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ABSTRACT

Discrete-data control involves the sampling of one or

more signals in a control system, at a given rate called the

sampling rate. Usually the Nyquist-Shannon sampling

theorem has been employed to determine the sampling rate.

This procedure is proper in dealing with band-limited sig-

nals, but it does not allow errors in the performance of the

discrete system. Its application to practical cases, which

generally do not involve band-limited signals, may demand a

faster rate than that necessary for adequate control under

practical limitations.

The research reported herein is concerned with the de-

termination of an error criterion which will give a sampling

rate for adequate. performance of linear, time-invariant,

closed-loop discrete-data control systems.

The first part of the research deals with the proper

modelling of the closed-loop control system for characteriza-

tion of the error behavior and the determination of an abso-

lute error definition for performance of the two commonly

used holding devices -- the zero-order hold and the first-

order polygonal hold.

In the second part, the definition of an adequate rela-

tive error criterion as a function of the sampling rate

ii



and the parameters characterizing the system is made, and

the determination of sampling rates follows.

The validity of the expressions for the sampling inter-

val has been confirmed by computer simulations. Their appli-

cation solves the problem of making a first choice in the

selection of sampling rates.
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CHAPTER I

INTRODUCTION

1.1. Motivation

In recent years the application of high speed digital

computers in the area of control systems has been signif-

icantly increased. These applications have included system

simulation, signal processing, and use of the computer as a

component of the overall control system. For example, some

of the many applications are the navigation and guidance

systems for aerospace vehicles, some control components in

chemical processes and economic models, and the implementa-

tion of controllers for general systems [1-10].*

The use of the digital computer in this field, as the

controlling element requires a change in the basic concept

of control theory. The system has to be controlled at dis-

crete instants of time, because of the nature of the digital

computer itself, and not continuously as with analog con-

trollers. The control signal then, isthe result of a nu-

merical algorithm, on the observed variables of the plant or

*The numbers in brackets indicate references, given on
pp. 177-181.
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process, and it follows a fixed law of variation between com-

putation instants. The observations, or samples, of the be-

havior of the system are made at a given rate called the

sampling rate.

One of the advantages of the use of the digital computer

is the possibility of time sharing for controlling many sys-

tems, as is being done in process control, where the con-

trolled variables are subject to large time lags and where

the variables of the system do not change rapidly with

time [8].

It has been observed that digital computer control, or

discrete-data control, does not affect the performance of the

control system when the sampling rate is much faster than the

rate of change of the variables of the system [8].

From the consideration of maximum efficiency in the use

of the digital computer, it becomes clear that it is of in-

terest to the designer of discrete-data control systems, to

lower the sampling rate without affecting noticeably the de-

sired performance of the system, or keeping the change with-

in acceptable limits.

Usually the Nyquist-Shannon sampling theorem [1], is

employed to determine the sampling rate. However, this

theorem is properly restricted to systems dealing with band

limited signals, but it does not allow errors in the per-

formance of the discrete data system. Its application to

many practical cases, which generally do not involve band-



3

limited signals and where a perfect reproduction of the con-

trol signal is not very important from an economic point of

view, demands a faster rate than that necessary for adequate

control under practical limitations.

The general trend in this field is to use the sampling

theorem for a first determination of the sampling rate and

then realize computer simulations to verify the validity of

this choice.

In view of these problems, it is desirable to find

methods for determining economic sampling rates for discrete-

data systems. In doing so, Y. Y. Kang [111 developed a new

method for determining sample rates for open-loop dynamic

systems. This research is a continuation of his work and

applies to closed-loop dynamic systems. An uniform-rate

sampling scheme, slower than that required by the sampling

theorem, and appropriate for closed-loop control systems will

be determined. The objective will be to keep the performance

of the discrete-data control system within acceptable limits

with respect to the performance of the continuous system.

The result should be a more efficient use of the digital com-

puter.

The interest of obtaining an uniform-rate scheme is

based on the convenience of utilizing a sharing system for

controlling more than one process with the same digital com-

puter.
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1.2. historical Review

Digital techniques for the solution of numerical prob-

lems have been applied since the seventeenth century [12]

but their use was quite limited until the appearance of the

digital. computer.

-Prior to 1950, very little attention was given to the

subject of analysis and design of discrete-data systems,

although early text books in servomechanisms dealt with the

problem [13-15].

With the invention and use of digital computers in con-

trol systems, in the early 1950's, numerous researchers be-

gan to study the problem of discrete-data control and the

result was the appearance of many papers and books [1-19].

During this first stage, efforts were made mostly in adapt-

ing and making extensions of the existing continuous-data

methods for use in discrete-data systems. With the use of

the z-transform formulation, the concepts of transfer func-

tion, signal flow graphs, stability methods and plots were

extended and they resulted in a wide application to analysis

and synthesis of discrete-data systems [1-191.

In the decade of the 1960's, the field of discrete-

data control has undergone a change in the design techniques.

The use of the state variable approach has reformulated the

problem of synthesis and analysis bringing new ideas in this

field [1]. The theories of optimal control have been .ap-

plied with remarkable success, leading to the design of
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discrete-data systems optimized in some prescribed sense

[20].

Another field of research has concerned the application

of the digital computer as numerical processor. The analy-

sis of numerical methods and their application has been ex-

tensively studied [4, 5, 12, 23].

In the analysis of errors introduced by sampling and the

use of the digital computer, much progress has been made.

Sampling error, round-off error, truncation error, folding

error, discretization error and quantization error have been

well defined and studied by many researchers [24-32].

The study of sampling rates, which is the purpose of

this research has also been approached from different points

of view.

One group studied the problem using the concept of

adaptive sampling [33-371. They select an initial sampling

rate and then change it continuously according to the

performance of the system.

Another group [39] looked at the problem from the op-

timal control point of view. They determined the asymptotic

behavior of the cost function for an infinite sampling rate

(i.e., the continuous system) and a zero sampling rate.

They could then select a sampling rate by assuming a smooth

variation of the cost function between those two limits. The

application of this method is very difficult for high order

systems.
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Another method for determining sampling rates was de-

veloped by Y. K. Kang [11]. He found an upper bound for

the discretization error as a function of the sampling rate

for open-loop dynamic systems.

Recently a related new field of interest has been the

study of digital filters. Researchers have focused their

interest on analysis and synthesis problems [4, 5].

1.3. Discrete-Data Control Systems

The term discrete-data control systems has been used

to designate systems in which the signal on one or more

parts is in the form of either a pulse train or a numerical

code. The terms, sampled-data systems and digital systems

are often used in control literature as equivalents. How-

ever, sampled-data systems refer to systems in which the sig-

nals have a pulsed form and digital systems refer to systems

in which a digital computer is used for making numerical

computations and control.

The term discrete-data system will be used here to in-

clude all the possible variations of the above.

A discrete-data system as it was defined demands the

existence of pulsed signals. To obtain the data, a sampling

operation must be done. The samples are then manipulated

and used for controlling a desired process.

To design such a system, the basic components of.a

closed-loop control system must be recalled. The plant or
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process to be controlled needs a control signal given by a

controller, which acts according to the state of the plant.

A closed-loop control scheme can be realized using con-

tinuous control produced by an analog controller or using

discrete control generated by sampling and processing in a

digital computer.

For operating a digital controller, the nature of the

signal emerging from the plant must be changed to digital

form by an analog-to-digital converter. The digital signal

is processed by the digital computer, and the result is

converted again to analog form by a digital-to-analog con-

verter, or an equivalent actuator, such as a stepping motor.

Examples of sample-data control systems are shown in the

block diagram of Figures 1.1 and 1.2.

The mathematical modeling of this process involves the

description of samplers, numerical methods involved with the

operation performed by the digital computer, behavior of

the converters and the introduction of holding devices for

smoothing the discrete-data signal between two successive

samples.

The research will deal first with the modelling problem

and then with the determination of an expression for finding

sampling rates.
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1.4. Outline of the Research

The object of this research is to find an economic

adequate sampling rate for discrete-data closed-loop control

systems. The problem is formulated here in terms of sampling

error and expressions are obtained relating.the sampling

interval T to some parameters of the closed-loop dynamic

system.

Chapter II con-cerns the -mdeling of discrete-data

systems. A review of sampling and reconstruction of signals

is made. In the last part, the modelling of a dynamic con-

troller is presented. The model obtained is used later in

the research for modelling the behavior of the discrete-data

system.

In Chapter III, the closed-loop system is analyzed, and

a method for characterizing the behavior of the system is

presented. This procedure constitutes the basis for

achieving the fundamental results of this research. Expres-

sions for the evolution of the state of the continuous and

discrete data systems follow.

Chapter IV deals with the errors present in a discrete-

data system. A review of system error, truncation error,

round-off error, quantization error and discretization error

is made and the importance of each one is analyzed. Finally,

the discretization error is studied and an approximation

to its behavior is obtained for small sampling intervals.



In Chapter V, two error criteria are introduced. The

determination of the sampling rate follows. An example is

included and a discussion of sampling rate selection is pre-

sented.

Chapter VI states the conclusions of this work and

discusses the possibility of further research.

k
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CHAPTER II

MODELLING OF DISCRETE-DATA SYSTEMS

2.1. General Problem

In order to analyze the behavior of discrete-data

systems, the modelling of the different basic operations

taking place in the system must be reviewed.

The general problem of modelling as applied to this

research is to find a mathematical discription of the .discrete-

data controller for its characterization and digital computer

implementation, which will be fast, accurate and stable.

Usually these conditions cannot be achieved simultaneously

in the same design and the designer must compromise in order

to obtain an optimal solution.

Consider now the specific problem of discrete-data con-

trol systems. The concepts presented in Chapter I, concern-

ing the digital controller, have to be further studied in

order to obtain an adequate modelling of the process.

Assume that it is desired to control some process using

a digital computer and that the control laws of the analog

system are known. The analog controller can be represented

by a block diagram as shown-in Figure 2.1. In order to con-

vert this controller into a digital equivalent, the process
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described in Chapter I has to be recalled. The analog input

signal to the controller is converted into a digital form.

This is done by sampling the analog input and converting it

using an analog-to-digital converter. Then the data is pro-

cessed by the digital computer and finally introduced into a

digital-to-analog converter for obtaining the analog output

/signal. These operations are shown in the block diagram of

Figure 2.2.

A mathematical model of this process can be obtained

by inserting a fictitious sampler at the input of the con-

troller, replacing the digital computer by a holding device

followed by the analog controller itself and a fictitious

sampler. Another holding device follows for obtaining the

analog output signal. The model is shown in block diagram

form in Figure 2.3. The fictitious samplers simulate the

discrete control of the digital controller and the holding

devices convert the discrete-data signal to analog for pro-

cessing in the analog controller and plant. This method is

widely used in modelling digital controllers.and it de-

scribes perfectly the actual implementation [1.

Therefore the problem of modelling a discrete-data

system is related to the study of samplers, holding devices

and the formulation of an algorithm for performing the task

described by the equations of the analog controller. In

this chapter the basic operations just described will be re-

viewed.
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2.2. Sampling of Continuous Signals

Digital signals can be obtained by sampling a contin-

uous signal using an electronic or mechanical switching de-

vice called sampler, which operates at a given rate called

sampling rate. It produces a pulse train when a continuous-

signal is applied at the input.

As explained in Chapter I, this research deals with

uniform-rate sampling. The samplers to be considered are

ideal samplers, with the property of having a negligible

operation time with respect to the sampling interval.

Throughout this research, the time between two samples

is called sampling interval, it will be denoted by T. The

instants the samples are made are called sampling times or

instants and they will be denoted by kT, with k integer.

It is well known that the sampler behaves as an harmonic

generator [1]. The ideal sampler reproduces in its output

the spectrum of the continuous input as well as the compli-

mentary components centered at integral multiples of the

sampling frequency. The output spectrum is illustrated in

Figure 2.4.

If the sampling rate is such that overlapping of the

side-bands occurs, it is clear that distortion is present

in the system. This problem was studied by Nyquist [21]

and later by Shannon [221; they showed that a signal with the

highest frequency fc, demands a sampling rate no lower than

2fc in order to avoid overlapping. This result has been
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stated as a theorem [11].

Theorem 2.1. (Nyquist-Shannon Sampling Theorem). If

a signal contains no frequency higher than we radians per

second, it is completely characterized by the values of the

signal measured at instants of time separated by

T 1 2 r seconds.
2w

The interpretation of the theorem implies that it is

possible to recover exactly a band-limited signal from its

samples, by sampling at a rate such that no overlapping

occurs and using an ideal low-pass filter. But a band-limited

signal does not exist in practical control systems or commu-

nications. Therefore an approximation on the frequency con-

tent of the signal must be done, resulting in errors in the

performance of the system [111.

This research will determine a sampling scheme such that,

the error resulting from sampling at lower rates than those

imposed by the theorem, are delimited into acceptable

ranges.

2.3. Reconstruction of Sampled Signals

In the model of the discrete-data controller presented

in Figure 2.3., a holding device was introduced for recon-

structing the output signal of each sampler. It is well

known that the holding device has the effect of removing the

high frequency components of the sampled signal [11, therefore
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its use is proper for reconstruction.

Another justification for using this filtering device

is the fact that the signal emerging from it is injected to

a continuous system and therefore subject to operations,

mostly integrations, if the system has dynamics. As it will

be seen, the integrals are evaluated at sampling instants,

and their evaluation is simplified by knowing the behavior of

the input signals between samples. This behavior is related

with the order of the holding device.

The problem is that from a train of impulses with

strength f(kT), k = 0, 1, 2 ..., a continuous signal,

f(t), must be reconstructed. The data-reconstruction

process may be regarded as an extrapolation process,

considering the information available at past sampling

instants, or as an interpolation process by considering the

data available between two samples and the past data.

Typical holding devices will be reviewed next.

2.3.1. Zero-Order Hold

Consider first the extrapolator type of reconstructor.

A well known method of generating an extrapolation

formula is to use the approximation based on the power

series expansion of the control signal f(t), in the interval

between sampling instants kT and (k+l)T [16]. That is:
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f(t) = f(kT) + f'(kT) (t-kT) +

(n) (t-kT)n + . . . (2.1)
+f (kT) (2.1)

n!

valid for

kT < t < kT + T

where

f(n) (kT) = dnf(t)
dt n

To evaluate the coefficients of the series of Eq.

(2.1), the derivatives of the function f(t) at sampling

instants are usually approximated by backward differences.

That is:

f (n)(kT) = Vnf(kT) (2.2)
T

where

Vf(kT) = f(kT) - f(kT-T) (2.3)

and

Vnf(kT) = V [Vn-lf(kT)] (2.4)

By analyzing the nature of the approximation for the

derivatives, it can be seen that an n-th .order derivative is
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a function of the past (n+l) samples of the function [1].

Therefore the higher the order of the approximation, the

larger will be the number of past samples required. This

fact has a well known adverse effect on the stability

of feedback control systems [1]. Also, a high-order

extrapolator requires complex circuitry resulting in high

costs. For these reasons only the zero-order extrapolator

or zero-order hold is used in practical applications [1].

The first-order extrapolator can also be used, but

its efficiency when used for modelling and the filtering

characteristics are inferior in performance to those of

the first-order interpolator; therefore the latter is

preferred.

The zero-order hold is obtained by considering only

the first term of the power series of Eq. (2.1) for

approximating the sampled signal. Then Eq. (2.1) becomes

fo(t) = f(kT) , kT < t < kT+T (2.5)

Thus, when a sample is made, the reconstructor

constantly holds that value until the next sample is

obtained, as illustrated in Figure 2.5. From the figure

it becomes clear that the accuracy of the zero-order hold

depends greatly on the sampling. rate. This fact is closely

related to the filter behavior of the holding device.

The zero-order hold behaves essentially as a low-pass

filter, however, when compared with the characteristics of
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an "ideal filter," the amplitude response of the zero-

order hold is different from the ideal amplitude response

[1].

The expression in Eq. (2.5) for the output of the

zero-order hold is in a very convenient form. As will be

seen in Section 2.4, the response of a continuous-data

dynamic system, excited by a signal of the obtained nature,

can be easily evaluated at sampling instants.

2.3.2. First-Order Polygonal Hold

Consider now the interpolator type of reconstructor.

The Newton interpolation formula with backward differences

describes the behavior of the device [42].

f(t) = f(kT+T) + i Vf(kT+T) + .

+ T (T+l) ... (T+n-l) Vnf(kT+T) + . . . (2.6)
n!

valid for

kT < t < kT+T

where

t - (kT+T)
T

with the backward differences described by Eqs. (2.3)

and (2.4).
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By analyzing the nature of the backward differences,

it can be seen that an n-th order backward difference

requires information of the past-(n+- ) samples. Then,

it becomes clear that the higher the order of the

interpolation, the larger will be the number of past

samples required. This fact has a well known adverse effect

on the stability of closed-loop control systems [1].

Therefore only low order interpolatars, ap to~and including

the first-order, are considered in practical applications

[1].

Another result of the analysis of the interpolator

described by Eq. (2.6) indicates that the device is non-

causal. The output, f(t), depends on future values of the

input, f(kT+T). But as will be shown in Section 2.4.2, this

fact is not a handicap for its usage for modelling dynamic

systems if the computational time is negligible with

respect to the sampling interval.

The zero-order interpolator is inferior in performance

compared with the zero-order hold [11, because its non-

causality and filtering characteristics. The first-order

interpolator, however, is superior compared with the first-

order hold and therefore widely used [1].

When the first two terms of the interpolation formula

of Eq. (2.6) are used to approximate the time function

between two successive samples, the resulting device is

called first-order polygonal hold.
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The expression describing the device results

f(t) = f(kT) + [f(kT+T) - f(kT)] t - kT (2.7)
T

valid for

kT < t < kT+T

The noncausality of the device 4 ~.hs~~red by the

presence of f(kT+T), but it will be seen in Section 2.4.2

that this fact is not a problem in modelling dynamic

systems.

The output of a first-order polygonal hold can be

observed in Figure 2.6. From the figure it becomes clear

that the accuracy of the device depends greatly on the

sampling rate. This fact is closely related with the

filter behavior of the first-order polygonal hold. Studies

show that the first-order polygonal hold behaves essentially

as a low-pass filter with amplitude response closer to the

ideal filter amplitude response than the first-order hold

[1].

2.4. Numerical Methods of Integration

According to the mathematical model presented in

Section 2.1, the analog controller input is the signal

from the holding device. This signal is expressed as a

function of the values of a continuous signal at sampling
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instants as it was seen in Section 2.3. Now it is of

interest to analyze the behavior of the analog controller

with an input signal of the described nature.

Assume that the analog controller can be described

by a set of linear time-invariant differential equations

of the form:

*(t) = F q(t) + G u(t) ; g(t 0 )- = g (2.8)

y(t) = H q(t)

where

q(t): m-vector, state

qo: m-vector, initial state

u(t): 1-vector, input

y(t): r-vector, output

Ft m x m matrix, system matrix

G: m x 1 matrix, control matrix

H: r x m matrix, output matrix

The formal solution of the differential equation of

Eq. (2.8) from the initial time to until actual time t is

[43].

t
q(t) = F(t-to) q (t O) + f 'DF(t-T) G u(T) dT (2.9)

to

where

DF(t-to): Transition matrix of F
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QF(t-to) = eF (t-to)

with well known properties.

The output y(t) can be obtained from Eq. (2.8).

Reference to the model presented in Section 2.1, as

seen in Figure 2.3, the output of the controller is

sampled in order to simulate the behavior of the digital

computer which operates only at sampling instants. There-

fore the behavior of the analog controller at sampling

instants must be analyzed.

To obtain the response of the controller at sampling

instants, the following change of variables must be made

in Eq. (2.9) [1].

to = kT

t = kT+T

Then Eq. (2.9) becomes

kT+T
q(kT+T) = F (T) q(kT) + f DF(kT+T-T) G u(T) dT (2.10)

kT

and the output is

y(kT) = H q(kT) (2.11)

The controller input, u(T) is the output of the holding

device, and as was seen already it has a known variation

law for a given hold type. Therefore the integral of Eq.
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(2.10) can be evaluated for each of the holding devices

presented.

2.4.1. Zero-Order Hold Integrator

Consider first the zero-order hold device. According

to Eq. (2.5), the control signal u(T) can be expressed as

u(T) = u(kT), kT < T < kT+T (2.12)

where u(kT) are the sample values of the control signal.

The control vector resulting from using the zero-

order hold is constant between two sampling instants;

therefore Eq. (2.10) can be written as

kT+T
q(kT+T) = F(T) q(kT) + f DF(kT+T-T)GdT u(kT) (2.13)

kT

The integral of the right member of Eq. (2.13) can be

evaluated, to yield

q(kT+T) = DF(T) q(kT) + F-1[F(T) - I] G u(kT) (2.14)

Eq. (2.14) represents a set of first-order difference

equations describing the state variables at discrete

instants of time. This set is the discrete state equation

of the system for the zero-order hold.

The discrete state equation can be solved by means of

a simple recursive procedure by setting k = 0, 1, 2 . .
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This fact is adequate for digital computer simulation.

Another observation arising from the analysis of Eqs.

(2.13) and (2.14) indicates that the numerical method of

integration described is similar to the Euler method of

numerical integration. It is known in the field of

numerical analysis as the modified Euler method [11, 12].

The analysis of the stability of this scheme is

related to the location of the eigenvalues of the

difference equation. They must be contained in the unit

circle with its center at the origin for stability [12].

2.4.2. First-Order Polygonal Integrator

Consider the control signal emerging from the first-

order polygonal hold. According to Eq. (2.7), it can be

described as

u(T) = u(kT) + [u(kT+T) - u(kT)] ' - kT (2.15)
T

valid for

kT < T < kT+T

where u(kT) are the sample values of the control signal.

The control vector u(T) has a linear variation with

respect to time in a sampling interval. Therefore Eq.

(2.10) becomes
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q(kT+T) = 4F(T) q(kT)

kT+TkT
+ f F(kT+T-T) G [1 - T dT u(kT)
kT T

kT+T
+ f 4F(kT+T-T)G T dr u(kT+T) (2.16)
kT TkT

By making an -ppropriate zhancjeeMf t-.irategration

variable, the integrals of the right member of Eq. (2.16)

can be evaluated, to yield

q(kT+T) = QF(T) q(kT)

+ F-1{F (T) - F- 1 [1F(T) - I]}G u(kT)

+ F-I{ F - l[F(T) - I]-IIG u(kT+T) (2.17)

This equation, as before, is known as the discrete

state equation of the system for the first-order polygonal

hold, and it can be solved by using a recursive procedure.

The analysis of Eq. (2.17) shows that the state at the

sampling instant kT+T, is a function of the state at kT, .

and the control signal at instants kT+T and kT. This fact

is related to the noncausality discussed in Section 2.3.2.

The problem arises because the computation of the present

state requires the present input, causing a computational
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delay in the evaluation of the system. But considering the

speed of the actual digital computers versus the speed of most

of control systems, this delay is not a major cause of

error unless the system speed is unusually high so that the

delay due to computational time must be considered [11].

Another conclusion from the analysis of Eqs. (2.15)

and (2.17) is that the first-order polygonal integrator is

equivalent to thetrapezoidal rule of integration, which

approximates the function to be integrated by a linear

interpolation between two points. For this reason this

method is known as the modified trapezoidal method [11].

As discussed by DiPerna [44], the first-order polygonal

integrator belongs to a general class of numerical methods

known as the bilinear transformation, which are A-stable.

Because of this very desirable property, the modified

trapezoidal method is widely used for digital simulation

of continuous systems [44].

The discrete-data output from the controller must be

reconstructed by using a holding device, as seen in Section

2.1, in order to obtain the analog control signal for the

plant. Using one of the hold systems analyzed in Section

2.2, the behavior of the plant can be characterized in the

same form as was done with the controller in this section.

Next chapter will deal with this problem.
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CHAPTER III

CLOSED-LOOP CONTROL SYSTEMS

3.1. Control Systems

A control system is an interconnection of components

forming a system configuration to provide a desired

performance. An open-loop control system utilizes a

controller or control actuator in order to obtain a

desired response from a process as shown in Figure 3.1.

In contrast to an open-loop control system, a closed-

loop control system utilizes in addition a measure of

the actual output in order to compare it with the desired

output response. A simple closed-loop control system

is shown in Figure 3.2. The nature of the controller

imposes another classification of control systems.

Discrete-data control systems are characterized by the

use of a digital controller and continuous-data control

systems by an analog controller.

For the purpose of this research, the behavior of

a continuous-data and the equivalent discrete-data

closed-loop control system must be compared. Therefore
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the mathematical description of the continuous-data.

system will be assumed known and the equivalent

discrete-data system will be obtained by modelling it

according to Section 2.1. A set of linear, time-

invariant differential equations in state-variable form

will be used to describe each system. Although any

physical system, if analyzed in great detail is non

linear and time-variant, most of the actual systems

can be approximated with sufficient accuracy by linear

equations.

3.2. Closed-Loop Continuous-Data System

In order to analyze the closed-loop control system

desirable simplifications of the block diagram of

Figure 3.2 will be made. The system will be considered

with plant, controller, unity feedback loop and null

input reference, as shown in Figure 3.3. The mathematical

model of each component is known. The reason for null

input is to facilitate the mathematical formulation.

The case of forced systems will be discussed in Chapter

V.

Consider first the description of the plant.

Assume that it can be described by a set of linear time-

invariant differential equations in the state-variable



CONTROLLER PLANT

r(t)=o u Input : uc t) u tiput : (t)
State : q(t) State : k t) -

- Output: y (t) Output: y(t)

FIGURE 3.3 SIMPLIFIED CLOSED-LOOP CONTROL SYSTEM
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form:

x(t) = A x(t) + B up(t) ; x(t o ) = x, (3.1)

yp(t) = C x(t)

where

x(t): n-vector, state

xo :  n-vector, initial state

u (t): r-vector, input

yp(t): 1-vector, output

A: n x n matrix, system matrix

B: n x r matrix, control matrix

C: 1 x n matrix, output matrix

The first equation gives the plant dynamics and the

second specifies the output transformation.
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An important observation must be made next. The

scope of this research is not to solve a closed-loop

control system. The object is to study the behavior

of its evolution as a function of some invariant

parameters which characterize the system. These

parameters are the eigenvalues which can be determined

with well known mathematical or computational methods

[46, 47]. Therefore, the A-matrix will be assumed

simple* and in diagonal form with eigenvalues Xi . In

the case of a non-simple system matrix, a Jordan

canonical form will be obtained [35] and the character-

ization can be made in the same form as for a simple

diagonal matrix.

The controller, already presented in Section 2.4,

is assumed to be described by a set of linear time-

invariant differential equations in the state variable

form

q(t) = F q(t) +G uc(t) ; q(t o ) = qo (3.2)

Yc(t) = H q(t)

where the matrices and vectors are described in Section

*n x n matrix with n linearly independent eigenvectors.
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2.4. Here it is also assumed that the F-matrix is

simple and diagonal with eigenvalues pi .

Consider now the description of the closed-loop

system. It is clear from Figure 3.3 that

Yc(t) = up(t) ; r-vectors (3.3)

yp(t) = -Uc(t) ; 1-vectors (3.4)

Then substituting Eqs. (3.3) and (3.4) into Eqs. (3.1)

and (3.2), the closed-loop control system can be

described in vector-matrix form by

i.(t )  A BH x (t )  xo
B] t] = *'(3.5)

q(t-GC F q(t) qo

In order to simplify the notation call

x(t)
z(t) = [(t) (3.6. a)

(n + m) - state vector.
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S=BH (3.6.b)
-GC F

(n + m) x (n + m) - system matrix.

Therefore Eq. (3.5) can be expressed as

z(t) = c z(t) , z(to) = zo  (3.7)

which is a homogeneous vector-matrix differential

equation with known initial conditions.

As it can be seen, z(t) represents the state of

the interconnected system, ais the system matrix, it

reflects the dependence and influence between states and

describes completely the behavior of the closed-loop

system. It is assumed that the closed-loop control

system is asymptoticaly :stable; therefore, the c-matrix

has eigenvalues with negative real part [38].

Again, it is assumed that a is a simple matrix

and that there exists a non-singular similarity

transformation P which converts c into a diagonal form,

with eigenvalues 6i. Therefore, setting

z(t) = P w(t) (3.8)
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and substituting Eq. (3.8) into Eq. (3.7), yields

(t) = A w(t) (3.9)

W(to) = -1 z (3.10)

where

A = -1 (3.11)

diagonal matrix with elements 6i..

The closed-loop system is described in a simple

differential equation form. In the case of a non-

simple a-matrix, a Jordan canonical form appears and

the problem can be solved following a similar procedure.

In order to know the performance of the closed-

loop control system, equations (3.5) and (3.9) must

be solved. The well known solution of linear

differential equations applies in this case [35].

t
x(t) = 4 (t-to)x(to) + 4f ,(t-T)BH q(T) dr (3.12)

to
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q(t) = (t-to)q(t o) - D 11(t-T) GC x(T) dT (3.13)
to

w(t) = 6(t-to) w(to) (3.14)

where

4 (t) = e A t = Diag [e it ]

t) = eF t = Diag [e it]

(t) = e t = Diag [e] i t ]

are the fundamental matrices.

Consider now Eq. (3.8); the states x(t) and q(t)

can be expressed as

z(t) = = Pw(t) = w(t) (3.15)
q(t) PM

where

Pn: First n-rows of P, affecting x(t).

Pm: Last m-rows of P, affecting q(t).
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then, according to Eq43.14) and (3.15) the states are

x(t) = Pn ((t-to) w(to) (3.16)

q(t) = Pm 6(t-to) w(to) (3.17)

Substituting Eq. (3.16) into Eq. (3.13) and Eq.

(3.17) into Eq. (3.12) results in the evolution of the

state of the plant and the controller.

t
x(t) = DX(t-to) x(t o ) + P ,(t-T) BHPm, (T) dT wl

to -

(3.18)

t
q(t) = OP(t-to) q(to - f (t-T) GCP n D6(T) dT wl

to
(3.19)

where

Wi = 4 (-t )w(to) (3.20)

is a constant vector.
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As stated in Section 3.1, the evolution of the

continuous and discrete-data systems has to be

compared. It becomes clear from Section 2.4 that the

sampling instants are adequate for the comparison.

Therefore, the evolution of the continuous system has

to be determined at those points. Replace to by kT

and t by kT+T in Eqs. (3.18) and J3.19), furthermore

make the change of variable v = t - kT. The evolution

of the state of the plant and controller at sampling

times becomes

x(kT+T) = 4 (T) x(kT) + E0 6 (T) D6 (kT) w, (3.21)

q(kT+T) = 1 (T) q(kT) - C06(T) $6(kT) w, (3.22)

where

T

X16(T) = If e(T-v) R D6(v) dv '(3.23)
0

n x (n + m) matrix

T
e 6 (T) = f P (T-v) S ( 6 (v) dv (3.24)

m x (n + m) matrix
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R = B H Pm ; n x (n + m) matrix (3.25)

S = G C P ; m x (n + m) matrix (3.26)

These equations express the state of the plant and the

controller of the continuous system at time t = kT+T

as an exact function of its value at time t = kT.

The integrals of Eqs. (3.23) and (3.24) can be

evaluated explicitly as matrices with elements

-T 6T
8I e 1  - e J

e16(T) = 6 r (3.27)

with

l< i <n, I j n + m

and

eiT 6iT
0i6(T) eij (3.28)

ij i 3

with

1 < i <m, i < j< n+ m
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where

i  : Eigenvalues of the plant

i : Eigenvalues of the controller

6j : Eigenvalues of the closed-loop system

rij : Elements of the matrix R

sij : Elements of the matrix S

The case in which a closed-loop eigenvalue is identical

with a plant or controller eigenvalue may be treated

by taking an appropriate limit, i.e.,

lim 0 X(T) = T eJ T

finite for stable systems. A more interesting case

arises when T = 0, it is

lim 016(T) = 0

T 0 ij
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This result, which is not surprising, indicates a

zero sampling interval or no sampling. It therefore

-esults in no change in the state, as can be seen in

Eqs. (3.21) and (3.22) by letting T become zero.

The analysis-df Eqs. (3.27) and (3.28) shows that

the matrices OX6(T) and O 6(T) can be expressed as the

result of a transformation >f t he Tun-dmmental matrices.

That is, it is written as

O6 (T) = $x(T) Qx - Qx 6(T) (3.29)

0p,6(T) = D(T) Qq - Q 6(T) (3.30)

with elements

616 (T) eki Qx x . e6 T (3.29.a)

and

6 (T) ij eiT Qq lij Qq ij e6jT (3.30.a)
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Equating the elements of the matrices of Eqs. (3.29)

and (3.30) with the given by Eqs. (3.27) and (3.28),

the elements of the Q matrices become

ri jQf = (3.31)
13 i j

with

1< i < n, 1< j < n +m

and

sij (3.32)
qij i 6j

with

1 <i < m, 1 < j < n + m

Here the elements of the Q matrices seem to be undefined

for a zero in the denominator, but the fact that the 0

matrices are finite implies that this pole is cancelled

by a zero in the final expression.
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Equations (3.29) and (3.30) can be substituted into

Eqs. (3.21) and (3.22). It follows that

x(kT+T) = 9x(T) x(kT) + [ (T) Qx (T)

.4 (kT) wl (3.33)

q(kT+T) = (T) q(kT) - # (T) Qq - Qq D6 (T)]

.46(kT) wI  (3.34)

These equations give the evolution of the state of the

plant and the controller of the continuous system as a

function of the fundamental matricesof the plant,

controller and closed-loop system, the initial conditions

and the transformation matrices Q. The equations will be

used in Chapter IV for comparing the evolutions of the

continuous and discrete-data systems.

In the next section, the discrete-data system

will be analyzed using the same approach as used here.
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3.3. Closed-Loop Discrete-Data System

Consider now the closed-loop discrete-data system.

The digital controller was presented and modelled in

Chapter II and shown in Figure 2.3. The plant is the

same as the one analyzed in Section 3.2 because the

discrete-data system has only a change in nature of the

controller. Therefore the- losed-toop disvrete-data

system can be assumed to be of the form shown in

Figure 3.4.

For the purpose of this research it is necessary

to analyze the behavior of the discrete-data control

system for different complexity of holding devices and

compare them with the behavior of the continuous

system. In this section, the discrete-data control

system using the two different holding devices presented

in Chapter II will be analyzed.

3.3.1. Zero-Order Discrete-Data System

Consider first that the zero-order hold is used as

the holding device. The resulting system is called

zero-order discrete-data system. The input signal to

the controller and the plant is characterized by its
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values at sampling times and held constant in between

them, as seen in Section 2.3. Also, it is of piecewise-

continuous nature and differs from the continuous signal

as shown in Figure 2.5. Because of this behavior, the

states of the plant and the controller differ from those

of the continuous system. They will be denoted by

xd(t) and qd(t) respectively

Assume that the plant is as described in Section

3.2. Using the notation introduced in Figure 3.4, its

behavior can be described by

id(t) = A xd(t) + B Upd(t), Xd(to) = x o

(3.35)

Ypd(t) = C xd (t)

where the A, B and C matrices have been presented in Eq.

(3.1) and upd(t) is the piecewise-continuous control

output of the zero-order hold.

The controller has been presented in Section 2.4.

According to Eq. (3.2) and Figure 3.4, it can be

described by
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qd(t) = F qd(t) + G ucd(t), qd(to) = qo

(3.36)

Ycd(t) = H qd (t)

where the F, G ana-H matrices have been presented in

Eq. (3.1) and uod(t) is the piecewise-continuous

output of the holding device.

In order to study the evolution of the state of

the plant and the controller of the discrete-data

system for its comparison with the continuous system,

Eqs. (3.35) and (3.36) must be solved. As shown

earlier,

xd(t) = (t-to) xd(t o ) +

t
f $x(t-T) B upd(T) dT (3.37)
to

q d ( t )  
1 (t-to ) qd(to) +

t
f '(t-Tr) G ucd(T) dt (3.38)
to
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hAs may be seen in Figure 3.5, the controls u pd()

and udh (T) are the output of the zero-order hold device.

According to Eq. (2.5), they are described by

u /c(T) = p/cd(kT) (3.39)*p/cd = Up/cd

a constant vector for

kT < t < kT + T

From Figure 3.5 it is evident that

upd(kT) = cd (kT)

and

ucd(kT) = -Ypd (kT)

so that, according to Eqs. (3.35), (3.36) and (3.39)

*The notation p/c indicates either the plant (p)
or controller (c) input or parameter.
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Up d (T) = H qd(kT) (3.40)

and

uo (T) = C Xd(kT) (3.41)

Consider now the piecewise nature of the control

vectors and their value given by Eqs. (3.40) and (3.41).

The Eqs. (3.37) and (3.38) become

xd (kT+T) = O(T) xd(kT) +

kT+T
f ' (kT+T-T) B H dT qd (kT) (3.42)
kT

qd(kT+T) = (T) qd(kT)

kT+T
f p(kT+T-T) G C dT xd (kT) (3.43)
kT

These equations are valid only for one sampling
o

interval since the input vector Up/cd(kT) is constant
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only for that duration. It is possible to evaluate the

integrals of the right member of Eq. (3.42) and (3.43);

they have the same form as Eq. (2.13); thus

xd(kT+T) = 4 (T) xd(kT) + A-1 [1 (T) - I] BH qd (kT)

(3.44)

qd(kT+T) ) (T) qd(kT) - F 1 [4)(T) - I] G C xd (kT)

(3.45)

Equations (3.44) and (3.45) represent a set of linear

difference equations in vector-matrix form. They are the

time-discrete state equations of the digital system.

In order to facilitate the formulation for the

comparison of the discrete and continuous systems it is

desirable to express Eqs. (3.44) and (3.45) in the same

format as Eqs. (3.33) and (3.34). To do so, a definition

of state digitalization error must be presented.

Definition 3.1. The difference between the state

variables of a continuous system and the discretized

version of it is called state digitalization error.
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It is given as

e d (kT) = x (kT) - xd (kT) (3.46)

e q (kT) = q (kT) -qd (kT) (3.47)

The error, which represents the difference between

performance of the continuous and discrete systems, will

be discussed in the following chapters. The use of this

definition will permit the characterization of the

discrete-data system in the desired format and this

object is followed in this chapter. In Chapter IV, an

important component of the state digitalization error

will be analyzed, the error introduced by sampling.

Substituting Eqs. (3.46) and (3.47) into Eqs. (3.44)

and (3.45) yields

xd(kT+T) = x (T) xd(kT) + A-1 [c (T) - I] B H

.[q(kT) - e (kT)] (3.48)
d

qd(kT+T) = 1 (T) qd(kT)- F - 1 [( (T) - I] G C

.[x(kT) - ex(kT)] (3.49)
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Consider now Eqs. (3.16), (3.17), (3.20) for t = kT,

that is,

x(kT) = Pn 46 (kT)w 1 (3-.50)

q(kT) = Pm 6 (kT)wl (3.51)

and substitute these values into Eqs. (3.48) and (3.49)

to yield

-1qxd(kT+T) = $x(T)Xd(kT) - A [( (T) - I] B H eq(kT)
d

+-1 (T)x(kT)w (3.52)

qd(kT+T) = 4 (T)qd(kT) + F- [ (T) - I] G C ed(kT)

- o6 (T) 4) (kT)W1 (3.53)
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where

0 (T) = A [4) (T) - I]R (3.54)

-1

(T) 0= [~(T) - I]S (3.55)

with R and S described by Eqs. (3.25) and (3.26)

respectively.

In order to be consistent with Section 3.2, it is

desirable to express the Eqs. (3.54) and (3.55) in the

same form as Eqs. (3.29) and (3.30). Consider first

Eqs. (3.54) and (3.55), the elements of those matrices

are

o (T) - (eiT - 1) r.. (3.56)

for

1 < i<n, 1 < j < n + m

and
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O06 (T) ij l(epiT - l)sij (3.57)

for

i < i <m, 1 < j < n+m.

The Eqs. (3.29) and (3.30), as applied to the case

of the zero-order hold modelling, take the form

e6o (T) x= (T)Qx(T) - Q(T)6(T) (3.58)

6o (T) (T)Q (T) - (T)(6(T) (3.59)

with elements of the form of Eqs. (3 .29 .a) and (3.30.a).

Since the elements of the 00 matrices given by Eqs.

(3.54), (3.55), (3.58) and (3.59) must be identical, the

elements of the QO matrices become

x(T) eXiT - r (3.60)
ij -X.(eXiT ejT )
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for

1 < i < n, 1 j < n + m

and

e i - 1

Qo(T) = s.. (3.61)q ij Ui(e~iT- e6jT)

for

1< i<m, 1< j <n+m

The cases in which a closed-loop and an open-loop

eigenvalue are identical and when the sampling interval

become zero can be treated in a manner similar to that

of Section 3.2.

By substituting Eqs. (3.58) and (3.59) into (3.52)

and (3.53), the discrete-state equations of the system

for the zero-order hold are obtained. They are:
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xd(kT+T) = x(T)Xd(kT) - A -I[ (T) - I] B H eq(kT)d d

+ [,(T)) Q(T) - Q(T)6(T)]06(kT)Wl (3.62)

qd(kT+T)= (T)xd(kT) + F-1[ (T) - I] G C ed(kT)qd(kT+T) d d

- [ (T)Qq(T) - Q (T) (T)]6(kT)W1  (3.63)

These equations are similar.in format to the

equations describing the evolution of the continuous

system at sampling instants. They will be used in the

next chapter for comparison between continuous and

discrete-data systems.

3.3.2. First-Order Discrete-Data System

Consider now that the first-order polygonal hold

is used as the holding device. The resulting system is

called first-order discrete-data system. As shown in

Section 2.3.2, the input signal to the controller and

the plant is characterized by its behavior at sampling

instants and has a linear variation in between them.
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Its effect on the system is a change on the value of

the state because of the difference with the continuous

signal. As before a change on the state occurs and

xd(t) and qd(t) will be the modified states of the plant

and the controller respectively.

Consider the system as previously described by Eqs.

(3.35) and (3.36). The evolution of the states of the

plant and the controller are given by Eqs. (3.37) and

(3.38) and are presented here for the first-order

polygonal hold.

xd(t) = ((t-to)xd(to) + f mD(t-T)B upd(T) dr
to

(3.64)

qd(t) = (t-to)qd(t ) + f (t-)G u () d
to

(3.65)

where ul (T) is the piecewise-continuous control,
p/cd

output of the first-order polygonal hold. According Eq.

(2.7), it can be described as
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u p/cd(T) = /cd (kT) +

[Up/cd (kT+T) - up/cd(kT)] -kT (3.66)
p/cd pTcd T

for

kT < T < kT + T

and with u/cd (kT) and Up/cd (kT+T) constant vectors in
p/cd p/cd

the interval.

As before, from Figure 3.5

u d(kT) = H qd (kT) (3.67)
pd

U1 (kT) = -C Xd (kT) (3.68)
cd d

Then evaluating Eq. (3.66) for the controls given by

Eqs. (3.67) and (3.68) and substituting the result into

Eqs. (3.64) and (3.65) yields
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xd(kT+T) = ( (T) x d (kT)

kT+T kT+T-T
+ Jf 4 (kT+T-T) BH dT qd (kT)

kT T

kT+T.
+ 4(kT+T-T) BH T-kT dT qd(kT+T)

kT T

(3.69)

A similar expression is obtained for qd(kT+T) but with

the xd(kT) and qd(kT) interchanged, the X replaced by

p, and BH replaced by -GC.

These equations as before are valid for one

sampling interval since ul/cd(T) is continuous only for

that duration. The integrals of the right member can

be evaluated; they are in the same form as Eq. (2.16);

thus

x d (kT+T) = (X(T)xd(kT)

-1
+ A-( x(T) [A (T)-I]} BH qd (kT)

T

+ Al AT1  [x(T)-I]-I} BH qd(kT+T)
T(3.70)

(3.70)
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and

qd (kT+T) = Ip (T) qd(kT)

-F-  f _(T) [F- (T)-I]} GC x d (kT)

-F { [ (T)-I] -} GC xd (k+T

(3.71)

These discrete state equations represent a set of

linear difference equation in vector-matrix form,

describing the evolution of the digital system when

modelled with the first-order polygonal hold.

In order to facilitate the formulation for ccparison

recall the digitalization error defined in Secticn 3.3.1.

Substituting Eqs. (3.46) and (3.47) into (3.70) a-d (3.71)

and considering the continuous states given by Es. (3.50)

and (3.51), the evolution of the states can be exressed

as
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x d (kT+T) = D (T)xd(kT)

-1A- 1 q (kT)

- A-1 A- [ (T)-I] -I} BH e (kT+T)

+ eX(T) 6(kT) w1  (3.72)

and

qd(kT+T) = @1 (T)qd(kT)

+ F -  (T) _ - [0 (T)-I]} GC ex (kT)
1 T I d

+ F" { - I

+ F- 1  F [~ (T)-I] -I} GCe q (kT+T)
T p d

E e1 6 (T)$6(kT)w, (3.73)
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where

1 -1 A- I
816(T) = A { (T) - T [C(T) - 'I] R

-1
A- 1 [ (T) - I] -I} R ( (T) (3.74)

and

S (T) = F-  { (T) F [P (T) -I]} S

- I

+ F-1 T [4 (T) - I]- I} S 06(T) (3.75)

Here, for simplicity, the digitalization error is written

with the same notation as in Section 3.3.1, but assumes

different values.

In order to express Eqs. (3.72) and (3.73) in the

same form as Eqs. (3.29) and (3.30), they must be

modified accordingly. Start first with Eqs. (3.74) and

(3.75), the elements of those matrices have elements of

the form
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1 (T) 1 Xi T _ 1 (eXiT - 1)]

1 XiT  e jT

+ 1 [(e - 1) - 1] } r
XiT

(3.76)

for

1 < i < n, 1 < j < n+ m

and

O(1 { [eiT 1 (eiT - 1)

Pi+ [(el - 1) - 1] e J ij

(3.77)

for

1 < i <m, 1 < j < n+ m
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It can be shown that in the limit for T, Ai and pi

approaching zero, the elements are finite.

Finally, Eqs. (3.74) and (3.75) must be expressed

in the form of Eqs. (3.29) and (3.30), thus

0 = B (T) Q (T) - Qx(T) 6(T) (3.78)

1 1S= (T)Q (T) Q1 (T)D6(T) (3.79)
61 i q q

These matrices have elements of the form of Eqs. (3.29.a)

and (3.29.b) and they must be identical with the elements

given by Eqs. (3..76) and (3.77). Equating the identities

the elements of the transformation matrix become

1(T) (1-e i )(l-e jT ) + XiT(e i -e6jT)
x iS 2T (eiT_ejT) ij

(3.80)

for

1< i< n, 1< j <n+ m
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and

(T) (1-e iT)( 1 -e
6jT) + piT(e iT-e 6 jT)

Q1(T) - sij
q ij 2T (eiT-e6jT

(3.81)

for

1 < i < m, 1 < j < n + m

The behavior of these equations .in the limit can be

analyzed as in Section 3.2.

By substituting Eqs. (3.78) and (3.79) into Eqs.

(3.72) and (3.73), the discrete-state equations of the

system for the first-order polygonal hold are obtained.

They are:
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xd(kT+T) = i (T)xd(kT)

- A-  {(T) [4(T) - I]} BH ed(kT)

A-1 AT1 [e((T) - I] - I} BH e(kT+T)

+ [ (T)Q (T) Q (T)06(T)] ] 6(kT)w I

(3.82)

and

qd(kT+T) = (T) qd(kT)

+ F{ (T) - [ T) - I]} GC eX(kT)
T p1 d

-1
+ -1 [ (T) - I] -I) GC e (kT+T)

T d

- [ (T)Q(T) - Q1 (T) (T)1 6 (kT)w 1
q q

(3.83)
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These equations are similar in format to the

equations describing the continuous data system at

sampling instants.

A close analysis of the obtained equations will show

that they are similar to those obtained in [111 for

open-loop systems; therefore comparable techniques can be

used for approaching the determination of sampling rates

in open and closed-loop systems. In the next chapter a

study of the elements appearing in the equations

describing the continuous and discrete-data systems will

be made and an expression measuring the difference between

continuous and discrete-data states will be obtained.



74

CHAPTER IV

ERROR ANALYSIS

4.1. Introduction

The response of a continuous and computer controlled

closed-loop system was introduced in the last chapter.

The problem of relating them in order to compare their

performance is constrained by a proper determination of

error or differences between systems. In this section a

brief review of the different errors present in a

discrete-data system will be made in order to define a

proper error criterion.

An early work in this area [24] defines "system

error" as the result of the imperfect response of the

discrete-data system to an applied input. The "system

error" is composed of two components. One referred to

as "organic error," is introduced by lags or leads of

the continuous part of the system [24]. The second

component, called "ripple," is the error introduced by

the sampler. This error, in the steady state, contains
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only those frequency components and its harmonics. In

practical systems, this "ripple" is generally suppressed

by the forward transmission function of the system, by

filtering. In the referred paper [24], the authors

obtained a mathematical description of the "ripple" by

using the z-transform and Laplace transform techniques.

Also they make clear that during the transient the

ripple component is insignificant. The "system error"

approach is of interest to this research, because the

problem is similar. The concept will be applied to the

state variables of the plant instead of the output error

dealt within the referred paper.

Another interpretation of the system error is given

by researchers in the field of numerical analysis and is

referred to as truncation error [8, 42, 48, 55]. The

error is defined as thatresulting from the manner in

which the differential equation describing a dynamic

system is approximated. This definition applies more

directly to this research because it involves a

differential equation, that is, the mathematical

description of the continuous data control system, and

an approximation which is the result of discretizing the

system.

Another source of error present in the system is

due to the imperfect analog-to-digital and digital-to-
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analog conversion. The practical converters have a

finite number of conversion bits, therefore error appears

and is known as quantization error. In general the error

is neglected in the design of digital control systems,

but the effect of quantization should be considered. It

can serve as a practical guide in the determination of

the height of quantization levels and the size of the

registers of the digital computer used for control.

The effects of quantization of continuous-time

signals have been extensively investigated from the

probabilistic viewpoint [49-52]. Deterministic studies

on the effect of quantization errors in linear systems

have also been studied [30, 31, 32, 53]. They give a

mathematical formulation for the problem and determine

an upper bound Tor the quantization error in the output.

Lately the problem has been approached from the optimum

control viewpoint [541, and a performance criterion for

the minimization of the worst effect of the error measure

has been defined.

In previous research [111], it has been shown that

the variance of the state quantization error due to

input quantization depends linearly on the sampling

interval T, when T is small, and varies as the square of

the quantization level.
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From these considerations it is clear that further

investigation is required of quantization errors in

closed-loop systems, and how to select a converter for

a given sampling interval and digital computer. This

subject is presently under study in other research [56].

The error due to sampling only is analyzed in this chapter.

4.2. Discretization Error

Consider now the error introduced in the system due

to sampling and hold and called in the research preceding

this discretization error. It reflects the difference

between the performance of the continuous and discrete

systems and is defined by

Definition 4.1. The difference between the state

variables of the continuous system and its discrete-data

version in the absence of quantization noise is called

state discretization error, defined as

e (kT) = x(kT) - xd(kT) (4.1)

eq(kT) = q(kT) - qd(kT) (4.2)
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This definition in essence is the same as Definition 3.1

(state digitalization error) but it holds in the case of

absence of quantization error. The state variables

were already defined in Eqs. (3.1), (3.2), (3.35) and

(3.36).

In a completely similar manner the output

discretization error can be formulated.

Definition 4.2. The difference between outputs

of the continuous system and its discrete-data version,

in absence of quantization noise, is called output

discretization error, defined as

e (kT) = y (kT) - ypd(kT) (4.2)

According to Eqs. (3.1) and (3.35)

yp(kT) = C x (kT) (4.3)

and

Ypd(kT) = C xd (kT) (4.4)

therefore, the output discretization error can be
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expressed as

e (kT) = C ex (kT) (4.5)

These error definitions will be used in the

remaining of this chapter for characterizing the

behavior of the discrete-data system with respect to

its continuous equivalent.

4.3. Discretization Error for Zero-Order Discrete-Data

System

For the application of the definition of state

discretization error considered in the last section,

recall the expressions for the evolution of the states

of the continuous and discrete system for the zero-order

hold reconstructor, developed in Chapter III and

repeated here.

For the continuous system,

x(kT+T) = 4 (T) x(kT)

+ [Ef(T) Qx - Qx (T)1 0 (kT) w1 (4.6)
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q(kT+T) = O (T) q(kT)

- [( (T)Qq - QqD(T)] ~ (kT) wl (4.7)

where

QxriL_ ; [n x (n + m)] (4.8)

Qq = [m x (n + m)] (4.9)
qij li-6j

are all known elements presented in Chapter III.

For the discrete-data system, in which the

quantization error is assumed to be zero or negligible,

the digitalization error is equal to the discretization

error; therefore the states become
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x d (kT+T) = A (T)x d (kT)

-1- A- [(T) - I] BHe q(kT)

+ [Q (T)Q (T) (T)(T) 6 (kT) wl

(4.10)

qd(kT+T) = p (T)qd(kT)

+ F--14 (T) -I] GCe (kT)

- [@ (T)Q (t) - Q0 (T) 6(T)]D(kT)W1

(4.11)

where

XiT

Qx(T) e 1 rij ; In x (n + m)

Xij i(eXiTe 6 jT) (4.12)

Q (T) = e - 1 s. ; [mx (n + m)]
q ij. pi(e iT-e 6 T) 1

(4.13)
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Then by direct application of Definition 4.1, the

state discretization error is

e (kT+T) = Q (T) ex(kT) + A-1[( (T)-I]BH e (kT)
x q

+ [QA(T) M(T) - M° ( T ) D ( T ) ]  ( k T ) w
1

(4.14)

and

e (kT+T) = P (T) e q(kT) - F- 1 [, (T)-I]GC ex(kT)

- (~ (T) MO(T)- M(T)D6(T)]1((kT;W1S q q 6
(4.15)

where

MO(T) = Q- Qo(T) ; [n x (n + m)] (4.16)
x x x
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MO (T) =Q Q (T) ; [m x (n + m)] (4.17)
q 9 q9

Since the initial conditions of the continuous and

discrete systems are the same, the initial errors are

ex (t) = x(t o ) - Xd(to) = 0 (4.18)

eq (t o ) = q(t o ) - qd(to) = 0 (4.19)

In order to facilitate the notation, Eqs. (4.15)

and (4.16) may be expressed in vector-matrix form
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ex(kT+T) (T) A[(T)IBH ex(kT

e (kT+T) -F-1[D (T)-I]GC 4(T) e (kT)

4) (T)M (T) - M' (T)(T) 1
+6 (kTyd 1

1 # (T)- M (T) (T)]

(4.20)

with the initial condition

e(o) = 0

Or

e(kT+T) = A° (T) e(kT) + 00 (T) 6 (kT)W1  (4.21)

where

ex (kT)
e(kT) = (4.22)

eq (kT)
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(P (T) A-I [t (T) -I BH

AO(T) = (4.23)

-F [D (T) -I]GC i (T)

D (T)M (T) - Mx (T) (T)

0o ( T ) = (4.24)

-f [(T)Mq (T) - Mq (T ) c ( T ) ]

Equation (4.21) represents a vector-matrix difference

equation which gives the discretization error at sampling

instants for the zero-order discrete-data system.

To study the behavior of Eq. (4.21), the matrix

0 (T) must be investigated further. Take its components

M (T) and Mq(T).x q

In view of Eqs. (4.16), (4.17), (4.8), (4.9), (4.12)

and (4.13), the elements of the matrices M(T) and M°(T)e q

are
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o.(T) rij [ - (-6j) (e -1) ] (4.25)
m 3 -j i (e iTe 6 j T )

and

s (-- )(e iT-)
o (T) [ - J1 (4.26)

m gqij i-6j i (eiT-e )

Therefore the matrix co(T) has elements of the form

ri (1 -6 ) (e iT) (e T)

oi( -e 
xij Xi-6j i (eXiTe6jT)

(4.27)

for

1< i < n, 1 j < n+ m
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and

00. (T) ij [1 ]- (ejiT-e6jT)
qg3 i -6j ui(eiT-e6 jT)

(4.28)

for

n + 1 < i < n + m, 1 < j < n + m

These elements have the following property:

By application of the L'Hospital rule,

lim 9. (T) = 0

T 0

lim ij(T) = k(T), finite for T finite.

0i/V i + 0

i/"i * si

This property will be applied next to study the behavior

of Eq. (4.21).
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The first question concerning Eq. (4.21) refers to

its stability. It is clear that it represents a forced,

fixed, linear discrete time system at rest at the

starting time k = o, but in which an excitation is present

thereafter. According to [43], the stability of such a

system is determined by the eigenvalues of the system

matrix and by the forcing function. Therefore, for

stability the eigenvalues Zi(T) of AO(T) must be:

IjZ(T) < 1

for

1< i< n+m

Since these eigenvalues are functions of T, a root-locus

analysis may be done in order to find the least value of

T which will make the system unstable. For the present

purposes it will be seen in Chapter V that the T chosen

will be less than that maximum and therefore the scheme

will be stable.

The nature of the forcing function will be studied

next. As seen in Eq. (4.21), the forcing function is



w(kT) = D6 (kT)W 1  (4.29)

where c6(kT) is a stable fundamental matrix, which for

k approaching infinity, approaches zero. Therefore

the forcing function is bounded, Eq. (4.21) is stable,

and the error e(kT) approaches zero as k approaches

infinity. The matrix 0o(T) does not affect the

analysis of stability because as shown, it has the

property of being stable for all possible eigenvalues.

A second observation concerns the behavior of Eq.

(4.21) when T approaches zero. It can be seen that

lim Ao(T) = I , unit matrix

T 0

lim eo(T) = 0, zero matrix

T O 0

Thus, with kT = t and T approaching zero, Eq. (4.21)

becomes

lim e(t+T) = e(t)

T+ 0
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That is, for T = o, there is no sampling, and therefore

the discrete-data system becomes the continuous system

according to the model discussed in Chapter II. This is

reflected in the fact that the error does not change

and has the value of its initial condition which as

seen in Eqs. (4.18) and (4.19) is zero.

In order to characterize the error in terms of

parameters of the system, Eq. (4.21) must be solved.

The solution of this equation is for k > 1 [43]

k-l
e(kT) = [Ao (T) (k-n-l)®o(T) 6(nT wl (4..30)

n=o

In order to see the meaning of each matrix, the

original factors must be substituted in Eq. (4.30); then

D I ( T )  A-[(I(T)-I]BHl (k-l-n)
k-l

e(kT) =
n=o

-F-l[( ( T ) -IGC I (T )

-[ (T)M (T) - M(T))6(T)

(4.31)
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Considering that a zero-order hold device has been

used for modelling the discrete-data system, the A
0 (T)

matrix appearing in Eq. (4.30) can be considered as a

first-order approximation of its series expansion, because

the method is first-order [48]. Assume then, that T is

such that the expressions of the fundamental matrices

can be evaluated by

-(T) = e(A/F)T =I + (A/F) T (4.32)

In this connection, it is worth noting that an exponential

eXiT can be approximated within 1% by (1 + XiT) if XiT

is less than 0.15; this bound is very liberal on XiT

for practical purposes. It will be seen in Chapter V

that the selected T will be much less than this bound.

Therefore Eq. (4.31) will be examined using the

approximation in Eq. (4.32).

jy\

/'
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Consider first

SX(T) A-1 [# X(T)-I]BH

A (T)

-F-1 [ (T)-I]GC (D (T)

-1'

I + AT A-ATBH]

-F-lFTGC I + FT

A BH

- + T (4.33)

-GC F

Comparing Eq. (4.33) with Eq. (3.5), it can be seen that

Ao(T) I +aT = <L(T) (4.34)
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which is the fundamental matrix of the closed-loop

continuous system.

In order to express Eq. (4.34) in a more manageable

form, the use of the similarity transformation of Eq.

(3.11) is required. The fundamental matrix is

0 (T) = PO (T) P 1  (4.35)

Then the state discretization error for the zero-

order discrete-data system can be expressed, by

considering Eqs. (4.34) and (4.35) as

k-i
e(kT) P E (6 [(k-l-n)T]P-10(T) Q(nT)wl (4.36)

n=o

Of primary interest is the error in the plant,

because it is the process to be controlled; thus the

state discretization error becomes

k-i
e(kT) = Pn E 60[(k-l-n)Tp-GO (T)46(nT)Wl (4.37)

n=o
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where P has the first n rows of the matrix P and

defined in Eq. (3.15).

Before continuing a check on the stability of Eq.

(4.37) can be made. It has been seen in this section

that the stability depends on the eigenvalues of Ao(T).

From Eq. (4.34) it is clear that they are of the form

e6j T for small T, and due to the stability of the

closed-loop system leviT I< 1. Therefore the scheme

is stable for T small.

Consider now the factor G0 (T) of Eq. (4.37), which

is given by Eq. (4.24), and study its behavior for small

T. Take first the matrices Mx(T) and MO(T) given byX q

Eqs. (4.16) and (4.17) under consideration. As will be

seen they play an important role in the determination of

the sampling interval. Each will be called error

coefficient matrix with elements

(Ai-6) (eXiT 1l)
m 0(T) - ij - (4.38)

j i-6 j  Xi(e iT-e I )

S(.-6) (e iT-l)

mo .(T) - ij [1 - 3 ] (4.39)

qij pi-"j i(eiT-e 6 jT)
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As a first observation, it is seen that the factor

rij/(Xi-6j) describes how the control mode 6j affects

the plant mode Xi. In order to have a better under-

standing of these expressions they may be expanded in

Taylor's series about the point T = 0. Then, it is

obtained that

mO T2  
-6 

2  3

o (T)= ij [j6 6 (6 +Xi) _--_" 6 + T3
xl3 X ij 3 12 i24

=- Do .(T)' (4.40)

0 (T s 6 ( T T 2  2 T 3

m°..(T) - [6j 6j ( 6 j+i)- + 6 -i + .]
i- ij 24

- ij D. . (T) (4.41)
i j
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From these expressions it can be seen

i) The magnitude of the discretization error is

dependent on the magnitude of these elements and

lim m0  (T) 0
x/qij

T+0

meaning that it is zero for no sampling.

ii) The elements have a leading term in the first

power of T meaning that the model of the discrete

system is equivalent to a first-order method of

numerical integration [48].

iii) The eigenvalues of the closed-loop system

affects the expression in the first term.

iv) In order to keep the magnitude of the

discretization error smaller than the effect. of the

control (i.e., the term rij/Xi-Sj), it is reasonable to

have a T such that

.I D9 (T) I  << 1

Then taking the magnitudes of Eqs. (4.40) and (4.41)
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and approximating them by the second order term,

yields

DOij (T) 2 6 j + [6 j (I SI+I Xi) (4.42)

x 2 12Do (T) < T sjl +  26 ( 69 + ) (4.43)

This approximation is very conservative for complex

eigenvalues. It permits the definition of relative

discretization error coefficient to be used in Chapter

V.

Definition 4.3. The relative discretization error

coefficient for the zero-order discrete-data system is

yx(T) = 16.1 +T (161+Ixl)l (4.44)x 2 6

for the plant, and

y O(T) = 61 T1 + T (61+1 )] (4.45)q 2 6
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for the controller.

Where

'6 = max {I1' j, (4.46)
i 

Il = max {IX.li1 (4.47)

I = max {Jli } (4.48)

Consider now the 0(T) matrix. It will be called

the error matrix. Its elements are given by Eqs. (4.27)

and (4.28). Under the same assumption as for the matrix

MO(T), the elements may be expanded in Taylor's series

about T = 0, it is obtained

0T 2  T 2 T2
o (T) = r 6 [+(- 2 (6 + .]
xij ij j l+(J12 12

(4.49)
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and

2  T 2 T2
e° . (T) = ij 6j (1 + (6j+i)2 (6j+ i) 1-+ .
qij

(4.50)

Similar conclusions as the ones obtained for the

matrix Mo(T) can be observed by analyzing Eqs. (4.49)

and (4.50). These results will be used in the next

chapter for determination of criteria for choosing an

acceptable sampling rate.

4.4. Discretization Error For First-Order Discrete-

Data System

Consider now the definition of state discretization

error, the expressions of the evolution of the

continuous system, given by Eqs. (4.6) and (4.7), and

the evolution of the discrete-data system, for the.

first-order polygonal hold reconstructor and repeated

here
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xd(kT+T) = ~ (T)x(kT)-A- 1(D( T q [(T)-I]}BH eq(kT)

-A-A-T [ x(T)-I]-I}BH e q(kT+T)

4+ ( (T)Q1(T) -Q (T) D6 (T) ] (kT)w (4.51)+ [# (T)Qx x 6(4

-1 F-1
qd(kT+T) = ~ (T)q(kT)+F {( (T)--- [-[(T)-I]}GC ex(kT)

+ F-1 {1 (T)-I]-I}GC ex(kT+T)

-[ (T)Q I (T)-Qq (T) T) 6 ( k T ) Wl  (4.52)

where e x(kT) and e (kT) are the state discretization

errors and

(T) (1-e i T ) ( -e ) + AT(e i -e T ) r
Sij XT (eXiT-e6jT)

(4.23.a)
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for 1 < i < n, 1 < j <n + m

(1-e iT) (1-ejT) + PiT(e iT-e jT)Ql (T) Iij be
2 T (eliT'-e6 jT)

(4.53)

for 1 < i < m, 1 < j < .n + m

Direct application of the definition of state

discretization error yields

ex (kT+T) = x (T) ex (kT)

+A - 1 {(T) - [x(T) - I]} BH e (kT)

+ A-1 {A [ D(T) - I] - I} BH eq (kT+T)
T q

+ ([0(T)M ) T) (T) P. (kT)wl

(4.54)
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and

e q(kT+T) = 1 (T) e (kT)

-F { (T) - [- (T) - I]IGCex(kT)

- F1 {F [C(T) - I] -I}GCe (kT+T)

- [(TM I (T) - M(T)(T) ]D66 (kT)W
' q q 1

(4.55)

where

M = Q - Q1 (T); [n x (n + m)] (4.56)
x x x

M1 (T) Q - Q1 (T); [m x (n + m)] (4.57)
q q q

and the initial errors are
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ex(t o ) = x(t) - xd(to) = 0 (4.58)

eq (t o ) q(t o ) - qd(to) = 0 (4.59)

In order to facilitate the notation Eqs. (4.54)

and (4.55) may be expressed in vector-matrix form

-i A- 1 -I
e (kT+T) I -A {- -- (T)-I]-I BH

[e 1 KL{F 1  -1A

e (kT+T) F -  [ (T)-I]-I GC I

-1 A
SX(T )  A -{ (T)- T  [D (T)-I] BH e (kT)

-i 1

-F {0 (T)--- [4 (T)-I]IGC D (T) e (kT)
T P q

[ .(T)M (T) - M (T) ( T)

1 1
-[C (T)M (T) - M(T) (T)] (4.60)

with the initial condition e(O) = 0.
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Or

e(kT+T) = U(T)Al(T)e(kT) + U(T) 1 (T) 6(kT)w

(4.61)

where

1A-1  -1
I T-A-I{ [@ (T) -I] -I}BH

U(T) =

F--[-D (T)-I]-IIGC I

(4.62)

D (T) A- {I (T) -T Q (T) -I] }BH

A (T) = F - 1

-F-l{DI (T) -F [ (T)-I]}GC I (T)

(4..63)

T (4.64)

. .(T)M (T) M (T) 6(T)
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Equation (4.61) represents a vector-matrix

difference equation giving the discretization error

at sampling times for the first-order discrete-data

system.

To examine the behavior of Eq. (4.61), take the

error matrix 01 (T). Its components M1 (T) and M1(T)x q

have elements

1 (T) rijXi- j

{1 - (Ai-6) [(l-eiT )(-e jT)+iT(e -e

X2T(eXiT-e6jT)

(4.65)

and

1 sij
m • (T) =

qi3 i-6j

(i-6j)[(1-e i T ) (1-e )jT ) +PiT(e iT-ee ]

p2T(ePiT-e 6 iT)

(4.66)



106

Therefore the error matrix 1 (T) has elements of the

form

OBj(T) = m (T) (eXiT -ejT) (4.67)

for

1< i < n, < j < n+ m

and

eI (T) = mI . (T) (e iT-e S T) (4.68)

for

n+1 < i< n +m, 1 < j < n+m

The analysis of the expressions obtained for the

.elements of 01 (T) leads to the same conclusions as
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those obtained for the elements of the error matrix of

the zero-order discrete-data system.

Concerning the stability of Eq. (4.61), the same

procedure as in Section 4.3 can be applied. Consider

first the system matrix U(T)Al(T). Its eigenvalues

Z (T) determine the stability of the unforced scheme.

Then the condition

Sz(T) < 1

for

< i < n +-m

is necessary and sufficient for stability [43]. A

root-locus analysis might be done in order to find the

last value of T which will make the system unstable.

As will be seen in Chapter V, the sampling interval T

will be chosen below that maximum and therefore

stability will be preserved.
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The other term determining the stability is the

forcing term. Comparing Els. (4.61) and (4.21) and

considering the nature of the matrix U(T)0 1 (T) it can

be seen that the forcing function in both equations is

the same. Therefore the same discussion as in Section

4.3 can be applied in this case and will yield in a

stable scheme.

The behavior of Eq. (4.61) when T approaches zero

will be studied next. It can be seen from Eqs. (4.62)

and (4.63) that

lim U(T)Al(T) = I

TO 0

and from the property of the Ol(T) matrix that

limo 1 (T) = 0

T- 0

The meaning of this behavior, as in Section 4.3, is

that when no sampling is made the system does not
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introduce discretization error, or that according to

Chapter II, the discrete-data system behaves as a

continuous one.

The solution of Eq. (4.61) may be found directly

by recursion [43]. It is for k > 1

k-1
e(kT) = [U(T)Al(T)] (k-n-1)U(T) 1 T) 6 (nT)w 1

n=o

(4.69)

In order to understand better Eq. (4.69) the

original factors have to be substituted. Then
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I -A l [-T-- (T)-I]-I BH
k-1

e(kT) = E

n=0 7-1
F- {-[ T( (T)-I]-I}GC I

-1

D (T) A-1 T) T-[X (T)-I]-I}BH (k-n-l)

-F-1 1(T)- [[ (T)-I]-I}GC (T)

A-1

F-1

F -  -[ (T)-I1-I}GC I

1 1Sx(T) M (T) - M (T)'P (T)

q q 6 (nT)wl (4.70)

1 1
-[ j(T)M (T) -Mq(T), 6 (T)]

Considering now that a first-order hold device has

been used for modelling the discrete-data system, and recall-

ing that this is equivalent to a second order numerical

approximation of the continuous system [48], therefore



it is reasonable to evaluate for small sampling interval

the fundamental matrix by

p/ (T) = I + (A/F)T + (A/F) (4.71)

and examine Eq. (4.70) under this assumption.

Consider first

I -A-l A [ (T)-I]-I} BH

U(T) =
F-1

F (T-[X (T)-I]-I}GC I

I  -A { [IAT+A ]-I}BH
.T 2

F- F-1[ FT+F 2 ]-I} GC I
T 2

o -BH -1

(I + } (4.72)
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But for small T, the resulting matrix can be considered

as an infinitesimal transformation matrix and be

approximated by [46]

2
0 -BH 0 -BH

U(T) = + T 2
2 4

GC o GC 0

(4.73)

Then

T T
I BHGC -BH
4 2

U(T) I (4.74)

T T2
-GC I ---GCBH
2 4

The same approximation can be applied to A1 (T).
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4 (T) A-1 (T) 1[(T)-I]}BH

A1 (T) = S-1 F-I

-F -  () -P T (T) -I]}GC (T)

2T 2  T 2I + AT + A -  -BH + --ABH
2 2 4

T T 2  2T2
-- GC- FGC I + FT + F

2 4 2

(4.75)

In order to obtain the approximation for Eq. (4.69),

Eqs. (4.74) and (4.75) must be multiplied, yielding

I+AT+(A 2 -BHGC) T2 BHT+(ABH+BHF) T2

2 2

U(T)Al(T)

T22 T2
-GCT-(FGC+GCA) I+FT+(F 2 -GCBH)

+T -GC F

A2-BHGC ABH+BHF

T
2

+ -- (4.76)

-FGC-GCA F2-GCBH
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Comparing Eq. (4.76) with (3.6.b) it.can be seen that

the obtained equation is essentially the fundamental

matrix of the closed-loop continuous system for small

T. Recalling the similarity transformation of Eq. (3.11)

the system matrix of Eq. (4.61) can be approximated by

U(T)A 1 (T) (T) = PD(T)P - 1  (4.77)

Therefore, the state discretization error for the

first-order discrete-data system can be expressed as

k-l
e(kT) = P7 6[(k-n-l)T 1 U(T)(T(T) (nT)W1

n=o

(4.78)

Of primary interest is the error in the plant,

because it is the controlled process; thus according

to Eq. (3715)', Eq. (4.78) becomes

k-l
-e-(kT) = Pn 6[ (k-n-1) T]P-1U (T)O 1 (T) 6 (nT)W 1

n=o

(4.79)



115

where Pn are the first n rows of P.

The stability of Eq. (4.79) as it was seen in this

section depends on the eigenvalues of U(T)A 1 (T).

According to Eq. (4.77) for small T, they are given

by e6jT. Due to the stability of the closed-loop

system, it is lejTI < 1, therefore the scheme is stable.

Consider now the error matrix G1 (T) of Eq. (4.64),

and study its behavior for small T. Take first the

error coefficient matrices Mx(T) and MI(T) given byX q

Eqs. (4.56) and (4.57) with elements given by Eqs.

(4.65) and (4.66), and aialyze them by expanding in

Taylor's series their elements about the point T = o.

Then, it is obtained that

m1 (T) _rij
xi j (T) =

i 2

. -6 12 + 6(6 -41i6+ )20

ri12 1
-i j " D .(T) (4.80)

i-6 j xi
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and

I sij
m (T) =i
qij 1i-6j

22 2 2 T4

.[ - 6 T2 + 62(6 4ij 2 + .3 J 4 i6.. J P i 720

S sij D1  (T) (4.81)
Pi-6j qij

From these expressions it can be seen that

i) The magnitude of the discretization error

depends on these elements and is zero for no sampling

due to

lim ml (T) = ox/qij

T + o

ii) The elements have a leading term in the second

power of T, this means that the model of the discrete

system is equivalent to a second order method of

numerical integration [48].
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iii) The eigenvalues of the closed-loop system

appear in the first term of the expansion.

iv) The relative discretization coefficient, under

the same assumptions as in Section 4.3, is

y (T) = 1612 T2  (4.82)

where 161 is given by Eq. (4.46).

Consider now the elements of the matrix® 1 (T)

given by Eqs. (4.67) and (4.68). The Taylor's expansion

,about T = o is

ij (T) = rij 6j 2 [1 + (6 + i ) T
xj ij 12 2

T2
S(6 4 1i6j + i) + . . ] (4.83)

and

q1.. (T) = sij 62 T 3 1 - ( 6 + i)qi ij j 12 2

(6 - 4pi6j + ) (4.84)- ( 1 jJ - .60(.
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These equations describe the behavior of the

discretization error. They can be compared with the

equivalent results for the zero-order discrete system

and it can be observed that they have the same format

with a difference in the power of T in the leading term

of the series. The reason for this behavior is that

they are equivalent to two different methods of

numerical integration, one first order and the other

second. These results will be used in the next chapter

for determination of a criterion for choosing an

acceptable sampling rate.
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CHAPTER V

DETERMINATION OF SAMPLING RATES

5.1. Introduction

The determination of an acceptable sampling rate

is related to a proper definition of a relative error.

In Chapter IV, an absolute measure of the error

introduced by discretizing a system was obtained but

its value is not weighted with respect to the performance

of the system. A relative error criterion is appropriate

for comparing the behavior of the system with respect to

a parameter characterizing it, but the determination of

the proper parameter is very difficult and it is subject

to interpretation.

In this chapter two relative error criteria will

be presented. One relates a measure of the discretization

error to the initial state of the system. The second

is obtained by extending the relative error criterion

presented in [111.



120

5.2. Relative Local State Discretization Error

In numerical analysis a basic measure of the

accuracy of a method is the order of magnitude of the
-.

error introduced in each step of calculation [48]. In

order to apply this concept to the present research,

suppose that the exact solution of the state equation

of a system at sampling instants (kT-T) and kT is-

given by x(kT-T) and x(kT) respectively and that the

states of the discrete system are given by xd(kT-T)

and xd(kT). Assume that at the sampling instant kT-T,

the states of the two systems are the same; since the

states at the next sampling instant will generally not

be equal the following definition is appropriate.

Definition 5.1. The local state discretization

error is defined as

LDE(kT) =  IIx(kT) - xd(kT)I

if the states at the previous sampling instants are

equal, i.e.

---- x(kT-T) = Xd(kT-T)
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where ivjvl stands for the norm of the vector.

For the purpose of this research, the definition

of the norm is very important. The norm of a vector

may be defined as in [42]

(i) M(v) = max Ivil

l<i<n

n
(ii) S(v) = lv Ii

i=l

n
(iii) E (v) = IVi 12

i=l

with the corresponding norms for matrices given by:

n
(i) M(A) = max . laij

j=1
l<i<n

n
(ii) S(A) = max E laij

1=1

1<j<n

(iii) E(A) = Maximum eigenvalue of A*A
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From the three definitions above given, the norm (i)

will be used. It simplifies the mathematical formu-

lation and is not as conservative as the other two.

The definition of local state discretization error

can be modified by assigning a proper weighting factor

to each component of state discretization error. In

this manner the effect of some states errors could be

magnified and/or penalized during a desired time

interval.

Another error definition will be introduced next.

It will give a relative measure of the total discretiza-

tion error introduced along the.trajectory of the system.

Definition 5.2. The accumulated local state

discretization error is defined as

ALDE = Z LDE(kT)
k=o

This definition gives an idea of the system

behavior. It is more restrictive than the local

discretization error because it looks at the system

during its evolution from the initial state until it

reaches the final state. It gives a measure of the norm

of the error matrix as will be seen in Sections 5.2.1 and

5.2.2.
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The relative local state discretization error will

be defined next. It is classical in control systems

to relate the system behavior to the input control signal

and not to the output. For the regulator problem this

concept can be extended to a measure of the initial

input, because as the states are evolving the input

approaches zero. Consider the system under analysis.

The plant error is of interest and its initial input is

obtained from Eq. (3.5) as

up(t 1 ) = HPmo (5.1)

thus the following definition is appropriate.

Definition 5.3. The relative accumulated local

state discretization error is defined as

ALDE

= HPmwol

This definition gives a measure ofhow the discretiza-

tion error is affected by the initial value of the input

to the plant. It will be applied next to the zero and

first-order discrete-data systems.
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5.2.1. Zero-Order Discrete-Data System

Consider Definition 5.1 and Eq. (4.21). The local

state discretization error for the zero-order discrete

data system is

LDEO(kT) = IO °(T)D(kT-T)wl i (5.2)

where Q0(T) is the error matrix given by Eq. (4.24).

The application of the Schwarz inequality to Eq.

(5.2). yields

LDEo(kT) < 0 (T)II (kT) II I Wl

(5.3)

Consider now the norm of each factor of Eq. (5.3).

Take first the norm of the error matrix. Using the

selected definition of norm and the elements ofo O(T)

given by Eq. (4.49), it is



125

n+m T2  T
Io x(T)I = max E rij 6j [1 + (j + i ) 3

l<i<n j=1

2T
- (69 + i) 12 + . .1]

12

(5.4)

By using the Schwarz inequality and approximating the

series by the first two terms as justified in Chapter

IV, Eq. (5.4) can be reduced to

G(T) I < - (61 1 + - (II + l )]
x - 2 3

n
max E rij (5.5)
1<i<n j=1

where j16. and jXI are the maximum eigenvalue magnitudes

given by Eq. (4.46) and (4.47). Consider the matrix R

given by Eq. (3.25) and the proper definition of norm.

Eq. (5.5) can then be expressed as

II00(T) -< T2 [1 + T(j 6 +ilj)] HBHP m

(5.6)
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Consider now the norm of D6(kT-T). The use of the

proper definition of norm of a matrix yields

6 (kT-T) = e-d(kT-T) (5.7)

where

d = -min [Re(6j)] (5.8)
l<j<n+m

Therefore considering Eqs. (5.6) and (5.8) the

local state discretization error is

2 3

(5.9)
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Consider now the accumulated local state discretiza-

tion error. The application of Definition 5.2 to Eq.

(5.9) yields

ALDEo < 16.1 [ +T (16 + l)]
-- 2 3

" BHP m II W E e-d(kT-T)
1 i=l

(5.10)

The infinite sum in the right side of inequality (5.10)

can be evaluated as,

Z e-d(kT-T) = 1 (l-d-) (5.11)
k=l l-e - dT dT

for d! << 1. This approximation is proper as will be
2

seen for the values of T to be chosen. Substituting

Eq. (5.11) into (5.10) the accumulated local state

discretization error for the zero-order discrete

system is
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ALDE < (ISI + IlI - d)]
-2 d 3 2

II BHPm f - WflWf (5.12)

Finally, consider the relative accumulated local

state discretization error given by Definition 5.3

and apply it to Eq. (5.12). It is

T (. s + IX1 - - d)] N (5.13)
1-2 d 3 2

where

N = IIBHPm II IlWl (5.13a)
HPmWo II

The parameter N depends on the topology of the system and

is available to the designer from its equations.

The relative error expression obtained above will

be used next to determine sampling rates, but first a

similar expression for the first-order discrete system

will be obtained.
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5.2.2. First-Order Discrete-Data System

Consider the Definition 5.1 and Eq. (4.61). The

local state discretization error for the first-order

discrete-data system is

LDE1 (kT) = f U(T)0x (T) %(kT-T)Wl (5.14)

The application of the Schwarz inequality yields

LDE1 (kT) < IU(T) I 110 (T) II
x

. l (kT-T) II il11 (5.15)

Consider now the norm of each factor. Take

first U(T). According to Eq. (4.73), the norm of

U(T) is

U(T) 1+ T 2 (5.16)

I1 U(T)1 1+ mm 2 (5.16)
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where

o -BH
m = M } (5.17)

m2 = M 0 } (5.18)
GC 0

are functions known to the designer.

Consider next the norm of the error matrix

0(T) with elements given by Eq. (4.83).

n+m T3  T
Ex(T) = max E Irij 62 - + (6 + i )
ilx  

rl<i<n j=1 12 2

- (6- . + T I
60

(5.19)
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By using the Schwarz inequality and approximating the

series by the first two terms as justified in Chapter

IV, Eq. (5.19) is reduced to

10 1 (T) II< 1612 [1 + T- (I~i+Ill)] IIBHPm Iix -- 12 2

(5.20)

where IIBHP m I is obtained from Eq. (3.25).

The norm of . 6(kT-T) has been obtained in Eq. (5.7).

Therefore considering Eqs. (5.16), (5.20) and (5.7); the

local state discretization error is

LDEl(kT) < T3 1612 [1 + T (I6 IXI+ml)] iBIP II
1--2 2 m

I . II e-d (kT-T) (5.21)

Consider now the accumulated local state discretiza-

tion error. The application of Definition 5.2 to Eq.

(5.21) yields
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ALDE T3 1612 lT IBHPMQALDE 1< 1 2 [1 + T (,6!+ lA+ml)] BHPmI
-12 2 1

GIW 1l E e - d (kT - T) (5.22)
k=l

With the same considerations as in Section 5.2.1, the

sum of the right member of Eq. (5.22) can be

evaluated. Thus, the accumulated local state discretiza-

tion error for the first-order discrete system is

1 T2 16 1.2ALDE 1  12 [1 + - (61+1I+ml-d)]
-12 d 2

. BHPmII . J'lY (5.23)

Finally, consider the relative accumulated local

state discretization error given by Definition 5.3

and apply it to Eq. (5.23).

El <  2 [1 + T (16t+IXI+m - d)] N (5.24)
1- 12 d 2 1
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where N is given by Eq. (5.13a).

Equations (5.12) and (5.24) will be used in Section

5.4 for determining an appropriate sampling rate.

5.3. Normalized Sum of Squared Output Discretization

Error

Another manner of defining a relative measure of

the effect of the discretization error in the evolution

of the plant can be obtained by using the procedure

of the previous research [11]. Kang defines an error

criterion called normalized sum of squared output

discretization error defined as

E Iy(kT) - yd(kT)12

E2 = k=o (5.25)

2Z y(kT) 12
k=o

where y(kT) and yd(kT) are the output of the continuous

and discrete systems respectively.
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For absolutely stable closed-loop control systems,

the infinite sums in the numerator and denominator can

be evaluated by means of the complex convolution

theorem and the Cauchy residue theorem [57]. However, as

it was shown in [111, it is of interest to approximate

the value of 62 for relatively small values of the

sampling interval. Therefore the same procedure as

used in [11i will be followed here.

Consider first the output of the continuous system.

According to Eq. (3.1) and (3.16) it can be expressed

as

y(kT) = CPn 6(kT)WI (5.26)

then

00 a 1 n+m
Z y*(kT)y(kT) = C E jE d.. e IkTlj2 (5.27)
k=o k=o i=l j=1 13

where * stands for transpose-conjugate and dij are the

elements of the CPn matrix.
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The output discretization error according to

Definition 4.2 is

e (kT) = C e (kT), (5.28)
y x

where ex(kT) is given by Eqs. (4.37) and (4.78). Thus,

k-I
e (kT) = CP n D6[(k-n-1)T]P- 1 (T) , (nT)" 1  (5.29)

Y n=o

and

SO' 1 n+m n+m k-i

E e*(kT)e (kT) =  E 7 Y Z dip Z 06[(k-n-1)T]P-i

k=o y  k=o i=l j=l p=l n=o

0(T) 46 (nT) 1 12 (5.30)

Equations (5.27) and (5.30) are similar to the

expressions obtained in [11], and therefore for small
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values of the sampling interval, the normalized sum of

squared output discretization error can be approximated

by the relative discretization error coefficient

defined by Eqs. (4.44) and (4.82). That is

E2  = i (T) (5.31)

where i is zero and one for the zero and first-order

discrete system respectively.

The normalized sum of squared output discretiza-

tion error can be modified by assigning a proper weight

to each component of the output discretization error as

suggested in Section 5.2.

Considering the two obtained relative measurements

of the discretization error given by Eqs. (5.12), (5.24)

and (5.31), the determination of sampling intervals can

be obtained, as it will be seen next.
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5.4. Determination of Sampling Rates. Error

Criterion I.

Consider the expressions for the relative accumu-

lated local state discretization error given by Eqs.

(5.12) and (5.24). Take first the zero-order discrete-

data system. The relative error is

O T 1 [1 ( +IXI - d)] N
1 2 d 3 2

The sampling interval T can be selected by making the

relative accumulated local state discretization error

less than an allowed error E. Then

T [1 + - (16i + II - d)] N < : (5.32)
2 d 3 2

A quadratic equation in T has been obtained. The

solution is
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3 3 8 X 3 d-- + + -d (1 + )
2 2 E 3 N 2 N161

Nl6 (1 + -II 3 d
N1I 2 N16

(5.33)

This expression gives an upper bound for T for an

accepted error E. The radical with the minus sign is

not considered because it gives a negative T.

In most of the cases an approximation to Eq. (5.33)

can be made. If

8 d (1 + 3 d ) <<
3 NI61 2 N161

the approximation

i a + 1a, for a << 1
2

can be used, and Eq. (5.33) becomes
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2dE
T <

1 1 N (5.34)

An upper bound for T has thus been obtained. As

can be seen it is a function of the eigenvalues, the

topology of the system and an allowed performance error.

Consider now the first-order discrete-data system.

The relative accumulated local state discretization

error is

C1 T2 1612 [1 + T (16l+IXI+ml-d)]N
1 12 d 2

The sampling interval can be selected as before by

making the relative error less than an allowed error

e. Then

2 i612 [1 + T ( 161+xI+m -d)N < E (5.35)
12 d 2 1
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This expression is a cubic equation in T with a

negative constant term, implying the existence of a

real solution for positive T. The solution can be

obtained by any computer algorithm or a graphical

method. The sampling interval T obtained is an upper

bound for an accepted error e and is a function of the

eigenvalues of the system.

5.5. Determination of Sampling Rates. Error

Criterion II.

Consider now the expressions of the normalized

sum of squared output discretization error given by.

Eq. (5.31) and the relative discretization error co-

efficient defined by Eqs. (4.44) and (4.82). Take

first the zero-order discrete-data system. The relative

measure of the error is

o T= + T (j61 + I l)] (5.36)
2 2 6

The sampling interval can be selected by making this

error less than an allowed overall performance error c,

that is
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2 6

A quadratic equation in T has been obtained. The

solution is

-3+3 1 + (1 + E
T <I

16V (1 + ._ ) (5.37)

This expression gives an upper bound for T for an

accepted error E.

In most of the cases an approximation to Eq.

(5.37) can be made. Consider the case

S(1 + k) << 1
3 

6
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The approximation used in Section 5.4 can be used and

the sampling interval is approximated by

T < 2 (5.38)

An upper bound for T has thus been obtained. As

seen, it depends on the eigenvalues of the closed-

loop system and the overall performance error.

Consider now the first-order discrete-data

system. The normalized sum of squared output

discretization error is according to Eqs. (5.31)

and (4.82)

2 T 2  
(5.39)

2 12

The sampling interval can be determined by making this

error less than an allowed overall performance error

e. Then
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2 - < (5.40)
12 -

or

T < (5.41)

An upper bound for T has thus been obtained. As

before, it is related to the eigenvalues of the closed-

loop system and the overall performance error.

Two very simple formulas have.been obtained for

determining sampling rates. They show that the

sampling interval depends primarily on the eigenvalues

of the closed-loop system and they give an explicit

relation between the error, the sampling interval and

the parameters of the system. Their application to

practical cases solve the problem of determining a

sampling interval for systems which do not have band-

limited characteristics. Therefore, the engineering

criterion for limiting the bandwidth of an actual

system, for applying the Nyquist-Shannon sampling

theorem, is not required.
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5.6. Examples

Consider now the expressions derived for the

sampling interval T, and apply them to some examples.

Example 5.1: A fifth order closed-loop control

system has been chosen for this purpose and it is

shown in Fig. 5.1.

The system is characterized by:

(i) Plant

A(t) = Ax(t) + B up (t)

ypt) = C x (t)

where

o 1 o

A = o 1

-25 -15 -7

B 433 = [ 1 o o

_-33-



CONTROLLER PLANT

r(t) + c(t)
2 s+2 (s+1)(s+10)

s 2+3.5s+1.5 (s2+2s+5)(s+5)

FIGURE 5.1 A FIFTH-ORDER CLOSED-LOOP CONTROL SYSTEM (Example 5.1)

01
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x 2

1

Eigenvalues

X1 = -5

2 / 3 = -1 + j2

(ii) Controller

4(t) = F q(t) + G uc(t)

Yc(t) = H q(t)

where

F 1

-1.5 -3.5
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B .= C = [1 o]

q =[: i

Eigenvalues

Pi = -3

P2 = -0.5

(iii) Closed-loop system

z(t) = 7 z(t)

x (t)
S(t) =

q (t)
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o 1 o 1 o

o o 1 4 o

a = -25 -15 -7 -33 o

-1 0 0o o 1

1.5 0 o -1.5 -3.5

3

2

zo = 1

1

2

Eigenvalues

61 = -5.273717

62/3 = -0.936565 + j2.365428

64 = -2.737927

65 = -0.615265
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(iv) Selection of the sampling rate.

Since the output is to be observed, error criterion

II is selected. The maximum eigenvalues magnitudes

needed are

16 =  5.273717

l l = 5

and let the acceptable error be five percent, that is

c = 0.05

a) Zero-Order Discrete-Data System

For the given data the approximate expression for

T can be used, then by Eq. (5.49),

T < 2 0.1 0.019
-- 1 5.273717

Take

T = 0.02
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b) First-Order Discrete-Data System

The sampling interval is according to Eq. (5.51)

T < f12 = _ Q.6 0.143

-6 5.273717

Take

T = 0.15

(v) Simulation

The evolution of the states was calculated from

Eqs. (3.44) and (3.45) for the zero-order discrete

system and Eqs. (3.70) and (3.71) for the first-order

discrete system. Both evolutions are compared against

the exact solution.

The exact and approximate value of the normalized

sum of squared output discretization errors are

obtained by simulation over a time span of t=o to

t=tf such that yp(tf)<10 - 70 . The results are shown in

Figures 5.4 and 5.5.
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(vi) Results

As can be seen in Figures 5.2 and 5.3, a very

close approximation to the exact solution has been

obtained. A very crude measurement might be obtained

by considering the relative error of the maximum output

discretization error with respect to the output at

that instant of time. The relative errors are 3.05%

and 1.25% for the zero and first-order discrete data

systems respectively.

The normalized sum of squared output discretiza-

tion error, is within acceptable value, it resulted in

£o = 5.23%

for the zero-order discrete data system, and

1£2 = 4.88%

for the first-order discrete data system. The results

can be considered acceptable for practical applications.
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C(t) EXACT SOLUTION

2 \ - - SIMULATED SOLUTION

T = 0.02

0.
0.6 1.2 1 .8 . 3.0 3.6

t (sec)

FIG. 5.2 ZERO-ORDER DISCRETE-DATA SYSTEM
(Example 5.1)



C(t) EXACT SOLUTION

2 _ - SIMULATED SOLUTION

T = 0.15

0
0.6 1.2 1.8 / 3.0 3.6

•/ t(sec)

FIG. 5.3 FIRST-ORDER DISCRETE-DATA SYSTEM
(Example 5.1)



0.15

0.10

-EXACT

SAPPROX.

0.05

.01 .02 ..03 .04 .05 .06

t (sec)

FIG. 5.4 EXACT AND APPROXIMATE NORMALIZED SUM OF SQUARED

OUTPUT DISCRETIZATION ERROR IN THE ZERO-ORDER DISCRETE-

DATA SYSTEM (Example 5.1)



0.25 EXACT c 2

-0.20--- APPROX. 2 1
0.20 -

cz 0.15

0.10

0.05-

0 0.05 0.10 0.15 0.20 0.25 0.30

t (sec)

FIG. 5.5 EXACT AND APPROXIMATE NORMALIZED SUM OF SQUARED

OUTPUT DISCRETIZATION ERROR IN THE FIRST-ORDER DISCRETE-

DATA SYSTEM (Example 5.1)
Ul
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Example 5.2: A follow-up (position) control system is

shown in Figure 5.6. A correcting controller was introduced

in the forward path to improve the dynamic response of the

control system. The object of the designer is to digitalize

the analog controller by using the models presented in this

research.

The closed-loop control system is characterized by:

(i) Plant

Dynamics

x (t) 0 1 xl(t) 0

= + u p(t)

x2 (t) 0 -1 x 2 (t) 10

xl(t)

y (t) = [ 1 0 1

x 2 (t)

Initial Conditions

xl(0) 
5

x2 (0) 3



CONTROLLER PLANT

.s+1 10 c(t)

- O.1s+i1 s(s+l)

FIGURE 5.6 POSITION SERVO (Example 5.2)

U-
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Eigenvalues

= 0

(ii) Controller

Dynamics

q(t) =  -10 q(t) - 30 u c (t)

y (t) = q(t) + 4 Uc(t)

Initial .Condition

q(0) = -1

Eigenvalue

S= -10

(iii) Closed-Loop System

Z(t) = c z(t)

where

01 0

l= -40 -1 10

30 0 -10
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Initial Conditions

z(0) = 3

-1

Eigenvalues

61 = -5

6 = -3 +j
2
63 = -3 - j I
3

(iv) Selection of the Sampling Rate.

Since the output is to be observed, select 
error

criterion II. The maximum eigenvalue magnitudes are

6 = 5

Ixl =1

and let the acceptable error be five per cent 
as before,

that is

S= 0.05

For the zero-order discrete data system,

T < 0.02
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and for the first-order discrete data system,

T < 0.155.

(v) Simulation

The evolution of the states was obtained by numerical

simulation. The outputs are plotted in Figure 5.7 for the

zero-order system and Figure 5.8 for the first-order discrete-

data system. The normalized sum of squared output discreti-

zation error is for the zero-order system.

0

E = 4.795%
2

and

1
E = 4.93%

for the first-order discrete-data system.

Again here, the application of the obtained formulas

for selecting the sampling interval T, leads to an acceptable

result.



5.0

4.0

3.0 EXACT SOLUTION

C(t) SIMULATED SOLUTION

T = 0.02

2.0

1.0

0 1. *2.0 3.0

/ (sec)

FIG. 5.7 ZERO-ORDER DISCRETE-DATA SYSTEM
(Example 5.2)



5.0

4.0

3.0 . . EXACT SOLUTION

.- - - - SIMULATED SOLUTION
C(t)

T = 0.15

2.0

1.0

0 .2.03.0
t (sec)

FIG. 5.8 FIRST-ORDER DISCRETE-DATA SYSTEM

(Example 5.2)
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5.7. Limitations in the Choice of T

Some further comments must be made concerning

the choice of the sampling interval.

First the definition of error must be recalled.

It must be remembered that in this research only the

case of discretizatiop error was considered, leaving

the quantization error and the round-off error for

further research. Considering only the discretization

error, one may arrive at a conclusion (not always true

in practical applications) that the smaller the sampling

interval T, the better a discrete-time model results.

But,.taking the other errors, the round-off error has

a contrary effect on the choice of T. It increases

the total error as T decreases. Fortunately, in

practical discrete-data control-systems the situation

of having important weight from the round-off error is

rarely present.

A second observation to be made concerns the loss

of controllability of the system due to a particular

selection of the sampling interval [58]. It is a

well known fact that sometimes sampling can destroy

controllability. The problem is analyzed in the above
-

referred paper and a theorem stated. They proved that
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a time invariant discrete data system 
(derived from

a controllable continuous system) is completely

controllable if

2 T
Im {6i(A) - 6j(A)} T

whenever

Re{6 i (A)} = Re{6j(A)}

and

n = + , .2, . .

6(A) = Eigenvalues of A

and if the control is scalar, then the condition 
is

necessary as well. Then an extra constraint in the

selection of T must be considered. According to the

expressions for T obtained in this 
chapter, and because

the presence of e in them, the situation 
of loss of

controllability is very unlikely. Nevertheless, this

case must be checked. Physically, this fact means

that the periodicity inherent in sampling 
is not
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allowed to interact with the natural frequencies 
of

the system to be controlled.

A third consideration is the case of discretiza-

tion error in uncontrollable and unobservable 
systems.

Consider the model introduced in Chapter III 
for

describing the system under consideration. 
Since the

A and F matrices were assumed to be diagonal 
then the

loss of controllability and observability 
is related to

zero elements in the matrices B and G, and C 
and H

respectively. This fact affects the discretization

error by causing the R and S matrices to have 
a zero

element. Therefore there will be no contribution to

the discretization error from the uncontrollable 
mode.

The same effect can be observed on the output 
due

to an unobservable mode.

Finally consider the case of forced systems. 
The

analysis of the expressions obtained 
in this research for

determining sampling rates shows that the sampling 
interval

depends .on the fastest natural mode present in 
the closed-

loop system. A similar conclusion was reported in [11]

where the system was open-loop and the forcing 
function was

modelled as the output of a companion system 
which has an

impulse response identical to the forcing 
signal. The

sampling interval was determined by the fastest 
natural
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mode of the companion system. In view of these similar

results and the fact that the closed-loop control system

from an input/output point of view can be regarded 
as a

block which can be either closed or open-loop, 
the follow-

ing approach can be suggested. The sampling interval of

the forced closed-loop system can be determined by the

fastest natural frequency of the augmented 
system, that is

the original control system and the companion 
system.

This generalization of the results reported 
herein and in

[11] should be investigated further to show the 
validity

of this assumption. This engineering approach to the

problem is sustained by an example.

Example 5.3: Consider the position servo presented

in Example 5.2. Assume that two different forcing

functions are applied at the input. One a "slow" step

function and the other a "fast" damped sinusoidal 
func-

tion.
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For the impulse signal

rl(t) =1 ., t > 0

= 0 , t<0

the maximum eigenvalue magnitude is

Its -0

For the damped._sinusoidal signal.

r (t) = 6e-4t Cos V3 t , t > 0
.2

= 0 , t < 0

the maximum eigenvalue magnitude is

62 = 7.416

The closed-loop system has

1 = 5 .

Consider the system relaxed. The application of the

above reasoning for the determination of T 
for an acceptable

error of five per cent yields

(a) Zero-order discrete-data system

T= 0.02
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for the step input, and

T = 0.0135

for the damped sinusoidal.

(b) First-order discrete-data system

T = 0.155

for the step input, and

T = 0.1045

for the damped sinusoidal.

The evolution of the states was obtained by numerical

simulation. The outputs are plotted in Figures 5.9 and

5.10, for the zero-order discrete system and Figures 
5.11

and 5.12 for the first-order discrete system. 
As can be

seen, a good approximation to the exact 
solution has been

obtained. The normalized sum of squared output discretiza-

tion error for each case is within acceptable limits.



1.5

1.0

C(t) EXACT SOLUTION

S!MULATED SOLUTION
.5

T =0.02

0.5 1.0 1.5 2.0 2.5 3.0
t (sec)

FIG. 5.9 ZERO-ORDER DISCRETE-DATA SYSTEM
(Example 5.3)



1.5

1.o - /

C(t) EXACT SOLUTION

SIMULATED SOLUTION
.5

T = 0.15

0.5 1.0 1.5 2.0 2.5 3.0
t (sec)

FIG. 5.10 FIRST-ORDER DISCRETE-DATA SYSTEM
(Example 5.3)
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1.5 _EXACT SOLUTION

SIMULATED SOLUTION

T=0.0135

C(t)

.5 - "

0.5 1.0 / 1.5 2.0 2.5

FIG. 5.11 ZERO-ORDER DISCRETE-DATA SYSTEM
(Example 5.3)
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0.5 1.0 // 1.5 2.0 2.5
t (sec)

FIG. 5.12 FI.RST-ORDER DISCRETE-DATA SYSTEM
(Example 5.3)
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CHAPTER VI

CONCLUSIONS

A closed-loop discrete-data control system is a

dynamic process where the control signal is the result

of a numerical algorithm performed by a digital

computer at given instants of time called sampling

instants. This investigation was concerned with the

determination of sampling rates for linear, time-

invariant, closed-loop discrete-data control systems.

The research may be regarded as an attempt to establish

a formula to be applied to practical systems for making

a first choice in the selection of sampling rates. The

motivation for such an attempt is that the use of the

Nyquist-Shannon sampling theorem for this purpose in

practical applications, may lead to a faster rate than

that.necessary for adequate control under actual

limitations.

The basic idea in the research is to compare the

state evolution of a discrete-data closed-loop control

system with the state evolution of the continuous-data
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version of the system. The model chosen to represent

the continuous closed-loop control system is a set of

n linear differential equations in state-variable form

for the plant, and a set of m linear differential

equations in the same form for the controller. The

reference input was assumed zero (i.e., the regulator

problem is treated). The model chosen for the discrete-

data controller J. tbe typical configuration of a

sampler, followed by a holding device, the analog model

of the controller, another sampler (real or fictitious)

and another holding device. The closed-loop discrete-

data system was also modelled using.the state variable

approach. The study was made for the two most commonly

used holding devices--the zero-order hold and the

first-order polygonal hold. The comparison between the

evolution of the states was done at sampling instants.

A particularly important step in the achievement

of this research is the observation that the closed-loop

control system should be characterized and not solved.

The solution of the differential equation describing the

system is assumed known. The characterization is made

by the eigenvalues of the plant, controller and closed-

loop system; therefore the system matrices can be
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considered diagonal and simple. This fact permits the

integration of the state equations and leads 
to the

state characterization at sampling instants as a

function of the sampling interval, eigenvalues,

matrices and initial conditions of the system.

Of considerable importance to the results obtained

here is the determination of a relative error criterion

for the evaluation of the discrete-data control system

performance with respect to the continuous-data

equivalent system. This determination comes from a

careful analysis of the different errors present in

the system and interpretations of the meaning of a

relative error definition. The relative error criterion

leads to the objective of this research, the determination

of the sampling interval as a function of the maximum

allowed error and the eigenvalues of the system, for

the two holding devices considered.

Thus, a formula has been obtained for determining

the sampling interval or rate for closed-loop discrete-

data systems, for two different realizations. It shows

that the sampling interval depends primarily on the

eigenvalues of the closed-loop continuous-data 
control

system for an allowed performance error. Its application
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solves the practical problem of making a first choice

in the selection of sampling rates. Further research

may be directed toward the extension of this work to

the determination of sampling rates for open-loop

and closed-loop non-linear systems, systems with

random input and related topics for simulation of

continuous-data systems.
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