74N28759

NASA TECHNICAL NOTE

NASA TN D-7732

NASA TN D-7732

THE NUMERICAL CALCULATION OF LAMINAR BOUNDARY-LAYER SEPARATION AERGNUTRUNG LIBRARY

by John M. Klineberg and Joseph L. Steger Ames Research Center Moffett Field, Calif. 94035

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . JULY 1974

1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog No.	
TN D-7732				
4. Title and Subtitle			5. Report Date	
THE NUMERICAL CALCULATION OF L	AMINAR BOUNDARY-LAY	ER SEPARATION	JULY 1974	
			6. Performing Organization Code	
7 Author/a)		<u> </u>	8 Performing Organization Report No	
John M. Klincherg and Joseph I. Steger			A_5281	
John M. Kitheberg and Joseph L	. otegei		10 Work Unit No	
9. Performing Organization Name and Address				
NASA-Ames Research Center			11 Contract or Grant No	
Moffett Field, Calif. 94035				
			12 Type of Report and Pariod Courted	
12 Sponsoring Agency Name and Address			Technical Note	
National Accompating and Space	Administration			
Washington, D.C. 20546	Auministiation		14, Sponsoring Agency Code	
15. Supplementary Notes				
Presented at the AIAA 12th Aer	ospace Sciences Mee	eting, Washington,	D. C., Jan. 30-Feb. 1, 1974.	
16. Abstract				
Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the accuracy of the method is verified. A computer program listing and complete solution case are included.				
× · · · · · · · · · · · · · · · · · · ·				
		1 ₈		
17. Key Words (Suggested by Author(s))		18. Distribution Stateme	nt	
Separated Flow Boundary-Layer Flow Finite-Difference Methods		Uncl	assified - Unlimited	

 CAT.12

 19. Security Classif. (of this report)
 20. Security Classif. (of this page)
 21. No. of Pages
 22. Price*

 Unclassified
 Unclassified
 101
 \$4.50

*For sale by the National Technical Information Service, Springfield, Virginia 22151

NOMENCLATURE

A	matrix formed by difference equations
a	local speed of sound
b(x)	function of x, equation (9)
c	constant
Cf	skin friction coefficient, $\frac{2\mu(\partial u^*/\partial y^*)}{\rho_{\infty}^* u_{\infty}^{*2}}$
f	transformed stream function, ${f J}$ $ar {f u}$ d $ar {f y}$
f_1, f_2, f_3, \ldots	coefficients in Taylor series expansions, see equation (38)
g	$uv - \frac{\partial u}{\partial y}$
H	conditioning matrix, also H_u , H_v
h	parameter for relaxation scheme
I	identity matrix
i	<u>√-1</u>
J	maximum j index
j	discrete index in streamwise direction
К	maximum k index
k `	discrete index in normal direction
٤	typical length scale
М	Mach number
m	normalized velocity gradient, $\frac{x}{u_e} \frac{du_e}{dx}$
m	normalized Mach number gradient, $\frac{x}{M_e} \frac{dM_e}{dx}$
р	fluid pressure
R	Reynolds number, $\frac{u_{\infty}}{v}$
Ř	residual vector, also \vec{R}_u , \vec{R}_v

Ì

iii

Rex Reynolds number,
$$\frac{\rho_{e} u_{e} x}{u_{e}}$$

u normalized component, $\frac{u^{*}}{u_{e}}$
u* streamwise velocity component, physical variable
 \tilde{u} transformed component, $\frac{u}{u_{e}}$
v normalized component, $\frac{v^{*}}{u_{e}} \sqrt{R}$
v* normal velocity component, physical variable
 \tilde{v} transformed component, $v \sqrt{\frac{N}{u_{e}}} + \frac{1}{2} (m - 1) \tilde{y} \tilde{u}$
x normalized streamwise coordinate, $\frac{x^{*}}{2}$
x* streamwise coordinate
y normalized normal coordinate, $\frac{y^{*}}{2} \sqrt{R}$
y* normal coordinate
 \tilde{y} transformed normal coordinate, $y \sqrt{\frac{u_{e}}{x}}$
z $u_{e}^{2} - u^{2}$
a arbitrary parameter
8 $\frac{\Delta y}{2}$
 $\gamma = \frac{\Delta y^{2}}{2\Delta x}$, also ratio of specific heats
 ϵ truncation error term or a small parameter
 $\eta = \sqrt{\frac{m+1}{2}} \tilde{y}$
 λ eigenvalue of iteration matrix (I + hHA); also $\lambda = \int_{0}^{\tilde{y}_{e}} (1 - \tilde{u}^{2}) d\tilde{y}$
 ν coefficient of viscosity
 ν kinematic viscosity, $\frac{\mu}{\rho}$
 ρ fluid density
iv

.

σ

τ

eigenvalue of HA

 $\frac{\partial \bar{u}}{\partial \bar{y}}\Big|_{0}$

ψ	stream function, \int u dy
ω	relaxation parameter or vorticity

Subscripts

В	backward difference operator
C	central difference operator
e	condition at edge of viscous layer
F	forward difference operator
j,k	location at a grid point or an index
max	with J or K, maximum number of grid points j or k in the field
S	condition at separation
x .	partial derivative with respect to x
0	constant value of u or v; also a quantity evaluated at $\bar{y} = 0$
1,2	conditions on either side of a plane in physical space
80	far upstream condition
∥∙∥ 2	Euclidean vector norm or induced matrix norm
Superscr	ipts
*	physical variable
-	transformed variable, see equation (5)
~ 1	perturbation term
(n)	iteration level
<u>ـ</u>	vector quantity
1	$\frac{\partial}{\partial y}$, also $\frac{d}{dx}$ with equations (39)-(42)

v

THE NUMERICAL CALCULATION OF LAMINAR

BOUNDARY-LAYER SEPARATION*

John M. Klineberg and Joseph L. Steger

Ames Research Center

SUMMARY

Iterative finite-difference techniques are developed for integrating the boundary-layer equations, without approximation, through a region of reversed flow. The numerical procedures are used to calculate incompressible laminar separated flows and to investigate the conditions for regular behavior at the point of separation. Regular flows are shown to be characterized by an integrable saddle-type singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. The singularity is removed and continuous solutions ensured by specifying the wall shear distribution and computing the pressure gradient as part of the solution. Calculated results are presented for several separated flows and the ccuracy of the method is verified. A computer program listing and complete colution case are included.

INTRODUCTION

During the past decade, various approximate methods have been developed to calculate separated flows by using the boundary-layer equations. The most popular schemes have been integral, or moment, methods based on the early work of Abbott, Holt, and Nielsen (refs. 1-3) or Lees and Reeves (refs. 4-8). In the integral approach, the boundary-layer equations are multiplied by a power of u and converted into a system of ordinary differential equations by integrating across the viscous layer. Regions of attached and separated flow are treated similarly because the average convection in the boundary layer is always in the downstream direction.

A second type of approximate method, first proposed by Reyhner and Flügge-Lotz (ref. 9) uses finite-difference techniques (refs. 10 and 11). This approach uses a forward-marching procedure, with all convective derivatives set to zero in regions of reversed flow for numerical stability. The conservation of momentum and energy is therefore violated in the portion of the separated flow bounded by the zero-velocity line, although the errors introduced by this approximation are not expected to be significant for small laminar separation bubbles. Both the finite-difference and integral methods have produced good agreement with experimental data, particularly for compression-corner flows and shock-wave/boundary-layer interactions (see the review in ref. 12).

*Presented at the AIAA 12th Aerospace Sciences Meeting, Washington, D. C., Jan. 30-Feb. 1, 1974. The first finite-difference integration of the complete boundary-layer equations through a region of reversed flow was performed by Catherall and Mangler (ref. 13). This report provides the best previous numerical evidence of flows that are regular at separation. A continuous solution was obtained by specifying the displacement thickness downstream of an appropriate point near separation and determining the pressure gradient by streamwise integration. The numerical procedure developed instabilities in the reversed-flow region, however, and the integration was continued only by decreasing the convergence criterion at each station. As the authors point out, this difficulty is to be expected because the region of separated flow should actually be integrated in the upstream direction, with boundary conditions provided from downstream.

There have also been several numerical studies of nonlinear parabolic equations of mixed type, where the direction of increasing "time" reverses in some region of the flow field. One of these investigations, by Klemp and Acrivos (ref. 14), considers the flow over a finite, stationary flat plate whose surface moves at a constant velocity opposite that of the free stream (i.e., a rotating belt). The boundary layer is divided into two regions along the unknown zero-velocity line and the equations are integrated in the appropriate flow directions, with the final solution obtained by iterating for the location of the common boundary. It is not evident that this technique would prove effective for calculating boundary-layer separation because the region of reversed flow results only from the upstream motion of the surface of the plate. Also, the pressure gradient is assumed to be zero and the shear stresses remain positive throughout the flow field. The singularities at separation and reattachment are therefore caused by discontinuities in the boundary conditions and are not associated with the vanishing of the surface skin friction.

A more useful numerical procedure for calculating the flow past an impulsively started flat plate has recently been developed by Dennis (ref. 15). For this problem, the motion at short times is given by Rayleigh's error function solution, while the final steady-state condition is given by the Blasius profile. Although the transition from the initial to the final state can be calculated directly in the three independent variables (ref. 16), Dennis formulated the problem in similarity coordinates where the governing equation is parabolic and of mixed type. The convective derivatives were approximated by backward or forward differences where appropriate, and the solution was obtained through a successive overrelaxation procedure. This numerical technique with certain modifications can also be applied to the equations that describe boundary-layer separation. The two problems are, of course, different in many important respects. In particular, there is nothing corresponding to reattachment for the impulsively started flat plate, and the downstream (large time) boundary conditions are given. One of the more interesting features of boundary-layer separation is that although there is an embedded region of reversed flow and of upstream influence, the overall problem remains parabolic in the downstream direction.

The present investigation develops a numerical procedure for integrating the laminar, incompressible boundary-layer equations, without approximation, through a region of reversed flow. Under Development of Numerical Method, a

model problem is examined to determine convergence and stability criteria, and iterative finite-difference schemes are developed to solve the nonlinear equations. Under Results and Discussion, the numerical procedures are used to investigate the conditions for regular behavior at the point of separation. The separation (and reattachment) points are shown to be saddle-type singularities in the physical plane, which make it difficult to obtain numerical solutions that pass continuously from the attached region to the separated region. The singularities are effectively removed, however, by specifying the wall shear distribution and determining the pressure as part of the solution. These inverse calculations are used to infer the type of pressure distribution required for the boundary layer to pass smoothly into a region of reversed flow. Where possible, results are compared to relevant analytical or similarity solutions to verify the accuracy of the calculations. The extension of the method to compressible flows and to the solution of complete viscousinviscid interactions is indicated in a separate section.

DEVELOPMENT OF NUMERICAL METHOD

The Differential Equations

The boundary-layer equations for two-dimensional, laminar, incompressible flow are

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
 (1a)

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = u_e \frac{du_e}{dx} + \frac{\partial^2 u}{\partial v^2}$$
(1b)

where the Reynolds number has been explicitly removed by introducing the usual scaling $x = x^*/\ell$, $y = (y^*/\ell)\sqrt{R}$, $u = u^*/u_{\infty}$, $v = (v^*/u_{\infty})\sqrt{R}$, $R \equiv u_{\infty}^*\ell/v$. Here superscript (*) indicates the physical or untransformed variable. Boundary conditions are u = v = 0 and $u \rightarrow u_e$ as $y \rightarrow \infty$. In a direct problem, u_e is specified as a function of x, while, in an inverse problem, an alternate condition such as $(\partial u/\partial y)_0$ or v_e is given as a function of x. In this case, u_e must be determined as part of the solution process.

The parabolic nature of the equations is evident in von Mises coordinates:

$$\frac{\partial z}{\partial x} = u \frac{\partial^2 z}{\partial \psi^2}$$
(2a)

$$u = \frac{\partial \psi}{\partial y}$$
(2b)

with $u_e^2 - u^2 = z$ and $v = -\partial \psi/\partial x$. Equation (2a) is clearly a heat equation in which the coefficient u changes sign in regions of reversed flow. Because there is no downstream boundary condition, the solution is not unique unless the separated zone is entirely confined within the domain of integration.

The equations can also be written as a system of nonlinear first-order equations in conservative form, for example,

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
 (3a)

$$\frac{\partial}{\partial x}\left(u^2 - \frac{ue^2}{2}\right) + \frac{\partial g}{\partial y} = 0$$
 (3b).

 $\frac{\partial u}{\partial y} - uv + g = 0$ (3c)

Because the equations are nonlinear, discontinuities may occur in the flow field even though continuous boundary conditions are specified. Equations (3a), (3b), and (3c) possess the following weak solutions:

 $[u_2 - u_1]\sin \theta = [v_2 - v_1]\cos \theta \tag{4a}$

$$[u_2^2 - u_1^2]\sin \theta = [g_2 - g_1]\cos \theta$$
 (4b)

$$0 = [u_2 - u_1]\cos\theta \tag{4c}$$

where u_e is assumed to be continuous and θ is the angle between the axis and a plane separating conditions 1 and 2. If $\theta < \pi/2$, equation (4c) ensures that $u_2 = u_1$ and, consequently, all the variables are continuous. When $\theta = \pi/2$, the weak solutions are indeterminate. In particular, v may be discontinuous with a jump of indeterminate strength even with u continuous. Furthermore, if u is discontinuous, then, from equation (4a), $[v_2 - v_1] \rightarrow \infty$.

Preliminary Numerical Considerations

As equation (2a) in particular shows, in the separated-flow region, information must be allowed to propagate upstream with the reversed flow velocity. A natural way to fulfill this requirement consistent with restrictions of numerical stability is to treat the x-derivatives with backward (upwind) finite-difference formulas in attached flow regions and with forward (downwind) finite-difference formulas in the reversed flow region. However, this means that at least a portion of the difference equations will require simultaneous solution. Furthermore, the extent of the separated region is unknown and, because the equations are nonlinear, an iterative finite-difference method appears to be the most efficient way to find a solution. Here, of course, one can rely on experience obtained with type-dependent relaxation methods employed for transonic flow fields (refs. 17 and 18).

As an alternative to a type-dependent differencing scheme, interpolative (elliptic) finite-difference formulas such as central differencing can be used over the entire flow region. In fact, in the absence of discontinuities,

parabolic and hyperbolic problems can be solved with interpolative differencing, provided the boundary conditions are properly satisfied. Of course, for a simple initial-value problem, a marching process that uses backward differencing is generally far more efficient than a simultaneous solution process.

The choice of whether to use backward-forward differencing, central differencing, or some hybrid of these will depend on the efficiency and accuracy obtainable in the iterative finite-difference method. In any case, no downstream boundary conditions can be supplied for the boundary-layer equations, so the last computed profile must be attached to allow the use of backward differencing for the x-derivatives.

The success of a numerical method also depends on the choice of variables into which the equations are cast. Equation (2), for example, is not suitable because the variable ψ is multivalued in the separated region. For the most part, equations (1a) and (1b) appear to be the most appropriate to difference with a high probability of being readily extended to more complex (e.g., three-dimensional) flows.

Because the boundary-layer exhibits extensive growth in the x-direction, it is essential for numerical efficiency that this growth be scaled out. This can be accomplished by introducing a variable, growing grid system or by using a transformation that keeps the viscous layer of nearly uniform thickness. The following transformation is used:

$$\vec{y} = y \sqrt{\frac{u_e}{x}}$$

$$\vec{v} = v \sqrt{\frac{x}{u_e}} + \frac{m - 1}{2} \vec{y} \vec{u}$$
(5)

so that equations (1a) and (1b) become

$$x \frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial \bar{v}} + \frac{m+1}{2} \bar{u} = 0$$
 (6a)

$$x\bar{u} \frac{\partial \bar{u}}{\partial x} + \bar{v} \frac{\partial \bar{u}}{\partial \bar{v}} = m(1 - \bar{u}^2) + \frac{\partial^2 \bar{u}}{\partial \bar{v}^2}$$
 (6b)

Boundary conditions are indicated in figure 1. These equations can also be written as a single equation for the stream function

$$f''' + \frac{m+1}{2} ff'' + m(1 - f'^2) = x(f'f_x' - f_xf'')$$
(7)

Figure 1.- Difference operators and boundary conditions for relaxation calculation.

Iterative Finte-Difference Method

In the first stages of developing a finite-difference method, it is useful to begin with the study of a model problem. A model equation is obtained here by linearizing equations (la) and (lb); the iterative convergence criteria are reviewed and an appropriate choice of difference formulas is made so that the simple model equation is iteratively stable. In the following section, the convergence of the difference equations to the differential equation is considered, and iteratively convergent differencing schemes for the nonlinear boundary-layer equations are subsequently given without analysis.

Model problem- Equations (1a) and (1b) are simplified with

$$\begin{array}{c} u = u_0 + \tilde{u} \\ v = v_0 + \tilde{v} \end{array}$$
 (8)

so that the model equation becomes

$$\frac{\partial^2 \tilde{u}}{\partial x^2} - u_0 \frac{\partial \tilde{u}}{\partial x} - v_0 \frac{\partial \tilde{u}}{\partial y} = b(x)$$
(9)

In any local domain, u_0 and v_0 are treated as constants. Equation (9) also represents the transformed equations, equations (6a) and (6b), if an average value for $x\bar{u}_0$ is substituted for u_0 .

If convergent difference algorithms and convergent iterative procedures can be selected for equation (9), subject to all reasonable choices of u_0 and v_0 , it is assumed that such schemes can be successfully adapted to equations (1a) and (1b). While explicit and implicit marching procedures have been developed and extensively studied for parabolic equations of standard type, a comparable development does not exist for relaxation schemes. The development of such a scheme is undertaken below where the primary concern is

to ensure that the relaxation procedure is valid for both positive and negative values of u_0 .

Iterative convergence criteria- Once equation (9) is differenced over a discrete network of grid points, one is left with the task of inverting the linear system of equations

$$A\overline{u} - \overline{c} = 0 \tag{10}$$

where the components of \dot{u} consist of the dependent variables at each grid point. Then the most general first-degree iteration scheme for equation (10) is

$$\dot{u}^{(n+1)} - \dot{u}^{(n)} = hH[A\dot{u}^{(n)} - \dot{c}]$$
 (11)

where H is a conditioning matrix usually implicitly built into the iterative solution algorithm; here we chose to extract a parameter h from H. It should be understood that this type of iterative solution algorithm can treat nonlinear equations with the same ease as linear equations.

Equation (11) has the recursive solution:

$$\vec{u}^{(n)} = (I + hHA)^{n} \vec{u}^{(0)} - \sum_{m=0}^{n-1} (I + hHA)^{m} hH\vec{c}$$
 (12)

so if the matrix (I + hHA) has a spectral radius (i.e., largest eigenvalue in absolute magnitude) less than 1, then $(I + hHA)^n \rightarrow 0$ for n sufficiently large. Furthermore, from the Neumann lemma (ref. 19, p. 26, or ref. 20, p. 82), it is evident that

$$-\sum_{m=0}^{n-1} (I + hHA)^{m} hH \to A^{-1}$$
(13)

or $\vec{u} \rightarrow A^{-1}\vec{c}$ as required. Thus the sufficient condition for iterative convergence is that all

 $|\lambda_j| \equiv |1 + h\sigma_j| < 1$ (14)

where σ_j are the eigenvalues of HA. Hence, if all the real parts of the possibly complex σ_j are of the same sign, h can be chosen to assure convergence. This is an asymptotic convergence criterion for n sufficiently large. For the scheme defined by equation (11) to be efficient, the matrix HA must not have a large condition number (refs. 19 and 21) nor should the imaginary parts of σ_j be large compared to the real parts. The eigenvalue-convergence criterion does not guarantee that the norm of (I + hHA)ⁿu⁽⁰⁾ will not grow appreciably during intermediate iterations - a situation likely to occur if the eigenvectors of HA are linearly dependent or almost so.

Convergence of the model problem- The advantage of studying the model problem is that analytic expressions are obtained to describe its behavior for various choices of differencing. It is assumed that the nonlinear problem will share at least some common features. Here, let

$$\frac{\partial^2 u}{\partial y^2}\Big|_{jk} = \left(\frac{1}{\Delta y}\right)^2 \left(u_{jk-1} - 2u_{jk} + u_{jk+1}\right) + O(\Delta y^2)$$
(15a)

$$\frac{\partial u}{\partial y}\Big|_{jk} = \left(\frac{1}{2\Delta y}\right)\left(u_{jk+1} - u_{jk-1}\right) + O(\Delta y^2)$$
(15b)

and

$$\frac{\partial u}{\partial x}\Big|_{jk} = \left(\frac{1}{2\Delta x}\right)\left[-(1 + \alpha)u_{j-1,k} + 2\alpha u_{jk} + (1 - \alpha)u_{j+1,k}\right] + O(\Delta x) \quad (16)$$

where $\alpha = 1$ is first-order backward, $\alpha = 0$ is second-order central, and $\alpha = -1$ is first-order forward. Using these approximations in equation (9) with $\beta = \Delta y/2$ and $\gamma = (\Delta y)^2/2\Delta x$, one obtains

$$(1 + v_0\beta)u_{jk-1} - 2u_{jk} + (1 - v_0\beta)u_{jk+1} + (1 + \alpha)\gamma u_0u_{j-1,k} - 2\alpha\gamma u_0u_{jk} - (1 - \alpha)\gamma u_0u_{j+1,k} = b_j$$

$$(j = 2, 3, 4 \dots, J_{max}; \quad k = 2, 3, 4 \dots, K_{max} - 1)$$
(17)

If \overline{u} is the vector whose components are the u_{jk} over the ordered grid points, equation (17) can be written as the linear system of equations, equation (10). The eigenvalues of A are given by

$$\sigma_{jk} = -2 \left[1 + \sqrt{(1 + v_0 \beta)(1 - v_0 \beta)} \cos\left(\frac{k\pi}{K + 1}\right) \right] \\ -2u_0 \gamma \left[\alpha + \sqrt{-(1 + \alpha)(1 - \alpha)} \cos\left(\frac{j\pi}{J + 1}\right) \right] \\ (k = 1, 2 \dots, K; \quad j = 1, 2 \dots, J; \quad K = K_{max} - 2; \quad J = J_{max} - 1)$$
(18)

where u is assumed to be given on a boundary as needed. If α is 0 or 1 when $u_0 > 0$ or if α is 0 or -1 when $u_0 < 0$, the σ roots always have negative real parts and A is a stable matrix. Thus the point-iteration scheme with H = I and $h = \omega/(2 + 2u_0\gamma\alpha)$ is proven to be convergent for an appropriate $\omega \le 1$. As another example, the point successive overrelaxation (SOR) method has the roots

$$\left(1 - \frac{\sigma_{jk}}{\omega}\right) \left(1 + \alpha \gamma u_{0}\right) = \sqrt{1 - \sigma_{jk}} \left[-\sqrt{(1 + v_{0}\beta)(1 - v_{0}\beta)} \cos\left(\frac{k\pi}{K + 1}\right) - u_{0}\gamma \sqrt{(1 + \alpha)(-1 + \alpha)} \cos\left(\frac{j\pi}{J + 1}\right) \right]$$

$$(j = 1, 2 \dots K; \quad j = 1, 2 \dots J)$$

$$(19)$$

and is also iteratively convergent with h = -1 and a proper choice of the relaxation parameter ω .

Equations (18) and (19) show that the roots will be complex if $\alpha = 0$ or if $|v_0\beta| > 1$. This can be detrimental to the convergence rate of a firstdegree iteration scheme if the imaginary parts become large enough, so the central differencing should be restricted to regions where $u_0\gamma$ is small. The product $v_0\beta$ is normally expected to be less than 1 in absolute value and thus has the beneficial effect of reducing the term $\cos k\pi/(K + 1)$.

In place of the complex roots that occur for $\alpha = 0$, when $\alpha = \sqrt[n]{1}$ or -1, the eigenvectors of HA appear in multiples of the number of J grid points. Under these conditions, the norm of an iteration matrix can be expected to grow before it decays; however, study of l_2 and l_{∞} induced matrix norms (ref. 19) for the point iteration scheme shows that residual growth cannot occur if the spectral radius is kept less than 1. Conversely, numerical experimentation with the heat equation demonstrates that the SOR forwarddifferenced scheme ($\alpha = -1$) swept from left to right can experience appreciable residual growth if $\Delta x << (\Delta y)^2$. If swept from right to left, the residuals decay rapidly.

Convergence to the Differential Equations

Although the previous analysis shows that iteration algorithms can be used to find a solution to the system of difference equations, it does not prove that the solution of the difference equations will converge to the solution of the differential equations as the grid is refined. However, with the exception of the central differencing scheme, all the schemes to be introduced are known to be stable and consistent for the heat equation (cf. ref. 22).

If one assumes periodic boundary conditions in x and end conditions in y, then sufficient conditions for convergence of the centrally differenced heat equation

are $\Delta x \ge 0(\Delta y^2)$ and $\Delta y \ge 0(\Delta x^2)$. (This is not an explicit leap-frog scheme.) Here convergence implies that the difference between the exact solution to the differential equation and the exact solution to the difference equation will vanish as the grid is uniformly refined over a fixed domain. That is, the summation of truncation errors given by $A^{-1}\varepsilon \rightarrow 0$ as Δx , $\Delta y \rightarrow 0$ where A is the matrix formed by the difference equations over both y and x, and ε is the vector of truncation errors. While the complete convergence proof is too lengthy for this report, note that A is a normal matrix and hence is unitary similar to a diagonal matrix of its eigenvalues (ref. 21). The eigenvalues are

 $\pm \left(\frac{\partial u}{\partial x}\right) = \frac{\partial^2 u}{\partial v^2}$

$$\sigma_{jk}(2\Delta xA) = 4 \frac{\Delta x}{\Delta y^2} \left[1 - \cos\left(\frac{j\pi}{J+1}\right) \right] + 2i(\pm 1)\sin\left(\frac{2k\pi}{K}\right)$$

(j = 1, 2 ..., J; k = 1, 2 ..., K) (20) and $||A^{-1}||_2 = (\min |\sigma_{jk}|)^{-1}$ so $||A^{-1}||_2 ||\vec{\epsilon}||_2$ is simply determined.

Finite-Difference Equations and Solution

Two second-order-accurate differencing schemes were developed to solve the boundary-layer equations (6a) and (6b). The first of these proved superior for the separated flows computed in this investigation. The second more conventional method is described because it may prove efficient for certain extensions of the present approach.

The first method employs the central-differencing schemes for \bar{u}_{yy} and \bar{u}_y given by equations (15a) and (15b). The term $x\bar{u}\bar{u}_x$ in equation (6b) is regrouped as $0.5x(\bar{u}^2)_x$ and backward-differenced:

$$\frac{x}{2} \frac{\partial u^2}{\partial x} \Big|_{\substack{jk \\ (B)}} = \frac{x_j}{2} \left(\frac{3u_{jk}^2 - 4u_{j-1,k}^2 + u_{j-2,k}^2}{2\Delta x} \right) + 0(\Delta x^2)$$
(21)

for $\bar{u} > 0.015$ or $j = J_{max}$. When $\bar{u} < 0.005$ or if j = 2, central differencing is used:

$$\frac{x}{2} \frac{\partial u^2}{\partial x} \bigg|_{\substack{jk \\ (C)}} = \frac{x_j}{2} \left(\frac{u_{j+1,k}^2 - u_{j-1,k}^2}{2\Delta x} \right) + 0(\Delta x^2)$$
(22)

.10

In the intermediate zone, $0.005 \le \overline{u} \le 0.015$, the backward and central formulas are combined according to the relation

$$\frac{\partial u^2}{\partial x}\Big|_{jk} = \frac{1}{2} \left[(1 + \alpha) \frac{\partial u^2}{\partial x} \Big|_{jk}^{k} + (1 - \alpha) \frac{\partial u^2}{\partial x} \Big|_{jk}^{jk} \right]$$
(23)

with $\alpha \equiv 1 + 200(\bar{u} - 0.015)$. The difference stencils are indicated in figure 1.

We emphasize that the blending defined by equation (23) is used solely to enhance the iteration process and is not otherwise fundamental. It is obvious that when the difference equations are switched at a given value of \bar{u} , a different set of data points is sampled and slightly different truncation errors result. The change in the residual error vectors at this point can be large enough to drive $\bar{u}(n+1)$ back across the value at which switching occurs. This can then start an oscillatory mode with little decay. The blending simply modifies the differencing relations in a continuous fashion so that the residuals vary smoothly. In the present scheme, the blending is completed at $\bar{u} = 0.005$ to avoid a special operation at separation and reattachment. The blending can also be used between $0 \le \bar{u} \le 0.01$ without changing the results.

The continuity equation is differenced with the modified Euler scheme (i.e., trapezoidal rule or Crank-Nicholson differencing):

$$v_{jk} - v_{jk-1} = \frac{\Delta y}{2} \left(\frac{\partial v}{\partial y} \Big|_{jk} + \frac{\partial v}{\partial y} \Big|_{jk-1} \right) + O(\Delta y^2)$$
(24)

with

$$\frac{\partial v}{\partial y}\Big|_{jk} = -\left[x_j\left(\frac{u_{j+1,k} - u_{j-1,k}}{2\Delta x}\right) + \frac{m_j + 1}{2}u_{jk}\right] + O(\Delta x^2)$$
(25a)

for j = 2, $J_{max} - 1$, and

$$\frac{\partial v}{\partial y}\Big|_{jk} = -\left[x_{j}\left(\frac{3u_{jk} - 4u_{j-1,k} + u_{j-2,k}}{2\Delta x}\right) + \frac{m_{j} + 1}{2}u_{jk}\right] + 0(\Delta x^{2})$$
(25b)

at $j = J_{max}$. Note that $x\bar{u}_x$ is central-differenced at all times (except at J_{max}) in both the attached and reversed flow regions. While equation (24) is generally recommended, two schemes implicit in the y direction are presented as alternatives. Either the second-order-accurate "shifted" scheme

$$-3v_{jk-1} + 4v_{jk} - v_{jk+1} = 2\Delta y \left(\frac{\partial v}{\partial y} \Big|_{jk-1} \right) + 0(\Delta y^2)$$
(26)

(where point jk is updated in the relaxation) or the third-order accuratein-y "abated Hermite" scheme:

$$-5v_{jk-1} + 8v_{jk} - 3v_{jk+1} = 2\Delta y \left(\frac{7}{6} \frac{\partial v}{\partial y}\Big|_{jk-1} + \frac{4}{6} \frac{\partial v}{\partial y}\Big|_{jk} - \frac{5}{6} \frac{\partial v}{\partial y}\Big|_{jk+1}\right) + 0(\Delta y^3) \quad (27)$$

can be used with $\partial v/\partial y |_{jk}$ again defined by equation (25). Both alternative schemes generate diagonally dominant tridiagonal blocks if a backward two-point differencing is used at the edge where \bar{v} varies linearly. Effectively, equations (24), (26), and (27) give the same results.

An additional difference algorithm must be introduced if an inverse problem is solved. To impose a specified shear distribution, the momentum equation is evaluated at the surface:

$$m = -\frac{\partial^2 \bar{u}}{\partial \bar{y}^2} \bigg|_{\bar{y}=0}$$
(28)

The second derivative is differenced as a function of $\overline{\tau}(x)$ to generate the second-order-accurate relation:

$$\frac{\partial^2 u}{\partial y^2} \bigg|_{j1} = \frac{-7u_{j1} + 8u_{j2} - u_{j3}}{2(\Delta y)^2} - \frac{3\tau}{\Delta y}$$
(29)

Wake flow is treated in the same fashion with $\bar{\tau} = 0$ and the centerline velocity \bar{u}_0 specified:

$$(1 - \bar{u}_0^2)m = -\left(\frac{\partial^2 \bar{u}}{\partial \bar{y}^2}\right)_0 + x\bar{u}_0 \frac{d\bar{u}_0}{dx}$$
(30)

With the choice of differencing established, the solution procedure is straightforward. An approximate solution is input, usually by assuming a Blasius profile with m = 0 everywhere. For an inverse problem, a new distribution of m is then predicted for the specified boundary condition using either equation (28) or (30), with m updated by the relaxation (here written for $\bar{\tau}(x)$ specified):

$$m_{j}^{(n+1)} = m_{j}^{(n)} - \omega \left(m_{j}^{(n)} + \frac{3\tau |_{j}}{\Delta y} + \frac{-8u_{j2} + u_{j3}}{2(\Delta y)^{2}} \right)$$
(31)

For a poor guess of the initial solution, ω is initially kept small, $\omega = 0(0.05)$. New values of \bar{u} are then found from relaxation of the momentum equation, while new estimates of \bar{v} follow from continuity. This iteration sequence continues (with ω increased as the initial guess is improved) until an equilibrium or converged state is reached.

Solutions are found by both point and line successive underrelaxation (SUR) by using the iterative correspondence:

$$\dot{u}^{(n+1)} = \dot{u}^{(n)} + \omega H_{u} \dot{R}_{u}$$
(32a)

$$\vec{v}^{(n+1)} = \vec{v}^{(n)} + \omega H_V \vec{R}_V$$
(32b)

The residual vectors R_u and R_v represent the differenced momentum and differenced continuity equations, H_u and H_v are the conditioning matrices of the SUR algorithm, and ω is the relaxation factor. The line method (not used in eq. (32b)), in general, converges faster than the point scheme, but it is more sensitive to changes in m, making it more difficult to control in a computer batch mode. For moderate reversed flows and grid spacings with Δx approximately equal to Δy , the optimum relaxation parameter is slightly less than 1 for point SUR with $\omega = 0(0.5)$ for equation (31). For line SUR, the optimum relaxation parameter is 0(0.4) and ω is the 0(0.15). The point SUR method fully converges in 400 to 800 iterations for a grid of 80 j-points and 50 k-points. Highly separated cases with rapid variations in the flow quantities require the higher iteration counts.

Note that, when \bar{u} is negative, it is possible to blend from the central into a three-point forward difference and that this variant of the relaxation procedure is iteratively convergent. For very large reversed-flow regions, it may be advantageous to program this additional logic. Experience also shows that switching at $\bar{u} = 0$ from a three-point backward differencing into a three-point forward differencing without blending first into the central differencing is not convergent.

The second method developed is patterned after the Crank-Nicholson scheme. Equations (6a) and (6b) are first put into conservative form

$$\frac{\partial v}{\partial \bar{y}} + \frac{\partial xu}{\partial x} + \frac{(m-1)u}{2} = 0$$
(33a)
$$\frac{\partial (\bar{u}\bar{v})}{\partial \bar{v}} - \frac{\partial^2 \bar{u}}{\partial \bar{v}^2} + \frac{\partial (x\bar{u}^2)}{\partial x} + \frac{3m-1}{2}\bar{u}^2 - m = 0$$
(33b)

The continuity equation is treated as before, and the y derivatives in the momentum equation are again centrally differenced by use of relations (15a) and (15b). The x-differencing is Crank-Nicholson

$$(xu^{2})_{jk} - (xu^{2})_{j-1k} = \frac{\Delta x}{2} \left[\frac{\partial (xu^{2})}{\partial x} \right|_{jk} + \frac{\partial xu^{2}}{\partial x} \right|_{j-1,k}$$

$$(\bar{u} > 0.01 \text{ or } j = J_{max})$$
(34)

$$\frac{\partial (xu^2)}{\partial x}\Big|_{jk} = \frac{\partial^2 u}{\partial y^2}\Big|_{jk} + m_j - \left(\frac{3m_j - 1}{2}\right)u_{jk} - \frac{\partial uv}{\partial y}\Big|_{jk}$$
(35)

with

where the appropriate central-difference formulas are substituted for the y derivatives. For reversed flow, forward differencing is used

$$(xu^{2})_{j+1k} - (xu^{2})_{jk} = \frac{\Delta x}{2} \left[\frac{\partial (xu^{2})}{\partial x} \bigg|_{j+1k} + \frac{\partial (xu^{2})}{\partial x} \bigg|_{jk} \right]$$
$$(\bar{u} < -0.01)$$
(36)

and the two schemes are linearly blended in the interval $-0.01 \le \overline{u} \le 0.01$ (see fig. 1). As before, the blending is used solely to enhance the iteration process.

The Crank-Nicholson scheme has been solved by both point and line SUR, and for either process the relaxation parameters are approximately those described for the previous point method. This second method requires slightly more algebra per step and, in general, has a slower rate of convergence than the first method.

The conservation-law form of the Crank-Nicholson method is not considered to be an advantage, and the procedure generally predicts m distributions that are slightly oscillatory. The oscillations decay as $\Delta x/\Delta y$ decreases, and they are confined to the relatively uninteresting attached flow regions. Of course, m is a sensitive function of the solution and the \bar{u} and \bar{v} distributions are much smoother. A nonconservative version of the Crank-Nicholson scheme was also programmed. In this case, the oscillations in m were negligible in attached-flow regions but observable in the separated zone.

Finally, we remark that a very stable first-order-accurate method can be developed by replacing the x differencing by

$$\frac{x}{2} \frac{\partial u^{2}}{\partial x} \bigg|_{\substack{jk \\ (B)}} = \frac{x_{j}}{2} \left(\frac{u_{jk}^{2} - u_{j-1,k}^{2}}{\Delta x} \right) \quad (\bar{u} > 0.01) \quad (37a)$$

$$\frac{x}{2} \frac{\partial u^{2}}{\partial x} \bigg|_{\substack{jk \\ (F)}} = \frac{x_{j}}{2} \left(\frac{u_{j+1,k}^{2} - u_{jk}^{2}}{\Delta x} \right) \quad (\bar{u} < -0.01) \quad (37b)$$

and

$$\frac{x}{2} \frac{\partial u^2}{\partial x}\Big|_{jk} = \frac{x_j}{4} \left[(1 + \alpha) \frac{\partial u^2}{\partial x} \Big|_{jk} + (1 - \alpha) \frac{\partial u^2}{\partial x} \Big|_{jk}_{(F)} \right]$$

 $(-0.01 \leq \bar{u} \leq 0.01; \quad \alpha = 100\bar{u})$

This scheme, with $x\bar{u}_x$ of continuity also first-order-accurate and switched in an identical fashion, will generally give "computational results" for the first problem, m specified. This first-order method is not recommended because a much finer x-grid spacing is required to maintain accuracy. This method proved useful for the numerical experiments described in the next section.

RESULTS AND DISCUSSION

In this section, the iterative finite-difference procedure is used to integrate the boundary-layer equations through a region of reversed flow. The separation-point singularity is investigated and conditions for regular behavior are determined. Calculated results are presented for a number of separated flows and the accuracy of the method is verified. Possible indications of the breakdown of the boundary-layer assumptions are also examined.

Direct Solutions

One of the most extensively studied problems in separating boundary-layer flows is the response of a flat-plate boundary layer to a linearly retarded external stream. This problem has been investigated by Howarth (ref. 23), Hartree (ref. 24), and many others; recent solutions have also been obtained by Briley (ref. 25) and Leal (ref. 26) using the full Navier-Stokes equations.

A sequence of calculations for different mesh spacings is shown in figure 2. The external velocity was specified to decrease linearly from the

origin and the first-order-accurate difference scheme was used because of stability considerations. As the mesh is refined, the separation point moves upstream, with the last calculation in exact agreement with the accurate results of Smith and Clutter (ref. 27) for the flow upstream of separation. In the limit of zero-mesh spacing, it is evident that the solution is singular, with the wall shear approaching zero as the square root of the distance upstream of the separation point and the normal velocity unbounded. This type of behavior has been discussed in detail by Goldstein (ref. 28) and by Landau and Lifshitz (ref. 29) among others.

The interesting result here is that the use of an iterative finitedifference scheme which contains type-dependent operators allows the solution to be "continued" in the downstream direction. As the mesh is refined, it becomes evident that the flow fields upstream and downstream of separation are essentially independent, and the solution is therefore not meaningful. The wall shear jumps discontinuously to a negative value at separation and the normal velocity \bar{v} becomes unbounded; all flow quantities subsequently remain continuous downstream of the jump and through reattachment. The magnitude of the discontinuity is determined by the specified pressure distribution in the separated zone. In a set of simple numerical experiments, a constant external velocity distribution was smoothly joined to the linearly retarded flow at different values of x. As the joining point was moved downstream, the magnitude of the jump and the extent of the reversed-flow region increased monotonically, with separation remaining at x = 0.96.

Singular behavior at the point of separation is thus related to the fact that the wall shear $\bar{\tau} \equiv (\partial \bar{u}/\partial \bar{y})_0$ is nonanalytic; in particular, $\bar{\tau} \sim (x_s - x)^{1/2}$ and $\partial \bar{\tau}/\partial x \rightarrow \infty$ as $x \rightarrow x_s$, the separation point. Therefore, the most obvious means of ensuring regular solutions at separation is to specify a continuous wall-shear distribution. The pressure distribution can then be determined as part of the solution by satisfying the momentum equation at the surface. Note that because the equations are nonlinear, it is not possible to guarantee that discontinuities will not occur in the flow field even with analytic boundary conditions prescribed (see ref. 30 for hyperbolic equations, or the weak solutions, eqs. (4a), (4b), and (4c)).

Inverse Solutions

With the wall-shear distribution specified, m can be determined from equation (31) and the second-order-accurate differencing scheme generates continuous solutions that give no indication of singular behavior at either separation or reattachment. These solutions are demonstrated to be regular under Accuracy Check. An inverse calculation cannot be duplicated by the direct method, however. Starting with a fully converged inverse solution, the calculation diverges if the iteration is continued with m fixed, that is, the relaxation parameter ω is set to zero in equation (31). Two examples of this type of inverse ($\overline{\tau}$ specified) and direct (m given) calculation sequences are shown in figure 3. After as many as 500 iterations (less if the solution is initially perturbed), the residuals begin to grow and the relaxation procedure either becomes unstable or converges to a different "solution" of the difference equations. As the mesh is refined, the second-order scheme fails to converge while the first-order method, for moderate grid spacing, generates computational results containing a discontinuity.

The fact that the direct calculation fails to duplicate a converged inverse solution cannot be ascribed to instabilities in the numerical scheme. The only difference between the two calculations is the value of the relaxation parameter ω in equation (31), and the solution processes are essentially identical. The numerical evidence therefore strongly suggests the existence of a saddle-type singularity at the separation point. Because of this critical point, roundoff and residual errors are sufficient to cause a completely converged solution to diverge when the pressure-gradient parameter is held

Saddle Point

The difference between the direct- and inverse-calculation procedures can best be illustrated by examining the boundary-layer equations near the surface. Expanding the velocity profile in a Taylor series in y yields

$$u(x,y) = f_1y + f_2 \frac{y^2}{2!} + f_3 \frac{y^3}{3!} + \dots$$
 (38)

where $f_3 = 0$ and the notation is used

that indicate existence of saddle

point.

$$f_1 = \tau$$
, $f_2 = p_r$

Either f_1 or f_2 (but not both) is prescribed and all other f_1 are determined as functions of x by the differential equations. The coefficients must satisfy the following set of relations:

$$f_{4} - f_{1}f_{1}' = 0$$

$$f_{5} - 2f_{1}f_{2}' = 0$$

$$f_{6} - 2f_{2}f_{2}' = 0$$

$$f_{7} - 4f_{1}f_{4}' + 5f_{4}f_{1}' = 0$$

$$f_{8} - 5f_{1}f_{5}' - 9f_{2}f_{4}' + 5f_{4}f_{2}' + 9f_{5}f_{1}' = 0$$
(39)

where the prime denotes differentiation with respect to x. One of the fi is given by the outer boundary condition that $u \rightarrow u_e$ as $y \rightarrow \infty$ (see ref. 28). The validity of the expansion procedure near the separation point is demonstrated in figure 4 for the particular case of similar flow with m = -0.09044, corresponding to zero shear (see eq. (7)). For this case, the only nonzero coefficients multiply terms of the order η^{4n-2} (n = 1, 2, ...), and the expansion has been continued through the twenty-second power of the normal coordinate.

Direct calculations- For the pressure gradient specified, the coefficients in equations (39) must be determined by integrating the following system of first-order differential equations:

$$f_{1}f'_{1} = f_{4}$$

$$4f_{1}^{2}f'_{4} = f_{1}f_{7} + 5f_{4}^{2}$$

$$14f_{1}^{3}f'_{7} = 2f_{1}^{2}[f_{10} + 8p_{x}(2p_{xx}^{2} - 5p_{x}p_{xx})]$$

$$+ 33f_{1}f_{4}f_{7} - 35f_{4}^{2}$$

$$(40a)$$

The remaining coefficients are given by the algebraic relations:

$$f_{5} = 2p_{xx}f_{1}$$

$$f_{6} = 2p_{x}p_{xx}$$

$$4f_{1}^{2}f_{8} = 9p_{x}(f_{1}f_{7} + 5f_{4}^{2}) + 4f_{1}^{2}(10p_{xxx}f_{1}^{2} - 13p_{xx}f_{4})$$

$$f_{9} = 8f_{1}(5p_{x}p_{xxx} - 2p_{xx}^{2})$$

If one arbitarily terminates the expansions at this point and assumes that f_{10} can be correctly specified, then equations (40) and (41) provide relations for all coefficients of the lower-order terms. Given the velocity profile at a particular station, standard numerical techniques can be used to integrate equations (40a) and (40b) to determine the adjacent profile provided f_1 is nonzero. As $f_1 \rightarrow 0$, however, the solution becomes increasingly sensitive to the calculated value of f_1 , and numerical errors are propagated in the direction of integration. The equations are highly nonlinear, with the coefficient f_1 of the derivatives determined by f_4 , which in turn depends on f_7 , f_{10} , etc., and on the outer boundary condition. Even for a pressure distribution corresponding to a regular solution at separation, the numerical integration of equations (40a) and (40b) is unlikely to result in values of f_1 and f_4 that vanish simultaneously. In that event, either f_1' will be infinite, leading to a square-root singularity, or f_1 will remain positive and the calculation will fail to show boundary-layer separation.

We emphasize that with the pressure gradient specified, the nonlinear equation for the wall shear (eq. (40a)) is inherent to the system of differtial equations. Even with special procedures that would guarantee that f_4 vanishes at $\tau = 0$, the saddle point would remain to confound the numerical solution process. The behavior shown in figure 3 is to be expected because a converged solution perturbed by small roundoff and residual errors cannot remain converged in the presence of the saddle-point singularity.

Inverse calculations- For the wall shear specified and the pressure distribution determined as part of the solution, a different system of ordinary differential equations results:

$2\tau f_2' = f_5$	(42a)
$10\tau f_5' = 2f_8 + 23\tau_x f_5 - 18f_2(\tau \tau_{xx} + \tau_x^2)$. .
$40\tau f_8' = 5f_{11} + 93\tau_x f_8 + 3f_5(160\tau \tau_{xx} - 201\tau_x^2)$	
+ $27f_2(19\tau_x^3 - 16\tau\tau_x\tau_{xx} - 20\tau^2\tau_{xxx})$	(42b)
	· · ·

including the algebraic relations

19

(41)

$$f_{4} = \tau \tau_{x}$$

$$\tau f_{6} = f_{2}f_{5}$$

$$f_{7} = \tau (4\tau \tau_{xx} - \tau_{x}^{2})$$

$$\tau f_{9} = 4(f_{2}f_{8} - f_{5}^{2}) + 26\tau_{x}f_{2}f_{5} - 36f_{2}^{2}(\tau \tau_{xx} + \tau_{x}^{2})$$

$$\tau^{2}f_{10} = 4f_{2}(f_{2}f_{8} - f_{5}^{2}) + 26\tau_{x}f_{2}^{2}f_{5} - 36f_{2}^{3}(\tau \tau_{xx} + \tau_{x}^{2})$$

$$+ \tau^{3}(27\tau_{x}^{3} - 24\tau\tau_{x}\tau_{xx} + 28\tau^{2}\tau_{xxx})$$

$$(43)$$

These equations are linear, with the coefficient of the derivatives τ specified as a function of x. The system is therefore less susceptible to numerical error, and although the matrix of coefficients still vanishes at $\tau = 0$, the saddle-point singularity has been effectively removed. If the numerical integration is accurate enough to ensure that $f_5 = 0$ when τ vanishes, the solution will pass smoothly through the separation point.

The basic difference between the inverse and direct problems is that, for the pressure gradient prescribed, the unknown shear distribution is determined by a nonlinear equation that contains a saddle-type singularity at separation. For the wall shear specified, on the other hand, the pressure gradient is given by a linear equation that is much less sensitive to numerical error. This is probably also the case when the displacement thickness is prescribed (see ref. 13). The fact that most numerical evidence indicates a singularity at separation is therefore misleading because of the difficulty in numerically integrating through the saddle point. Of course, not all pressure distributions admit a regular solution (as discussed in the following section).

An interesting point is that, provided the correct numerical procedures are used, no difficulties are encountered at reattachment (see fig. 2 or 3). The reason for this is that any numerical errors made at the reattachment point are either integrated out of the downstream boundary or upstream toward separation. The direction of the flow, and therefore the differencing scheme, results in a solution process that allows integration away from the saddle point at reattachment but that requires integration into the singularity at separation.

Several numerical experiments were performed to verify these conclusions. In one set of computations, the velocity profiles at separation and in the immediate vicinity of that point were held fixed after converging the inverse calculation. For these cases, the inverse and direct procedures gave identical solutions. Similar results were obtained when an artificialviscosity term equal to εu_{XX} was introduced into the difference equations. As the coefficient ε was decreased, however, the direct calculation would again diverge from the inverse solution.

Pressure Gradient at Separation

As shown in the previous section, the existence of a regular solution requires that $f_4 = 0$ at the point of separation (see also refs. 31 and 32). The coefficients f_5 , f_7 , and f_9 must also vanish at the point of zero shear, and the pressure gradient must therefore satisfy certain specific conditions to permit the flow to pass smoothly through separation. The constraints on the pressure distribution cannot be determined directly because of the saddle point, but must be obtained from the inverse, or shear-specified, calculations.

It is reasonable to expect that only certain pressure distributions will admit regular solutions. The separation profile, for example, is determined by both the upstream and downstream flows so that some compatibility relation must be satisfied at this station. Also, from kinematic considerations, the boundary-layer approximation to the vorticity transport equation is

$$\frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} = \frac{\partial^2 \omega}{\partial y^2}$$
(44)

where $\omega = \partial u/\partial y$ and $p_X = \partial \omega/\partial y$ at y = 0. The restriction on the pressure gradient at separation can thus be interpreted as a constraint on allowable boundary conditions: the normal gradient of vorticity at the surface is required to satisfy some local condition for the vorticity to remain continuous at the singular point.

From physical considerations, a constraint on the allowable pressure gradient implies that the interaction between the inner viscous layer and the outer fluid essentially determines the conditions at separation. Prandtl (ref. 33) recognized this in 1938 when he stated that the pressure field could not be chosen arbitrarily for the flow downstream of separation "to agree with observation." Most numerical solutions of the Navier-Stokes equations, including the recent investigation by Leal (ref. 26) in particular, also indicate that, when the interaction with the outer flow is included, there is no evidence of singular behavior at separation.

Because of the nonlinearity of the boundary-layer equations, it is not possible to determine the precise pressure-gradient condition that permits a regular solution. Certain restrictions on the pressure distribution can be inferred from the Taylor series expansion and from the numerical solutions, however. The acceleration of a fluid particle near the surface, for example, can be approximated as follows:

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{y^2}{2} \left[\tau \tau_x + 2\tau p_{xx} \frac{y}{3} + p_x p_{xx} \frac{y^2}{6} + \tau (4\tau \tau_{xx} - \tau_x^2) \frac{y^3}{60} + \ldots \right]$$
(45)

Immediately upstream of separation, τ and p_{χ} are positive and τ_{χ} is negative. As $\tau \rightarrow 0$, the fluid in a stream tube near the surface continues to decelerate, and the streamlines continue to move away from the wall provided

$$p_{xx}\left(p_{x} \frac{y^{2}}{6} + 2\tau \frac{y}{3}\right) < |\tau\tau_{x}| + |\tau\tau_{x}^{2}| \frac{y^{3}}{60} + \dots \qquad (46)$$

For the flow to separate smoothly, then, a restriction on the pressure field is that

$$p_{yy} < 0 \quad \text{as } \tau \neq 0$$
 (47)

There will therefore be an inflection on the pressure distribution upstream of the separation point. This requirement is consistent with experimental evidence, and the existence of a "knee" in the pressure curve is often taken to indicate boundary-layer separation.

The numerical evidence suggests that this condition is not sufficient, however. All regular solutions, in fact, satisfy the requirement:

$$\frac{\mathrm{dm}}{\mathrm{dx}} \ge 0 \qquad \text{at} \quad \tau = 0 \tag{48}$$

This is a more restrictive condition than that given by equation (47) because m_X can be negative for p_{XX} negative. The linearly retarded flow considered under Direct Solutions, for example, satisfies equation (47) but not equation (48). In a series of papers, Meksyn (refs. 34 and 35) has contended that the existence of a minimum in m_X was a necessary condition for regular separation. He cited Schubauer's (ref. 36) measurements of the flow over an elliptic cylinder as experimental verification of this requirement. Similar arguments have also been advanced as a result of the use of approximate methods to calculate supersonic viscous-inviscid interactions (see, e.g., ref. 37).

The most useful means of examining the numerical results is in the $\bar{\tau}$ - m phase space (fig. 5). Several typical computations are presented, including the locus of solutions for similar flow. In these coordinates, x is a parameter that varies along the curves, with $\Delta x \rightarrow \infty$ for the similarity solutions. For this limiting curve, dm/d $\bar{\tau}$, and therefore dm/dx, is zero at the point of zero shear. All nonsimilar trajectories, on the other hand, have positive m_{χ} at both the separation and reattachment points. This condition was never violated in approximately 30 different calculations using various specified shear distributions. Note that the locus of similar flows is sometimes taken to indicate singular behavior at separation because $\bar{\tau} \sim (m_0 - m)^{1/2}$ and $d\bar{\tau}/dm \rightarrow \infty$ at $\bar{\tau} = 0$. The similarity solutions are obtained for $m_{\chi} = 0$, however, and the limiting value of $d\bar{\tau}/dx$ (= $m_{\chi} d\bar{\tau}/dm$) must be carefully determined if an actual flow is replaced by a sequence of similar flows. In any event, the condition for regular separation, that $m_{\chi} \ge 0$ at the point of zero shear, is satisfied by both the similar and the nonsimilar flows.

Figure 5.- Phase space representation.

Figure 6.- Comparison with similar solutions.

Accuracy Check

The phase-space representation of solutions presents an opportunity to verify the accuracy of the numerical procedure. The points labeled A and B in figure 5, for example, have the same value of $\overline{\tau}$ and m as a corresponding similarity solution. The left-hand side of equation (7), which is completely determined by $\bar{\tau} = f''(0)$ and m. is therefore zero. The local x variation vanishes and the similar and nonsimilar profiles must be identical at those points. The velocity profiles calculated by the present scheme are compared to adjacent solutions of the similarity equation (obtained by fourth-order Runge-Kutta integration in ref. 38) in figure 6. There are essentially no differences in the results obtained by the two methods.

With a continuous shear distribution specified, the solution is constrained to be regular at both separation and reattachment. This result can be verified by comparing the calculated streamline pattern with the local solution of the Navier-Stokes equations obtained by Oswatitsch (ref. 39) (see also Dean (ref. 40) and Legendre (ref. 41)). At the point of zero shear, a regular solution of the Navier-Stokes equations requires that the angle of the dividing streamline be proportional to the ratio of the x derivative of the shear and the pressure gradient. In the transformed variables, the precise condition is

$$\sqrt{R} \tan \theta = -3 \left(\sqrt{\frac{x}{u_e}} \frac{\overline{\tau}_x}{m} \right)_{\overline{\tau}=0}$$
 (49)

where θ is the angle of the dividing streamline. For a prescribed shear distribution, the calculated values of m can be integrated in x to obtain u_e . The flow in the vicinity of separation and reattachment for a refined-mesh calculation ($\Delta x = \Delta y = 0.1$) is compared with equation (49) in figure 7. The calculated results agree exactly with the local Navier-Stokes solution at

the point of zero shear, again demonstrating that the boundary-layer solution is regular.

Flow-Field Solutions

As previously mentioned, a number of different shear distributions were specified in an effort to determine the behavior of the boundary-layer equations in separated flow. Some of those results are presented in this section and the following one. Figure 8, for example, shows the streamlines and skinfriction variation, in physical coordinates, for a typical parabolic shear distribution. The relation between

the physical and transformed variables is

$$C_f \sqrt{R} = 2u_e \sqrt{\frac{u_e}{x}} \bar{\tau}$$

and

ıh

$$\sqrt{R} = \sqrt{xu_e} \int_0^{\bar{y}} \bar{u} \, d\bar{y}$$
 (50)

In figure 9, the skin friction and streamline patterns for a different shear distribution are shown. For this case, the maximum reversed flow

Figure 9.- Streamlines for specified shear distribution.

Figure 10.- Velocity profiles for trailing-edge flow.

occurs toward the reattachment side of the separation bubble. The dividing streamline has several rapid changes in slope, and this solution would be difficult to obtain if it were necessary to explicitly iterate for the location of the u = 0 line. Note that in all cases the normal coordinate is multiplied by the square root of the Reynolds number and that these solutions represent shallow separated regions confined to the interior of the viscous layer.

The present method can also be used to calculate flows where reattachment occurs in a wake rather than on a solid surface. The details of this type of flow field in the immediate vicinity of the trailing edge are shown in figure 10. Here, the transition from boundary-layer flow to wake flow is assumed to occur on a scale that is small compared to the thickness of the viscous layer (see ref. 42). The prescribed boundary conditions of zero velocity and negative wall shear were thus discontinuously changed to zero shear and specified reversed-flow velocity at the trailing edge. Based on order-of-magnitude considerations, the initial reversed-flow velocity was taken to be equal to the value of the wall shear at the joining

point. No attempt was made to ensure continuity of the dividing streamline or displacement thickness, although mass and momentum are conserved in the solution to the differential equations.

Indications of Breakdown

In the previous sections, it was demonstrated that the boundary-layer equations have regular solutions at separation and reattachment. The flow structure at the separation point agrees with the limiting form of the Navier-Stokes equations, and the Goldstein solution does not appear to be relevant for real flows. The square-root singularity in the boundary-layer equations is a consequence of specifying an external pressure distribution based on an inviscid solution determined as though there were no separation. In practice, the pressure gradient is locally modified near the separation point such that the boundary-layer solution remains regular. The question that arises then concerns the manner in which the boundary-layer equations eventually break down. Real flows tend to separate toward the rear of a closed body and vorticity is transported into the outer fluid. In some cases, the vorticity is confined to a relatively narrow region, or wake, downstream of the body. In other situations, behind a circular cylinder, for example, a large region of the fluid becomes rotational. The vorticity is no longer restricted to a thin viscous layer and the normal component of velocity ceases to be small compared with the tangential component. In the present investigation, the region of separated flow is, of course, constrained to remain close to the surface, inside a layer of order $1/\sqrt{R}$. The numerical solutions may, however, suggest when this approximation is no longer realistic.

Figure 11.- Evidence of weak solutions for highly separated flow.

Figure 12.- Normal velocity distribution for highly separated flow.

An indication of the possible breakdown in the boundary-layer equations is shown in figure 11 for a highly separated flow. As the mesh is refined, the computed values of m appear to become discontinuous at a point downstream of separation. Apparently, there are two solutions, one associated with separation and the other with reattachment, that are joined in the reversed-flow region.

The distribution of v_e, the transformed normal velocity, is shown on an expanded scale in figure 12. The normal velocities increase rapidly downstream of the separation point, and the viscous layer begins to break away from the surface. Because of constraints imposed by the boundary conditions, however, a discontinuity in \bar{v} (and in $\partial u/\partial x$) occurs at the maximum value of v_e , and the remaining solution is continuous. Although there is a certain degree of smoothing in the numerical results, the discontinuity in v_e is evident in figure 12. A jump in \overline{v} is an allowable weak solution of the differential equations and is apparently required for certain boundary conditions (e.g., large negative shears). If strong discontinuities occur when the shear distribution corresponding to a real flow is prescribed, however, this can be taken to indicate the breakdown of the boundary-layer assumptions.

Figure 13.- Effect of shear variation in separated region.

Figure 14.- Effect of shear variation in vicinity of reattachment.

The rapid variation of m, \bar{v}_{e} , and of the other flow quantities depends on the amount of reversed flow. This is illustrated in figure 13 for a sequence of solutions where the specified shear distribution was modified in the separated region. As the values of the shear become less negative, the solutions become increasingly smooth and continuous. The streamlines corresponding to $\alpha = 0.1$ were previously shown in figure 8. Even for this relatively mild case, the separating flow appears to undergo a rapid transition to the reattaching portion of the flow field at x = 2.7 approximately.

The results of an additional numerical experiment are shown in figure 14. For this case, the wall shear was varied only in the downstream portion of the separated zone and kept constant elsewhere. The nonlinearity and upstream influence of the boundary-layer equations is evident in the computed distributions of m and \bar{v}_e . Note also, however, that the flow in the immediate vicinity of separation (x < 2.5) is not significantly affected by relatively large changes near reattachment.

Upstream Influence

Part of the success of approximate methods that use forwardmarching schemes (e.g., refs. 9 and 13) may be related to the limited upstream influence discussed above, particularly for flows with small separated zones. For the cases shown in figure 14, of course, it would not be possible to obtain accurate solutions downstream of x = 2.5without including the boundary conditions at reattachment. To investigate this question, calculations were made with the convective term \bar{uu}_x set to zero for $\bar{u} \leq 0$ with both the first- and second-order-accurate difference schemes used in a marching mode. Only backward differencing was employed for both momentum and continuity, and the equations were completely relaxed at each x station before proceeding.

Figure 15.- Comparison with forwardmarching procedure.

The three point backward second-order scheme could be marched accurately a short distance into the separated zone. It always diverged rapidly, however, at approximately the location where m_X became negative. The first-order scheme, with moderate grid spacing, could be used for small bubbles but diverged for more separated flows. A typical calculation for a mildly separated flow is compared in figure 15 with an "exact" solution obtained using the correctly differenced second-

order scheme with smaller step size. As the grid spacing was refined in x, the first-order marching began to diverge from the correct solution. The instability could be delayed by keeping $\Delta y \leq \Delta x$ and by accepting a less stringent iterative convergence criterion at each x station, but overall, the difference equations failed to converge to a solution as the grid was refined.

This experiment indicates that backward differencing, even with $\overline{uu}_{x} = 0$ for $\overline{u} \leq 0$, is always unstable. For mild separation, the eigenvalues in the unstable range are small and dominate the numerical calculation only after a sufficient number of steps is taken. It is probable that the schemes of references 9 through 11 and 13 are also divergent, although they are useful for certain applications.

To determine the effect of neglecting the upstream convection of momentum, additional calculations were performed with the term $\bar{u}u_x$ set to zero for $\bar{u} \leq 0$, but with the term \bar{u}_x in the continuity equation centrally differenced. In this manner, upstream influence is retained and the solution must again be obtained by relaxation methods. The results were essentially identical to the exact second-order solution, verifying that the upstream convection of momentum is not significant for laminar flows with limited separated regions.

POSSIBLE EXTENSIONS

An important extension of the present method is to match an inner, boundary-layer solution to an outer inviscid flow to calculate complete viscous-inviscid interactions. It would also be useful to compare results of the present method to experimental measurements of laminar separating and reattaching flows. Because low-speed boundary layers rarely remain laminar through reattachment, the computations must be extended to supersonic flows.

There are, for example, a number of reliable experiments for compressioncorner interactions at supersonic speeds, as well as several different approximate solutions and Navier-Stokes calculations available for comparison (e.g., refs. 43 and 44). It is indicated below how the method can be adapted to compressible flows, and an integral relation is proposed that offers promise of allowing the treatment of complete viscous-inviscid interactions.

Compressible Flows

To apply the method to compressible boundary layers, the following transformation can be used:

$$\bar{y} = \sqrt{\frac{\rho_{e}^{u} e}{\mu_{e}^{x}}} \int_{0}^{\varphi} \frac{\rho}{\rho_{e}} dy$$

$$\bar{v} = \sqrt{\frac{x}{\rho_{e}^{\mu} e^{u} e}} \rho v + x \bar{u} \left(\frac{\partial \tilde{y}}{\partial x}\right)_{y}$$
(51)

If it is assumed that the density-viscosity product is constant through the layer, the following equations result:

$$x \bar{u} \frac{\partial \bar{u}}{\partial x} + \bar{v} \frac{\partial \bar{u}}{\partial \bar{y}} = \bar{m}(1 - \bar{u}^2) + \frac{\partial^2 \bar{u}}{\partial \bar{y}^2}$$

$$x \frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial \bar{y}} + \frac{\bar{u}}{2} \left(1 + \left\{ \frac{1 - \gamma M_e^2}{1 + [(\gamma - 1)/2]M_e^2} \right\} \bar{m} = 0 \right)$$

$$(52)$$

where

$$\bar{m} = \frac{x}{M_e} \frac{dM_e}{dx}$$
 and $M_e = \frac{u_e}{a_e}$

These equations can then be solved in exactly the same fashion as equations (6a) and (6b), with M_e calculated by integrating \bar{m} .

Viscous-Inviscid Interations

The solution for a complete interaction is complicated by the fact that $\bar{\tau}$ is specified. The following integral relation can, however, be used:

$$\bar{\tau} + \sqrt{Re_{x}} \frac{v_{e}}{u_{e}} = \left(1 + \frac{\gamma - 1}{2} M_{e}^{2}\right) \left(x \frac{d\lambda}{dx} + \frac{\lambda}{2}\right) + \left[\left(1 + \gamma M_{e}^{2}\right) \frac{\lambda}{2} + \frac{M_{e}^{2} - 1}{1 + [(\gamma - 1)/2]M_{e}^{2}} \int_{0}^{\bar{y}_{e}} \bar{u}^{2} d\bar{y}\right] \bar{m}$$
(53)

For an assumed $\bar{\tau}$ distribution, the solution of equations (52) gives calculated values of \bar{m} and hence of M_e and p_e . Using an inverse inviscid procedure, the distribution M_e can be specified to obtain a new effective body shape, that is, the streamline slopes v_e/u_e . Then, from equation (53), a new estimate for $\bar{\tau}$ can be determined and the procedure continued until convergence is achieved. Based on recent experience with an integral scheme (ref. 8), it will probably not be advantageous to precisely match the intermediate iterations for v_e/u_e .

It would, of course, be easier to specify v_e directly for the viscous solution. For similar flows, an efficient scheme was developed by differentiating the continuity equation with respect to \bar{y} and using standard secondorder central differencing for \bar{v} . The value of m was then updated by evaluating the continuity equation at the edge of the layer. This approach failed, however, for the complete boundary-layer equations with separated regions and was much slower for attached flows than the $\bar{\tau}$ specified schemes. An alternate approach, perhaps using the vorticity equation, may be required. All analytical and numerical evidence indicates, however, that the wall shear is the optimum boundary condition for calculating separated flows.

CONCLUDING REMARKS

The numerical procedures developed in the investigation provide an exact means for integrating the boundary-layer equations through separation and reattachment. The approach appears to be adaptable to the treatment of complete viscous-inviscid interactions for flow fields where the boundary layer remains confined to a narrow region: compression-corner flows or separation at the trailing edge of a streamlined body, for example. The method may also prove useful in evaluating different turbulence models for separated flows. As compared to complete Navier-Stokes solutions, the present approach allows an order-of-magnitude better resolution of the viscous region and requires considerably less computation time. Finally, a method based on the boundarylayer equations provides the most promising means for investigating the important problem of three-dimensional flow separation.

Ames Research Center National Aeronautics and Space Administration Moffett Field, Calif., 94035, March 8, 1974

REFERENCES

- Abbott, D. E.; Holt, M.; and Nielsen, J. N.: Investigation of Hypersonic Flow Separation and Its Effects on Aerodynamic Control Characteristics. Vidya Rept. 81, 1962; also Studies of Separated Laminar Boundary Layers at Hypersonic Speed With Some Low Reynolds Number Data, AIAA Paper 63-172, 1963.
- Nielsen, J. N.; Lynes, L. L.; and Goodwin, F. K.: Calculation of Laminar Separation With Free Interaction by the Method of Integral Relations: Part I - Two-Dimensional Supersonic Adiabatic Flows. AFFDL-TR-65-107, Air Force Flight Dynamics Lab., Wright-Patterson AFB, Ohio, Oct. 1965.
- Nielsen, J. N.; Lynes, L. L.; and Goodwin, F. K.: Calculation of Laminar Separation With Free Interaction by the Method of Integral Relations: Part II - Two-Dimensional Supersonic Nonadiabatic Flow and Axisymmetric Supersonic Adiabatic and Nonadiabatic Flows. AFFDL-TR-65-107, Air Force Flight Dynamics Lab., Wright-Patterson AFB, Ohio, Jan. 1966.
- Lees, L.; and Reeves, B. L.: Supersonic Separated and Reattaching Laminar Flows: I. General Theory and Application to Adiabatic Boundary-Layer/Shock-Wave Interactions. AIAA J., vol. 2, no. 11, Nov. 1964, pp. 1907-1920.
- Reeves, B. L.; and Lees, L.: Theory of Laminar Near Wake of Blunt Bodies in Hypersonic Flow. AIAA J., vol. 3, no. 11, Nov. 1965, pp. 2061-2074.
- Holden, M. S.: An Analytical Study of Separated Flows Induced by Shock Wave - Boundary-Layer Interaction. Rept. AI-1972-A-3, Cornell Aeronautical Lab., 1965.
- Klineberg, J. M.; and Lees, L.: Theory of Laminar Viscous Inviscid Interactions in Supersonic Flow. AIAA J., vol. 7, no. 12, Dec. 1969, pp. 2211-2221.
- Klineberg, J. M.; and Steger, J. L.: Calculation of Separated Flows at Subsonic and Transonic Speeds. Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Springer-Verlag, vol. II, 1973, pp. 161-168.
- Reyhner, T. A.; and Flügge-Lotz, I.: The Interaction of a Shock Wave With a Laminar Boundary Layer. Tech. Rept. 163, Div. of Engineering Mechanics, Stanford Univ., Nov. 1966; see also Internatl. J. Nonlinear Mech., vol. 3, June 1966, pp. 173-199.
- Werle, M. J.; Polak, A.; and Bertke, S. D.: Supersonic Boundary Layer Separation and Reattachment Finite-Difference Solutions. Rept. AFL 72-12-1, Dept. of Aeronautical Engineering, Univ. of Cincinnati, Jan. 1973.
- Dwoyer, D. L.: Supersonic and Hypersonic Two-Dimensional Laminar Flow Over a Compression Corner. Proceedings of AIAA Computational Fluid Dynamics Conference, Palm Springs, Calif., July 19-20, 1973, pp. 69-83.
- 12. Murphy, J. D.: A Critical Evaluation of Analytic Methods for Predicting Laminar Boundary-Layer, Shock-Wave Interaction. NASA TN D-7044, 1971.
- Catherall, D.; and Mangler, K. W.: The Integration of the Two-Dimensional Laminar Boundary-Layer Equations Past the Point of Vanishing Skin Friction. J. Fluid Mech., vol. 26, pt. 1, 1966, pp. 163-182.
- Klemp, J. B.; and Acrivos, A.: A Method for Integrating the Boundary-Layer Equations Through a Region of Reverse Flow. J. Fluid Mech., vol. 53, pt. 1, 1972, pp. 177-191.
- Dennis, S. C. R.: The Motion of a Viscous Fluid Past an Impulsively Started Semi-Infinite Flat Plate. J. Inst. Math. Applications, vol. 10, Aug. 1972, pp. 105-117.
- Hall, M. G.: The Boundary Layer Over an Impulsively Started Flat Plate. Proc. Roy. Soc. A, vol. 310, 1969, pp. 401-414.
- 17. Murman, E. M.; and Cole, J. D.: Calculation of Plane Steady Transonic Flows. AIAA J., vol. 9, no. 1, Jan. 1971, pp. 114-121.
- Steger, J. L.; and Lomax, H.: Generalized Relaxation Methods Applied to Problems in Transonic Flow. Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, Springer-Verlag, 1971, pp. 193-198.
- 19. Ortega, J.: Numerical Analysis, Academic Press, Inc., 1972.
- 20. Varga, R.: Matrix Iterative Analysis, Prentice-Hall, Inc., 1962.
- 21. Franklin, J.: Matrix Theory, Prentice-Hall, Inc., 1968.
- 22. Richtmyer, R. D.; and Morton, K. W.: Difference Methods for Initial-Value Problems, 2nd ed., John Wiley & Sons, New York, 1967, Ch. 8.
- Howarth, L.: On the Solution of the Laminar Boundary Layer Equations. Proc. Roy. Soc. A, vol. 164, Feb. 15, 1938, pp. 547-579.
- Hartree, D. R.: A Solution of the Laminar Boundary-Layer Equation for Retarded Flow. ARC Reports and Memoranda 2426, England, March 1939, pp. 156-182.
- Briley, W. R.: A Numerical Study of Laminar Separation Bubbles Using the Navier-Stokes Equations. J. Fluid Mech., vol. 47, pt. 4, 1971, pp. 713-736.

- 26. Leal, L. G.: Steady Separated Flow in a Linearly Decelerated Free Stream. J. Fluid Mech., vol. 59, pt. 3, 1973, pp. 513-535.
- Smith, A. M. O.; and Clutter, D. W.: Solution of the Incompressible Laminar Boundary-Layer Equations. AIAA J., vol. 1, no. 9, Sept. 1963, pp. 2062-2071.
- Goldstein, S.: On Laminar Boundary-Layer Flow Near a Position of Separation. Quart. J. Mech. Appl. Math., vol. 1, March 1948, pp. 43-69.
- 29. Landau, L. D.; and Lifshitz, E. M.: Fluid Mechanics, Pergamon Press Ltd., Oxford, 1959, pp. 151-156.
- 30. Courant, R.; and Hilbert, D.: Methods of Mathematical Physics, vol. II, Interscience Publishers, New York, 1962, pp. 486-490.
- 31. Curle, N.: The Laminar Boundary Layer Equations, Oxford Mathematical Monographs, Oxford at the Claredon Press, 1962, pp. 34.
- 32. Brown, S. N.; and Stewartson, K.: Laminar Separation. Ann. Rev. Fluid Mech., Annual Reviews Inc., 1969, pp. 45-72.
- 33. Prandtl, L.: On the Calculation of the Boundary Layer. From Z. angew. Math. Mech., vol. 18, no. 1, 1938, pp. 77-82; translated as NACA TM 959, 1940.
- 34. Meksyn, D.: Integration of the Laminar Boundary Layer Equation. I -Motion of an Elliptic Cylinder. Separation. II - Retarded Flow Along a Semi-Infinite Plane. Proc. Roy. Soc. A, vol. 201, March 1950, pp. 268-283.
- Meksyn, D.: Integration of the Boundary Layer Equations. Proc. Roy. Soc. A., vol. 237, Nov. 1956, pp. 543-559.
- 36. Schubauer, G. B.: Air Flow in a Separating Laminar Boundary Layer. NACA TR 527, 1935.
- 37. Lees, L.: Viscous-Inviscid Flow Interactions at Supersonic Speeds. First Annual Dean's Lecture, Dept. of Mechanical Engineering, Univ. of Notre Dame, April 10-11, 1967.
- Klineberg, J. M.: Theory of Laminar Viscous-Inviscid Interactions in Supersonic Flow. Ph.D. Thesis, Calif. Inst. of Technology, Pasadena, Calif., 1968.
- Oswatitsch, K.: Die Ablösungsbedingung von Grenzschichten. Boundary Layer Research, edited by H. Görtler, Springer-Verlag, 1958, pp. 357-367.
- 40. Dean, N. L.: Note on the Motion of a Liquid Near a Position of Separation. Proc. Camb. Phil. Soc., vol. 46, 1950, pp. 293-306.

- Legendre, R.: Décollement Laminaire Régulier. Comptes Rendus, vol. 241, Sept. 1955, pp. 732-734.
- 42. Riley, N.; and Stewartson, K.: Trailing Edge Flows. J. Fluid Mech., vol. 39, pt. 1, 1969, pp. 193-207.
- 43. Lewis, J. E.; Kubota, T.; and Lees, L.: Experimental Investigation of Supersonic Laminar Two-Dimensional Boundary-Layer Separation in a Compression Corner With and Without Cooling. AIAA J., vol. 6, no. 1, Jan. 1968, pp. 7-14.
 - 44. Carter, J. E.: Numerical Solutions of the Navier-Stokes Equations for the Supersonic, Laminar Flow Over a Two-Dimensional Compression Corner. NASA TR R-385, 1972.

APPENDIX

A program listing for the point-relaxation version of the first method is included. Only a description of the input and output is given; however, program variable names are the same as used in the text and should be selfexplanatory. No effort was made to optimize the code or even to use a very efficient procedure for solving the attached region of the flow. A solution case corresponding to $\alpha = 0.1$ in figure 13 is included.

INPUT PARAMETERS

(Subroutine INIT)

JMAX = maximum number of points in x, $3 \le JMAX \le 120$ KMAX = maximum number of points in y, $4 \le KMAX \le 100$ DX = Δx DY = Δy XO = x-location of initial profile UEXO = u_e at XO SMO = m at XO ALPHU, ALPHV, ALPHM - relaxation parameters to update u, v, m

(Subroutine PROFL)

DYO = Δy in which initial profile is given KMAXO = number of data points to specify initial profile U(K),V(K) = u and v of initial profile

(Main)

Wall Shear is analytically input in the present program.

OUTPUT

- The input parameters and the initial profile are printed.

- Minimum output from a marching routine that calculates the attached flow region is printed.

- Maximum residuals and their locations are printed every 10 iterations.

- The basic solution as a function of x is printed; data include j, x, m, $u_e, \ \bar{v}_e, \ and \ \bar{\tau}.$
- The solution profiles are printed at each x station. Data include k, \bar{y} , \bar{u} , \bar{v} , y, u, v, and ψ/\sqrt{R} and interpolated values of y at constant values of ψ/\bar{R} .

PROGRAM LISTING

AND

CASE RUN

```
PROGRAM FLOSEP (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)
0
0
0
0
0
           MAIN PROGRAM
           AN ITERATIVE FINITE-DIFFERENCE METHOD FOR INTEGRATING THE
LAMINAR INCOMPRESSIBLE BOUNDARY-LAYER EQUATIONS THROUGH
С
           SEPARATION AND REATTACHMENT
                           SM(120) , SMC(120), U(120, 100), V(120, 100), XB(120)
       COMMON
                                                           , DY , UEXO ,
, RMAX , RMIN
F , RESU , RESV,JU, KU
                                    , KMAX , DX
, ALPHV , ALPHM
       COMMON /PARAM/
                           JMAX
                                     . ALPHV
      1
                           ALPHU
                                      , JREST , KREST
       COMMON /RESID/
                           ITER
С
       DIMENSION TAU(120)
С
С
       CONSTANTS
       ITERM = 1000
       RMAX = 10.
       RMIN = 0.00005
       ALPHM2 = 0.5
       ADDAL = 0,08
C
C
           INITIALIZATION
       CALL INIT
       SY2 = 1 \cdot / (DY \cdot DY)
С
C
C
           INPUT WALL SHEAR INTO TAU(J) ARRAY
                  EXAMPLE CASE
       ALF = 0.1
       T0 = 0.33238/12,
DD 10 J=1, JMAX
       X2 = XB(J) = 2.
       x_6 = x_2 - 4.
IF(x_2) 9,9,5
     5 IF(X6) 7,9,9
     7 TAU(J) = T0*X2*X6*(1.+ALF*X2*X6)
       GO TO 10
     9 TAU(J) = T0*X2*X6
   10 CONTINUE
           INITIALIZATION COMPLETE
С
С
С
     MARCHING IN ATTACHED FLOW REGIONS
       CALL MARCH (J1, J2, TAU)
```

```
1F(J1-J2) 12,50,50
   12 CONTINUE
С
c
c
          RELAXATION PART
      WRITE(6,500)
С
       ITER = 0
   15 CONTINUE
      RMTST = 0.0
       JRM = 1
C
          UPDATE M, EQ. 31
      DD 25 J=J1,J2
       RM = SM(J)+SY2*(4.*U(J,2)=0.5*U(J,3)=3.*DY*TAU(J))
       SM(J) = SM(J) - ALPHM + RM
       SMC(J) = 0.5 \pm (SM(J) + 1.0)
      RMP = ABS(RM)
IF(RMP=RMTST) 25,24,24
   24 RESM = RM
      RMTST = RMP
       JRM = J
   25 CONTINUE
   30 CONTINUE
С
          CALL RELAXATION ROUTINE, METHOD ONE
      ITER = ITER +1
      CALL RELAX (J1, J2)
      IF (ITER = (ITER/10) *10) 32,31,32
                                 PRINT MAXIMUM RESIDUALS AND LOCATION
С
С
                                 EVERY 10 ITERATIONS.
   31 CONTINUE
      WRITE (6,501) ITER, RESV, JREST, KREST, RESU, JU, KU, RESM, JRM
   32 REST = ABS(RESV)
      IF (ITER = 200) 38,34,38
С
                                 CHANGE RELAXATION PARAMETER AFTER 200 ITER
   34 ALPHM = ALPHM2
      ALPHU = ALPHU + ADDAL
ALPHV = ALPHV + ADDAL
      IF (ALPHV = 1.0) 36,35,35
   35 CONTINUE
      ALPHU = 0.98
ALPHV = 0.98
   36 CONTINUE
      WRITE(6,508) ALPHV, ALPHU, ALPHM
C
          TEST WHETHER TO TERMINATE CALCULATION
   38 IF(REST-RMAX) 40,40,80
```

40 IF (ITER - ITERM) 45,45,42 42 CONTINUE WRITE (6,502) GO TO 50 45 IF (REST - RMIN) 46,46,15 **46 CONTINUE** WRITE (6,507) C 50 CONTINUE C TERMINATION WITH PRINT OUT CALL PRNT С 80 CONTINUE STOP 500 FORMAT(1H0,35X22HRELAXATION CALCULATION // 7X,4HITER,5X,5HRES V,7X,7HJV KV,6X,5HRES U,7X, U KU,6X,5HRES M,7X,2HJM) 1 '7HJU 2 501 FORMAT(5X,15,3(E15,5,215)) 502 FORMAT(34HO MAXIMUM ITERATIONS COMPUTED....) 507 FORMAT(25HO CONVERGED SOLUTION) 508 FORMAT(1H0, 17HALPHV, ALPHU, ALPHM, 3F13, 5) END C SUBROUTINE INIT INPUT DATA SUBROUTINE C -COMMON SM(120) , SMC(120),U(120,100),V(120,100),XB(120) , KMAX , DY , DX COMMON /PARAM/ , UEXO , XAMT. 1 / ALPHV . ALPHM , RMAX , RMIN ALPHU DIMENSION U1(100) , V1(100) С READ (5,500) JMAX, KMAX, DX, DY, X0, UEX0, SM0 READ (5,501) ALPHU, ALPHV, ALPHM WRITE (6,505) JMAX, DX, XO, ALPHV, KMAX, DY, UEXO,ALPHU,SMO,ALPHM С INTERPOLATION OF INITIAL PROFILE IF NEEDED CALL PROFL (KMAX, DY, U1, V1) DO 30 J=1, JMAX XB(J) = X0+(J-1)+DXSM(J) = SMOSMC(J) = 0.5*(SM0+1.) DO 20 K=1,KMAX U(J,K) = U1(K) V(J,K) = V1(K)1. 20 CONTINUE **30 CONTINUE**

÷.,

```
RETURN
 500 FORMAT(215,5F10,0)
 501 FORMAT(8F10.0)
 505 FORMAT(1H1,35X,12HINPUT VALUES//
     14X,6HJHAX =,15,4X,4HDX =,F10.5,6X,4HX0 =,F10.5,4X,7HALPHV =,F10.5/
     24X,6HKMAX =, I5,4X,4HDY =, F10,5,4X,6HUEX0 =, F10,5,4X,7HALPHU =,
     3F10,5/ 39X,4HM0 =,F10,5,4X,7HALPHM =,F10,5)
      END -
C
      SUBROUTINE PROFL (KMAX1, DY1, U1, V1)
С
            INTERPOLATION OF INITIAL PROFILE.
      DIMENSION Y(60), U(60), V(60), C(5), S(5), T(5),
     1
                  Y1(100), U1(100) , V1(100)
      INT = 2
С
         INPUT INITIAL PROFILE
      READ(5,501) DYO, KMAXO
      WRITE(6,510)
      DO 2 K=1,KMAX0
      READ(5,500) U(K),V(K)
      Y(K) = (K-1) \star DYO
      WRITE (6,511) K, Y(K), U(K), V(K)
    2 CONTINUE
      IF( KMAX1 - KMAX0) 30,30,3
    3 CONTINUE
      KSAVE = 1
      DO 20 K1=1,KMAX1
      Y1(K1) = (K1-1) * DY1
                                    . . .
    4 DO 5 K=KSAVE,KMAXO
      KK = K
      IF(Y(K)-Y1(K1)) 5,5,6
    5 CONTINUE
    6 IF (KSAVE-1) 9,9,7
      IF(Y(KK-1)-Y1(K1)) 9,9,8
    7
    8 KSAVE = 1
      GO TO 4
    9 KK = KK-(INT+1)/2
      IF(KK) 10,10,11
   10 KK = 1
      GO TO 13
   11 M = KK+INT
      IF (M-KMAX0) 13,13,12
   12 KK = KK-1
      GO TO 11
   13 INT1 = INT+1
      KSAVE = KK
      DO 14 L=1, INT1
      C(L) = Y1(K1)-Y(KK)
      S(L) = U(KK)
      T(L) = V(KK)
   14 KK = KK+1
```

```
DO 16 KK=1, INT
       I = KK+1
   15 D = C(KK) + C(I)
       S(I) = (C(KK) * S(I) = C(I) * S(KK))/D
       T(I) = (C(KK) * T(I) - C(I) * T(KK))/D
I = I+1
       IF(I=INT1) 15,15,16
   16 CONTINUE
       U1(k1) = S(INT1)
       V1(K1) = T(INT1)
   20 CONTINUE
       RETURN
C NO INTERPOLATION
   30 DO 31 K=1,KMAX1
U1(K) = U(K)
V1(K) = V(K)
   31 CONTINUE
       RETURN
  500 FORMAT(8F10.0)
  501 FORMAT(F10,0,15)
  510 FORMAT(1H0,15X,14HINITIAL VALUES//4X,1HK,7X,1HY,11X,1HU,11X,1HV)
  511 FORMAT(2X, I3, 3F12.6)
       END
С
       SUBROUTINE MARCH (J1, J2, TAU)
          MARCHING IN ATTACHED REGION
С
       COMMON
                          SM(120) , SMC(120),U(120,100),V(120,100),XB(120)
                                   . KMAX
                                              , DX
                                                        , DY , UEXO ,
, RMAX , RMIN
       COMMON /PARAM/
                          JMAX
                                               , ALPHM
                                   , ALPHV
     1
                          ALPHU
       DIMENSION TAU(120) , UX(100)
       TAUWT = 0.02
       ALPHM2 = 5
       SY = .5 \times DY
SYY = DY \times DY
       SX2 = .5/DX
SY2 = 1./(DY*DY)
С
       N = 2
       JINT = -1
       KM = KMAX=1
       IF(TAU(3) - TAUWT) 50,50,5
С
     5 N = N + 1
       \mathbf{J} = \mathbf{N}
       J1 = J + JINT
       J2 = J
       JINT = 0
```

¢

```
C
    TEST TO SEE IF PROFILE IS ATTACHED
    6 IF(TAU(J) = TAUWT) 50,50,7
    7 CONTINUE
   OBTAIN GOOD GUESS BY USING EXTRAPOLATION OF LAST COMPUTED PROFILES
С
      DO 8 K=2,KM
    U(J,K) = 2,*U(J-1,K) = U(J-2,K)
8 V(J,K) = 2,*V(J-1,K) = V(J-2,K)
      SM(J) = SM(J=1)
C
      ITER = 0
      UX(1) = 0.
C
   10 ITER = ITER + 1
      DO 20 J=J1,J2
      JR = J=1
      JRR = J=2
      REST = 0.
      RM = SM(J) + SY2 + (4 + U(J,2) = 0 + 5 + U(J,3) = 3 + DY + TAU(J))
      SM(J) = SM(J) + ALPHM + RM
      SMC(J) = 0.5*(SM(J)+1.0)
      DO 18 K=2,KM
      KR = K=1
      KP = K + 1
C
      IF( J=2) 12,12,13
   12 \text{ UX(K)} = \text{SX2*(U(J+1,K)} = \text{U(JR,K))}
      U2X = UX(K) + (U(J+1,K) + U(JR,K))
      DIAX = 0.
      GO TO 14
   DIAX = 3, *XB(J) *SX2
   14 CONTINUE
      UY = SY \star (U(J,KP) = U(J,KR))
      FU = UY * V(J K) + SYY * (0,5 * XB(J) * U2X - SM(J) * (1,-U(J K) * * 2))
      RU = U(J,KR)=2*U(J,K)+U(J,KP)=FU
      RV = V(J,K)=V(J,KR)+SY*(XB(J)*(UX(K)+UX(KR))+SMC(J)*(U(J+K)+
     1 U(J+KR)))
      DT = 2. + SYY*U(J,K)*DIAX
      DU = RU/DT
      DV = -RV
      U(J,K) = U(J,K) + DU
      V(J,K) = V(J,K) + DV
      RT = ABS(RV)
   IF(RT + REST) 18,18,15
15 REST = RT
   18 CONTINUE
   20 CONTINUE
C
```

IF(ITER + 20) 26,26,25

IF(J = JMAX) 6,6,50

25 ALPHM = ALPHM2 26 CONTINUE IF(REST = RMAX) 27,100,100 27 IF(REST - RMIN) 30,30,28 28 IF(ITER = 600) 10,100,100 **30 CONTINUE** IF(N-3) 35,35,40 35 WRITE(6,501) IZ = 0RZ = 0DO 36 J = 1,2 V(J,KMAX) = V(J,KM) = DY*SMC(J)TAUM = .5*(=3.*U(J,1) +4.*U(J,2) =U(J,3))/DY WRITE(6,500) J, IZ, RZ, V(J, KMAX), TAUW, SM(J) **36 CONTINUE** 40 J = NTAUW = .5*(-3.*U(J,1) + 4.*U(J,2) = U(J,3))/DYV(J,KMAX) = V(J,KM) - DY*SHC(J) WRITE(6,500) J, ITER, REST, V(J, KMAX), TAUW, SM(J) GO TO 5 C `50 J1 = N J2 = JMAXRETURN 100 J = NTAUW = .5*(-3.*U(J,1)+4.*U(J,2)-U(J,3))/DY $V(J,KMAX) = V(J,KM) = DY \times SMC(J)$ WRITE(6,500) J, ITER, REST, V(J, KMAX), TAUW, SM(J) STOP 500 FORMAT(1H ,215,4F13,5) 501 FORMAT(1H1, 35X18HMARCHING PROCEDURE // 5X1HJ, 2X4HITER, 1 7X5HRES V, 8X4HVMAX, 10X3HTAU,10X1HM) END С SUBROUTINE RELAX (J1, J2) RELAXATION FOR REVERSED FLOW C SM(120) , SMC(120),U(120,100),V(120,100),XB(120) COMMON , DX , DY , UEXO , , ALPHM , RMAX , RMIN , KREST , RESU , RESV,JU, KU COMMON /PARAM/ JMAX KMAX , DX , ALPHV . 1 ALPHU , JREST COMMON /RESID/ ITER DIMENSION UX(100) С EPS1 = .015 EPS2 = 0.005 KM = KMAX =1 С EPS = EPS1-EPS2 RESU = 0.

```
RESV = 0.0
      RTEST = 0,
      REST = 0.0
      SY = 0.5+DY
      SYY = DY+DY
      SX2 = 0.5/DX
      00 50 J=J1,J2
      JR = J=1
      JP = J+1
      UX(1) = 0.0
      DO 30 K= 2,KM
      KR = K+1
      KP = K+1
С
C
      IF(J=JMAX) 10,13,13
   10 UX(K) = SX2*(U(JP,K)=U(JR,K))
      IF(J=2) 11,11,12
   11 U2X = SX2*(U(JP,K)**2=U(JR,K)**2)
      DIAX = 0.
      GO TO 20
   12 T = U(J,K)
      IF(T-EP81) 16,16,14
                                               .
   13 UX(K) = SX2+(3,+U(J,K)=4,+U(JR,K)+U(JR+1,K))
C
C
      ATTACHED FLOW
С
   14 JQ = J=2
      U2X = $X2*(U(JQ,K)**2+4,*U(JR,K)**2+3;*U(J,K)**2)
      DIAX = 3, *XB(J) *SX2
      GO TO 20
С
C
      SEPARATED FLOW
C
   16 U2X = SX2*(U(JP,K)**2=U(JR,K)**2)
      DIAX = 0,
IF(T+EPS2) 20,20,18
С
С
С
      SEPARATION POINT
      REATTACHMENT POINT
С
   18 JQ = J=2
      U2P = U2X
      U2X = SX2+(U(JQ,K)**2=4,*U(JR,K)**2+3,*U(J,K)**2)
      TA = (T=EPS2)/EPS
      U2X = TA*U2X+(1.-TA)*U2P
      DIAX = 3.*TA*XB(J)*SX2
С
   20 CONTINUE
      UY = SY \star (U(J,KP) - U(J,KR))
      FU = UY * V(J,K) + SYY * (0, S * XB(J) * U2X - SM(J) * (1, -U(J,K) * * 2))
      RU = U(J,KR) = 2, \pm U(J,K) + U(P,KP) = FU
      RV = V(J+K)-V(J+KR)+SY+(XB(J)+(UX(K)+UX(KR))+SMC(J)+(U(J+K)+
     1 U(J,KR)))
      DT = 2, + SYY \times U(J,K) \times DIAX
```

```
DU = RU/DT
       DV = - RV
       U(J,K) = U(J,K) + ALPHU \times DU
       V(J,K) = V(J,K) + ALPHV + DV
C
        RT = ABS(RU)
        IF(RT+RTEST) 22,22,21
    21 RESU = RU
       RTEST = RT
        JU = J
       KU = K
    22 CONTINUE
       RTT = ABS(RV)
       IF (RTT-REST) 27,27,26
    26 RESV = RV
       REST = RTT
       JREST = J
KREST = K
       IF(REST=RMAX) 27,27,100
    27 CONTINUE
    30 CONTINUE
       K = KMAX
       RV = V(J,KMAX)=V(J,KM)+SY*(XB(J)*UX(KM)+SMC(J)*(1.+U(J,KM)))
       V(J,KMAX) = V(J,KMAX)-ALPHV+RV
       RTT = ABS(RV)
       IF (RTT-REST) 35,35,34
    34 RESV = RV
       REST = RTT
JREST = J
       KREST = K
   35 CONTINUE
   50 CONTINUE
  100 RETURN
       END
С
       SUBROUTINE PRNT
C
               OUTPUT SUBROUTINE
       COMMON
                            SM(120) , SMC(120),U(120,100),V(120,100),XB(120)
                          JMAX , KMAX , DX , DY , UEXO ,
ALPHU , ALPHV , ALPHM , RMAX , RMIN
ITER , JREST , KREST , RESU , RESV,JU, KU
PSI(100) , YST(100) , POUT(60) , Y1(60) , Y2(60) ,
       COMMON /PARAM/
                                     , KMAX
      1
       COMMON /RESID/
       COMMON /STRM/
      1
                          K1M
                                      , K2M
       DIMENSION UY(120) , UE(120) , F(120) , Fx(120) , UST(100) ,
VST(100), ETA(100)
      1
       HY = 0.5/DY
       KEND = KMAX
SX = 0.5*DX
       DO 10 J=1,JMAX
UY(J) = HY*(-3.*U(J,1)+4.*U(J,2)-U(J,3))
   10 CUNTINUE
```

2.

```
REST = RESV
      WRITE(6,500) ITER, JREST, KREST, REST
   INTEGRATION FOR UE(X)
                                  . ?
      UE(1) = UEX0
      F(1) = ALOG(UEX0)
      IF( XB(1) -.00001) 12,13,13
   12 XB(1) = .00001
   13 CONTINUE
      FX(1) = SM(1)/XB(1)
      DO 15 J=2, JMAX
      FX(J) = SM(J)/XB(J)
F(J) = F(J=1)+SX*(FX(J)+FX(J=1))
      UE(J) = EXP(F(J))
   15 CONTINUE
      WRITE (6,502)
WRITE (6,503) (J,XB(J),SM(J),UE(J),V(J,KMAX),UY(J),J=1,JMAX)
      DO 20 K=1,KMAX
      ETA(K) = (K-1) + DY
   20 CONTINUE
      YST(1) = 0,
      VST(1) = 0,
      PSI(1) = 0
      DO 50 J=1, JMAX
      C1 = SQRT(XB(J)/UE(J))
      C2 = 1./C1
      C3 = SQRT(XB(J) + UE(J))
      S1 = 0,5 \pm (SM(J) = 1,)
      S2 = 0.5+DY+C3
      UST(1) = UE(J) \star U(J,1)
      DO 30 K=2,KMAX
      Y = ETA(K)
      YST(K) = C1+Y
      UST(K) = U(J,K) \star UE(J)
      VST(K) = (V(J,K)=S1*Y*U(J,K))*C2
      PSI(K) = PSI(K=1)+S2 \pm (U(J,K)+U(J,K=1))
   30 CONTINUE
      DSTR = YST(KMAX) + PSI(KMAX)/UE(J)
      WRITE(6,510) XB(J),DSTR
С
      CALL STREAM (KEND)
С
      WRITE (6,511)
      IF (K1M .EQ. 0) GO TO 40
WRITE (6,512) (K,ETA(K),U(J,K),V(J,K),YST(K),UST(K), VST(K),
     1 PSI(K), POUT(K), Y1(K), Y2(K), K=1,K1M)
С
                                   KIM - NUMBER OF POINTS WITH SEPARATION
```

С C C

40 CONTINUE

```
K2 = K1M + 1
      WRITE (6,514) (K, ETA(K), U(J,K), V(J,K), YST(K), UST(K), VST(K),
     1 PSI(K), POUT(K), Y1(K), K=K2,K2M)
                                 K2M - TOTAL NUMBER OF INTERPOLATED POINTS,
с
с
                                       (SEPARATED PLUS SINGLE VALUED) .
      K3 = K2M + 1
WRITE (6,513) (K,ETA(K),U(J,K),V(J,K),VST(K),UST(K), VST(K),
     1 PSI(K) , K=K3,KMAX)
   50 CONTINUE
      RETURN
  500 FORMAT(9H1 ITER =, 15, 9H JRESV =, 15, 9H KRESV =, 15, 8H RESV =,
           F13.5)
     1
  502 FORMAT(SH0
                     J.6X,4HX(J),8X,2HSM,9X,6HU EDGE,7X,6HV EDGE,6X,
          10HDU/DY WALL)
     1
  503 FORMAT(2X,13,F10,3,4F13,6)
  510 FORMAT(1H1,6HX(J) = F12,5,2X8HDELSTR = F12.6 )
  511 FORMAT(102X,12HINTERPOLATED/
     13x,1HK,4x,3HETA,9x,1HU,10x,1HV,15x,1HY,11x,3HUST,9x,3HVST,9x,
     2 3HPSI,15X,3HPSI,7X,1HY,9X,1HY) -
  512 FORMAT(14, F8, 3, 2F12, 6, 4x, 4F12, 6, 10x, F7, 4, 2F10, 5)
  513 FURMAT(I4,F8.3,2F12.6,4X,4F12.6)
  514 FORMAT(14,F8,3,2F12,6,4X,4F12,6,10X,F7,4,F10,5)
      END
С
      SUBROUTINE STREAM (KMAX)
С
             INTERPOLATION FOR STREAM FUNCTION
      COMMON /STRM/
                      PSI(100) , YST(100) , POUT(60) , Y1(60) , Y2(60) ,
                                , K2M
     1
                       KIM
                               , S(4)
      DIMENSION
                      C(4)
С
      PSMIN = -0.10
      PSMAX = 10.0
C
      NO = -200, +PSMIN
      NO = NO+1
      N1 = N0+9
      N2 = N1 + 10
      N3 = N2+10
      DO 8 N=1,60
      IF(N=N3) 2,1,1
    1 \text{ POUT}(N) = 6+N-N3
      NMAX ≕ N
      IF (POUT (N) - PSMAX) 8,9,9
    2 IF(N=N2) 4,3,3
    3 \text{ POUT(N)} = 0.5 \pm (N - N2 + 1)
      GO TO 8
```

```
4 IF(N=N1) 6,6,5
    5 \text{ POUT(N)} = 0.05 \pm (N-N1)
      GO TO 8
    6 POUT(N) = 0.005+(N=N0)
    8 CONTINUE
    9 CONTINUE
C
C*****FIND MINIMUM PSI
      INT = 2
      DO 10 K=2, KMAX
      KK = K
      IF(PSI(KK)-PSI(KK-1)) 10,10,11
   10 CONTINUE
   11 KPMIN = KK-1
      IF(KPMIN-INT) 12,12,15
   12 NMIN = NO
      KPMIN = 1
      GO TO 40
   15 PMIN = PSI(KPMIN)
C
C****FIND INITIAL PRINTOUT VALUE
      DO 17 N=1,NMAX
      NN = N
      IF(POUT(N)-PMIN) 17,17,18
   17 CONTINUE
   18 NMIN = NN
      N1 = NO-NMIN
C
C*****INTERPOLATION.,.PSI FROM WALL TO U = 0
      DO 30 L=1,N1
      NN = NO-L
      DO 20 K=1, KPMIN
      KK = K
      IF(POUT(NN)=PSI(KK)) 20,20,21
   20 CONTINUE
   21 KK = KK+(INT+1)/2
      IF(KK) 22,22,23
   22 KK = 1
GO TO 25
   23 M = KK+INT
      IF(M-KPMIN) 25,25,24
   24 KK = KK-1
      GO TO 23
   25 INT1 = INT+1
      DO 26 J=1, INT1
      C(J) = POUT(NN)=PSI(KK)
      S(J) = YST(KK)
   26 KK = KK+1
      DO 28 J = 1, INT
      I = J+1
   27 \ S(I) = (C(J) * S(I) = C(I) * S(J)) / (C(J) = C(I))
      I = I+1
```

· .

.

```
IF(I-INT1) 27,27,28
   28 CONTINUE
      Y2(NN) = S(INT1)
   30 CONTINUE
      KPMIN = KPMIN+1
   40 CONTINUE
      KSAVE = KPMIN
С
C*****INTERPOLATION...PSI FROM U = 0 TO EDGE
      DO 60 NENMIN, NMAX
      NN = N
      DO 45 K=KSAVE, KMAX
      KK = K
      IF(PSI(KK)-POUT(NN)) 45,45,46
   45 CONTINUE
   46 KK = KK-1
      IF(KK-KPMIN) 47,47,48
   47 KK = KPMIN
      GO TO 49
   48 M = KK+2
      IF (M-KMAX) 49,49,46
   49 KSAVE = KK
      DO 50 J=1,3
      C(J) = POUT(NN) = PSI(KK)
      S(J) = YST(KK)
   50 KK = KK+1
      S(2) = (C(1) * S(2) - C(2) * S(1)) / (C(1) - C(2))
      S(3) = (C(1) * S(3) * C(3) * S(1)) / (C(1) = C(3))
      Y1(NN) = (C(2) * S(3) - C(3) * S(2)) / (C(2) - C(3))
   60 CONTINUE
      K1 = 0
      IF(N0-NMIN) 75,75,65
   65 NO1 = NO-1
      DO 70 L=NMIN,NO1
      K1 = K1 + 1
      POUT(K1) = POUT(L)
      Y1(K1)
              = Y1(L)
               = Y2(L)
      Y2(K1)
   70 CONTINUE
   75 CONTINUE
      K1M = K1
      K2 = K1M
      DO BO L = NO, NMAX
      K2 = K2 + 1
      POUT(K2) = POUT(L)
      Y1(K2)
               = Y1(L)
   80 CONTINUE
      KSW = KS
      RETURN
      END
                     .24
                                ٥.
                                           1.
   52
        52,125
 0.9
                     0.05
```

٥.

50

0.9

.25	50
0,00000	0.00000
0,08304	-0,00519
0.16597	-0.02075
0,24848	-0.04665
0.53003	=0.08281
0,40991	-0.12906
0,48/26	=0,18515
V.JO111	=0.45065
0.60047	=0.02013
0.75216	-0 49834
0.80313	-0.59555
0.84704	-0.69869
0.88390	-0.80687
0.91400	-0.91924
0,93790	-1.03498
0,95632	-1 15337
0,97010	-1.27377
0,98010	-1,39566
0,98712	=1,51861
0,99191	-1,64230
0,99506	=1.76649
0,99708	=1,89100
0 99006	+2,01571
0 99940	-2 245/4
0.99973	-2.30041
0.99986	+2.51538
0.99993	-2.64037
0,99996	-2,76537
0,99998	-2.89036
0,99999	=3,01536
0,99999	=3,14036
0,99999	-3,26536
0.99999	=3,39036
N 99999	-7 64076
0.99999	-3.74576
0.99999	-3.89036
0 99999	=4.01536
0.99999	=4.14036
0,99999	-4.26536
1.00000	=4.39036
1.00000	-4,51535
1,00000	-4,64035
1.00000	-4.76535
1,00000	=4,89035
1.00000	-5,01555
1.00000	-5.24535
*ENDDS	

INPUT VALUES

JMAX KMAX	= 52 = 52	DX = DY =	.12500 .24000	X0 = UEX0 = M0 =	0.00000 1.00000 0.00000	ALPHV = Alphu = Alphm =	.90000 .90000 .05000	
	11	NITIAL VA	UES					
ĸ	Y	U.		v				• · · ·
1	0,000000	0,000	000 0.0 0400	000000 005190				
3	500000	.165	9700	020750				
4	.750000	.248	480(046650				
5	1,000000	, 409	910 = 1	129060		-		· ·
7	1,500000	.487	2601	185130				
8	1.750000	.561		250650				.*
10	2.250000	.694	420 - 4	407930				
11	2,500000	752	1604	498340				
12	2,750000	.803		595550				
14	3.250000	.883	900 - 8	806870				
15	3,500000	.914	000 9	919240				
16	3,750000	.937	700 =1.0 320 =1.9	034980 153370				
18	4.250000	970	100 -1.2	273770				•
19	4,500000	,980	100 -1.3	395660				
20	4,750000	.991	120 - 1.5 910 -1.6	510010 542300		-		
22	5.250000	995	60 -1.	766490				
23	5,500000	.997	080 - 1.6	B91000				
25	6.000000	999)60 =2,1	140550				
26	6,250000	9994	-2.2	265460				
27	6.750000	. 999	/30 =2,3 360 =2,5	590410 515380				•
29	7.000000	9999	-2.6	540370				
30	7,250000	,9999	-2.7	765370				
32	7.750000	9999	900 = 2.0 900 = 3.0	015360				
33	8.000000	9999	90 -3,1	40360				
34	8,250000	,9999	990 -3. 2	265360				· . ·
36	8,750000	9999	90 -3.5	515360				• • • • •
37	9,000000	,9999	90 -3.6	540360				
30 39	9,200000	9999	90 =3.7 90 =3.E	10530U 890360				
40	9,750000	999	90 -4.0	015360				
41	10.000000	.9999	90 -4.1	140360				<u>.</u>
42	10.500000	1.000		390360			•	-
44	10.750000	1.0000	00 -4,5	515350				
45	11,000000	1.000		540350 765350				
47	11.500000	1.0000)00 -4.8	390350	-			
48	11.750000	1.000	00 -5.0	015350				
49 50	12,000000	1.000	00 -5,1	40350				
20	759530000	1.0000	•3 . 6	693330				

ш
Ŧ
5
ネ
2
2
÷.
~
u.
u.
с С
20 N
ING
HING
CHING F
RCHING F
ARCHING F
AARCHING F
MARCHING F

0 3 F 0 N 6 D 6 4 8 M F 3 M M		
10000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TAU 53236 53255 532564 528654 228654 228654 113858 113858 113858 113858 113858 113858 048012 068012 068012 068012	LAXATION CALC HESU CONCOLC -5.48484E02 -3.512076102 -2.779577502 -12.779577502 -12.779577502 -12.779577502 -12.779575002 -12.5344026402 -11.53440265002 -11.53440265002 -12.5556103 -12.5556103 -12.65079455002 -12.65079455002 -13.256079455002 -14.67099465003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094665003 -14.60094655003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.6009465003 -14.60003 -14.60003 -14.60003 -14.60003 -14.60003 -14.60003 -14.60003 -14.60003 -14.60003 -14.6003 -14.	.98000 -2.895005.03 -2.855065.03 -2.8551115.03 -2.910195.03 -1.9795555.03 -1.9795555.03 -1.9795555.03 -1.9795555.03 -1.971565.03 -1.171365.03 -1.171365.03 -1.171365.03 -1.2739575.00 -1.27395755.00 -1.27395755.00 -1.27395755555.00 -1.273957555555.00 -1.2739575555555555555555555555555555555555
VHAX 26035 01140 01140 01140 100000000	X 400 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		о о м м м м м м м м м м м м м м м м м м
RES V 0.0000000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000	References and set of the set of	ALPHM -1.31174E-02 -1.0109300E-02 -1.0109310E-02 -1.00819E-02 -1.00819E-02 -2.0119E-03 -2.01420E-03 -2.01420E-03 -2.01420E-03 -5.01420E-03 -5.01420E-03 -5.01420E-03 -5.01420E-03 -5.01420E-03 -5.01420E-03 -5.01420E-03 -5.0174E-03 -5.01
2	L	H, ALPHU, 210 220 240 240 240 240 240 240 240 240 24
		A L P

CONVERGED SOLUTION

00005	DU/DY WALL	.332356	305247	278848	.253310	.228636	.204825	.181878	159795	.138577	.118224	.098737	.080115	. 062360	.045470	.029447	014291	.00000	-,012772	-,023542	032546	-,040002	046114	051068	-,055036	058172	060614	-,062485	-,063890	- 064917	- 065640	066116	-,066385	066471	-,066383	- 066112	- 065634	- 064908	- 063878	- 0004170	- 060595	058148	-,055006	- 051034	C/00400	034962	032507	-,023510	-,012753	- 000001	.014260	.029383	.045368
RESV B	V EDGE	-5.260350	-5.071399	-4.884745	-4.700095	-4.516694	-4.333065	-4.147900	=3,959468	-3,765882	-3.564696	-3.352937	•3.126399	-2,879578	-2,604296	-2,287798	-1,904166	-1.499420	-1.073748	627825	-,176912	.178891	.226370	- 245570	-1,199522	-2.294485	-3,181970	-3,751391	-4.071965	-4.249721	-4.363420	-4.459691	-4.563236	-4,686242	-4.834206	-5.008978	-5.210049	-5,435166	-5.680942	-5,943720	+6,220015	-6.506003	-6.797497	-7.091314	-/ - 3048/4	-7.674294	-7.953989	-8.212966	-8.430882	-8,581881	-8.659040	-8.692821	-8,717319
KRESV = 39	U EDGE	1 000000	101100	975064	.959649	945225	.931733	919121	907340	896347	.886101	.876567	.867712	.859506	.851925	844946	838554	.832728	.827461	.822753	818291	814938	811739	.808907	.806326	.803881	.801494	.799136	.796801	167762	. 792217	. 789974	.787766	.785589	. 783443	.781323	. 779226	.777148	.775084	.773033	- 770992	.768961	.766940	.764933	C46291.	. 760985	.759063	.757194	.755397	.753699	.752124	.750690	.749403
JRESV = 23	¥S	0 - 0 0 0 0 0	- 017085	032671	- 046602	- 059022	- 069988	- 079561	- 087787	- 094713	- 100381	104826	-,108073	110141	-,111033	-,110726	-,109203	-,106600	-,102479	-,096883	- 090467	083681	-,077332	072739	070946	071764	-073913	-,076369	-,078695	-,080805	-,082727	-084523	086262	-,088007	089808	- 091707	- 093731	- 095890	-098179	-100567	-103003	-,105416	107716	-109764	- 111395	-112437	-112619	-,111678	109199	- 104564	-,098154	- 090805	-,082313
855	(()X	- 000	.125	250	.375	.500	. 625	. 750	.875	1,000	1.125	1,250	1,375	1.500	1,625	1.750	1.875	2.000	2,125	2,250	2,375	2,500	2,625	2.750	2.875	3,000	3,125	3,250	3,375	3,500	3,625	3.750	3.875	4.000	4.125	4 250	4.375	4.500	4.625	4.750	4.075	5.000	5,125	5.250	212.0	5.500	5,625	5.750	5.875	6.000	6.125	6.250	6.375
ITER a	ר		• ~	1	ব	S	•	~	æ	o	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	õ	11	32	5	t M	5	36 -	37	58	54	10	41	42	M :	1 T	4 7	4	47	- 1 - B	49	20	15	52

.

.

POLATED	>	0000000	.01010	0104V	11000. 11000.	03044	03544	04044	.04544	.05044	• 05544	•10544	•15544	550244	• 4007 •	11000°	40544	45544	50544	1.00544	1.50544	2,00544	2.50544	3,00544	3,50544	4.00544	4 \$ 50544	5.00044		1.00044	0.00544	10.00544																
INTER	ISd	000000				.0250	.0300	.0350	.0400	.0450	• 0200	.1000	.1500	0002°				14500	.5000	1.0000	1.5000	2.0000	2.5000	3.0000	3,5000	4.0000	4.5000					10.0000								•								
	PSI	0.00000	.000030	171000	2/2000	000753	.001080	.001464	.001900	002386	.002918	- 003492	.004102	004744	.005413		007577	125800	009013	.009761	.010513	.011267	.012023	.012780	.013538	°014297	.015055	12810	6/6010 ·	014001	019850	.019609	.020368	.021127	.021886	- UCC044		024921	.025680	.026439	.027198	.027957	.028716	.029475	.030234	050993	25/160.	033270
	VST	000000000	074514 . 1	6,040157	//100C°C1	143304	52.771958	70.500395	89,845902	110.248742	131.073778	151,672110	171,427126	189,801730	206,366505	441c+04022	2701117625	251 186190	257.356443	261.961209	265,291613	267,619265	269.202597	270.236148	270,890191	271.292966	271,533033	271.672945	10170/01/2	21/0/ 1/2	CONCIO 1/2	271.829514	271,829135	271,828755	271,828376	211.02/440	110130 113	271 826858	271.826478	271.824365	271,831614	271.843084	271,845199	271.845199	271,845199	271,845199	271.845199	271,845199
	UST	0.000000	.079721	145941.	120067.	451051	469015	540885	608863	.672113	,729876	.781573	826843	• 865576	806798	012424°	000044°	004220	981988	988209	.992490	995344	861766	998356	.999966	927666	• • • • • • • • • • • • • • • • • • •	9999848	126666	556666°	01000088	066666	066666	066666	066666	066666	044444	066566	066666	999989	766666	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
	~	0000000	000159	814100°	112200	207200	004554	.005313	006072	.006831	,007589	.008348	.009107	.009866	010625	*07110°		144510	014420	015179	015938	.016697	.017456	018215	.018974	.019733	.020492	.021251	200220°	04270°	120020.	025045	025804	.026563	.027322	190920.		030358	031117	.031876	032635	033394	.034153	.034912	035670	036429	.027160. 749770	.038706
R = .005437		000000000000000000000000000000000000000	004783	••019125			-170811	- 231401	-,300391	 377245 	461360	-,552047	648554	-,750093					-1-425101	-1-543308	-1.662149	-1,781421	-1.900972	-2.020702	-2.140550	-2,260463	-2,380413	-Z-500383	=< 6<05/1	-2,740371	-2,000,501 -2,080,140	-3.100360	-3.220360	-3.340360	-3,460360	-2,580360 -2,700360		091070	-4.060360	-4.180360	-4.300361	-4.420357	-4.540350	-4.660350	-4.780350	-4.900350		-5,260350
00001 DELST	5	0000000	079721	159351	200023°	42102	469015	540885	608863	672113	,729876	.781573	826843	865576	897908	012424 012424	001074	141104	981988	988209	992490	995344	997198	.998356	,999060	94444	612666	9999848	126666	226666	0/6666	066666	066666	066666	066666	066666	044444		066666	686666	166666	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
x(J) = (J)	K ETA	1 0.000	2 , 240	3 480			4 1.440	8 1.680	9 1.920	10 2.160	11 2.400	12 2,640	13 2,880	14 3,120	15 3,360				20 4.560	21 4 800	22 5.040	23 5,280	24 5,520	25 5,760	26 6,000	27 6.240	28 6.480	29 6,720	50 6,960	51 7.200		34 7.920	35 8,160	36 8,400	37 8.640	38 8,880	10 0 170		42 9,840	43 10.080	44 10 320	45 10,560	46 10,800	47 11.040	48 11.280	49 11,520	50 11.760	52 12.240

-

x (J)	H	*20000 DETS1	TR = 1.453258					1 N T F R	POLATED
¥	ETA	n	>		UST	VST	PSI	PSI	>
: -	000 0				0.00000	000000	0.00000	0.0000	0.000.0
- 1				174554	053431	009105	004663	0020	17929
J 14	0.84	195959 19595		201012	106660	036875	018926	0100	24013
13	720	02001	- 007601	527661	169421	083505	043312	.0150	30635
r in	960	244691		698214	231289	148908	078285	0200	35771
- 0	1.200	.312080	- 029144	872768	.294986	232578	.124216	.0250	.39664
1	1.440	380587	- 047664	1.047321	359741	.333466	.181359	.0300	43375
æ	1.680	449249	072425	1.221875	424642	449903	.249817	.0350	.46904
σ	1 920	516991	- 104092	1.396428	.488673	579553	.329528	.0400	.50250
10	2,160	582683	143179	1.570982	. 550767	.719451	.420247	0570	.5329
11	2.400	.645210	-,190028	1 745535	.609869	.866102	.521524	.0500	55985
12	2,640	.703540	244790	1,920089	.665004	1,015659	.632810	.1000	.78454
13	2,880	,756804	307412	2,094642	,715351	1,164170	,753283	.1500	95476
14	3,120	.804353	-,377641	2,269196	.760295	1,507853	.882073	.2000	1.09711
15	3,360	.845803	455041	2.443749	-799474	1.443373	1.018204	.2500	1.22230
16	3,600	.881051	-,539021	2.618303	.832792	1,568079	1.160663	.3000	1,33405
17	3,840	.910268	- 628874	2,792856	860408	1.680163	1,308440	.3500	1,43.73
18	4.080	.933853	•.723823	2,967410	.882701	1,778723	1.460573	.4000	1.53355
19	4.320	,952385	623070	3,141963	,900218	1,863723	1.616181	.4500	1,62380
20	4,560	966551	925837	3,316517	.913608	1,935865	1.774486	\$5000	1.70966
21	4.800	977081	-1.031404	3,491070	,923562	£07966°3	1.934828	1.0000	2.42085
22	5.040	,984690	-1.139132	3,665624	,930754	2,046930	2 . 096666	1,5000	3,01192
23	5,280	.990034	-1,248481	3.840177	,935806	2,089181	2.259574	2.0000	3,56150
54	5.520	,993681	-1,359008	4.014731	.939253	2,124858	2.423223	2,5000	4.09642
25	5.760	660966	-1.470367	4,189284	.941538	2,155512	2,587372	3.0000	4.62680
26	6,000	,997655	-1,582295	4,363838	.943009	2,182467	2.751849	3.5000	5.15604
27	6.240	998629	-1.694602	4,538391	943929	2,206796	2,916535	1.0000	5.6850
58	6.480	.999220	-1.807153	4.712945	9444488	2,229325	3.081350	4,5000	6 S 1 4 0 -
5	6.720	093666	-1.919857	4.887498	944818	2,250665	3.246242	2 0000	6.74300
30	6.960	69466°	-2,032653	5,062052	.045007	2,271244	3.411180	9,0000	7.80095
31	7.200	628666	-2,145504	5,236605	945111	2,291353	3.576143	1.0000	8,8589(
2	7.440	66666	-2.258386	5.411159	945168	2,511181	3.741121	8,0000	9.91685
33	7.680	126666	=2,371285	5,585712	945198	2,330847	3,906106	0000 6	10.97480
34	7.920	699987	-2.484193	5.760266	.945213	2,350423	4.071095	10.0000	12,03275
35	8,160	366666°	-2,597106	5.934819	945220	2.369950	4.236086		
9 I M	8.400	866666	-2.710021	6.109373	.945224	2,389451	4.401077		
2		1.000000		6 203426		2,4004.5			
20		1.00001		09700700					
2	7 1 2 0	100000		250500°0					
			VODTOT"C"	100/00°0	045226				
10				7 15440	045226				
41	0.000				045226			-	
	10.320	1.000000		7.505801	94525	2.545280	5.721017		
4	10.560	1.000000	-3.726273	7.680354	945225	2.564756	5.886009		
46	10.800	1.000000	-3.839190	7.854908	945225	2.584232	6.051002		
47	11.040	1.000000	-3,952108	8.029461	.945225	2.603708	6.215994		
617	11,280	1,000000	-4.065025	8,204015	.945255	2,623184	6.380986		
49	11.520	1,000000	-4.177942	8,378568	945225	2,642661	6 . 545979		
20	11.760	1.000000	-4,290860	8,553122	.945225	2.662137	6.710971	•	
10	12.000	1.000000	-4.403777	8.727675	945255	2,681613	6.875964		
52	12,240	1.000000	-4.516694	8,902229	°45225	2,701090	7.040956		

65990 71272 76210 80291 91702 .18130 84249 .16396 .59702 .30016 4.01099 5.79789 -40144 76717 .41115 5,22654 6.36103 47914 .30652 6.92073 8.03713 12.49973 4,6373 0.26846 3.61537 9.1528 1.3840 **INTERPOLATED** .1000 4000 4500 2.5000 2000 3000 5000 .5000 .5000 0.0000 0000 4.0000 .0000 6.0000 7.0000 4.5000 9.0000 ISd 8.0000 0.000 0,000000 .016952 252271 689686 441787 073789 179195 .162899 534355 .149596 .365080 .294228 .521440 6.657539 .111982 .566425 .793646 558535 992780 .975876 6.430318 .339203 119947 .733023 .253392 4.839839 .067025 .203097 .884760 8.020867 8.248089 8.475310 .343861 ,938527 .028742 385586 4.612685 .748657 .702532 83470 .58397 .80542 47896 705147 .93173 15858; 1.15697 .38419. .92975 PSI 2,325784 2,546126 2,568116 2,589898 . 792772 521034 160504 194568 0.000000. 058682 065781 118788 187896 187896 272891 272891 272891 272891 272891 613085 613082 748554 579238 .277057 035562 956253 ,020604 2,075055 411559 433153 2.497779 2,583869 605390 180219 476250 519304 540826 .562348 2,648432 2,669953 .691474 712994 734515 2,121161 .251871 454711 2,626911 2.777557 .756036 VST 8888961 891294 8932394 894475 894475 895253 895724 896002 869290 877874 884046 896161 896250 896298 896323 896323 0.000000 .032229 .069292 111016 157075 2207078 2260360 316184 373649 431738 489355 545380 598736 693727 733993 768953 842406 857681 896346 896346 822853 896346 896347 896347 896347 896347 896347 896347 896347 896347 896347 896347 896347 89634. US1 0.000000 .253497 .506994 760492 1.013989 1.267486 1.520983 1.774481 2.027978 2.281475 2.534972 2.534972 2.788470 3.295464 3.8295464 3.80824561 3.8082458 4.055956 4.055956 4.502458 4.502458 5.830436 6.083934 6.537431 6.590928 6.844425 7.097928 8.365409 8.618906 4.816447 5.069945 5.323442 551420 125900 379398 9.632895 0.139889 0.393386 0.646884 1.153878 1.660873 3.041967 .858414 .872403 9.886392 1.407375 1.914370 2.167867 2.674862 928359 .111911. 0.90038 2.458977 0.000000 .002658 020670 033375 046720 059294 076392 ..842677 ..947638 286600 073470 -.076859 .202028 .376689 1.701949 2.027747 .136373 3.657248 040816 011142 .028057 .135024 .277109 .359342 - 447707 -.541167 -.638729 -.739493 -1.160956 .268633 -1.484983 1.593423 1.810525 1.919128 .245004 2.353636 2.462270 .570904 .679538 2.788173 .896807 .114076 .222710 3,331345 **439979** .546614 -3.765882 061361 -1.05386 .00544 H 1.00000 DELSTR .000000 077305 175262 175262 231024 230468 352747 723437 773949 818872 857852 956863 969815 979391 986277 999306 999616 999793 999892 481664 545944 996525 999945 999973 186666 416857 890828 918008 994363 166666 608448 939822 991090 997913 998780 10000 666666 000000 000000 000000 000000 .00000 .00000 000000 000000 000000 000000 .00000 000000 667973 .00000 560 .520 .640 .840 .080 .280 .720 .440 .680 .920 .400 .040 320 560 040 .760 0000 .240 .480 960 -200 .160 .880 .120 .360 600 .840 .080 0.800 280 .760 800 0,320 560 2.000 240 (1) X

>

000 4750		000000	42509	61000	.72864	.83116	.92461	1.00014	1.06776	1,13223	1.19353	1.25168	1.67561	1,98299	2.23273	2.44397	2.63140	2.80147	2,95626	3,10087	3,23575	4,29660	5.10568	5,80654	6.45196	7.06700	7.66544	8.25507	87078.8	9,42543	10.58761	11.75114	12,91461	14.07807	15.24155																	
9 1 1 1	PS1		0020	.0100	0150	0200	.0250	.0300	.0350	00700	.0450	.0500	.1000	.1500	.2000.	.2500	.3000	.3500	. 4000	. 4500	.5000	1.0000	1.5000	2,0000	2,5000	3.0000	3,5000	4.0000	4,5000	5,0000	6 0000 9	1.0000	8,0000	6°000°6	10.0000											-						
	PSI		002470	010739	026516	.051474	.087219	.135266	.196996	.273612	.366100	.475180	.601268	244447	,904456	1.080690	1.272226	1.477868	1,696214	1.925724	2,164803	2.411878	2,665462	2.924207	3.186937	3,452660	3,720573	3,990044	4.200594	4,531871	4.803625	2,0/5682	5.347928	5.620288	5,892715	0.1001.0	0,43/000	20101100 444080 4	7.255173	7.527681	7.800189	8,072698	8,345208	8.617717	8,890226	9.162735	9.435245	9.707754	9.980263	10.252773	10,525282	10.797791
	VST		005576	023221	054081	099166	159273	.234886	. 326087	.432463	.553024	686165	.829656	.980700	1,136049	1,292178	1,445515	1,592688	1.730767	. 1,857462	1,971257	2,071456	2,158136	2.232037	2,294393	2,346745	2,390766	2.428102	2,460262	2,488555	2,514053	196156.5	2,559819	2,581174	2.601980	2.622447	21/2m0°2		702990	2.723018	2.743037	2.763050	2,783062	2.803073	2,823083	2,843092	2,863102	2.683112	2,903122	2,923131	2,943141	2,963151
	UST		015578	036585	062941	094492	.130994	.172092	.217302	.266001	.317421	.370662	.424709	.478480	.530871	.580826	.627397	669815	.707529	.740238	.767893	. 190676	808955	.823233	.834087	.842118	.847899	.851947	-0/7-9- 	.856533	857712	14848.	.858901	859166	859322	507570°			859500	859503	859505	859505	.859506	.859506	.859506	.859506	859506	859506	.859506	.859506	.859506	.859506
	*		217053	5614167	951160	1.268214	1.585267	1.902320	2,219374	2,536427	2.853481	3.170534	3,487588	3.804641	4,121694	4.438748	4.755801	5.072855	5,389908	5.706961	6.024015	6.341068	6.658122	6,975175	7.29229	7.609282	7.926335	8.243389	8.560442	8.877496	9.194549	9.511602	9.828656	10,145709	10,462763	10.779816	11.07005	11 72075	12.0480.0	12.365083	12.682137	12,999190	13,316243	13.633297	13,950350	14.267404	14.584457	14.901510	15.218564	15,535617	15,852671	16.169724
R = 3.606936	>			019336	042178	072422	.108893	.150259	.195018	.241482	.287794	.331964	.371927	.405630	.431130	.446709	.450978	. 442970	.422192	.388647	.342805	.285532	-217997 	.141558	+057643	032346	127113	-,225524	326625	- 429655	534023		• 745156	- 651393	-,957860	-1 • 004400	0011/1+1+ 7011/0	-1 28/4/14		-1.598187	-1.704967	-1.811749	-1,918531	-2.025314	-2.132097	-2,238880	-2.345663	-2.452446	-2,559229	-2,666012	-2.772795	- 2,879578
50000 DELST	Þ			042565	073229	109938	152406	.200222	.252822	.309481	369307	.431250	221464.	, 556692	.617647	675767	,729951	779302	823180	861236	.893413	616616	,941186	967798	.970427	017979	986496	- 66120 6	994415	996542	216799	217844	9992996	499607	9999786	1 22555	244444	116666	100000	100000	666666	666666	1.000000	1.000000	1.000000	1.000000	1.00000	1.000000	1.000000	1.000000	1.000000	1.000000
	ETA			480	720	960	1.200	1.440	1.680	1,920	2,160	2.400	2.640	2,880	3,120	3,360	3.600	3.840	4.080	4,320	4,560	4.800	5.040	5,280	5.520	5,760	6 .000	6.240	0.440	6.720	6,960 	/ • 200	7.440	7.680	1.920	0.100			9.120	9.360	9,600	9.840	10,080	10.320	10.560	10.8.00	11.040	11,280	11,520	11.760	12,000	12.240
(()X	¥		- n	1 1 -) .	ŝ	•	-	æ	o	10	11	12	13	14	15	16	17	18	6	202	21	22	23	54	25	5 6	27		5	M I		2	5 I 5 I	1 1 1 1	2	2 5	- 6	61	14	41	42	43	ママ	4	4	47	69 (17 :	5-1 1-1	۲ ۲		52

i	POLATED	0.0000	70000		21177 · · ·	1.11277	1.23730	1.35129	1.45175	1,53329	1.61095	1.68473	1.75462	10430 0			70007°2	5.141.5	3,35740	3.54999	3,72381	3,88625	4.03679	5,20978	6.08992	6.84235	7.52747	8 17300	8.70786	0 10886		10 61210	11.80720	0000	14.19266	15.38520	16.5773			•									.*				-	
	INTE5 PSI	0.000			0010	• 0150	.0200	.0250	0300	.0350	0070	0450	0200					.2500	0000	.3500	. 4000	.4500	.5000	1.0000	1.5000	2.0000	2.5000	1 0000	1.5000				0000	7.0000	8,0000	0000	10.0000																	•
	184				106700.	.013623	.029032	.052976	.087263	133623	193683	268916	162062					907472	1.040165	1.290318	1.506847	1.738384	1,983355	2.240060	2.506759	2.781759	1.063477	1 150401					1 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 .		5.428806	5,729245	6.029971	6.330760	6.631616	6,932510	7.233424	7,534350	7.835283	8,136218	8.437155	8.738092	9.02920	9,339968	006089°6	7. J20144	10,546/06 50,54173	10.844659	11.145597	11,446535
	VST				• 01417e	046604	.086717	.141288	211324	297516	400143	518976	001129		043700		1 . 1 6 4 7 4	1.304273	1,480472	1.654624	1,822939	1,981993	2.128968	2.261830	2.379420	2 481456	2 568444	2 441525					0079100 9199700	2 BALLER	2 907086	2 928064	. 2.947745	2.966581	2.984881	3,002852	3,020628	3,038290	3,055888	3,073452	3,090998	3.108534	3,126065	3,143594	5.161122	0000/1.0		3.231231	3.248758	3,266285
	UST	000000		116600	.016240	.032320	.053551	.079891	.111184	147181	187528	211756	279179				2/52/5ª	484047	.534039	.581400	.625299	.665043	.700162	730432	755866	776691	201102		A 1 5 0 4 2						8 2 6 0 7 6	837626	838021	838256	838391	.838467	.838509	.838531	636543	.838548	.838551	.838552	.63855.	.838553	656555 67050 67050		+CC9C9.	193958	838554	.838554
	>	0 00000			.117755	1.076633	1.435511	1.794389	2.153266	2.512144	2.871022	1 220800					4.005410	5,024288	5,383166	· 5,742043	6.100921	6.459799	6.818676	7.177554	7.536432	7 8953 0	8 254187	8 412045		0.4.1.4.8.0 0.407.2.2	0 200000					11 484087	11 842964	12.201842	12.560720	12.919597	13,278475	13.637353	13,996231	14,355108	14,713986	15.072864	15.431741	15,790619	16,149497	C/707.01	767/00°01	17.585008	17.943885	18,302763
R # 4.652430	>			111000.	.024310	.054297	.095669	147865	210108	281347	360212	44084					105051.	.874534	.942257	.997622	1,038561	1.063589	1.071886	1.063327	1.038439	C 1 1 0 0 0	00000				0 1 0 7 1 0 0 1 0 0 7 1 0						018179	- 087942	- 194387	- 301027	407782	514602	- 621458	-,728333	835219	942109	-1-049003	-1.155897	-1.262793 		•1•4/0704	-1-00375 -1-690375	-1.797271	-1.904166
87500 DELST	=			2/2000	019427	.038542	.063861	095273	132590	175518	223632	274152				110004	19851c.	577300	636858	.693336	745688	793084	834965	871061	901392	800400	014074				170104	00//04*	760760 760760		008110	008800	992926	999645	999807	499897	40000	526666	999987	766666	406666	00000	666666	1.000000	1,000000	1.000000	1,00000	1.000000	1.000000	1.00000
1) = 1,	6 T A			240	1977 190	1 ,720	960	1.200	1 440	1 1.680	1.920	140				000°2	1 3,120	5 3,360	3.600	. 3,840	1 4,080	4.320	1 4.560	4.800	5,040										7 440		1.920	8,160	8 400	. 8.640	986,880	9,120	9,360	9,600	6 840	10.080	1 10,320	10,560	10.800			11.760	12.000	12,240
r) x	3	•	,0		~1	4	101			· 60)				• •		- - -	14		16	1	18	19	20			1 1	1 2								- n				- - 0	37	35	5	40	41	42	5	77		49 H 57 -		10 C	7 C 7 L	ŝ	21

	KPULATED	0000000	8869	1.1502	1,3164	1.4631	1.5740	1.6736	1.76671	1.85341	1,9250	1.99320	2.5232	2.89381	3.1889/	3.4401	3.6610	3.8577	4.0392	4.20526	4.3612	5,56806	6.46871	7.2373(7.9348	8.5914	9.22351	9.8413	10.4508	11.0557	12,2596	13.4611	14.6620	15.8629	17.00.01																
	PSI	0000 0	0020	.0100	.0150	.0200	.0250	.0300	.0350	.0400	.0450	,0500	.1000	.1500	. 2000	,2500	3000	.3500	0007*	.4500	.5000	1,0000	1.5000	2,0000	2,5000	3,0000	3,5000	4.0000	4.5000	2 0000	6.0000	7.0000	8,0000	0000 * 6	10.000																
	18d	0.00000	000475	.002852	.009032	.020911	.040374	.069280	.109437	,162575	.230300	.314054	.415058	.534260	.672285	.829397	1,005474	1.199999	1.412086	1.640517	1.883810	2.140297	2,408215	2.685790	2,971320	3.263234	3.560141	3,860849	4.164379	4.469947	4.776948	5,084931	5,393569	5.702632	011964	0,261401	20077000 2017070 9	7.250401	7.560107	7.869823	8.179544	8.489267	8,798992	9.108718	577877°6	9.728170	069750 01	10.54/622		10.274800	11.586527
	VST	0.00000	004297	.018261	043491	.081511	133713	.201291	.285155	, 385837	503392	637299	,786385	948779	1,121917	1.302604	1.487152	1,671578	1,851853	2,024182	2,185264	2,332521	2.464238	2,579621	2,678753	2.762474	2,832198	2.889712	2,936968	2,975912	3,008351	3,035866	3.059775	3,081126	5,100719	5.1111.5 7 114155	000001°C	3,170680	3.187603	3.204228	3,220798	3,237338	3,253861	3.270377	3,286889	3,303399	807714°°	719055°5	7.369410	CT0592 1	3,402451
	UST	0.000000	.002556	.010225	.023003	.040872	.063786	.091647	.124287	.161443	.202730	.247631	.295485	.345485	.396703	.448121	.498676	.547324	.593106	.635210	.673022	.706160	.734486	.758090	.777257	.792420	804102	.812867	.819270	.823825	.826978	829104	.830500	.851341	6 1 1 1 1 1 0 1 1 1 1 1 1 1 0	202200.		832657	832691	.832710	.832719	.832724	.832726	.832727	.852728	82728 .	03/3CD.	07/759°	832728	A 7073B	.832728
	>	0,00000	371942	743883	1.115825	1.487766	1.859708	2.231649	2,603591	2,975532	3,347474	3.719415	4.091357	4,463298	4.835240	5,207181	5,579123	5,951064	6.323006	6 . 69 49 47	7,066889	7.438830	7.810772	8,182713	8,554655	8,926596	9,298538	9.670479	10,042421	10.414362	10.786304	11,158245	11.530187	11.902128	12.274070	110040011	CCTIVOCI	13.761836	14.133777	14.505719	14.877660	15.249602	15.621543	15,993485	16,365426	16.737368	Y04Y01 - 11	10101011	18,000,14	18 597075	18,969017
'R = 5.055079	` >	0.00000	006252	025039	056396	100251	156364	.224264	.303183	391997	.489178	592769	.700387	809259	916307	1,018277	1,111895	1.194064	1.262055	1.313687	1.347467	1.362667	1.359330	1,338211	1,300651	1.248421	1.183540	1.108105	1.024146	933518	.837834	.738430	.636372	.532475	145734.	2×0127.	• C C C C C C C C C C C C C C C C C C C	001210		- 212998	320169	427358	-,534556	641760	- 748966	- 856173		-1.070588	-1-285004		-1.499420
00000 DELS1	n	0.00000	003070	012279	027624	.049082	076598	.110056	149253	.193872	243453	297374	354839	414883	476390	538136	598846	,657266	.712245	.762806	808213	848008	: 882024	910369	933387	951595	965624	.976150	,983839	989308	993095	995648	997324	998395	90666		201777	716666	956666	979978	999999	999995	866666	666666	1.000000	1.000000	1.000000	1,000000			1.000000
	ETA	0-000	240	180	.720	960	1.200	1 440	1,680	1.920	2,160	2.400	2,640	2,880	3,120	3,360	3,600	3,840	4,080	4.320	4.560	4.800	5,040	5,280	5,520	5,760	6,000	6.240	6.480	6.720	6,960	7.200	- 440	7.680	7.920			8,880	9.120	9 360	9 600	9.840	10,080	10.320	10.560	10.800		11.600	11.750		12.240
X (J)	¥	•	• •	-	Ţ	ŝ	Ð	~	80	0	10	11	12	۳1 ۲	14	15	16	17	18	61	202	21	22	2	54	52 S	26	27	28	5	30	n	21	141 : 141 :	3 L 9 1	0 4 0 4	0 F 7 M	- 60 1 M	6	10	41	42	41	1 7	4 : V	0) 7 =	3 3		- C - V	ĥ	• N • N,

>

INTERPOLATED 9.0000 0.0050 41920 59961 73556 195339 7.66219 10.30181 10.91685 11.52670 12.73918 13.94847 16.36564 17.57416 2.05213 2.13624 2.21592 3.21033 3.51595 3.77389 3.99923 4.20394 4.38804 4,71956 5,95666 6.87858 2,82885 8.37149 9.03749 9.67752 4.56036 5.1571 8. V V V 9. 0000 9. 0000 3000 4000 4500 .5000 5000 .0000 .5000 0000 .0000 .0000 .5000 4.0000 4.5000 .0000 0.000.0 6.000 PSI 95 0000000 000018 0004541 0004541 0012865 0012865 001134 051134 5.961032 6.278925 265062 910879 4.693706 0.733931 130521 2.565849 2.853614 3.149045 3.450586 3,756874 6.915099 11.688672 595266 .303308 .526499 .766002 2.287457 4.066753 4.379279 5.326122 .643383 .233283 \$51496 .869725 .187961 8.506206 8.824450 9.460943 9.779190 0.097437 0.415684 11.052178 6.596967 9.14269 46662 43296 00946 .09776 3,159194 0.000000 003767 016195 039038 074001 122676 758783 922157 098224 284026 2.224325 2.875711 2.956589 3.023384 5.122658 2,534878 308719 .432855 363749 478407 610358 .048266 .237273 275242 .386764 448206 .463555 1 494251 862285 2,665628 2,779102 .292328 571362 478903 509599 5,524946 540294 266561 476001 670154 3.257074 340371 417501 .35591 3.21507 .32467 .40214 VST 777035 791016 801716 809691 004702 014393 014399 028996 048507 0728996 0728996 173925 215955 215955 215955 215955 2561370 2561370 2561370 256449 359449 510715 558142 602476 827345 827429 0.00000 737172 759239 824280 827453 679078 827460 642968 10501 815481 819574 822392 825513 827075 827247 827459 827461 826297 82746 82678 82746 82746 82746 82746 0.000000 .384607 .384607 1.552514 1.5538427 1.9538427 1.9538427 1.9538427 2.076944 2.076854 2.0768548 2.076855 12.692025 4.615282 1.307530 7.692136 8.076743 16.538093 16.922700 10.384384 1.922812 3,846068 5.769102 6.538316 6.922923 8.461350 3.461239 3,845846 4,999666 15 384273 15 768880 4.230675 5.384496 9.230564 4.230452 4.615059 7.691914 8.461128 8.845957 1.153598 2.307418 5.461461 9.615171 6.153487 8.07652 6.845734 9.230341 9.614948 4.99977 30730 5.488996 • 104443 • 212136 • 319834 • 427534 .654261 .676666 | • 626766 | • 576256 859878 647798 433568 326108 024449 055656 100044 157813 228908 312956 312956 16191 516392 0.000000 .678788 .661620 .512348 218538 - 535236 • 642938 632840 012824 548536 -611344 .437347 110907 -1.073748 756295 884017 - 858343 - 966046 353450 003241 -.750641 25948 .36999 46732 .26264(.16662 06679 964267 2.12500 DELSTR 999534 999534 999534 495896 939059 999860 999926 186666 966666 968886 866666 666666 000000 .000000 .000000 978525 617207 674523 777037 820677 858651 000000 996156 72810 91755 985523 94046 997646 .00000 89088 00000 00000 79387 3.840 .240 1,080 0 9 S 800 280 520 760 6.000 400 640 . 880 .480 .440 920 .680 .200 ,160 1.040 1.280 1.760 720 .60 840 0.080 0.320 0,560 0.800 1.520 2.00 , Jé ŝ F 0

62

H

X(J) = 2,25000 DELSTR = 5,954823

>

	 - 							INTEL	POLATED
¥	ETA	Ð	>		UST .	151	101	101	
-1	000.0	000000000	000000 0	000000 0	000000000	0.00000.0	000000 0	0000 • 0	97001.1
	240	002856	.005651	.396888	0<2200 -	003190		0500	100001
2	.480	000126	.023045	143175		• 01 54 1 5	S56000 -	0010	1.1748
4	.720	.008215	• 053037	1.190663	.006759	• 034033	.000367	.0150	1.95640
ŝ	.960	.022204	096425	1,587551	.018268	.065378	.005334	.0200	2,08762
¢	1,200	.041895	.153876	1.984439	.034469	.109723	.015800	.0250	2,20266
~	1.440	.067313	.225818	2,381326	.055382	.168700	.033630	• 0300	2,30925
90	1.680	.098435	.312355	2.778214	.080988	.243727	.060692	• 0320	2.40372
o	1.920	,135165	413191	3,175102	.111207	,335926	.098832	. 0400	2.48336
10	2.160	.177297	,527538	3,571989	.145872	. 446012	149841	.0450	2.55974
11	2.400	.224489	.654050	3.968877	.184699	574189	.215447	.0500	2,63285
12	2.640	.276234	• 790779	4,365765	.227273	.720044	.297200	• 1000	3.18506
5	2,680	.331848	,935165	4.762653	.273029	.882460	.396482	.1500	3,57299
14	3,120	.390463	1.084065	5,159540	.321254	1,059564	.514414	.2000	3.88171
15	3,360	.451043	1.233847	5,556428	.371097	1.248724	.651807	.2500	424424
16	3.600	.512420	1.380529	5,953316	.421596	1.446603	.809112	3000	4.37774
17	3,840	.573343	1,519972	6.350204	.471720	1.649297	.986385	.3500	4.58398
18	4,080	.632546	1_648118	6.747091	.520429	1.852532	1.183271	0007*	4.77524
61	4.320	.688832	1 761238	7.143979	.566739	2.051925	1,399013	.4500	4.94920
20	4.560	741146	1,856180	7.540867	.609780	2.243278	1.632486	.5000	5,11382
21	4 800	788647	1.930566	7.937754	.648862	2.422869	1.882256	1.0000	6.37871
22	5.040	830758	1.982936	8.334642	.683509	2.587698	2.146657	1.5000	7.31872
53	5.280	867187	2.012791	8.731530	713481	2.735665	2.423881	2.0000	8.11671
17	5, 500	89793	2,020561	9.128418	738769	2,865657	2.712071	2.5000	8.83753
i o I	5,760	90220B	2007492	9.525305	759571	2 977525	500940B	3.0000	9.51289
56	6.000	943482	1.975452	9.922193	776253	3.071975	3.314183	3.5000	10.16026
10	6.240	101010	1026737	10 11001	789286	150105	3.624855	4.0000	10.79083
- 60 - 1	6.480	67178°	1.863846	10.715968	799208	1.214637	3.940081	4.5000	11.41120
0	6.720	990105	1 789290	11.112856	806565	1.266800	4.258737	5.0000	12.02563
) () 1 ()	6.960	986785	1.705435	11.509744	811881	3,309033	4.579908	6,0000	13.24612
	7.200	122100	202719	51900 II	815621	1 241177	4 902875	7.0000	14.46263
• A	7 440	994446	1.517963	12.307519	818184	3,371658	5.227094	0000	15.67824
110	7.680	996526	1.417613	12.700407	819895	3.395427	5.552161	0000	16 89370
34	7_920	97879	1.314495	13.097295	.821008	3.415942	5.87788	10.0000	18.10913
35	8,160	. 998736	1.209476	13.494183	.821713	3.434182	6.203776		I
36	8.400	,999265	1,103191	13,891070	.822148	3,450878	6.529990		
M	8.640	9 999583	,996084	14,287958	.822410	3,466557	6,856343		
60 (171)	8,880	692666	.888460	14.684846	.822563	3.481586	7.182778		
5	9.120	999875	.780518	15,081733	169258	3,496211	7.509260		
1	9.360	76666°	• 672387	15.478621	.822649	3,510592	7.855770		
4	9.600	996666	. 564146	15.875509	.822726	3.524830	8,162294		
11/1	078 6	66666	.455843	16.272397	.82239	3,538986	8.455527		
4 1	10.080	266666	.347506	16.669284	.822747	3,553097	8.815363		
71 73	10.320	966666	, 239151	17.066172	.822750	3,567183	9.141902		
2 5	10,560	866666	.130786	17,463060		3,581256	9.468442		
0 1	10 800	666666	.022417	17,859947	822753	3,595323	6.794982		
14	11.040	1.000000	-,085956	18,256835		3,609386	10.121523		
10 (C 57 =	11,650	1.000000	-194329	10.053/25	56/228.	3.623448			
6 4 1 t	11.520	1.000000	- 502702	14,000011	667228°	3,637509	10.774604		
5		1.000000	- 411076	867747 .	CC1220.	3.05150			
		1.00000		14 044300	10/070°	J.00000.1			
N A	12,240	1,000000	<28750 ···	20.241274	CC1278.	3,079691	022461.11		

X(J) # 2.37500 DELSTR # 6.453745

00000000000000000000000000000000000000	100 100 100 100 100 100 100 100 100 100	0.000000 005219 021457 021457 049859 041526 147491 218616 218616 205473 408257	0,000000 817598 817598 817598 1,635195 2,452793 2,452793 2,452793 2,452793 3,671891 3,67189	000000 0000000 00000000 00000000 000000	0,0000000 00000000 0011801 001801 0029291 029291 05707 1504800000000000000000000000000000000000	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 2000 2000 2000 2000 2000 2000 200
333 MNNNN 999999999999999999999999999999	00000000000000000000000000000000000000	20000000000000000000000000000000000000	7, 358378 8, 175975 8, 175975 8, 175975 8, 9934573 8, 9934573 9, 402371 9, 402371 9, 402371 9, 402357 9, 402357 9, 446365 11, 051566 11, 051566 11, 051566 11, 05566 11, 05666 11, 056666 11, 0566666 11, 0566666 11, 0566666 11, 0566666 11, 0566666 11, 05666666 11, 056666666 11, 05666666666666666666666666666666666666	57805 57805 57805 57805 57805 57805 57805 57875 57875 57875 57875 5818555 5818555 5818555 5818555 58185555 58185555 5818555555 581855555555	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 11 11 11 11 11 11 11 11 11		800 60 60 60 60 60 60 60 60 60

2.50000 DELSTH # 6.982925 x(J) =

	,		•					INTE	RPOLATED
¥	ETA	9	>	>	UST	VST	PSI	ISd	۲
-	0.000	0.00000	0.00000	0.00000	0.00000	00000000	000000000	- 0050	2,15445
• ^	240	007186	004757	420158	- 005856	002182	001231	0 0 0 0 0	2.44317
.			010440	B40715	77770	009815	00400	0050	2.63298
n =			100100 10100		- 005735	024705		0100	2.78340
7 U									
n 4			40092 •						1.02448
0 8		250210		70/101°3					
~ a	1.440		470007°	0 + 1 2 2 C 4 2		0/1161°	015500	0100	
0 0			200772						201-10 101-10
	1 • 7 F U		C00076.	2020205°5		110441	072455		2.47670
		/3/611.				101001			2 4 4 4 4 7 8
	0 - + - O	1777C1.		7/CCD20#	10214		178007		
		306-64 8						0001	001 00 0
า : 			0 # 1 # C 4 *	242442	27172°	130501	14701	1500	4 4 1 4 0
a 1	0 4 1 K U	100422	10100101				461204	0002	4.74688
n 4			101010 101010 101010	972301 Y	118748	1 1 7 4 7 8	101101	2500	5.01800
			1910151 19115	101001 V	196951	1.526529	746258	3000	5.25355
		517501	1.005140 1.863783		4 3 8 0 3 0	1 741969	919926	1500	5.46947
•		597636	2.052925	7.566419	487036	1.959384	1.114356	1000	5.66332
	1000	655581	2,188192	7.986796	534258	2.174146	1.329010	4500	5.84571
ì	4 800	710187	2.324471	8.407154	578758	2.381714	1.562942	. 5000	6.01375
10	5.040	760481	2.438461	827512	619745	2.577942	1.814842	1.0000	7.32376
2	5.280	805728	2.527870	9.247869	.656618	2.759360	2.083107	1.5000	8.29689
	5.50	845469	2.591520	9.668227	689005	2.923388	2,365928	2.0000	9.11990
	5.760	879515	2.629151	10.088585	716764	3.068456	2.661391	2 5000	9.86076
9	000	908011	2.642320	10.508943	739973	3.194025	2.967566	3,0000	10,55265
24	6.240	931231	2.632225	10.929300	758897	3.300506	3,282597	3,5000	11.21374
59	6.480	949695	2 601473	11.349658	773943	3,389099	3.604768	4,0000	11,85572
29	6.720	964004	2,552833	11.770016	.785603	3,461586	3.932551	4,5000	12,48575
30	6.960	974812	2,489199	12,190373	.794411	3,520101	4.264637	5.0000	13.10853
31	7.200	.982770	2,413386	12.610731	.8008.7	3,566918	4.599937	6.0000	14.34315
32	7.440	.988481	2.327980	13,031089	805551	3.604267	4.937578	7.0000	15.57209
33	7.680	.992475	2,235243	13,451446	.808805	3 634199	5.276881	8,0000	16,79955
3¢	7.920	.995197	2.137067	13.871804	.611024	3,658503	5.617335	0000 * 6	18.02670
35	8,160	.997005	2,034971	14,292162	812497	3.078667	5,958565	10,0000	19.25380
9 I M 1	007*8	.998176	1,930131	14.712520	813451	3,695876	6.300305		
)		514044°	224220.1	1/0201.01		00011/°C	2/53+0°0		
00		0101000	1.134/0		814446	717705	7.727040		
. o 1 41	9.360	999802	1010001	16.393950	.814776	3.750015	7.669510		
41	9.600	999893	1.387944	16.814308	.814851	3.761972	8.012023		
42	9.840	249943	1.278216	17,234666	.814892	3,773716	8.354561		
4 M	10.080	146666	1,168384	17,655023	.814914	3,785336	8,697111		
77	10.320	586666°	1.058493	18.075381	.814926	3.796885	9.039669		
45	10.560	60000	.948569	18.495739	.814932	3.808394	9.382231		
9 5	10.800	166666	.838628	18.916097	614935	3,819883	6 2 5 4 7 9 4	•	
1	11.040	866666	.728678	19,336454	814937	3,831360	10.067359		
60 (77 :	11.280	666666	618723	19.756812	814937	3,842831	10.409924		
) (11.540	1.000000	• 506760	20"17110 20 503535		0000000 P	10./36464		
	11./00		546606 200000	120140°02	076770	/0/C00°C	11.04004		
+ 04 7 7	12.240	1.000000	.178891	21.438243	876718	3.888701	11.780185		

, 87715

7 2,12359 1,29314 .82044

141560001 ATED	PSI TYTER	0150 2.42487	0100 Z.71835	0050 2.96445	0.0000 3.13034	.0050 3.26817	.0100 3.39427	0150 3.49984	0200 3.59067	0250 3.67737	1 75004		67606 2 0070	0450 3.97310		1000 4 54440	1500 4.92544	2000 5.23920	2500 5.50738	3000 5.74446	3500 5,96005	4000 6,15621	4500 6.33872	5000 6,50991	1.0000 7.83368	1.5000 8.81829	2.0000 9.65127	2.5000 10.40059	3.0000 11.09913	3.5000 11.76606	4.0000 12.41296	4.5000 13.04716	5,0000 13,67356	6°0000 14.91429	7.0000 16.14851	8.0000 17.38093	9.0000 18.61295	10°0000 19.84488														
	ISd	0.000000	001548	005409	010015	013780	015090	- 012295	-003690	012490					270712	370120	488965	628268	788689	970477	1.173439	1.396942	1.639937	1.901013	2.178476	2.470443	2 774940	3.090000	3 413749	3 744468	4.080639	4 420969	4.764392	5.110058	5.457311	5,805657	6.154737	6,504299	6.854169	7.204230	7.554408	7.904655	276752.8	162609.8	8,955573 0,255573	106005 6	2,2020,9	10,006567	10.356902	10.707237	11.057572	11.407407
	VST	000000"0	.001719	007824	019897	039545	.068408	108170	160587	227312		140004	526576	645058	815435	985682	1 1 7 0 9 6 7	1.368640	1.575294	1.786908	1,999064	2.207219	2.407007	2 594547	2.766693	2.921221	3.056911	3,173538	3 271757	352938	3 418947	3.471928	3.514102	3.547604	3,574369	3,596059	3 614041	3,629395	3.642939	3,655272	3,666818	3,677865	3,688606	5 699164	3.709615	3,720005	3,730362	3.740701	3,751031	3,761356	3,771678	3,792320
	- UST	0.00000	007172	010722	010623	006823	.000752	.012200	1202	202240		011000			208502	252162	208573	346966	. 196435	445980	.494561	541169	584887	.624957	.660825	. 692167	718891	741120	759153	773418	784420	792692	798755	.803087	.806104	.808153	803509	.810384	.810935	.811273	811475	.811545	811660	.811647	.811717	.811720	.6117.55	.811736	.811738	811738	.811759	.811739 .811739
		0 0 0 0 0 0 0 0	.431586	.863173	1.294759	1.726346	2.157932	2.589518	3.021105	1,452691			4 747450		5 - 61 06 23	6.042210	4 2 7 7 9 6	6.905383	7.336969	7.768555	8.200142	8.631728	9.063315	9.494901	9_926487	10.358074	10.789660	11.221247	11.652833	12.084419	12.516006	12.947592	13.379179	13.810765	14,242351	14.673938	15,105524	15,537111	15,968697	16.400283	16.831870	17.263456	17,695043	10.126629	18.558216	16,989802	19,421588	19.852975	20,284561	20.716148	21.147734	22.010907
t a 7.525652		000000	.004234	e017484	.040855	075460	122417	.182862	257925	348501			716180	840008	1 014401	210289	077601	1.577052	1.759478	1.934851	2.098332	2.245429	2.372300	2.476001	2.554648	2.607488	2,634855	2.638042	2.619091	2.580561	2.525273	2.456096	2.375756	2.286714	2.191084	2,090612	1,986682	1.880350	1.772396	1,663378	1,553678	1.443556	1,333176	1.222646	1,112028	1,001362	640669	296611.	669248	• 558531	.447811	.226370
2500 DELSTR	. כ	000000000	.008836	013209	013086	008406	.000927	015029	014096	058273			696691	207216		310644	1678.0	427436	488378	549413	609261	666678	720535	769899	814086	852697	885619	913004	935219	952792	966345	976536	984005	989341	993059	995582	997253	698331	999010	927666	529666	999820	206666	676666	446666	186666	200000	10000	666666	666666	1.000000	1.000000
X(J) = . 2.6	K ETA	1 0,000	2 240	3 ,480	4 ,720	5 ,960	6 1.200	7 1.440	A 1 480	0.01						1.160		17 3.840	18 4.080	19 4 320	20 4.560	21 4.800	22 5.040	23 5.280	24 5.520	25 5.760	26 6.000	27 6.240	28 6.480	29 6.720	30 6.960	31 7.200	32 7.440	33 7.680	34 7,920	35 8,160	36 8,400	37 8,640	36 8,880	39 9,120	40 9.360	41 9,600	42 9,840	43 10.080	44 10.320	45 10,560	46 10,800	47 11.040	48 11.280	49 11,520	50 11.760	52 12,240

,

.

	>					A#10/4														•																															
	KPOLATED	7 0 0 0 F	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21010 2		2,03176 77746					1012017	4 10507	4.37588	4.44158	4.50015	4,55731	5.04107	5.41279	5,72202	5,98600	6.22442	6.43738	6,63630	6.81733	.6,98930	8.32362	9.31838	10,15958	10.91546	11.62006	12,29215	12 94334	13,58132	14.21100	15,45/25	16.64620	01004101	20.40568	•												
	INTEF										0.540		0350	0000	0420	.0500	.1000	.1500	.2000	.2500	.3000	,3500	000t "	.4500	• 5000	1.0000	1.5000	2.0000	2,5000	3.0000	3.5000	1,0000	4.5000	5,0000	0000°9	0000°1		10.0000													
	001	101		010100 007820		- 012501						018619	079704	134672	205333	.293389	.400371	.527560	.675915	.846005	1,037969	1.251481	1.485766	1.739630	2.011528	2.299650	2.602022	2.916607	3.241408	3,574542	3,914307	4.259217	4.608020	4.959695	5,515437	5.000024	6 181454	6.738931	7.096478	7.454194	7.812012	8,169890	8.527803	6 885735	7 * C + 50 / /	0 050576	10.317528	10 675481	11.033435	11,391389	11.749342
	121					21/#10°				1110011 111011		12040	405291	514720	640658	782791	940078	1,110690	1,292023	1.480775	1.673106	1.864864	2,051863	2.230173	2,396394	2.547877	2,682867	2,800542	2,900975	2,985003	3,054050	3.109929	3,154639	3,190191	5.218477	5.241179 7 3607.0	21/22°5	3.288666	3_300641	3,311662	3,322067	3,332087	3,341871	915155°5	000100°°		389575	3 399049	3,408520	3.417989	3,427457
	• 011		0.00000	••00061/								791970	107489	140948	178411	219570	.263948	.310897	.359608	.409158	.458462	• 506532	.552347	.595023	.633854	.668349	.698255	,723552	.744423	.761216	.774391	- 784470	791987	257462	. 801340	- GOTOOT		807752	.808226	.808515	.808686	.808786		8088/3 20000		010000 10000	808905	808906	808907	.808907	.808907
	2		000000			1.267540		0/071747	240000 ×	2°04/00/		1 105151	4.867668	5.10187	5.752698	6.195214	6.637729	7.080244	7.522759	7.965275	8.407790	8.850305	9.292820	9.735336	10.177851	10.620366	11,062881	11.505397	11.947912	12,390427	12,832942	13.275458	13.717973	14.160488	14.603003	15,045519		16.373064	16.815580	17,258095	17.700610	18.143126	18,585641	19,028156	1/00/7.01	101010101010100	20.798217	21 240732	21,683248	22,125763	22.568278
R = 8.043320	2	A	000000000	050500	20410	-054022	199190			057502	155787		559118	679884	812155	954131	1,103262	1,256292	1.409381	1.558297	1.698670	1,826282	1,937355	2,028813	2.098475	2,145164	2,168717	2.169901	2.150257	2,111893	2,057260	1,988937	1.909451	1,821134	1.726038	1.025887	C/032C1	1.307528	1.198197	1,088104	,977531	.866663	.755618	2/77723		240775	199512	088244	-,023026	-,134298	245570
75000 DELST			000000000	951010	511010 . .	< <pre><<p><<p><<p>10</p></p></p></pre>			0/62/0	010401	100/CA	004400	122882	174245	220558	271440	326302	384342	.444560	,505791	.566767	,626193	.682831	,735589	.783592	.826236	863208	894480	920282	941042	957330	96790	979082	985839	990628	995438 995458	001010 001773	998572	999158	,999515	£27999.	999850	026666	956666	0/4444	00000	100000	666666	666666	1.000000	1.000000
= 2,			0000	0 t 1 0		. 7 2 0							0 7 7 0	2.880	3,120	3 360	3,600	3,840	4.080	4.320	4.560	4.800	5,040	5,280	5,520	5,760	6,000	6,240	6.480	6.720	6,960	7.200	7.440	7.680	7,920			8.880	9,120	9,360	9.600	9.840	10,080	10.520			11.280	11 520	11.760	12.000	12.240
(L)X	3	× ·	(N 1	n :	3	n .		- 0	0 0	-					2	16	17	18	19	20	21	22	23	t N	25	26	27	28	6	30	10	ŝ	m : n i	31	5 F		8	6	40	17	4	5 : 5	すい	4 5 0 4	5	- 60	67	50	51	52

8.043320 2.75000 DELSTR =
	() =	2.87500 DEL5	3TR = 8,4870	83				INTER	RPULATED	
	E 7 4	_	>	-	UST	VST	PS1	ISA		-
	0		0000000	0000000	000000	000000*0	0000000	0000	5.0000.1	<pre></pre>
			010500	9012CH		028200	- 007410	0200	00442.5	1-67436
			517420	1 359552	017087	129600	- 014613	- 0150	3.93637	1.38054
	6	019997	046352	1.812737	016124	019103	- 022139	0100	4.07773	1.07148
	1.20	10 - 014589	071549	2,265921	- 011764	032927	- 028458	- 0050	4,18226	.71517
	1.44	10 - 004883	102043	2,719105	003938	052046	032016	0.000	4,28148	
	1.65	30 009223	.138003	3.172289	.007437	077478	••031223	.0050	4.37558	
	1.92	027889	.179918	3,625473	.022488	.110467	024442	.0100	4 4 4 4 5 5	
	2.16	00 .051347	.228465	4.078657	041405	.152443	-009965	.0150	4.54630	-
	2.40	0 079754	,284248	4.531841	064308	.204814	.013988	.0200	4.61646	
0.1000 0.10000 0.10000 0.100	2.64	10 ,113230	.347741	4.985026	061300	.268928	.049247	.0250	4.68453	
	38.5	1151511	.419127	5.438210	122409	.345949	.097672	00200	4.75051	
1 1	3,12	20. 195414	498161	5.891394	•157567	436714	.161112	.0550	4°81441	
1 1	3,36	50 .243791	.584045	6.344578	.196575	541592	.241358	0070	4.87622	
1,2020 1,70201 1,70101	9. 9	10 .296497	675359	6.797762	239073	660350	. 340073	.0450	43294	
14100 141200 14120 14120 <t< td=""><td>3,84</td><td>10 352870</td><td>.770051</td><td>7.250946</td><td>• 294528</td><td>1920261</td><td>.458717</td><td>0000</td><td>8/V// J</td><td></td></t<>	3,84	10 352870	.770051	7.250946	• 294528	1920261	.458717	0000	8/V// J	
4.5 54770 1.00700 1.00700 54700 53070 1.00700 530700 53070 53070	4.06	30 . 412027	,865500	7.704130	• 332228	,935072	.598469	.1000	5.45632	
4.560 554721 1.00010 0.51601 1.00010 0.51601 1.5000 0.51601 0.5100 0.51601 0.5100 0.51601 0.5100 0.51601 0.51601 0.51601 0.5100 0.51601 0.5100 0.5	4.4		.958645	8,157315	.381303	1 087003	. 760149	1500	2081807	
4.000 551/14 1.12479 0.51000 5.1091 1.67715 1.67717 1.	1.56	50 5 34231	1.046182	8 610499	+ 20 / D +	1.244868		. 2000	1002100	
5,280 7052142 1,291398 9,570645 1,550454 1,550454 1,550454 5,520 776356 1,29739 9,570654 1,550454 1,550464 1,59445 6,000 844553 1,19139 9,57063 1,594462 1,5900 9,54250 6,000 844553 1,19135 1,19135 1,19135 1,19135 6,000 9,0914 1,19135 1,19135 1,19135 1,19135 6,000 9,0914 1,19135 1,1113 1,1113 1,13145 1,1113 7,4440 9,09164 1,19145 7,19145 7,19145 1,1113 1,13145 7,4440 9,49164 1,1113 1,1114 1,1114 1,1113 1,1114 1,1114 7,4440 9,49164 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,1114 1,11144 1,11144 1,11144 <td>4.80</td> <td>0 594748</td> <td>1.124794</td> <td>9,063683</td> <td>479561</td> <td>1.405233</td> <td>1.150430</td> <td>.2500</td> <td>6.58701</td> <td></td>	4.80	0 594748	1.124794	9,063683	479561	1.405233	1.150430	.2500	6.58701	
5-7.80 70818 1.278715 5.1000 1.71088 1.28770 7.9975 5.760 694895 1.278715 1.278715 2.180095 2.4000 5.7977 5.760 694895 1.278716 11.28776 2.4000 9.77224 6.200 67761 1.278715 2.180287 2.4000 9.77224 6.200 67761 1.278715 2.180287 2.4000 9.77224 6.200 67471 2.21877 2.4000 1.5972 4.5008 6.400 7.4000 7.7218 2.180287 2.4000 1.59728 7.4100 1.278716 11.272945 2.47162 1.59528 4.5008 7.4100 1.27877 2.47162 1.26877 2.4000 1.59569 7.4100 1.27877 2.47162 1.47228 2.4000 1.45997 7.4100 1.272497 2.47168 1.45688 2.44728 2.4000 1.41687 7.4100 9.45716 1.466788 2.52088 1.44726	10°0	10 .653142	1,191398	9.516867	.526646	1.564443	1.378428	.3000	6.62213	
5-550 55500 555500 55500 55500 <t< td=""><td></td><td>10 708218</td><td>1,243375</td><td>4.470051</td><td>cc01/5*</td><td>1,10086</td><td>1.02/128</td><td>0045.</td><td>20000 0</td><td></td></t<>		10 708218	1,243375	4.470051	cc01/5*	1,10086	1.02/128	0045.	20000 0	
0 0		20 , 758958	1.278761	10.423235		1,005253	1.00001		10400	
6,400 07657 1.777415 11.75770 2.75776 3.123575 1.777415 7,400 907657 1.242292 12.65972 7.126576 3.123575 1.75700 9.7229 7,400 907657 1.126756 7.171627 2.527651 3.123575 1.5000 9.7229 7,400 907657 1.126757 2.77207 2.5000 12.559561 1.57724 7,400 903671 1.76577 2.7000 12.559561 1.57697 2.5000 12.559561 7,400 903641 1.126757 2.725831 14.506881 4.5000 12.42596 7,400 90341 1.677207 2.558617 2.558611 12.569551 17.4297 7,400 902435 5.77531 5.566577 2.556677 5.669396 4.50000 12.42996 8,400 992435 11.57736814445 80032422 2.556577 2.55000 15.42946 4.00000 12.42946 8,400 992435 11.577389 8.51447765 8.5566577 2.5566577 5.449726 4.5066643 4.5566677 4.5666939 4.5666		665t09 00	1.446560		01010	111000.2			7 20075	
6,720 907677 1,242742 773162 2,405573 3,455605 2,0000 10,55611 7,200 96367 1,24730 773162 7,50477 2,405573 3,455605 2,0000 12,14297 7,440 974727 96367 1,055276 7,71627 2,556450 4,55068 12,14297 7,440 974727 1,055276 1,952610 1,19395 2,566450 4,550681 3,0000 12,14297 7,440 974727 9689431 1,055271 2,556450 4,550881 3,5000 12,14297 7,440 974727 9689431 1,955617 7,75043 9,55617 2,5564960 14,4597 1,95561 1,159610 1,144797 1,955617 1,144797 1,055614 2,72468 4,55661 1,14597 1,95619 1,144797 1,055614 2,72468 4,55661 1,146797 1,05619 1,144797 1,05619 1,05619 1,144797 1,056191 1,147297 1,056191 1,056191 1,056191 1,056191 1,056191 1,056191 1,056191 1,056191 1,0619191 1,0761919 1,0761919				11,56400		200021.2	2 101 C		C-04C-4	
6 9		9/69/9 01	ct #/ / 2 * 1	00/70/*11	11/00/	//0102.2	2 1 2 2 E 4 C		01C71 0	
7 2000 949957 1110620 255531 445567 24700 2555511 2555511			1.446464	2/1007 CI	75016/	00/275°7				
7 200 943687 105277 777207 2569551 4155682 35000 12.74297 7 200 943704 2569551 455681 455681 455681 35000 12.74297 7 200 94361 177707 2569551 455681 455681 455000 14.61997 8 100 12.96891 777207 79599 255514 777207 25.954657 45.5000 14.619975 8 100 12.96891 265514 777207 2655514 50000 14.619975 8 995166 572967 796998 2655514 777207 2655514 777205 44.5000 14.6174 995164 16.14465 8002442 2.655514 777205 8002442 5.0000 14.61747 994902 2744705 801442 8002441 2.744785 8.1000 19.46747 94809 999915 17.75448 8.05449 8.05449 7.0000 19.46843 94809 993619 17.75448 8.144785 8.144785 8.144785 8.14088			0C4141.1	001400-21	10001	C/CC04 2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					10227			1 0000	12.06500	
776777667766776677667776677767776777677767776777677 <th< td=""><td></td><td></td><td>0,304,0</td><td></td><td>785949</td><td></td><td></td><td>1.5000</td><td>12.74297</td><td></td></th<>			0,304,0		785949			1.5000	12.74297	
7700111 <th< td=""><td></td><td>10 082704</td><td>400778</td><td>14 50.897</td><td>29262</td><td>5 6 0 4 7 7 0</td><td></td><td>4.0000</td><td>13.39812</td><td></td></th<>		10 082704	400778	14 50.897	29262	5 6 0 4 7 7 0		4.0000	13.39812	
6,100992435 677916 15,408261 800227 $2,655514$ $5,949726$ $6,0000$ $14,67764$ $8,400$ 996166 5772667 $15,8611445$ 8002429 $2,673983$ $5,949726$ $6,0000$ $17,16747$ $8,800$ 998158 465764 $15,34629$ 8002429 $2,763939$ $6,678232$ $8,0000$ $19,16747$ $9,800$ 998158 465764 $16,77813$ 8002429 $2,763393$ $5,949726$ $6,0000$ $19,40843$ $9,800$ 999537 $22,76998$ 8002441 $2,714370$ $7,043110$ $9,0000$ $19,40843$ $9,999537$ 1220998 805441 $2,7725349$ $7,408207$ $9,0000$ $19,40843$ $9,99957$ 1220998 8058411 $2,775149$ $7,408207$ $9,0000$ $19,40843$ $9,999787$ 1250990 $7,408207$ $2,744785$ $8,138749$ $9,0000$ $19,40876$ $9,999979$ 005101 127366 8006238 $2,764162$ $8,159749$ $9,000026$ $10,5000$ 9999997 1273640 9906290 $2,764319$ $9,809499$ $10,5000$ 999993 605232 276333 $9,809499$ $9,900290$ $10,5000$ 9999996 19776 $19,900290$ $2,763339$ $9,809499$ $10,50000$ $1,9797357$ $20,999798$ 8005202 $2,763339$ $9,809499$ $10,50000$ $1,97779$ $9,905705$ $2,763339$ $9,809499$ $9,9000294$ $11,670000$ $20,804673$ $2,763339$ <td>6.6</td> <td>988431</td> <td>779720</td> <td>14.955077</td> <td>796998</td> <td>2.632890</td> <td>5.224659</td> <td>4.5000</td> <td>14.03995</td> <td></td>	6.6	988431	779720	14.955077	796998	2.632890	5.224659	4.5000	14.03995	
8,400 995166 572967 15,861445 802429 2,675983 5,94726 6,0000 15,92408 8,640 998158 5213766 16,714629 803893 2,669398 6,313706 7,0000 17,16747 9,860 998158 5247305 16,5144629 803893 2,669398 6,313706 7,0000 17,16747 9,120 9998158 5247305 16,520998 805444 2,744370 7,44823 8,0000 19,400443 9,120 9999431 136876 16,1747 805444 2,755436 5,04106 9,0000 19,64878 9,800 9999490 13,67726 805614 2,7554162 8,138749 9,0000 10,0000 20,689900 9,800 999949 026020 19,48671 2,754162 2,754162 8,504106 10,0000 20,689900 10,520 999949 -449531 2,754162 2,754162 7,773438 10,0000 20,689900 10,520 999999 -449631 2,7754162 8,504106 9,60009443 10,0000 10,0000 10,0000 10,0000	8 16	992435	677918	15.408261	800227	2,655514	5,586577	5,0000	14.67264	
6,40 996981 465784 16.314629 803893 2.689398 6.313706 7.000 17.16747 998158 3577061 17.670813 804842 2.772638 6.678232 9.0000 19.640843 9.360 999912 17.670999 805841 2.773438 6.078232 9.0000 19.640843 9.360 999951 17.670999 805841 2.725090 7.473438 9.0000 19.640843 9.9999457 13.6876 17.620999 805611 2.775448 7.773438 9.0000 19.640843 9.999999 085101 19.660238 2.755148 7.773438 9.204408 9.0000 9.99900 9.9999472 095702 19.060238 2.755148 7.773438 9.204408 9.294888 10.320 9999970 19580 19.606238 2.755148 7.773438 9.0000 10.320 999970 19580 19.06528 2.7754462 9.234888 10.550 999970 19580 2.775416 2.775418 7.773438 10.560 999970 195280 20.33587 2.775513 9.234888 10.560 9999998 419177 19.966724 2.775513 9.234888 11.280 9999998 419177 19.966728 2.775513 9.234888 11.280 9999998 419177 20.333287 20.666228 2.775513 11.750 99999998 419177 20.394587 $2.$	9,40	00 _995166	572967	15,861445	.802429	2,673983	5.949726	6,0000	15,92408	
8.880 998158 .557061 16.767813 .804842 2.702638 6.678232 8.0000 18.40843 9.120 9999561 .247305 17.220998 .805441 2.714370 7.043110 9.0000 19.64876 9.120 9999561 .17.220998 .805541 2.714370 7.043110 9.0000 19.64876 9.120 999761 .1167162 .805511 2.755990 7.44785 8.138749 9.0000 20.889900 9.800 999798 .805502 .805513 2.744785 8.138749 10.0000 20.889900 9.800 999798 .055020 19.65031 2.754162 8.054106 9.0000 20.889900 10.000 .999793 .1965101 18.55050 2.754162 8.54409 9.55449 2.754162 8.54409 10.550 .999618 .806524 2.754162 8.754162 8.54449 9.6000294 9.600294 9.600294 10.0000 20.889900 10.550 .999793 .923488 .775513 9.234888 10.55062 2.754162 8.54449 10.5000294 <td< td=""><td>9.64</td><td>10 ,996981</td><td>.465784</td><td>16,314629</td><td>803893</td><td>2,689398</td><td>6.313706</td><td>7.0000</td><td>17.16747</td><td>•</td></td<>	9.64	10 ,996981	.465784	16,314629	803893	2,689398	6.313706	7.0000	17.16747	•
9.120998902 247305 17.220998 805441 2.714370 7.043110 9.0000 19.64878 9.560999637 11.6574182 8056311 2.725090 7.408207 10.0000 20.88900 9.5609999637 11.56020 18.127566 8056311 2.725090 7.408207 10.0000 20.88900 9.840999997 -195802101 18.575666 8056311 2.755148 7.73433 8.594106 9.840 -196501 19.560230 2.744785 8.504106 2.744785 8.504106 10.800999997 -196301 19.580520 8065248 2.754162 8.504106 10.8009999993 -419177 19.946618 8065240 2.77513 9.254888 10.8009999995 -5530314 2.775133 9.254888 9.857705 10.8009999995 -5530312 20.354171 2.7790440 9.965705 11.2009999999 -98652064 21.259652 2.966520 2.7790440 9.965705 11.2209999999 -9965249 21.2596623 8065326 2.8086968 11.427559 11.700 -1.00000 21.2596023 8065326 2.7790440 9.965705 11.700 -1.000000 21.752839 8065326 2.8086968 11.427559 11.710 -1.0000000 $-1.000000000000000000000000000000000000$	8 . 8	30 , 998158	.357.061	16.767813	.804842	2.702638	6.678232	8.0000	18.40843	
9.360999361 136876 17.674182 805811 2.725090 7.408207 10.0000 20.88900 9.600999637 0260220 18.580550 806514 2.735148 7.773438 10.0000 20.88900 9.600999890 -1965801 18.580550 806614 2.735148 7.773438 8.594106 10.0800 -9999420 -1965801 18.580550 806614 2.744785 8.594106 10.0800 -999942 -1965801 19.080280 2.7751383 8.869490 9.600294 10.800 -999942 -1965801 19.060280 2.7754165 8.969490 9.960794 10.800 -999995 -6419177 19.9464171 8065240 2.77541591 9.600294 10.800 -9999995 -6452102 2996552 2906520 27706400 9.9657055 11.0400 -9999996 -1.575819 20.53224 2.772513 9.657055 9.9657055 11.700 -9999996 -1.575819 20.65237 8065326 2.80669811779 11.427559 11.700 -9999993 -1.575819 20.522206023 8065326 2.817719 11.427559 11.750 -9999993 -1.575839 2065226 2.8065706 2.817719 11.427559 $11.7600000000000000000000000000000000000$	9 .1 ê	50 ° 998902	.247305	17,220998	805441	2,714370	7.043110	0000°6	19.64878	
9,600 999637 026020 $18_{-1}273566$ 806053 2735148 7.773438 9,840 99942 095101 $19_{-1}380750$ 806538 2754168 8.1387449 10,560 999942 -195301 $19_{-1}380750$ 806538 2754169 8.869409 10,560 999997 -119177 $19_{-0}340102$ 8065302 277513 $9_{-2}34888$ 10,560 999999 -419177 $19_{-0}3402817$ 8065302 2.77513 $9_{-2}34888$ 10,000 999993 -6442102 $20_{-333324877$ 8065322 2.776313 $9_{-600294}$ 11,000 9999993 -642102 $20_{-33332477}$ 8065324 2.7763117 $9_{-600294}$ 11,280 9999999 -7536643 8065324 2.77951117 $9_{-600294}$ $9_{-695705}$ 11,280 9999999 -753693 8065324 2.77951117 $9_{-6002944}$ $9_{-600294}$ 11,280 9999999 -753693 8065324 2.779513 $9_{-695705}$ 8065324 2.7996400 $9_{-695705}$	9.36	0 999361	.136876	17.674182	.805811	2,725090	7.408207	10.0000	20,88900	
9.840999798 $.085101$ 18.580550 $.806164$ 2.744785 $.8.158749$ 10.680999942 195380 19.486918 $.806238$ 2.754162 8.504106 10.550999942 419177 19.486918 $.8062302$ 2.775513 9.234888 10.800999993 419177 19.486918 $.8065302$ 2.775513 9.234888 11.040999993 419177 20.337287 $.8065302$ 2.775513 9.234888 11.040999993 553064 21.299655 $.8065202$ 2.779640 9.96570544 11.220999999 753580 21.299655 $.8063226$ 2.799640 9.965705 11.520999999 753580 21.299655 $.8063226$ 2.799643 10.696530 11.520999999 753580 21.299655 $.8063226$ 2.826734 11.061944 11.7609999999 976549 22.206023 $.8065326$ 2.826754 11.061944 12.700 1.00000 976549 22.206023 $.806326$ 2.826754 11.021944	9.6	00 ,999637	.026020	18,127366	. 806033	2,735148	7.773438			
$ \begin{bmatrix} 10,080 & 999890 & & 196380 & 19,013734 & 806238 & 2,754162 & 8.504106 \\ 10,320 & 999970 & & 419177 & 19,486918 & 806502 & 2,763383 & 8,869490 \\ 10,800 & 999995 & & 419177 & 19,486918 & 806512 & 2,772513 & 9,234888 \\ 11,040 & 999995 & & -530631 & 20,334287 & 806512 & 2,790640 & 9,965705 \\ 11,040 & 999999 & & 753580 & 21,299655 & 806324 & 2,799673 & 10,331117 \\ 11,520 & 999999 & & 976549 & 21,299655 & 806324 & 2,799673 & 10,696530 \\ 11,520 & 999999 & & 976549 & 21,299655 & 806324 & 2,799673 & 10,696530 \\ 11,520 & 999999 & & 976549 & 22,206023 & 806326 & 2,808698 & 10,696530 \\ 11,760 & 999999 & & 976549 & 22,206023 & 806326 & 2,817719 & 11,061944 \\ 11,920 & 1,00000 & 1,008035 & 22,206023 & 806326 & 2,817719 & 11,061944 \\ 12,000 & 1,00000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061944 \\ 12,000 & 1,00000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061944 \\ 12,000 & 1,00000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061944 \\ 12,000 & 1,00000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061944 \\ 12,000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061944 \\ 12,000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061944 \\ 12,000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061944 \\ 12,000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061944 \\ 12,000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061944 \\ 12,0000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061755 \\ 10,0000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061756 \\ 10,0000 & 0,008035 & 22,005007 & 806326 & 2,817719 & 11,061756 \\ 10,0000 & 0,008035 & 22,006023 & 806326 & 2,826756 & 10,06455 \\ 10,0000 & 0,008035 & 22,005007 & 806326 & 2,826756 & 10,0007 & 10,0056 \\ 10,0000 & 0,008035 & 22,00507 & 2000007 & 200007 & 2000007 $	18 6	10 04666	• 085101	18,580550	.806164	2.744785	8.158749			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.05	068666	- 196380	19,033734	.806238	2,754162	8.504106			
10,560 999970 -419177 19,040102 806502 2,7/2513 9,234888 10,800 999965 -530631 20,393287 866314 2,781591 9,600294 999995 -575580 20,399557 866320 2,790643 10,53117 11,220 999998 -755580 21,299655 866526 2,806698 10,696530 11,520 999999 -976549 22,206023 866526 2,806698 10,696530 11,760 999999 -976549 22,206023 866526 2,826754 11,061944	10,32	276666 000	• 307752	19.486918	806280	2,763383	8,869490			
10,000 999995550651 20,04471 600514 2,701591 9,000294 11,040 99999375550 24,0471 8005320 2,790440 9,955705 11,220 99999875550 21,752839 806325 2,800698 10,696530 11,520 999999976549 22,206023 806326 2,807719 11,061944 11,760 1,000000 -1,008035 22,659207 806536 2,817719 11,061944 11,427359 22,659207 806326 2,826754 11,427359	10,56	046666 09	- 414177	19.940102	806302	2162// 2	9.254888			
11.04U 999995042102 20.0404/1000524 2.79064U 9.905705 11.220 999996753580 21.299655 .806324 2.799673 10.331117 11.520 999999976549 21.752839 .806326 2.808698 10.696530 11.760999999976549 22.206023 .806326 2.817719 11.061944 12.000 1.000000 -1.008035 22.659207 .806326 2.82754 11.427359	10.80	00 ,999985	-,530631	20,545287	.806514	19218/ 2				
11.280 ,999996755580 21,299855 ,806524 2,79973 10.551117 11.520 ,999999865564 21,752839 ,806325 2,808698 10.696530 11.760 ,999999976549 22,206023 ,806326 2,817719 11.061944 12.000 1.000000 -1.008035 22,659207 806326 2,82674 11.427359	11.04	10 ,99993	- 042102	20.044471	• 60656U	2.140640	CO/ COA • 6			
11,520 ,9999998055064 21,72839 ,806523 2,800598 10,659550 1,0,61944 11,760 ,999999976549 22,206023 ,806326 2,817719 11,061944 12,000 1,000000 -1,008035 22,659207 ,806326 2,825738 11,427359	11.25	90 ,999996	-,753580	21,299655	.806374	2,199673	10.551117		•	
11.760 .999999 -976549 22,205023 .806529 2.81//19 11.001944 12.000 1.000000 -1.608035 22,659207 .806326 2.826734 11.427359 12.000 1.000000 -1.606535 23.2565207 .805326 3.815454 11.427359	11.5	866666 03		21,752839	806325	2,808698	10.646530		÷	
12.000 1.000000 •1.000033 22.03720 2.04050 2.020/50 11.442/337 3.200 1.000000 •1.000133 22.01220 2.040520 2.02754 1.722742	11.	666666 00	7470/7°	22,0002,52		61//10 2	11.001444			
	10.01			102660 22	902900°	070/020 072/270	11. 100/04			

8,630110
8
DELSTR
3,00000
X(J) =

=		>	UST	V.S.T	P.S.C	PST	
						- 0350	3.62082
	002469	463635	- 009560	0000487	002216	0010	3.83279
1 00	003406	927269	015794	002253	-008094	-0250	4.02176
	019883	1 390904	-,018692	002649	016088	••0200	4.18435
	.033028	1,854539	-,018233	.011057	024648	0150	4.30142
•	.048056	2,318174	014386	018919	032210	- 0100 	4.41189
m 1	.064306	2,781808		024755	101/10"		0/c1c•#
n a	, 061277 , 5054	5.747445 1 100010	- 00.00 -	161440°	366/00°=		01510.4
.			0150055	100100		. 0100	1.77093
- 14	135646	4.636347	057777	118067	001249	.0150	4 84432
	155995	5.099982	.083501	156820	.033999	.0200	4.91516
	178247	5,563617	.113199	204768	.079598	.0250	4.98346
~	.202732	6.027252	.146859	,263057	.139884	.0300	5.04922
~	.229485	6.490886	.184356	.332544	.216665	.0350	5.11120
m	, 258135	6,954521	.225419	,413654	.311658	0070	5.16655
0	.287846	7.418156	.269605	.506253	.426413	.0450	5.22074
e,	.317320	7.881791	.316292	609568	.562234	0200	5.27375
•	.344859	8.345425	.364680	.722152	.720095	.1000	5.75033
ĉ	368493	8.809060	.413830	841928		.1500	6.09288
90	.386140	9.272695	. 462711	966299	1.105765	0002 *	6.59701
2	395788	9,736329	.510265	1,092319	1,329318	0052.	0.00182
	.395672	10.199964	5555488 795298	1,210915	1.5/0378	0005.	
n .	204428	**********	C 4 7 7 C .	211/22 1	1.04.001		7 11010
	, 501 104 1 25 4 1 4	11.16/654	0,2004	CONC4.1	2 412751U		7.50207
0 U 0 0	27775	12.054503	698400	1.647733	2.749063	.5000	7.67678
1 80 7 87	218880	12.518138	722897	1 729758	3.078544	1,0000	9.04138
10	149377	12,981773	.743003	1,800274	3,418365	1,5000	10.06023
85	.070730	13,445407	.759092	1,859738	3.766577	2.0000	10.92025
10	-,015683	13,909042	.771643	1.909054	4.121428	2,5000	11.69174
5	• 108484	14.372677		127676		0000 5	12207 21
0 I 0 I	- 206377	14 836312	962901.	1,41587.1	4,649223 5,5524 5,552 5,555 5,555 5,555 5,5555 5,5555 5,5555 5,5555 5,5555 5,5555 5,5555 5,5555 5,55555 5,55555 5,55555 5,555555		
V 0		13.677740 15 762581	746407		5,580541	4.5000	
2	-519928	16.227216	799437	2.048126	5.950615	5.0000	15.03234
58	- 628391	16.690851	.801090	2.063117	6.321645	6.0000	16.28897
20	- 737904	17.154485	.802169	2,076077	6,693308	7.0000	17.53667
24	-,848120	17.618120	802855	2,087617	7.065380	8,0000	18,78158
53	-,958794	18,081755	.803280	2,098192	7.437710	0000 6	20,02575
5	-1,069758	18,545390	.803538	2,108130	7.810199	10.0000	21.26975
61	-1,180900	19.009024	803689	2.117660	8.182782		
70	-1,292149	19.472659	.803777	2,126935	8.555420		
31	-1.403461	19.936294	.803825	2,136055	8,928090		
- - -	-1.514808	20.399928		2.145085	9,300778		
2	-1.626175	20.863563	803808 00101	2,154062	9,675475		
	200/0/*1=	21 700811		11050161	10.0401//		
0 a	-1-040400 -1-040400	22.254467	97879	2 1 8 0 8 4 7	10.7915AA		
6	-2.071709	22.718102	.803880	2 189787	11.164295		
00	-2.183097	23,181737	.803881	2.198704	11.537001		
0	-2.294485	23.645372	.803681	2.207621	11.909709		

2.06384 2.15273 1.86968 1.59470 1.59470 1.32952 1.92952 1.92952 1.96950 1.96950

≻

X(J) = (J)X	\$.12500 DELS	TK = 9.0831	61				INTE	2 POLATED	
K ETA	7	>	*	UST	VST	ISA	ISd	~	*
1 0.000	000000000	00000000	0 0 0 0 0 0 0	000000000	000000"0	000000000	- 0400	3.65770	2.760
2 240	-012418	• 002046	473899	009953	000226	-,002358	- 0320	3.88463	2,330
3 ,480	-020575	.007553	e17798	-,016491	.001139	008624	- 0300	4.08649	2.070
4 .720	- 024466	.015273	1,421698	019609	• 002945	017178	- 0250	4.26329	1.820
5 ,960	024075	023998	1.895597	019296	005868	- 026397	0200	4.38521	1.560
6 1.200	- 019378	.032577	2,369496	015532	.010175	034649	0150	449979	1.304
7 1.440	-,010345	039950	2,843395	- 008292	.016181	-,040294	- 0100	4.60746	1,026
- 8 1,680	.003064	.045163	3,317295	.002456	. 024272	041677	- 0020	4.70822	.686
9 1,920	020896	.047398	3,791194	.016748	034914	-,037126	0000 0	4.79354	
10 2,160	043244	.046116	4,265093	.034660	.048755	024945	.0050	4.87154	
11 2.400	070200	.041130	4,738992	.056265	.066645	003401	.0100	4.94691	
12 2.640	101854	.032522	5,212892	.081635	089592	.029275	.0150	5,01966	
13 2,880	138268	.020594	5,686791	.110821	118717	.074877	.0200	5.08978	
14 3,120	179438	.005763	6,160690	143819	155160	.135214	.0250	5.15727	
15 3,360	225249	011557	6.634589	.180536	199957	.212069	.0300	5.22121	
16 3,600	275424	• 031085	7,108488	.220751	253888	.307154	.0350	5.27786	
17 3,840	329489	052770	7,582388	.264084	.317338	.422036	.0400	5,33331	
18 4,080	.386747	076849	8,056287	.309975	390174	.558059	.0450	5.38756	
19 4,320	446277	-103840	8,530186	.357689	471679	.716262	.0500	5.44062	
20 4,560	506970	- 134494	9,004085	.406333	560541	,897296	.1000	5,89500	
21 4.800	567577	169704	9.477985	.454910	.654906	1,101368	.1500	6.25817	
22. 5.040	.626797	210385	9,951884	.502374	,752510	1,328196	.2000	6.56554	
23 5,280	.683364	- 257363	10.425783	.547712	850845	1,577013	.2500	6.83250	
24 5,520	.736144	-,311271	10,899682	• 540016	947372	1.846598	. 3000	7.07541	
25 5, 760	,784221	- 372475	2952/5.11	6666546	1,039725	2.15230	0055.	/ . < 4 5 1 C	
	747650°		100/00/11		240021.1	C.441514		7/0/1°	
27 0.540	287285 287283	10/010.	14.141.41	0/77/0.	1.204261	<pre>/ 0<430</pre>	. 4000	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	107040°		11.269178	738235	1 335016	3.441510	0000-1	54825	
30 6.960	941783	- 780986	13.743078	754834	1.386959	1,795292	1.5000	10.28285	
31 7.200	266136	878862	14 216977	767825	1.430592	4.156086	2.0000	11.15469	
32 7,440	970356	- 980263	14.690876	.777735	1.466777	4.522306	2,5000	11.93542	
33 7,680	979548	-1.084430	15,164775	.785102	1,496549	4,892620	3,0000	12,65983	
34 7.920	,986208	-1,190703	15,638675	. 790440	1,521001	5.265944	3.5000	13.34816	
35 8.160	. 990910	-1,298532	16.112574	.794209	1,541191	5.641426	4.0000	14.01281	
36 8,400	661 146	-1.407475	16.586473	.796803	1,558082	6 018415	4.5000	14.66216	
37 8.640	17966	-1.517192	17,000572		1.572500	6.396432 - 775110	5.0000	15,50136	
	101144 Cutado	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11970 11		121000 1	0.12120		10,200,001	
10 0 170			1/10/0 01					100401	
	000544	1.050767	1 4 . 055040	01120	1 616884	844210 L	0000-6	21212.02	
42 9.840	999745	-2.070790	19.429868	801290	1.626430	8.292970	10.0000	21.55986	
43 10.080	999861	-2.181861	19.903768	801383	1.635744	8.672723			
44 10.320	999926	-2.292960	20.377667	601435	1.644917	9.052510			
45 10,560	999961	-2.404074	20,851566	.801464	1.654007	9.432317			
46 10,800	6999980	-2,515196	21,325465	.801479	1,663048	9.812133			
47 11.040	066666	-2,626322	21.799365	.801487	1,672063	10.191955			
48 11.280	566666	-2,737450	22.273264	.801491	1.681062	10.571780			
49 11.520	866666	-2,848580	22,747163	. 801493	1.690054	10.951606			
	666666	40/656°2=	290122.52		200600	11.551455			
	1.000000	-2 ·010840	2944462	767108 .	1.705028	11./11/61			
742471 76	1	016101	10001*+7	* 0 0 1 1 1 1	710/1/ 17	12.071000			

12-50550

(())	a 3,6	25000 DELST	R 9.27530	8						
ж	۰F ₹ ۸	П	>	>	UST	VST	ISd	PSI	APULATEU Y	>
	00000	0 • 0 0 0 0 0	0 • 0 0 0 0 0	0 • 0 0 0 0 0	0.00000	00000000	0.000000	0400	3,82462	2.4411
~	• 540	-012796	.001722	483997	010226	000034	002475	0350	4.03862	2,3288
m	.480	-021193	.006219	* 467994	016956	000369			4 6 6 7 0 6	22012
4 H	.720	025186	.012160	166167	- 020127	161100.		0420 -	4.50072	1 5454
n -t			102200	2 4 4 9 4 6	- 015920	005125	- 036320	- 0150	4.61582	1.2929
•	1.440	010632	.025823	2.903981	-008496	008719	042228	0100	4.72059	1.0209
- 40	1.680	.003127	.024964	3 387978	002499	013781	043680	- 0050	4.81885	.68284
0	1.920	.021383	019563	3.871975	.017088	020657	038940	0000 0	4.90120	
10	2.160	223440	008719	4.355972	.035304	.029789	- 026261	,0050	4.97790	-
11	2.400	.071555	-,008225	4,839969	.057182	.041752	-,003860	.0100	5.05212	
12	2.640	.103554	-,031662	5,323966	.082754	.057257	.029985	.0150	5.12386	
5	2.880	140190	-,061696	5.807963	.112031	.077155	.077122	.0200	5,19311	
4	3.120	.181429	-,098166	6.291960	.144986	.102386	.139320	.0250	5,25988	
5	3,360	227143	- 140708	6,775957	181518	133902	.218334	.0500	5.414	
.	5,600	277070	-100052	1.229954	110122	, 172344		0000		
	5.640		- 2421252	1.43450 0.43450	2043CY	216904			0.44.0	
ю с 	4,050	101/27°	<>1005	144122 0	66/605°	061612.			11707.0	
			100707.	0°,11,444	002000.	1111111 1111111			301#C*C	
				414045 V						
	4,600		• • • • • • • • • • • • • • • • • • •	4°67478	* 4232C4	012014	10/07/11	0061.	0.0010	
22	5°040	• 626079	-,576126	10,163935	.500326	90794C4	1,20054	0002.	0.07040	
5.5	200	.002403	600009-	10.647932	.545361	105050.	1.004582	0002.		
5	5,520	135159	200042	11,131929	587492	,715816	1.883736	3000	7.18641	
52	5.760	,783236	829079	11.015926	.625912	1792851	2.177378	.3500	7.40765	
26	6,000	826029	-,921761	12,099923	.660109	.865579	2,488593	. 4000	7.61340	
27	6.240	.863174	-1.018144	12,583919	689793	932549	2.815267	. 4500	7.80508	
28	6.480	.894607	-1.117795	13.067916	.714912	.992777	3.155204	. 5000	7.98377	
29	6.720	920532	-1,220230	15,551913	.735630	1.045774	3,506233	1.0000	9,39235	
30	6.960	941369	-1.324949	14.035910	,752281	1.091508	3,866305	1.5000	10.44274	
31	7.200	957688	-1.431476	14.519907	.765323	1.130336	4,233563	2.0000	11.32674	
25	7.440	610143	-1.539377	15,003904	.775276	1,162898	4.606385	2.5000	12.11714	
33	7.680	979404	-1,648287	15,487901	.782677	1.190011	4.983407	3.0000	12.84881	
34	7.920	.986114	-1.757906	15,971898	.788039	1,212567	5.363518	3,5000	13.54342	
5	8,160	690653	-1.868007	16.455895	.791826	1.231449	5.745843	1.0000	14.21293	
91	8.400	. 994113	-1.978420	16,959892	.794451	1.247470	6.129715	4.5000	14.00034	
		552955°	-206902-	17.463889	e/1961.	1 201536	6.514640		20200°01	
5	0 0 0 0	121166	14144193	289104.11	. 147340	1.5/2050		9,0000	10.1/044	
5	9.120	998637	-2,510551	18,591882	140864	1.284813	7.286341	7.0000	18.03295	
0 . T	9,360	202666	-2,421349	1.6 275879	84486L.	1.295234	1.612702	8,0000	17685.91	
		33022	101755"7-	0/0/07 • / 1	1/96/.	747007 4 A	6 0 0 4 6 5 4		V2/20.05	
V •			-V.047040	14°0450/5	55757.		0.444000	10,000	C1 • / 0001	
ሳ ፡ ታ ፡		100444	10070/°7=	0/0/JC*07	C3044/8	01143C*1				
1 U T = T		034444		100110°12	10404		7.517.5CK 0.604040			
		900081		21 770841		1 351407				
0 P				22 241850	700128		01011101			
- 8		000000	-7 10 10 10 C	2000202020 2011854	C1 004	310005	10 744700			
				21 21 85						
r u	11 760	000000		21 715848	521004					
, - 	12.000	1 000000		24.199845	921064	101202				•
- n v					42.004					
U Y		*****	******	J # 20 20 " F J		103221.41				

x(J) =

	>	2.3102	2.3003	2.0323	1.7872	1,5433	1,2899	1.0211	• 6825																																	•										
	KPULAIEU Y	3.93160	4.13401	4.31542	46899	4,58325	4.69160	4.79404	4.89057	4,97551	5.05080	5,12381	5,19455	5.26301	5,32919	5.39310	5.45267	5.50702	5,56031	5,61255	6.06891	6.43778	6.74673	7.02093	7.26717	7.49226	7.69934	7.89477	8.07490	9.50321	10.56810	11.46376	12,26305	13,00222	15.70275	14.57/42		20756-41	18.21495	19.47164	20,72707	21,98218										,
L 2 2	I SI DEL	0000	- 0350	0300	0250	0200	••0150	0100	0050	00000	.0050	.0100	.0150	.0200	.0250	.0300	. 0350	0070*	.0450	• 0200	.1000	.1500	.2000	,2500	.3000	.3500	. 4000	. 4500	2000	1.0000	1.5000	2,0000	2.5000	3.0000	3.5000				7.0000	8.0000	9,0000	10.0000										
	PSI	0 00000	002571	-009394	-,018682	028653	037517	043483	044755	039530	025999	002347	.033243	.082580	.147451	,229598	.330671	.452179	.595418	,761394	.950742	1.165665	1.399887	1.658646	1.938715	2.238467	2,555963	2,889062	3.235543	5,545208	3,959984	4,333995	4.713600	5.097422		5 5479 C	0°504101 4 455803	7.048301	7.441199	7.834358	8,227691	8,621128	9.014625	9.408156	9.801706	10,195266	10.588832	10.982400	11.375970	11.769541	12,165111	12,556682
	VST	0.00000	- 000111	000196	- 000039	000290	001932	004253	.007845	.013029	020182	.029753	.042284	058417	078885	194464	135895	.173766	,218394	. 269711	327195	389861	456308	524831	• 593571	660684	.724507	783688	. 837275	.884752	926013	961307	991150	1.016227	1.057502	1,05140		1 095872	1.106902	1.117258	1.127165	1,136782	1,146217	1,155542	1,164801	1.174023	1,183223	1,192413	1,201596	1.210776	1.219955	1.229132
	UST	0.00000	-010412	- 017212	-020399	-,019971	015920	-008238	.003087	.018069	.036720	020620	.085056	.114713	.147958	.184660	.224593	.267404	,312584	.359464	.407222	454920	.501564	546172	.587852	.625869	659698	.689051	.713877	. 734339	•75077 <u>1</u>	.763627	.773427	.780703	-785968 -2001-0	-1946/6 	010101	795043	795750	796187	796451	.796606	.796695	2796745	.796772	.796787	.796794	.796798	.796800	796801	.796801	.796801
	>	0.00000	.493939	987878	1.481816	1.975755	2,469694	2,963633	3,457572	3,951511	4,445449	4,939388	5,433327	5.927266	6.421205	6,915143	7.409082	7.903021	8,396960	8,890899	9.384837	9.878776	10.372715	10.866654	11.360593	11.854532	12,348470	12.842409	13.336348	13,830287	14,324226	14.818164	15.312103	15.806042	16.299981	16.743420	1000/03°/1	11 275716	18.769675	19.263614	19.757553	20,251491	20.745430	21.239369	21.733308	22,227247	22,721185	23,215124	23,709063	24.203002	24.696941	25 . 190879
R # 9.432014	>	0.00000	001462	005188	.009862	.014191	.016908	.016784	.012634	.003331	-,012153	034695	- 064971	- 103400	-150121	- 204987	- 267609	337429		- 496049	-,583548	- 675708	771985	-,871868	- 974857	-1.080455	-1,188170	=1.2 97524	-1.408069	-1.519406	-1.631198	-1.743182	-1.855167	-1.967031	-2.078708	-2-190174				-2.745001	-2.855672	-2.966300	-3.076900	-3,187482	-3,298054	-3.408618	-3.519179	-3.629738	-3.740296	-3,650853	-3.961409	-4.071965
37500 DELST	-	0.00000	- 013067	- 021601	- 025601	025064	-019980	-,010339	003875	022677	046084	.074109	.106746	.143967	185690	231751	281869	335597	392299	.451134	.511071	570933	• 629472	. 685456	.737765	.785476	827933	.864772	895929	.921609	942231	958366	970665	1979797	986404	991061	4C3477	445044°	998681	999230	999561	999756	999967	999930	,999964	699992	166666	966666	90000	666666	1.000000	1.00000
1) = 3 .	5 4 4	0.000	240	480	720	.960	1.200	1.440	1 1,680	1,920	1 2,160	2.400	2.640	2,880	3.120	3,360	3.600	3,840	1 4.080	4,320	1 4.560	4.800	5.040	5.280	5,520	5.760	. 6.000	6.240	6.480	6.720	6,960	7.200	7.440	7.680	7.920	8.160			9.120	9.360	9 600	9 840	10,080	10.320	10,560	10.800	11,040	11,280	11.520	11.760	12.000	12,240
XC	*		- 14	. 171	đ	W 1	¢,		-0	~	10	11	1	1	14	10	16	11	18	5	ŝ	21	22	2	24	51 ()	26	21	5	N.	3 C	3	n M	191 : 191 (3 M		1	- 6 1 M	1 11	1	1	14	н Т	77	5	97	5	317	3	5	5	2,

3.37500 DELSTR # = (ſ)X

	>	1200.5	2.2031	2,2922	2,0388	1.7885	1.5475	1.29241	1.0250	. 6846																														•				•								
	RPULAIEU . Y	1 79180	4.00304	4 19597	4.37058	4,52686	4,63953	4.74538	4 84595	4.94122	5,03119	5.10601	·5.17790	5.24772	5,31548	5,38117	5.44479	5,50634	5,56352	5.61623	5 66798	6,12714	6.49684	6.80834	7.08679	7.33355	29292.1	7.77062	47106.1	41101.8 21102.0	12/55.5	755/0°01		115998	13.84211	14.52175	15,18331	15,83289	17,11151	18.37686	19,63751	20.89668	97661.22									
	1 VIE			- 0350	0300	- 0250	0200	0150	0100	0050	00000	0020	0100	.0150	.0200	.0250	.0300	.0350	00700	0420	.0500	.1000	.1500	• 2000	. 2500	1000	.3500	4000	.4500	0004	. 0000 • 1				1.5000	14.0000	4.5000	5.0000	6. 0000	7.0000	8.0000	0000°6	10.000						-			
	PS1		002652	- 009677	019213	-,029397	- ,038368	044260	045205	039332	024771	.000352	.037897	.089706	,157584	,243268	.348392	.474432	.622641	, 793977	989028	1.207948	1.450414	1.715620	2.002298	2,308781	2,633093	2,973062	3.326437	5 6 4 0 4 4 4		4 443367		5 616255	6.012125	6 409517	6,807939	7,207042	7.606583	8,006399	8.406383	8 806467	9,206608	2010107 V	10.000475	10,40/1/0	10.00/303	11 107804	12.008018	12 408210	12.808442	
	VST		000227	- 000639	-000983	001000	- 000414	.001064	.003745	.007967	.014099	.022557	.033813	.048401	.066914	089980	.118207	152097	•191949	.237750	.289102	.345195	.404834	466528	.528624	589458	.647510	.701528	.750619	08276/	632385	951C90.	012700	1101410	953519	968268	981301	993081	1.003977	1,014268	1.024157	1.033787	1.043255		1.001457	01211011	0/0004/0	1 008073	1.108714	1117456	1.126696	
	191		- 010530	017362	020498	019938	015678	007714	.003962	•019353	.038463	.061282	.087785	.117917	.151582	.188615	.228765	.271659	.316786	.363481	. 410941	.458248	.504431	548533	.589682	.627164	. 660471	689329	713697	- 1 2 2 2 4 1	-149817	C02507		014011.	787665	790121	791759	.792824	.793499	- 103915	• 794165	.794311	.794345	V1111/.	107771	704400	107774		101101	101101	767764	
45	>		0,00000 503733	1.007465	1.511198	2.014930	2,518663	3,022396	3,526128	4,029861	4,533594	5,037326	5,541059	6.044791	6.548524	7.052257	7,555989	8,0,59722	8,563455	9.067187	9.570920	10.074652	10,578385	11,082118	11.585850	12,089583	12,593315	13,097048	13,600781	14.104513	14.608246	15.111979	11/610 61	10°117444	0/102001	17.630642	18,134374	18,638107	19.141840	19,645572	20.149305	20.653037	21,156770	200000 12	22,164235	22,007968	23,1/1/00	27+C/0°72	24 482808		25.690364	
R ≡ 9¦5688			001243	004328	007975	010921	.011927	.0097/88	.003334	008553	-,026918	-,052695	086665	-129404	-,181238	- 242207	312066	-,390314	476250	- 569043	-,667799	771602	- 879557	661066 -	-1.104512	-1,219941	-1.336408	-1.453329	-1.570227	-1.686739	-1,802619	-1,917729				-2.482114	-2.593371	-2.704327	-2.815066	-2.925650	-3,036131	-3.146542	-3.256910	107100.00	-5.4/7575	-2.50/040			1100115		-4.249721	
50000 DELST			013253	.021853	.025801	- 025095	019734	009709	.004986	024359	048412	.077133	110491	.148418	.190790	.237403	.287938	.341927	.398726	.457501	.517236	.576780	634909	690418	.742211	~ 789389	.831311	.867633	898304	.923540	. 943768	, 959561		() #004°	901000	967766	996559	997899	998748	999271	995666	122666.	9499876	<20000 · · · · · · · · · · · · · · · · ·	, 999966 , 00000	586666	266666	077770 070000	077777 .		1.000000	
) = 3.	54.4	2 2 2		480	720	960	1,200	1.440	1,680	1,920	2.160	2,400	2,640	2,880	3,120	3,360	3,600	3,840	4.080	4,320	4,560	4.800	5,040	5,280	5,520	5,760	6.000	6.240	6 4 4 8 0	6.720	6.960	002 .			8 160	8.400	8 640	8,880	9,120	9.360	9,600	9.840	10.080		10.560	10.800			11 - 760		12.240	
XCJ.	د	د .	- ~	1 117	t	ŝ	•	-	80	σ	10	11	12	13	14	5	16	11	18	19	20	21	22	5	54	SS	56	27	60 (74 (2	0 M	.	4 P 9 P	0 4 0 4	1 U 1 M	9-10 1 m	m	9 F	39	10	41	4	M : t	すし	10 v 1	0 r 7 =			1 U 1		- CJ	ł

	۲	3.43727	1,91898	2.29786	2.05538	1.79707	1.55712	1,29923	1.03174	.68857																																					,				
POLATED .	>	3.84917	4.05003	4,23504	4.40421	4,55755	4.68021	4.78388	4.88284	4.97708	5.06661	5,14910	5.21994	5,28892	5,35602	5,42125	5.48461	5,54610	5.60572	5.66197	6261/°C	6.17630	0.14140			44144	1.02214	7,83335	5 0 5 1 2 4	0001200		11 48774	12 50 577	13.25729	13.96925	14.65354	15.31925	15,97230	17.25640	18,52628	14./4086	0/5C0.12	01010 022								
INTE	PSI	• 0450	0400	0350	-0300	-0250	0200	- 0150	0100	- 0050	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0050	.0100	.0150	.0200	.0250	.0300	.0350	.0400	.0450	0000*	.1000	0041.	0002	0002.		0045.	. 4000	. 4500				2.5000	3.0000	3.5000	4.0000	4.5000	5.0000	6,0000	7.0000	9,000		1000.01								
	PSI	0.00000	002719	-009908	- 019631	029950	038933	- 044643	- 045145	• 038503	- 022783	003941	.043578	.098007	.169054	.258464	.367860	. 498692	.652171	.829204	1,020321	1.255614	1.504702	1.//0/10	Z=0/0554	2.585846	2.715221	3,062253	5.467005 1.10000	112377.9		4,00C3C1		5.753445	6.155945	6 . 559929	6.964917	7.370565	7.776635	8.162970	8. Jaytoj	8,948058 1,0102 0	4.4UE/UE	7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	10.5100/5	10.026/10	11.47494	1 842005	12.249617	12.656329	13,063042
	VST	000000000	000321	-0000-	001757	- 002306	002348	001569	000362	003802	.009131	.016765	.027156	.040792	058193	079889	,106383	,138088	175243	217825	265478	.317478	572755	50××24 0 × 4 × 0 × 1	995/95°	544073	598059	648369	991769	194494	0400//.	274100 .	20170°	869167	885530	899812	,912526	924102	.934874	945098	0967466	065795	+	1/1704	010344	1,006156	1.020703		1.039293	1.048576	1,057858
	UST	0.0000000	010593	017413	020462	019741	015252	006993	.005038	.020839	.040402	.063706	.090708	.121331	.155448	.192868	.233309	.276374	.321537	.368133	.415360	.462318	•50803•	700100°	.59222	.629115	.60182/	.690111	.713942	205227°	1 x 1 x x x 4	770560		78291	785730	.788077	.789638	.790648	791286	119161	216162	140261 ·	12121	0/12//	. 172173		112211	792216	792217	710267	792217
	7	0 • 0 0 0 0 0	513385	1.026770	1.540155	2.053540	2.566925	3.080310	3.593694	4.107079	4 020464	5,133849	5.647234	6.160619	6.674004	7.187389	7.700774	8.214159	8 .727544	9.240929	9.754314	10.267699	10,781083	11.244468	11 807853	12,521238	12,834623	13, 348008	13,861393	14.374778		07C[07°C]	27111101 812801 91	16.941703	17.455088	17.968472	18,481857	18,995242	19,508627	20.022012	20,535397	21.048782	/01200.12	7464/0°77	124000,22	225201.52	/0/510°52	54°464000 34 643476	25,155861	25.669246	26,182631
•	>	0.00000	-001052	.003574	.006310	.008019	.007485	.003525	- 005008	-019209	-040104	068619	- 105552	151526	- 206945	271948	-,346391	429840	-,521608	620807	726412	837327	-,952437	-1.070657	-1.190963	-1,312430	-1.434257	-1,555788	-1,676526	-1.796133	125512.1.	0771704Z	1777142 C-		-2.487113	-2.598900	-2.710162	-2,821038	-2,931638	-3.042047	-3,152328	-3.202521		0.4.707 * -		1/220/-5-	100010001-	131234°C	-4.43775	611250	-4.363420
	þ	0 0 0 0 0 0 0	013372	021980	- 025829	- 024919	- 019253	- 008827	006359	026304	050999	.080415	114499	153153	196219	.243454	294501	.348661	.405870	464686	524300	583575	641309	• • • • 5 2 3 3 3	.747550	1114111	835412	871114	901195	925886	70077.	500104°	2003/7	987471	991812	4774	996744	.998020	998824	61666	,999615	997788	9999767	0 + 5 + 5 + 5	595555°	585555°	000001	000000	000000	1_00000	1.00000
	ETA	0 0 0 0	240	180	720	960	1.200	1.440	1.680	1.920	2.160	2.400	2.640	2.880	3,120	3,360	3,600	3,840	4,080	4.320	. 4,560	4 800	5.040	5.280	5,520	5.760	6.000	6.240	6.480	6.720			- tto	1.920	8,160	8.400	8.640	8,880	9.120	9.360	9.600	9,840	10,080	10.560	10.000	10.600	11.040		11.750	12.000	12.240
	¥	-		1 14	3	. RU	0	-	- 60	0	10	11	27	13	14	5	16	17	18	6	20	21	2	2	11 I (2)	52	49 I 72 I	27	10 G		2	1 7	0 P 0 P) 1 	5	36	37	38	95	4	7	N 1 3 3	4 1 : 1	ן ב ביב	- - -	0 1 3	- a	50	r C	יי ג זיי ג	25

X(J) = 3.62500 DELSTR = 9.693414

K ETA	0	>	7	UST	VST	ISd	ISd	>	~
0.000	0.00000			0.00000	000000	0.00000	0400	4.00178	
			202220C					4 42004	
			102101					4 570AB	
								4 70768	
	018561		2 614510	- 014664			- 0150	4.80931	
7 1.410	- 007716	949200	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -				0100	4.90676	
8 1.680	007976	01110	1 - 4 6 0 % - M	001900	002820		0050	5,00002	
							0000 0	5.08910	-
				112990					
	***				101010 00000				
	07/011. 				# 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				
	C00102		1211110		• 0 4 7 6 0 0	20/101.			
		C#2505	1 22022		6/0/00		0000		
16 5,600	501348	-,382018	7.843531	100822	044667	• 388890	.0350	5,57525	
17 5,640	,356124	470132	8.306433	· 201324	.124575	.524684	.0400	5.03492	
18 4.080	413395	- 566905	8,889335	.326572	,159587	.683620	.0450	5.69292	
19 4,320	472305	671413	9.412237	.373109	,199652	.866552	• 0200	5.74923	
20 4,560	531841	- 782548	9,935139	.420140	,244424	1.073948	.1000	6.21285	
21 4,800	590875	- 899092	10.458042	.466776	.293227	1.305833	.1500	6.58574	
22 5,040	646224	-1.019780	10,980944	.512080	345066	1.561756	.2000	6,90653	
23 5,280	,702734	-1,143369	11,503846	,555141	398694	1.840782	.2500	7.18848	
24 5,520	, 753365	-1.268690	12.026748	595139	.452710	2,141524	.3000	7.44178	
25 5,760	.799279	-1,394699	12.549650	.631410	.505696	2,462207	,3500	7.67355	
26 6,000	839893	-1,520510	13.072552	.663494	556345	2.800761	.4000	7.68895	
27 6.240	.874918	-1.645424	13.595454	.691163	603576	3.154937	.4500	8.08753	
28 6.480	.904350	-1.768938	14.118356	.714413	.646615	3,522426	• 5000	8.27660	
29 6,720	.928443	-1-890743	14.641258	.733446	685023	3.900971	1.0000	9.75468	
30 6,960	.947651	-2.010708	15,164160	.748620	.718693	4,288458	1.5000	10.85856	
31 7.200	,962563	-2,12,8844	15,687062	.760400	.747800	4.682993	2.0000	11.78460	
32 7.440	.973838	-2.245276	16.209964	.769307	.172734.	5.082937	2,5000	12.60914	
33 7,680	982138	-2,360200	16.732866	.775864	.794022	5,486923	3,0000	13,36899	
34 7.920	,988089	-2,473848	17,255768	.780565	,812256	5.893853	3,5000	14.08688	
35 8,160	. 992243	-2.586460	17.778671	.783847	,828028	6.302870	4.0000	14,77578	
36 8 400	995068	-2.698263	18,301573	.786078	641688	6.713329	4.5000	15.44540	
37 8,640	626966	-2,80,9457	18.824475	• 787556	854313	7.124757	5.0000	16.10196	
38 8,880	998146	-2.920207	19,347377	,788509	.865698	7,536821	6.0000	17,39165	
39 9,120	706866	-3.030645	19.870279	789108	876352	162676 1	7.0000	18.66600	
40 9,360	9969368	-3,140869	20,393181	.789475	.886510	8.362013	8,0000	19,93454	
41 9.600	849666	-3,250952	20,916083	.789693	.896340	8.774888	0000*6	21.20113	
42 9,840	9999805	-3,360944	21.438985	.789820	,905960	9.187853	10.0000	22.46717	
43 10.080	268666	-3.47,0880	21.961887	.789892	,915451	9.600871			
44 10.320	576666	-3.580782	22.484789	789931	,924863	10.013917			
45 10.560	219999	-3.690664	23,007691	• 789952	934229	10.426979			
46 10,800	9999986	-3,800535	23,530593	.789964	.943570	10.840050			
47 11.040	200000	-3,910399	24,053495	196694	,952896	11.253125			
48 11.280	L66666°	-4.020260	24,576398	. 789972	,962215	11.666202			
49 11,520	666666	-4.130118	25,099300	.789973	.971530	12,079281			
50 11,760	666666	-4,239976	25,622202	.789974	980842	12.492360			
51 12.000	1.000000	-4.349834	26.145104	789974	000120	071100 01			
						1Chco4 31			

ŝ mm

			20122.2	2.09821	1.83100	1.58773	1.32244	1.04929	.70069																													•														
	ROLATED		002/5°5	4.41953	4.56777	4 70440	4.82213	4.91801	5.01020	5.09870	5.18350	5.26460	5.33966	54054°	0.40400	53226	0,000,000		2211/ • 6	10/0/°C	0 2025	00/1000		14C22		1 0101	01074.1	17171 0 17171 0		64070 4			12.10544		14.88882	15.56231	16,2222	17.51758	18.79640	20.06887	21,33915	22.60877										
	INTER	101	- 0400	0300		- 0200	- 0150	0100	- 0020	0000 * 0	• 0020	.0100	.0150	0070"	0420.	.0300		0400	0440.	0000	0001.	0041.	0007.	0062.	0000	0000		. 4000							4.0000	4.5000	5,0000	6. 0000	7.0000	8,0000	9.0000	10.0000	-									
		101	0000000	010238	- 020174	030551	-039293	044332	043601	035041	-,016603	013743	.057996	.116104	.145445	. 293275	11/14.		072/1/	197904	1.120158	1.55600 	1.021744	1 - 7 - 7 - F	14401292		2,25,200	5.01076	20070077				054512°C		6.452786	6.869602	7.287350	7.705708	8.124453	8.543437	8,962566	9.381780	9.801043	10.660555	10.057057	11.00044	11.4/8265	11.04/784	206012.51 Tecait Ci	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.574865	1001-1-1-1-
		157	0.000000	- 001587	001052	- 004561	- 005797	-006429	-,006104	- 004448	-,001058	°004492	.012654	023893	038677	057458	00000	164901.	141602	2/00/1°	895022	200740 200740	\$14774 214774	50470G	000017.	077007.	21/210.		277/444 177/444	195550	063690	641240°	-110444	754104	769404	782863	795012	.806215	.816755	826847	.836644	.846253	.855747	0/1000	1444/0°	CI7288.	642648	109204	7471174	4/3134°	910074°	
		UST	0.000000		55020-	018932	013917	005016	.007762	.024402	.044877	.069144	• 097129	.128720	.163746	596102.	.243046	244992.	5518/1	.3/8360	412527 .	.4/1540	.516411	.558440		759569 .	.05.00. 	505270°	240517.	115521.	• (#0] 7 7 7 6 0 6 4 4	10646/	.708160	4400	782004	784117	.785510	.786405	.786965	.787306	.787508	.787625	787691	191161	- 787740	05//0/	19/18/	591191 ·	CO//D/.		60//0/ •	
	;	X	0000000	1.064581	1 594871	2.129161	2.661452	3,193742	3,726033	4,258323	4.790613	5,322904	5,855194	6.387484	614149	7.452065	7,984,556	8.516646	9.048936	722105.4	10.11351/	10.645607	11.1/6098	11./10588	12.242079	12.774464	15.5075.54 77705.5	04444941	14.5/1840	14.404150	12400461	11/004°C1	100100-01	17 555522	18.097873	18.630163	19,162453	19,694744	20.227034	20,759324	21,291615	21.823905	22,356196	22°000100	23.420776	190564.52 20518: 25	24.485357	/ #9/ 10 " 57	25 . 544458	077700.07	20 014310 27 146809	
rr = 9,914699	•	>	000000			002416	001343	-,009278	. .022529	042167	069179	- 104449	148727		- 500454	- 340434	- 424413		- 620381	- 730678	- 847666	5100/6 ·	•1.096330	-1.55525.1-	19222.1-	-1.465808	•1.015566	-1.743459	•1.00520 • • • • • • • • • • • • • • • • • • •	-1-445328 	00/111/20		-2.551142 		-2.693095	-2.804878	-2,915980	-3,026591	-3,136859	-3 ,246897	-3,356782	=3 ,466572	-3,576302		-3.745670	55505°51	-4.014987	=4 124059	-4-254204 	092939 まま	-4.5550/ -4.55556	
B7500 DELSI	:	- - -	00000000000		005458	024033	- 017666	- 006367	009853	.030976	. 056967	• 087772	.123297	163398	207861	.256377	308521	565/28	421281	.480305	•1145C.	598580 	.655539	,709526		604756	0444042 0100:	976979	199/04.	.431136	1 / / A 1 / A	404140	2006/2	200004°	992686	995368	997137	998273	6998983	,999416	999673	.999821	9999905	156666	519999	886666	766666°	100000	6666666 .	1.00000		
" "	1	ETA	0000			960	1.200	1.440	1,680	1,920	2,160	2.400	2.640	2,880	3,120	3,360	3.600	5 840	4.080	4,320	4.560	4 800	0.040	0.92° 1	5.520	5.760	000 . 9	6.240	0.100	6.720	0.00				8.160	8 400	8.640	6,880	9,120	9.360	9,600	9.840	10.080	10,320	10,560	10,800	11.040	11.280	11.520	11. / 00	14,000	7 L B B L 7
(() X		¥	1	u 14	1 =	r 10	- - 0	1	æ	۰ م	10	11	2	13	14	1 2		17	80 (-1	5	2			2	n te Lin	5	9 e 2	27	20 C		9 . 9 .	- / - /	2 7	0 F	r 10 7 M	9 P	37	38	39	40	4 2	42	4	3	10 17	-0 I 57 :	4 1	80 (37 :	р`с Т	0.0		J

10.010948
48
DELSTR
.00000
а и
(L) X

EMPOLATED	>	3.92101	4.20171	4.40319	4 54845	4.68390	4,80952	4,91631	5,00722	5.09489	5.17931	5.26050	5.33844	5.41315	5.47697	5,53914	5,59995	5,65940	5.71749	5.77421	6.25270	6.63836 ·	6,96755	7,25370	7.51501	7.75043	7,97008	8,17529	010010	200/0.6	22200.11	45164°11	1014/97	13.00444	14 29288	14,77130	12,00,11	17.63327	18,91666	20.19304	21,46699	22.74018									
ILVI	PSI	- 0400	0350	- 0300	- 0250	0200	- 0150	0100	-,0050	00000	.0050	.0100	. 0150	.0200	.0250	• 0300	0320	0070	.0450	• 0200	.1000	.1500	.2000	.2500	3000	,3500	. 4000	. 4500	0005	1,0000	1,5000	2,0000	0005.5	5,0000	0005.2		5,0000	9 0000	7.0000	8,0000	0000"6	10.0000									
	PSI	0 0 0 0 0 0 0	-002855	- 010741	- 020307	- 030603	- 039085	043617	-,042068	032320	012268	.020165	.067021	.130279	.211834	.313457	.436751	.583092	. 753575	948942	1.169528	1.415206	1.685370	1,978929	2.294351	2,629731	2.982893	3,351508	5./55210	4.1.62.1.4	4.520891		U. 548016	5.765008	6.104777	0.000444	7.453514	7.878048	8,302949	8.728076	9.153339	9.578682	10.004070	10.424485	406748°01		09/C0/*11	12,1212 12,1212 12,1212	12.982100		13.832981
	VST	0.00000	000538	- 001860	- 00 5677	- 005691	- 007591	- 000049	009717	• 009218	007149	-,003079	.003445	.012889	.025715	.042363	.063211	.088539	.118473	152935	191595	.233845	.278812	.325408	.372415	.418598	462821	504144	541446	107575.	.605470	631562	.055718	. 672997	684710 2012	00000. 	212947	740343	.750775	760807	.770575	.780177	.789676	- 1441 t	808517	006/10.	212120	550070 .	. 04001	864474	874085
	UST	0.00000	- 010543		- 019697	225810-	- 013001	003736	.009455	.026547	.047505	.072274	.100766	.132850	.168338	.206963	.248367	.292082	.337521	383981	.430653	•476654	.521077	.563054	.601817	.636762	.667490	.693827	.715841	753709	-147875 	97195L	C796947.	296212	1/7247	44100/	791201.	784333	784853	.785169	,785355	.785462	.785522	• 7 8 5 5 4	.785576	10550/*			785589	785589	,785589
i	>	0.00000			1.624668	2.166225	2.707781	3.249337	3,790893	4.332449	4,874005	5,415561	5,957117	6.498674	7.040230	7.581786	8,123342	8,664898	9.206454	9.748010	10.289566	10,831123	11.372679	11,914235	12,455791	12,997347	13.538903	14.080459	14.622015	15,163572	15.705128	16.246684	16,788240	17.329796	17.871352	10,412408	10,40404	20.037577	20.579133	21,120689	21,662245	22,203801	22,745357	23,286413	23,828470		245114.42	8515C4°C2	K0.Y44074 26.536250	27 011806	27.619363
	>	0.00000				01000	- 006325	- 016694	032925	- 056096	087188	-,127,062	• 176439	-,235864	- 305673	-,385956	476525	-,576893	-,686270	- 803587	-,927543	-1.056680	-1.189471	-1.324407	-1.460083	-1.595274	-1,72,8984	-1.860479	-1,989296	-2.115220	-2.238257	-2,358581	-2.476480	-2.592307	-2.706434			152451	-3.262548	-3,372396	-3.482083	-3,591668	-3.701191	-3,810677	-3.920141	+4°0/774	-4.1.59040		-4-74CS		4.686242
	ŋ	0.00000			5///30°-		016549	004755	012035	033792	060471	092000	.128268	.169109	.214283	.263450	.316154	.371800	429641	.486782	.548191	.606747	663295	.716728	.766071	810553	.849668	883194	911190	.933960	951992	,965895	,976330	983956	989381	951594°	2/00/2	07866	90666	999465	207999	959666	999914	936666	,999978	685555	200000	. 866666	****** *		1.00000
	FTA	0.000				040	1.200	1.440	1 1.680	1 920	2.160	1 2.400	2,640	3 2,880	1 3,120	5 3,360	3.600	3.840	9 4,080	9 4,320	9 4,560	1 4.800	2°040	5,280	1 5,520	5,760	, 6.000	6.240	5 6 480	9 6.720	6.960	1 7.200	2.440	5 7,680	1 7,920	0,100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 880	9 120	9,360	1 9.600	5 9 ° 840	5 10.080	10.320	5 10,560	0.10.600	11.040		11.760		12,240
	4			• *					~		4	-	-4	-	-	-	7	-	7	-	Ň	Ň	Ň	N	ñ	Ň	ຈັ	N.	Ñ	Ň	m	m	m	m	m i	5	ñ F		m	4	4	Π	э	3	3	÷.		3	3 V	Ň	າທີ

.70855

	►.	2,93183	2.41013	0CC/["]	52229-1	1.35744	1.07487	.71761																																								
	RPOLATED Y	3,85189	4.12226		4.51549 1.64649	4.77169	4,88867	4.99054	5,07705	5.16074	5,24160	5,31965	79775.2	0,40/00 0,100 0,100		5.65286	5.71070	5.76733	6.25494	6 . 64844	6.97806	7.27038	7.53262	7,77342	7,99374	0 20220	0,04050	11 06351	12.01813	12.86554	13.64534	14.37955	15,08250	15.76415	1010101	10.02530	20.30573	21,58332	22,86005									
	PSI	- 0400	0350			0150	0100	0050	0.000	• 0050	0100	.0150	.0200	0620.		0070	0450	0050.	.1000	.1500	.2000	. 2500	.3000	.3500	0007.	.4500			2.0000	2.5000	3.0000	3.5000	4.0000	4.5000		7.0000	8.0000	0000 * 6	10.0000									
	ISI	0.00000	002879		- 01044 - 030476	.038589	042478	039947	028818	-,006933	.027833	077559	144254	.224850			793306	995333	1,222941	1.475919	1.753573	2,054725	2.377763	2.720712	3,081342	192/54.5	5.846140	4 6 7 4 0 C		5.487870	5.911238	6,337283	6,765203	7.194402	0004401 0005010	8 185901	8.917149	9.348432	9.779789	10.211187	10.642609	11.074042	11.505482	11.930920	12,5005/1	12477212	11 662700	14.094156
	VST	00000000	-000000	201200	455400 -	009590	- 012011	-,013854	014748	-014291	• 012051	- 007573	-000388	,007075		000100	090704	121624	156556	194934	.235947	.278584	,321714	.364188	404950	443126	41/8089	, 207220 517777	561478	582523	600791	.616747	,630854	.643537	001000°	676769	686339	696087	705690	,715203	.724663	.734093	. 743505	8042C/	00570/°	781007	100000	199884
	UST	0.00000	010457	-•016605	- 019236 - 017571	-011896	.002226	.011417	.029001	.050479	• 075762	104808	.137404	1/53/0	* K + K + K + K + K + K + K + K + K + K	201802	743643	390061	.436541	.482203	526153	.567543	.605635	639857	• • • • • • • • • • • • • • • • • • •	642477 1/2	.716704	104020	158110	765930	771620	.775650	.778429	.780295	+1clo/ •	18271	783061	783231	783328	.783385	.783412	.783428	.783435		19507.	-10744 78744		183443
	>	0.00000	.550706	1.101411	112001	2.753528	3 304234	3,854940	4.405645	4.956351	5.507057	6,057762	6,608468	1.159175	0707014	8 811200	9 261996	9.912702	10.463407	11.014113	11,564819	12,115524	12,666230	13.216936	13,767641	14.318347	14.869055	10°1414100		17.071875	17.622581	18,173286	18.723992	19.274698	17,0634US	20 926815	21.477520	22.028226	22 578932	23,129637	23.680343	24.231049	24.781754	25.532460	65,003166 24 //728166	20.425011 24.984577	27 535 287	28.085988
rr 10.095966	>	0.00000	.000349	.000693	- 000359 - 004175	- 012077	025331	045130	072570	-,108628	-,154152	- 209823	276135	953354 · ·			767039	- 892924	-1.025296	-1.162547	-1,302994	-1.444987	-1.587005	-1.727739	-1,866157	-2,001528	· =2,133431	-C.201/20		-2.626798	-2.743127	-2,857519	- 2 . 970399	-3,082139	-3.175040 -7.701764		-3.522937	-3.632418	-3.741791	-3,851100	= 3 , 960371	-4,069619	-4,178856	-4-288085	-4,597512 * 504512	-4.576750 -/ 4.5767		-4.834206
12500 DELS1	n	00000000	-013348	021526		015185	002841	.014573	.037018	.064432	.096729	133778	175391	.221500	21112		478671	497880	.557208	615492	671591	.724421	.773042	.816724	.855000	887691	069776	77967. 9527		977646	984908	,990053	993600	995982	0000144		999512	999730	999854	.999923	196666°	086666	066666	966666	866666	******		1,000000
н С. С. С.	ETA	000.0	. 240		072	1.200	1 440	1.680	1,920	2.160	2.400	2,640	2,880	5,120	2.000 2.000		080	4 320	4.560	4 800	5,040	5,280	5,520	5.760	6.000	6.240	0.91.9	070		7.440	7.680	7,920	8,160	8 400			9.360	9.600	9.840	10.080	10,320	10,560	10,800	11.040	11.280	11. 760		12.240
(ſ)X	¥	:	N 1	μ,	ar u	b - 6	-	60	•	10		21	1	7 L	11	2 -	8	6	20	21	22	23	24	25	56	12	20	2 4		- A	15	34	35	9 F	7 8	0 0 7 7	. o	4	4	43	44	45	4	1	10 C	7 C	 	52

:

78[.]

	:		3.18476	2.22017	1.92405	1.66410	1,38015	1.09150	.72807		~	_									-	_		_	_			-	-				_	-	_						•											
•	ERPOLATED	~	3.76777		4,45584	4 59251	4.71615	4.83296	4 . 94296	5.04477	5,12728	5.20736	5,28501	5,36022	5 43301	5.50337	7217C.C	10250.0	20069.5		C 4 7 7 7 0	64110 64110	6.97519	7.27465	7.53719	7.78216	6.00483	8 2 1 4 3 4	8.41253	25956 ° 6	11.10802	12.07170	12,92740	0141/.41	14.45300	C/DO1*C1	10.0104061	17.82874	19.12116	20.40541	21.68665	22.96691										
	INI	PSI	0070 -		. 0250	- 0200	- 0150	0100	- 0020	0000 0	.0050	.0100	.0150	.0200	• 0520	.0300	0450.		.0450		0001	.1500	. 2000	.2500	. 3000	3500	0007	,4500	. 5000	1.0000	1.5000	2,0000	2,5000	5.000	3,5000			0000 9	7.0000	8.0000	9.000	10.0000										
		Isd	000000000000	C10010 -	192020-	- 030146	- 037766	-040852	037144	- 024404	- 000421	a 036975	.089899	.160385	· 250357	.361587	, 497646 , 110:1	149209.	687185°	1/2010 1	1.201202	1,541918	1.827387	2,136420	2.467317	2.818033	3.186279	3,569645	3,965720	4.572201	4.786979	5,208198	5,654285	6.02425	6.496186 / 070202	002064.0	7.801487	8.238037	8.674915	9.111990	9.549183	9,986443	10.423742	10.861061	11.298391	11,735728	12.173067	12.610408	13.047749	13.485091	13.922432	
		VST	000000 "0		005170		- 011912	-,015468	018704	-,021260	- 022735	022698	-020690	016234	-008860	• 001878	.010568	5 5 5 5 5 C .	192120.	992200	921C11.	144173	618581°	.224136	, 263080	301590	.338683	.373549	402601	434506	460176	482731	00000	66961C°	234902		572140	582872	593124	603066	. 612807	622423	,631961	.641455	.650922	.660375	.669820	.679262	.688701	698138	. 707576	
		UST	000000000	- 010550	018648	- 016651	010577	-*000450	.013698	.031824	.053869	079750	.109350	.142501	.178974	21845	200545	.304714	• 35035e	-240160	196244	.488280	.531717	.572473	.609841	643285	.672477	697310	.717867	.734491	.747553	.757505	· 764920	.7/0502	140414	770017		780274	780715	780979	781134	.781221	.781270	.781296	.781310	.781317	.781320	.781322	.781323	.781323	.781323	
14		>	000000 0	57/655°	1 . 670235	2.238981	2.798726	3,358471	3,918216	4.477961	5.037706	5,597452	6.157197	6.716942	7.276687	7.836432	8,396177	6242546	9.515668	10.015415	10.635158	11.194903	11.754648	12,314394	12.874139	13.433884	13,993629	14.553374	15,113119	15,672865	16.232610	16.792355	17.552100	17.411845	18,471590	14.051556	20115041	20.710571	21.270316	21.830061	22.389807	22 949552	23,509297	24,069042	24,628787	25,188532	25,748278	26.308023	26,867768	27.427513	27,987258	
TR = 10 1682		>	0.0000000000000000000000000000000000000	271000		575304	018914	- 035622	-,059701	092271	-,134315	-,186656	- 249936	-,324582	410777	- 508421	- e17107		- 864322		-1.142729	1 . 289491	-1,436838	-1.588965	-1.738231	-1.885251	-2.028963	-2.168659	-2,303980	-2,434883	-2,561583	-2.684478	-Z.804078	22027°2	+3,035608		-2,500570	-3.481256	-3.590984	-3.700427	-3.809690	-3.918840	-4.027922	-4.136966	-4.245986	-4.354995	-4.463997	-4.572995	-4,681992	-4,79,0987	-4.899983	トト・・ビ トーロー
1.25000 DELS		Þ	0000000000	9777C10-	023867	- 021311	- 013537	- 000576	.017532	.040731	.068946	.102071	.139955	.182385	.229065	279598	333464	500055	7,7077°	#C//0C*	• 266970	056529	680534	132697	.780524	.823328	.860690	692473	918810	000004	, 956753	,969516	7107/2	370707 a	777077	00400	94740	998658	222999	999560	999757	999870	226666	90000	699993	266666	966666°	900000	666666	1.000000	1.000000	
1		ETA	000 0			960	1.200	1.440	1,680	1,920	2,160	2.400	2,640	2,880	3.120	3,360	5.600	5,840	4,080	5 - C - C - C - C - C - C - C - C - C -	4.560	4.800	040	5,280	5,520	5.760	6.000	6.240	0.140	0.720	6.960		0 4 4 0		026.7		8 - 400	8.880	9.120	9 360	9.600	948.9	10,080	10.320	10.560	10,800	11.040	11.280	11,520	11.760	12.000	
(r)X		×	 :	N P	13	ហ	-0	~	4 0	σ	10	11	12	13	7	5	0	1	80 G	F 1		i i		2	54	5	-0 I :V:	2			20	5	21	9 : 9 :	3 L 7	24) ~ ~	- 60 - 11	6 M	10	41	42	£ 13	77	4	46	47	8 7	49	50	51	•

	>	2.5107	2.2512						* 7 4 0 Z														•																														
	KPULATEU Y	101010	13500	22722		44444		0/0/0/0	t, 00000	4,97281	5,07135	5,15760	5,23431	5.30894	5,38150	5,45199	5.52040	5.58674	5.65100	5.71053	6.21576	6,61549	6,95791	7.25857	7.52758	7,77353	8.00217	8,21219	8.41224	9.97407	11.13757	12.11109	12.97437	13.76671	14.51172	15.22423	15,91393	16.58752	72CU7./1	CHYON - AI		1001/17	12460.62										
1	PSI	- 0150							0<00 • •	0000 0	• 0050	.0100	.0150	,0200	.0250	.0300	.0350	00700	.0450	.0500	.1000	1500	.2000	.2500		.3500	. 4000	.4500	.5000	1.0000	1.5000	2.0000	2.5000	3.0000	3.5000	1.0000	4.5000	5,0000		0000 • /			10.00										
	PSI								028654	033540	018916	.007478	.047859	.104371	.179072	.273890	.390591	.530720	.695546	.886001	1,102620	1.345487	1.614202	1.907868	2,225116	2.564157	2,922869	3,298906	3,689821	4.093187	4.506701	4,928268	5,356059	5.788529	6.224425	6,662763	7.102794	7.543968		8.47a502	8 8 1 1 0 0 0	070717°A	4,70004	10°17775	10.00.044		11.072402	12.415530	12.858660	13.301791	13.744921	14,188052	14 631183
	VST							-014670	-019568	- 05##20	-,028963	-,032711	- 035259	- 036144	- 034879	- 030980	-023983	- 013485	000824	.019113	.041372	.067377	096674	128591	.162280	196781	.231117	264381	295817	324874	,351232	.374794	395653	770717	430291	.444757	457804	. 469763	110000	867167	200106	500110°	555126 .				549140	578641	588138	597633	607127	. 616621	,626115
	UST		0000000			-,01/760		100600	.001630	.016350	.035079	057749	.084264	.114486	.148229	.185241	.225186	.267634	.312044	.357770	.404060	.450082	6494963	.537835	577898	614479	.647079	.675410	.699405	.719198	.735094	.747522	.756978	.763981	.769028	.772567	774984	.776589	129/1/	1020/1	1099//.		0C041/*	001411.	11211	770214	12021	77924	779225	.779226	.779226	779226	,779226
	>		0.00000	100000.0	200/0101	1.706042	2,2/4/25	2.843404	3,412085	3,980765	444446446	5,118127	5.686808	6.255488	6.824169	7.392850	7.961531	8.530211	9.098892	9 667573	10.236254	10.804934	11.373615	11.942296	12.510977	13.079657	13,648338	14.217019	14.785700	15,354380	15,923061	16.491742	17,060423	17,629103	18,197784	18.766465	19,335146	19,903826	20.472507	21.041188	21.609869	45671°22	22,147250	117214.45	27.000°C2			26.159315	26.727995	27.296676	27.865357	28.434038	29,002718
R = 10.226161	>							- 027176	048020	-,077212	-,115895	- 165050	- 225475	- 297758	382247	- 479016	587832	708129	- 838988	- 979139	-1,126997	-1.280718	-1.438296	-1.597679	-1.756900	-1.914197	=2,068118	-2,217588	-2,361941	-2,500905	-2.634557	-2,763245	-2,887511	-3,007998	-3,125381	-3.240308	-3,353357	-3.465017	-3,57,5686		-2°745184				001107 ***				-4.775038	-4.883791	-4_992544	-5.101297	-5,210049
37500 DELS1	-					-00520-	176610**	-011559	.002099	.020983	.045017	.074111	.108138	146922	.190226	237724	288987	.343461	400454	.459135	518540	577602	635198	690217	741631	.788576	.830412	.866771	897563	622964	.943364	959313	671446	980435	986912	991455	994555	996616	846166	1978787	002666	109555	581444	599777°	037774	00000	100000	00000	000000	666666	1.000000	1.000000	1.00000
J) = 4.	K 614							6 1.200	7 1.440	8 1,680	9 1,920	0 2,160	1 2,400	2 2,640	3 2,660	4 3,120	5 3,360	6 3,600	7 3,840	8 4,080	9 4,320	0 4.560	1 4,800	2 5,040	3 5,280	4 5,520	5 5,760	6 6,000	7 6.240	8 6,480	9 6,720	0 6,960	1 7.200	12 7.440	3 7,680	4 7.920	5 8,160	6 8 400	7 8,640	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 1 20 0	7.50						7 11.040	8 11 280	9 11 520	0 11.760	1 12.000	2 12,240
ž												-	-		1		-			-	-	ηų	r u	ru.	r\1	r v i	ru)	r u	ru)	rų	τų	r*1)	ι»η	14	1 17	~	191	r*1	-11	- - 11	-1:	য	য	ज्य थ	4 4	r	13	. 1	1	3			

σ M

10,268424 H DELSTR 4.50000 68 ŝ 2.95021 1.93596 2.03577 1.14631 1.14631 1.14631 1.14631 1.15990 1.15590 1.15590 1.15590

>

3,79292 4,00221 4,197972 4,535342 4,535342 4,535342 4,535342 4,535342 4,53534 5,54140 5,24140 5,24140 5,24140 5,24140 5,24140 5,24140 5,24140 5,24140 5,24140 5,241311 5,24140 5,241313 5,64538 5,64538 5,64538 57337 6.92530 7.22606 7.50281 7.98068 8.19472 8.39547 16.64263 17.96626 19.26785 39547 0.56004 23,1358 21,8485 Ğ. 1.5000 4.5000 0.000.0 6 0000 9 0000 9 0000 9 0000 LILL CONTRACTION CONTRACTICACITICO CONTRACTICACITICO CONTRACTICACITICO CONTRACTICACTICONTRACTICACTICACTICACTICONTA

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 14.011950 .165236 4.909584 ISd MON-POPOONO 8-PO 400 - 200 - - 056462 - 047644 038004 024562 • 024562 • 07281 • 07281 • 03671 093670 152602 152602 152602 152602 152602 182615 260763 282233 281752 333792 333792 347554 360111 371746 382701 393171 VST î ÷ 775713 7765555 776655 7776878 7776878 7771001 7777001 777108 7771543 7771545 7771545 7771545 7771547 7771547 7771547 7771548 777148 us 1 25.410803 25.988321 26.55840 27.143358 27.143358 27.120876 28.875913 28.875913 29.453431 МОВВОЛИЛАНОЛИТО АРМИРАНОВОГИИЛАНО
 МОВВОЛИЛАНОЛИТО АРМИРАНОВОГИИЛАНО
 МОВВОЛИЛАНОЛИТО АРТИЧИА
 МОВВОЛИЛАНОЛИТО АРТИЧИА
 МОВВОЛИЛАНО АРТИЧИА
 МОВВОЛИЛАНО АРТИЧИА
 МОВВОЛИЛАНО АРТИЧИА
 МОВВОЛИЛАНО АРТИЧИА
 МОВВОЛИЛАНО
 МОВОЛИЛАНО
 МОВВОЛИЛАНО
 МОВВОЛИЛАНО
 МОВОЛИЛАНО
 МОВОЛИЛАНО

 МОВОЛИЛАНО
 МОВОЛИЛАНО
 МОВОЛИЛАНО

 МОВОЛИЛ В 1
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2
 В 2 -3.994602 -3.914572 -4.023656 -4.132625 -4.132625 -5.001192 -5.109686 -5.218180 -5.326673 -4.784196 -4.892696 -4.241397 -4.35050 -4.458631 -4.55831 -4.55831 435166 ĥ 186666 100000 9999948 999974 .000000 000000 000000 ⊃ 2 240 - N M J M 9000 40.0 MM 50.0 M -0N2100 8 6 0 H R

X(J) = 4,62500 DELSTR = 10,293850

								INTE	RPOLATED
¥	ETA	Э	>	>	UST	VST	PSI ISI	ISA	
1	000	000000000	000000	000000000	0000000000	0000000			10/0°7
N #		- 012210	017000 -	202020		140100 -			1 21470
n =	100	-017300 -020404		1.175700		- 008547		- 0150	4.37702
: (090	016260	- 027117	2450545	- 012603	014610	- 027542	- 0100	4.52554
. -0	1.200	- 006384	049357	2.931316	- 004948	- 021927	- 032687	- 0050	4.66235
•	1 440	008959	- 080966	3.517579	006944	- 030245	032102	000000	4.76940
60	1.680	.029681	- ,123293	4.103842	•.023005	- 039264	-,023323	.0050	4,86703
œ	1,920	055673	-,177498	4.690105	.043151	-,048636	-003930	.0100	4.96104
10	2.160	.086798	- 244535	5,276369	.067275	057963	.028439	.0150	5,05142
11	2.400	.122881	-325114	5.862632	.095243	066801	.076079	.0200	5,13817
12	2.640	.163694	419674	6.448895	.126877	- 074663	.141189	,0250	5,22130
13	2,660	208939	-,528343	7.035158	.161945	-,081028	.225852	.0300	5,29768
14	3.120	258223	650908	7.621421	.200145	-085367	331992	.0350	5.36500
15	3,360	.311048	-,786783	8.207685	.241089	087163	.461331		7 • 4 5 0 6 5
-9 i -1	3.600	.366788	- 934983	8,793948	-294292	- 085946	.615337	0420	5.49524
21	3.840	424682	-1-044118	9,380211	-229104	-,081332	142160		11000.0
8	4,080	483835	-1,262410	6 . 466474	315015	- 013065	121001577		
5	4.320	543240	-1-437741	10.552737	1 5 0 1 2 4 .	- 001054		0001.	0,01482
2	4.560	601808	Ch119.1-	11.139000	. 400476	- 042403	1.445068		
~	4.800	658424	-1.799926	11.725264	-510354	- 020431	1.01414		100/10/
	5.040	.12016	-1.981810	12,311527	2/8/65.				
5	5,280	.761626	-2,161099	12.897790	.590325	172610	2.427595	0047.	0100101
54	5,520	806486	-2,335824	13.484053	.625045	044464	2.785875		15044.1
52	5,760	846069	-2,504452	14.070316	. 655775	.070189	3,159336	.4500	6,15975 2,245
26	6.000	.880120	-2,665961	14.656580	.682167	042640	3,551529	0005	8,50219
27	6.240	908659	-2.819850	15.242843	.704268	120153	5 9 5 7 9 4 5	1.0000	47794°4
	6.480	,931952	-2,966102	15,829106	.722341	.145259	4.5/0155	1.0000	
6	6.720	950457	-3,105105	16.415369	-736684	.164554	4.803819		
о М	6,960 	964765	-3,237546	17.001632	-14774 	185996	2,239461	0000 2	
31	7.200	975530	-3.364294	17.587896	.756118	.201578	661619°C	0000.0	10,000,01
32	7.440	983410	-3.486297	18,174159	,762226	217440	6.124874	0004 5	14.58070
33	7.680	989023	-3,604489	18,760422	• 766576	231798	6.573014	4.0000	15,30239
9 E	7,920	992914	-3,719725	19.346685	263692	.244905	7.023313	4.5000	15,99992
5 1 1	6.160	. 495537	=3,832746	19.932948	C791//.	+10/52.	1.4/2045		
9	007.9	997299	191775.61	12614 02	006212	200300	72,25 VCV05		10,01000
		019077 • • • • • • •	14°00440	C/#C01.12	2102//*	C414/2	0.20100/		00010 ⁸ 41
00		1 + 7 + 4 + 4		07/1/0°13	******	201000			
1 4	0 1 F O	101000		22.84.24	774850	200574	9.74355	10.0000	21.19547
		999817	102057-7-	23.450527	774958	319390	10-197650		
- 0.	9,840	000014	4 598577	24.036791	775018	329134	10.651996		
4	10.080	999956	-4.706882	24 623054	.775050	338835	11.106370		
4	10.320	949978	4.815147	25.209317	775067	348511	11.560759		
45	10.560	999999	-4,923390	25,795580	.775076	358173	12,015155		
97 7	10.800	200000	-5,031620	26,381843	.775081	367827	12.469555		
47	11.040	966666	-5,139845	26,968106	.775083	.377477	12.923957		
8 7	11.280	666666	-5.248066	27,554370	.175084	, 387125	13.378359		
49	11,520	1.000000	-5,356286	28,140633	.775084	.396772	13.832762		
50	11.760	1.000000	-5,464505	28,726896	. 775084	406419	14.287166		
51	12,000	1.000000	-5,572723	29,313159		416065	14.741569		
2 S	12,240	1,00000	-5.680942	224648662	.775084	117654.	279671.61		

١

Y 2.60368 2.11891 1.79672 1.46349 1.16635

10.301566 88 DELSTR 4.75000 13

2.26403 1.84894 1.55889 1.20261 1.79351 >

3.71955 3.99157 4.20548 4.51678 4.616802 4.73606 5.45362 6.00383 6.43230 6.79106 7.10982 7.38860 7.64735 5.00796 5.09138 5.17193 5.24959 5.32438 8.31181 9.92770 11.12767 12.12911 13.01556 13.82700 14.58839 14.58839 19.34705 4.83246 7.88280 8.10300 6.01673 16.70091 21.94310 5,39146 NTERPOLATED 0100 2500 4000 5000 5000 5000 3,0000 5.0000 7.0000 0000 0000 4.0000 4.5000 0.000.0 **PS1** 9.000

 t
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 3.292720 7.676465 1.811972 13.651534 14.111427 14.571320 10.432379 10.892223 11.352091 9.053260 666144 .582109 2.543120 4,968138 5.410050 8.134886 8.593890 9.512852 .069807 9,972577 854448 .312447 .198932 6.762792 .878024 4,533327 6,308641 3.191641 4.10762 5.491107 5.03121 PS1 117595 - 119457 - 109238 - 095608 - 060048 270718 280456 309668 319405 290194 299931 ٧ST ເຈົ 21,417141 222,012062 223,605982 233,2016982 233,796823 244,986655 244,986655 244,986655 244,581585 254,581585 26.176506 26.771426 27.366347 27.961268 29.151109 29.746029 30.340950 28,556188 -2.753245 -2.920530 -3.078857 -3.631332 -3.753832 -3.872215 -1.071180 -1.071180 -1.246317 -1.815142 -2.010493 -2.204209 - 294483 - 294483 - 494975 - 617886 2.577369 4.539537 5.080222 5.296120 5.404057 5.511991 -3.369686 5.619924 430346 3.228382 4.100324 4.211526 21560 -4.647942 4.756146 4,972246 5.835788 943720 -1.620841 .987441 -4.864231 4,37 5. 7 887332 914605 936727 954193 999528 100000 999961 999927 966666 999998 000000 .00000 .000000 000000 999963 666666 .640 .880 .280 0 10 . 5.520 1.040 .520 2.240 320 . 800 .280 .000 400 .120 . 600 0.080 1.760 .240 0.320 0.560 0.800 ŝ 40.00 40.01 10000 1000 1000 42

	>	2.67615	1.86553	1.61538	1.24719	.82084						•																																									
0001 AVED		3.45242	3.70876	3.93976	4.14540	4,30048	4.42685	4.54688	4.66059	4.76795	4.86257	4 94463	5.02442	5.10195	5.17720	5.25018	5.32090	5.68711	6.32599	6.69780	7.01671	7.30536	7.56427	7 80702	ALACO A	6.23813	0 87513	11.08765	97660 . 41	12.00261	12 81112			12,20070		10.1025	07652.01	20.66362	21.96315	23.26097													
	DS1	0250		0150	0100	- 0050	0.000	.0050	0100	.0150	.0200	0250	0300	0350	0070	0450	.0500	1000	.1500	2000	.2500	.3000	3500	4000	4500			5000									0000	8,0000	0000 6	10.0000													
	PST.	0.00000	002695	- 009400	017371	023879	026230	021769	007893	017932	058161	115153	191142	288206	408231	552857	723425	920918	1 145900	1.398471	1.678228	1.984261	2.315168	2.669112				1.268551					0°10177					8.7778	9 282049	9.747078	10.21223	10.677434	11.142683	11.607951	12.073230	12,538515	13.003803	1004041	15.954381	010111	14 004400	15,550250 15,705520	1001 × 101
	VST	0.00000	- 001455	005581	012203	021128	032139	- 044980	- 059346	- 074873	- 091137	107657	-123899	-139285	- 153212	165083	174331	180470	- 183125	162082	- 177312	- 168989	157484	122271		100755										736730°	051770	11200	072598	.082714	092717	.102650	.112539	,122402	132251	142091	.151927	101/00	-1715- 592171	• 181424	CC3171.	201050	• • • • • •
	UST	0.00000	- 008930	013294	013120	- 008449	.000658	.014127	.031857	.053728	079595	109278	142550	179125	218642	260653	104614	349881	195716	41110	485815	528388	568248	207.209			100047	70087	795987	7 2 2 2 1 0	11001.			01600/°		70001°	20010	770028	770437	.770681	.770822	.770902	.770945	.770969	196022	•770987	.770990	1460/2"	266012	244017.	2440//*	244011.	• I I U 7 7 E
81	>		.603495	1.206990	1.810485	2.413980	3.017474	3.620969	4 224464	4.827959	5.431454	6.034949	6 638444	7.241939	7.845434	8-448928	9 052421	9.655918	10.259413	10.862908	11 466403	12.069898	12.673393			10000000000000000000000000000000000000		217100°11			100/10001		/*0*/1°01	24COU/01		10001/01/10001 20001010000		21 725816	22.329311	22,932806	23,536301	24,139796	24.743291	25,346785	25,950280	26.553775	27,157270	21.100765	28,364260	28,467755		50°1/4/45	~***
R = 10.2909	>	0.00000	002126	- 009469	023927	047326	081380	-127657	-187514	- 262063	. 352150	.458315	- 580748	- 719256	. 873222	-1.041579	1.222790	-1.414859	-1.615372	-1.821577	-2.030510	-239158	- 44441	00104.5		420010 1-	907101 E-	-2,171000 -1 151871		762077 E-			010714°C=	-+ C2024	CC46010 11			361009.11-	-4.711259	-4.819679	-4.927776	-5,035677	-5,143461	-5,251179	-5,358859	-5,466520	-5.574170	-5.681814	-5,789456	-5.847046		-0,112376 	c 1 / / J J B B B B B B B B B B B B B B B B
37500 DELST	н	0.00000	011582	- 017243	017017	010959	000853	018324	041319	069686	101217	141737	184892	232330	283585	338075	195094	453807	513256	572793	61019	685115	777075	784451		942240 847240			101111 011111	- 30 ta - 4			01414	100404	CC1144	00454	10000	998749	999281	999597	999780	999983	076666	016666	999985	£66666°	166666	666666	666666	1,000000	1,00000	1.000000	1.0000
H H	FTA .		240	160	.720	.960	1.200	1.440	1.680	1.920	2,160	2.400	2.640	2.880	3,120	1.360	009.1	940	4.080		4.560	4.800	5.040								040				000°	0 - 1 - 0		8.640	8.860	9.120	9.360	9.600	9,840	10.080	10,320	10.560	10.800	11.040	11,280	11.520	11.700	000 21	16,640
81	+ +	د -	• •		3	ŝ		•	. 60	•	0		21	1		5		:	8			1		10		1 U U U		200	- 4		2 Z	2.		22	0 F	1 N			38	65	40	41	42	5	77	45	4	L 17	87	ター		10	30

X(J) = 5.00000 DELSTR = 10.261606

RPOLATED	>	3,44695	3,66283	3,86240	4.04566	4.21261	4.34618	4.45789	4.56496	4.66739	4,76518	4,85832	4,93982	5.01389	5,08618	5.15670	5.74666	6.20276	6.57895	6,90560	7,19861	7.46357	7.70687	7.93614	8.14630	9.80499	11.02977	12.04975	12,95129	13,77572	14.54831	15.28432	15.99405	16.68534	18.03239	14266.41	20.66125	21.40430	*****													
INTEF	PSI	0200	0150	0100	-0050	000000	• 0050	.0100	.0150	0200	.0250	.0300	0320	.0400	.0450	.0500	.1000	,1500	.2000	.2500	3000	.3500	.4000	. 4500	.5000	1.0000	1.5000	2.0000	2,5000	3,0000	3,5000	4.0000	4.5000	5.0000	6.0000	7.0000	9000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													
	PSI	00000000	-,002571	-, 008858	016020	-021240	021738	014780	.002300	.032092	.077091	.139678	.222093	.326401	454451	.607822	. 787773	.995180	1.230479	1.493625	1.784063	2.100727	2.442067	2.806118	3.190586	3.592969	4.010677	4.441161	4.882014	5,331060	5.786407	6.246468	6.709961	7.175883	7.643480	8,112198	8.501648		C0/13C %	10.462609	10.933140	11.403701	11.874280	12.344867	12,815459	13,286054	13.756649	14,227245	14.697841	15.168437	15,639033	067001 71
	VST	0000000000	-,001727	-,006655	-014594	-025332	-,038633	054217	-071755	-,090862	-,111089	-131928	.152808	- 173111	- 192192	- 209398	- 224109	-,235778	- 243967	- 248397	- 248972	- 245803	- 239194	- 229622	- 217687	- 204046	- 189353	- 174197	-159061	-,144298	-130130	-,116662	-,103906	091807	- 080276	- 069207	- 058494		+0//CO	- 017601	- 007604	002360	012305	022240	032168	042093	052016	.061939	.071861	.081782	.091704	767101
	UST	0.00000	008402	-,012145	011261	-,005798	.004172	.018564	.037255	.060107	.086952	,117585	.151750	189132	229337	271885	.316200	.361609	.407355	.452615	.496545	538320	.577190	612538	643916	671082	.694001	,712831	.727889	.739608	.748480	.755013	,759693	.762954	.765164	120001	.767555	00100/°	1 4 4 0 0 / °	00/00/*	768886	768923	768942	768952	.768956	.768959	.768960	.768960	.768961	.768961	.768961	762061
0	>	0 0 0 0 0 0 0 0	.611990	1,223980	1,835969	2.447959	3.059949	3.671939	4,283929	4.895918	5,507908	6,119898	6.731666	7.343878	7.955867	8.567857	9.179847	9,791837	10.403827	11.015816	11.627806	12.239796	12.851786	13.463775	14.075765	14.687755	15,299745	15,911735	16,523724	17,135714	17.747704	18,359694	18,971684	19,583673	20,195663	20.807653	21.419643		779576 7795675	210552°53 209178 10	24.479592	25.091582	25.703571	26.315561	26.927551	27,539541	28,151531	28,763520	29,375510	29,987500	30.599490	71 211000
0101°	>	0 0 0 0 0 0 0	002953	012781	031386	060595	-,102112	157466	-,227960	314643	418270	-,539250	677608	. 832942	-1.004386	-1.190579	-1.389664	-1.599296	-1.816710	-2.038815	-2.262347	-2.484048	-2.700872	-2.910180	-3.109910	-3.298676	-3,475816	-3.641342	-3.795851	-3.940372	-4.076214	-4.204800	-4.327543	-4,45745	-4.560536	-4.672849	-4.783420	-4-64-602			-5-324874	-5.432358	-5.539780	-5-647167	-5,754536	-5,861895	-5,969250	-6.076602	-6.183953	-6.291303	=6,398653	-6.504007
		0 0 0 0 0 0 0	- 010926	015794	- 014644	- 007541	.005426	024142	048448	.078166	.113077	152914	197345	245958	298243	353575	.411205	470257	529747	588607	. 645735	700061	750611	796579	.837385	. 872713	902518	,927005.	946588	961828	973365	981862	987948	992189	.995063	996958	998172	054044	045444	100447	100000	999951	999975	999988	166666	7999997	666666	1.00000	1,000000	1.000000	1.000000	1 000000
n I N	ETA	0000	.240	087 .	.720	.960	1.200	1.440	1.680	1.920	2.160	2.400	2.640	2.880	3.120	3,360	3,600	3,840	4.080	4.320	4.560	4.800	5.040	5.280	5.520	5.760	6.000	6.240	6.480	6.720	6,960	7.200	7.440	7.680	7.920	8.160	007*9	0.040		0410	009.6	0 8 4 0	10.080	10.320	10.560	10.800	11.040	11,280	11.520	11.760	12.000	
	×	-		m	4	'n	4	•	Ø	o	10	11	12	13	7	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	3	t i Mi	5	0 I	20	2 0	5 4		10 I 15 I	43	77	40	97	47	917	49	50	5	n ur

1.34198 1.73271 1.30390 .85672

85

c,

86

1.96737 1.37165 .90574

>

X(J) = 5.25000 DELSTR = 10.146579

Y 1.40696 .97664

																																		·													
RPOLATED	>	3,11612 7 77017	3.61330	3.80631	3.94434	4.07526	4.19908	4.31580	4.42143	4.50410	4.59427	C70/0**	4.75715	07777°C		0.55560		7.19782	7.45199	7.68478	7,90311	9.60271	10.85382	11.89446	12.81087	13.64866		10,11,100	100100 T	17.95322	19.28342	20.60001	21.91073	23.21917				•									
INTE	ISd			0020	.0100	.0150	.0200	.0250	.0300	.0350	00700	0410	0050.	0001.	0041.	0002*		3500	1000	4500	.5000	1.0000	1,5000	2.0000	2.5000	0000 ° M					7.0000	8,0000	0000*6	10.0000													
	ISd	0,00000		- 012117	013852		003813	.028870	.068350	.124811	.200657	21122.	.419178	26566.	2/102/°	, 454765 , 140174		1.713207	2.026729	2.366040	2.729374	3.114507	3,518953	3,940090	4.375284	4.822012		0 + 1 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0		7.157379	7.634697	8,113356	8,592898	9.073004	10.034124	10.514931	10,995800	11.476709	11.957639	12,458581	12.417560 11 400479	13.881430	14 362383	14.843336	15,324289	15.805241	10.600144 16.767147
	VST	000000000	009444	- 020709	035917	-,054732	076781	101642	-128847	-157870	-,188115	-218924	249577	116412.	012105.	- 255509		199221	399757	406023	408230	- 406772	402182	395070	-,386066	-,375759	- 104000	1/17C7 -			- 307774		-,286350	- 275908	. 255373	- 245209	-,235091	-,224999	-,214923	-,204856		- 174679	- 164623	-154567	- 144511	-134456	• 114345
	UST	0.00000		- 006444	.000924	.012923	.029424	.050278	.075306	104290	136969	C205/1.	212075	CC0202.	212/22	C11245.	230/05°	477265	519732	559582	.596149	.628922	.657582	.682014	.702300	.718699		/ 0 t		757871	760432	.762137	.763240	.763934	764512	764758	.764840	.764885	.764909	126401.	- 764950 764930	764932	.764933	.764933	.764933	-764933	.764953
	*	0,00000	102426	1.886255	2,515007	3,143759	3,772510	4.401262	5,030014	5,658766	6,287517	6.916269	7.545021	6 1 / 3 / 7 3	42C208 8	9.451276		11.217531	11.946283	12.575035	13,203787	13,832538	14,461290	15.090042	15,718794	16.347545	10.010.01	1/ 005044	100567.01 	702107 01	20.120056	20,748808	21,377559	22,006311	219192	23,892566	24,521318	25,150070	25,778822	26.407573	27.665077	28.293829	28,922580	29,551332	30,180084	30,808836	32,066339
	>	0.00000		050887	- 094738	-,154637	-,231,886	.327553	442437	- 576996	-,731/282	- 904889	-1.096897	-1.505656	-1-524640	-1,705050			-2.766465	-3.012117	-3,249008	=3.474503	-3,686730	-3,884662	-4.068103	-4.237597		-4-54005			-5.042723	-5,156572	=5,26 <u>7</u> 994	-5.377745		-5.701764	-5,80,8955	-5,915984	-6.022920	-0.129805		-6.450339	-6.557170	-6.664000	-6.770829	-6.877657	-1.091314
	c	0.00000	- 011886	008424	.001208	.016894	.038466	.065729	.098448	136339	179060	-20140 	.277246	200122	20005.	642144		623931	679448	731544	.779348	.822193	.859660	891599	918120	,939558		707525	01010	990708	994116	.996344	.997786	998694 900050	999580	177999	999879	699937	696666	586666	~~~~~	000000	666666	1.000000	1.000000	1.000000	1.000000
	ETA	0000		720	960	1.200	1.440	1.680	1.920	2,160	2.400	000	2.880	5.1KO				1.20	4.560	4.800	5.040	5,280	5,520	5,760	6.000	6.240		07/0		7.440	7 680	7.920	8,160	007*0	8,880	9,120	9,360	9.600	018.6	10,080	10.560	10.800	11.040	11,280	11.520	11.760	12.240
	¥	(4 14	। ব	ഗ	•	2	c D	0	2	=:		M :		<u>_</u> :	0 r 4 •	- 0	0	20	5	22	23	54	25	56	27		7 C V M	2.4	A M	ŝ	34	35	4 F M F	- 60	5	40	4	1 1 1 1	ית = ד =	1 U 15 t	-9 -1	47	48	6 i		- 2

10.061357 8 DELSTR 5.37500 Ħ

4.44526 4.52531 .75609 .19446 .75323 0.73860 1.78780 4.34589 5.09612 5.81849 21.85595 5.69422 6.09633 44840 2.71329 0.54149 4.35007 7.88575 23.16794 .03857 3,55691 NTERPOLATED .2921 53151 6.5207 2.0000 4.5000 4.5000 6.0000 4 5000 8,0000 9,0000 .0000 0.0000 -.006085 • 001442 • 015826 • 045751 • 045751 154288 237875 344007 474635 631419 515406 .815672 -.001910 -.008884 .269774 880918 0.792336 4.194285 000000000 .838541 .164189 .700793 4.131394 4.575334 6.916956 .398056 8.364960 1.278280 1.764257 2.250252 2,736255 3,708273 5,166309 .540041 6.438412 849772 3.222263 4.680297 .493493 5,963477 2,890181 .28616 5.030121 9.33507 0.30645 5.652321 7.11035 9.82067 6.13833 6.62434 PSI -.011208 -.310359 -.300282 - 419278 - 443123 - 462663 0.000000 -.002894 - 465381 -151023 - 292096 - 042449 - 064529 -090314 -,256119 488038 494025 .495983 .494433 - 489982 483266 474889 444604 433891 .423180 412547 391610 .371055 -360874 -350734 -,340620 .330524 -320438 -290208 .280134 .270062 .259989 249916 .360648 .381294 219699 ..220106 .402023 -119321 391581 229771 ٧ST 148092 185120 2255002 267239 721502 733308 742258 084212 762120 0.000000 490424 756883 311243 570699 62685 62872 162927 62945 058002 401780 637292 687446 06354 48856 53586 60589 61533 62805 62908 62936 162941 762944 62945 62945 62945 62945 57629. 64929 664473 26.117864 26.754885 1.911063 7.644253 8.281274 8.918295 9.555316 10,192337 5.288506 2.932759 24,206801 24,843822 2.740422 110632 1.466379 4.014464 4.651485 6.562548 199569 .836590 0.384675 21.021696 1.658717 23,569780 28.028928 .302970 0.000000 .637021 5,480843 .391907 28.665949 473611 2.103401 9,939991 0.577012 14033 .85105 2.48807 a 0 1.247279 1.475812 1.718952 1.973713 -,187240 -.027261 -.063332 -.116239 .006632 -,518618 -.670483 .843092 .035767 .236609 2.503776 .290609 .535668 .539669 .841186 976324 .103598 24764 .341348 .454606 65529 .674862 5.783149 .890766 9967968 6.211730 .318456 .425136 .745075 .851710 6.958344 •064976 000000000 .771147 34683 767322 4.369586 6.104922 6.531793 .171609 983891 -6.638437 -,38768 .18461 .69627 .27824 .38487 9 ñ J. ę ė 0.000000 023938 047122 076023 110377 149866 294913 350273 407950 526618 585562 642804 697279 748021 794225 835306 981533 987733 992054 994982 996912 9999816 9999904 9999951 -.009322 -.004443 .006687 925826 945680 961154 972885 194106 242639 998919 999385 870932 999659 366666 .000000 000000 998149 999988 999998 666666 .000000 00000 00000 00000 4000 4000 4000 4000 .880 240 .120 560 800 340.1 520 00. .76 00. X 35 5 N M 7 10 80

1.09160

Y 1.41782

INTERPOLATED	λ ISd			0100 3 28817	.0150 3.44910	.0200 3.60010	.0250 3.74116	0300 3.87210 0750 1 0410			0200 4 25641	. 1000 4.96344	.1500 5.47667	.2000 5.89761	1000 0 0001 1000 7 01075			4500 7.35698	.5000 7.58370	1.0000 9.32624	1,5000 10,60390	2.0000 11.66424	2.5000 12.59637	3.0000 13.44735	3.5000 14.24189	5 0000 the state of the state o	R.0000 15./2880	6 0000 17 79998	7.0000 19.13993	8.0000 20.46483	9.0000 21.78303	10,0000 23,09854														-	
	ISd	0.00000	200100°-	006147	002896	.008149	.029961	.065407	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	280106	395714	536708	.704653		1,101,1	1.277410		2.312643	2.676061	3,062478	3,469431	3.894276	4.334319	4.786937	5,249686	5150515 515151	6.17/121 4 478150	7.162837	7.649587	8 137888	8.627216	9.117207	9.607614		11.079981	11.570926	12,061897	12.552882	13.043875	15.554870	14.053000	14 24000	17000/00°C1	15.989863	16_480862	16 971860	17.462859
	VST	0.00000		- 028907	- 049860	- 075548	- 105404	-138859		- 254551	- 295836	337129	- 377544	416182	2/1254-		200415 -	- 555951	- 569973	- 579236	-,584114	-,585132	- 582909	- 578094	-,571311	11500	279222 -		523958	- 513693	503440	- 493223	- 483050	142815	452737	- 442675	-,432623	422577	-,412535	- 402495	0037V470	- 2797610			-342268	- 332230	- 322193
	UST	000000	- 004846	.000170	906600	.024328	.043283	.066592	• 074033	166631.	198176	238868	281718	.326101	2121/2.	0/5017°	010104 010404	544520	581981	615812	.645637	.671274	.692745	.710253	.724146	50849L.	-14241. 742704	150062	755838	.757767	.759024	,759821	.760313	760778	760874	.760928	.760956	.76097.	100018	296092	10100/*	10100/0	100010	760985	760985	760985	760985
~	.	0 • 0 0 0 0 0	645215	1.935646	2.580861	3,226076	3,871292	4.516507	22/101°C	1910101010101	7 007348	7.742583	8,387798	9,033014	9,678229	10.323444	10,40007	12.259090	12.904305	13,549521	14.194736	14,839951	15,485166	16,130382	16,775597	17,420812	18,066027		20.001673	20.646888	21,292104	21,937319	22,582534	27 873945	24.518180	25,163395	25,808611	26,453826	27,099041	27,744256	2/ 7/ 20 20 20 20 20 20 20 20 20 20 20 20 20	24°00400/	201410412	11636°05	31.615548	32.260763	32,905978
к в 9-95826	>	0 • 0 0 0 0 0	- 008351		140997		- 328923	- 455080				-1-409167	-1.657437	-1.919730	-2,192655	-2,472339	5 0 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1	20002.4	-3.574142	-3.825766	-4.062005	-4,281438	-4,483614	-4.668974	-4.838696	-4.994486	-5.138351 -6 27220		-5.518885	-5.634705	-5.747348	-5,857784	-5,966738		-6.289114	-6.395899	-6,502556	-6.609142	-6.715690	-6 822217	10"YC0'04			-1.54772	-7.461279	-7.567787	-7.674294
50000 DELST	5	0.00000	- 006363	122000°-	013020	031969	.056877	.087507	100021.	50/701°		313894	370202	428525	487937	• 247419	/ 40000*	715547	764773	. 809231	848422	.882112	910327	933335	951591	965682	976260 997090		75556	995772	,997424	.998471	. 999117	200777.	999855	999925	999962	286666	166666*	966666	844444	666666°,	1.00000	1.000000	1.000000	1.000000	1.00000
(()) = 2.	K ETA	1 0.000	- Steo	120	5 960	6 1,200	7 1,440	8 1,680				13 2.880	14 3.120	15 3,360	16 3,600	17 3,840			21 4.800	22 5.040	23 5,280	24 5,520	25 5,760	26 6,000	27 6,240	28 6.480	29 6,720		32 7.440	33 7.680	34 7,920	35 8,160	36 8 400		39 9,120	40 9.360	41 9,600	42 9,840	43 10,080	44 10.320				40 11.520	50 11.760	51 12.000	52 12,240

≻

11.52226 7.16951 13.31983 5,25215 14.87973 2.20776 2.65103 2.88515 3.09704 3.28198 9.16321 16.31982 17.69690 19.04167 4.71634 6.04309 6.36624 6.65658 6,92110 3.54377 3.78071 3.88987 3.98218 5.66534 20.37068 23.0115 INTERPOLATED > 1.0000 1,5000 3,0000 .1500 3500 2500 3000 4500 5000 2,0000 2.5000 4000 6,0000 8,0000 9,0000 0.000 ISd 11.377292 11.873170 12.369068 2.472028 4.099020 5,958032 9,394606 9,890040 2,120855 3,663988 10.385685 0.881454 1.328245 3.246032 5,009600 8.405002 8,899522 2.864977 3,360892 3.856809 4.352728 5,344566 5.840486 6.832325 17.824164 7.419081 4.848647 6.336405 5,480171 6.928797 .911367 PSI 004031 015576 058185 058185 087792 122008 - 337578 -,583129 -.650096 -.473042 - 668634 -,638668 -.529753 -.519820 - 490029 -,460242 -,662054 - 669302 -,671936 - 663123 -,629162 - 599497 • 589506 - 579519 - 569545 - 559583 . 539690 .499958 - 480100 -.450313 -,420526 -,429516 . 672383 - 655984 - 647704 - 619386 - 609472 -.549633 509889 -.291077 - 470171 0.00000.0 - 245450 -,55062 - 440384 --43045 VS1 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
< 758990 758900 759050 759062 759062 759063 759063 759063 759062 759063 75906 1.186648 839980 11.1.06639 12.413302 12.413302 13.066634 13.719965 14.373297 14.373297 14.373297 30,706589 31,359921 32,013252 32,666584 33,319916 29,399926 9.146644 9.799975 10.453307 493312 ŝ 9.838104 6.675909 6.782520 6.889070 6.995589 1.102090 1.215072 1.215072 1.421560 1.421560 1.624532 1.634532 953989 -4 P 5 DELSTR 000000 000000 766666 986666 666666 .000000 199997 666666 000000 ⊃ 5.62500 • 11.040 11.520 11.520 11.760 12.240 X C C X

	RPOLATED		1.7840	2.4931	2.7332	2.9114	3.0773	3,2309	3.3603	10/10/10/10/10/10/10/10/10/10/10/10/10/1	2010.5	2010.0		5000°5		C/10°C			6.9597	7.1944	9809	10.2852	11.3647	12.3128	13.1768	13,9821	14.7463	15.4810	16.1940	17.5772	18,9269	20.2600	21,5855	26,4080											ŗ					
	INTE	101		0100	.0150	.0200	.0250	• 0300	0520		0570.	0060.		0001.					4500	2000	1.0000	1.5000	2.0000	2.5000	3 0000	3.5000	4,0000	4.5000	5,0000	6 .0000	7.0000	8,0000	0000*6	10-00																
	• • • •		0.00000	000651	.002535	,012655	032629	.065470	.114075	.101100	.209355	. 360899	• 71 / 676	601470 61::::		1,070541	C///#C.4			2.641997	3.030342	3.440296	3.869201	4.314313	4.772927	5.242496	5.720714	6,205573	6.695391	7,188810	7.684770	8,182475	8,681344	9960048 0 4 5 4 4 4		2001010101	11.182678	11.683397	12.184147	12.684912	13,185686	13.686465	14.187245		12,100000	12.004204	1/20/1.01	1919155	17.692717	18.193499
		151	0.000000	016216	- 039442	-,067413	101209	- ,139985	-,182937	-,224272	- 278174	- 528782	1/1085	195154.	******				- 480708	- 705647	- 724983	738928	- 747899	- 752472	753313	-751118	- 746557	.740228	-,732636	-,724183	-715171	-,705815	- 696261		- 447154	001100 -	- 647679	- 637943	- 628211	- <u>.</u> 618481	-,608752	- 599025	- 589298	1/2//2.	107070""	91109C -	- 54044	010053	52121	-,511486
		UST.	000000000000000000000000000000000000000	001172	00000	.021593	.038809	.060505	.086478	- 1 1 6 4 6 4	201001.	101101.	-2210UG	C/1602.					531768	569874	604499	635221	661807	684229	702642	717357	728795	.737440	.743792	.748329	.751479	.753604	1754947	C09567.	- 100-74 - 10-74		.757068	757128	.757161	.757178	.757186	.757190	-157192 	CA1/C/*		+C/C/*	101401	757194	757194	.757.94
	2	*	0.000000	1.322731	1.984097	2,645463	3,306829	3,968194	4.629560	5.290926	5,952292	6.613657	220212.	7.456569	CC///C*O	021965.9		200100401	11 904587	12.565949	13.227315	13.888680	14.550046	15.211412	15.872778	16.534143	17.195509	17,856875	18,518241	19.179606	19.840972	20.502338	21.163703	21,025067	CC+00+*77	100/41°C2	24.470532	25 131898	25,793264	26.454629	27.115995	27.777361	28,438727	240001.42	64"6/"K2	50 54 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	21.004107 21.745555	32.406921	33.068287	33,729652
9.702114		>	00000	50612	13451	00986	13086	49713	10768	95958	04653	35752	87585	57843		41121			01010	52139	27827	86414	26097	46150	46870	29423	95629	47709	86046	18972	42625	60843	75139	2002	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		19832	26788	33581	40281	46932	53556	60167	2//00	C / C / C / C / C / C / C / C / C / C /	1441C	1/200	69266	06367	12966
TR =						N.	<u>.</u>	4.	9 • •	й. В			3								4			4.9		2	M	ີ. ເ	-5.6			0 9	- - -					9	- e - 6	-7.0	-7.1	-7 -2	M: 				- 1			
75000 DELS	:)	0000000	001548	011898	028517	051254	.079907	.114208	153817	198308	247172	204602	164555.	C24C15	0497/5°		231110		752614	798342	818914	874027	903638	927956	947389	962494	973912	982301	988293	992453	995259	660266	1/2955	144044	000680	999834	110000	999957	626666	066666	566666	866666	666666 .	1,000000	1.000000			1.000000	1.00000
н 5.		ETA	000000	. 480	.720	.960	1.200	1.440	1.680	1.920	2,160	Z . 400				007°7			1.000	4.560	4.800	5.040	5.280	5.520	5.760	6.000	6.240	6.480	6.720	6.960	7.200	7.440	7.680	1 . 4 6 0			8.880	9 120	9,360	9.600	9.840	10.080	10.320			11 280	11.520	11.760	12.000	12,240
(()X	3	¥	(N	, 14	a ar	ŝ	•	-	e (n :		1 1 1		- 0	•	- 0	212	2	1 10	5	51	56	27	28	29	о M	21	32	10 i 10 i	3 L 9 P	n 4	0 10	8	6	40	41	42	T N	ป เ ป เ	1 1 1	0 F 7 3		0 0 1 1	, c r ur	25	52

CI DELSTR 5.75000

16.05444 17.44342 0.00000 2.10795 2.35502 2.57667 2.75200 5.91340 6.21231 6.74191 6.97548 8.78707 10.10453 11.19304 5.19576 INTERPOLATED PSI 8712 3,03068 3,28040 22,78966 3,15916 2.14910 3.01880 803 4.7473 5.3378. 4,5990 8.7977 0.1348 21.4639 4.1 0.0000 2000 3000 3500 4.5000 5.0000 0000.0 0100 0450 0500 1000 1500 4500 0000 0000 0150 5000 .5000 5000 0000 5000 6.0000 .0000 0000000 0000 • 047862 087252 143531 219420 971060 14.524687 15.030281 15.535876 0.985710 13.007911 0.000000 022481 5,222415 0.480288 1.491212 2.502328 001668 317436 588579 165258 .206708 .767888 2.821575 4.538748 . 456794 .958300 999944 9.975008 1.996758 4.019093 6.547066 .00000 472423 .092242 8,461314 439837 60777 4.08375 5.484108 6.95751 8,965322 7.05266 8.06385 8.569440 3.64405 5.00636 5,96975 6.04147 6.46141 .55825 0.000000 -.045500 729965 -115287 - 793940 - 785401 -,365085 -.529098 -.580088 -,740907 .801885 767343 -021142 .627552 -.820085 -.818586 - 814665 .739356 -,711168 -,701769 -,692370 -.682972 . 664176 + 454778 .635983 • • • 2 • 5 8 5 - 617188 - 475570 -.670614 -,818479 .808928 . 073573 645380 - 598393 588995 -,310199 - 767398 788048 776485 748732 -,206005 .803113 .256864 -.60779(81305 VST . 755396 UST 0.000000 000060 004864 747936 014386 028558 047284 070417 070417 201886 242577 285366 329600 374553 419443 463451 505766 545621 582349 615422 752442 755215 755392 690198 707099 730737 754344 755348 755373 755385 163868 644490 743997 755397 755397 755397 755397 720462 755397 669401 738417 755397 755397 26.103104 26.772415 27.441725 28,780346 30.788277 31.457587 32.126898 28,111035 30.118967 32.79620 53.46551 54.13482 ≻ 9.552461 -1.929659 -2.230543 -2.541714 -2.858725 -3.176794 -6.275534 -6.389206 -6.500413 -6.609975 0.000000 •.235619 - 516507 -.896208 -1.124949 -5.079725 -5.277293 -5.456574 -5.619658 -5.768954 -5.906953 -6.826304 -6.933730 1.254948 r.682606 -8,323986 -8,430882 -1,373878 ••060675 -.134494 -1.642998 -3.491042 -4.089744 -4.366496 -4.624510 -4.862360 -6.036024 -6.158287 -6.718473 -7.040918 .147970 .468800 \$75706 -3,796767 .896401 8.003297 8.110193 8.217090 > 953753 967355 977522 984908 996088 997634 9998607 999202 999555 999759 999873 999935 990124 999968 186666 .000000 913689 936063 20000 199997 666666 666666 000000 000000 .00000 .00000 .000000 .00000 M M M M 4 4 8,640 8,880 .120 .800 6.000 .600 0.080 0.320 1,040 .280 .520 .760 2.240 .840 0.8.0 S X S 00

0

92

8 DELSTR 5.87500

.

X(J) = 6.00000 DELSTR = 9.392881

OLATED	,			1,14760	20110.2	22425.2	2,42329	2.59076	2.73803	2,85661	2,97069	3.08027	3,90648	4.48043	4.94002	5,33165	5.66915	5,97681	6.2539 <u>3</u>	6.51039	6.75235	8.58187	9,91234	1.01088	1.97455	2,85127	3,66717	4.44070	5,18340	5.90349	7.29839	8.65741	9.99838	1.33090	2,65980																	
INTERF	ISd	00000		00100	.0150	• 0200	.0250	.0300	•0350	0070	.0450	.0500	.1000	.1500	.2000	. 2500	3000	.3500	.4000	.4500	.5000	1.0000	1.5000	2.0000 1	2,5000 1	3,0000 1	3,5000 1	4.0000	4.5000 1	5.0000 1	6.0000 1	7.0000	8.0000	9°0000 2	10.0000 2																	
	I S d	0000000000	- 000 - E	004611	.014599	.033789	,065202	.111794	.176411	.261737	.370237	504101	665187	654968	1.074474	1.324248	1.604303	1,914109	2,252583	2,618126	3 .008686	3.421841	3.854926	4.305154	4.769753	5.246080	5.731724	6.224564	6.722810	7.225003	7,729997	8,236923	8°745144	9.254208	9.763806	0.273731	0,783852	1.544087		2,414/2U 2 835073		2 845800			5.376909	5.887280	6 397650	6.908021	7.418391	7.928762	8.439133	8,949504
	VST	0000000	000222	-,025812	-,050968	-086059	-,127665	-,174558	-,225655	-,279968	- 336537	- 394395	452533	- 509905	- 565446	618107	-,666911	 711002 	-,749712	-,782595	-,809463	-,830387	845677	-,855837	 861513 	863417	-,862273	858760	853477	- 846920	839485	-,831467	-,823078	814462	805714	- 796893	- 788032		59201/**				102201	716898	- 708004	- 699109	- 690215	- 681320	- 672426	- 663532	654637	572579°.
	UST	0.00000	012210	000000	.020420	.036257	,056522	.081090	.109760	142253	.178205	.217167	.258608	.301916	.346402	.391312	.435843	479177	.520517	559130	.594400	,625869	653262	.676503	.695705	711145	.723220	.732401	.739186	.744058	.747459	.749764	,751283	,752255	,152859	2225cl.	. 753437	YC25C1.		2005C/ •	15460	254555	751697	751698	753698	753698	753699	.753699	,753699	.753699	,753699	.735644
	>	00000000	. 0/7155	1.354310	2,031465	2.708620	3,385774	4.062929	4.740084	5.417239	6 094394	6,771549	7.448704	8.125859	8.803014	9.480168	10,157323	10.834478	11,511633	12,188768	12.865943	13.543098	14,220253	14,897408	15.574562	16.251717	16,928872	17.606027	18,283182	18.960337	19.637492	20.314647	20.991802	21.668956	22.346111	23.023266	23,700421	24.577576	25,054/31	9991¢/°<2	27 084104	27 762250		20.117660	29.794815	30.471970	31.149125	31.626260	32,503435	33.180590	33,857744	34,534899
	>	0000000	+\$6110 -	-070380	- 154579	-,268318	- 409905	578074	 771801 	- 990059	-1.231590	-1 494693	-1.777087	-2.075837	-2.387345	-2.707418	-3.031404	-3,354392	-3.671470	-3.978020	-4.270012	-4.544264	-4.798634	-5,032106	-5.244761	-5.437651	-5,612576	-5.771831	-5.917942	-6.053434	-6.180651	-6.301642	-6.418107	•6°531389	-6.642506	-6.752196	-6,860976	-0.469193	-7.077074		-7 2008/0	-1-07110	-7 64 4700	- 722258	-7 829714	-7.937167	-8.044620	-8 152072	•8 259525	-8 ,366977	-8.474429	•8° 581881
	5	000000000	210500	.012047	027093	.048105	074993	.107589	,145628	.188740	236440	288135	343119	400579	459603	519188	578272	.635768	690616	.741848	,788645	.830397	.866741	897577	,923055	943540	,959561	.971742	.980744	987210	991721	694780	996795	,998084	998886	012666°	999653	719666°	705555°	167474	000000	000000	00000	000000	1.00000	1.000000	1.000000	1.00000	1.000000	1.000000	1.000000	1.00000
	ETA	000 0	.240	.480	.720	.960	1.200	1.440	1,680	1,920	2.160	2.400	2.640	2.880	3.120	3.360	3,600	3,840	4.080	4,320	4,560	4.800	5,040	5,280	5,520	5.760	6.000	6.240	6.480	6.720	6,960	7.200	7.440	7.680	7.920	8.160	8,400	0.000	0.000	021°A		0.18.0	0 0 0 0	002101	10.560	10.800	11.040	11.280	11,520	11.760	12.000	12.240
	¥		N I	1	3	Ń	•	~	æ	σ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	0	31	32	53	d i	5	96	5	50	7 (7 (7 7	- 1	1 1	1		97	47	118	67	20	10	22

		0.000.0	1.08251	1.48656	1.7459	1,97756	2.15471	2,3052	2.4477	2,5822	2.7088	2.8145	3,63941	4,2256	4.6922	5,0827	5.4318	5,7375	6.0211	6.2808	6.5216	8,3740	9.7170	10.82471	11.7954	12.6776	13,4992	14.2774	15,0239	15.7474	17,1477	18,5111	19,8557	21.1914	,											,						
	ISI DSI	0000	.0050	.0100	.0150	.0200	,0250	.0300	.0350	.0400	.0450	.0500	.1000	.1500	.2000	. 2500	,3000	.3500	• 4000	.4500	.5000	1.0000	1,5000	2,0000	2,5000	3,0000	3,5000	1.0000	4.5000	5.0000	6 • 0000	7.0000	8,0000	0000°6	10.0000																	
	PSI	0.000000	-001612	007907	.021812	046265	.084194	.138488	.211936	,307168	.426587	.572303	.746069	,949221	1,182625	1.446635	1.741057	2,065141	2.417589	2.796602	3,199955	3,625094	4,069268	4 529655	5,003495	5,488199	5,981441	6.481205	6.985814	7.493920	8.004478	8.516709	9.030047	6.544097	10,058591	10.5/5356	11.000280 11.407705	12.118361	12.633454	13,148561	13.663675	14.178793	14.693912	15,209033	15,724153	16.259274		016402.11	1 / 0 / 0 / 0 / 1 / 1 / 1 / 1 / 1 / 1 /	10.447.00	10,0146/0	******
	VST	0.00000	- 006704	025615	054682	092051	-136106	-185452	-,238882	 295315 	-,353733	413129	472476	-,530718	- 586795	- 639676	- 688415	-,732207	-,770441	802741	-,828991	- 849328	864119	- 873913	- 879379	-,881238	880207	- 876946	-,872031	865935	- 859028	- 851584	- 843799	- 835806	• 827692	- 414508	- 011288	C08762 -	- 786550	- 778296	- 770041	-,761787	- 753532	.745277	737022	- 728767		10221/-	- 40c4	077/140 207/247	C + 1 0 0 * 1	
	UST	000000	004706	.013676	.026930	044476	.066286	.092262	.122219	,155876	192851	.232668	.274761	.318480	.363104	.407854	.451914	.494470	.534744	.572046	.605818	635669	.661402	683014	.700686	.714742	.725615	.733790	.739762	.744002	.746925	748884	.750158	.750963	.751457	24151	2261CL.	75070	752097	.752111	.752118	.752122	.752123	.752124	.752124	.752124	-122124	+>12c1.	1712CL.			+>12c/*
	>	0.00000	684888	1.369776	2.054663	2.739551	3.424439	4.109327	4.794215	5.479103	6.163990	6.848878	7.533766	8,218654	8,903542	9.588430	10.273317	10.958205	11.643093	12,327981	13.012869	13.697757	14,382644	15,067532	15,752420	16.437308	17,122196	17.80.7083	18,491971	19.176859	19.861747	20.546635	21,231523	21.916410	22.601298	23,286186	22,971074	25 140A50	26.025737	26.710625	27,395513	28,080401	28,765289	29,450177	30.135064	30,819952		32,109726	32.674010	200700°22	159332°24	54°72'7
R = 9.228745	>	0,00000	.019955	- 077891	-170201	- 293857	- 446474	- 626214	831594	-1,061226	-1,313550	-1,586601	-1.877847	-2,184113	-2,501580	-2,825872	-3,152216	-3,475662	-3,791363	-4.094872	-4.382432	-4.651215	-4,899480	-5,126620	-5 ,333099	-5,520279	-5.690189	-5,845256	-5 ,988050	-6.121066	=6,246564	=6,366483	-6,482400	<pre>= 6,595540</pre>	-6.706815	-6.816878	-0.920178	-10000°	-7.251976	-7.360292	-7,468561	-7,576806	-7.685038	•7,793265	-7,901488	-8,009711	555/11°0=	=8,220154	-C-234370		+190cc*a=	0#0460.8=
12500 DELS1	п	0.00000	006257	018184	035805	059134	.088132	122668	162498	207247	.256408	309348	365313	.423440	.482771	.542269	.600850	.657431	.710978	760574	.805476	845165	879378	908113	931609	950298	964754	975623	,983563	989200	993087	99569	. 997385	958856	611666	9999505	,999731 000850	000000	00000	999983	20000	999996	999998	666666	1.000000	1.000000	1.000000	1.000000	1.000000	1,000000	1,000000	1.00000
ц ф	FTA	0,000	072	1480	.720	960	1.200	1.440	1,680	1.920	2,160	2.400	2.640	2,880	3.120	3,360	3.600	3,840	4,080	4.320	4.560	4.600	5,040	5,280	5,520	5,760	6.000	6.240	6,480	6.720	6,960	7.200	7.440	7,680	7.920	8,160			0.120	9 360	9.600	9,840	10.080	10.320	10.560	10.800	11,040	11.280	11.520	11./00	12,000	12,240
(ſ)X	×		• ^	1 1-1	1	- LO	•	•	æ	¢	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	7 M	35	0	2	0	1.4	44	42	643	77	45	9 7 :		10 C	7 (7 U		0 i	N A

>

	0 1	• 25000 DELS1	rr = 9.064248	>	191	F U D	LS d	INTER PSI	POLATED Y
									00000
		00000000		000000	0.00000		002517	0020	90856
	0	129720		1.385004	018490	026919	011436	0100	1.28914
	. 0	044917	- 183146	2.077506	033716	- 057360	029513	0150	1.53791
	.0	070598	- 314981	2.770008	052997	096352	059537	.0200	1,73889
	0	101701	- 476647	3.462510	.076346		.104322	.0250	1.92408
	0	138137	- 665802	4.155012	.103698	- 193147	.166663	.0300	2.09020
275991	0	.179688		4.847514	.134890	-,248107	.249274	.0350	2.21775
	0	,225981	-1.119118	5,540017	.169641	- 305840	.354718	0070	2.34021
19755 1.05990 0.97500 0.97500 0.975	0	.276490	-1.379679	6,232519	.207558	-,365268	. 485324	.0450	5 42156
1440005 120153 101753 100005 100005 100005 100005 150165 101757 101757 101757 101757 101757 100005 150175 101757 101757 101757 101757 101757 100005 150175 101757 101757 101757 101757 101757 100005 1717525 101757 101757 101757 101757 101757 100005 1717525 101757 101757 1017575 101757 101757 101757 17175255 1117772555 1117772555 1117772555 1117772555 1017565 1017565 17172555 1117772555 1117772555 111777255 1017565 101756 1017001 1117772555 1117772555 111777255 1017565 101756 1017001 111777255 11177725 11177725 1117772 1117772 101701 11177725 11177725 1117772 1117772 1117772	0	.330547	-1.659992	6.925021	.248138	425351	.643109	0200	2.56985
-005157 -0110025 -119025 -119005 -100125 <	õ	.387353	-1,957292	7,617523	.290782	-,485043	.829711	.1000	3.4027
505685 -509120 -579161 -579161 -579161 -5790151 -579161 -5790151 -579161 -5790151 -579161 -5790151 -579173 -559123 -5790151 -579173 -559123 -5791151 -579123 -5790151 -579123 -5791151 -5791151 -5791151 -5791151 -5791152 -5791151 </td <td>0</td> <td>.446000</td> <td>-2,268187</td> <td>8.310025</td> <td>.334807</td> <td>- 543292</td> <td>1.046322</td> <td>.1500</td> <td>3,9842</td>	0	.446000	-2,268187	8.310025	.334807	- 543292	1.046322	.1500	3,9842
564743 579123 1.971820 1.971820 1.971820 1.971820 1.971820 1.971820 1.971820 1.971820 1.97082	0	505485	-2,588679	9.002527	379462	- 599051	1,293638	.2000	4.4503
712877 5.26470 1.680463 5.12 71700 2.51470 11.776515 5.44270 11.600463 5.790 71700 2.51470 12.65014 6.67475 2.564726 1.5000 5.790 71700 2.51470 11.776515 5.47475 2.564762 1.57000 5.790 71700 2.5177 2.564762 11.66475 2.564762 1.57000 6.164 878051 4.64771 2.774752 1.47875 2.564761 6.67000 6.790 878051 5.477472 11.1477515 5.475472 5.264472 5.47000 6.4100 878074 4.67010 11.67172 5.475472 5.475472 5.47600 1.45010 878074 4.681217 5.475474 4.784711 1.140701 6.61000 1.45117 878074 4.681217 5.477444 4.681217 5.476404 5.40000 1.461417 878074 4.681217 5.477474 4.681217 5.476494 5.40000 1.461417	0	.564743	-2.914263	9.695029	.423947	- 651322	1.571820	.2500	4,8526
71822 7.51821 7.7932 5.997683 7.9083 71823 5.97683 5.997683 5.997683 7.9000 5.997 71835 5.7517 5.84753 5.997683 5.997683 5.997683 5.997683 71935 5.9717 5.249153 5.99763 5.997683 5.997683 5.997683 5.997683 5.997683 5.997683 5.997683 5.99763 5.99993 5.999423 5.99943 5.99943 5.99943 5.99943 5.999434 5.999434 5.999434 5.999434 5.999434 5.999434 5.999434 5.999434 5.999434 5.999444 5.9994444 5.9994444 5.9994444 5.9994444 5.9994444	0	.622679	-3.240104	10.387531	.467439	699206	1,880463	.3000	5,1955
770352 -1,171209 11,77255 548275 -77936 2,97666 -77936 821225 -1,171209 11,71269 -64673 -646473 -646473 -64	0	678218	-3.561284	11.080033	509131	- 741957	2,218601	.3500	5,5115
776222	õ	730362	-3.673087	11.772535	.548275	779038	2.584729	. 4000	5.7923
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	.778252	-4.171299	12.465037	584226	810150	2,976858	. 4500	6.0558
000000 0000000 0000000 0000000 0000000 000	0	.821226	-4-452486	13.157539	.616486	835256	3,392606	.5000	6.3010
0 0	0	.858858	-4.714206	13.850041	644736	- 854562	3.829305	1.0000	8.1686
917694 -917694 -917694 -917694 -917694 -917694 -917694 -917694 -917694 -9160	0	890984	-4.955132	14.542543	. 668852	- 868493	4.284136	1.5000	9.5224
999910 5,37448 15,927548 779128 888.572 5,259445 2,0000 12,500 999905 -5,971464 17,15522 7771967 -681327 5,724049 3,5000 12,500 999905 -5,971464 17,15522 771928 -681327 5,7000 12,500 12,500 999905 -5,971464 17,15522 771928 -887264 7,714 9,714 999905 -5,97158 771947 -88737 9,2000 12,500 12,500 999797 -5,97158 20,17562 744074 -885357 771224 5,7000 12,500 999797 -5,97158 7714954 17,41594 -885357 771224 5,0000 12,971 999797 -5,50758 7745958 7745954 744991 10,371224 9,0000 10,3075 999797 -5,50758 7745954 7745954 7745954 12,445567 7,71394 999997 -7,175544 17,45091 17,45091 12,445564 10,0000 10,9000 999997 -7,1755644 17,45091 17,45091	0	917694	-5.175055	15.235046	.688904	- 877634	4.754260	2.0000	10.6381
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	939308	-5.374783	15.927548	705128	. 882672	5.236945	2.5000	11.6162
999330 5570747 17,312552 777666 683301 6,230197 4,5000 14,960 999386 6,142070 19,39058 714472 8,734127 4,5000 14,500 999386 6,142070 19,39058 7144854 875443 774724 5,0000 14,5000 999387 6,142070 19,39058 7144854 875443 7,71224 7,0000 14,5000 999387 6,142076 20,77562 744054 875449 8,774214 7,0000 14,6500 999387 6,142076 20,77564 744051 9,2114055 7,0000 14,6501 999387 6,142076 21,44554 744031 8,27406 10,87025 7,0000 14,6501 999387 6,14276 23,5507 775053 7792414 10,87025 14,0000 14,6502 999387 6,1417 22,5577 775053 11,210352 14,0000 14,0804 999997 77,149314 11,24956 774964 15,49946 10,87026 14,0000 14,0902 9999973 77,164534 7750549 <td>0</td> <td>956317</td> <td>-5.555947</td> <td>16.620050</td> <td>717897</td> <td>884327</td> <td>5.729669</td> <td>3.0000</td> <td>12.5044</td>	0	956317	-5.555947	16.620050	717897	884327	5.729669	3.0000	12.5044
9979004 5.871684 18.005054 773428 6.736622 4.0000 14.910 9954239 -6.101110 19.997556 744357 -865457 4.5000 14.960 9954239 -6.101110 19.997556 7443554 -865457 4.50000 15.99 9954239 -6.101110 19.990556 7443554 -865457 4.50000 19.99000 9954239 -6.144767 19.90056 7443554 -865457 4.50000 19.9900 995429 -6.144761 19.97602 20.08256 744951 9.812003 9.817003 15.999 999429 -6.142077 21.467562 749757 8.27710 9.813003 9.813003 9.91701 9.91701 19.90000 19.710 999479 -6.142077 7750549 749757 749757 749757 11.390520 9.81303 9.913003 9.910000 19.710 999997 77.450949 11.390620 779549 11.390520 7495964 9.9130203 9.9130220 9.910000 19.7104 9999917 77.450949 7755494 1755494	0	969330	-5.720747	17.312552	.727666	883301	6.230197	3,5000	13.3303
0 0	0	979004	-5.871684	18.005054	.734928	. 880226	6,736622	4.0000	14,1125
990896 -6.142070 19.390058 744365 -805307 7.761224 5.0000 16.993 994447 -6.26085 20.082560 744554 -865374 8.74147 7.0000 16.993 9947871 -6.26085 20.75562 744554 -865374 8.74147 7.0000 16.993 997787 -6.260758 20.77562 7449791 -849551 9.313025 9.0000 19.710 999796 -6.510758 21.467564 7449791 -849551 9.313025 9.0000 19.710 999797 -6.510758 21.467564 7751641 11.30626 7447951 18.24216 10.0000 22.341 999973 -77.05573 -8524568 7750649 11.30626 749791 11.306264 749794 12.44339 10.740526 10.9000 19.710 999973 77.1055729 25.65277 7750649 7751644 11.30620 10.0000 19.710 9999973 77.435514 27.07093 174592 1744591 11.910592 10.9000 19.29146 99999730 7744381 15.0294	0	985993	-6.011318	18.697556	.740174	- 875648	7.247377	4,5000	14,8627
994238 -6.260085 20.082560 744024 -864637 8.277214 6.0000 16.993 99797 -5.361768 21.475562 744024 74024 -844651 9.312005 9.0000 19.716 99779 -6.561768 21.475562 774024 74071 -864961 9.312005 9.0000 19.716 99779 -6.561768 21.47556 7750101 -8242146 10.831351 10.0000 19.716 999792 -6.944149 72 750101 -8244096 10.873151 10.0000 19.716 999792 -6.944149 72 750101 -8274096 10.873151 10.0000 19.716 999792 -7.105573 22.852588 7750141 1942992 11.910392 9.0000 19.716 999973 -7.105573 23.54577 7750489 7750481 11.910392 9.0000 19.716 999974 -7.705514 827406 177592 17550499 17.71592 19.10226 9.0000 19.716 999997 -7.705514 1750649 7750649 7750499 7750	0	990896	-6.142070	19,390058	743855	- 870005	7.761224	5,0000	15,5893
994449 -6.500756 7740024 -655794 6.794647 9.815025 9.91500 9.9110	0	994238	-6.266085	20.082560	-746364	863637	8.277214	6,0000	16,9950
999787 -6.500758 21,46754 749091 842326 9.513025 8.0000 19.710 999287 -6.613957 22.160066 749791 842326 9.613203 9.0000 21.04 999287 -6.613957 22.160066 749791 842326 9.613203 9.0000 21.04 999287 -6.615573 23.545070 7750533 -812846 11.59022 22.354 9999427 -7.61549 775049 812345 11.610392 22.354 999943 -7.755049 775049 7761934 11.610392 22.354 9999947 -7.674393 7750494 7761934 11.610392 22.346 9999997 -7.674393 7750494 7761934 11.610392 22.346 9999997 -7.674393 7750494 77509435 77949997 12.4509936 9999999 -7.100803 7750494 77509435 17.006944 10.60000 22.346 9999994 -7.100803 7750493 77509436 77509435 77609445 10.409704 22.549967 10000000 -7.710	0	996449	-6.385168	20.775062	.748024	- 856794	8 794647	7.0000	18.3626
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	997871	-6.500758	21.467564	.749091		9.313025	8,0000	19.7107
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	,998758	-6.613957	22.160066	749757	842326	9.632003	0000*6	21.0494
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	999296	-6.725573	22,852568	.750161	- 834896	10.351351	10.0000	22,3841
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	999612	-6.836172	23,545070	.750398	- 827406	10.870921		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	20792.	-6.946140	24,237572	,750533	- 819884	11.390620		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	268926	-7.055729	24.930075	.750608	- 812345	11,910392		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	576666	=7.165096	25.622577	.750649	804799	12,430204		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	£20000	-7.274339	26.315079	,750669	-,797249	12,950036		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	496666	-7,383514	27,007581	.750680	-,789697	13,469880		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	766666	-7.492653	27.700083	.750685	-,782145	13.989730		
0 999999 -7.710884 29.085087 750689 -767039 15.029435 0 1.000000 -7.619991 29.470991 750689 -759486 15.5549288 0 1.000000 -8.0382005 31.162593 750689 -759486 15.5549288 0 1.000000 -8.0382005 31.162593 750689 -759486 17.108850 0 1.000000 -8.038204 31.162593 750689 -729275 17.108850 0 1.000000 -8.47504 31.855095 750699 -729275 17.6628704 0 1.000000 -8.4746414 33.2240099 7706490 -721722 18.6684412 0 1.000000 -8.474614 33.92240099 -750690 -721722 19.146558 0 1.000000 -8.474614 33.92240099 -7706400 -7206412 19.146558 0 1.0000000 -8.474614 34.625104 7750690 -720640 -7206412 1.0000000 -8.474614 33.9224001 7706400 -7714169 19.146558 0 1.000000	o	199997	-7.601773	28,392585	,750688	-,774592	14.509581		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	666666	-7.710884	29,085087	.750689	- 767039	15.029435		
0 1,000000 -7,929096 30,470091 .750689 .751934 16,069142 1 000000 -8,038200 31,162593 .750689 .744381 16,588996 1 1,000000 -8,047304 31,162593 .750689 .744381 16,588996 1 1,000000 -8,047304 31,162597 .750699 .724757 17,628704 1 1,000000 -8,474614 33,247597 .750690 .724722 18,148558 1 1,000000 -8,474614 33,240079 .750690 .7214162 18,668412 1 000000 -8,474614 33,932601 .750690 .706616 19,168266 1 000000 -8,583717 34,625104 .750690 .706616 19,108266 1 000000 -8,593717 34,625104 .750690 .706616 19,108266	0	1,000000	-7.819991	29.777589	,750689	-,759486	15.549288		
0 1.000000 -8.038200 31.162593 .750689 744361 16.588996 0 1.000000 -8.147304 31.855095 .750689 736828 17.108850 0 1.000000 -8.347597 .750690 724757 17.4628104 0 1.000000 -8.355511 33.240099 .750690 724752 18.148558 0 1.000000 -8.474614 33.240099 .750690 724722 18.448558 0 1.000000 -8.474614 33.932601 .750690 714162 18.668412 0 1.000000 -8.553717 34.625104 .750690 706616 19.188266 0 1.000000 -8.563717 34.625104 .750690 699064 19.708120	0	1.000000	-7,929096	30.470091	.750689	-751934	16.069142		
0 1.00000 -8.147304 31.855095 .750689 -736828 17.108850 1.000000 -8.256407 32.547597 .750690 -729275 17.628704 1.000000 -8.474614 33.240099 .750690 -714469 18.668412 0 1.000000 -8.563717 34.625104 .750690 -714469 18.668412 0 1.000000 -8.563717 34.625104 .750690 -706616 19.188266	0	1.000000	-8.038200	31,162593	• 750689	-,744381	16.588996		
0 1,000000 -8,256407 32,547597 ,750690 -,729275 17,628704 0 1,000000 -8,365511 33,240099 ,750690 -,721722 18,148558 0 1,000000 -8,474614 33,932601 ,750690 -,714169 18,668412 0 1,000000 -8,583717 34,625104 ,750690 -,706616 19,188266 0 1,000000 -8,582717 34,625104 ,750690 -,706616 19,188266	0	1.000000	-8.147304	31,855095	.750689	-,736828	17.108850		
0 1.000000 -8.365511 33.240099 .750690 -721722 18.148558 0 1.000000 -8.474614 33.932601 .750690 -714169 18.668412 0 1.000000 -8.583717 34.625104 .750690 -706616 19.188266 0 1.000000 -8.692821 35.317606 .750690 -6.69064 19.708120	0	1,000000	-8.256407	32.547597	.750690	-,729275	17.628704		
0 1.000000 -8.474614 33.932601 .750690714169 18.668412 0 1.000000 -8.583717 34.625104 .750690706616 19.188266 0 1.000000 -8.692821 35.317606 .750690699064 19.708120	0	1.000000	-8,365511	33,240099	.750690	• 721722	18.148558		
0 1,000000 +8,583717 34,625104 ,750690 +,706616 19,188266 0 1,000000 +8,692821 35,317606 ,750690 +,699064 19,708120	0	1.000000	-8.474614	33,932601	.750690	-,714169	18.668412		
0 1_000000 =8_692821 35_317606 .750690 =.699064 19.708120	0	1.000000	-8.583717	34,625104	.750690	-,706616	19 . 188266		
	0	1.000000	-8 ,692821	35,317606	.750690	699064	19.708120		

>

	ERPOLATED Y				1002	1.5664	1 7299	1 8834	2,0270	2,1505	2,2571(2.3602	3.17596	3,75859	4,23155	4 6246	4.97626	5.28735	5,57692	5,83745	6.08401	7,96555	9.32968	10.4543	11,43759	12,3310(13,1620	13,9483	14.7019	15 43140		10.61301		22.24326																	
= 6.37500 DELSTR = 8,900685	INTE PSI				0150	0200	0250	0300	.0350	.0400	.0450	.0500	.1000	.1500	.2000	, 2500	.3000	.3500	. 4000	. 4500	.5000	1.0000	1.5000	2.0000	2.5000	3,0000	3.5000	1,0000	4.5000	5,0000				10.0000																	
	PSI			015106	037683	.073560	125499	196183	.288237	141404.	.546137	.716140	.915665	1,145752	1.406923	1.699141	2.021792	2.373700	2,753161	3.158009	3,585721	4,033533	4.498579	4.978019	5.469162	5,969562	6.4770B2	6,989924	7.506632	8,026068 5,775		9,007764 0 501070	011711 01	10.641308	11,165658	11,690113	12,214626	14.754170	12/202°51	14.312874	14.837449	15,362025	15,886602	16.411178	16,935755	17.460332	17,984909	18,509486	14.054062	14 . 558659	olyron [*] ny
	157			0.08218	.059998	- 100539	-147920	- 200496	- 256850	- 315744	-376045	- 436676	- 496579	- 554699	610008	661540	-,708442	-,750031	-,785841	815653	- 839505	- 857675	- 870643	- 879036	- 883559		- 663853	- 880920	876650	- 871451		- 85,2040	- 846341		- 832918	-,826163	- 819597			- 792306	- 785533	- 778760	-,771986	-,765213	- 758440	- 751666	- 744893	-,738120	0111111	- 124275	
	131	000000		021506	040742	061765	086634	.115323	147692	183466	.222240	.263490	.306586	.350814	.395397	.439518	,482353	.523110	.561073	.595648	626399	.653079	.675637	694205	.709075	720654	.729418	735861	740465	.743655		748.04	101010	748984	749175	.749283	749341	2/2720	005 V#/ •	749400	749402	.749403	.749403	.749403	- 749403	249403	- 749403	-749403	90353L.	903532°	うつずたちしゃ
	>		100004	1 190984	000000	2.799971	3.499964	4.199957	4 899950	5,599942	6,299935	6,999928	7.699921	8,399914	9,099907	9,799899	10,499892	11,199885	11.899878	12,599871	13.299863	13.999856	14.699849	15,399842	16,099835	16.799827	17.499820	18,199813	18,899806	19 599799		20 577704 21 500777	011001 00	23.099763	23, 799756	24.499748	25,199741	25.849/54	1212400 14	27,999712	28.699705	29 399698	30,099691	30,799684	31,499676	32,199669	32,899662	33,599655	34 299648	010575 15 17 101010	770550°C7
	>				196176	- 336052	506501	- 704691	- 928313	-1.175279	-1.443430	-1.730275	-2.032811	-2.347442	-2.670003	-2,995879	-3,320202	-3,638116	-3,945069	-4.237115	-4.511171	-4,765203	-4,998308	-5,210676	-5,403455	-5,578522	-5,738226	-5,885120	-6,021731	-6.150385				-6.732521	-6.843814	-6,954601	-7,065091	507C/1"/-	-/ - COCOS -/ -	-7.505953	-7.616087	-7.726214	-7,836339	-7,946462	-8,056585	-8,166707	-8.276830	-8-386952 ::::::::::::::::::::::::::::::::::::	t/0/6t - 0	-01177	ATC.T.40.
	5			011166	054546	082418	115603	153887	197079	244816	,296556	351599	409106	468124	527616	.586491	643649	.698036	748693	794829	.835864	871466	901566	926344	946187	961638	973331	981929	988070	992330	******	C10177	00000	999441	999696	999839	,999918	456666°	00000	999996	866666	666666	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1,000000		1.00000
	ETA			480	044	960	1.200	1 440	1,680	1,920	2,160	2.400	2,640	2,880	3,120	3,360	3.600	3,840	4,080	4.320	4,560	4.800	5.040	5,280	5,520	5.760	6 • 000	6.240	6 • 48 0	6.720				7.920	8,160	8.400	019.9	0.00		9.600	9.840	10.080	10,320	10,560	10.800	11.040	11.280	11.520	11.700		10.042
X (J)	¥		- 0	4 14	14	i un	• •	•	60	0	10	11	12	13	14	15	16	17	18	19	20	21	22	N N	24	52	56	27	58	5 6	2.	10	2 2	1 7	35	36	5	20	n d		42	43	77	4 10	-9 I -7 I	- 4	80 (7 :	5 0 7 1			20

NASA-Langley, 1974 A-5281

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

 \mathcal{C}

SPECIAL FOURTH-CLASS RATE BOOK

POSTMASTER :

POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

451

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and rechnical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546