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ABSTRACT

Discrete-data control involves the sampliné of one or
more signals in a control system, at a given rate called the
sampling rate. Usually the Nygquist-Shannon sampling
theorem has been employed to determine the sampling rate.
This procedure is proper in dealing with band-limited sig-
nals, but it does not allow errors in the performance of the
discrete system. Its application to:practical cases, which

~generally do not involve band—limited signals, may demand a
faster rate than that necessary for adequate control under
practical limitations.

The research reported herein is'concerned with the.de-
termination of an error criterion which will give a sampling
rate for adeguate performance of linear, time-invariant,
closed~loop discrete-data control systems.

The first part of the research deals with the proper
medelling of the closeﬁ;loob control system for characteriza-

tion of the error behavior and the determinétionqu an abso-
lute error definition for performance'of the two commonly
uséd holding devices -- the zero-order hold and the first-
order polygonal hold.

In the second part, the.definition of an adequate-rela—

- tive error criterion as a function of the sampling rate



and the parameters characterizing the system is ﬁade, and
the determination of sampling rates follows,

The validity of the expressions for the éampling inter-
val has been confirmed by computer simulaﬁions. Their appli-
cation solves the problem of making a first choicé in the

selection of sampling rates.
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CHAPTER 1

INTRODUCTION

1.1. Hotivation

In reéeht years the application-of high speed digital
computers in the area of control systems has been signif-
icantiy increased.. These applicatioﬁs'havé included system
simulation, signal processing, énd use of the computer as a
component of the overall control system. For example, some
of the many épplications are the naﬁigétion and guidance
systems for aerospace veﬁicles,‘some control components in
chemical processes and economic models, and the implementa-
tion of cont:ollera.for general7systems {1-10}.*

The use of the digital-computer in ‘this field, as the
‘controlling‘element requires a change.in the basic concept
of contrQI‘theory. The system hés to be controlled at dis-
crete instants of time,‘because of the néture of theAdigital
computer itself, and not'continuously_as with analog con=~
trollers. The control signai then, is the result of a nu-

merical algorithm, on the observed variables of the plant or

*The numbers in brackets indicate references, given on
pp. 177-181. ’



pfocess, and it follows a fixed law of variation between com- _
putation instants. The observations, or samples, of the be-
havior of £he system are made at a giﬁen rafe célled the
sampling rate.

One of the édvantages of the use of the digital computer
is the possibility of time éharing for controlling many sys-
tgms; as is being done in process control, where the con-
trolled variables are subject to large time lag$ and where
the variables of the system do not change: rapidly with
time [8].

It has been oﬁseréed that digital computer-éontrol, or
discrete-data control, does not affect the ferformance of the
control system when the sampling rate is much faster than the
rate of ch;nge'of the vériables of the syétem [8].

rFrom ﬁhe consideration of maximum efficienéy in the use
of the digital computer, it becomes clear that it is of in-
terest to the designer of diécrete-data control systems, tq
lower the sampling rate without affecting noticeably the de-
sired perfotmance af the system, or keeping the change with- -
in acceptable limits.

“Usually the Nygquist-Shannon sampiing theorem [1], is
employed to determine the sam?liné rate. However, this
theorem is properly restricted to systéms dealing with band
limited signals, but it does noﬁ allow errors in the per-.
formance of the discrete data system. Its application to

many practical cases, which generally do not involve band-



limited signals and where a perfect reproduction of the éon—
trol signal is not very important from an economic poiﬁt of
view, demands a faster rate than that necessary for adequate.
control under practical limitations.

The genera; trend in this field is td use the sampling_
theorem for a firét determination df the sampliné rate and
then realize computer simulations to verify the validity of
this choice, |

In view of these problems, it is desirable to find
methods for determining economic sampling rates for discrete-
data systeﬁs. In doin§ so, Y. K. Kang [ll}_deveioped a new
method for determining sample rates for open-loop dynamic
systems, This research is a continuation of his work and
applies to closedéloop @ynamic systems. An uniform-rate
sampiing scheme, slower than that required by tﬁe sampling
thecrem, and appropriate for closed-loop contrel systems will
be determined. The objective will be to keep the performaﬁce
of the discrete-data control system within acceptaﬁle limits
with respect to the performance of the continuous system,

The result éhould be a more efficient use of the digital com-
puter,

The interest of obtaining an uniform-rate scheme is-
based on the convenience of utilizing a sharing system for
controlling more than one process with the same digital com-

puter.



1.2, Historical Review

Digital technigues for tﬁe solution of numerical prob-
lems have been applied since the sevénteenth century [lZi
but their usé was quite limited until the appearance of the
digital_coﬁpufér..

"Pridr to 1950; very little attention was given to the
sﬁbject éf analysis and design of discrete-dataISYStems,
although early text books in sexrvomechanisms déélt with the
problem [13-15].

With the invention and use of dig%gal computers in con-
trel systems, in the eafly 1950'5, nﬁ;érous researchers be-
~gan to studylthe problem of discrete-data control and the
result was the appeérance of many papers and books [1-189].
puring this first'stage, efforts were made mostly in adapt—
ing and making.extensions of the existing continucus-data
methods for use in discrete-data systems.' With the use of
the z—tfansﬁorm formulation, the concepts of tranéfer fﬁné;
‘tion, signal flow gxaphs, sﬁahility methods and plots were
extended and they resulted in a wide application to analysis
and synthesis of discrete*datausystems [1-19].

In the decade of thé 1960's, the field of discrete-

- data control has undergone a change in the design techniques.
The ﬁse of the state variable aﬁprbaéh has refbrmulated the‘
probiem'of synthesis and analysis bringing new ideas in this
field [1l].  The theories of-optimél control have been ap-

plied with remarkable success, leading to the design of



discréte—data systems optimized in some prescribed senée‘
[20]. |

Another field of research has concerned the application'r
of the digital computer as numeriéal processor. The analy-
sis of numerical meﬁhods and their application has bheen ex-~
tensively studied [4, 5, 12, 23].

In the analysis of errors introduced by sampling and the
use of the digital computer, much progress has been made.
Sampling error, round-off error, truncation error, folding
error, discretization error and guantization exxox have been
well defined and studiéd by many researchers. {[24-32].

The study of sampling rates, which_is the purpose of
_this research has alsc been appfoached from different points
of view.

One_group.studied the probleﬁ using the concept of
adaptive sémpling [33-37]1. They select an initial sampling
rate and then change it continuously according to the
performance of tﬁe system.

Another group [39] looked at the problem from the dp-
timal control point of view. They determined the asymptotic
behavior of ﬁhe cost function for an infinite sampling raté
(i.e., the continuous system) and a zero sampling rate.

They could then select a sampling rate by assumihg a smooth
variation of the cost function between those two limits. The
application of this method is very difficult for high order

systems.,



Another method for determining sampling rates was de-
veloped by ¥. K. Kang [11]. He found an uppér bound for
"~ the disCretization error as a functioh of tﬁe sémpling rate
for open-loop dynamic systems..

Recehtly a related new field of intefest has been the
study of digital filters. Researchers have focused their

interest on analysis and synthesis Qrobléms [4, 51.

1.3. ©Discrete-Data Control Systems

The term discrete-data control systems has been used
to desigqate éysteﬁs in which the signal on one or more
parts is in the form of either a pulse train or a numerical
code. The terms, sampled-data systems and digital systems
are often used in control literature as équivalents} How—
ever; sampled-daté systems refer to systems in théh the sig-
nals have a puléed form and digital systeﬁs refer to systems
in which a digital computér.is used for making numerical
computations and control. | |

The term diséxﬂte—ﬁata system will be used here to in-
clude all the'possible variations of the above.

A discrete~data system ag it was defined demands the
existence of pulsed signals. To obtain the data, a sampling
operation must be done. The samples are;then manipulated
and used for controlling a desifed‘process.

.TQ design such a system; the basic components of a

closed-loop contrbl system must be recalled. The plant or
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process to be controlléd neéds a control signai given by a

- controller, which acts according to the s£ate of the plant.

| A closed-loop control scheme can Be realized using con-
tinﬁous control produced by an analog controller or using
discrete control generated by sampling and prbcessing in a
digital computer.

For operating a digital controller, the nature of the
signal emerging from the plant must be changed to digital
form by an analog-to-digital converter. The digital signal
is processed by the digital computer, and the result is
con#erted again to analog form by a digital-to-analog con-
verter, or an equivalent actuator, such as a stepping motor.
Examples cf sample-data cohtrol systems are shown in the
block diagram of Figures 1;1 and 1.2,

The mathematical modeling of this process involves the
description of samplers, numerical methods involved with the
operation performed by the digital computer, behavior of
the converters and the introduction of holding devices for
smoothing the discrete-data signal between two successive
samples.
| The research will deal first with the modelling problem
and then with the determination of an expression for finding

sampling rates.

-
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l.4. Outline of the Resecarch

The object of this research is to fiﬁd'an economié
adegquate sampling rate for discrete-data closed-lgop control -
systems. The problem is formulated here in terms of'sampling
error and expressions are obtained relating the sampling
interval T to some parameters of the closed;lOOP dynamic
system.

Chapter II cvoncerns the modeling of discrete-data
systems. A review of sampling and reconstruction of signals
is made. In the last part, the modelling of a dynamic con-
troller is presented. The model obtained is used later in
the research for modelling the behavior of the discrete-data
system.

In Chapter III, the closed-loop system is analyzed, and
.a method for characterizing the behavior of the system is
pfesented. This procedure constitutes the basis for
achieving the fundamental results of this research. Expres-
sions for the evolution of the state of the continucus and
discrete data systems follow.

Chapter IV deals with the errors present in a discrete-
data system. A review of system error, truncation error,
round-off erxor, guantization error and discretization error
is made and the importance of each one is analyzed. Finally,
the discretization erxror is studied and an approximation

to its behavior is obtained for small sampling intervals.
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In Chapter V, two error criteria are introduced. The
. determination of the sampling rate follows. An example is
included and a discussion of sampling rate selection is pre-
sented.

Chapter VI states the conclusions of this work and

discusses the possibility of further research.

*
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CHAPTER I1I

MODELLING OF DISCRETE-DATA SYSTEMS

2.1, General Problem

In order to analyze the behavior of discrete-data
systems, the modelling of the different basic operations
taking place in the system must be reviewed.

The general problem of modelling as applied to this
research is to find a mathematical aiscription of the discrete-
data controller for its charactexrization and digital computer
implementation, which will be fast, accurate and stable.
Usually these conditions cannot be achieved simultaneously
in the same design and the designer must compromise in oxder
to obtain an optimal solution.

Consider now the specific problem of discrete-data con-
trol systems. The éoncepts prééented in Chapter I, concern-
ing the digital controller, have to be further studied in
order to obtain an adequate modelling of the process.

Assume that it is desired to confrol some procegs using
a digital computer and that the control laws of the analog
system are known. The analog controller can be represented
by a block diagram as shown-in Figure 2.1. 1In order to con-

7vert this controller into a digital equivalent, the pfocess
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descéibed in Chapter i has to be recalled. The analog input
signal to the controller is converted into a:digital form.
This is done by saméling the éﬁalog input and converting it
using an analog~t04digital converter. Then the data is pro—
qéssed by the digital cémputer and finally introduced into a
éigital-to—analog'converte: for obtainiﬁg the analog output
/;ignal; These operations are shown in the block diagram of
ﬁFigure 2.2. |
A mathematical model of this prdcess can be obtained
by inserting a fictitious sémpier at the input of the con-
troller, repla¢ing-the'digitél.computer by a holding device
followed by the analog controllét itself and a fictitious
sampler. Another holding device follows for obtaining the
analog output signal. The model is shown in block diagram
form in figure 2.3. The fictitious samplefs simulate the
discrete control of the digital controller and the holding
devices convert the discfete—daﬁa signal to analog for pro-
cessing in the analbg controller and plant. This method.ié
widely used in modelling digital controllers. and it de-~
scribes perfectly.the'actual'implementation {(11.
Therefore the problem of modelling a discrete-data
system is related to the study of saﬁplers, hoiding devices
and the-formﬁlation of an alg0£i£hm for perférming the task
described by the equations of the anal@g céntroller. In
this chapter the basic operations just described will be re-

viewed.
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2.2. Sampling of Continuous Signals

Digital signals can be obtained by sampling a_contin—
uous signal using an electronic or mechanical switching de-
vice called sampler, which operates at a given rate called

sampling rate. It produces a pulse train when a continuous-

signal is applied at the input.
' As explained in Chapter I, this research deals with

uniform-rate sampling. The samplers to be considered are

ideal samplers, with the property of having a negligible
operation time with respect to the sampling'interval.
Throughout this research, the time between two samples

is called sampling interval, it will be denoted by T. The

instants the samples are made'are called sampling times or
instants and they will be denoted by KT, with k integer.

It is well knbwn,that the sampler behaves as an harmonic
generator [1]. Therideai samplér reproduces in its output
‘the spectrum of the.continuous inphﬁ as well as the compli-
mentary components centered at integral multiples_of the
sampling freguency. The output spectrum is illustrated in
Figure 2.4.

If the sampling_rate is such that overlapping cf the
side-bands occurs, it is clear that distortién is present
in the System. This problem was studiedlby Nyquist [21]
and later by Shannon [22]; they showed that-a_signéi with the
highest frequency f,, demands a sampling rate no lower than

2f, in order to avoid overlapping. This result has been

L
LI PO
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stéted as a theorem [1].

Theorem 2.1, (Nygquist-Shannon Sampling'Theorem). If

a signal contains no frequency higher than v, radians per
second, it is completely characterized by the values of the

signal measured at instants of time separated by

8]

T

|

T = %— seconds.

£

[

The interpretation of‘£he theorem im?liés that it is
possible to recoverxr exactly a band?limited signal from its
:SamplES, by samplinglat a rate such thét no overlapping
occurs and using an ideal ldw—pass filter. But a band-limited
signal does not exist in practical control systems of commu~
nications. Therefqre_an approﬁiﬁééibﬁﬁan the‘frequency con-
tent of the signal must be done, resulting in errors in the

performance of the system [11].

This research will determine a sampling scheme such that,

the error resulting from sampling at lower rates than those
inposed by the theorem, are delimited into acceptable

ranges.

2.3. Reconstruction of Sampled Signals

In the model of the discrete-data controller presentea
in Figure 2.3., a holding device was' introduced for recon-
structing the output signél of each sampler. It is well

. known that the holding device has the effect of removing the

high frequency componcents of the sampled signal [1], Ehefefore_

-4
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~its use-is proper'for reconstruction:

" Another justification for using this-filtering device

is the fact that the signal eherging.from it is injected to

a continuous system and therefore subject to operations,
mostly integrations, if the system has dynamics. As it will
be seen, the integrals are evaluated at samﬁling instants,
and their evaluation is simpli£ied by knowing the behavior of
the input signals between samples. This behavior is related
with the order of the holding device.

The problem is that from a train of impulses with

étrength f(kT}, x =0, 1, 2 ..., a continuous signal,

f£(t), must be reconstructed. The data-reconstruction
process may be regarded as an extrapolation process,
conSLderlng the information available at past sampllng
.instants, or as an lnterpolatlon process by con51derlng the
rdata available between two samples and the past data.

Typical holding devices will be reviewed next.

2.3.1. Zero-Order Hold

Consider first the extrapolatbr type of reconstructor.
A well known method of generating an extrapolation
formula is to use the approximation based on the powef
' series expansion of the control signal f£(t), in the interval

between sampling instants kT and (k+1)T [16]. That is:
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£{t) = E(KT) + £'(kT) (£-kT) + . . .

n- .
+ £ gy _ (E7KT) .. S (2.1)
: ‘ n: ‘
valid for
KT < t < KT + T
where
n
g(n) (xT) = & flgt)
dt £ = kT

To evaluate the coefficients of the series of Eqg.
(2.1), the derivatives of the function f(t) at sampling

instants are usually approximated by backward differences.

That is:

£™ k) - = VPE(kT) B (2.2
where |

VE(KT) = £(KT) - £(kT-T) ) (2.3)
and

viE(kT) = v (VP ik ] : (2.4)

By'analyzing the nature of the approximation fdr the.

derivatives, it can be seen that an n-th order derivative is

I
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a function of the past (n+1l) sampleé of the fﬁnction [1]1.
- Therefore the higher the order of the approximation, the
larger will be the number of past samples required. This
fact has a well known adverse effect on the stability
of feedback control systems [1l]. Also, a high-order
extrapolator requires complex circuitry reéulting in high
costs. For these reasons only the zero-order extrapolator
or zero-ofder hold is used in practical applications [1].

The first-order extrapolator can also be used, but
its efficiency when used for modelling and the filtering
characteristics are inferior in performance to those of
the first-order interpolator; therefore the latter is
preferred.

The zero-order hold is ﬁbtained'by considering only
the first term of the power series of Eg. (2.1) for

approximating the sampled signal. Then Eg. (2.1) becomes
£, (t) = £(kT) . KT < t < KT+T (2.5)

Thus, when a sample is made, the reconstructor
‘constantly holds that value until the next sample is
obtained, as illustrated in Figure 2.5. From the figure

it becomes clear that the accuracy of the zero-order hold
-depends greatly on the sémpling.rate.' This fact is closely
related to the filter behavior of the holding device.

The zero-order hold behaves essentially as a low-pass

filter, however, when compared with the characteristics of

L
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an "ideal filter," the amplitude response of the zero-
order hold is different from the ideal amﬁlitude response
[11. |

The'expression in Eq. (2;5} for the output of the
zero-order hold islin a very convenient fofm. As will be
seen in Section 2.4, the response of a continuous-data
dynamic system, excited by a signal of the obtained nature,

can be easily evaluated at sampling instants.

2.3.2. First-Order Polygonal Hold

Consider now the interpolator type of reconstructor.
The Newton interpolation formula with backward differences

describes the behavior of the device [42].

£(t) = £(kT+T) + v VE(KTHT) + . . .

4 T_(T+1) . (t+n-1)  ¢hg(xTeT) + . . .7 (2.6)

3
valid for

kT <t < kP47
where

-t - (kT+T)
T

with the backward differences described by Egs. (2.3)

~and (2.4).

b

L]

L
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By analyzing the nature of the backward differences,
- it can be séen that an n-th order backﬁard difference
requires.iﬁformation'of the past={ntl) sémples] Then,
it becomes clear that the higher the order of the
interpolation, fhé larger will be the number of past
samples required. This fact has a well known adverse effect
on the stabiliﬁy of closed-loop contfol.systems [1]. |
Therefore only low oraer'interpolataﬁs,.gp'iéxand including
the first-order, are considered in practical applications
[1]. | |
Another_resulﬁ of the analysis of the interpolator
described by Eqg. (2.6) indicates.thaf the device is non-
causal. The output, £(t), depends‘on'future values of the
input, £{(kT+T). But as will be shown in Section 2.4.2, this
fact is not a handicap fbr its usage for modelling dynamic
systems if the computational time is negligible with
‘respect to the sampling interval.
| The zero-order interpolator is iﬁfe:ior in performance
compared ﬁith thelzerO*order_hoid {11, becauée its non-
causality and filteriﬁq characteristics. The first-order
‘interpolator, however, 1is superior compared with tﬁé first-
order hold and therefore widely used [1]. |
When the first two terms of the‘interpolation formula
of Eq. (2.6) ére used to approximate the time function
3 between two successive samples, the‘resulting'deviceﬂis

called first-order polygonal hold.

Sl

A
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The expression describing the device results

t - kT
T

£(t) = £(kT) + [£(kT+T) ~ £(kT)] (2.7)

valid for

KT < t < KT4T

The noncausality of the deuigg-éﬁqahsg;wed‘by the
éresence of £(kT+T), but it will be.seen in Section 2.4.2
that this fact is not a problem in modelling dynamic
systems. .

The output of a first-order polygonal hold can be
observed in Figure 2.6. From the figure it becomes ciear
that the accuracy of the device depends greatly_oh the
sampiing rate. .This fact is closely related with the
filter behavior of the first-order polygenal hold. Studies
show that.the first-order polygonal hold behaves essentially
as a low-pass filter with amplitude response closer to the
ideal filter amplitude response than the first~order hold

[1}.

2.4. Numerical Methods of Integration

According to the mathematical model presented in
Section 2.1, the analog controller input is the signal
from the holding device. This signal is expressed as a

function of the values of a continuous signal at sampling

% -
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instants as it was seen in Section 2;3. Now it-ié of
. interest to analyze the behavior of the analog controller
with an input signal of the described nature. .

'Assume that the -analog controller can be described
by a set of linear time-invariant differential equatiohs
of the form:

Gt) = F q(t) + Gult) ; glty) =ga - (2.8)
y(t) = H g(t)
where

g(t): m~vector, state
q,: m-vector, initial state
u(t): l-vector, input

y(t):_ r-vector, output

F: m x m matrix, system matrix
G: m x 1 matrix, control matrix
H: r ¥x m matrix, output matrix

The formal solution of the differential equation of
Eq. (2.8) from the initial time t, until actual time t is
[43] -

t

a(t) = ep(t-tdalt,) + [ &p(t-1) G u(r) dr (2.9)
t

O

where

¢F{t~to}: Transition matrix of F

.l

"

\3 kh.‘ .
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. _ _Flt-t
dplt-t,) = e o)

with well kﬁown properties.
" The output y{t) can be obtained from Egq. (2.8).

Reference to the model presented in Section 2.1, as
seen in Figure 2.3, the output of the controller is
sampled in order to simulate the behavior of the digital
computer which operates only at sam?ling instants. There-
fore the behavior of the analog controller at sampling
instants must be analyzed.

To obtain the response of the controller at sampling
instants, the following change of variables must be made
in Eq. (2.9) [11.

t, = kT

t = kT+T

Then Eg. (2.9} becomes

_ kKT+T
qQ(KT+T) = ¢ (T) q(kT) + f o (kT+T-1) G u(t) dt (2.10)
kT _
and the output is
y(kKT) = H q(kT) | (2.11)

The controller input, u(tr) is the output of the holding
device, and as was seen already it has a known variation

‘law for a given hold type. Therefore the integral of Eq.
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(2.10) can be evaluated for each of the holding devices

?resented.

Zero~-Order lold Intégrator

2.4.1.
Consider first the zero-~order hold device. According
to Eq. (2.5), the control signal u{t) can bélexpressed as

u(? = u(kT), kT < T < KT+T (2.12)

where u(kT) are the sample values of the control signal.
The control vector resulting from using the zero-

order hold is constant between two sampling instants;

therefore Eq. (2.10) can be written as

k4T
@F(kT+T-T)GdT u(kT) (2.13)

q(KT+T) = 8. (T) gq(kT) + /
. kT

The integral of the right member of Eg. (2.13) can be
evaluated, to vield

QKT+T) = 8,(T) q(KT) + F2[ep(T) - I] G u(kT)  (2.14)

Eq. (2.14) represents a set of first-order difference

equations describing the state variables at discrete

instants of time. This set is the discrete state equation

of the system for the zero-order hold.

The discrete state equation can be solved by means of

a simple recursive procedure by setting k = 0, 1, 2 . . .

Ny

P



This fact is adequate for digital computer_simﬁlation.

- Another observation arising from the anélysis of Egs.
{2;i3) and-(2.l4) indicates that the numerical méﬁhbd of
integration described is similar to the Euler method of
numerical integfation. It is known in the field of
numerical analysis as the modified Euler meﬁhod [11, 12].

The analyéis of the stability of this scheme is
related to the location of the eigenvalues'of‘the
difference eguation. They must be contained in the unit’

circle with its center at the origin for stability [12].

2.4.2., First-Order Polygonal Infegrator

Consider the control signal emerging from the first-

order polygonal hold. According to Eq. (2.7}, it can be

' described as

I

alt) = u(kT) + [Q(kT+T) - u(kT)] _T,__;__H (2.15)

valid for.
kT i T < kT+7T - i

where u(kT) are the sample values of the control signal.
The control.vector u{r) has a linear vériation with
respect to time in a sampling interval. Therefore Eq.

(2.10) becomes

% A

-
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‘;‘F (T) q(kT)

g{kT+T) =
KT+T - -
+ [ oo (kT+T=1) G [1 - I - kT, dt u(kT)
kT _
KT+T _ kT : -
+ 0o (KT+T~1) 6 To—= dt u(kT+T) (2.16)
kT , T

. By making an appropriate changewsf the dntegration
variable, the integrals of the right member of Eq;-(2.16)

can be evaluated, to yield

q (KT+T)

H

¢ (T) g(KT)

+ F"l{QF(T) - % p-l [0, (T) - I]}G u(kT)
+ ?‘1{%F*1[¢F(T) - I]-I}G u(kT+T) (2.17)

This equation, as before, is known as the discrete
state equation of the system for the first-order polygonal
hold, and it can be solved by using a recursive procedure.

The analysis of Eg. (2.17) shows that the stafe at the
sampling instant kKT+7, is a function of the state at kT,
and the control signal at instants kT+T and kT. This fact
is related to the noncausality discussed in Section 2.3.2.
The problem arises because the éomputation of the present

state requires the present input, causing a computational

4

aw
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delay in the evalﬁation of the system. But considering the

- speed of the actual_digitalrcomputers Veréus the speed of most
of Eontrol‘systems, this delay is not a major. cause of |
error unless the system speed is unusually high so thatlthe
délay due to coﬁputational time must be considered [1l1].

Another conclusion from the analysis of Egs. (2.15)
and (2.17) is Ehat‘the firét—order‘polygonal integrator is
equivalent to thetrapazﬁidal rule of integration, which
approximates the function ﬁo be integrated by a linear
interpolation between two points. For this reason this
method is known as the modified trapezoidal method [11].

As discussed by DiPerna {44], the first-order polygonal
integrator belongs to a general class of numerical methods
known as the bilinear transformation, which are A-stabie.
Because of this very desirable property, the modified
trapezoidal method is widély used for.digital simulation
‘of continuous systems [44].

The discrete-data output from the controller must be
recqnstruéted by using a hqlding device,las éeen in Section
2.1, in order to obtain the analog éontrol signal for the
rplant. Using one df‘the hold systems analyzed in'Section
2.2, the Behavior of the plant can be characterized in the
same form as was done with the controller in this section.

Next chapter will deal with this problem.

oy

d

-
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CHAPTER IIT

CLOSED-LOOP CONTROL SYSTEMS

3.1. Control Systems

A control system is an interconnection of components
forming a system configuration to provide a desired
performance. An open-loop control system utilizes a
coﬁtroller or control actuateor in order to obtain a
desired response from a prdcess as shown in Figure 3.1.
In contrast to an oéén—loop controi system, a closed-
loop control system utilizes in addition a measure of
the actual output in order to compare it with the desired
output response. A simple closed-loop ccntrol system
is shown in Figure 3.2. The nature of the controller
imposes another classification of control systems.
Discrete-data control systems are characterized by the
use of a digital controller and continuous-data control
systems by an analog controller.

For the purpose of this research, the behavior of
a continuous-data and the equivalent discrete-data

Closed*loop control system must be compared. Therefore
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the mathematical description of the qontiﬁuous-data
system will be assumed known and the'equivalent
discrete~data system will be obtained by modelling it
according to Section 2.1. A set of linear, time-
invariant differential equations in state-variable form
will be used to describe each system. Although any
physical system, if analyzed in great detail is non
linear and time-variant, most of the actual systems

can be approximated with sufficient accuracy by linear

equations.

3.2. Closed-Loop Continuous-Data System

In order to analyze the closed-~loop control system
desirable simplificaﬁions of the block diagrhm of
Figure 3.2 will be made. The system will be considered
with plant, controller, unity'feedback loop and null
input reﬁerence, as shown in Figure 3.3, The mathematical
model of each component is known. The reason for null
‘input is to facilitate the mathematical formulation.
The case of forced systems will be discussed in Chapter
V.

Consider first the description of the plant.
Assume that it can be described by a set of linear time-

invariant differential equations in the state-variable
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'.form:
i(t) = .A x(t) +  B gp(t) ;-.x(to) = X, (3:1)
yp(t) = € x(e)
where
x(t): n-vector, state .
Xt n~vector, initial state

- up(t): r-vector, input

Yp(t): l-vector,‘output'

A: n X n matrix, system matrix
B: n x r matrix, control matrix
C: 1 x n matrix, output/ matrix

The first equation gives the plant dynamics and the

- second specifies the output transformation.

ey
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An important observation must be made next. The
scope of this research is'not to solve a closed-loop
control system. The object is to study the behavior
of its evolution as a function of sdme invariant
parameters which characterize the system. These
parameters are the eigenvalues which can be determined
with well knoﬁn mathemaﬁical or computational methods
[46, 47)}. Therefore, the A-matrix will be assumed
simple* and in diagonal form with eigenvalues Ai. In
the case of a non-simple system matrix, a Jordan
canonical form will be obtained [35] and the character—
ization can be made in the same form as for a simple
diagonal matrix. |

The controller, already presented in Section 2.4,
is assumed to be described by a set of linear time-
invariant differential equations in_the state variable

form
q(t) = Faq(t) + G uglt) ;7 alty) = qg (3.2)
Yot = H q(t)

where the matrices and vectors are described in Section

*n X n matrix with n linearly independent eigenvectors.
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2.4. Here it is also assumed that the F-matrix is
simple and diagonal with eigenvalues Uy
Consider now the description of the closed-loop

system., "It is clear from Figure 3.3 that

 ¥elt) = up(f) 2 r-vectors | | ) (3.3).

i

¥p (£) -u,{t) ; l-vectors , (3.4)
Then substituting Egs. (3.3j and (3.4) into Egs. (3.1)
and (3.2), the closed-lcoop control system can be

described in vector-matrix form by

% (t) A  BH x(ﬁ} - [x .
. ‘ L T ' H (3-5)
g(t) -GG F | lg(t) 1490 ]

In order to simplify the notation call

x{t)

z(t) (3.6.a)

q(ti

(n + m) - state vector.
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a = | .  (3.6.b)

(n +m) x (n + @} - system matrix.

Therefore Eq. (3.5) can be expressed as
Bt = g ozlt) L ozlty) = zy | (3.7)

:which is a homogeneous veqtor—matrix differential
equation with known initial conditions.

As it can be seen, z(t) represents the state of
the interconnected system, czié the systém matrix, it
reflects the dependence and influence between states and
describes completgly the behaviqr of.the closed~loop
system._-IE“isfaséumed that the closed-loop control
‘system is asymptoticalyfstable;uthefefore, the ¢ -matrix
has eigenvaiues with hegative real part [38].

Again, it is assumed that d’is;a simple matrix
and that there exists a non—singularlsimilarity'
transformation P which converts ¢ into a'diagoﬁal form,

with eigenvalues §;. Therefore, setting

z(t) = P w(t) | - (3.8)
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and substituting Eq. (3.8) into Eq. (3.7), yields

wit) = A w(t) ‘ (3.9)

witg) = p~t oz - | (3.10)
where

a = plgep | | (3.11)

diagonal matrix with elements 51.

The closed~loop system is described in a simple
differential egquation form. In the case of a non-
_simple ¢-matrix, a Jordan canonical form apééars and
the problem can be solved following a similar procedure.

In order to know the performancé of the closed-
loop control system, equations (3.5) and (3.9) must
be solved. The well known solution of linear

" differential equations applies in this case [35].

t ' i
x(t) = QA(t-to)X(to) + £ ¢, (t-T)BH q(7) d1 (3.12)
o _

s
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. . | |
g(t) = o (t-t)alt,) - [ ¢ ,(t-1) GC x(7) dt (3.13)
. to
wit) = 0, (t-ty) wity) o (3.14)
where
¢, (k) = 2t = Diag [ekit]
@u(t) = eE t - Diag feuit]
eg(t) = &bt = piag efity

are the fundamental matrices.
Consider now Eg. (3.8): the states x(t) and g(t)

can be expressed as
x{t) P

z(t) = = Pw(t)
g(t) _ g} P

w(t) ~(3.15)

where

Pn: First n-rows of P, affecting x{t).

P,: Last m-rows of P, affecting g(t).
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then, according to Eg{3.14) and (3.15) the states are

(3.16)

x (t) P, 05(t-ty) wity)

qlt) = Py 8s(t-ty) wity) (3.17)

' Substituting Bg. (3.16) into Eq. (3.13) and Eqg.

(3.17) into Egq. (3.12) results in the evolution of the

state of the plant and the contreoller.

t
x(t) = 0, (t-ty) x(t,) + [ &\ (t-1) BHPp &5(1) dt wy

t .

° | (3.18)

. t

a(t) = @, (t-ts) qlty) ~ [ @, (t-1) GCPp @g5(1) dr wy’

t

° (3.19)

where

Wy o= 0 (=t )w(ty) (3.20)

is a constant vector,
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_V-As statéd in Seétion 3.1, the evoiution of the
éontinuoﬁs.and discrété;data sysfems has to be |
compared. It becomes clear from Section 2.4 that the
sampiing instanfs‘a;e adequaﬁe for the‘comparison.
Therefore, the evolution of the continuous $ystem has
to be determined aﬁ'those'points. Replace t, by kT
and t by kT+T-in Egs. {3.1B) and (3.19}, furﬁhermore
make the change of variable v = t = kT. The evolution
of the state of the plant and controlléﬁ at sampling

times beccmes

3 (M) x(KT) + 516<T) 35 (kT) W

x (KT+T) = N (3.21)
q(k'].?-!-T) = @u(T) quT) - 0,5(T) @5 (KT} wy (3.22)
where
. N - :
oxs(TH = [ & (T-v) R ¢g5(v) av | (3.23)
0 ) i
nx (n+ m) métrix
T . .
ops (1) = [ &y (T-v) 8 ¢g5(v) av. o (3.24)
: _ o . ' : :

mx (n + m matrix
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R = BHP_ ;nx (n+m matrix (3.25)
§ = GCPy;mx (n+ m matrix {3.26)

These equations express the state of the.plént and the
controller of the continuous system-at time t = kKT+T
as an exact function of its value at time t = kT.

The integrals of Egs. (3.23) and (3.24) can be

evaluated explicitly as matrices with elements

BM(T) = I\ s r;. - - (3.27)
: ij i " 7] ' '

with
l<i<n, 1l<3j<n+m
and
. P §:T
0. . (T) I (3.28)
= — S - ]
us | i3 Hy SJ ij

with
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1_where
Ay s Eiggnyalues:of the plant
¥y ¢ Eigenvalues oflthe controlle;
6j : Eigenvalues of the closed-loop system
Ti§ ¢ Elemeﬂts.of‘thé matrix R
sij ¢ Elements of the‘matrix,S

The case in which a closed—-loop eigénvalue is identical
with a plant or controller eigenvalue may be treated

by taking an appropriate limit, i.e.,

lim 0y 5(T)

§. + A,

i 1]

finite for stable systems. A more interesting case

arises when T = 0, it is

lim GAG(T)

T> 0 ij

vl
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This result, which is not surprising, indicates a
zero sampling intervél or no sampling. It thereforé
:égsults in no change inlthe étatg; as can be seen in

Egs. (3.21) and (3.22) by letting T become zero.

The analysis ©f Egs. k3.27)vand:(3.28).shows that
the matrices elﬁ(T) and Gué(T)-can be exppessed as the
result of a transformation o¥ the Tundamental matrices.

That is, it is written as

0ys(T) = 8,(T) Q- Qp &4(T) . L (3.29)

SueM = oM 0

- Qg 24(T) O (3.30)

with elements

85T (3.29.2)

GXG(T)

Il
o
'.J
1o
ot

ij

and

eHiT o

il

Oy (T) -0 83T - {3.30.a)
. ij : C

ij ij
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Equéting the elements of the matrices of Egs. (3.29)

and (3.30) with the given by Egs. (3.27) and (3.28),

the elements of the Q matrices become

with
1 <i<n,
and
Q =
q i3

m_?*ii___‘- . (3.31)

1 | T (3.32)

1 £i<n+m

Here the elements of the Q matrices seem to be undefined

for a zero in the denominator, but the fact that the o

matrices are finite implies that this péle is cancelled

by a zero in the final expression.
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Equations (3.29) and (3.30) can be substituted into

Egs. (3.21) and (3.22). It follows that

x(KT+T) = ¢, (T) x(KT) + [&;(T) Q, - O, ®5(T)]
<85 (KT) wy B | (3.33j
g ({kT+T) = ®p(T) g{kT) - [Qu(?) Qq ~ g $5(T)]

o 85 (KT) wy | (3.34)

Thesé equations give the evolution of the state of the
plant and the controller of the continuous system as a
function of the fundamental matrices. of the plant,
controller and closed-loop system, the initial conditions
and the transformation matrices Q. The eguations will be
used in Chapter IV for comparing the evolutions of the
continuous and discrete-data systems.

In the next section, the discrete-data system

will be analyzed using the same approach as used here.

i
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3.3. Closed-Loop Discrete-Data System

- Consider now the closed-loop discrete-data system.
The digital controller was presented and modelled in
Chaptef II and shown in Figure 2.3. The plant is the
same és the one analyzed in Section 3.2 because the
discrete-data system has only a change in nature of the
controller. Therefore the Tlosed—ivop discrete-data
system can be assumed to be of the form shown in
Figure 3.4.

For the purpose of this researgh it is necessary
to analyze the behavior of the discrete-data control
system for different complexity of holding devices énd
compare them with the behavior of the continuous
system. In this section, the discrete-data control
sfstem using the two different holding devices presented

in Chapter II will be analyzed.

3.3.1. Zero-Order Discrete-Data System

Consider first that the zero-order hold is used as
the holding device. The resulting system is called
zero-order discrete-~data system. The input signal to

the controller and the plant is characterized by its
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valués,at sampling times and held constant in between
them, as seen in Section 2.3. Also, it is of piecewise-
continuous nature and differs from the continuous signal
as shown in Figure 2.5. Because of this behavior, the‘
states of the plant and the controller differ from those
of the continuous system. They will be denoted by
xq({t) and qd(ﬁ) respec?ive;yq

Assume that the plant is as described in Section
3.2. Using the notation introduced in Figure 3.4, its

behavior can be described by

ky(e) = A xg(t) + B upg(t), xqlt) = xg

(3.35)
ypd(t)' = C x5(t)

where the A, B and C matrices have been presented in Eq.
{3.1) and ugd(t) is the piecewise-continuous control
output of the zero-order hold.

The controiler has been presented in Section 2.4.
According to Egq. (3.2) and Figure 3.4, it can be

described by
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. . o =
dglty = F gglt) + G u4(v), qqlt,) = a4
(3.36)
ycd(t) = Hq@(t)
where the F, G and™H matrices have been presented in
Eq. (3.1) and ugd(t) is the piecewise—éontinuous
output of the holding device.
In order to study the evolution of the state of
the plant and the controller of the discrete-~data
system for its comparison with the continuous system,
Egs. (3.35) and (3.36) must be solved. As shown
~ earlier,
xd(t) = Py {t~t ) xg(ty) +
t o :
[ e(t-7) B uj4(r) ar (3.37)
t, ‘ : '
qd(t) = .(Du (t—to) qd(to) +
t o
[ 9,(t-T) G ugg(r) dr (3.38)
t _ .

O



As may be seen in Figure 3.5, the controls uh T)

A Pd(
'-and'ugd(T)-are the output of the zero-order hold device.

According to Eq. (2.5), they are described by

a constant vector for
KT < t < kKT + T

From Figure 3.5 it is evident that

u d(le Y d(kT)
and

U g (kT) = -ypd(kT)

so that, according to Egs. (3.35), (3.36) and (3,39)

*The notation p/c 1nd1cates elther the plant (p)
or controller (¢) input or parameter,

54



o _ ' -

upd(T) = H qd(kT) (3.40?
and

0O _ .

ucd(T) = q xd(kT) (3.41)

Consider now the piecewise nature of the control
vectors and their value given by Egs. (3.40) and (3.41).

The Egs. (3.37) and (3.38) become

X4 (KT+T) = &;(T) xq(kT)  +
kT+T
[ 7 ¢y(kT+T-T) B H dT q4 (KkT)  (3.42)
kT _
qd(kT+T) = @u(T) qd(kT) -
KT+T
im ¢, (kT+T-1) G C dt x, (kT) " {3.43)

These equations are valid only for one sampling

o
interval since the input vector up/cd(kT) is constant

55



only for that duration. It is possible to evaluate the
integrais of the right member of Eq. (3.42) and (3.43};

they have the same form as Eqg. (2.13); thus

-1

xq (kT+T) = QA(T) xq(kT) + A7~ [&,(T) - Il BH g4 (kT)

{3.44)

-1 .
q-d(kT+T) = ,@u(T) qd(kT) - F [-Cbu('l‘) - 1] G'_C x . (kKT)

d
(3.45)

Equations (3.44) and (3.45) rep?esent a set of linear
difference equations in vector-matrix form. They are the
time-discrete state equations of the digital system.

In order to facilitate the fotmﬁlation for the
comparison of the discrete and continuous systems it is
desirable to express Egs. (3.44) and (3.45) in the same

format as Egs. (3.33) and (3.34). To do so, a définition
-of state digitalization error must be presented.

Definition 3.1. The difference between the state

variables of a continuous system and the discretized

version of it is called state digitalization error.

56
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It is given as

ey (kT) = x (kT) - x4 (kT) | (3.46)
eg (k1) = g (kD) = qg (kD) - (3.47)

The error, which represents the difference between
performance of the continuous and discrete systemé, will
be discussed in the following chapters. .The use of this
definition will permit the characterization of the
discrete-data systeﬁ in the desired format and this
object is followed in this chapter. In Chapter IV, an
important component of the state digitalization error
will be analfzed, the error introduced by sampling.

Substituting Egs. (3.46) and (3.47}) into Eqé. (3.44)
and (3.45) yields

xg(KT4T) = ¢, (1) xq(kT) + Al fe,(m) - 1) BH
. [g(kT) - eg(kT)] ‘ (3.48)
— . _ w1 _
qq(KT+T) = &, (T) qq(xT) - F~ [e (T) - I] G C

DX (KT) - e (kT) ] (3.49)



Consider now Egqs. (3.16), (3.17}, (3.20) for t = KT, .

“that is, ' .

x(kT) _ Pn ¢6 (kT)wl S (3.50)

g {kT} P % (kT)vrl ' - {(3.51)

and substitute these values into Egs. (3.48) and {(3.49)

to yield
xq (KTHT) = & (T)xq(KT) - A_l[él(’r) ~I] BH eg(km

+ e.;’ﬁ(m'@ﬁ (KTh | (3.52)
qd(kT+T) ¢U(T)qd(kT) + F [@u(T) I] G ¢ ed(kT)

- 805 (T) o5 (KT)w (3.53)

1
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where

0%, (1) = at (e, (1) - IIR (3.54)
o - -1 _ . )
v 0§ = F Lo, (T) - IIS (3.55)

with R andis described by Egs. (3.25) and (3.26)
respectively.

In order to be consistent with Section 3.2, it is
desirable to express the Egs. (3.54) and (3.55) in the
same form as Eqs._(3.29) and (3.30). Consider first
Egs. (3.54) and (3.55), the elements of those matrices

are

it
>

o .
ohe(™ | Tt -1

(3.56)
ij '

for

" and
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for

The Egs. (3.29) and (3.30), as applied to the case

of the zero-~order hold modelling, take the form
o _ o A0 m & '
GAG{T) = ?A(T)QX(T) - 0 (T)og(T) | (3.58)

Ops(T) = O (TIQU(T) - QO(T)o5(T) | (3.59)

with elements of the form of Egs. (3.2%.a) and (3.30.a}).
Since the elements of the g° matrices given by Egs.
(3.54), (3.55), (3.58) and (3.59) must be identical, the

elements of the Q° matrices become

li—]_

-~ . |
0, (T) T ey i3 (3.60)
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. for
1 <i<n, 1<j<n+m
and
o euiT -1 -
Qq(T) = Sij (3.61)
1] ui(eulT - EGJT) |
for

The cases in which a closed-loop and an open-loop
eigenvalue aré identical and when the sampling interval
become zero'can be treated in a manner similar to that
of Section 3.2. |

By substituting Egs. (3.58) and (3.59) into (3.52)
and (3.53), the discrete-state equations of the system -

for the zero-order hold are obtained. They are:
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xg (KT+T) = &, (Mxg(km) - aA™l{e, (1) - 11 B B eI (k1)

+ [0, (DO2(T) - 02(T) 04 (T))eg (KT)w;  (3.62)

1

q (KT+T) ¢ (T)xg(kKT) + Fl(e (T) - I} G C ef(kT)

o o
[tIJu(T)Qq(T) - Qq(T)@a(T)]Qa(J{T)Wl (3.63)

These equations are similar. in format to the
equations describing the evolutiohrbf the continuous
system at sampling instants. rThey will be used in the
next chapter for comparison between continuous and

discrete-data systems.

3.3.2. First-Order Discrete-Data System

Consider now that the first-order éolygonal hold
is used as the holding device. The resulting system is
called first-order discrete-data system.. As shown iﬂ
Section 2.3.2, the input signal to the controller and
the plant is characterized by its behavior at sampling

instants and has a linear variation in between them,
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Its effect on the system is a change on the value of
the state because of the difference with the continuous
signal. As before a change on the state occurs and
xd(t) and qd(t) will be the modified states of the plant
and the controller respectively. |

Consider the system as previously described by Egs.
(3.35) and (3.36). The evolution of the states of the
plant and the controller are given by Egs. (3.37) and
(3.38) and are presented here for the first-order

polvgonal hold.

xd(t) = Qh(t'to)xd(to) + { @i(t-T)B u;d(T) dr
° ] (3.64)
_ t ) - 1
ggqlt) = @u(t-to)qd(to) + { .®n(t-T)G ucd(T) dt
°. (3.65)

where ué/cd(r) is the piecewise-continuous control,
‘ output of the first-order polygonal hold. According Eg.

(2.7), it can be described as



. b4

1 o
= u

up/cd(T) p/cd(k?) +
[u;/cd(kT+T) -y /a1 KL (3.66)

for
KT < T < kKT + T

. 1 1
k + t
and with up/cd( T} and up/cd(kT T) constant vectors in

the interval.

As before, from Figure 3.5

1 : )
upd(kT) H q,(kT) o : (3.67)

1 - ' '
ucd(kT) -C xd(kT) ‘ ) | (3.68)

Then evalﬁating Eg. (3.66) for the controls given by'
Egs. (3.67) and (3.68) and substituting the result into

Egs. (3.64) and (3.65) yields
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x5(KT4T) = &, (T) xg(KT)

KT+T ‘ e
+ ¢,y (kT+T-1) BH kTHT-T dt q_(kT)
A , a
kT T
KT+T. . T
+ &) (KT+T-1) BH — 12— . dt g4 (kT+T)

kT _ T

(3.69)

A similar expression is obtained for qd(kT+T) but with

the xd(kT) and qd(kT) interchanged, the )\ replaced by

D e

p, and BH replaced by -Ge.

These eguations as before are valid for one

1
p/cd

that duration. The integrals of the righ£ member can

sampling interval since u {t) is continuous only for

-be evaluated; they are in the same form as Eg. (2.16};

thus

X3 (KT+T) &y (T)xgq (kT)

+ A7H oy (T) - [¢,(T)-11} BH g5 (kT)

+ A-"l{ A;l .[@k (T)-II—I} BH qd(k."I'I'T)

(3.70)
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and
Gq (KT+T) = 2, (T) qq(KT)
=1 (o (). - ol [6 (T)-I1} GC x. (kT)
3 W u | Ta
-*F_l' { {@u (Ty-I] -I} 6C xd {(xT=T)

(3.71)

These discrete state equations represent a sa2it of
linear difference eguation in vecto;—matrix form,
describing the évolutionrof the digital system whean
modelled with the first-order polygonal hold.

In order to facilitate the formulation for cc=parison
recall thé digitalization error defined in.Secticn 3.3.1.
Substituting Egs. (3.46) and (3.47) into (3.70) z=d4d (3.71)
and considering the continucus states given by Zzs. (3.50)
and (3.51), the evolution of the states can be exgressed

as



xd(kT+T)

‘and

qgq (KT+T)

67

&, (T) %4 (KT)

-1 _ A | _ q -
A {@k(T) = [?l(T) I}} BH e3 {kT)

-1 - :
a1l g AT, .[éltﬁ)—11'~1} BH eg (KT+T)

Oy (T) B5(KT) wy (3.72)
QH(T)qd(kT) ' | ' .
1o (my - £ [6 (T)-T]} GC ¥ (kT)
L - H d
Fl (E (s (T)-I] -1} Gc &9 (kT+T)
T u - GC 25

- 65 (1) 05 (KT)w) - (3.73)
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. where

. -1
ors(m) = a7t (o,(m - 2 o, (m - TIIR
-1 a7t | |
+ a7l (2 e, (m) - I] ~I} R 06(T) (3.74)
and
ol = 7l (e (1) - E1 fem) -11} s
us u T R
+ rl {F-l (6. (T) -~ I] - I} s &, {T) (é 75)

Hefe, for simplicity, the aigitalizétibn error is written
with the same notation as in Section 3.3.1, but assumes
different values.

In order to express Egs. (3;72) and (3.73)-in the
same form as Egs. (3.29) and (3.30), they must be
modified accordingly. Start first with Egs. (3.74) and
(3.75), the elements of those matrices have elements of

~ the form
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91 (T)Y = 1 { [‘_e}‘iT -1 (e}‘iT -1)]-
AS . Al
1] 1 llT
‘ 1 T _ 8Ty
+ XoT L(e 1) l] 73 }4r3_:l |
(3.76)
for
1<ic<n 1<j<n+m
and
O}s (T) = = { [eMiT L_ (M - ]
ij i iT
1 Ui T \ §.4T
(3.77)

for
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It can be shown that in the limit for T, A; and ug
approaching zero, the elements are finite.
Finally, Egs. (3.74) and (3.75) must be expressed

in the form of Egs. (3.29) and (3.30), thus

e.ia = QA(T)Qi(T) - Qi(T)®6(T) o {3.78)
1 _ 1my o o :
) 16 @u(T)Qq(T) Qq(T)Qa(T) o (;.79)7

These matrices have elements of the form of Egs. (3.29;a)
and (3.29.b) and they must be identical with the elements
given by Egs. (3.76) and (3.77). Equating the identities

the elements of the transformation matrix become

r

(1-e2iT) (1=e%3T) + ajme?iT-e%3T)

ij 27 (e*iT-e%3T)

e

l
Q, (T) Ty

. (3.80)

for
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and

(1-eMiT) (1-e%3T) + pyretiT-e®iT)

Sij

)
Q
5]
b

ij u%T(e“iT—eGjT)
(3.81)

for

The behavior of these equations in the limit can be
analyzed as in Section 3.2.

By substituting Egs. (3.78) and (3.79) .into Egs.
(3.72) and (3.73), the discrete-state equations of the
system for the first-order poiygonal hold are obtained.

They are:

r



and

xd(kT+T)

qd(kT+T)

12

§A(T)xd(kT)

: ?l.
-2l e, (m - AT [6,(T) - T1} BH e3(kT)

_ a1 a1
A {-—E——

[¢3(T) - 1] - I} BH eg(kT+T)

+ [0 (MQL(T) - QLTI o (T)] o5 (KT)wy
| (3.82)

= éu(T)qd(k?)_
-1 _‘_F"l _ _ X r
+ F+{ @u(T) oy [@u(T) I1} GC ed(kT)
-1 -1 ' ' X
+F { — [@u(T) - I1 -1} GC ed(kT+T)

| 1 _ A1 ;
- [0, (MQL(T) - Q (D eg(M) d5(KT vy |
(3.83)



73

These equations are similar in ﬁorma£ to the
equations describing the continuous aata éystem at
sampling instants. '

A close analysis of the obtained equations will show
that they are similar to those obtained in [11] for
open—loop.systems; therefore comparable techniques can be
used for approaching the determination of sampling rates
in cpen and closed~loop. systems. In the next chapter a
study of the elements appearing in the equations
describing the continuous and discrete-data systems will
be made and an expression measuring the difference between

continucus and discrete-data states will be obtained.



74

CHAPTER 1V

ERROR ANALYSIS

4.1. Introduction

The response of a continuous and compuﬁer controlled
closed-loop system was introduced in the last chapter.
The problem of relating them in order to compare their
performance is constrained by a proper determination of
error or differences between systems. In this sectioﬁ a
brief review of the different errors present in a
discrete-data system will be made in order to define a
proper érrqr criterion.

An early work in this area [24] defines "system
error" as the result of the imperfect response of the
discrete-data éystem to an applied input. The "system
error" is composed of two components. One referred to
as "organic error," is_introduced by lags or leads of
the continuous part of the system [24]. The second
component, called "ripple," is the error introduced by

the sampler. This error, in the steady state, contains
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'Vonly'thqse_frequency COmponents'and'its harmonigs. In
practical systems, this “ripple“ is generally suppréssed
by the forward_t;ansﬁisSion function of the system, by
filtering. In the referred paper [24], the authors
obtaiped a mathematical déscription ¢f the “ripple“‘by
using the z-transform and Laplace transfo:m techniques.
Also they make clear that during the transient the

- ripple component is insignificant. The "system error"
‘approach is of interest to this reseaxrch, because the
problem is similar. The coﬁcépt will be applied to the
state variables of the‘pléht instead of the output error
dealﬁ within the referred paper. | )

Another iht;rpretation of the system error is given
by researchers in the field of numerical analysis énd is
referred to as truncation erro;:[B, 42, 48, 55]. The
error is defined as thatresulting froﬁ.thé manner in

which the differential equation describing a dynamic

’

system is approximated. This definition applies more
directly to this research because it involves a
differential equatiop, that is, the mathematicél
description of the continuous data controlISYStem, and
an approximation which is the result of diécretizing-the
system; |
Anothef source of errdr present in the system is

due to the imperfect analog-to-digital and digital-to- '

-



anaiog conversion. The practical converters have a
finite number of conversion bits, therefore error appears
and is known as quantization error. In general the error
is neglected in the design of digital control systems,
but the effect of quantization should be considered. It
can serve as a practical gquide in the determination of
the height of quantization levels and the size of the
Vregisters of the digital computer used for control.

The effects of quantization of continuous-time
signals have been extensively investigated from the
probabilistic viewpoint [49—52]. Deterministic studies
on the effect of quantization errors in linear systems
have also been studied (30, 31, 32, 53]. They give a
" mathematical formulation for the problem and determine
an upper bound for the quahtization error in the output.
Lately'the problem has been approachéd from the optimum
control viewpoint {[54], and a performance criterion for
the minimization of the worst effect of the error measure
has been defined. |

In previous research [11], it has been shown that
the variance of the state quantiZatioﬁ.érror due to |
input-quantization depends linearly on the sampling
',intérval T, when T is small, and varies as the square of

the quantization level.
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From these considératidns it is clear that further
investigation is required of quantization errors in
closed-loop systems, and how to select a converter for
a giveh sampling interval and digital computer. This
subject is presently under study in other research [56].

The error due to sampling only is analyzed in this chapter.

4.2, Discretization Error

Consider now the error introduced in the system due
to sampling and hold and called in the research preceding
this discretization error.j_It reflects the difference
between.the performanée of the continuous and discfete
‘systems and is defined by

Definition 4.1. The difference between the state

variables of the continuous system and its discrete-data
version in the absence of guantization noise is called

state discretization error, defined as

ex(kT) x(kT) - xd(kT) (4.1)

In

eq(KT) = q(kT) - qq(k1) (4.2)
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This definition in essence is the same as Definition 3.1

(state digitalization error) but it holds in the case of

absence of quantization error. The state variables

were already defined in Egs. (3.1}, (3.2),
(3.36).

{3.35) and

In a completely similar manner the output

discretization error can be formulated.

Definition 4.2. The difference between outputs

of the continuous system and its discrete-data version,

in absence of guantization noise, is called output

discretization error, defined as

ey{kT) = yp(kT) - ypd(kT)
According zo Egs. (3.1) and (3.35)
yp(kT) = C x (kT)
and
Ypq (KT) =€ x4 (k7)

therefore, the output discretization error

(4.2)

(4.3)

(4.4)

can be



expressed as

ey(kT) = C e, (kT) | (4.5)

These error definitions will be used in the
remaining of this chapter for characterizing the
‘behavior of the discrete-data system with respect to

its continuous equivalent.

4.3. 'Discretization Error for Zero-Order Discrete-Data

System

For the application of the definition of state
discretization error considered in the last section,
recall the expressions for the evolution of the states
of the continuous and discrete system for the zero-order
hold reconstructor, developed in Chapter III and
repeateé here. | |

For the continuous system,

x (kT+T) = @A(T) x (kKT)

+ 08, (T) Qx - Quds(T] 05(kT) wy (4.6)

79
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g (kT+T) = Qu(T).q(kT)

- [oy(T)Qy - Qqs (1)1 %(km W, '(4.7)
where
.. .
Qxl = -3 hx 0+ m] (4.8)
ij Aj- 3j :
0 l T %3 . mx (n+ml (4.9)
LR ER Pi-65 \

are all known elements presented in Chapter III.

For the discre£e~daté system,.in.which the
quantizéﬁion error is assumed to be zero‘or hegligible,
the digitalization error is équal ﬁo the discretization

error; therefore the states become



: #d(kT+T)

]

qq (KT+T)

PR |

where

o
a2 (m)

i]

o
Qq(T)

ij,

?A(T)xd(kT)
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-1 - .
ATT[0, (T) - T] BHe, (kT)

[, (T) Q0 (T} = QO (T) 045 (T) 105 (KT)w)

o, (T)qgq (KT)

(4.10)

~1 ~ '
F [@u(T) 1] GCex(kT)

O __.0
[, (MOJ(E) - QG 5T 05 (KT)Wy

s
ell. -

1

A1T_
Ai(e 14-g

Ty
e

GJT)

pj (eMiT-e

ij

ij

-

(4.11)

{n x (n +m)T

(4.12)

fmx (n + m)]

(4.13)



Then by direct application of Definition 4.1, the
state diécretization error is
= -1 s ' _
gx(kT+T) @A(T) ex(kT) + A [@A(T) ;]BH eq(kT)

+ [op(T) M2(T) — MO(T) 25 (T)] @5 (KT W,
(4.14)

. _ . l _ _l _
eq(kT+T) = @u(T) eq(kT) F [@u(T). IlGe ex(kT}.

_ O _ Q .
[<I>u (T) Mq(’I‘) Mq(T)fDG(T)]@(S(kT;wl
{4.15)

where

MO(T) =@ - 03(T) ;5 [nx (a+m] (4.16)

82
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MO(T) =Q ~Q°%(T) ; [m x (n + m)] (4.17)
q q q | _

Since the initial conditions of the continuous and

discrete systems are the same, the initial errors are

i
o

H

e {tg) = x(ty) - x,(t ) (4.18)

eqlty) = alty) - qa(e ) = 0 (4.19)

In order to facilitate the notation, Egs. (4.15)

and (4.16) may be expressed in vector-matrix form



- 84

&y (KT+T) Ty a~lre, (m)-11BH | le, (kT)

il

. : . -_-l _ . , .
eq(kT+T) prlfe (my-tiee ey | e (kT)

0, (TM(T) - ML (T)05(T)

+ - | 35 (KTH
’ - Q - Q 4
[éu (T)Mq(T) Mq(T) 5 (T) 1]
(4.20)
with the initial condition '
e{o) = G
or
e (kT+T) = A°(T) e(kT) + 0°(T) .tIDG(kT)W'l | ' (4.21)
where
o e, (XT) .
e(kT) = o ' - (4.22)

eq(kT)
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[ ¢, (T) ' A_I{QA(T)-I]BHq
A°m = | | S (4.23)

_p-1 . o
F [@u{T) I]GC QM(T)

S (TIMQ(T) - MO(T) &4 (T)
eo(T) = | R | ' (4.24)

_ O (py - MO .
[y, (T) M (T) Mq(T)fb,s(T)]J

Equation (4.21) represents a vector-matrix difference
equation which gives the discretization error at sampling
instants for the zerc-order diécreteédata System.

To study the behavior of Eq. (4.21),'£he matrix .
'e?(T)-must be investigated further. Take its components
Mo (T) and Ma(T). |

In view of Eqs. (4.16) , (4.17), (4.8), (4.9), (4.12)
and (4.13)}, the elements of the matrices Mg(T) and,Ma(T)

are
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- o ‘ ' | A:m : .
o, . = Tij _ (x3-65) (e"17-1) 2
m xij ) _)‘_::'Ti_ _[l | A-'tekiT_eéjT) — @
_ Ay

and
S o usT
g (u.-86.) (e"17-1) . :
m 2. = — 21 1 - r 3 I (4.26)

Therefore the.matrix e‘o(T')l has elements of the 'form

| N T
(li-ﬁj)(e L "1)] AT 84T

. . . (e"17-e"17)
X1] li"ﬁj Ai(exlTnesz)

(4.27)

for
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and
, . . T
| S . u,~6.) (eMit-1)
9%, . (m) = —* 1 - ] 1 (eHiT-e84T)
qu | ui—GJ ui(eUiT-esz) | .
| | (4.28)
for
n+l<i<n+ml<j<n+m
These elements have the following property:
By application of the L'Hospital rule,
i o -
lim eij(T} = 0
T+ 0
C1im 'eij(T) = k(T), finite for T finite.
Aifug > 8

This property will be applied next to study the behavior

of Eq. (4.21).
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The first question concerning Egq. (4.21) refers to
its stability. It is clear that it represents a forced,
fixed,‘linearldiscrete time system at rest at the
starting time k = o, but in which an excitation is present
thereafter. According to [43], the stability of such a
system is determined by thé eigenvalues of the system
matrix and by the forcing function. Therefore, for

stability the eigenvalues zg(T) of A9(T) must be:
e}
[22(T) | < 1
. for

lf_if_n-i-m
Since these eigenvalues are functioné 6f T, a root-locus
analysis may be done in order to find £he least value of
T which will make the system unstable. For the present
purposes it will be seen in Chapter V that the_T chosen
will be less than that maximum and therefore ﬁhe scheme
will be stable.

The nature of the forcing function will be studied

next. As seen in Eq. (4.21}} the forcing function is
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Cw(kT) = &g (KT)W, | - (4.29)

'where:¢6(kT) is a stable fundamental matfix, which for
k approaching infinity, approaches zero. Therefofe
the forcing function is bounded, Eq. (4.21) is stable,
and the error e(kT) approéches zero as k approachgs
infinity. The matrix 0 °(T) does not affect the
analysis of stability because as shown, it has the
property of being stable'for all possible eigenvalues.
A second observation concerns the behavior of Eq.

{(4.21) when T approaches zero. It can be seen that

1im A®(T) = I , unit matrix
T+ 0
lim @%(T) = 0, zero matrix
T >0

Thus, with kT = t and T approaching zero, Egq. {(4.21)

becomes

lim e (t+T) = e(t)

T+ 0



That is, for T = o, there is no sampling, and therefore
the discrete-data system becomes the continuous system
according to the model discussed in Chapter II. This is
refleéted in the fact that the error does not change
.and has the value of its initial condition which as
seen in-Eqé; (4.18) and (4.19) is =zero.

In order to characterize the error in terms gf
parameters of the system, Eg. (4.21) must be solved.

The solution of this equation is for k> 1 [43]
Cetkr) =t (A% ]P0 (1) o4 (nTiw, (4.30)

In order to see the meaning of each matrix, the

original factors must be substituted in Eq. (4.30); then

(T - a~1lie, (T)-11BH] (k=1-n)
k-1 ~
e(kT) = &
-F7 (2, (T) -I]GC ¢, (T)
o (TIND(T) = MQ(T)os(T) ]
oo, muem O(T. fo i
-{e (T)M2(T) - M T
u (M (M es(] |

- (4.31)



91

_ Considering that'a‘zero—ordef hold device has been.
used for modelling fhe discrete—data system, the Ad(T)
matrix appearing in Eq.'(4.30) éan be considered as a
first-order approximation of ité series expansion, because
the method is first-ofder:[dal. Assume then, that T is
such that the expressioné of the fundameﬁtalrmatrices

can be evaluated by

oy (1) = e WEOIT o I+ (A/F) T | . (4.32)

In this connection, it is worth noting that an exponential

e*iT can be approximated within 1% by (1 + A;T) if AT

is less than 0.15; this bound is very liberal on AyT

- for practical purposes. It will be seen in Chapter V

that the.selected T- will be much less than this bound.
Therefore Eq. (4.31) will be examined using the

approximation in Eg. (4.32).



92

Consider first

C _ ' -
¥ (T) - ATl (m-1iH
A%y =

A - = |

| -Fle (D) ~TlGC 2, (T) |
I + AT a~laren
-r~lprae ‘I + FT
A BH

1
-
+~
=

(4.33)

Comparing Eq. (4.33) with Eq. (3.5), it can be seen that

AO(T') « I +dT = ¢, (T) (4.34)
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wﬁich is the fundamental matrix of the closed-loop
cdntinuous system.

In order to express Eg. (4.34) in a more manageable
form, the use of the similarity transformation of Eq.

(3;11) is required. The fundamental matrix is
_ ) ;1 | R
@d('l‘) bes (T) P (4..35)

Then the state discretization error for the zero-
order discrete-data system can be expressed, by

considering EQS. (4.34) and (4.35) as

k-1
e(kT) = P I o4[(k-1-n)TIP"16%(T) &, (nT)w; (4.36)
n=o .

0f primary interest is the error in the plant,
because it is the process to be controlled; thus the

state discretization error becomes

k-1
= [ (k-1- -lg
re(kT) =P i=o 35 [(k-1-n)T)P~LEO(T) é5(nT)wW;  (4.37).
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where P_ has the first n rows of the matrix P and
_ defined in Eq. (3.15).

Before continuing é check on the stability of Eq.
{4,37) can be made. It has been seen in this section
that the stability de?endé,on the eigenvalueé of AC(T).
From Eg. (4.34) it is cléér that they aré of the form
eGjT for small T, and due to the stability of the .
closed-loop system |e6iT 14-1. Therefore the schéme
'is stable for T small.

Consider‘now the fact&r 0°(T) of Eg. (4.37), which
is given by Eq.'{4.24), and study its behavior for small
T. Take first the matrices Mg(T) and MS(T} given by
Egs. (4.16)'ana {4.17) under consideration. As will be
seen they play an ilmportant roie in the determination of
the sampling interval. Each will be called erroxr

coefficient matrix with elements

(Ai~6j)(eAiT—l)

o ' Y : ‘

mo,.(Ty = 1 1~ ] (4.38)
x1] Ai=8; Ai(e"lT-e‘SjT)
| . - T

_ | S. . . (p.—ﬁ.)(eul =1)

m®, (7)) = —23 - L ] ] {4.39)
i .T_ 84T
q1] ug=8y i (eHit-e®3%)
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As a first observation, it is seea that the factor
;ij/(Ai—Gj} describes how the control mode &4 affects
the plant mode A;. In order to have a better under-
standing of these expressions they may be expanded in
Taylor's series about the point T = 0. Then, it is

obtained that

: r.. 2 3
O, (T) = — 33 [8.T - L(8.th. )T 48%A, = 4+ . . .]
xiij , 'y 12 373 % 12 j 124
i) )
.- ) '
= 1 _po (T . (4.40)
Ay~Gs X1
i™%]
mO (T) =___S_i_j__ [5.?.— 6.(6.+p.)£ +62p !"3.+ . ]
qij ey i3 s B SIS L S
i .
°i3 o, (m) | (4.41)
Tie, il A



From these expressions it can be seen
i) The magnitude of the discretization. error is

dependent on the magnitude of these elements and

(Y = o

; o)
lim My /qi]

T+3

'meanihg that it is zero for no sampling.

ii) The‘elements have a léading term in the first
powe? of T meaning that the model of the discrete
system is equivalent to a first-order method of
numerical iﬁtegration {48].

iii) The eigenvalues of the closed-loop system
affects the expreséion in the first term.

iv) In order to keep the magﬁitude of the
discretization error smaller than the effect of the
control {i.e., thé term rij/Ai—Gj); it is;reasonable to

have a T such that
, 0
.|Dij(T)| << 1

Then taking the magnitudes of Egs. (4;40) and (4.41)

-
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and approximating them by the second order term,

yields
' , 2 |
IDRi3 (M1 < T i3] + I3 Is5h desl+lngh (4.42)
T T2 7 __
IDgi5 M1 = 5 1851 + 33 [s51 dlssl+lugDy (4.43)

This approximation is very conservative for complex
eigenvalues. It permits the definition of relative
discretization error coefficient to be used in Chapter
v )

Definition 4.3. The relative discretization error

coefficient for the zero-order discrete-data system is

% 81+|A]) 1 . (4.44)
for the plant, and
YoM = s i+ 3 (s ]+l (4s)



for the controller.

" Where

5] = max {|8,]}
Al = max {{A.]}
A= e g
la] = max {|ugl}
i _ |
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(4.46)

(4.47)

(4.48)

Consider now the G(T) matrix. It will be called

the error matrix. Its elements are given by Eqs.'(4

.27)

and {4.28). Under the same assumption as for the matrix

~M@(T)}, the elements may be expanded'in Taylor's series

about T =0, it is obtained

‘ 2 ' : Lo, p2
© = r.. 8.1 . T _ (5. 2T
Opij (M = Fij 6573 [FGy*Ade = OyhA)m3 +

RS

(4.49)



and‘

| | 2 ' T ' 2
° =5, 6; 7 Y 2 12
quj(T] S5 3 Gj&i_ [l + (53+”i?2 (5j+pi) 5 f . e W]
(4.50)

Similar conclusions as the ones ébtainéd for the
fmatrik‘Mo(T) cén be observed by analyzing Egs. (4.49}
and (4.50). fhese results will be used in the next.
chapter for determination.of criteria for chqosing an

acceptable sampling rate.

4.4.’ Discretization Error For First-Order Discrete-

Data System

Consider now the definition of state discretization
error, the expressions of the evolution of the
cOntinu@us system} given by Egs. (4.6) and (4.7), and
the evolution of the discrete—~data system; for the.
first—order-polygonal hold reconstruétor and répeated

here
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| -1
| xg (KT+T) = &, (T)x (KT) -A71{0) (1) =212, (1) ~I1 }BE e (kT)
- a 121 s (r)-1]-T)BH e (KT+T)
A ro, (1) -1] &g
+ [0, (0L (1) -0 (T) 04 (T) 104 (kT)¥ (4.51)

—l F_l
@u(T)q(kT)+F {@u(T)——Er{Qu(T)-I]}GC ex(kT)

qd(kT+T)

-1 rl f
+ F7H{——[d (T)-I]-1I1}GC e_(kT+T)
T H x

- 1 _al
[Qu(T)Qq(T) Qq(T)®6(T)]¢5(kT)Wl (4.52)

where ex(kT) and eq{kT) are the state discretization

errors and

2Ty (1-e35T) + asr(e?iT-e83T

= {-e
A$T (eriT-e83T)

Qi(T) ij
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(l—euiT)(l—eajT) + ﬁiT(euiT—eajT)

ufr(etiT-e83T) +J

J i}
Qq(T)Iij

(4.53)

for 1 <i<m, 1<3j<n+nm

Direct applicaticn of the definition of state

discretization error yields

e (KT+T) = &) (T) e, (xT)

-1
-1 _ A -
+ a1l {51 [& -{T) - I] - I} BH e_(kT+T)
T A q

+ [?A_(_T)M}]E(T) - M}];(T)'QJS(T)] 9 (KTIW |

(4.54)



and
+T) =
eq(kT )
where
1 _
Mx (T) = Q}‘I
Loy —
M=(T) =
.q( ) Qq

and the initial

@u(T)eq(kT)‘

ot
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-1 ‘ ' o '
F {cbu(T) - e [@u(T) - I]}GCex(kT)

o1 Pl | S
F Lﬁg- (e, (T) - I] -;}GCex(kT+T)

’ L .
fe, (MM _(T) - gq(T)és(T)laatkT)Wl

-olm; nx (n+ m)

-‘Qé(T): [m.x (n + m)]

arrors are

" (4.55)

(4.56)

. {4.57)



with the initial condition e{0}) = 0.

103

_ex(to) = x(to) - xd(to) = {4.58)
eq(to) = qlt)) - qg(e)) = 0 (4.59)
In order to facilitate the notation Egs. (4.54)
"and (4.55) may be expressed in vector-matrix form
E‘ k + W i -1 éi I E\H“1 -1
e  (KT+T) I -A { T‘[QAI(T)'I]'
_1{F—1
e (KT+T) F _E—[® (T)-I]-I GC I
L g o L M .
i -1 At
'¢X(T) A {QA(T)-“*— [¢, (T)-I] BH e (kT)
i T o x
-1 .
-1 F
-F {¢ (T)-— [0 (T)-I]}GC $ (T kT
i { u - [u( )-I11} u( ) eq( )
. 1 1 .
s CP.K (T)MX(T) - MX('I‘)@6 (T) o iy
' 1 1 8 vy
] -[¢u(T)Mq(TJ - Mq(T)@aﬁT)] (4.60)
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or
e (kT+T) = U(T) A (T)e (kT) + U(TIOL(T) 05 (KT) 1wy
(4.61)
where
-1 -7 =1
I - -l (e, (1) -11-1)R
u(T) = 1 -
FitE e (1y-11-1)6C 1
T M
(4.62)
[ SRR | a~t
. 5 (T) A T{o (1) -~ [o) (T)~11}BH
AT = —
L_F-l{@u (T)_-'il—[nbu(T)-I]}GC ¢y (T)
(4.63)
oy (T)MI(T) - Mi(Tyog (D) |

1 1
K —[@u(?)Mq(T} - M5 (T) 6 (T) )
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Equation (4.61) fepresénts a vector~-matrix
_difference equation giving the discretization error
at sampling times for the first-order discrete-data
system.

To examine the behavior of Eg. {4.61), take the |
error matrix Ql(T}. Its components Mi(T) and Mé(T)

. have elements

1 _ Tij
Meij (T = ‘XTrg%“

1

' A;T 85T A;T 84T
{1 - (Xi-65) [(1-e 15y (1-e I ) +2yTe T - I7)1 3
A2r(eriT-e®5T)

(4.65)

and

S
g Hy j

(i-64) [(1-e¥1T) (1-e83T) tpjr(eMiT-e%3T) ]

{1 -

(4.66)
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Therefore the error matrix 81(T) has elements of the

~ form
t.a’;.j(T.) = mg; s (T)" (e"‘:iT-éS.j_T) (4.67)
for
1<ign, l<j<n+m
and
Gij(T).=-méij(T) (eﬂiT-eGjT) o (4.68)
for

n+1l< i<n+m 1< j <n+m

The analysis of the expressions obtained for the

elements of el(T) leads to the same conclusions as
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those obtained for the elements of the error matrix of
the zero-order discrete-data system.

Concerning the stability of Eq. (4.61}, the same
procedﬁre as in Section 4.3‘can be applied. Consider
first the system matrix U(T)A(T). Its eigenvalues
Z%(T) determine the stability of the unférced scheme.

. Then the condition
1 .
| 27(T) | <1

for

is necessary and sufficient for stability [43]. A
root-locus analysis might be done in order to find the
last value of T which will make the system unstable;
As will be éeen in Chapter V, the sampling interval T
will be chosen below that maximum and therefore

stability will be preserved.
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The other term determininq the stability is the
fofcing term. Comparing Eis. (4.61) and f4.21) and
considering the nature of the matrix u(r) el (T) it can
be seeﬁ that the forcing function in both eguations is
thé same. Therefore the same discussion as in Section
4.3 can be applied in this case and will yield in a
stable scheme.

. The behavior of Eq. (4.61) when T approaches zéro
will be studied next. It can be seen from Egs. {4.62)

-.and (4.63) that

1im U(T)AY(T) = I

T - @
. and from the property of the el(T) matrix that

1limg +(T) = 0

T > 0

' The meaning of this behavior, as in Section 4.3, is

that when no sampling is made the system does not
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introduce discretization error, or that according to
Chapter II, the discrete-data system behaves as a
continuous one.

The solution of Eq. (4.61) may be found directly

by recursion [43]. It is fork > 1
k-1 k-n-1 1
ekt) = £ [o(malm1 %P Vymel () eg(aTivg
. =0

(4.69)

In order to understand better Eq. (4.69) the

originai factors have to be substituted. Then
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-1 -1

I ' - *1{%[¢A(T)-11—I}BH
k-1 ' . & r -
e(kT) =r {
ST h=o Pl _
F {——,ff—[@u(T) -I]-I3jGC | I
] : . | a-l - ~
23 (T) ALy (M) <S5 1ey (T ~T]-1BR | (k-n-1)
_ -1 _F_l _ _ : .
i F™ {9, (T) TWN(T’ I]-I}6C N ‘?u(T)
i . L -1 -1
I fﬁ_l{%—'[@l(T)-I]—I}BH |
rl E——i[qa'(T)-J:]—n: Ge L T
T : | .
. 1 1
¢, (T) M (T) - M (TJ@G(T} -
o K 4 S| egmTywy (4.70)
1 1 -
b—[tbu(T)Mq(T) - Mg (T) 95 (T) ]

Considering now that a first-order hold device has
been used for moedelling the discrete-data system, and recall-
ing that this is equivalent to a second order numerical

approximation of the continuous system [48], therefore
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it is reasonable to evaluate for small sampling interval

the fundamental matrix by

| L m2 '
/(T = I+ (A/F)T + (A/F) 2 -Z—'— . (4.71)

and examine Eq. (4.70) under this assumption.

- Consider first

. -1 -1
1. A
I -a"H S0y (T) -1} -1} BH
u(T) =
-1 F-l : ’ '
F {'_T_[_(D}\(T)-I]"I} GC I
-1 a2~ 2 7 1
I -A l{é-T—[AWAzL] -1} BH
.. 2
-1
4, F 2
i —(rr+r?I ST} aC I
T p) i
o -BH -1 _
. T Sy
= {r+3 } (4.72)

GC o]
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" But for small T, the resulting matrix can be considered
as an infinitesimal transformation matrix and be

approximated by [46]'

o 2
o ~-BH o -BH
2
; T T
U(T) = I -~ < + IZ
(T) 3 1
GC o l6C o
-(4.73)
Then
- 27 ——
I-E—BHGC %"BH
U(T) = , (4.74)
‘ 2
—-%GC I-%—-—GCBH

The same approximation can be applied to Al(T).
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-1 - -1 '
2 (T) A7h{ay (1) -B (0 (T) 1]} BH
Al(T) =
-r 1o (T)-F-1[® (Ty-1]}GC . (T)
u T p ‘ Hn
prem. 2 2 ) -
I + AT + a2Z- Tan + Toann
“2 2 4
2 Com2
-Iee-Topec I + FT + F2L-
| 2 4 2

‘(4.75)

In order to obtain the approximation for Eq. (4.69),

Egs. (4.74) and (4.75) must be multiplied, yielding

i 2 72 T2’
I+AT+ (A -BHGC)E- BHT+(ABH+BHF)E—
oAl =
72
2

2
L—GCT—(FGC+GCA)§— T+F T+ (F2~GCBH)

A BH
o I+ T
~GC P
: A2_BHGC ABH+BHF
2
T .
e (4-76)
~FGC-GCA F

~GCBH



Cémparing Eq. (4.76) with (3.6.b) it can be seen that
the obtained equation is essentially the fundamental
matrix of the closed-loop continuous system for small

T. Recalling thelsimilarity transformation of Eq. (3.11)

the system matrix of Eq. (4.61) can be approximated by
umal(m = g, (M = Peg(mel | (4.77)

" Therefore, the state discretization error for the

first-order discrete-data system can be expressed as

k-1
e(kT) = 3 o5l(k-n-1yTIP tu(mel(m egnmw,
n=o '

(4.78)

Of primary interest is the error in the plant,
because it is the controlled process; thus according

to Eq. f?.lS)i’Eq. (4.78) becomes

k-1
_e(kT) = P I ogl(k-n-1)TIP"tu(mol(T)eg(nT)v,
n=o

(4.79)

114
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where P, are the first n rows of P.

The séébiiity'of Eq. (4.79) as it was seen in this
section depends on the eigenvalues of U(T)Al(T).
According to Eq. (4.77) for.small T, they are given
by eajT. Due to the stability of the closed-loop
system, it is |e%3T| < 1, therefore the scheme is stable.

Consider now the error matrix 6L (T) of Eg. (4.64),
and study its behavior for small T. Take first tﬂe
error ccoefficient matrices Mi(Tf and Mé(T) given by
Egs. (4.56) and (4.57) with elements given by Egs.

(4.65) and (4.66), and @aalyze them by expanding in

Taylor's series their elements about the point T = o.

Then, it is obtained that

rij

1 -
(T) = 55—~

mo.
x1j

2 4
2 T 2,2 2, T
o[ ~6% 20— 4+ 85(8%5—-dN 04+ AE)—— + . .
[ J 12 J( J 1i7] l)7.20 !
_ rij '
= ——%— * pi..(T) (4.80)
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and

. s..

ml._(T) = 13
qij Bi=64

4
= 22q2 242 _ 4%, 2, T~ -
o[ GjT + Gj(ch - o4 dy ”1)720 +ooe . ]

S--

pi—aj gi]

From these expressions it can be seen that
i), The magnitude of the discretization error

depends on these elements and 1s zero for no sampling

due to

(T) = 0

. 1
1im mx/qij

T + o

ii) The elements have a leading term in the second
. power of T, this means that the model of the discrete
system is equivalent to a second order method of

numerical integration [48].
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iii) The eigenvalues of the closed-loop system
appear in the first term of the expansion.

iv) The relative discretization coefficient, under
the same'assumptions as in Section 4.3, is

1 2
y (T) = |5|2 %3 (4.82)

‘where |8] is given by Eq. (4.46).

Consider now the elements of the matrix()l(T)
‘given by Egs. (4.67) and (4.68). The Taylor's expansion

.about T = o is

72'1'3

1 = = I
- (82 - arisy o+ A?) T2, ] (4.83)
3 173 1 60 vt ’
and
ol. (1) = s.4 62 T3 (1 - (8x + ps) T
1] "3 12 J i’ 2

gij

e L 2 .
B G I T F T S S (4.84)
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These eguations déscriﬁe the behavior of the
discretization error. They can be compared with fhe
équivalent results for the zero-order discrete system
and it can be observed that they have the same format
with a difference in the power of T in the leading term
of the series. The reason for this behavior is that
they are equivalent to two different methods of
numerical integraﬁion, one first order and the other
second. These results will be used in the next chapter
for determination of a criterion for choosing an

acceptable sampling rate.
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CHAPTER V

DETERMINATION OF. SAMPLING RATES

5.1. Introduction

The determination of an acceptable sampling rate
is related to a proper definition of é relative error.
In Chapter IV, an absolute measure of the error
introduced by.diséretiziﬂg a system was obtained but
its value is not weighted with_respect to the performance
of the system. A relative error criterion is appropriate
for comparing the behavior of the system with respect to
a parameter characterizing it, but the detefmination of
tﬁe proper parameter is very_difficglt and it is subject
to interpretation.

In this chapter two relative error criteria will
be pfesented. One relates a measure of the discretization
error to the initial state of the system. The second
is obtained by extending the relative error criterion

presented in [11].



5.2. Relative Local State Discretization Error

" In numerical analysis é basic measure of the
accuracy of a method is the order of magnitude of the
error introduced in each step éf calculation [48]. 1In
order to apply this éoncept to the present research,
suppose that the exact solution of the state equation
of a system at sampling-instants (kT-T) and kT is.
given by'x(kT—T) and x(kT) respectively and that the
states of the discrete system are given by xq (kT-T)
and x4(kT). Assume that at the sampling instant kT-T,
the states of the two systems are the same; since the
states at the next sampling instant will generally not
be equal the following definition is appropriate.

Definition 5.1. The local state discretization

error is defined as
LDE(kKT) = | x(kT) - xg(kT)}

if the states at the previous sampling instants are

equal, i.e.

% (KT-T) = xg(kT-T)

120
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where |v]] stands for the norm of the vector.
For the purpose of this research, the definition
of the norm is very important. The norm of a vector

may be.defined as in [42]

(1) M{v)

= max  |vi|
1<i<n
' : n
' i=1
n .
(iii) B(v) = |2 |vyi]?
- i=1

with the cofresponding norms for matriéesrgiven by:

, n
(i) M(A) = max .Z% las s |
j=1
1<i<n
n
(ii) S(A} = max L la. .
. lass B
1<j<n

H

{iii) E (A) JMaximum eigenvalue of A*A
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From‘fha three definitions above given, the norm (i)
will be used. It simplifies the mathematical formu-
1ation and is not as conservative as the other two.

THe definition of local state discretization error
cah be modified by assigning a proper weiqhting factor
to each component of state discretization error. 1In
this mahner thé effect of some states errors could be
1magnified and/or penalized during a desired time
interval.
| Another error definition will be introduéed-next.
It will give a relative measure of the totalldiscretiza—
tion error introduced along the.trajectory of the system.

Definition 5.2. The accumulated local state

discretization error is defined as

ALDE = LDE (kT}

P
z
k=0 .
This definition gives an idea of the‘systém
behavior. It is more restricﬁive than the local
discretization error because it looks at the system
during its evolution from the initial state until it
reaches the final state. It gives a measure of the norm
of the error matrix as will be seen in Sections 5.2.1 and

5.2.2.,



The relative local state discreﬁization error will

~ be defined next. It is classical in control systems

to felate the systeﬁ behavior to the input control signal
and‘not to the output. For the regulator problem thi$
concept can be extended to a measure of the in;tial
input, because as the states are evolving the input
approaches zero., Consider the system under analysis.

The plant error is of interest and its initial input is

obtained from Eg. (3.5) as
uplt,) = HPpuy _ (5.1)

thus the following definition is appropriate.

Definition 5.3. The relative accumulated local

state discretization error is defined as

ALDE
| HPpwol

123

This definition gives a measure of how the discretiza-

tion error is affected by the initial value of the input
to the plant. It will be applied next to the zero and

first—order discrete~data systems.
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- 5.2.1., Zero-Order DiScrete;Data Systen

Consider Definition 5.1 and Eq. (4.21). The local
state discretization‘error for the zero—order discrete

data system is
LDE®(kT) = @ JAT) 2 (kT-T)wy | (5.2)

‘where €°(T) is the error matrix given by Eq. (4.24).
The application of the Schwarz inequalify to Eq.

(5.2) yields
EC (k1) < Jolm | . fesexm . W oWl

(5.3)

Consider now the norn of each factor of Eq. (5.3).
Take first the norm of the error matrix. Using the
selected definition of norm and the elements ofg ©(T)

given by Eq. (4.49), it is
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-'HeotTiﬂ = max - I  |rgs 8s 5= [1 + (85 + Ay) T
212
- (6j_+ Ai)_lz + .. .1
(5.4)

By using the Schwarz inequality and approximating the
series by‘the first two terms as justified in Chapter

'iV, EqQ {(5.4) can be reduced to
U co Tz T D
“GX(T) I < P [s] (1 + ?‘(]61 + a1

. n .
+ max L Jr-.] (5.5)
j .

where }&8| and |A] are the maximum eigenvalue magnitudes
given by Egq. (4.46) and (4.47). Consider the matrix R
given by Eq. (3.25) and the proper definition of norm.

Eq. (5.5) can then be expressed as

. 2 ’
Jogem | < 3= ol 11+ Fdsl+haby Joueg |

(5.6)
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- Consider now the norm of Qa(kT—T). The use of the

proper definition of norm of a matrix yields

J o5txr-m | o d(kT-T) - (5.7)
where
4 = -min [.Ré(ﬁj)] ' (5.8)
1<j<nim : :

Therefore congidering Egs. (5.6)‘and (5.8) the

local state discretization error is

2 ' '
LDE® (kT) < %— ls] 11 + %([6]+|?~|)l Iore_|| | wyl e”@KT-T)

(5.9)
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Consider now the accumulated local state discretiza-
tion error. The application of Definition 5.2 to Eq.

(5.9) yields

2
atpE® < - |6 11+ (lsl + Inhy

clere | - | w | & ed®kr-T)
1 i=1

- ' - (5.10)

The infinite sum in the right side of inequality (5.10)

can be evaluated as,

gy o dkT-T) _ 1 ! (1—d§) (5.11)
k=1 1-¢~dT daT

for dg << 1. This a?proximation is proper as will be
seen for the values of T to be chosen. Substituting
Eg. (5.11) into (5.10}) the accumulated local state

discretization error for the zero-order discrete

system is
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ALDE°_<_'-§—J£L 1+ I (s + 2] - 2 an

Leeeg e Ty ] (5.12)
Finally, consider the relative accumulated local

state discretization error given by Definition 5.3

and apply it to Eg. (5.12). It is

o T |3 T _3 ' -
elf_EJ—dl{l+3 (sl + [a] S N (5.13)
where
N = BrEp v (5.13a)
| BPpw o ”

The parameter N depends on the topology of the system and
is available to the designer from its eguations.

The relative error expression obtained above will
be used next to determine samp;ing rates, but first a
similar expression for the first-order discrete éystem

will be obtained.
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5.2.2. First~Order Discreté-Data System

Consider the Definition 5.1 and Eq. (4.61). The
local state discrgtization error for the first-order

discrete-data system is

pEl . 1 - , |
LDE (kT) = | U(T)ex(T)§6(kT T)Wlﬂ _ (5.14)

e

The applicatiaon of the Sch&arz inequality yields

Loet (x1) < Juim | - “9}1{(T) I

: “és(kT-T) U (5.15)

Consider ncw'the norm of each factor. Take
first U(T). According to Eq. (4.73)}, the norm of

U({T) is

Jom | =1+ 3m + 3 m - (5.16)



- where
| | o -mm -
m = M { 1} (5.17)
GC o
2
' 0o  -BH _
m, = M { 1} . © (5.18)
GC o _ , ‘
~are functions known to the designer.
Consider next the norm of the error matrix
ei{T) with elements given by Eg. (4.83).
ntm - 3
ﬂel(T)"' = max z r-:‘ﬁg Em'[l + (8. + AL) L
X 1<i<n jtl| 3312 ;2
m2
2 2, T
- (85 = 4X.8. + AY) — + . . .
( B i%y _1) 0 11

(5.19}
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By using the Schwarz inequality and approximating the
series by the first two terms as justified in Chapter

IV, Eq. (5.19) is reduced to

3
51 e IT 62 T L
lezem | <35 817 11+ 3 lelelih) | supy, |

(5.20)

where HBHPmII is obtained from Eg. (3.25).
The norm of QG(kT~T) has been obtained in Eq. (5.7}.
- Therefore considering Eds. (5.16), {(5.20) and (5.7), the

local state discretization error is

1 73 2 T
LDE™ (KT) < 15 [s1% 11 + Z (16Jk|k|+ml)] | eup |

o, § = (KT-T) - (5.21)

Consider now the accumulated local state discretiza-
tion error. The application of bPefinition 5.2 to Eg.

{5.21) yields
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' 1 T3 2 T 1
ALDE" < = ls1? 1+ 3 (lel+al4mpy1 B |

. "wl'" T e-d(k?_T) . . (5.22)
k=1 :

With the same considerations as in Section 5.2.1, the
sum of the right member of Eg. (5.22) can be
evaluated. Thus, the accumulated local state discretiza—

‘tion error for the first-order discrete system is

2

D i T
ALDE™ < 1o d=t [l + 3 (16I+]A|+ml—d)]
] "BHPm" RN (5.23)

Finally, consider the relative accumulated local
state discretization error given by Definition 5.3
and apply it to Eg. (5.23}.

l ¢ T2

2
g T -
el < 13 LEL [1 + > (|6[+|A|+ml d)] N (5.24)
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where N is given by Eq (5.13a).
4 Equatlons {(5.12) and (5.24) will be used in Section

5.4 for determining an appropriate sampling rate.

5.3. Normalized Sum of Scuared Output Discretization

Error

Another manner of defining a relative measure of
the effect of the discretization error in the evolution
of the plant can be obtained by using the procedure 
of the previous research [11]. Kang defines an error
criterion called normalized sum of squared output

discretization error defined as

=0 : (5.25)

where y(kT) and yd(kT) are the output of the continuous

and discrete systems respectively.



134

For absolutely stéble c¢losed-loop control systems,
the infinite sums in the numerator and denomihator can
be evaluated by means of the complex convolution
theorem and the Cauchy residue theorem [57}. However, as
it.was shown in {111, it is of interest to aﬁﬁroximate
the value of €9 for relatively small valueé of the
sampling interval. Therefore the same procedure as
used in [11) will be followed here.

Consider first the output of the continuous sysﬁem.

According to Eq. (3.1) and (2.16}) it can be expressed

as
y(KT) = CP oo (KT)W . (5.26)
then
ce oo 1 n+m
Poyrkmykm) =3 |&oa,. 83Ky g2 (5.27)
k=0 . k=o i=1 j=1 *J

where * stands for transpose-conjugate and dij are the

elements of the CPn matrix.
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The output discretization error according to

Definition 4.2 1is
ey(kT) = .C ex(kT) (5.28}

where ex(kT) is given by Egs. (4.37) and (4.78). °Thus,

o1 | | |
e (kT) = cpnizo%[(k—n—l)T]P‘le(T)%(nT)Wl (5.29)

and

® o 1l ]n+m n+n k-1 1
r e*(kT)e (KT) = % E K r 4. T &,[(k-n-1)T]P"
k=0 b Y k=0 i=1 j::l p:l ip n=o 6

o(T) 84 (nm)", |2 (5.30)

Equations (5.27) and (5.30) are similar to the

expressions obtained in [11], and therefore for small
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values of the sampling interval, the normalized sum of
squared output discretization error can be approximated
by the relative discretization error coefficient

defined by Eqgs. (4.44) and {4.82). That is

€, = Y (T) (5.31)

where i is zero and one for the zero and first-order
discrete system respectively.

The normalized sum of squared output discretiz%—
tion error can be modified by assigning a proper weight
to each component of tﬁe output discretization error as
suggested in Section 5.2.

Considering the two obtained relative measurements
of the discretization error given by Eags. (5.12), (5.24)
and (5.31), the determination of sampling intervals can

be obtained, as it will be seen next.



137

5.4. Determination of Sampling Rates. Error

Criterion I.

Consider the expressions for the relative accumu-
lated local state discretization error given by Egs.

-{5.12) and (5.24). Take first the zero-order discrete-

data system. The relative error is

Y]
=0
I
to|3

Bl « 2 spein] - 2 a1 x
d -3 . 2

The sampling interval T can be selected by making the
relative accumulated local state discretization error

less than an allowed error £. Then

J%J—[l+§(]6|+]l[-——g—d)]}{f_e - (5.32)

ro el

A quadratic equation in T has been obtained. The

solution is
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(5.33})

This expression gives an upper bound for T for an
accepted'error €. The radical with the minus sign is
not considered because it gives a negative T.

In most of the cases an approximation to Eq. (5.33)

can be ﬁade. If

%d(1+_J_U_-

Nio]

d
£ << 1
Nm) |

b W

the approximation

1+ a = 1 + % a, for a << 1

can be used, and Eg. (5.33) becomes
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= |8| N ' (5.34)

An upper bound for T has thus been obtained. As
can be seen it is a function of the eigenvalues, the.
topology of the system and an allowed performance error.

Consider now the first-order discrete-data system.

The relative accumulated local state discretization

errox is

N
O
3]

L= L+

b {1

([8]+]r]+m-d) IN

I
“Qa

The sampling interval can be selected as before by

making the relative error less than an allowed error

e. Then
T 1812 T ;
o L3 ([s]+]x[+m~)IN < ¢ (5.35)
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This expression is a cubic equation in T with a
negative constant term, implying the existence of a
real solution for positive T. The solution can be
obtained by any computer algﬁrithm or argfaphicai
method. The sampling interval.T 5btained is an upper
bound for an accepted error € and is a function of the

eigenvalues of the system.

5.5. Determination of Sampling Rates. Error

Criterion II.

Consider now the expressions of the normalized
sum of squared output discretization error given by.
Eq. (5.31) and the relative discretization error co-
efficient defined by Egs. (4.44) and (4.82). Take

first the zero-order discrete-data system. The relative

measure of the error is

i\ - ' ' |
eg = 8] 5 1+ ﬂé_ (j8] + |A])] (5.36)

The sampling interval can be selected by making this
error less than an allowed overall performance error e,

that is
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T T
15 ] > 11+ 2 (ls] + |aD1 < ¢

A guadratic equation in T has been obtained. The

solution is

RN
(L + IGI) E

[6] (1 + hly (5.37)

—3+3Vl +
T <

Wi

This expression gives an upper bound for T for an
accepted error €.
In most of the cases an approximation to Eq.

(5.37) can be made. Consider the case

L sy e <« 1
> °1
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The approximation used in Section 5.4 can be used and

the sampling interval is approximated by

(5.38)

An upper bound for T has thus been obtained. - As
_seen, it depends on the eigenvalues of the closed-
loop system and the overall performance error.

Consider now the first-order discrete-data

- system. The normalized sum of squared output
discretization error is according to Egs. (5.31)

and (4.82)

T2

12 (5.39)

1 _ 2
€y 7 |S |

The sampliné interval can be determined by making this
error less than an allowed overall performance erxor

£. Then
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2
2 IZ
8]1< 73 < ¢ (5.40)

or

T o< == ‘ | (5.41)

An upper bound for T has thus been obtained. As
before, it is related to the ecigenvalues of the closed-
loop system and the overall performance error.

Two very simple formulas have been obtained for
determining sampling rates. They show that the
sampling interval depends primarily on the eigenvalues
of the closed-loop system and they give an explicit
relation between the error, the sampling interval and
the parameters of the system. Their application to
practical cases solve the problem of detefmining a
sampling interval for systems which do not have band-
limited characteristics. Therefore, the engineering
criterion for limiting the bandwidth of an actual
system, for applying the Hyguist-Shannon sampling

theorem, is not reguired.
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5.6. Examples

Consider now the expressions derived for the
sampling interval T, and apply them to some éxamples.

Example 5.1: A fifth order closed-loop control

systeﬁlhas been chosen for this purpose and it is
shown in Fig. 5.1.

The system is characterized by:

(i) Plant

%(t) = Ax(t) + B u_, (t)

P
yp(t) = C x (t)
where

(o] 1 (o)

A = O o 1

-25 ~15 -7

1

B = 4 : c = [1 o) o ]



CONTROLLER

PLANT

(s+1)(s+10)

c(t)

Y

* s5+2 :
:: §%+3.55+1.5

(s2+2545)(5+5)

FIGURE 5.1 A FIFTH-ORDER CLOSED-LOOP CONTROL SYSTEM (Exampie 5.1)

SP1-
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3
X =\ 2
o
1
Eigenvalues
ll = -5
Aayz = -1t 32

(ii) Controller
q(t) = F g(t) + G ug(t)
yc(t) = H g(t)

where



1
B = ;
...1.5
1
s = 5
Eigenvalues
L= -3
Uy = ~0.5

(11ii) Closed-loop system

n

Z(t) @ z(t)

x(t)
z{t) =
al(t)

147
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o 1 o] 1 la]
o o} 1 4 e}
a = =25 -15 -7 -33 ‘o)
-1 o o o 1l
(1.5 o 0 -1.5 =3.5
3
2
25 = 1
1
[ 2]
Eigenvalues
§ = -5.273717
62/3 = =0.936565 + J2.365428
64 = =2.737927

§g = =-0.615265



149

(iv) Selection of the sampling rate.
Since the output is to be observed, error criterion
IT is selected. The maximum eigenvalues magnitudes

needed are

18|

i

5.273717
Al = 5
and let the acceptable error be five percent, that is
g = 0.05
a) Zero—O;der Discrete-Data System

For the given data the approximate expression for

T can be used, then by Eg. (5.49),

2g 0.1
P < ——— = . ~  0.019
N 5.2737L7

Take
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b} First-Order Discrete-Data System

The sampling interval is according to Egq. (5.51)

ro<  M2e V0.6 ~ 0.143
- 5] 5.273717
Take

(v) Simulation ]

The evolugion of the states was calculated from
Egs. (3.44) and (3.45) for the zgro—order discrete
system and Egs. (3.70) and (3.71l) for the first-order
discrete system. Both evolutions are.compared against
the exact solution.

The exact and approximate value of the normalized‘
sum of squared output discretization errorslare
obtained by simulation over a time span of t=o to
t=tf such that yp(tf)<10_7o. The results are shown in

Figures 5.4 and 5.5.
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{vi} Results

As can be seen in Figures 5.2 and 5.3, a very

close approximation to the exact solution has been -

obtained. A very crude measurement might be obtained
by considering the relative error of the maximum output
discretization error with respect to the output at
that instant of time,- The relative errors are 3.05%
and 1.25% for the zero and first-order discrete data
systems respectively.

The normalized sum of squared output discretiza-

tion error, is within acceptable value, it resulted in

for the first-order discrete data system.  The results

can be considered acceptable for practical applications.
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Example 5.2: A follow-up (position) control system is
showﬁ in Figure 5,6. A correcting controller was introduced
in the forward path to improve the dynamic response of the
control system., The object of the-designer is to digitalize
the analog controller by using the models presented in this
research,

The closed-loop control system is charactefiied by:

(i) Plant
Dynamics

r“(- —0 1"r (— PoH

xy t) | ] Xy t) |

o - ' + urp(t)

_xzit)_ 0 -1 | vxz(t)#l | 10 |
xi(t)ﬂ

t = 1 0

YP( ) [ 1

Xz(t’d

Initial Conditions

xl(O)— 5

xé(O) 3

e - X 4




- CONTROLLER

PLANT

0.4s+1
0.1s+1

10

. s(s+l)

clt)

FIGURE 5.6 POSITION SERVO (Example 5.2)

LST



Eigenvalues

A,

Ay =L

(ii) Controller

Dynamics

. _
Q(t) = =10 g(t} - 30 uc(t)
y () = q(t) + 4 u (t)
- _ _ e
Initial Condition
q(o) = -1
Eigenvalue
u = =-10

(iii) Closed-Loop System

(k) = & z(t)
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Initial Conditions

5
z(0} = 3
-1
Eigenvalues
6, =73 |
6i = -3 +j Vi1
53 = -3 - 3 V11

(iv) Selection of the Sampling Rate.

Since the output is to be observed, select error

criterion II. The maximum eigenvalue magnitudes are

1§
w

8]
fal =1
and let the acgeptable error be five per cent as before,
that is | | |
£ f 0.05»
Fgf the zero—qraer discrete data systeﬁ,

T < 0.02



160

and for the first-order discrete data system,

T < 0,155,

(v) Simulation

The evolution of the statés was obtalned by numerical
simulation. The outputs aré plotted in Figure 5;7 for the
iero—érder systeﬁ and Figqfe 5.8 for the first-order discrete-
data system. The normalized sum of sqguared output discreti-
zation error is for.the zero-order system, |

o

£ = 4,795%
2
and
1
62 = 4.,93%

for the first-order discrete-data system.
Again here, the application of the obtained formulas
for selecting the sampling interval T, leads to an acceptable

result, .
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5.7. Limitations in the Choice of T

Some further comments must be made concerning
the choice of the sampliné intexrval.

First_the'definition of error must be recalled.
it must be rémembered that in this research only the
case of discretization error was considered, leaving
the guantization erroﬁ and the round-off error for
further research. Cbnsideriﬁg.only the discretization -
error, one may arrive at a conclusion (not always true
in practical applicationsf that the smaller the sampling
interval T, the better a discrete-time model results.
But, . taking the other errors, the round-off error has
a conﬁrary effect on the choice of T. It increases
the total exrror as T decreases. Fortunately, inr
practical discrete-data control-systems the situation
of having important weight from the round-cff error is
rarely present.

A second observation to be made concerns the loss
of controllgbility 6f the system.due to a particular
selection of ﬁhe sampling interval [58]. It is é
well known fact that someﬁimes sampling can destroy
controllability. The problém is analyzed iﬁ the above:

referred paper and a theorem stated. They proved that
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a time invariant discrete data system (dexrived from
a controllable continuous‘system} is completely

controllable if

: ‘ 2m
Im {84 (A) —-.6j(A)} 7o P

whenever
| | Rels; () ‘=“R_e{‘aé_(m}
‘and )
n = + 1, i‘z, . e
§(n) = Eigenvalues of A

and if the control is scalar, then the condition is
necessdry as well. Then an extra constraint in the
selection of T must be considered. According to the
expressions for T obtained in this chapter, and because
the presénce of ¢ in them, the situation of loss of
controllability is very unlikely. Nevertheless, this
case must be checked. Physically, tﬁis faqt means

that the periodicity inherent in sampling is not
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allowed to interact with the natural frequencies of
the system to be controlled.

A third consideration is the case of discretiza-
tion error in uncontrollable and unobservable systems.
Consider the model introduced in Chapter I11 for
describing the system under consideration. Since the
A and F matrlces were assumed to be‘diagonal then the
loss of controllability and observablllty is related to
zero elements in the matrices B and G, and C and H
respectively. This fact affects the discretization
error hy cau51ng the R and S matllces to have a Zero
element. Therefore there will be no contribution to
the discretization error from the uncontrollable mode.

The same effect can be observed on the outﬁut due
to an unobservable mode.

_Finally consider the case of forced systemé. The
 analysis of the expressions cbtained in this research for
determining saﬁpling rates shows that tha sampling interval
:‘dgpends Qn the fagtest natural mode present in the closed-
loop system. A SLmllar conclusion was reported in [ll]
where the system was'open—loop'and the forcing function was
modelled as the output of é,éompanion system which has  an
impulse response jdentical to the forcing signal. The

sampling interval was determined by the fastest natural -
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mﬁde of the cocmpanion system. In view of these similar
results and the fact_thag the closed-loop control system
from an input/output point of view can be regarded as a
block which can be either closed or open-loop, the follow-
ing approach can be suggested; The sampling intefval of
the forced closed-loop system can be determined by thé
fastest natural frequency‘bf the augmented system, that is
the original céntrol_system and the companion system.
This generalizationxof the results reported herein and in
[li] should be'investigatgd further to show the validity
of this assumption. This engineering appfoach to the

problem is sustained by an example.

Example 5.3: Consider the position servo presented

in Example 5.2. Assume that two different forbing
functions are applied at the input. One a "slow" step
function and the other a "fast" damped sinuscidal func-

tion.
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For the impulse signal

rl(t) = 1 L 20

For the dampedusinusoidal signal.

rz{t) = 6e Meos PBo e , 20
the maximun eigenvalue magnitude is

| ]52[ = 7.416

The closed-loop system has

consider the system relaxed. The application of the
above reasoning for the determination of T for an acceptable

error of five pexr cent yields
(a) Zero-order discrete-data system

T = 0.02
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for the step input, and
T = 0.0135
for the damped sinusoidal.
{b) First-order discrete-data syétem |
T = 0,155
for the step input, and
T = 0.1045
for the damped sinusoidal.

The evolution of the states was obtained by numerical
simulation. The outputs are plotted in Figures 5.9 and
5,10, for the zero-order discrete system and Figures 5,11 -
and 5.12 for the first-order discrete system. As can be
seen, a‘good'approximation to the exact solution has been

obtained. The normalized sum of squared output discretiza-

tion error for each case is within acceptable limits.
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CHAPTER VI

CONCLUSIONS

A closed-loop discrete~data control system is a
dynamic process where the control signal is the result
of a numerical algorithm performed by a digital
computer at given instants of time called sampling
instants. This invéstigation was concerned with the
determination of sampling rates for linear, time-
invariant, closed-loop discrete-data control systems.
The research may be regarded as an attempt to(establish
a formula to be appliéd to practical systems for ma@ing
a first choice in the'seleCtion of sampling fates. The
motivation for such an attempt is that the use of the
Nyquist-Shannon sampling theorem for this purpose in
practical applications, may lead to a faster rate than
' that necessary for adequate control under actual
limitationg, |

The basic idea in the research is to compare the
state evolutién of a discrete-data closed~loop control

system with the state evolution of the continuous-data
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veréioﬁ of the system. The model chosen to represent
. the continuous closed-loop control system is é set of
n linear'differéntial gquétions in state-variable form
for the_élant, and-a set of m linear differential
equations in the same form for the controller. The
reference input was assumed Zzero {i.e., the regul&tor'
problem is treated). The model éhosen for the discrete-
data controller .is. the typical ggnfigﬁration of a
sampler, followed by a holdinéraevice, the analog mbdel'
of the controller, énother sampler (real or fictitious)
and another holding devicef The closed-loop discrete-
data system was also modelled using. the state variable
appreoach. The study was made for the two most commonly
used holding devices--the zero-order hold and the
fixst—order polygonal hold: The comparison between the
evolution of the states was done at sampling instants.

A partlcularly important step in the achlevement
of this research is the observation that the closed—loop
control system should be characterized and not solved.
The solution of the differential equation describing the
system is assumgd known. The characterizaticn is made

py the eigenvalues of the plant, controller and closed-

loop system; therefore the system matrices can be



considered diagonal and simple. This fact permits the
integration of the statenequati§QS-§nd leads to the
state characterization at sampliﬁg instants as a
Ffuniction of the sampling interval, eigenvalues,
matrices and initial conditions of the system.

Of considerable importance to the results obtained
here is the determination of a_felative error criterion
for the evaluationlgf the discrete-data control system
performance with respect to the continuous-data
equivalent system. This determination comes from a
Aﬁérefﬁi-éﬁalysis'of the different errors present in

~the system and interpretations of the meaning of a
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relative error definition. The relative error criterion

leads to the objective of this research, the determination

" of the sampling interval as a function of the maximum
allowed error and the eigenvalues of the system, for
the two holding devices considered.

Thus, a formula has been obtained for determining
the sampling interval or rate for closed-loop discréte—
data systemé, for two different realizations. It shows
that the sampling interval depends primarily on the

eigenvalues of the closed~loop continuous-data contxol

system for an allowed performance error. Tts application



sblves the practical problem of making a first choice
iﬁ the selection of sampling rates. Further research
may be directed toward ;he extensipon of this work to
the determination of sampling rates for open-loop
and closed-loop non-linear systems, systems with
random input and related topics for simuiation of

continupous~data systeuns. -
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