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* acoustic wedge.diffraction-coefficients contain Fresnel integrals, which ensure that -the total

field is continuous at shadow and reflection boundaries. The diffraction coefficients have the
same form for the different types of edge illumination; only the arguments of the Fresnel

K 1ntegrals are different. Since diffraction is a -local phenomenon, and locally the curved edge

structure is wedge shaped, this result is readily extended to the curved edge: It is interesting
that even though the polarizations and the wavefront curvatures of the incident, reflected and
diffracted waves are markedly different, the:total -field calculated from this high-frequency
solutlon for the curved edge 1s contlnuous at shadow and reflection boundaries.

: l.. T

.(”."‘,

" g

z!

17. Key Words (Suggested by Author(s}) © [18. Disttibution Statement
An‘t,e_nn,a'_s;-,w'Spa,cgc_rafp ahgd. A{l‘r,t:ré.f‘t.:Anténna.s
ARV PR AR A 2N AR

Applied Electromagnetic Theory . Unclassified -Unlimited

STAR Category 09

119. Security "Classit, (of this report} 20. Security Classif. (of this page) 21. No. of Pages 22. Price®
.. Unclassified . _ Unclassified , . 92 _ $4.00

:

.For sale by the National Technical Information Service, Springfield, Virginia 22151




Page Intentionally Left Blank



CONTENTS

Page
L. INTRODUCTION | 1
11, THE GEOMETRICAL OPTICS FIELD 6
I11. THE EDGE DIFFRACTED FIELD 15
IV, DISCUSSION 54
APPENDIX
I THE CAUSTIC DISTANCE FOR REFLECTION 58
11 THE EDGE CAUSTIC DISTANCE 68
I11 “THE PLANES OF INCIDENCE AND REFLECTION 73
IV RECIPROCITY | 76

REFERENCES ‘ 86



I.  INTRODUCTION

This report is concerned with the construction of a high-
frequency solution for the diffraction of an electromagnetic wave
obliquely incident on a curved edge in an othérwisé sﬁboth, cukved,
perfectly-conducting surface surrounded by an isotfopic, Homogeneous
medium. The surface normal is discontinuous at the curved edge, and
the two surfaces forming the edge mayfbevconvex, concéve or plane,

The solution is developed within the context of Keller's geometrical
theory of diffraction"z’3 (referred to simply as the GTD henceforth)

so the dyadic diffraction coefficient is of interest. Particular
emphasis is placed on finding a compact, accurate form of the diffraction
coefficient valid in the transition regions adjacent to shadow and
reflection boundaries and useful in practical applications.

According to the GTD, a high-frequency e1ectfomagnet1c wave incident
on a curved surface with a curved edge gives rise to a reflected wave,
an edge diffracted wave, and an edge excited wave which propagates
along a surface ray. Such surface ray fields may also be excited at
shadow boundaries of the curved surface. The problem is easily
visualized with the aid of Fig. 1, which shows a plahe perpendicular
to the edge at the point of diffraction QE' The pertinent rays and
boundaries are projected onto this plane. To simplify the discussion .
of the reflected field we have assumed that the local interior wedge
angle is < n. According to Keller's genera]izéd Fermétis principle,
the ray incident on the edge QE produces edge diffracted rays ed énd '
surface diffracted rays sr. In the case of convex surfaces the

surface ray sheds a surface diffracted ray sd from each point Q on its path.
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- .Fig..1. Incident, reflected and diffracted rays.and their ..
associated shadow and reflection boundaries projected
. onto.the plane normal to.the edge at.the point of -
diffraction QE.
ES 1is the boundary between the edge diffracted rays and the surface
diffracted rays; it is tangent to the surface at Q. SB is the shadow
boundary of the incident field and RB is the shadow boundary of the
reflected field, referred to simply as the reflection boundary hence-
forth. If both surfaces are illuminated, then there is no shadow
boundary at the edge; instead ;Here.qre two reflection boundaries for
the problem considered here. Since the behavior of the ray optics |
field is different in the two regions separated by a boundary, there
is a transition region adjacent to each boundary within.which there

is a rapid variation of the field between the two regions;
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i In the present analysis it is assumed that the sources and
field point éfe'sufficiently rennvedifrom the surface and the
boundary ES so that the contributions from the surface ray field can

be neglected. The total electric field may then be represented as
Ty E‘='Ei o+ E "+ Ed

inLWhjch E' is the electric field of the séufce in the absence of
the surface, E" is the electric field reflected from:the surface with
;%he edge ignored, and fd is the edge diffracted electric field. ‘The
functions ui and u" are unit step functions which are edUa] to one in
the region$.111uminated by the incident and reflected fields and to
ézgrq,ingyﬁeir;shadow.regions. The extent of these reg{ohs is determined
by geometrical optics. The step functions are shown explicitly in Eq. (1)
to emphasize the discontinuity in-the incident and reflected fields at
the ghadow and'ref]ection boundar{es, respectiVe]y.' They are not included
in subsequent equations for reasons of nofational economy.

" The diffracted field as defined by Eq. (1) penetrates the shadow
’ réé%on, which according to geometrical optics haé a zero field, td
acédhnt for the honvanishing fields known to exist thére. But the
cof%eét high-frequency field must be continuous at the shadoW and
reflection boundaries; hence the diffracted field must compensate
.fhé discbntinuities in the incident and reflected fields there.
In other wo?ﬂs, the diffracted field must provide the correcf
t?éhéition~5etween the i11umihated regions and the regions shédowed'

by the edge.



- The -high-frequency so]ution:dgscrfbed.infthe,ne;t sectiongfjihs
obtained in the fbl]qwing way. ,A,LunebergﬁK]ine gxpansjon4_f§rﬁih§_
incident field is assumed to be given., The rgflected fie]d is e
" ~expanded simi]arly and related to the incident fielq:px imposing_!;_
the boundary condition at the perféct]ysconducting_surfacé; Onlx&the
leading term, the geometrical optjcs term, is rg@?ingqvu Ngxt,the
genera1'fbrm oflthe.leading term in the highffrequencxysglution fgy:
. the edge-diffracted electromagnetic fie[d,is;dqtermineq.} The‘wgqqeu

.r(straight edge’) geometry is treated first; it;_anqic,djffraction;_“
coefficient is deduced from the asymp;otiq‘so]ution;of.§gyera1 qapgnica]v
prqblems. Some parameters in this diffractipnvqoeffigient are-gegq_
to depend.on the type of edge illumination._.They are_detenyjngd_fgr
an arbitrary incident wavefront by requiring the 1ead1ng term in .
the total field to be cont1nuous at the. shadow and ref]ect1on boundary.
It is. found that only a slight extension of the sojutngn:forAthg wedge
is needed to treat the more general prqb]em'poéeq by.the‘curyed eggé;

This report is the third in a seriesrof reports dea]ing wf;h

edge diffraction.‘ In the first report?

fhe Pauli-Clemmow method of -
steepest descent was employed in a manngrvd%ffgrgpt from_that |
employed by Pauli® to obtain a more agcgréte(asymptptquso]ution_fbr
the field diffracted by a wedge. _We sﬁowed.that ourhgéneraliied Pau1i
expansion .can be transformed term>bx‘term into a generalj;ed f°fm~9f
the asymptotic expansion given~by 0berhéttinger7;ﬂ The'Jg?ding tgpm
in our expansion was found to be more;accurafg than the ]eadjng{tgrh
in Oberhettinger's. expansion;. furthermore, our leading. term fof,thg'

diffracted field contains a simple correction factor, which permits

4



the field to be calculated easily in the transition region. This
prdaeﬁfy“}E'Of donsiderable bractical importance, because it enables
orie” to use fhe,gebmetrical theory of .diffraction in the transition
regions without introducing a supplementary solution. The correction
factors, referred to here as transition functions are simply included
with ‘the diffraction coefficient.

"In the first report only the scalar problem of plane waves
norma]]y 1nc1dent on -the’ edge of wedge is cons1dered " In the second

8. th1s ‘work is extended to obtain a dyadic d1ffract1on coefficient

report
for a pérfectly-condUcting wedge illuminated by obliquely-incident

” bféné,'coﬁféa];fahdnspherica1“wéves. ‘By introducing the natural,
rdy=fixed codrdinates, the dyadic diffraction coefficient obtained
from each of these canonical probléms is reduced to the sum of two
dyads. In’ other werds,.the matrix'formed by the elements of the

dyadic diffraction coefficient is a-two by two diagonal matrix.

The diagohe1”e1ements of this matrix are simply the scalar dif-:
fkﬁctidh ceefficiénts,'bh ahd"bs, for the Neumann (hard) and:

Diriehlet (soft) boundafy conaitions; respectively. The transition
fhnctidné'appeéking in Ds'ahd Dh have the same form for the four -
types of i1Tumination; in each case only a Fresnel integral is’
iﬁVelved;. However the argUmeht of the Fresnel integral depends

“Upon the typéléf‘111umination; Outside of the transition regions these
factors are‘ebbroximately one;'ahd Keller's expressions for the dif-
fraction coefficients are obtained. ' The asymptotic solutions

described in thfs‘baragraph help us formulate the solution for a

meie general type of illumination of ‘the wedge;'as noted earlier,



The:analysis of wedge diffraction has had a lengthy history. "
Only a few of the repofts and papers have been nentioned'thus far. -
Many of the more important papers on this subject may be found in’
references 9, 10. A good review of wedge diffraction and the special
case of half b1ane diffraction is given in Chapters 6 and 8 of
reference 9. Recently An]uwa]ia, Boersma, and Lewis have written some
papel"s”’]z’13 of special relevance to the work described here.'7Réferences
11 and 12 describe high frequency asymptotic expansions for scalar waves
diffracted by curved edges in plane and curved screens and
reference 13 extends this work to a curved edge in a curved surface.
The authors make use of ray coordinates, and some-of'their results
dealing with rays and wavefronts have been helpful in tﬁe development
of our solution. Nevertheless, there are some noteworthy differences
betweeﬁ their solutions and this one, apart from the fact that their
problem is scalar instead of the vector problem treated here. Their
formulation or ansati begins with the total field, and the
resulting correction of the ordinary GTD solution in the transition
region is different from ours. It appears that our result is the

more convenient to apply.

II. THE GEOMETRICAL OPTICS FIELD

The geometrical optics field, which is the sum of the Teading
terms in the.asymptotic expansions for the incident and reflected
fields, is a part of our h1gh frequency solution for the edge
d1ffract1on. The asymptot1c expansions for the 1nc1dent and

ref]ected f1e1ds are presented in th1s chapter, the results are



not new.and:so they may-be familiar to the reader, but they are

included here for- the sake of completeness and continuity in the . -

discussion.

.. Let the smooth, curved perfectly-conducting surface S be a
part of our curved edge structure; this surface is defined by
the positionayectorﬁRs(u,v), where u and v.are the curvilinear .

. surface coordinates with U- v=u-n=v-n=0in which the
superscript."." denotes a unit vector and n is the unit vector . .

normal to S, see Fig. 2.

0

Fig. 2. Geometry assoc1ated with the reflection by a
curvedsurface 'S, _

A h1gh frequency e1ectromagnet1c wave propagat1ng through an
1sotrop1c, homogeneous med1um is 1nc1dent on S The 1nc1dent and
reflected f1e1ds and quant1t1es assoc1ated w1th them are denoted

7



by the superscripts (or subscripts) i and r, respectively. The

boundary condition on the electric field at S is
(2)  Ax[E(R)+E"(R)I=0.

Since we are interested in an asymptotic high frequency solution,
the incident and reflected fields are expanded in Luneberg=Kline

series for large w

' L ©» E(R)
(3)  ER e SR yoom
‘ w0 (ju)
where an e‘j“’t time dependence is assumed and k = w/Vp with v_ the

p
phase velocity of the medium. The electric field is a solution

of

(4) (7 + 1K 3)E =0

subject to the condition that
(). v.E=0.

Substituting Eq. (3) into Eqs. (4) and (5) and equating the
coefficient of each bower of w to zero, one obtains the eikonal

equation

(6) lop[ =1,

together with the transport equations



(7a) %§~E6-+ %—(v w)fb =.0,
3 1, 2 v - 'p 2 - A
(7b) S E oty (VWE =, m=1,2,3.,

whose solutions must also satisfy
T PUE P T S ‘ o

(8a)  rsuesE

"

0,

Camn )
o)
o
~
wn >
L]

aa
n

m VpV * Em_'ls m = 15293 ":",

where V¢:=yg»@ unit vector in the direction of the ray path, which .
is normal to the wavefront y(R) = constant, and s is the distance
along the ray path.

We are interested here in the solution at the high frequency L

limit, where the asymptotic approximation for E reduces to

9) E(s)we'jkw(sffo(s)

Equation (7a) is readily integrated, and after some hanipu1atioﬁ

one obtainsm’]5

A T P1P2 .
(10) ~ E(s) = Eo(o)‘,(p],rs)(pz*_s)

in which s=0 is taken as a reference point on the ray path andlp], |
pp are the principal radii of curvature of the wavefront_at s=0.

In Fig. 3 P and Py are shown in re]ation§hipqto the,rqyskand‘



wavefronts, Employing the Maxwel] curl equation v x F = ~JoH, it
follows from Eq, (3) that the Teading term in the asymptotic ap- .

proximation for the magnetic field is

-~

(”) Ha YCSXF

where Yc“=,/e/u,1's the characteristic admi ttance of the‘medium, and -
E is given by Eq. (9). '

Employing Eq. (6),

dzpr—v:p-gds-—'ds;

consequently,

(12) ¥(s) = y(o) + s,

CAUSTICS

 Fig. 3. Astignatic tupe of rays,

10



From Egs. (10), (12) and’(9) one obtains the leading term in the

asymptotic expansion -

09 E) Tyt O et
which-is.recognized-as the geometrical optics field; this could have
been deduced from classical geometrical optics employing. power.
conservation in the tube of rays shown in Fig. 3.

It is apparent that when s = -p; or -p, Eq. (13) becomes infinite
so that it is no longer a valid approximation. The congruence of
rays at the lines 1-2 and 3-4 of the astigmatic bundles of rays is
called a caustic. As we pass through a caustic in the direction of
propagation the sign of p+s changes sign and the cerrect phase shift
of +n/2 is introduced naturally. Equation (13) is a valid high
frequency aeggoximation on either side of the caustic; the field at
a caustic mhsf be found from separate considerations]6’17.

Returnihg now to our prob]em of reflection at thexperfectly-
conduct1ng surface S, the 1nc1dent f1e1d is known thus the [ (ﬁ
are known, The _r(ﬁ') are found by us1ng the ‘boundary condition.
We take the surface S. as -the” reference po1nt on the reflected ray
s0's = 0 there, furthermore 1e;~us mod1fy our notation for. the
incident field at pointlcfgref]ection'QR oh S, denoting it by
Fd(QR). Now substituting Eq. (3) into Eq. (2) and equating like

powers of w,

N



L k(e . dke(o) T
(18)  noxEi(@de R wn xE(o)et T = 0, MF0,1,2,3 e

vathis eqdation is tn’be satisfied.for 511 m;'then
(15) ¥;(Qp) = v.(0),

and since the above is true for every point on S,

(16a)  u - v (Qp) = u -~ vy lo),

(16b) v+ 9, (Qp) = v * v (o),

or
(17a) &1 .0=5".4,
(a7m) ST .y=8".y.

Thus s and s" have the same prOJect1on on the p1ane tangent to s o

at QR' wh1ch 1eads us to the law of ref]ect1on
The plane of incidence is defined by the incident ray and-the‘;t“
normal to the surface at the point of incidence. -The reflected ray
lies in the plane of incidence and the angle of ref]ectfdn'er'equa1s5
the ang]e of 1nc1dence e ’ where both angles are measured from the

norma] to the surface as shown in F1g 2.

12



To determine E:(d) it is convenient to introduce the unit vector
e, perpendicular:to the plane of incidence and the unit vectors e,
and e", which are para11e1 to the p]ane of 1nc1dence and perpend1cu1ar

-l

to ' and s" s respect1ve1y, so that

in each case. Then we may set

(19) Eb =e Eon te E

at the surface. Employing Eqs. (15) and (19) in Eq. (14) we obtain

‘ _ w_ Fl *1Ar soa
(20) ' E;(O) - EO(QS) « R= Fo(os) [“ n o e_Le_L]s
where R is the dyadic reflection coefficient. In matrix notation
the ref]ect1on coeff1c1ent has a form familiar for the ref]ect1on
of a plane e]ectromagnet1c wave from a p]ane, perfectly-conduct1ng

surface

(1) - R={- ,
| ‘ 0' -1

Coesm
.',{\,

This is not surpr1s1ng if one cons1ders the local nature of h1gh-
frequency ref]ect1on, i.e., the phenomena for the most part depends

on the geometry of the'problem in the immediate neighborhood of QR.'

13



Thus the surface S can be approximated by its tangent p1ane at QR,
and the wavefront of the 1nc1dent ‘field by a p]ane wavefront
It follows from Eqs. (13), (15) and (20) that the geometr1ca1

optics reflected electr1c field

rr
@) Ee) =T - T [ ks

y (o7¥s) (pyts)

in which“b; and p; are the principal radii of curvature of the
reflected wavefront at the point of reflection QR. Ih Appendix;I' -
these radii of curvature are found to be a function of the incident-
wavefront curVathre, the éspect ef incidence and the curvature of

S et QR. .In this appendix it is shown that the expressions for'”.

p;‘ arid'_ pg can be put into the form

where p} and p; are the principal radii of curvature of the incident

wavefront at Qp and

22"1 "2

1 1 "
=% [( - "1") » XU Xge ”z’xz UpakyeUys0 ’R]’RZ]
with i] and iz unit vectors in the principal directions of the

14



incident wavgfront,:ﬁ1~gnd_ﬁ2,unit,vectors in'theiPrjncipglidirgqtjgns
of S at QR, and ngRé:the principa] radii;qf:curvatgre}qf,§;at QR. o
Equationsv(23a3b)_are_reminiscent of the §jnp1e“mirrbr formulas of
e]ementary.physics; this is particularly true in.the case of an'
incident spherical wave, where p: = p;_é s' and f1, f2 are focal
distances independent-of the range of the source}oﬁ‘the.spherical o
wave. | | |

In princjple the.geomgtrica] optics_appro;imatiqns canlbe .
improved py_findipgkthg'hjghgr order terh; F?(R),»ngﬁ), oo jn: |
the réf]ected fié]d, but in general it is not easy to obtain fhesg -
froﬁ Eds. (7b), (8b), (iq)wand‘(IS)-, Furthermore, ;Hesg_;efms éo_,_{
not correct'thelsgrious érrqfs'iﬁ the geometricq]kqbtics:field 'ﬂ :
resulting from the discéntinuitie; at ref]ecfion andzéhﬂdgw;boﬁ;dgries.
In the next section we will construcf high-frequency appro#imAtions

for the edge diffracted field which in combination with the geometrical

optics field yield a continuous total field. -

ITI. THE EDGE DIFFRACTED FIELD

The smooth surface S has a curved edge formed by a discontinuity.
in its unit normal vector. Points on the edgé"aregdef{ned:by the -
position vector Fl When an electromagnetic wave_isdincidenttonl
thé‘edge a diffracted wévé emanates from the édge. Ihe.jeaginéﬁuiiji
term in the :high frequency approximation for the electr{c‘field is

assumed to have the form
'Jk‘Pd(.R-)
=d,= e —
(24) E (R) N — A('ﬁ) .
- ’ Jk SN TR

15
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Substituting the above expression for E- into Egs. (4l:ahd (5), and

again equating the coefficient of each power of w to ierd; one obfafﬁs

Toaverd

5)  Iwf=1, o
@) & xsl(PyE=o,
(27) s-A =0,

and from the discussion in the preceding section, it follows that

=d \ - -
(28) E (S) = Ed(o 1[13£§TT;T:§7- e JkS

in which

' [ '.kw (0')
tdeor) = O ;T
(0*) f?-e

and s is the distance along thefdiffraéted ray from a reference point

(29)

0' which is not a caustic of the diffracted ray, see Fig. 4.

It is convenient to locate the reference point of ;hendifffacted
ray at the edge point QE from which it emanates; howéver the edge isb
a caustic of the diffracted field. On the otHéF%hand;'it°iS'c1eaF':‘
that T9(s) given by Eq. (28) must be independent of the location

costpe

of 0', hence
1im fd(O') V;T exists.
pl»O ) ) . . o
Furthermore Ed(s) is proportional to the incident electric field at

QE’ so we may set

16



Ssoij' | 11m (o') qf';'- ' (Qp) '. D,

where D is the dyadic edge diffraction coefficient, which is analogous

- to the dyadic reflection coefficient of the preceding section.

DIFFRACTED
RAY

Fig. 4.
_ Thus the edge diffracted electric field

(31) td(s)'mf‘ 'Ef W e~Jks

in whjcﬁ p-is the d1stan_ce between the caustic at the edge and the
second caustic of the diffracted ray.

In appendix II it is shown that

A'A
1.1 1.1 N (s'-s)
(32) ;""‘*_‘?'.—"'. v.

17



wherein pl is the radius of curvature of the incident wavefront at .
QE taken in the plane containing the incident ray and e is the unit
vector tangent to the edge at Qp, ﬁe is the associated unit normal ..
vector to the edge directed away from the center of curvature, a>0
is the radius of curvature of the edge at~QE, and'sbyis the angle .-
between the incident ray and the tangent to the{edge.ascshown in’
Fig. 5a. Equation (32) is seen to have the form of:the elementary s
mirror and lens formulas in which f is the focal distance.. If p is-
positive, there is no caustic along the diffracted ray path; however
the .caustic distance p is negative 1f.the:(second)“caustic lies
between QE and the observation point. The diffracted field calculated
from Eq. (31) is not valid at a caustic, but as one moves: outward from
QE along the diffracted ray, a phase shift of +n/2 is introduced:
naturally after the caustic is passed as in the case of the geometrical
optics field.

:Since the high frequency diffracted field has a caustic at the

edge Eq. (31) is not valid there, and we can not impose a condition at

v._,QE to.determine D-in a manner similar-to that used.to find R. Never-

theless, the matching pf the phase functions at the edge

'(33) (%) = wp(0g) = vgl0g)

is a necessary cond1t1on which y1e1ds some usefu] 1nfonnat1on about

the so]ut1on. Since the phase is matched at each po1nt on the edge,

1t fo11ows from Eq. (33) that

e vy (Qp) = €r mp(Qp) =l vwd(QE),

18



j.e.y

() e .s-=e-s"=e.5.

The angle of:incidence in this case is B, defined earlier and shown
in Fig. 5a, cos 86‘=~§ -1§i, 0 <8, g_n/z.- The angle of diffraction-
By is- the angle between the diffracted ray and the tangent to the =~
edge at-Qg; cos-By = e-5,0 < Bg < m/2. Keller's Taw of edge dif-
fraction follows from Eq. (34).

The law of edge diffraction: the angle of diffraction Bq Ts equal
~to the:angle of incidence By» SO that the diffracted rays emanating
~frothE form.a.cone whose half angle is Bo and whose axis is the -
tangent:.to the edge. - The incident ray and the ray reflected from

v thefsurfaceﬁat“QE a1$oﬂ1ie on the cone of the diffracted rays.

The form of the dyadic diffraction coefficient will be treated.
next: If .an edge-fixed coordinate system is used to describe the
‘components of the.incident and diffracted fields, it has been found
that=the dyadic diffraction coefficient is the sum of seven dyads[18,19];
in matrix form this means that the diffraction coefficient is a 3 x 3
matrix with 7 non-vanishing elements. However from Egs. (8a) and (27)
it 1s apparent that 1f a ray-f1xed coord1nate system were used in p]ace
of the edge f1xed coordvnate system, the diffraction coefficient wou]d
reduce to a.é X 2 matr1x, so that no more than four dyads would be
required. A further reduction in the number of dyads can be anticipated

if the proper ray-fixed coordinate is chosen. Recall that this kind of

simplification is achieved in the case of the dyadic reflection coefficient,
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if the incident and reflected fields are resolved into components
parallel and pérpendicu]ér to the planes of incidence and reflection,
respectively, where the piane of refléétion, which contains the normal
to the surface and the reflected ray, coincides with the plane of
incidence. Analogous planes of incidence and diffraction can be defined
in the;pyesent;case;i;:;,

The plane of incidence for edge diffraction, referred to simply
as the edge-fixed plane of incidence henceforth, contains the incfdent
ray and the unit vector'é féhgent.to the edge at the point of incidence
QE' The plane of diffraction_cbntains the diffracteq ray'and e.
These planes are depcited"%d‘Fig. S;Tthey are'azimutha1'§1anes with
respect to the polar axis qontéining-é, and their positions can be
specified by the angles s' and ¢ shown in Fig. 5b. The unit vectors
$' and $ are perpendicular to the edge fixed plane of incidence and
the plane of diffraction, respectively. The unit vector §i = s' is
in the directio§5of incidenée~at the edge;and the unit vector s is in
the direction of"diffraction.~ The unit vectors 8! ‘and B are parallel
to the edge fixed plane of .incidence and thg blane of diffraction,

respectively, and

(35a,b) éé =s' x 8', 8 =5 x,$.,

Thus thé coordinates of the diffracted ray (S’"'Bo’¢) are
spherical coordinates and so are the coordinates of the incident ray
(s',eo,¢'), except that the incident (radial) unit vector points toward

the origin QE'
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According to Keller's ‘theory[3] the diffraction. coefficient for
a curved edge may be deduced from a twofdinensiopa1=canonica1~pnobﬂem:
involving a straight edge, where the cylindrical sprfaCES wﬁich form
the edge are defined by the boundary curves depictéd {nﬁFig;vsb. In:
the present discussion the edge may be an ordinary edgé"formea by a
discontinuity in the unit normal vector, an edge formed-by: §~ discontinuity
in surface curvature, or an edge formed by a discohtinuityain*some:higher .
order derivative of the surface. : _ | :

Consider the z-components of the e]éctfic and magnétic ffe]dsiin}
the presence of this surface with an edge

d

A, | r N ‘ o
(36a) E/=E, +E +E , A ) . :

d

ol r
(36b) H. = Hz + HZ +' HZ,

z
they satisfy

(37) (¥ + k?) = 0

H, - |
together with the soft (Dirichlet) or hard (Nehmaﬁn).bouhdary
conditions

aH

= —Z -
(38,39) E,=0or — 0,

respectively, on the boundary curve and the radiation condition
at infinity. The 3/5n is the derivétivé along the normmal to thé u

boundary curve.
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- Starting with the high frequency solutions for the z-components

" of the diffracted field -

d
z

E

(40) 4

J

N

&

e-3kv(R)

A(R), "

and-ssubstituting these into Eq. (37), and employing the methods

described earlier,. the: asymptotic solutions may be put into the form

d

£,

(41) .
HZ

gl

Z

i
H,

D¢

P N I o~Jks
’ Slp+sj

Dy

o

in which Ds is referred to as the soft scalar diffraction coefficient
obtained when the soft boundary condition is used, and D, is referred
to as the hard scalar diffraction coefficient obtained when the

hard boundary condition is used.

Since

i_ s

(42a) EZ = EB. sin 8, »

0
(42b) H; =Y E¢. sin g,
. L !

d_ d _.

(43a) E, = -EB0 sin g,
d _ d

(43b) Hz = -Yc E¢ sin By

with 1/YC = Zé iy u/e the cﬁaracteristic impedance of the medium,

23



it follows from Eqs. (41), (42), and (43) that
d i

| EBO Es& sl S . 3
= -Jks |
(44) d el o, JE{‘;’TsT ¢n
6 ¢

'consequently, the dyadic diffraction coefficient for an ordinafy (of
higher order) edge is a perfectly-conducting shrfaéé can be'exprééséd
simply as the sum of two dyads | | ' o

~

(45) D= -8B, D5 - 8 Dy

to first order. Since Dg and Dy are the ordinary scalar diffraction
coefficients which occur in the diffraction of acoustic waves which en-
~counter soft or hard boundaries, we see the close connection between
electromagnetics and acoustics at high frequencies. Also, it follows that
the high frequency diffractiop by more general edge structures, and by thin
curved wires can be described in the form given by Eqs. (44) and (45).

The balance of this report is concerned with finding expressions
for.Ds and Dh which can be used in the transition regions adjacent'to
shadow and reflection boundaries in the case of diffraction by an
ordinary edge. Recently Keller and Kaminetzky[20] and Senior[21]
have obtained éxpressions for the scalar diffraction.coefficients in
the case of diffraction by an edge formed by.a discontinuity in
.surface curvature and Senior[22] has given the d&adic (or matrix)

. diffraction coefficient in an edge-fixed coordinate system. Keller
and Kaminetzkey[20] also have given expressions for the scalar
diffraction coefficients in the case of higher ordef‘edges.

The diffraction by a wedge will be considered first; the: straight
. edge serves as a good introduction to the more difficult subjéct of -

diffraction by a curved edge. As noted earlier, the dyadic diffraction
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coefficient can be found from the asymptotic ;o]ution of. several
canonical problems, which involve tHe illumination of the edge by
different'wavefronts. It is not difficult to generalize the resu1t1ng
eib;ess1ons fbr the sca]ar d1ffract1on coeff1c1ents to the case of
111um1nat1on by an arb1trary wavefront ‘

A. The Wedge

When a plane, cylindrical, or conicé] electromagnetic wave is
incident on’a perfectly-conducting wedge, the solution may be = -
-~ formulated in terms of the-components of the electric and magnetic -
field parallel:to the edge; we will take these-to be the z-components.
- In.the case of ‘a spherical wave it is convenient to use thefz-components
“of the electric' and magnetic vector potentia]s. These z-components’
:hay?befkepiéSented.by eigenfunction series obtained by the method of
"~ Green's functions. The Bessel-and Hankel functions in the eigenfunction
series are replaced by their integral representations and the series.
are then summed:Teaving the iﬁtegraI representations. Integral-
representations for the other field components in'the edge-fixed
coordinate system are then found from the z (or edge)-comﬁonents i
except in;the?Case'of:thé'incident spherical wave, where the ‘integral
representations of the field components are obtained from the z-components
of“tﬁe-vector~potentials. These integrals are approximated asymptotically
by the Pauli-Clemmow method of steepest descent[23], and the leading
terms are retained. The field components are then transformed to. the
?Y’ray—fixed.coordinate'éystem described previously. - The resulting expression
for. the-diffracted field can be written in the form of Eq. .(31) which
-+ makeés it possible to deduce ‘the.‘dyadic diffraction coefficient D..
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The asymptot1c solutions outlined in th1s paragraph are presented in
deta11 in reference [8] ’ T

- Summar1z1ng the resu]ts g1ven in, Reference [8]

(46) ) W F (@) - T3 As)e “iks

in which A(s) describes how the amplitude of the field Varies along

- the diffracted ray;

( . . . - S

1 for plane, cy]indrtcal and conicaT wave

S incidence (in the case of cylindrical wave
S - incidence, s is replaced by -r = s. sin Bys

(47) _ A(s) =)  the perpendicular distance to the edge),

Sl

| . Pca Cipa e.
G for spherical wave: incidenc

‘1£"%Silaws fkbﬁ'ES. (32) that'p - p for ‘the ‘wedge. In the case ot
- p1ane, cy11ndr1ca1 and con1ca1 waves pA is 1nf1n1te and in the case
of spher1ca] waves p = s'. The dyad1c d1ffract1on coeff1c1ent
D(s s ) has the form g1ven in Eq. (45), which supports the assumpt1ons
1ead1ng to that equat1on. T ‘ -

' If the f1e1d po1nt is not close to a shadow or ref]ect1on
boundary, the sca]ar d1ffract1on coeff1c1ents

(a9) - 'E

(0,6'38) = o D I
D (9,9'38,) = —— ~ —To-o'\
-;gfxff-f¢°~"'n 2nk sin" 8 COS”%-4~COS“($L%—) cos %-- cos (QLELJ

for all four types of 111um1nat1on wh1ch 1s 1mportant because the
d1ffract1on coeff1c1ent shou]d be 1ndependent of the edge 111um1nat1on
away from shadow and reflection boundaries where the plane surfaces

forming the wedge are ¢=0 and ¢ = nw. The wedge angle is (2-n)r; see

26-



Fig. 55. This expression becomes singular as shadow or reflectioﬁluh
boundaries are approached, which further aggravates the difficu]ties
at these boundaries resulting from the discontinuities in the incident
or reflected fields. The above scalar diffraction coefficients have
been. given by Keller[3].
Grazing incidence, where ¢' = 0 or nrm must bé considered separately.
In this case DS = 0, and the expression for Dh given by Eq. (4) must be
multiplied by a factor of 1/2. The need for the factor of 1/2 may be
seen by considering grazing incidence to be the 1imif of oblique
incidence. At grazing incidence the incident and reflected fields merge,
so that one half the total field propagating along the face of the wedge |
toward the edge is the incident field and the other half is the reflected
field. vNévérthe]ess in this case it is clearly more convenienf to rééard
the foté] field as the "incident" field. The factbr of 1/2 is aISo>
apparent if the analysis is carried odt with ¢' = = 0 or nm. “ . A
Comb1n1ng Egs. (31), (45) and (49) it is seen that the d1ffracted

field is of order k- -1/2

with respect to the incident and ref1ected f1e1ds.
At high frequencies this means that the diffracted field is 1n gengra]
weaker than the incident and reflected fields, at aspects not c1dse fo
shadow and reflection boundaries. | |

To simplify the discussion, the wedge angle has been restricted )
that 1 < n < 2; however, the solution for the diffracted field may be

applied to an interior wedge where 0 < n < 1, The diffraction coef-

ficient vanishes when

s1'n1-Tr-‘-= 0;
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hence for n = 1, the entire .plane, |
- n =1/2, the interior right angle,
_ ; i/M M= 3,4,5 -, interior acute ang]es, .
the boundary value problem can be solved exactly 1n tenms of the 1n-.
cident field and a finite number of reflected fjelds, wh}ch mayube
determined from image theory. Moreover as ne+ 0, even-with the{11'~(
presence of a non-vanishing diffracted field, thefphenomenen i; _‘
increasingly dom1nated by the incident and ref]ected f1e1ds. -
Returning now to the subject of exterior edge d1ffract1on the
_tofal field changes rapidly in the vicinity of shadow and ref]ecp1on
boundaries. In the case of the shadow boundary its behaVior is
predom1nant1y that of the incident field on the 111um1nated s1de,
whereas it is that of the d1ffracted field, emanat1ng from the edge,
on the shadow side. For examp]e 1f the wedge is 111um1nated by:a<p1ane
~wave perpendicular to its edge, the total field veries.frbm”an
essentially plane wave behavior to a cylindrical wave behaviof iﬁ
the vicinity of the shaqdw bquhdeny.; These regidns of rapfd~ffeld
chaﬁge adjacent to the shadew and ref]ecfion boundaries are »

referred to as transition regions. In the trqgsitibn;regﬁons'the

magnitude of the diffracted field is comparable with the ineident

or reflected field, and since these fields are discontinuous at _
their-boundaries, the diffracted fields must be discohtieh;hs.af
shadow and reflection boundaries for the tofaT f{eid‘to Be”continuous

there.
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An expression for the dyadic diffraction coefficient of a
perfectly-conducting wedge which is valid both within and outside

the :transition regions[8] is provided by Eq. (45) with

e-j.%
50 D (¢590'; = =
(50) ﬁ(¢ ? Bo) ZnJE;E.sinBo ”
X cot(—%kﬁl)F[kL a+(¢-¢')Pcot(1’J2%ﬂ) FIKL a”(¢=6')]
$Wcot,(3il%%$ll) FLkL a+(¢+¢')]+cot.(3:é%ifll)F[kL a (¢+4')]
where > w |
(51) F(x). = 2i[X ed¥ J L
X

in which one takes the principal (positive) branch of the square root,

and

(52) at(424') = 2 cos? (2“"N%£(¢;¢'))

in which N are the integers which most nearly

satisfy the equations

(53a) ZnnN+-(¢i¢') =

and

(53b) 2N =(¢+¢"') = -n .

The above expression for the soft (s) and hard (h) diffraction

coefficients contains a transition function F(X) defined by Eq. (51),
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where it is seen that F(X) involves a Fresnel integral. The

magnitude and phase of F(X) are shown in Fig. 6, where X = kla.

(54a)  |F(X)] <1 .

(54b) 0 < phase F(X) < /4 .
When

(55) X > 109

F(X) '_\J_ ] . 1
If the arguments of the four transition functions in Eq. (51) exceed
10, so the transition functions can be replaced by unity, Eq. (50) f.

reduces to Eq. (49).

(56) X = kL a*(¢¢")

in which L is a distance parameter, which was determined'fOr several

types of illumination. It was found that

S §in230 for plane wave incidence,

(57) L= <{}{}?r for cylindrical wave incidence,

§§§l§r sinzso for conical and spherical wave
incidence,

where the cylindrical wave of radius r' is normally incident on the

\

edge, and r is the perpendicular distance of the field point from
the edge. A more general expression for L, valid for an arbitrary

wavefront incident on the straight edge, will be determined later,
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The largeness parameter in the asymptotic approximation used to
find Dﬁ is kL. For incident plane waves the approximation has
been found to be accurate if kL > 1.0, unless n is close to one,
then kL should be > 3.

ai(¢ + ¢') is a measure of the angular separation between the
field point and a shadow or reflection boundary. The + and - super-
scripts are associated with the integers Nt and N7, respectively,
which are defined by Eqs. (53a,b). For exterior edge diffraction
N =0or1andN =-1,00r 1. The values of N* as fhnctions of
nand 8 = ¢ + ¢* are depicted in Figs. 7a and 7b; these integers are
particularly important near the shadow and reflection boundaries
shéwn as dotted ‘lines in the figures. It is seen that N* do not
change abruptly with aspect ¢ near these boundaries, which is a
desirable property.  The trapezoidal regions bounded by the solid
straight Tines represents the permissible values of g8 for 0 < ¢,
¢' <nmwith 1 <n <2,

At a shadow or reflection Loundary one of the coténgent functions
in the expression for Dﬁ givein by Eq. (50) becomes singular; the other
three remain bounded. Even though the cotangent becomes singular, its
product with the transition function will be shown to'be bounded.
However let us first note the location of the boundary at which each
cotangent becomes singular; this information is presented compactly
in Table 1.  The locations of the shadow and reflection boundaries when
only one surface of the wedge is illuminated and when both surfaces of

the wedge are illuminated are shown in Figs. 8a, b, ¢ below Table 1.
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Fig. 7. N', N” as functions of g and n.
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TABLE 1

The:cotangent is singular - value of N -
when at the boundary

m+(¢=-¢") ¢= ¢' - m, a SB.
cot ( n ) surface ¢=0 is shadowed N =0
cot -(¢-4") ¢= ¢' + m, a SB -
n - surface ¢=nwv is shadowed N-=0
- ,%+(¢+¢.2 ¢ = (2n=-1)n=¢"', a RB |
cot ( n ) reflection from surface ¢=nn | Nf =1

1=(¢+¢") o=m - ¢', a RB -
n _ ref]ectipn from surface ¢=0 N =0

'
m—
\\\\ 4b

~N
~
+

(b)

Py —m

’IIIIIIIII' o

>
/

T
(2n-N7T—0'

n
(c)

Fig. 8. Shadow and reflection boundaries for different
angles of incidence ¢'.
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Since discontinuity in the'geometrical optics field at a shadow or
ref]ect1on boundary is compensated separate]y by one of the four terms
in the d1ffract1on coefficient, there is no problem in calculating the

. field when two boundaries are‘c1ose to each other or-in juxtaposition.
'This occurs when ¢' = 0 or nw and when ¢' fsaeldse fb'nn/Z'with'n ~ T,
The shadow and ref]ect1on boundar1es -are rea] 1f they occur in physical
space, which is in the angu]ar range from 0 to nn, outs1de th1s range
- they are virtual boundaries. "If a v1rtua1_boundaryxjs_c]ese to the
- surface of.the wedge, as it is when ¢' is c]qse.to;h'or (n-1)n, its
"transition‘region may extend ihto'phyeical spece;hear the wedge and
significantly effect the calculation of the field there. The value
of'N+ or N at each boundary is included in Table 1 for convenience;
as noted earlier, this is a stable quantity in«the transition regions.
Next it will be shown that the product. of the cotangents and the
transition funct1ons in Eq. (50) is f1n1te, even at the shadow and
reflection boundar1es. To facilitate’ the discussion let

(58) B = ¢ = ¢' .

In the neighborhood of the shadow or reflection boundary

(59) g=2x N F (n-e)y

where € is positive in'the"reg{on ﬁ]]ﬁmihated by the incident or
reflected field. The * superscript ef N is directly associated with
the + sign in the equatieh above and the + sign in the argument of

the cotangent below{
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For ¢ small,

‘ T+ B 2n -
(60) cot( 5 )_’\; Pl

and

+ 2( 2unt-g) &
(6]) a—(B) = 2 cos 7— ~ ?-—
The transition function F(X) is given by Eq. (51) with X = kLa*(g).:

We are concerned with the case where kL is large but X is small, so that

< T « T [
(62) F(X) g_g‘w X - 2Xe 4. %-Xz e 4) e \4 .

“From Eqs. (60), (61) and (62),

(63) cot(fﬁ—s—) FIKL a*(s)] o~
| — in iz
le(.’anL sgn e - 2kLee 4) e 4

for ¢ small. It is clear that the above expression is ffnite but
discontinuous at the shadow and reflection boundaries. .These
discontinuities compensate the discbntinuity in the incidént of
| reflected field at these boundaries, as wf]l be shown in the
paragraphs to follow.

The high frequency approximation for the total field being con-
‘sidered here is the sum of the geometrical optics field and the
asymptotic approximation of the diffracted field. It is convenient -
to give'the components of these fields in the ray fixed coordinate

system described on page 213 hence it will be necessary to transform
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the. components of the reflected field given in the first section to
this coordinate system. We will begin by carrying out this trans-
formation, which is facilitated by employing matrix notation.

From Eqs. (21) and (22) the reflected electric field

En 1 o] [¢
(64)] | ~ [ ] ',.'} £(s),
3 o 1] [e]|

whgre the sdbScripts # and L denote componehts parallel and per-

-~

~

pendicular to the ordinary plane of incidence and

i i
| ey 0 s
(65) £(s) =[— 1 21 e~Jks
J (p7+s)(p,ts) :

Note that for the plane surfaces forming the wedge, p; = p}, p; = p;,
where p}, p; are the principal radii of curvature éf'the‘incident
wavefront at the point of reflection. Equation (64) may be written

more compactly as

(66) E" ~ RE' f(s) .

The ordinary plane of incidence and the edge-fixed plane of incidence
intersect along the incident ray passing through QE; The ordinary
plane of incidence, the edge-fixed plane of reflection, and the cone
of diffracted rays intersect at the ray reflected from QE' The edge~
fixed plane of reflection contains the tangent to the edge and the ray
ref]ected from QE. These planes and their lines of intersection are

depicted in Fig. 9.
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Fig. 9. Edge fixed plane of incidence and reflection.

Let the angle between the edge-fixed plane of incidence and 'tr'\e
ordinary plane of inci der_)ce be -a. | In Appendix III it is shown th'at
the angle ~between. the edge-fixed plane of reflection and the ordin'ar-y
plane of incidence is a. The compongnts of the incident electric field

parallel and perpendicular to the edge-fixed plane of incidence are

(67a) E;. =€ cos a - E sina
0
(670)  E,i = E, sin o+ E cosa

or in the more compact matrix notation
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(68) £ = T(-a)E!

~ where
cosa -Sina
(69) T(-a) =
sina  COSa
From Eq. :(66) the reflected e]ecffic field
(70) E" ~ R E'f(s) H(e)

in the neighborhood of the reflection boundary

(71) H(e) = E- (] + sgn ¢)

is the unit step function.
" The components of the reflected f1e1d paral]el and perpendicular to

the edge-f1xed plane of reflect1on are g1ven by
(72) T(a)E" = [T(a)RT(-a) ' I[T(-a)E' T £(s) H(e)

From Eq. (69) and R as given in Eq. (21),

(73) T()R T(~a)"" =

hence from Eqs. (68), (70), (72) and (73)
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r i
EB EB'
(74) Of %— [5 _?] _° f(s) (1 + sgn ¢).
: r i
E¢ E¢.

The diffracted field close to the reflection boundary at ¢ = n-¢'
is given by Eq. (31) together with Eqs. (50) and (63)

e NS IR
75) | ozl {1 o] | |l e -dks (o0 o 4
ed Z [0 -1] [¢i |sine T s) g
o o' 0 Js(og * s

+ terms which are continuous at this boundary.

For the total field to be continuous at the ref]ectibn boundary,
the sum of the discontinuous terms in Eqs. (74) and X75) must vanish;
hence
[T |
(76) - st oo ¢ + f(s) = 0,

ols(pg +s)

so that the distance parameter

. Ci o
s(pL +s) p} p; sin“8,

(77) L = —= -
p;(o} + S)(p; + §)

The behavior of the incident and diffracted fields at the shadow
boundary ¢ = = + ¢' may be treated in the same manner. . After passing
beyond QE’ the electric field of the incident ray in the neighborhood

of the shadow boundary is

E',

X :

(78) Ol % [ﬁé _?] Ol f(s) (1+sgne).
1 1
E, E,

The diffracted field close to this shadow boundary is
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.i
? e-JkS
s(pg * 5)

Y

sgn ¢ +

+ in terms which are continuous at this shadow boundary.

For the total field to be continuous at the shadow boundary, the sum
of the discontinuous terms in Eqs. (78) and (79) must vanish, and again
it is seen that L is given by Eq. (77). Equation (77) is also obtained
when the leading term in the high freq&ency approximation for the total
field is made to be continuous at the other shadow and reflection
bodﬁdaries. Aléo Eq. (77) reduces to Eq. (57) for the several types
of:%ﬁcident waves for which formal asymptotic so1ution§ were derived.
We conclude therefore that the expression for L giveﬁ'by Eq. (77) is
correct when the wedge is illuminated by an incident field with an
arbitrary wavefront whose principal radii of curvatuf; are p: and p;.
Since kL is the large parameter in the asymptotic approximation,
B, Can not be arbitrarily small, which precludes grazing and near grazing
incidence along the edge.

" The commentary on Eq. (49) in the case of grazing incidence along the
surface of the wedge also applies to Eq. (50), i.e., the diffraction
coefficient Dh-is multiplied by a factor of 1/2 and the diffraction
coefficient DS = 0.

If n=10r2, it is apparent from Eq. (52) and the integral values

of N* that

(80) a*(p) = a(g) =2 cosz-g- .
Thus
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(81) cot( )F[kLa ()] + cot(2 )F[kLa (B)]

[cot(?+8)-kcot (2n ] F [kLa(B)]

" =2 sin

F [kLa(g)] ,

L

n

w 8

cos - cos -

and from Eq. (50) the expressions for the scalar diffraction coefficients

reduce to

(82) D, (¢,4"38,) =
h

s T
-JZ

e "sing | Flkia(s-6")] 7 Elkta(gte')]

nJ2rk 10 8 | cos X . cos (9;¢') cos I - cos (9:9,‘)

-

The edge vanishes for n = 1 and the boundary surface is simply a perfectly-
conducting plane of infinite extent. It is seen that the diffraction
coefficients and diffracted field vanish for this case as eXpected;

If n = 2 the wedge becomes a half plane and ' \

(83) DS(¢’¢';BO)‘=
h

_e-J o F[kLa(¢-¢ )1 F[kLa(¢+¢:)]

2J2nk sin g | cos ('(LL cos (%L)

S B

which can be written in the form
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(84) D (9,0'38,) =
s .

s T
iz : 2f¢-¢'
4 Jj2kL cos (
's'?n B ,‘%[f(k"’q"q") € )Sgn(ﬂ+¢'-¢) ¥

0
Jj2kL cos2 li%ill
7 TkL,o+e')e sgn(m-¢" -¢5] s
where
© _.2
(85) f(KL,g) = J e VT 4

[2kL | cos gJ

a Fresnel integral.
When the diffraction coefficients given by Eq. (84) are used to
calculate the fields diffracted by hard or soft half planes il-

Tuminated by a plane wave, L = s s1'n2

Bo and the result is in agreement
wfth a solution obtained by Sommerfeld[9,24]. Since Sommerfeld's |
sd1ution is an exact solution, we kndw that our solution is éxact

for this case too. If these half planes are illuminated by a |
cylindrical wave whose radius of curvature is r', L = rrf/(r#r') ih
which r is the perpendicular distance from the field point to the
edge, and our solution reduces to an approximate solution deduced by.
Rudduck[25] from the work of Obha[26] and Nomura{27]. Rudduck and his

coworkers have applied this solution to a number of two-dimensional

antenna and scattering problems with good accuracy.
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In this section on diffraction by wedges, diffraction coefficients
have been obtained which may be used at all aspects surrounding the
wedge, including the transition regions adjacent to shadow and
fef]ection boundaries. The diffraction by curved edges in plane

surfaces and curved sheets will be considered in the next section.’

B. The Curved Edge

The diffraction by curved edges will be treated in this.section.
As in the preceding section our solution is based on Kei]er‘g ﬁethod
of the canonical problem. The justification of the method is thatﬁ“
high-frequency diffraction like high-frequency ref]ect1on is a 1ocai
phenomenon, and locally one can approximate the curved edge geometry
by a wedge, where the straight edgé of the wedge is tangent to the‘;
curved edge at the point of incidence QE in Figs. ba,b, and its p1§ne
surfaces are tangent to the surfaces forming the curved_edge. The
reflection coefficient for the curved surface derived in Section Ii,
could have been found by this method, choosing the réf1ection of p]}né
waves at a plane surfaée as the canonical problem. With these
assumptions, the results of the preceding sectibn can be applied
directly to the curved edge problem. As we have just noted, there is
an equivalent wedge (with exterior wedge angle nr) associatéd with every
curved edge structure, and so in generalizing the so]ution for the wedge,
it is only necessary to modify the expressions for the distance pérameter
L, wh1ch appear in the arguments of the trans1t1on functions. |

In the present treatment we do not show that our so]ut1on can be

matched to a boundary layer so]ut1on valid at and near the curved edge.
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It would be desirable to carry this out to confirm the validity of our
solution and possibly to obtain additional terms in the asymptotic

approximation. Ah]uwah'a]3

has used a boundary layer solution in this
way to.obtain an asymptotic expansion for the scalar field diffracted by
a curved edge;,hbwever his representation of the total field differs .
from the one given here. It does not appear as separate contributions
from the incident, reflected and diffracted fields.

THe diffraction by a curved edge in a plane screen affords the
siﬁ%]est ékamblé of curved edge diffraction. The scalar diffraction
coefficients appéaring in Eq. (45) are given by Eqs. (83) or (84), and
siﬁ%e'p = p; on both the shadow and reflection boundaries, L is the
distance paraméter givenvbfvK: (77). At aspects other than incidence
and reflection, within the square root term of Eq. (31) must be
found from Eq..(32). As in the case of the wedge, we obtain a high-
frequency approximation at all points surrouhding the edge, which
are not too close to the edge or to caustics of the diffracted
field. | |

The diffraction by a curved edge in a curved screen (n=2) is
next in the order of increasing difficulty. Whenever the surface
forming the edge is burved, the region near it is dominated by surface
| diffraction phenomena, which is particularly important on the convex
side.. On the coﬁvex side of the curved screen there are surface
ray modes, also known as creeping waves, which shed energy tan-

gentially as they propagate along the surface. As a result of this,

the radiation leakage phenomenon is significant in a considerable region
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near fhe surface. On the concave side of the curved screen we have
bqund modes that do not Teak energy as they propagate; these modes -
are known as whispering gallery modes.. Both types of modes are
excited by an illuminated edge in a curved surface; however they also
may be excited by the incident field. As mentioned earlier, surface
diffraction phenomena have been neglected in the present treatment;
hence the region between the convex surface and the boundary ES

between the edge diffracted and surface diffracted rays must be ex-
c1udgd. The boundary ES is formed by the intersection of the cone of
diffracted rays and the plane tangent to the surface at QE; in general
it does not lie in the ordinary plane of incidence. In addition, the
transition region adjacent to the boundary must be excluded. This
region from whicﬁ the field and source points are to bg exluded appears
as the shaded portion of Fig. 10a, where all rays and boundaries are
shown projected on the p1ane perpendicular to the edge at QE' It should
be noted that in general the projection of the surface ray Sr does not
coincide with the intersection of the boundary surface S and the plane
of projection.

On the concave side the whispering gallery effect can be
described approximately by geometrical optics in the form of a series
of reflected waves whose rays form cords along the concave reflecting
surface as indicated in Fig. 10b. As glancing incidence is approached,
the cord length diminishes and the description of the phenomenon in
térm§ of a sequence of reflections breaks down; the geometrical optics

analysis must be truncated at this point. If the errors resulting
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from this truncation are not serious, the radiation from the.concave

side _can be included in the present analysis.

\ sr
SB
(a) CONVEX SIDE
n  Re

(b) CONCAVE SIDE

Fig. 10. Diffraction at the edge of a curved screen. |

In this case n = 2, and the scalar diffraction coefficients {n-Eq.

(45) are given by
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(86) Dﬁ(¢,¢';80) = -
-e F[kLia(9;$')] 7 F[kLra§Q+9')[]
2 /an s'ineo cos (%—‘L) cos 9%94—) [

in which the first term is discontinuous at the shadow boundafy, whereas

FNE

the second is discontinuous at the reflection boundary. Unlike thé'
reflection from a plane surface, the divergence or spreading of thé wave
reflected from a curved surface is different from that of fhe inci&ence
wave; hence the radii of curvature of the reflected and diffracted wave-
fronts at the shadow boundary are distinct from the radii of curvafure
of the incident and diffracted wavefronts at the shadow boundary. |
Employing arguments similar to those used to find the distance parémeter

for the wedge

S(p;+s) p:'lp; sinZBO

(87a) L' = 2]
P (P7ts Noots) :
r rr .2
(87b) T S(pg*s) pypy sin“g,
o;(p;+s)(o£+5) ,

where b;, p:, p; are defined as before, p¥ and p; aﬁe the principal

radii of curvature of the reflected wavefront at QE’ and from Eq. (32)

(8) L -1,
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azing incidence as shown in

-

Fig. 11. Then since p?p; »~0, L' >0 and Eq. (86) can no longer be

used to.ca]culéte the scalar diffraction coefficients. Under these
circumstances the shadow and reflection boundaries usually lie within
the shaded region in Fig. 11, and the transition regions associated
wifh.edge diffraction overlap thosé\associated with surface diffraction.
If ihe field and source points>are both sufficiently far from the edge,
we may set the fransition functions in Eq. (86) equal to unity. On
the:otherhand, for the field poinf or source point close to the edge

or for both points close to the edge, we may be ab]e to use -reciprocity

(see Appendix IV) to calculate the field at P in Fig. 11, if the distance

parameters for a unit source located at P are large enough.

—.—.— SHADOW AND
st REFLECTION BOUNDARY'S
- FOR A SOURCE AT P

Fig. 11. Grazing incidence on the édge of a curved screen.
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We conclude this chapter by finding the scalar Qiffraction coeff‘
ficients for a curved edge in an otherwise smooth curved surface. “Again
we seek diffraction coefficients which can be used in the transition
regions associated with the shadow and reflection boundaries of this
structure. Both surfaces forming the curved edge may be convex,.bqth
surfaces may be concave, one surface may be convex and the other concave,
or one surface may be plane and the other convex or concave. |

First let us consider the simple case which occurs when the
- illuminated surface forming the curved edge is plane, as it may be at
the base of. a cylinder or cone. For this configuration the reflected
field is found directly from the incident fie]d, as it is in the case
of the wedge, e.g., it may be easily deduced from image theory. Thqs
the scalar diffraction coefficients are found directly from Eq. (50) and
the distance parameter from Eq. (77). The calculated diffracted field may
not be ac;uraté close to the shadowed surface'if surface diffraction
phenomena are significant.

The more generaT problem where the illuminated surface is curved
is closely related to the diffraction by a curved edge in a curved
screen which has just been discussed; for example, the field point -
and source point must not be too close to a convex surface and the
case of grazing incidence must be treated separately.

~ We introduce the wedge tangent to the boundary surfaces.of the
curved edge at QE. The boundary ES is formed by the intersection of
this wedge with the cone of diffracted rays. Away from the boundary
ES on the cone of diffracted rays the scalar diffraction coefficients

are given by Eq. (50), except that distance parameter L in the argument of
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each of the four transition functions may be different. As before L
is found in each case by requiring the total field to be continuous
at each shadow and reflection boundary.

It is seen from Figs. 7a,b that N+, N~ associated with the shadow
boundaries at ¢'-m, ¢'+r are different from zero only at angular
‘distances greater than = from these boundaries. When this angular
distance exceeds m the field point is usually outside the transition
region in question, unless kL is small. In view of the assumptions
involved in extending the wedge solution to the curved edge, the validity
of fhe approximation is in question for such small values of kL,‘so'
they are excluded here. These considerations and analogous con-

siderations lead us to set the N* edua] to the values they have in- -

Table I.
| Then s - i |

» e 8 - |2 sin = F [kL'a(4-4)]
(89) D, (:¢'35,) = — LA

h 2nj2nk sin 8, cos ﬁ-- cos(ﬂﬁii) A
] 1 .
+ Joot (-*%%M) FLLTa" (49D cor(T=4R2L ) FIKLa(ore))

in which a(g) = 2 cosz'g

+ _ 2 2un-8
and a (B) = 2 cos >

Again employing arguments similar to those used to find the distance
parameters for the edge, one finds that LY s given by Eq. (87a), and
that L™, L™ are given by Eq. (87), The additional superscripts o
and n denote that the radii of curvature are calculated at the re-

flection boundaries n-¢' and (2n-1)r-¢', respectively.
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‘Although the reasoning employed to find the distance parameters is
the same as that used in the preceding cases, namely that the totg}Jﬁ
field be continuous at the shadow and reflection boundaries, a p(bﬁiem
arises which was not encountered earlier. For a given aspect of in-
cidence it is clear that only two of the boundaries associated‘w{thjthe
lthree transition functions exist, the other boundary is oufside r?ai_
space. Since neither the field or source points are permitted c]@se to
grazing incidence at ¢' = 0 or nw, it is reasonable to set the transifion
funttion, which is associated with the boundary 1ocated outside the_
interval 0 < ¢ < nw, equal to one. H

LM vanish,

At grazing incidence ¢' = w or (n-1)n for which Lro or
the scalar diffraction coefficients are calculated by the same procedure
used for the curved screen at grazing incidence ¢' = . | |

In the far zone where s >> the principal radii of curvéture'pl, Po
of the incident and reflected wavefronts at QE and the radius of curvature
p of the diffracted wavefront at QE in the directions of incidence and
reflection, Eqs. (77), (87a), and (87b) simplify to the form

_ oo Sin” g,

90) L 3

the appropriate superscripts are omitted here for the sake of notational

simplicity.

An interesting case occurs if there is a caustic of the incident,
reflected or diffracted wave on a shadow or reflection boundary. The
radii of curvature Pys Po or p associated with such a caustic are negative,
and L may be either negative or positive. If L is positive, the presence of

caustics at these boundaries presents no difficulty, except at points near
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thexCaustic itself. On the otherhand if L is negative, there is a
prob1ém becausé the tfansition function has two branches each with an
imagfnéry argument. We will restrict our attention to the situation where
a1f“thé'cdustfés on the boundary 1lie between the field point and the edge;
thié:may oéCur”in far-zone field calculations for example.

;:AAs'pointed out in the last paragraph of Appendix II, if L is negative
theﬁfhcident (or reflected) field has one more caustic on the shadow (or
refiection) boundary than does the diffracted field. This means that the
phase of the transition function must change by an additional n/2 as one
moves from a point outside the transition region to the boundary, so that
the’transition'function must have a total phase variation of 3n/4 instead
~ of the /4 phase variation shown in Fig. 6. An examinatioh of the two
branches of the transitidn function at the boundﬁry and outside the
transition region reveals that they do not have the proper behavior.

| When a curved strip is illuminated by a plane wave from its concave
side, there is a caustic of thé reflected field on the reflection boundaries.
In treating the scattering from this strip we have found that an adequate
function is provided by

|F(k|L|a)|ej3[phase of F(k L a)]

in which F(k|L|a) is the ordinary transition function given by Eq. (51).
(Note that L and a may have superscripts). In spite of the fact that‘
the above expression has the proper behavior outside transition regions
and at shadow or reflection boundaries and also appears to yield good
numerical results, it lacks theoretical justification., A satisfactory

derivation of the transition function for L negative is being sought.

53



IV.  DISCUSSION

A dyédic diffkaction coefficiéht has been obtaihed for an
electromagnetic wavejob]ique]y incident on a curved edge formed by'J“
perfectly-conducting curved or plane.surfaces. Unlike the édge .
diffréct{on coefficfent of Keller's 6rigina1 théory, this d%ffractf&n
coefficient is valid in the tran§ition regioné of the shadow and
reflection boundaries. Although the diffraction coeff%cient'has
been given in dyadic form in the earlier chapters, it can also be
represented in matrix form, so that the high-frequency di ffracted

electric field can be written

Eg D, 0 E;
(91) ol - o’ b gJks
S o -p,| LE,

and since the high-frequency diffracted magnetic field

(92) - VS x td,
d i
Hy -0 0] [ e
(93) = ' —(+)- e
d i Sip*s
HB 0 -Dh HB
0 [s]

1n_whicﬁ Ds’ Dh are inen by »

(a) Eq. (89) for the curved edge (general case), .

(b) Eq. (86) for a curved edge in a curved screen,

(c).'Eq; (83) or (84) for a curved or straight edge in a plane écreen,

and o is gﬁven by Eq. (32).
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(d) Eq. (50) for the wedge,

It is pointed out in Section IIIB that the scalar diffréction
coefficients in cases (a) and (b) are not valid at aspects of |
incidence and diffraction close to grazing on a convex surface
forming the edge at the point of diffractidn; Work is in brogress
to remove this 1imitatidn. Also grazing incidence on a plane
surface fs a §pecia1 casé which requires the introduction.of'a
factor of 1/2 when ca]éulating the diffracted field, see the
discussion of‘page 27.

The large parameters are kL or kLi, KL" in the asyﬁptotic
approximation; hence when these are small our GTD representation
of the diffracted field is no longer valid. Thus source or field
points close to the edge (s or s' small) must be excluded; also
aspects of incidence close to edge-on incidence (Bo small) must be
excluded. Edge-on incidence is a separate phenomenon, which has
been discussed by Ryan and Peters [28] and by Senior [29].

Outside of the transition regions where the arguments of the
transition functions are greater than 10, the expressions for the
scalar diffraction coefficients all simplify to Eq; (49). Uéua]]y
the field point is only in one transition region at a time, so
that the calculation of the diffracted field is simplified because
only one of the transition functions is significantly different'ffom
unity. |

One would expect the diffraction coefficients for the'wedge to
be more accurate than those for the curved edgé, because the

canonical problems involve wedge diffraction. If the curved edge
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were used as a canonical problem, one would anticipate the presence
of additional terms in the asymptotic solution for the diffracted
field; these terms would depend upon the radius of curvature of

the edge at the point of diffraction and its derivatives with

respect to distance along the edge. This is verified by the work"

of Buchal and Keller [30] and Wolfe [31], who treated the diffraction
of a scalar plane wave normally incident on a plane screen with a
curved edge. |

In calculating the diffractéd field, it is assumed that the in-
cident field is slowly varying at the point of diffraction, except
for its phase variation along the incident ray. If the incident field
is rapidly varying at the point of diffraction, it is usually possible
to express it as a sum of slowly-varying component fields, so that
the diffracted field of each component can be calculated in the usual
way and the total diffracted field obtained by superposition. Al-
ternatively, in calculating the diffracted field, one could introduce
higher order terms which depend upon the spatial derivatives of the
incident field at the point of diffraction. Expressions of this type
were obtained by Zitron and Karp [32] in their treatment.of the
scattering from cylinders; they are also derived in keference 11.

In the text it is pointed out that Eqs. (91) and (93) can not be
"used to calculate the field at a caustic of the diffracted ray. At
such a caustic it is convenient to use a supplementary solution in
the form of an integral representation of the field. The equivalent
sources in this representation are determined from a suitable high-

frequency approximation, such as geometrical optics or the GTD., In
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the case of an axial caustic, it is convenient to employ equivalent

electric and magnetic edge currents introduced by Ryan and Peters [33];

the use of these edge currents is also described in Reference [34].
In conclusion we note that the geometrical optics field and

our expression for the edge-diffracted field are both asymptotic

solutions of Maxwell's equations. The total high-frequency field

is the sum of these two fields, and away from the edge it is

everywhere continuous, except at caustics. Our solution reduces

to known asymptotic solutions for the wedge, and it has been found

to yield the first two or three terms in the asymptotic expansion

of the diffracted fields of problems which can be solved differently.

Furthermore, the numerical results obtained by its application to

a number of examples are found to be in excellent agreement with

rigorously-calculated and measured values. Also we have been able

to show that our solution is consistent with the reciprocity

principle, see Appendix IV.
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APPENDIX I
THE CAUSTIC DISTANCE FOR REFLECTION

The principal radii of curvature of the reflected wavefront
p;, p; and the principal directions (axes) of the wavefront will be
determined in this appendix. The plane of incidence may be different
from the principal planes of the reflecting surface, so that the
principal directions of the incident wavefront are quite distinct
from those of the reflecting surface.

This problem has been treated both by Fock [35] and by Deschamps; [36]
however they did not find the principal radii of curvature nor the
principal directions of the reflected wavefront. Fock used a surface-
fixed coordinate system to formulate his solution, and he evaluated
the resulting 3 x 3 determinant for the divergence factor D(S) of_the
reflected wave after some rather complicated tensor analysis. On the
otherhand, Deschamps formulated his solution in a ray-fixed coordinate
system;* and employing elementary matrix theory together with straight-
forward coordinate transformations, he obtained a 2 x 2 curvature matrix
for the reflected wave from that of the incident wave. We will find
p;, p; and their principal directions by diagonalizing his curvature
matrix. |

Let us begin by defining the curvature matrix employed by

Deschamps. Consider the curved surface

*The advantages inherent in using ray-fixed coordinate systems in
treating ray optical problems have already been noted in the text.
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(A-1) z = f(x,y) -

with the z axis novmal to the surface at the point P where x,y,z = 0,

Thus
(A-2) fX = fy =0
where
2
) i =2 f
fx— TR fXX ;—(?-,etc.

are evaluated at x,y = O.

" In the neighborhood of the origin

2

2 ¥l

:
7 [f X+ 2, v+ f

2 2
11X Y
= 7[—2*7]
"M P2

in which p1s pp are the principal radii of curvature in the principal

(A-3) z

directions i, ? respectively. With

X=xx+yyad X=XX+VYV

Eq. (A-3) may be written in matrix notation

(A-4) z= %—x Qx= %—X Qo Xs

in which Q is a 2 x 2 symmetric matrix and Qo is its diagonal form.,

The matrices Q and Q0 are referred to as curvature matrices
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XX Xy
(A-S) Q= £ P ’
Xy Yy
and
LI
P
(A-6) QO=
1
0 —
L

The @aussian curvature of the surface

(A-7) K = determinant of Q = |Q} = IQO .
Let a wavefront be incident on a curved surface S at QR as
shown in Fig. 2A,
' ﬁ], 62 are unit vectors in the principal directions of S at,QR
with princiﬁa] radii of curvature R], R2'
i;, i; are the principal directions of the incident wavefront -at
QR with principal radii of curvature p%, p;.
;;, 22 are unit vectors perpendicular to the reflected ray; they
are determined by reflecting the unit vectors i;, 2; in the plane tangent
to S at QR, i.€4,
(a-8) X=X -200 - Xn,
2 2 2

see Fig. 2A. As will be seen, ;q, Qg are not in the principal directions

of the reflected wavefront. We now define
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LN

f(x,y) P

Fig. 1A. A smooth curved surface near the point P,

1
N A
(A-g) Q:) = 1 s
o L
3
DZJ
_ -1 ,
0
(A-10) ¢ = | ,
S
and
A.i ~ J\-i ~
o\.i ~ A.i ~

Deschamps has shown that the curvature matrix for the reflected wavefront

1

(A-12) Q"= QL -2 C,e  cos !
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<Al’
X

Fig. 2A. Geometry for the analysis of the reflected
wavefront. The reflecting surface is S.
Intersection of a principal
plane of S at Qg with S
Intersection of the plane of
incidence with the plane
tangent to S at Q '
————— —Extension of the Bef]ected ray

below S.

—— -

——— - —
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in which the superscript -1 denotes the inverse matrix, the superscript

T denotes the transpose matrix and o' is the angle of incidence as before.
A result equivalent to Eq. (12) has been obtained by Fock. .j,'

(A-13) Qr - Q?i Q§2 |
| 0y Ol

where

\ i[ (6,02 (0,,)2
A-14 r 1 _2cos o | ‘%2 1% ]
e Iolz[ TR

r _ 2 cos 61 G)22912 011022
(A-14b) Q]2 > R + R2
lo] 1

. 2 2
: il (o45) (044)° |
(A-14c) 052 = l?" 2 cosze ;2 + k; }
P2 !@I 1 '

with

(A-14d)

]
<

:
[ ]

@Jk =

We have diégona]ized Qr'tb,find its eigenvalues 1/p¥, 1/p£.
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2 2 2
(A-15) 11, 1), esel | (% ) + (o) . (o) 2oy ]
r 2\ 1 i | |2 R, R,
D-I p] 02 0
2
2 ; 2 2 2 . 21
+M1 1 ) +(1 1.\ 4 cose’ [(922) ~(07p)" | (8y)7=leyy) } .
T P2 ST ol 1

2

2 2 2
, 4 cose [((922) +0p)" | (o) + (o) )_‘4[@[2]
lol® " % MRe

in which the + sign associated with p; and the -~ sign with p;. As noted
in the discussion following Eqs. (23a,b) in the text; this equétith'has
the form of an elementary mirror formula, except that the rec1proca1 of

the object d1stance is replaced by the mean curvature of the 1nc1dent

)
wavefront.

The incident spherical waveffont is frequently Of'interest?‘1:t
us simplify Eq. (A-15) for this case. For the spherical wave X], X2
can be chosen in any way convenient. Let X1 be in the plane of
incidence; i; is then parallel to the plane tangent to thg‘surfacg of

reflection at QR. Referring to Fig. 2A,

(A-16a) x}

-C0S ei sin w ﬁ] + coS ei cos w ﬁz + sin ei ﬁ,
. 0\1. _ » A . A

where » is the angle between the plane of incidence and the ﬁ, 62 principal

plane of the reflecting surface.
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(A-17a_) e” = - cos ei sin

(A-17b) 912 = cos ei'cos w

(A-17¢)

02] = C0s w

Using the above Egs,

(A~18) el = - cos ei;

furthermore B

(A-19a) 2]- 11"+l")=11‘

T,
o

(A~19b) (']T 1

Hence, substityting Eas. (A-17), (a-18) sng (A-19) into Eq, (A-15),
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1 1 1 s
A20) Lol . 1 | 2, .
p; S cos © Ry Ry
2 ~
sinfe" " sinlo ?
N - 2 + Woza ‘
\coszeT Ry Ry RIRZ""‘

with

(A-21a) sinze] = coslu + sih?wgtos ei, o

(A-21b) sinze2 = sin2w + coszw cos ei.

% is the angle between the direction ot the incidétt'féy gi and ﬂ],
. Whereas 6, is-the angle between‘gi andTﬁz. EquqtionvjA—ZQ)_waS:obtained
’by Kguyqumjian_seyeral years.earljer using a different,method.

o We conclude th1s section by g1v1ng the e1genvectors of Q 3
these yield the principal directions of the ref]ected wavefront w1th

respect to the x], x2 coord1nates.

[(022 =) X - Qg Xg]

ﬁza + 0
°1

(A-22)

gr - 2r g
(A-23) X2 = =S X X] .
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A
X

r
/

Fig. 3A. Principal directions of the reflected wavefront with
respect to the x{, xE coordinates.

It should be noted that the principal directions of the wavefront
are distinct from the brincipa1 directions associated with the reflection
matrix; aé‘pointed'out in the text the latter are'parallel and perpendicular

to the plane of incidence.
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 APPENDIX II
THE EDGE CAUSTIC DISTANCE - . . ‘i~

CURVED
EDGE

Fig. 8A. Caustic distances associated with the diffraction
by a curved edge.

"7 A wavefront is incident on a curved edge at the point QE;“Qhere
the radius of curvature is a, the unit tangent vector is e, and the-

unit normal vector to the edge is ﬁe given by the Serret-Frenet formula

~

=

a=._8
(A~24) é=-3
in which the super dot denotes differentiation with respect to~the distance
along the edge and a is taken to be positive. It is apparent frém”tﬁe

above equation that ﬁe is directed away from the center of curvature.
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A second useful formula will be derived next. Let r be the position

vector from a point 0 to a point on the edge.

(A-25) e=r

(A-26) r=T/r
from which
2 Y F o
(A-27) r=s--—r.
r
Since

(A28) ré=F-.7,

(A-29) F=Y-r,
where Eq. (A-26) has been used. ,

... .Substituting Egs. (A-25), (A-26) and (A-29) into Eq. (A727) and
doi_:; multiplying both sides of the resulting equation by é, one obtains

1- (e« r)?

(A-30) esr-= = .

According to Keller's law of edge diffraction,v o
_,;_(A-g].)‘ s' - é =s e =cos By

and so
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(Ac32) s'-e+e-s'=

(70 I ]
.
>
i 4
wi >
.
@D >e

Employing Eqs. (A-24) and (A-30) in Eq. (A-32). .

A A " - Al X sl ~ 2 ;; ° g . . L
1-(e-s) Me"S _1-(e-s) e > -
(A-33) p'i ‘ - a S o T T a s
e .

1

where p; = s' is the radius of curvature of the incident wavefront ét
QE taken in the plane containing the incident ray and E,
p is the caustic distance; it is also the radius of curvature
of the diffracted wavefront at Qp taken in the plane containing
the diffracted ray and e.
Using Eq. (A-31), Eq. (A-33) may be written more compactly as

(h-30)  1=Lp -2

which has fhe same form as the e1%nentary 1éns'equatioﬁ, wheré pé‘and'p
correspond to the source énd‘imégé distantés; respective]y{ Thus We
may write Eq. (A-38) as ! 7 A‘ | A
| 1.1 .1
(A-35) ;-—T*’?'
Pe
where f is interpreted as the focal distance. Eq. (A-34) was first given
by Kouyoumjian [8], and it has also appeared in a number of ElectroScience

Laboratory reports [34,37].  Recently Deschamps has rederived Eq. (A-34)
by a different method [36].
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An alternative expression for p has been given by kKeller [3];
we will derive it here for the sake of completeness. = .

From Eq. (A-31)

L3
-~

. + * @ = - i F:
e S sin BOBO

W e

| Again using qu;‘jﬁ-zs},_(A-3p) and (A-31)

s1'n28O ﬁe - d .
(A-36)  —— - —5—=-sings, .
(A-37) Aglfi‘- ;;;; éo + o8¢ .

P -SIN By a sin‘g

Here 6 is the ang]e between ne and the d1ffracted ray.
It has been found more convenient to ca]cu]ate the edge caustic
distance p from Eq. (A-34), which does not'contain any derivativesﬂ__
Since the edge is a caustic of the diffracted rays, it is clear
that one of the pr1nc1pa1 d1rect1ons of the d1ffracted wavefront 11es
in the p]ane of d1ffract1on and 1s perpend1cu1ar to the d1ffracted ray.
The other pr1nc1pa1 d1rect1on is perpendicular to the plane of d1ffract1on
and is thus tangent to the cone of diffracted rays. At a distance s from
the point QE on the edge the pr1nc1pa1 radii of curvature of the d1f-
fracted wavefront are p + s and s.
In general..the principal directions of the incident and reflected:
- -wavefronts associated with rays.incident and reflected at QE.(reca11 that
: these rays 1ie on the cone of diffracted rays) do not coincide with:the

principal directions of the diffracted wavefronts associated with rays.
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diffracted in the directions of incidence and reflection. However in
the edge-fixed planes of incidence (or reflection) the curvature of the
diffracted and incident (or reflected) wavefronts is the same. The
re]ationship df the.diffracted waveffont to the incident wavéfroht at
the shadqw bpundary is apparent from Eq. (A-34); oh the shadow bounaary
é = §f'§nd SO p = pg. The fe]ationship between the diffracted Qavefrbnt
and fhé féf]ecfed wavefront on the reflection boundary could be deduced
from Eqs. (A-15) and (A-34), but it may be verified more easily in the
fq1ldWing way. From Eq. (33) the reflected and diffracted phase

’ fﬁncfions are the same along the edge, i.e.,
‘pr(QE) = wd(QE) N
hence

SQg) + s = v + s
in the plane containing the tangent to the edge e and the reflected,
diffracted rays at the reflection boundary. It follows that p = pg,
the radius of curvature of the reflected wavefront in the plane
containing the reflected ray and e. The relationships between the radii
of curvature of the Qiffracted wavefront and the incident and reflected

wavefronts at the shadow and reflection boundaries described in this -

paragraph have been noted by Lewis and Boersma [12].
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NEouE - ’ - APPENDIX III:
SR THE PLANES OF INCIDENCE AND REFLECTION

o

I 1

In th1s append1x it w1I] be shown that the angIe o between the ’ )
edoe ¥1xed p1ane of ref]ect1on and the ordinary p]ane of 1nc1dence is
'equal to m1nus the angle between the edge fixed plane of 1nc1dence and'
:the ord1nany p]ane of 1nc1dence. We w111 refer to the ord1nary pIane
of 1nc1dence S1mp1y as the p]ane of 1nc1dence. | _ '~’ -
' The p]ane of 1nc1dence contains the un1t vectors s and n:or
s" and n.' The edge f1xed p]ane of 1nc1dence conta1ns the un1t vectors
§' and e. The edge-fixed plane of reflection contains the un1t vettors
; and e. The plane of incidence and the edge-fixed plane of incidence
Aintersect along the incident ray at QE. The pIene'of incidence and -
the edge-fixed plane of reflection intersect along the reflected ray .
at QE' |
Referring to Figs. 2, 5 and 5A and recaIIing“that §‘ =‘§' at the
edge, |

(A;38a) gf - s' x (ﬁfx §')
Ist x (n x )|,

A_,(A-38b) é" = ';'. X (e X ;')

s x (e xs')|

(A-38c) o = srrx (nAx Efg
s x(nxs)| ,

o
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A . A A
B, ‘A “e:;‘ -
e . n
1 " PLANE OF | -
5 /INCIDENCE T
REFLECTED EDGE—FIXED INCIDENT EDGE — FIXED
RAY PLANE OF PLANE OF
REFLECTION INCIDENCE

Fig. 5A. Geometry of the planes of incidence; edge-fixed incidence
and edge-fixed reflection. The incident and reflected
rays are perpendicular to the page and directed outward.. .

- s" x (é X s )

° s"x(exsN ,

w ?

(A-38d)

Let « be the angle between the plane of incidence and the edge-

fixed plane of reflection, see Figs. 9 and 5A,

. " I S o
COS ¢ = € Bo = (n ~ Ai %(e ASAY)- T
[1-(n-s )" [1-(e-s" )]
Let ai be the angle between the plane of incidence and the

edge-fixed plane of incidence,
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(-39) cos o = ol - gt o nos)lest)
° [1-(n-5")7I01-(e75")°]

Since (ﬁ-;') = _(;.;r) from the law of reflection and.(é‘g') = (e-s")
from;theilaw of edge diffraction, it follows from Egs. (A-38) and (A-39)
that

© (A40) - cos ol = cos a3

hence

(A-81) @

[}
I+
Q

From the definition of angles in Fig. 5A, ai = -q. - l
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APPENDIX. IV . |
RECIPROCITY - .

The Lorentz reciprocity theorem imposes.an important. condition, on
the solution of an electromagnetic problem. This is a necessary con-
dition and approximate solutions”whith fai} to ;éﬁigfy'i; may contain
errors which are unacceptably large. wé’will déve{op:the féciproc%fyw
condition for the edge structure under consideration fﬁ this report,
‘and see if the high-frequency solutions given in Chapter [TI satisfy it.
Also it will be shown how reciprocity may be used to ‘extend our andlysis
to a special configuration where it would not be valid if applied © =
directly. | 3 o

Let the sources g and g' radiate in the préséhée of an edge o
structure as shown in Fig. 6A; the sources are positioned at a finite
distance from the edge and from each other;. The surface S rests on the
perfect}y-conducting boundary, except in the immediate vicinity of edge,
and extends to infinity. The sur?ace4s& is the surface*atfinfinity;'it
joins with S and together with this surface encloses the region occupied
by the sources g and g¢'. The surface S is sharply rounded at the edge
so as to enclose it tightly, but its radius of curvéturé‘does not vanish
there. ¢

The sources g and g' consist of electric and magnetic current
moments which may be distributed in a volume,'bVer a surface or along a

.1ine, so that the infinitesimal electric current moment
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;. -one obtains. ...

3& dv, in a volume
(A-42a) . dp, =) J_ ds, over a surface
I de, along a line

and ‘the ‘infinitesimal magnetic current moment
-

o K, dv, in a volume
(A-42b) d56_= ¥ ds, over a surface

Mz dg, along a line

n <

zin which J is the volume density of electric current, K is the volume
- density-.of magnetic.current, etc. Starting with Maxwell's curl equations

in the - form.

L S S
(A-43b) By X E + Jou H'= aT/_ ’

Sy

with a 1ittle manipulation [38] in which the divergence theorem\ig employed,

e Ty -
source ¢

[€. & -7 & -
source g'




where the source g' and its fields are denoted by primes and the source

g and its fields are the unprimed quantities.

W | e+ «+... SURFACE S
7 — -+ — SURFACE S,

‘Fig. 6A. Region pertaining to the discussion on the
reciprocity principle.

The fields of g and g' satisfy an edge condition, also n x E,
x E' = 0 on the boundary surface; hence there is no contributidn to
the surface integral in Eq. (A-44) from the integration over S, The
fields of g and g' also satisfy a radiation condition, so the

integration over S_ in Eq. (A-44) vanishes too. Thus
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0t | @@, TGy - [ (E @y - Y

source ¢ ~ source g'

which is a statement of reciprocity in integral form. Since the above
must be true for any distribution of the sources g, g',
(A-46) B ;-dﬁé -H - dﬁh =F dp -H- dp

It is well known that the geometrical optics field satisfiés the
reciproéity condition. Since the total field is the sum of the géometrica]
optics field plus the diffracted f1e1d it follows ‘that the d1ffracted
field also sat1sf1es the rec1proc1ty condition; in other words

‘ .— —d."‘_—d._|_“d.—|
(A-47)  E® - dp, - A - dp =E° - dpy - O - dp) .

Now let us see if the GTD solution for the diffracted field satisfies
(A-47) We w111 first consider the rec1proc1ty relationship for a
pair of 1ncrementa1 electric current moments dp s dE;. The electric

field of dpe incident on the edge is

-jks' .

jkz Al !
A s' x (s' x dpé)

(A-48)  E (Qp) = 75

m

e

e .
(a-29)  EY - dp, =3 - Dlo,4"38,) * T h(s,s')
e

(A-50)  E9 - dpy =7 - T (405m,) ¢ T h(s'hs)

79



in which

jkz e S

.—-- c —
(A-51a) a = T dpe

Jjkz
4n

(A-51b)

|
n
)
‘a
)

e

vy 2 1 D -jk(s+s')
(A-S]C) h(S,S ) Sﬂ' S_(D"'_S)- e s

(A-51d)  h(s',s) = % /g*“(’;rg-ry o-dk(s'+s)

1 _1 1
(A-52a) F-E*‘?,
(A52b) I+ =ir +3
and

: ng = (s'-s)
(h-53)  F=- S
Pe sin~B
is unchanged when the source and field points are interchanged. Note

that the directions of §' and ; are reversed when they are interchanged.
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Employing Eqs. (A-52) it is seen that

(A-54) (s-z.s)(ﬁ) = (s's)? ;_.+ %)

p

o(s)

From Eqs. (A-51) and (A-54) h(s,s') has the useful symmetry property
(A-55) h(s,s') = h(s',s) .

To satisfy the reciprocityvre]ationship'for e1ectric current sources,

(a-56). E1 - dp,

—d R o ]
EV. dpe ,
it follows from Egs. (A-49), (A-50), and (A-55) that it is necessary for

(A-57) @' - Dl4.4'38)) - @ =2« Dlo's038,) + 3" .

It is apparent from the form of D in Eqs. (45) and (A-62) that the above

is true if
(A-58) Dﬁ(¢,¢';so) = Dﬁ(¢',¢;so). -

.:-Consequently, to show that our solution satisfies Eq. (A-56), it is"

sufficient to show that Eq. (A-58) holds. Furthermore, this is sufficient
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.”pq_§how_that the general expression for reciprocity given by Eq..(A;47)

is also satisfied, because if Eq. (A-58) is true it can be shown in.a

1
manner ana]ogqus;to the preceding development that ﬁd. ﬁdq- dp"

: "diﬁ B m

We will examine the scalar diffraction coefficients for wedge . .

diffraction first. Referring to Eq. (50), the quantity

<mt(~§ﬁil)FBLa(¢w Hi—wt(—iﬂi—)FRLa(ww)]

remains unchanged if ¢ and ¢' are interchgnged., The,qyan;ity

cot(?ﬂéﬁfﬁi%) FIKL a*(4-¢")] + cot(itéﬁliL;)'ﬂ*L a”(4-4)1.

algd remains unchanged, because the two terms are interchanged if ¢ and
¢' are interchanged. This can be shown by noting that when ¢ and ¢' are
inférchénged |
JEN . -
N is replaced by - N,
- . +
N is replaced by - N,
+ ] = ]
thus a (¢'~¢) = a"(¢-¢'),
-, + '
and a (¢'~¢) = a (¢=¢") .

For the sources dﬁé, dﬁg

(A-59) L= §—§§%r s1n28



so that it is invariant with respect to an interchange of points defined
by s and s'. ‘

From the preceding discussion it is clear that the scalar
diffraction coefficients for the wedge satisfy Eq. (A-58); hence
our GTD solution for the diffraction of an electromagnetic wave by
a perfectly-conducting wedge is consistent with reciproéity both
within and outside the transition regions. .

Turning next to the scalar diffraction coefficients for the
curved edge in the curved screen, it is apparent thétvK. (86) is
unchanged when ¢ and ¢' are 1nterchanged We note that Li is in-
variant w1th respect to an 1nterchange of source and observation’ '
po1nts, because 1t is given by Eq. (A-59) Thus if the pa1r of sources
are pos1t1oned so that they are not in trans1t1on regions of each
%others reflection boundar1es, FLkL a(¢+¢ )] can be replaced by un1ty,
and Eq. (A-58) is satisfied. On the other hand, if the pair of |
sources dﬁé, dﬁg are positioned on each other reflection boundaries,

the quantities

L A T S P
(h-602) A=—~— =g+t~ ststy
015 D]
r
LA T S P
(A-606) B=——=5* T stsT*y,
p2® P2
- spts 1 ,1_ 1.1 .1
(AGOC) ¢ pS S+p S+-S-r+f



are invariant when s and s' are interchanged. Since

r_ C . 2
(A-61) L' = —8 S1n"8,s

it too must be invariant with respect to this interchange, with the result
that Eq. (A-58) is satisfied. Thus we have been able t6 show that:our
GTD solution for the diffraction of an electromagnetic wave by a curved
screer satisfies the reciprocity condition everywhere except in the
transition region of a reflection boundary, and within this region it
satifies the reciprocity condition directly on the boundary itself. It

is therefore reasonable to assume that this solution is consistent with
reciprocity at all points where it is valid, with the possible ex- -
ception of some small departures from reciprocity at certain points

“in the transition region of the reflection boundéry.* , -

It is pointed out in the text that as ¢'~approachés 7 and one is
close to grazing incidence on the curved screen (see Fig. 11), the
solution for the diffraction coefficients given by Eq. (86) becomes .-
invalid, because L" approaches o. However, we may use reciprocity: to

calculate fd

dp,

e
1
to the component of Fd (p) which is to be calculated; then for the

(p) in the following way. Set dﬁh equal to o and replace

in Eq. (A-47) by a unit electric current moment u directed parallel

incremental sources dﬁé and dﬁ; at 0 in Fig. 11

*The solution may satisfy reciprocity at these points, but we have
not been able to show it.
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(A-62) TR AN OIS °7{zgﬁ(¢',¢;80)1d5;-[ﬁ(¢',¢;80)XSJ 'dig}'h(s',s)

A A

. . = 1 R = - [ - _AA .
in which D(¢",038,) = -B 8y D (¢',438,)-00'D, (4" 5038,)

and h(s',s) is given by Eq. (A-51d). It is assumed here that kL" for

. incidence from P is sufficiently large so that our approximation for
.the diffracted field at 0 is valid. In Eq. (A-62) one would ordinarily
et

The discuSsion of reciprocity for the curved edge in the
otherwise smooth, curved surface follows in the same manner as
that for the curved edge in the curved screen. One concludes from
this that Eq. (89) satisfies Eq. (A-58) for all points at which the °
scalar diffraction coefficients are valid, except possibly for some
points in the transition regions of the shadow boundaries, were small
deviations from reciprocity may occur. Also if a problem arises in
calculating the diffracted field near grazing incidence on a curved
surface (¢'~m), this calculation may be carried out with the aid of

‘Eq. (A-62).
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