBZ#_‘ 1 0 o | |1 0 o |=1o -1 0
0 0 0 0 0 0 0 0 0
L - - -l - el
therefore,
B " [
- - 0
1 0 0 I,
2 ' _
B = 0 -1 0 = =-1,
0 0 o] |o 0

where I2 is the two-element idem matrix!

Making use of the definition for B (Eq. (A.6c)), then Egs. (A.3b} and

(A. 4b) may be rewritten as:

T (6 )=12cos 8 +_B sin E3+(I3 -12) E@_) ,

T(8) = I, cos 8-Bsin 6+ i - L) = (Ty) .
Next, evaluate the operational quantity, T(G;) +B x T(0):
(’I‘_’)B(T,*.) = [12 (cos 6 - 1y + B sin 6 + I’SJ.* B % [Iz(cc;s 8-1)-Bsin 0+ 13]
- [12 (cos O-1) + B sin 6+ 13]* [Bz(cos 6= 1)+ L, sin 8+B]
= [Iz(cos 8~ 15 + B sin 9+13] * [Bz(cos B-1+1)+ I, sin 9]
= Bé(cosze - cos 9? - L, sin @cos 6 +B cos O+ I, (cos 6 sin 8

sin6=8B_;

e .2
~ sin ) + B,sin 9+1’2 9
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therefore,

(T) B,(T4) = B,. A.7d)

Note that past and pre-multiplication of this resuit leads to the following:

That is, since (T,) = (T_,)_l, and vice versa;

(T4 [(T) B, (T ] (T-) = (T4) B, ()

or

B = (T B, (T_). {A.7d2)

(d). The composition for two subsequent rotations, about a common

axig can be expressed by
+ + _ + + ‘
T(8,)* T(8,)=T(E +86,). (A. Te)

- This is an a priori statement. The proof of the statement follows directly from

Eq. {(A,.7c) wherein;
+ + = _ _ : + ] [ s
T(el) * T(ez) [12 (cos 91 1) - B sin 91 L, [* |1, (cos 92 1)
-Bsinf +1 ]
sin o T 1o 15
which, after manipulation, is noted to be,

=1, | cos (61 + 92) - 1]-— B, sin (61 + 92) * 1
or,
+ + + +
T(Gl) * T(Gz) T(el + 92)
Q.E.D.)
(Hueristically, it is apparent that this technique may be used for a sequence of
displacements: Z Gi).

|
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(e}). An application of the above result, applied to the T(9+) transform

maitrix,

According to Eq. (A.3a) and/or {A.7c), T(6") when 9_= 0, gives

T(O+) [= T(O')]= 13° Correspgndingly, for IG I = 7/2 and 7, respectively;

~-1I_ - B, while T(r/27)= L -1, + B;

+y
T('rr/2)—I3 0

and

H = - d = = -
T(m™) 13 212 and T(7 ) 13 212.

Now, for instance, T(rH) = T(®/2") * T(w/2h) = Iy =Ty -Byx I, -1, -B) =
=1, - 21,

Correspondingly, the reversed rotations would lead to a like resultant,

The Conseduence of a Rotation. The idea to be illustrated here is that the re-

lation of a position~vector, projected back onto a reference set of axes, can be
defined by means of the transformation operators, T(B‘i). For the example
(here) let the (~}0—triad be an inertial triad (of reference) as before, Also
suppose that the (~)'-triad is a rotating frame of reference; one following a

particle "P", (A graphical description of this situation is been below).'

o The condition which will be illustrated
congiders a simple rotation of the position
vector. R_; a displacement through the

R angle, 8. To be described is a representa-

tion of this displacement in the (~)0-frame

of reference,

Since the vector ﬁp(t} can bhe de-

6 _ fined by

Fig, A.2.
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in the moving {or displaced) frame, then its projection onto the (-)o-triad is

{see Eq. {A.1))

RP(t) = RP (cos Be__ + sin eeY).

X

This is equivalent to transforming from the (~)'-triad back to the (...)o—triad;

or
= 0 _ 6~ =
This is a description of how the transform operators may be employed
to relate a rotated vector back to an inertial frame of reference,

Obviously, the operator T(9+) should be employed whenever it is desired
to transform a vector from the inertial-frame to the displaced-frame of reference,

That is,

= = + o 40 ‘
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APPENDIX B

Some Special Matrices, In this appendix some special matrices, and some

elementary operations with them, are described. Specifically these matrices

are introduced here in order to maintain continuity of the main text.

Ordered Unit Matrices, The general nth order unit matrix is defined as an

(@ x n) unit diagonal matrix, That is

In this regard, 3-dimensional problems should lead to a unit matrix, 13, defined

as:
[ 0 0o
I, = 0 1 o |
o 0 1

Now, special variations of 13 lead to the matrices 12 and Il’ which are
defined as: '

- - - -

1 4] -0 1 0 0
I2'= 0 1 0 , and I1 = 0 0 0 [,respectively,
i 0. 0 0 L 0 0 0

Next, for convenience, three single unit matrices are defined., These are:
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[ 1 0 0 ] [0 0 0
=l o0 0 0 | =1; J=1lo 1 0 | =@ -1);
I 1 2 @, =1
K 0 0 | | © 0 0 |
and
[0 0 0
J,= 10 0 0 | =(,-L). B.4)
0 0 1

Operations with the Matrix, B Making use of the special matrix, B o2 {or B),

2.'_
from Appendix A, the following operations are performed and identified. Since

0 - 0 B 0
1 2
B = 1 0 0 = _—
0 0 0 0 ' 0
e - L —dt
then it can be shown that
0 0 a 0 -1 0
= 0 01l = = {0 = *
BJ1 1 JZB,and JlB 0 0 BJZ' {B.5)
0 0 0 0 0 0

As a consequence, it is recognized that

| BJl = BI1 = (12-11)B=J2B
and '

=1 B= -1.)=BJ
JB=1B=B(,-L)

1 2

then, with

*This result is obvi i = = = + = + .
is obvious since B2 BI2 B(Jl + J2) BJ1 BJ2 and B2 BJl JlB, ete
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B =BJ JlB[ J,B BJ2] BJ

= + £ . °
2 1 "rBJ2 B(J1 Jz) BI2 (B.6)

1

Making an observation of the matrices described in Eq. (B.4), it is apparent
that

= 2 = = = ' )

while the mixed product of these special matrices vanish,

Operations with a Combination of the Special Matrices, During the formulation
and solution to a three dimensional problem, one is likely to have need for the
inverse of a matrix formed by the special matrices defined above. To illustrate

the nature of such, suppose there is a matrix combination like

= + +
A aJl szJch3 eB {B. 8a)

wherein (a, b, ¢, ¢) are coefficients describing the problem, Now, from the

definition of these special matrices, it can be shown that

’-a -& 0 |
A= e b (] , (B. 8b)
i 0 0 c |

by the addition of the matrices, as implied. In forming the inverse one needs
the determinant of A Det A = c{ab + 82)), and the adjoint transpose of A (EAT) -

which can be shown to be:

be ec 0
AE:E -ec ac 0 . (B. 8c)
0 0 (abted)
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Now, since A 1. A*/Det A, then it is immediately apparent that

F be eC 0

-1 _ Ay 5= - 1 5 X -ec ac 0 , {B.3d)
cfabte ) c@b+e ) .

which can be written as:

-1 1 2 2 3
A= 5 + pall (B.8e)
(ab +e)
In the above operations
1 -1 | 0 '132 ol 1 0 | 0
1 1 o |=fF—"—j+ |0 o | = 1.
| t | Byt
0 o J1] (o 1] |o o | o
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