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NOMENCLATURE

A matrix formed by difference equations

a local speed of sound

b(x) function of x, equation (9)

c constant

skin friction coefficient, — — -
p *u *2
CO OO

/

_ _

u dy

f1? f2, fs, . . . coefficients in Taylor series expansions, see
equation (38)

»-g
H conditioning matrix, also Hu, Hv

h parameter for relaxation scheme

I identity matrix

J maximum j index

j discrete index in streamwise direction

K maximum k index

k ^ discrete index in normal direction

£ typical length scale

M , Mach number
du

X 6
m normalized velocity gradient, — -\ —

U dX

e
HM

— X 6
m normalized Mach number gradient, rr- -j- —

C

p fluid pressure
u *l
OO

R Reynolds number, -

R residual vector, also Ru, Rv
\

111



p u x
e eRex Reynolds number,

u*u normalized component, —^
00

u* streamwise velocity component, physical variable

u transformed component, —

v* c;v normalized component, —5- /R
oo

v* normal velocity component, physical variable

/x~ 1v transformed component, v /— + y (m - l)yu
/ e

x*x normalized streamwise coordinate, —
JO

x* streamwise coordinate

v* i—y normalized normal coordinate, -̂r- /Rx>

y* normal coordinate

/Vy transformed normal coordinate, y/ —
• A

z u 2 - u2e

a arbitrary parameter

88 2

Ay2
2̂ r— , also ratio of specific heats

truncation error term or a small parameter

X eigenvalue of iteration matrix (I + hHA); also X = I (1 - u2)dy
J
o

y coefficient of viscosity

v kinematic viscosity, —

p fluid density

iv



a eigenvalue of HA

_ 9u

fy stream function, J u dy

a) relaxation parameter or vorticity

Subscripts

B backward difference operator

C central difference operator

e condition at edge of viscous layer

F forward difference operator

j,k location at a grid point or an index

max with J or K, maximum number of grid points j or k in the field

s condition at separation

x partial derivative with respect to x

0 constant value of u or v; also a quantity evaluated at y = 0

1,2 conditions on either side of a plane in physical space

°= far upstream condition

|| • || Euclidean vector norm or induced matrix norm

Superscripts ' !

* physical variable

transformed variable, see equation (5)

~ ' perturbation term

(n) iteration level

->- vector quantity

3 , d. g— , also -j— with equations (39)-(42)



THE NUMERICAL CALCULATION OF LAMINAR

BOUNDARY-LAYER SEPARATION*

John M. Klineberg and Joseph L. Steger

Ames Research Center

SUMMARY

Iterative finite-difference techniques are developed for integrating the
boundary-layer equations, without approximation, through a region of reversed
flow. The numerical procedures are used to calculate incompressible laminar
separated flows and to investigate the conditions for regular behavior at the
point of separation. Regular flows are shown to be characterized by an inte-
grable saddle-type singularity that makes it difficult to obtain numerical
solutions which pass continuously into the separated region. The singularity
is'removed and continuous solutions ensured by specifying the wall shear
distribution and computing the pressure gradient as part of the solution.
Calculated results are presented for several separated flows and the ccuracy
of the method is verified. A computer program listing and complete ..olution
case are included.

INTRODUCTION

During the past decade, various approximate methods have been developed
to calculate separated flows by using the boundary-layer equations. The most
popular schemes have been integral, or moment, methods based on the early work
of Abbott, Holt, and Nielsen (refs. 1-3) or Lees and Reeves (refs. 4-8). In
the integral approach, the boundary-layer equations are multiplied by a power
of u and converted into a system of ordinary differential equations by inte-
grating across the viscous layer. Regions of attached and separated flow are
treated similarly because the average convection in the boundary layer is
always in the downstream direction.

A second type of approximate method, first proposed by Reyhner and
Flugge-Lotz (ref. 9) uses finite-difference techniques (refs. 10 and 11).
This approach uses a forward-marching procedure, with all convective deriva-
tives set to zero in regions of reversed flow for numerical stability. The
conservation of momentum and energy is therefore violated in the portion of
the separated flow bounded by the zero-velocity line, although the errors
introduced by this approximation are not expected to be significant for small
laminar separation bubbles. Both the finite-difference and integral methods
have produced good agreement with experimental data, particularly for
compression-corner flows and shock-wave/boundary-layer interactions (see the
review in ref. 12). ^

*Presented at the AIAA 12th Aerospace Sciences Meeting, Washington, D. C.,
Jan. 30-Feb. 1, 1974.



The first finite-difference integration of the complete boundary-layer
equations through a region of reversed flow was performed by Catherall and
Mangier (ref. 13). This report provides the best previous numerical evidence
of flows that are regular at separation. A continuous solution was obtained
by specifying the displacement thickness downstream of an appropriate point
near separation and determining the pressure gradient by streamwise integra-
tion. The numerical procedure developed instabilities in the reversed-flow
region, however, and the integration was continued only by decreasing the con-
vergence criterion at each station. As the authors point out, this difficulty
is to be expected because the region of separated flow should actually be
integrated in the upstream direction, with boundary conditions provided from
downstream.

There have also been several numerical studies of nonlinear parabolic
equations of mixed type, where the direction of increasing "time" reverses in
some region of the flow field. One of these investigations, by Klemp and
Acrivos (ref. 14), considers the flow over a finite, stationary flat plate
whose surface moves at a constant velocity opposite that of the free stream
(i.e., a. rotating belt). The boundary layer is divided into two regions along
the unknown zero-velocity line and the equations are integrated in the appro-
priate flow directions, with the final solution obtained by iterating for the
location of the common boundary. It is not evident that this technique would
prove effective for calculating boundary-layer separation because the region
of reversed flow results only from the upstream motion of the surface of the
plate. Also, the pressure gradient is assumed to be zero and the shear
stresses remain positive throughout the flow field. The singularities at
separation and reattachment are therefore caused by discontinuities in the
boundary conditions and are not associated with the vanishing of the surface
skin friction.

A more useful numerical procedure for calculating the flow past an
impulsively started flat plate has recently been developed by Dennis (ref. 15).
For this problem, the motion at short times is given by Rayleigh's error
function solution, while the final steady-state condition is given by the
Blasius profile. Although the transition from the initial to-the final state
can be calculated directly in the three independent variables (ref. 16),
Dennis formulated the problem in similarity coordinates where the governing
equation is parabolic and of mixed type. The convective derivatives were
approximated by backward or forward differences where appropriate, and the
solution was obtained through a successive overrelaxation procedure. This
numerical technique with certain modifications can also be applied to the
equations that describe boundary-layer separation. The two problems are, of
course, different in many important respects. In particular, there is nothing
corresponding to reattachment for the impulsively started flat plate, and the
downstream (large time) boundary conditions are given. One of the more
interesting features of boundary-layer separation is that although there is an
embedded region of reversed flow and of upstream influence, the overall
problem remains parabolic in the downstream direction.

The present investigation develops a numerical procedure for integrating
the laminar, incompressible boundary-layer equations, without approximation,
through a region of reversed flow. Under Development of Numerical Method, a



model problem is examined to determine convergence and stability criteria, and
iterative finite-difference schemes are developed to solve the nonlinear
equations. Under Results and Discussion, the numerical procedures are used to
investigate the conditions for regular behavior at the point of separation.
The separation C^nd reattachment) points are shown to be saddle-type singu-
larities in the physical plane, which make it difficult to obtain numerical
solutions that pass continuously from the attached region to the separated
region. The singularities are effectively removed, however, by specifying the
wall shear distribution and determining the pressure as part of the solution.
These inverse calculations are used to infer the type of pressure distribution
required for the boundary layer to pass smoothly into a region of reversed
flow. Where possible, results are compared to relevant analytical or similar-
ity solutions to verify the accuracy of the calculations. The extension of
the method to compressible flows and to the solution of complete viscous-
inviscid interactions is indicated in a separate section.

DEVELOPMENT OF NUMERICAL METHOD

The Differential Equations

The boundary-layer equations for two-dimensional, laminar, incompressible
flow are

U1H+ v I" u ^£ + ̂ uU 3x + V 8y - Ue dx 9y2

where the Reynolds number has been explicitly removed by introducing the
usual scaling x = x*/£, y = (y*/£)A, u = u*/uco, v = (

v*/Uco)̂ T> R = uco*£/v.
Here superscript (*) indicates the physical or untransformed variable.
Boundary conditions are u = v = 0 and u -»• ue as y -> °°. In a direct
problem, ue is specified as a function of x, while, in an inverse problem,
an alternate condition such as (9u/8y)0 or ve is given as a function of x.
In this case, ue must be determined as part of the solution process.

The parabolic nature of the equations is evident in von Mises coordinates:

37 a27Q L Q L /•"»•*
-^7 = - —~ (2a)

with ue
2 - u2 = z and v = -3ijj/3x. Equation (2a) is clearly a heat equation

in which the coefficient u changes sign in regions of reversed flow. Because
there is no downstream boundary condition, the solution is not unique unless
the separated zone is entirely confined within the domain of integration.



The equations can also be written as a system of nonlinear first-order
equations in conservative form, for example,

9u 9v _ ,_ ,
^ + 97 = ° (3a)

- uv + g = 0 ' (3c)

Because the equations are nonlinear, discontinuities may occur in the flow
field even though continuous boundary conditions are .specified. Equations
(3a) , (3b), and (3c) possess the following weak solutions:

[u2 - ujjsin 9 = [v2 - VI]CQS 9 (4a)

[u2
2 - U!2]sin 9 = [g2 - gjcos 9 (4b)

0 = [u2 - ujcos 9 (4c)

where ue is assumed to be continuous and 9 is the angle between the axis
and a plane separating conditions 1 and 2. If 9 < ir/2, equation (4c) ensures
that u2 = ui and, consequently, all the variables are continuous. When
9 = ir/2, the weak solutions are indeterminate. In particular, v may be dis-
continuous with a jump of indeterminate strength even with u continuous.
Furthermore, if u is discontinuous, then, from equation (4a), [v2 - vj] -> °°.

Preliminary Numerical Considerations

As equation (2a) in particular shows, in the separated-flow region,
information must be allowed to propagate upstream with the reversed flow
velocity. A natural way to fulfill this requirement consistent with restric-
tions of numerical stability is to treat the x-derivatives with backward
(upwind) finite-difference formulas in attached flow regions and with forward
(downwind) finite-difference formulas in the reversed flow region. However,
this means that at least a portion of the difference equations will require
simultaneous solution. Furthermore, the extent of the separated region is
unknown and, because the equations are nonlinear, an iterative finite-difference
method appears to be the most efficient way to find a solution. Here, of
course, one can rely on experience obtained with type-dependent relaxation
methods employed for transonic flow fields (refs. 17 and 18).

As an alternative to a type-dependent differencing scheme, interpolative
(elliptic) finite-difference formulas such as central differencing can be used
over the entire flow region. In fact, in the absence of discontinuities,



parabolic and hyperbolic problems can be solved with interpolative
differencing, provided the boundary conditions are properly satisfied. Of
course, for a simple initial-value problem, a marching process that uses back-
ward differencing is generally far more efficient than a simultaneous solution
process.

The choice of whether to use backward-forward differencing, central
differencing, or some hybrid of these will depend on the efficiency and
accuracy obtainable in the iterative finite-difference method. In any case,
no downstream boundary conditions can be supplied for the boundary-layer
equations, so the last computed profile must be attached to allow the use of
backward differencing for the x-derivatives.

The success of a numerical method also depends on the choice of
variables into which the equations are cast. Equation (2), for example, is
not suitable because the variable ty is multivalued in the separated region.
For the most part, equations (la) and (Ib) appear to be the most appropriate
to difference with a high probability of being readily extended to more
complex (e.g., three-dimensional) flows.

Because the boundary-layer exhibits extensive growth in the. x-direction,
it is essential for numerical efficiency that this growth be scaled out.
This can be accomplished by introducing a variable, growing grid system or
by using a transformation that keeps the viscous layer of nearly uniform
thickness. The following transformation is used:

/uey = y / —' / x

(5)

so that equations (la) and (Ib) become

x H. + 3v + 2L±_i G = 0 (6a)

xu H. + v = m(l - u
2) + (6b)

8X 3y 3y2

Boundary conditions are indicated in figure 1. These equations can also be
written as a single equation for the stream function

fin + 5L±_! ff» + mCi . f ' 2 ) = x(f ' f ' - f f") (7)
^ A. A
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Figure 1.- Difference operators and boundary conditions for
relaxation calculation.

Iterative Finte-Difference Method

In the first stages of developing a finite-difference method, it is
useful to begin with the study of a model problem. A model equation is
obtained here by linearizing equations (la) and (Ib); the iterative convergence
criteria are reviewed and an appropriate choice of difference formulas is made
so that the simple model equation is iteratively stable. In the following
section, the convergence of the difference equations to the differential equa-
tion is considered, and iteratively convergent differencing schemes for the
nonlinear boundary-layer equations are subsequently given without analysis.

Model problem- Equations (la") and (Ib) are simplified with

u = UQ + u |

v = VQ + v )

so that the model equation becomes

8u 3u

(8)

(9)

In any local domain, UQ and v0 are treated as constants. Equation C9) also
represents the transformed equations, equations (6a) and (6b), if an average
value for xu0 is substituted for UQ.

If convergent difference algorithms and convergent iterative procedures
can be selected for equation (9), subject to all reasonable choices of UQ
and v0, it is assumed that such schemes can be successfully adapted to equa-
tions (la) and (Ib) . While explicit and implicit marching procedures have
been developed and extensively studied for parabolic equations of standard
type, a comparable development does not exist for relaxation schemes. The
development of such a scheme is undertaken below where the primary concern is



to ensure that the relaxation procedure is valid for both positive and
negative values of UQ.

Iterative convergence criteria- Once equation (9) is differenced over a
discrete network of grid points, one is left with the task of inverting the
linear system of equations

Au - c = 0 (10)

where the components of u consist of the dependent variables at each grid
point. Then the most general first-degree iteration scheme for equation (10)
is

_ = hR[Au- (n)

where H is a conditioning matrix usually implicitly built into the iterative
solution algorithm; here we chose to extract a parameter h from H. It
should be understood that this type of iterative solution algorithm can treat
nonlinear equations with the same ease as linear equations.

Equation (11) has the recursive solution:

n-1

= (I + hHA)nu(0;) m(I + hHA)hHc (12)

m=o

so if the matrix (I + hHA) has a spectral radius (i.e., largest eigenvalue in
absolute magnitude) less than 1, then (I + hHA)n -> 0 for n sufficiently
large. Furthermore, from the Neumann lemma (ref. 19, p. 26, or ref. 20,
p. 82), it is evident that

n-1

(I "1 (13)

m=0

"" i""or u -*- A-1c as required.
convergence is that all

Thus the sufficient condition for iterative

. + ho.. < 1 (14)

where ct are the eigenvalues of HA.
possibly complex cfj arc of the same sign, h can e cosen

This is an asymptotic convergence criterion for

Hence, if all the real parts of the
o assure con-

vergence. Ths s an asymptotc convergence crteron or n sufficiently
large. For the scheme defined by equation (11) to be efficient, the matrix
HA must not have a large condition number (refs. 19 and 21) nor should the
imaginary parts of aj be large compared to the real parts. The eigenvalue-
convergence criterion does not guarantee that the norm of (I + hHA)nuC°) will
not grow appreciably during intermediate iterations - a situation likely to
occur if the eigenvectors of HA are linearly dependent or almost so.



Convergence of the model problem- The advantage of studying the model
problem is that analytic expressions are obtained to describe its behavior for
various choices of differencing. It is assumed that the nonlinear problem
will share at least some common features. Here, let

92u

jk
Ay

- 2u.,jk u. 0(Ay2)3 (15a)

'"]* 0(Ay2) (15b)

and

9u
3x

0(Ax) (16)

where a = 1 is first-order backward, a = 0 is second-order central, and
a = -1 is first-order forward. Using these approximations in equation (9)
with g = Ay/2 and y = (Ay)2/2Ax, one obtains

2u.k

- (1 - a = b.

(j = 2, 3, 4 . . ., J ; k = 2, 3, 4 . . ., K - 1)^J ' ' ' max max (17)

-V.

If u is the vector whose components are the u-j^ over the ordered grid
points, equation (17) can be written as the linear system of equations,
equation (10). The eigenvalues of A are given by

jk = -2\l + /(I + v06)(l - v0g) cos (ĵr

-2u0y[a + /-(I + a)(l - a) cos

(k = 1, 2 . . K; j = 1, 2 . . ., J; K = K - 2; J = J - 1)' J ' > ' max ' max

(18)



where u is assumed to be given on a boundary as needed. If a is 0 or 1
when UQ > 0 or if a is 0 or -1 when UQ < 0, the a roots always have
negative real parts and A is a stable matrix. Thus the point-iteration
scheme with H = I and h = o)/(2 + 2u0ya) is proven to be convergent for an
appropriate u) $ 1. As another example, the point successive overrelaxation
(SOR) method has the roots

+ ayu°)= A ~ ajkl~ / c i + v°3)(1 " v°3) COS(FTT)

/ (1 + a) (-1 + a) cos

(j = 1, 2 . . . K; j = 1, 2 . . . J) (19)

and is also iteratively convergent with h = -1 and a proper choice of the
relaxation parameter u>.

Equations (18) and (19) show that the roots will be complex if a = 0 or
if |vo&| > 1. This can be detrimental to the convergence rate of a first-
degree iteration scheme if the imaginary parts become large enough, so the
central differencing should be restricted to regions where UQY is small.
The product Vg3 is normally expected to be less, than 1 in absolute value and
thus has the beneficial effect of reducing the term cos kir/(K + 1).

In place of the complex roots that occur for a = 0, when a - 1 or -1,
the eigenvectors of HA appear in multiples of the number of J grid points.
Under these conditions, the norm of an iteration matrix can be expected to
grow before it decays; however, study of £2 and £„, induced matrix norms
(ref. 19) for the point iteration scheme shows that residual growth cannot
occur if the spectral radius is kept less than 1. Conversely, numerical
experimentation with the heat equation demonstrates that the SOR forward-
differenced scheme (a = -1) swept from left to right can experience appreciable
residual growth if Ax « (Ay)2. If swept from right to left, the residuals
decay rapidly.

Convergence to the Differential Equations

Although the previous analysis shows that iteration algorithms can be
used to find a solution to the system of difference equations, it does not
prove that the solution of the difference equations will converge to the solu-
tion of the differential equations as the grid is refined. However, with the
exception of the central differencing scheme, all the schemes to be introduced
are known to be stable and consistent for the heat equation (cf. ref. 22).

If one assumes periodic boundary conditions in x and end conditions in
y, then sufficient conditions for convergence of the centrally differenced
heat equation



are Ax - 0(Ay2) and .Ay - 0(Ax2). (This is not an explicit leap-frog scheme.)
Here convergence implies that the difference between the exact solution to
the differential equation and the exact solution to the difference equation
will vanish as the grid is uniformly refined over a fixed domain. That is,
the summation of truncation errors given by A~^e -*• 0 as Ax, Ay -*• 0 where_^ A
is the matrix formed by the difference equations over both y and x, and e
is the vector of truncation errors. While the complete convergence proof is
too lengthy for this report, note that A is a normal matrix and hence is
unitary similar to a diagonal matrix of its eigenvalues (ref. 21). The
eigenvalues are

ajk(2AxA) = 4
Ax

Ay2
- cos 2i(±l)sin

(j = 1, 2 . . . J; k = 1, 2 . . ., K) (20)

and 11 ̂~11|2 = (min l^kl)"1 so II A"1 II 2 11 e 11 2 is simply determined.

Finite-Difference Equations and Solution

Two second-order-accurate differencing schemes were developed to solve
the boundary-layer equations (6a) and (6b). The first of these proved
superior for the separated flows computed in this investigation. The second
more conventional method is described because it may prove efficient for
certain extensions of the present approach.

The first method employs the central-differencing schemes for Uyy and uy
given by equations (15a) and (15b). The term xuux in equation (6b) is
regrouped as 0.5x(u2)x and backward-differenced:

2 3x

- 4u? 7 '
Ui-9 kJ 2,K

2Ax 0(Ax2) (21)

(B)

for u > 0.015 or j = Jmax. When u < 0.005 or if j = 2, central
differencing is used:

_
2 9x

0(Ax2) (22)

(C)

10



In the intermediate zone, 0.005 * u * 0.015, the backward and central formulas
are combined according to the relation

9u2

9x jk
U + a)

9u2

9x
9u2

jk
(B)

9x
jk
(C).

C23)

with a E 1 + 200(u - 0.015).
figure 1.

The difference stencils are indicated in

We emphasize that the blending defined by equation (23) is used solely to
enhance the iteration process and is not otherwise fundamental. It is obvious
that when the difference equations are switched at a given value of u', a dif-
ferent set of data points is sampled and slightly different truncation errors
result. The change in the residual error vectors at this point can be large
enough to drive u(n+1) back across the value at which switching occurs.
This can then start an oscillatory mode with little decay. The blending sim-
ply modifies the differencing relations in a continuous fashion so that the
residuals vary smoothly. In the present scheme, the blending is completed at
u = 0.005 to avoid a special operation at separation and reattachment. The
blending can also be used between 0 < u < 0.01 without changing the results.

The continuity equation is differenced with the modified Euler scheme
(i.e., trapezoidal rule or Crank-Nicholson differencing):

vjk-v
jk-i

9v

jk

9v
ay jk - i /

0(Ay2)

with

9v
3y

jk

r /u. , . -vI j + i,k
-[xj\ ^T 0(Ax2)

(24)

(25a)

for j = 2, J - 1, andJ ' max '

9v
9y 2Ax Ujk 0(Ax2) (25b)

at j = Note that xux is central -differenced at all times (except at
Jmax) in both the attached and reversed flow regions. While equation (24) is
generally recommended, two schemes implicit in the y direction are presented
as alternatives. Either the second-order-accurate "shifted" scheme

f-i , + 4v., - v.,jk- l jk jk+ i + 0(Ay2) (26)

(where point jk is updated in the relaxation) or the third-order accurate-
in-y "abated Hermite" scheme:

11



+ 8v., - 3v. 3v
jk+l jk-1

4 3v
6 3y

5_ 3y_
6 9y jk+l

0(Ay3) (27)

can be used with Sv/Sy^ again defined by equation (25). Both alternative
schemes generate diagonally dominant tridiagonal blocks if a backward two-
point differencing is used at the edge where v varies linearly. Effectively,
equations (24), (26), and (27) give the same results.

An additional difference algorithm must be introduced if an inverse
problem is solved. To impose a specified shear distribution, the momentum
equation is evaluated at the surface:

m = - (28)

y=0

The second derivative is differenced as a function of T(X) to generate the
second-order-accurate relation:

32u -?V
8u.^ - u.032 ]3

2(Ay):

Wake flow is treated in the same fashion with
velocity UQ specified:

(29)

T = 0 and the centerline

du0

(30)

With the choice of differencing established, the solution procedure is
straightforward. An approximate solution is input, usually by assuming a
Blasius profile with m = 0 everywhere. For an inverse problem, a new distri-
bution of m is then predicted for the specified boundary condition using
either equation (28) or (30), with m updated by the relaxation (here
written for T(X) specified):

(n+1) (n)m. •* = m.
3 3

ii-..)
2(Ay)2 /

(31)

For a poor guess of the initial solution, a) is initially kept small,
to = 0(0.05). New values of u are then found from relaxation of the momentum
equation, while new estimates of v follow from continuity. This iteration
sequence continues (with to increased as the initial guess is improved) until
an equilibrium or converged state is reached.

Solutions are found by both point and line successive underrelaxation
(SUR) by using the iterative correspondence:

12



=
u u '(32a)

-(n+l) ^v = v oiH Rv v (32b)

The residual vectors Ru and Rv represent the differenced momentum and
differenced continuity equations, Hu and Hv are the conditioning matrices of
the SUR algorithm, and <D is the relaxation factor. The line method (not
used in eq. (32b)), in general, converges faster than the point scheme, but it
is more sensitive to changes in m, making it more difficult to control in a
computer batch mode. For moderate reversed flows and grid spacings with Ax
approximately equal to Ay, the optimum relaxation parameter is slightly less
than 1 for point SUR with ui = 0(0.5) for equation (31). For line SUR, the
optimum relaxation parameter is 0(0.4) and o> is the 0(0.15). The point SUR
method fully converges in 400 to 800 iterations for a grid of 80 j-points and
50 k-points. Highly separated cases with rapid variations in the flow
quantities require the higher iteration counts.

Note that, when u is negative, it is possible to blend from the
central into a three-point forward difference and that this variant of the
relaxation procedure is iteratively convergent. For very large reversed-flow
regions, it may be advantageous to program this additional logic. Experience
also shows that switching at u = 0 from a three-point .backward differencing
into a three-point forward differencing without blending first into the
central differencing is not convergent.

The second method developed is patterned after the Crank-Nicholson scheme.
Equations (6a) and (6b) are first put into conservative form

3v 8xu (m - (33a)

-2 _ (33b)

The continuity equation is treated as before, and the y derivatives in the
momentum equation are again centrally differenced by use of relations (15a)
and (15b). The x-differencing is Crank-Nicholson

9(xu2) 9xu2 1
(u > 0.01 or j = Jmx)

with

3(xu2)

jk

3uv

(34)

(35)
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where the appropriate central-difference formulas are substituted for the y
derivatives. For reversed flow, forward differencing is used

(xu2).j + lk 3x
+ 3(xu

2)

j + lk ,J
(u < -0.01) (36)

and the two schemes are linearly blended in the interval -0.01 < u < 0.01 (see
fig. 1). As before, the blending is used solely to enhance the iteration
process.

The Crank-Nicholson scheme has been solved by both point and line SUR, and
for either process the relaxation parameters are approximately those described
for the previous point method. This second method requires slightly more
algebra per step and, in general, has a slower rate of convergence than the
first method.

The conservation-law form of the Crank-Nicholson method is not
considered to be an advantage, and the procedure generally predicts m dis-
tributions that are slightly oscillatory. The oscillations decay as Ax/Ay
decreases, and they are.confined to the relatively uninteresting attached flow
regions. Of course, m is a sensitive function of the solution and the u and
v distributions are much smoother. A nonconservative version of the Crank-
Nicholson scheme was also programmed. In this case, the oscillations in m
were negligible in attached-flow regions but observable in the separated zone.

Finally, we remark that a very stable first-order-accurate method can be
developed by replacing the x differencing by

x 3u2

2 ^\ -.
oX

x 3u2

2 3x

jk
(B)

jk
(F)

x u
2 V

x. /u
2 V

*• -u*-jk j-1
Ax

J2+l.k-u

Ax

,k

i

2 >

jk

i

Cu > 0.01)

(u < -0.01)

(37a)

(37b)

and

x 8u
2 9T

x.

jk
cO 9x

jk
(B)

(1 -
3u2

jk
(F)

(-0.01 5 u 5 0.01; a = lOOu)
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This scheme, with xux of continuity also first-order-accurate and switched in
an identical fashion, will generally give "computational results" for the
first problem, m specified. This first-order method is not recommended
because a much finer x-grid spacing is required to maintain accuracy. This
method proved useful for the numerical experiments described in the next
section.

RESULTS AND DISCUSSION

In this section, the iterative finite-difference procedure is used to
integrate the boundary-layer equations through a region of reversed flow. The
separation-point singularity is investigated and conditions for regular
behavior are determined. Calculated results are presented for a number of
separated flows and the accuracy of the method is verified. Possible indica-
tions of the breakdown of the boundary-layer assumptions are also examined.

Direct Solutions

One of the most extensively studied problems in separating boundary-layer
flows is the response of a flat-plate boundary layer to a linearly retarded
external stream. This problem has been investigated by Howarth (ref. 23),
Hartree (ref. 24), and many others; recent solutions have also been obtained
by Briley (ref. 25) and Leal (ref. 26) using the full Navier-Stokes equations.

A sequence of calculations for different mesh spacings is shown in
figure 2. The external velocity was specified to decrease linearly from the

origin and the first-order-accurate
difference scheme was used because
of stability considerations. As the
mesh is refined, the separation
point moves upstream, with the last
calculation in exact agreement with
the accurate results of Smith and
Clutter (ref. 27) for the flow
upstream of separation. In the limit
of zero-mesh spacing, it is evident
that the solution is singular, with
the wall shear approaching zero as
the square root of the distance
upstream of the separation point and
the normal velocity unbounded. This
type of behavior has been discussed

1.2 1.6

Figure 2.- Calculation for linearly
retarded flow.0

in detail by Goldstein (ref. 28)
by Landau and Lifshitz (ref. 29)
among others.

and

The interesting result .here is that the use of an iterative finite-
difference scheme which contains type-dependent operators allows the solution
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to be "continued" in the downstream direction. As the mesh is refined, it
becomes evident that the flow fields upstream and downstream of separation are
essentially independent, and the solution is therefore not meaningful. The
wall shear jumps discontinuously to a negative value at separation and the
normal velocity v becomes unbounded; all flow quantities subsequently remain
continuous downstream of the jump and through reattachment. The magnitude of
the discontinuity is determined by the specified pressure distribution in the
separated zone. In a set of simple numerical experiments, a constant external
velocity distribution was smoothly joined to the linearly retarded flow at
different values of x. As the joining point was moved downstream,.the magni-
tude of the jump and the extent of the reversed-flow region increased
monotonically, with separation remaining at x = 0.96.

Singular behavior at the point of separation is thus related to the fact
that the wall shear T = (8u/9y)o i-s nonanalytic; in particular,
T ~ (xs - x) V

2 and 8i/8x -»- °° as x -»• xs, the separation point. Therefore, the
most obvious means of ensuring regular solutions at separation is to specify a
continuous wall-shear distribution. The pressure distribution can then be
determined as part of the solution by satisfying the momentum equation at the
surface. Note that because the equations are nonlinear, it is not possible to
guarantee that discontinuities will not occur in the flow field even with
analytic boundary conditions prescribed (see ref. 30 for hyperbolic equations,
or the weak solutions, eqs. (4a), (4b), and (4c)).

Inverse Solutions

With the wall-shear distribution specified, m can be determined from
equation (31) and the second-order-accurate differencing scheme generates con-
tinuous solutions that give no indication of singular behavior at either
separation or reattachment. These solutions are demonstrated to be regular
under Accuracy Check. An inverse calculation cannot be duplicated by the
direct method, however. Starting with a fully converged inverse solution, the
calculation diverges if the iteration is continued with m fixed, that is,
the relaxation parameter to is set to zero in equation (31). Two examples of
this type of inverse (T specified) and direct (m given) calculation sequences
are shown in figure 3. After as many as 500 iterations (less if the solution
is initially perturbed), the residuals begin to grow and the relaxation pro-
cedure either becomes unstable or converges to a different "solution" of the
difference equations. As the mesh is refined, the second-order scheme fails
to converge while the first-order method, for moderate grid spacing, generates
computational results containing a discontinuity.

The fact that the direct calculation fails to duplicate a converged
inverse solution-cannot be ascribed to instabilities in the numerical scheme.
The only difference between the two calculations is the value of the relaxa-
tion parameter u in equation (31), and the solution processes are essentially
identical. The numerical evidence therefore strongly suggests the existence
of a saddle-type singularity at the separation point. Because of this critical
point, roundoff and residual errors are sufficient to cause a completely
converged solution to diverge when the pressure-gradient parameter is held
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Figure 3.- Inverse/direct calculations
that indicate existence of saddle
point.

u(x,y) = f!y + f 2

where f3 = 0 and the notation is used

fl = T,

fixed. There are no other possible
sources of error in the calculations:
the variation of m is determined to
arbitrarily high accuracy by the
inverse solution, and no interpolation
or differentiation is required as for
computations with experimentally
determined pressure distributions.
With the pressure gradient correspond-
ing to a completely regular flow field
prescribed, the equations contain a
saddle-type singularity at separation
that makes a continuous numerical
solution difficult to obtain. The
saddle point is removed from the
domain of integration, however, by
specifying the wall shear rather than
the pressure gradient as a boundary
condition. A discussion of the
essential differences between the two
types of calculations is presented
below. In the following section, the
conditions for regular behavior at
the point of separation are examined.

Saddle Point

The difference between the
direct- and inverse-calculation pro-
cedures can best be illustrated by
examining the boundary-layer equations
near the surface. Expanding the
velocity profile in a Taylor series
in y yields

y2 ll
3! (38)

2 = P

Either fi or f^ (but not both) is prescribed and all other
determined as functions of x by the differential equations,
must satisfy the following set of relations:

[ are
The coefficients
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£7 -

£8 -

fl

fs

fe
fi
£1

f - fl f{

- 2f!f •

- 2f2q

+ Sf.fJ

+ 9fcf '

= 0

= 0

= 0

= 0

= 0

(39)

NUMERICAL
SOLUTION

ORDER OF
EXPANSION:

.4 .6 .8 1.0

Figure 4.- Series expansion for
similar separation profile.

where the prime denotes differentia-
tion with respect to x. One of the
fi is given by the outer boundary
condition that u -> ue as y ->- °° (see
ref. 28). The validity of the expan-
sion procedure near the separation
point is demonstrated in figure 4 for
the particular case of similar flow
with m = -0.09044, corresponding to
zero shear (see eq. (7)). For this
case, the only nonzero coefficients
multiply terms of the order
n1"1-2 (n = 1, 2, . . .), and the
expansion has been continued through
the twenty-second power of the normal
coordinate.

Direct calculations- For the
pressure gradient specified, the
coefficients in equations (39) must
be determined by integrating the fol-
lowing system of first-order
differential equations:

(40a)

f!f7 + 5f4
2

2f i 2 [ f i o * 8!

+ 33£1fit£7 - (40b)

The remaining coefficients are given by the algebraic relations:
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= 2p,

xx

9px(£l£7 + Sf^2) + 4f!2(10pxxxfi2 -

= SfjCSp, * '

(41)

If one arbitarily terminates the expansions at this point and assumes that
flO can be correctly specified, then equations (40) and (41) provide rela-
tions for all coefficients of the lower-order terms. Given the velocity pro-
file at a particular station, standard numerical techniques can be used to
integrate equations (40a) and (40b) to determine the adjacent profile provided
fl is nonzero. As f^ -»- 0, however, the solution becomes increasingly sensi-
tive to the calculated value of fj, and numerical errors are propagated in
the direction of integration. The equations are highly nonlinear, with the
coefficient f^ of the derivatives determined by f^, which in turn depends
on f7, f10) etc., and on the outer boundary condition. Even for a pressure
distribution corresponding to a regular solution at separation, the numerical
integration of equations (40a) and (40b) is unlikely to result in values of
fl and fi^ that vanish simultaneously. In that event, either f{ will be
infinite, leading to a square-root singularity, or fi will remain positive
and the calculation will fail to show boundary-layer separation.

We emphasize that with the pressure gradient specified, the nonlinear
equation for the wall shear (eq. (40a)) is inherent to the system of differ-
tial equations. Even with special procedures that would guarantee that f^
vanishes at T = 0, the saddle point would remain to confound the numerical
solution process. The behavior shown in figure 3 is to be expected because a
converged solution perturbed by small roundoff and residual errors cannot
remain converged in the presence of the saddle-point singularity.

Inverse calculations- For the wall shear specified and the pressure
distribution determined as part of the solution, a different system of
ordinary differential equations results:

2 = £ (42a)

= 2£8

+ 93T £8 + 3f5(160TT - 201x 2)
A AA A ,

27f,(19T 3 - 16TT T - 20T2T )
^^ X X XX XXX (42b)

including the algebraic relations
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f =

£7 = T(4TT - T 2)
' XX X

Tfg = 4(f2f8 - f5
2) + 26T £2f5 - 36f2

2(TT + T 2)
- A AA A

(43)

T2f10 = 4f2(£2£8 - fs
2) + 26t £2

2£5 -36f2
3(TT + T 2)

A . AA A

+ T3(27T 3 - 24TT T + 28T2T )
X X XX XXX

These equations are linear, with the coefficient of the derivatives T
specified as a function of x. The system is therefore less susceptible to
numerical error, and although the matrix of coefficients still vanishes at
T = 0, the saddle-point singularity has been effectively removed. If the
numerical integration is accurate enough to ensure that f5 = 0 when T
vanishes, the solution will pass smoothly through the separation point.

The basic difference between the inverse and direct problems is that,
for the pressure gradient prescribed, the unknown shear distribution is
determined by a nonlinear equation that contains a saddle-type singularity at
separation. For the wall shear specified, on the other hand, the pressure
gradient is given by a linear equation that is much less sensitive to numeri-
cal error. This is probably also the case when the displacement thickness is
prescribed (see ref. 13). The fact that most numerical evidence indicates a
singularity at separation is therefore misleading because of the difficulty in
numerically integrating through the saddle point. Of course, not all pressure
distributions admit a regular solution (as discussed in the following section).

An interesting point is that, provided the correct numerical procedures
are used, no difficulties are encountered at reattachment (see fig. 2 or 3).
The reason for this is that any numerical errors made at the reattachment
point are either integrated out of the downstream boundary or upstream toward
separation. The direction of the flow, and therefore the differencing scheme,
results in a solution process that allows integration away from the saddle
point at reattachment but that requires integration into the singularity at
separation.

Several numerical experiments were performed to verify these
conclusions. In one set of computations, the velocity profiles at separation
and in the immediate vicinity of that point were held fixed after converging
the inverse calculation. For these cases, the inverse and direct procedures
gave identical solutions. Similar results were obtained when an artificial-
viscosity term equal to euxx

 was introduced into the difference equations.
As the coefficient e was decreased, however, the direct calculation would
again diverge from the inverse solution.
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Pressure Gradient at Separation

As shown in the previous section, the existence of a regular solution
requires that fi+ = 0 at the point of separation (see also refs. 31 and 32) .
The coefficients f5, fy, and fg must also vanish at the point of zero shear,
and the pressure gradient must therefore satisfy certain specific conditions
to permit the flow to pass smoothly through separation. The constraints on
the pressure distribution cannot be determined directly because of the saddle
point, but must be obtained from the inverse, or shear-specified, calculations.

It is reasonable to expect that only certain pressure distributions will
admit regular solutions. The separation profile, for example, is determined
by both the upstream and downstream flows so that some compatibility relation
must be satisfied at this station. Also, from kinematic considerations, the
boundary -layer approximation to the vorticity transport equation is

(44)

where to = 3u/9y and px = 3a>/9y at y = 0. The restriction on the pressure
gradient at separation can thus be interpreted as a constraint on allowable
boundary conditions: - the normal gradient of vorticity at the surface is
required to satisfy some local condition for the vorticity to remain continuous
at the singular point.

From physical considerations, a constraint on the allowable pressure
gradient implies that the interaction between the inner viscous layer and the
outer fluid essentially determines the conditions at separation. Prandtl
(ref . 33) recognized this in 1938 when he stated that the pressure field
could not be chosen arbitrarily for the flow downstream of separation "to agree
with observation." Most numerical solutions of the Navier-Stokes equations,
including the recent investigation by Leal (ref. 26) in particular, also
indicate that, when the interaction with the outer flow is included, there is
no evidence of singular behavior at separation.

Because of the nonlinearity of the boundary- layer equations, it is not
possible to determine the precise pressure-gradient condition that permits a
regular solution. Certain restrictions on the pressure distribution can be
inferred from the Taylor series expansion and from the numerical solutions,
however. The acceleration of a fluid particle near the surface, for example,
can be approximated as follows:

du du y i o y y ,. ?•> y I r * r ^u a T + v s ^ = V T T v + 2rPw t + PvPw fT + Tf4TTw ~ Tv ) fiiT + • • ' f45^ox oy ^ i x xx o x xx D • xx x t>u I

Immediately upstream of separation, T and px are positive and TX is nega-
tive. As T •> 0, the fluid in a stream tube near the surface continues to
decelerate, and the streamlines continue to move away from the wall provided
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For the flow to separate smoothly, then, a restriction on the pressure field
is that

p < 0 as T -* 0 (47)rxx

There will therefore be an inflection on the pressure distribution upstream of
the separation point. This requirement is consistent with experimental evi-
dence, and the existence of a "knee" in the pressure curve is often taken to
indicate boundary-layer separation.

The numerical evidence suggests that this condition is not sufficient,
however. All regular solutions, in fact, satisfy the requirement:

$L > o at T = 0 (48)
dx ^ J

This is a more restrictive condition than that given by equation (47) because
mx can be negative for pxx negative. The linearly retarded flow considered
under Direct Solutions, for example, satisfies equation (47) but not equation
(48). In a series of papers, Meksyn (refs. 34 and 35) has contended that the
existence of a minimum in mx was a necessary condition for regular separa-
tion. He cited Schubauer's (ref. 36) measurements of the flow over an elliptic
cylinder as experimental verification of this requirement. Similar arguments
have also been advanced as a result of the use of approximate methods to cal-
culate supersonic viscous-inviscid interactions (see, e.g., ref. 37).

The most useful means of examining the numerical results is in the
T - m phase space (fig. 5). Several typical computations are presented,
including the locus of solutions for similar flow. In these coordinates, x
is a parameter that varies along the curves, with Ax -»• °° for the similarity
solutions. For this limiting curve, dm/dr, and therefore dm/dx, is zero at
the point of zero shear. All nonsimilar trajectories, on the other hand, have
positive mx at both the separation and reattachment points. This condition
was never violated in approximately 30 different calculations using various
specified shear distributions. Note that the locus of similar flows is some-
times taken to indicate singular behavior at separation because
T ~ (mo - m)1/2 and di/dm ->• °° at T = 0. The similarity solutions are obtained
for mx = 0, however, and the limiting value of df/dx (= mx dr/dm) must be
carefully determined if an actual flow is replaced by a sequence of similar
flows. In any event, the condition for regular separation, that mx - 0 at
the point of zero shear, is satisfied by both the similar and the nonsimilar
flows.
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Accuracy Check

The phase-space representation
of solutions presents an opportunity
to verify the accuracy of the numeri-
cal procedure. The points labeled A
and B in figure 5, for example, have
the same value of T and m as a cor-
responding similarity solution. The
left-hand side of equation (7), which
is completely determined by
T = f"(0) and m, is therefore zero.
The local x variation vanishes and
the similar and nonsimilar profiles
must be identical at those points.
The velocity profiles calculated by
the present scheme are compared to
adjacent solutions of the similarity
equation (obtained by fourth-order
Runge-Kutta integration in ref. 38)
in figure 6. There are essentially
no differences in the results
obtained by the two methods.

With a continuous shear
distribution specified, the solution
is constrained to be regular at both
separation and reattachment. This
result can be verified by comparing
the calculated streamline pattern
with the local solution of the
Navier-Stokes equations obtained by
Oswatitsch (ref. 39) (see also Dean
(ref. 40) and Legendre (ref. 41)).
At the point of zero shear, a regular
solution of the Navier-Stokes equa-
tions requires that the angle of the
dividing streamline be proportional
to the ratio of the x derivative
of the shear and the pressure
gradient. In the transformed vari-
ables, the precise condition is

figure o.- <_0iupanson with similar
solutions.

JFT *„„
r i\ uaii (49)

where 9 is the angle of the dividing streamline. For a prescribed shear
distribution, the calculated values of m can be integrated in x to obtain
ue. The flow in the vicinity of separation and reattachment for a refined-
mesh calculation (Ax = Ay = 0.1) is compared with equation (49) in figure 7.
The calculated results agree exactly with the local Navier-Stokes solution at
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the point of zero shear, again demonstrating that the boundary-layer solution
is regular.

\ -̂ 0.005

J I \ I I 0.001 I

-1.4
X-XR

Figure 7.- Detailed flow field in the vicinity of T = 0.

Flow-Field Solutions

As previously mentioned, a number of different shear distributions were
specified in an effort to determine the behavior of the boundary-layer equa-
tions in separated flow. Some of those results are presented in this section
and the following one. Figure 8, for example, shows the streamlines and skin-
friction variation, in physical coordinates, for a typical parabolic shear

distribution. The relation between
\ the physical and transformed
\ / variables is

6 r

4 -

Vv/R

Figure 8.- Streamlines for specified
shear distribution.

= 2u r?-"e _T
X

and

= /xu

f'•'o
dy

(50)

In figure 9, the skin friction and
streamline patterns for a different
shear distribution are shown. For
this case, the maximum reversed flow
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Figure 9.- Streamlines for specified
shear distribution.
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Figure 10.- Velocity profiles for
trailing-edge flow.

occurs toward the reattachment side
of the separation bubble. The divid-
ing streamline has several rapid
changes in slope, and this solution
would be difficult to obtain if it
were necessary to explicitly iterate
for the location of the u = 0 line.
Note that in all cases the normal
coordinate is multiplied by the
square root of the Reynolds number
and that these solutions represent
shallow separated regions confined
to the interior of the viscous layer.

The present method can also be
used to calculate flows where
reattachment occurs in a wake rather
than on a solid surface. The details
of this type of flow field in the
immediate vicinity of the trailing
edge are shown in figure 10. Here,
the transition from boundary-layer
flow to wake flow is assumed to occur
on a scale that is small compared to
the thickness of the viscous layer
(see ref. 42). The prescribed
boundary conditions of zero velocity
and negative wall shear were thus
discontinuously changed to zero
shear and specified reversed-flow
velocity at the trailing edge. Based
on order-of-magnitude considerations,
the initial reversed-flow velocity
was taken to be equal to the value
of the wall shear at the joining

point. No attempt was made to ensure continuity of the dividing streamline
or displacement thickness, although mass and momentum are conserved in the
solution to the differential equations.

Indications of Breakdown

In the previous sections, it was demonstrated that the boundary-layer
equations have regular solutions at separation and reattachment. The flow
structure at the separation point agrees with the limiting form of the
Navier-Stokes equations, and the Goldstein solution does not appear to be
relevant for real flows. The square-root singularity in the boundary-layer
equations is a consequence of specifying an external pressure distribution
based on an inviscid solution determined as though there were no separation.
In practice, the pressure gradient is locally modified near the separation
point such that the boundary-layer solution remains regular. The question
that arises then concerns the manner in which the boundary-layer equations
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eventually break down. Real flows tend to separate toward the rear of a closed
body and vorticity is transported into the outer fluid. In some cases, the
vorticity is confined to a relatively narrow region, or wake, downstream of
the body. In other situations, behind a circular cylinder, for example, a
large region of the fluid becomes rotational. The vorticity is no longer
restricted to a thin viscous layer and the normal component of velocity
ceases to be small compared with the"tangential component. In the present
investigation, the region of separated flow is, of course, constrained to
remain close to the surface, inside a layer of order 1/i/R. The numerical
solutions may, however, suggest when this approximation is no longer realistic.

An indication of the possible
breakdown in the boundary-1ayer
equations is shown in figure 11 for
a highly separated flow. As the
mesh is refined, the computed values
of m appear to become discontinuous
at a point downstream of separation.
Apparently, there are two solutions,
one associated with separation and
the other with reattachment, that
are joined in the reversed-flow
region.

The distribution of ve, the
transformed normal velocity, is
shown on an expanded scale in fig-
ure 12. The normal velocities
increase rapidly downstream of the
separation point, and the viscous
layer begins to break away from the
surface. Because of constraints
imposed by the boundary conditions,
however, a discontinuity in v (and
in 3u/9x) occurs at the maximum
value of ve, and the remaining
solution is continuous. Although
there is a certain degree of smooth-
ing in the numerical results, the
discontinuity in ve is evident in
figure 12. A jump in v is an
allowable weak solution of the dif-
ferential equations and is apparently
required for certain boundary condi-
tions (e.g., large negative shears).
If strong discontinuities occur when
the shear distribution corresponding
to a real flow is prescribed, how-
ever, this can be taken to indicate
the breakdown of the boundary-layer
assumptions.

Figure 11.- Evidence of weak solutions
for highly separated flow.

40
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Figure 12.- Normal velocity distribu-
tion for highly separated flow.
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Figure 13.- Effect of shear variation
in separated region.
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Figure 14.- Effect of shear variation
in vicinity of reattachment.

The rapid variation of m, ve,
and of the other flow quantities
depends on the amount of reversed
flow. This is illustrated in fig-
ure 13 for a sequence of solutions
where the specified shear distribu-
tion was modified in the separated
region. As the values of the shear
become less negative, the solutions
become increasingly smooth and con-
tinuous. The streamlines correspond-
ing to a = 0.1 were previously shown
in figure 8. Even for this relatively
mild case, the separating flow
appears to undergo a rapid transition
to the reattaching portion of the
flow field at x = 2.7 approximately.

The results of an additional
numerical experiment are shown in
figure 14. For this case, the wall
shear was varied only in the down-
stream portion of the separated
zone and kept constant elsewhere.
The nonlinearity and upstream influ-
ence of the boundary-layer equations
is evident in the computed distribu-
tions of m and ve. Note also, how-
ever, that the flow in the immediate
vicinity of separation (x < 2.5) is
not significantly affected by
relatively large changes near
reattachment.

Upstream Influence

Part of the success of
approximate methods that use forward-
marching schemes (e.g., refs. 9 and
13) may be related to the limited
upstream influence discussed above,
particularly for flows with small
separated zones. For the cases shown
in figure 14, of course, it would
not be possible to obtain accurate
solutions downstream of x = 2.5
without including the boundary con-
ditions at reattachment. To investi-
gate this question, calculations
were made with the convective term
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uux set to zero for u ^ 0 with both the first- and second-order-accurate
difference schemes used in a marching mode. Only backward differencing was
employed for both, momentum and continuity, and the equations were completely
relaxed at each x station before proceeding.

-.04

-.16

"EXACT"SECOND-ORDER
RELAXATION SOLUTION

AX = O.I MARCHING

Figure 15.- Comparison with forward-
marching procedure.

The three point backward
second-order scheme could be marched
accurately a short distance into the
separated zone. It always diverged
rapidly, however, at approximately
the location where mx became nega-
tive. The first-order scheme, with
moderate grid spacing, could be used

j for small bubbles but diverged for
8 more separated flows. A typical

calculation for a mildly separated
flow is compared in figure 15 with
an "exact" solution obtained using
the correctly differenced second-

As the grid spacing was refined in x,
The

order scheme with smaller step size.
the first-order marching began to diverge from the correct solution.
instability could be delayed by keeping Ay < Ax and by accepting a less
stringent iterative convergence criterion at each x station, but overall,
the difference equations failed to converge to a solution as the grid was
refined.

This experiment indicates that backward differencing, even with uux = 0
for u < 0, is always unstable. For mild separation, the eigenvalues in the
unstable range are small and dominate the numerical calculation only after a
sufficient number of steps is taken. It is probable that the schemes of ref-
erences 9 through 11 and 13 are also divergent, although they are useful for
certain applications.

To determine the effect of neglecting the upstream convection of momentum,
additional calculations were performed with the term uux set to zero for
u 5 0, but with the term ux in the continuity equation centrally differenced.
In this manner, upstream influence is retained and the solution must again be
obtained by relaxation methods. The results were essentially identical to the
exact second-order solution, verifying that the upstream convection of
momentum is not significant for laminar flows with limited separated regions.

POSSIBLE EXTENSIONS

An important extension of the present method is to match an inner,
boundary-layer solution to an outer inviscid flow to calculate complete
viscous-inviscid interactions. It would also be useful to compare results of
the present method to experimental measurements of laminar separating and
reattaching flows. Because low-speed boundary layers rarely remain laminar
through reattachment, the computations must be extended to supersonic flows.
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There are, for example, a number of reliable experiments for compression-
corner interactions at supersonic speeds, as well as several different approxi-
mate solutions and Navier-Stokes calculations available for comparison (e.g.,
refs. 43 and 44). It is indicated below how the method can be adapted to
compressible flows, and an integral relation is proposed that offers promise
of allowing the treatment of complete viscous-inviscid interactions.

Compressible Flows

To apply the method to compressible boundary layers, the following
transformation can be used:

X =

v = p y ue e e
pv + xu Tr-

(51)

If it is assumed that the density-viscosity product is constant through the
layer, the following equations result:

xu _ 3uv — 32u-
9y2

im = 0
3y [(Y -

(52)

where

x ^ein = —. and Me =Me dx e

These equations can then be solved in exactly the same fashion as equations
(6a) and (6b), with Me calculated by integrating m.

Viscous-inviscid Interations

The solution for a complete interaction is complicated by the fact that
T is specified. The following integral relation can, however, be used:
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1 ., 2V dX X\
- Me2J(* dx" + 2 j

M

[(Y - D/2]Me
2

"o

u2 dy m (53)

For an assumed T distribution, the solution of equations (52) gives
calculated values of m and hence of Me and pe. Using an inverse inviscid
procedure, the distribution Me can be specified to obtain a new effective
body shape, that is, the streamline slopes ve/ue. Then, from equation (53),
a new estimate for T can be determined and the procedure continued until
convergence is achieved. Based on recent experience with an integral scheme
(ref. 8), it will probably not be advantageous to precisely match the
intermediate iterations for ve/ue.

It would, of course, be easier to specify ve directly for the viscous
solution. For similar flows, an efficient scheme was developed by differen-
tiating the continuity equation with respect to y and using standard second-
order central differencing for v. The value of m was then updated by
evaluating the continuity equation at the edge of the layer. This approach
failed, however, for the complete boundary-layer equations with separated
regions and was much slower for attached flows than the T specified schemes.
An alternate approach, perhaps using the vorticity equation, may be required.
All analytical and numerical evidence indicates, however, that the wall shear
is the optimum boundary condition for calculating separated flows.

CONCLUDING REMARKS

The numerical procedures developed in the investigation provide an exact
means for integrating the boundary-layer equations through separation and
reattachment. The approach appears to be adaptable to the treatment of com-
plete viscous-inviscid interactions for flow fields where the boundary layer
remains confined to a narrow region: compression-corner flows or separation
at the trailing edge of a streamlined body, for example. The method may also
prove useful in evaluating different turbulence models for separated flows.
As compared to complete Navier-Stokes solutions, the present approach allows
an order-of-magnitude better resolution of the viscous region and requires
considerably less computation time. Finally, a method based on the boundary-
layer equations provides the most promising means for investigating the
important problem of three-dimensional flow separation.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, March 8, 1974
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APPENDIX

A program listing for the point-relaxation version of the first method
is included. Only a description of the input and output is given; however,
program variable names are the same as used in the text and should be self-
explanatory. No effort was made to optimize the code or even to use a very
efficient procedure for solving the attached region of the flow. A solution
case corresponding to a = 0.1 in figure 13 is included.

INPUT PARAMETERS

(Subroutine INIT)

JMAX = maximum number of points in x, 3 < JMAX < 120
KMAX = maximum number of points in y, 4 - KMAX 5 100
DX = Ax
DY = Ay
XO = x-location of initial profile
UEXO = ue at XO
SMO = m at XO
ALPHU, ALPHV, ALPHM - relaxation parameters to update u, v, m

(Subroutine PROFL)

DYO = Ay in which initial profile is given
KMAXO = number of data points to specify initial profile
U(K),V(K) = u and v of initial profile

(Main)

ITERM = maximum number of iterations permitted
RMAX = calculation is terminated if the maximum residual exceeds RMAX
RMIN = residual at which iteration ceases and the converged solution is

printed
ALPHM2 = after an initial number of iterations, ALPHM is reset to this value
ADDAL = increment to ALPHU and ALPHV after an initial number of iterations

Wall Shear is analytically input in the present program.

OUTPUT

- The input parameters and the initial profile are printed.

- Minimum output from a marching routine that calculates the attached flow
region is printed.
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- Maximum residuals and their locations are printed every 10 iterations.

- The basic solution as a function of x is printed; data include j, x, m,
ue, ve, and T.

- The solution profiles are printed at each x station. Data include k, y,
u, v, y, u, v, and \\>/-/R and interpolated values of y at constant values
of \l>/R.
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PROGRAM LISTING

AND

CASE RUN
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PROGRAM FLOSEP (INPUT,OUTPUT,TAPE5=1NPUT,TAPE6=GUTPUT)
C
C MAIN PROGRAM
C AN ITERATIVE FINITE-DIFFERENCE METHOD FOR INTEGRATING THE
C LAMINAR INCOMPRESSIBLE BOUNDARY-LAYER EQUATIONS THROUGH
C SEPARATION AND REATTACHMENT

COMMON SMC120) , SMC U20) ,U (120, 100 )., V {120 , 100) » XB (120)
COMMON /PARAM/ JMAX , KMAX , DX , DY , UEXO ,

1 ALPHU , ALPHV , ALPHM , RMAX , RMIN
COMMON /RESID/ ITER > JREST i KREST , RESU i RESV,JU, KU

C
DIMENSION TAUU20)

C
C CONSTANTS

ITERM = 1000
RMAX a 10,
RMIN = o.oooos
ALPHM2 = 0,5
ADDAL - 0.06

C
C INITIALIZATION

CALL INIT
SY2 s 1,/(DY*OY)

C
C INPUT WALL SHEAR INTO TAU(J) AR R A Y
C EXAMPLE CASE

ALF =0.1
TO = 0,33238/12.
DO 10 J=1,JMAX
X2 = XBCJJ-2.
X6 s X2-<*.
IF(X2) 9,9,5

5 IFCX6) 7,9,9
7 TAU(J) = TO*X2*X6*(1.+ALF*X2*X6)

GO TO 10
9 TAU(J) = TO*X2*X6

10 CONTINUE

C INITIALIZATION COMPLETE
C
C MARCHING IN ATTACHED FLOW REGIONS

CALL MARCH (Jl, J2, TAU3



1FU1-J2) 12.50,50
12 C O N T I N U E

C
c RELAXATION PART
c

WRITEC6,500)
C

ITER * 0
15 CONTINUE

RMTST s 0.0
JRM a 1

C UPDATE M, EQ. 31

00 25 JsJl,JZ
RM = SM(J)*SY2*(U.*U(J»2)-0.5*U(J,3)-3.*DY*TAU(J))
SM(J) s SM(J)-4LPHM*RM
SMC(J) s 0.5*(SMCJ)+1.0)
RMP = ABS(RH)
IFCRMP-RMTST) S5,2«,2"

24 RESM a RH
RMTST * RMP
JHM = J .

25 CONTINUE
30 CONTINUE

C CAUL RELAXATION ROUTINE. METHOD ONE

ITER s ITER +1
CALL RELAX (Jl, J2)
IF (ITER - (XTER/10)*10) 32,31,32

c . PRINT MAXIMUM RESIDUALS AND LOCATION
C EVERY 10 ITERATIONS..

31 CONTINUE
WRITE (6,501) ITER,RESV,JREST,KREST,RESU,JU,KU, RESM,JRM

3£ REST s ABS(HESV)
IF (ITER -. 200} 38,3«,38

C CHANGE RELAXATION PARAMETER AFTER 200 ITER

31 ALPHM s ALPHM2
ALPHU : ALPHU + ADDAL
ALPHV » ALPHV + ADDAL
IF (ALPHV - 1.0) 36,35,35

35 CONTINUE
ALPHU s 0,98
ALPHV s 0.98

36 CONTINUE
WRITE(6,508) ALPHV,ALPHU,ALPHM

C TEST WHETHER TO TERMINATE CALCULATION

36 IF(REST-RMAX) <iO,«0,60
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40 IF (ITER • ITERM) 45,45,42
42 CONTINUE

WRITE (6,502)
GO TO 50

05 If (REST - RMIN) 46,46,15
46 CONTINUE

WRITE C6,507)

50 CONTINUE

TERMINATION WITH PRINT OUT

CALL PRNT

60 CONTINUE
STOP

500 FORMAT(1HO,35X22HRELAXATION CALCULATION //
1 7X,4HITER,5X,5HHES V,7X,7HJV Ky,6X,5HRES U»7X,
2 '7HJU KU,6X,5hRES M,7X,2HJM)

501 FORMAT(5X,I5,3(E15.5,2I5))
502 FORMATC34HO MAXIMUM ITERATIONS COMPUTED...,)
507 FORMATC25HO CONVERGED SOLUTION,,..)
508 FORMATdHO, 17HALPHV,ALPHU,ALPHM ,3F13.5)

END

SUBROUTINE INIT

INPUT DATA SUBROUTINE

COMMON SM(120) , SMC(120).,U(120,100),V(120.100),XB(120)
COMMON /PARAM/ JMAX , KM A X , ox , or , UEXO ,

1 ALPHU / ALPHV , ALPHM , RMAX , RMIN

DIMENSION UKIOO) , VK100) , •

READ (5,500) JMAX,KMAX,DX,DY,XO,UEXO,SMO
READ (5,501) ALPHU, ALPHV, ALPHM
WRITE (6,505) JMAX, DX, XO, ALPHV, KMAX, Of, UEXO,ALPHU,SMO,ALPHM

INTERPOLATION OF INITIAL PROFILE IF NEEDED

CALL PROFL (KMAX, DY, Ul, VI)

DO 30 Jcl,jMAX
XB(J) = XO+(J»1)*DX
SM(J) = SMO
SMC(J) > 0.5«(SHO+1.)
DO 20 K=1,KMAX
U(J,K) B Ul(K)
V(J,K) s VKK)

20 CONTINUE
30 CONTINUE



RETURN
500 FORMAT(2I5,5F10.0)
501 FORMAT(BFIO.O)
505 FOPMATC1H1,35X,12HINPUT VALUES//

1«X,6HJMAX s,!5,4X,«HDX s,fJ0.5,6X,«HXO =,F10.5,«X,7HALPMV s,F10.S/
2UX.6MKMAX s,I5,aX,t|HOY s,F10,5,«X,6HUEXfl =,F10.5,«X,7HALPHU »,
3F10.5/ 39X,«HMO = ,F10.5,«X,7HALPHM =.F10.5)
END -

SUBROUTINE PROFL CKMAX1, OYl» Ul» VI)

INTERPOLATION OF INITIAL PROFILE.

DIMENSION Y(00),U(60),V(60), C(5), S(5), T(5) ,
1 YK100), Ul(lOO) , V1C100)

INT B 2

INPUT INITIAL PROFILE

READC5,501) OYO,KMAXO
MRITE(6,510)
00 2 K=1,KMAXO
READ(5,500) U(K3,V(K)
YCK) = (K-1)*DYO
WRITE (6,511) K, YtK), U(K), V(K)

2 CONTINUE
IF( KMAX1 - KMAXO) 30,30,3

3 CONTINUE
KSAVE s 1
DO 20 Klsl,KMAXl
Yl(Kl) = (K1-1)*DY1

1 DO 5 KSKSAVE,KMAXO • •
KK s K
IFCY(K)-YiCKl)) 5,5,6

5 CONTINUE
6 IFCKSAVE-1) 9,9,7
7 IFtY(KK-l)-YHKl)) 9,9,8
8 KSAVE s 1

60 TO H
9 KK • KK-UNT + D/2

IFCKK) 10,10,11
10 KK = 1

GO TO 13
11 M = KK+1NT

IF(M-KMAXO) 13,13,12
12 KK = KK-1

GO TO H
13 INT1 s INT+1

KSAVE a KK
DO 11 L=1,INT1
C(L) » YKKl)-Y(KK)
SCL) = U(KK)
T(L) = V(KK)

14 KK - KKtl



00 16 KKsl,INT
1 = KK+1

15 D = C(KK)-CCI)
SCI) s CCCKK)*SCI)-C(1)*SCKK))/D
TCI) e CCCKK)*TCI)-C(I)*TCKK))/D
I = 1 + 1
IFCI-INT1) 15,15,16

16 CONTINUE
U1CK1) = SCINT1)
V1CK1) s TCINT1)

20 CONTINUE
RETURN

C NO INTERPOLATION

30 DO 31 K*1,KMAX1
U1CK) s UCK)
VI (K) = VCK)

31 CONTINUE

RETUKN

500 FORMATC8F10.0)
501 FORMATCFIO.0,15)
510 FORMATC1 HO,15X,1«HINITIAL VALUES//4X,1HK,7X,IKY,1IX,lHU» 11 X, 1HV)
511 FORMATC2X,I3,3F12.6)

END
C

SUBROUTINE MARCH CJ1. J2» TAU)

C MARCHING IN ATTACHED REGION

COMMON SMC120) , SMC(120),U(120,100),V(120,100).XB(120)
COMMON /PARAM/ JMAX , KMAX , DX , DY , UEXO ,

1 ALPHU , AUPHV , ALPHM ,'RMAX , RMIN

DIMENSION TAUC120) , UX(IOO)

TAUWT = 0.02
ALPHM2 B .5
SY = ,5*DY
SYY = DY*DY
SX2 a ,5/DX
SY2 = l./CDY*DY)

C
N a 2
JINT » -1
KM B KMAX-1
IFCTAUC3) - TAUWT) 50,50,5

C
5 N = N +1

J s N
Jl B J t JINT
J2 = J
JINT = 0



IFC J - JHAX) 6,6,50

C TEST TO SEE IF PROFILE IS ATTACHED

6 IFCTAU(J) - TAUWT) 50,50,7
7 CONTINUE

C OBTAIN GOOD GUESS BY USING EXTRAPOLATION OF LAST COMPUTED PROFILES

DO 8 K=2,KM
UCJ,K) B 2.*UCJ-1,K) -U(J-2,K)

6 V(J,K) s 2,*V(J.1,K) - V(J-2,K)
SM(J) = SMCJ-1)

C
ITER = 0
UXC1) = 0.

C
10 ITER = ITER + I

DO 20 J=J1,J2
JR = J-l
JRR = J-2
REST = 0.
RM = SM(J)+SY2*U.*UCJ»2)-Ot5*UCJ,3)-3.*DY*TAU(J))
SM(J) = SM(J)-ALPHM*RM
SMC(J) = 0.5*CSM(J)+l,0)
00 18 K=2,KM
KR a K-J
KP s K +1

C
IF( J-2) 12.12,13

12 UX(K) a SX2*t U(J+1,K) - UCJRrKn
U2X = UX(K) *( UCJ+l.K) + UCJR.K))
DIAX a 0.
GO TO 14

13 UX(K) = SX2* C 3.*U(J/K) -«.*U(JR,K) +UURR.K))
U2X s SX2*( 3.*U(J,K)**2 -4.*U(JR,K)**2 » U(JRR,K)**2)
DIAX = 3,*XB(J) *SX2

14 CONTINUE
UY = SY*(UCJ,KP)-UCJ,KR))
FU = UY*V(j>K)tSYY*C0.5*XBtJ)*U2X-SM(J)*(lt-U(J/K)**2))
RU = U(J,KR)-2.*UCJfK)+U(J,KP)-FU
RV s VCJ,Kj-V(J,KR)tSY*(XB(J)*CUXCK)»UXCKR»+SMCCj)*(UCJ»K)+

1 U(J,KR)))
OT s 2. + SYY*U(J,KJ«CIAX
ou = RU/DT
DV = - RV
UCJ,K) = U(J,K) + DU
VCJ,K) s V(J,K) + DV
RT s ABS(RV)
IFCRT - REST) 18,18,15

15 REST s RT
IB CONTINUE
20 CONTINUE

C
IFC ITER - 20) 26,26,25



as ALPHM s
as CONTINUE

IF( REST -.RMAX) 27,100,100
Z7 IF( REST - RMIN) 30,JO,28
ae IF( ITER - 600) 10,100,100
30 CONTINUE

IFCN-3) 35,35,«0
35 WRITE(6,501) . -

IZ = 0
RZ = 0.
DO 36 J = 1,2
V(J,KMAX) s VCJ,KM) - DY*SMCCJ)
TAUW = ,5*( -3,*UCJ»1) »1.*U(J»a) -UtJ,3))/DY
WRITE(6,500) J,IZ,RZ,V(J,KMAX),TAUW,SMCJ)

36 CONTINUE
(10 J a N

TAUW - .5*( -3.*U(J,1) +«.*UCJ,a) -UCJ,3))/DY
VCJ.KMAX) « V(J,KM) - OY*SMC(J)
WRITE(6,500) J,ITER,REST,VCJ,KMAX),TAUW,SM(J)
GO TO 5

"50 Jl = N
ja s JMAX
RETURN

100 J s N
TAUW = ,5*( -3.*UCJ,D +«.*UtJ,a) -U(J,3))/OY
V(J,KMAX) = V(J,KM) - DY*SMC(J)
WRITE (6,500) J,ITER,RtST,VCJ,KMAX),TAUW,SM(J)
STOP

500 FORMATC1H ,ai5,«F13.5)
501 FORMATfiHl, 35X18HMARCHING PROCEDURE // 5X1HJ, aX«HlT£R,

1 7X5HRES V, SXaHVMAX, 1OX3HTAU,10X1HM )

END

SUBROUTINE RELAX CJ1, J2)

RELAXATION FOR REVERSED FLOW

COMMON sM(iao) , sMC(iao),u(iao,ioo),vciao,ioo),xB(iao)
COMMON /PARAM/ JMAX , KMAX , ox ., DY , UEXO ,

. 1 ALPHU , ALPHV , ALPHM , RMAX , RMIN
COMMON /RESID/ ITER , JREST , KRtST , HESU , RE5V,JU, KU

DIMENSION UX(IOO)

EPS1 = .015
EPSa = 0.005
KM u KMAX "I

EPS = EPSl-EPSa
RESU s o.



RESV = 0.0
RTEST a 0,
REST « 0.0
SY a 0,5*DY
8YY = DY*DY
SX2 = 0.5/OX
.00 50 JaJl,J2
JR a J-l
JP a J+l
UX(l) a 0.0
00 30 KB 2,KM
KR • K.I
KP = K*l

C
c

IF(J-JMAX) 10,13,13
10 UX(K) a SX2*tU(JP,K)-U(JW,K))

IFCJ-2) 11,11/12
11 U2X = SX2*(U(JP,K)**2-U(JR,K)**2)

DIAX * 0.
GO TO 20

12 T = U(J,K)
IF(T-EP81) 16,16,la

13 UX(K) a SX2*(3.*U(J,K)-U.*U(JR,K)+U(JR-1,K))
t
C ATTACHED FLOW
C

14 JQ a J-2
U2X = SX2*(U(JQ,K)**2-«.*UCJH,K)**2»3.*U(J,K)**2)
OIAX a 3.*XB(J)*SX2
GO TO 20

C
C SEPARATED FLOW
C

16 USX a SX2*(UCJP,K)**2-U(JR,K)**2)
DIAX = 0.
IF(T»EPS2) 20,20,18

C
C SEPARATION POINT
C REATTACHMENT POINT
C

18 J(J - J-2
U2P - U2X
U2X » SX2*(U(JQ,K)**2-U.*UCJR,KJ**2+3,*U(J,K)**2)
TA = (T-EPS2)/EPS
U2X = TA*U2X+C1.-TA)*U2P
OIAX e 3.*TA*XB(J)*SX2

C
20 CONTINUE

UY a SY*(U(J,KP)-UU»KR))
FU a UY*V(J,K)fSYY*CO.S*XB(J)*U2X"SM(J)»(l.-UCJ,K)**2))
RU a U(J,KR)-2,*UCJ,K)+U(P,KP)-FU
RV - VCJ»K)-V(J,KR)»SY*(XB(J)*(UX(K)+UX(KR))»SMCCJ)*(UCJ»K)+

1 UCJ,KR)))
DT a 2. » 8YY*U(J»K)*DIAX



DU = HU/DT
DV = • RV
UCJ,K) = UCJ,K)tALPHU*DU
VCJ,K) s V(J,K)*ALPHV*DV

RT s ABSCRU)
IF(RT-RTEST) 22,22,21

21 RESU a RU
RTEST s RT
JU « J
KU f K

22 CONTINUE
RTT = ABSCRV)
IF(RTT-REST) 27,27,26
RESV = RV
REST = RTT
JREST a J
KREST = K
IFCREST-RMAX) 27,27,100
CONTINUE

30 CONTINUE
K s KMAX
RV = V(J,KMAX)-V(J,KM)+SY*(XBCJ)*UXCKM)+SMC(J)*C1.+UCJ,KM)))
V(J,KMAX) s V(J,KMAX)-ALPHV*RV
RTT = ABSCRV)
If-CRTT-REST) 35,35,34

34 RESV s RV
REST = RTT
JREST = J
KREST s K
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE PRNT

26

27

35
50
100

OUTPUT SUBROUTINE

COMMON
COMMON /PARAM/

1
COMMON /RESID/
COMMON /STRM/

SMC120)
JMAX
ALPMU
ITER

PSI(IOO)
KIM

SHC(120),U(120,100),VC120,100),XB(120)
KMAX , DX , DY , UEXO ,
ALPHV , ALPHM , RMAX , RMIN
, JREST , KREST , RESU > RESV,JU, KU
YST(IOO) , POUT(60) , YIC60) , Y2(60) ,
K2M

DIMENSION UY(120) , UEC120) , F(120) , FX(120) , UST(IOO) ,
1 VST(IOO), ETA(IOO)

HY s 0.5/DY
KEND = KMAX
SX - 0.5*DX
DO 10 J=1,JMAX
UUJ) = HY*(-3.*UCJ,m«.*U(J.2)-UCJ«3))

10 CONTINUE



REST = RESV
WRI TEC 6,500) ITER,JREST,KREST,REST

C
C INTEGRATION FOR UECX)
C • ' .

UEU) a UEXO
F(l) a ALOG(UEXO)
IFC XBC1) -.00001) 12,13,13

12 XB(1) a ,00001
13 CONTINUE

FX(1) a SMCD/XBCl)
00 15 Ja2,JMAX
FX(J) a SMCJ)/X6CJ)
F(J) B F(J-1)+SX*CFX(J)+FX(J-1))
UE(J) a EXPCF(J))

15 CONTINUE

WRITE (6,SOS)
WKITE (6,503) CJ,XB(J)»SMCJ),UE(J),V(J,KMAX)•UY£J),Jel,JMAX)
DO 20 Kal,KMAX
ETACK) a (K-1)«DY

20 CONTINUE
YST(l) * 0,
VST(l) = 0,
PSK1) s 0.

DO 50 JcltJMAX
Cl » SQRTCX8(J)/UE(J)>
C2 = 1./C1
Ci = SQRTCXBCJ)*UE(J))
51 a 0.5*(SM(J)-1.)
52 = 0.5*DY*C3
USTCl) s UE(J)*U(J»1)

DO 30 K=2,KHAX
Y s ETACK)
YSTCK) = C1*Y
USTCK) a UCJ,K)*UECJ)
VSTCK) s CVCJ,K)-S1*Y*UCJ,K))*C2
PSlCt<) a PSI(K-1)+S2*(UCJ»K)+UCJ,K-1))

30 CONTINUE

DSTR B YSTCKMAX).PSICKMAX)/UECJ)
WRITEC6,510) XBCJ).DSTR

C
CALL STREAM CKEND)

C
WRITE (6,511)
IF CK1M ,EQ. 0) GO TO UO
WRITE (6,512) (K,ETACK),U(J,K),V(J,K),YSTCK),UST(K), VST(K),

1 PSlCK), POUTCK), Y1CK), Y2CK), KB!,KIM)

C KIM - NUMBER OF POINTS WITH SEPARATION

40 CONTINUE



K2 s KIM + 1
WRITE C6.51<1) (K,ETACK).UCJ,K),V(J,K),YSTCK),UST(K), VST(K),

1 PSICK), POUTCK), YKK), KsK2,K2M)

C . K2M - TOTAL NUMBER OF INTERPOLATED POINTS,
C (SEPARATED PLUS SINGLE VALUED) .

K3 = K2M t 1
WHITE (6,M3) (K,ETA(k),U(J,K),V(J,K),YST(K),UST(K), VST(K),

1 PSICK) , KsK3,KMAX)
50 CONTINUE

RETURN

500 FORMATC9H1 ITER'=,I5,9H JRESV =,Ib,9H KRESV s,l5,8H RESV «»
1 H3.5)

502 FORMATCSHO J, 6X, UHX C J} , 6X, 2MSM,9X,6HU EDGE,7X,6HV EDG£,6X,
1 10HDU/DY WALL)

503 FOHMATC2X,I3,F10.3,4F13,6)
510 F O R M A l t l H l f b H X t J ) = F12.5, 2X8HDELSTR = F12.6 )
511 F O R M A T ( 1 0 2 X , 1 2 H I M T E R P O L A T E D /

1 3 X , 1 H K , « X , 3 H E T A , 9 X , 1 H U , 1 0 X , 1 H V , 1 5 X , 1 H Y , 1 1 X , 3 H U S T , 9 X , 3 H V S T , 9 X ,
2 3 H P S I , 1 5 X . 3 M P S I , 7 X , 1 H Y , 9 X , 1 H Y ) •

512 FONHAT( ia ,F6 ,3 ,2F12 .6 ,4X ,aF12 .6 ,10X,F7 .4 ,2F10 .5 )
513 FURHAT(I<1,F8.3 ,2F12.6 ,«X,UF12.6)
51« FORMAT( I« ,Fe .3 ,2F12.6 ,«XrUF12.6 ,10X,F7 .« ,F l0 .b )

END
C

SUBROUTINE STREAM (KMAX)

c INTERPOLATION FOR STREAM FUNCTION

COMMON /STRM/ PSIClOO) • YST(IOO) > POUT(60) > Yl(60) > Y2C60) »
1 KIM , K2M

DIMENSION CCa) , SC«)

C
PSMIN s -0.10
PSMAX = 10,0

C
NO » *200.*PSMIN
NO s NlO + 1
M B NO+9
N2 = NltlO
N3 = N2+10
DO 8 N=l,60
IFCN-N3) 2,1,1

1 POUT(N) s 6*N-N3
NMAX s N

2 IFCN-N2) 4,3,3
3 POUT(N) = 0.5*(N-N2+1)

GO TO 8



0 IF(N-Nl) 6,6,5
5 POUT(N) s O.Ob*(N-Nl)

GO TO 8
6 POUTCN) s 0.005*(N«NO)
6 CONTINUE
9 CONTINUE

C
C**»**FIND MINIMUM PSI

INT = 2
DO 10 Ks2,KMAX
KK = K
IF(PSI(KK)-PSICKK-in 10,10,11

10 CONTINUE
11 KPMIN s KK-1

IFCKPMIN-INT) 12,12,15
12 NMIN s NO

KPMIN a 1
GO TO 40

15 PMIN s PSI(KPMIN)
C
C*****FIND INITIAL PRINTOUT VALUE

DO 17 Nsl,NMAX
NN = N
IF(POUTCN)-PMIN) 17,17»18

17 CONTINUE
16 NMIN = NN

NI = NO-NMIN
c
C*****INTERPOLATION.,.PSI FROM HALL TO U = 0

00 30 L=1,N1
NN = NO-L
DO 20 K=l,KPMIN
KK B K
IFCPOUTCNN)-PSI(KK)) 20,20,21

20 CONTINUE
21 KK » KK-(INT+l)/2

IFCKK) 22,22,23
22 KK = 1

GO TO 25
23 M s KK+INT

IF(M-KPMIN) 25,25,2«
24 KK B KK-1

GO TO 23
25 INT1 = INT+1

DO 26 J=1,INT1 • •
CCJ) = POUTCNN)-PSI(KK)
SCJ) = YST(KK)

26 KK s KK+1
DO 28 J B 1,INT
1 B J + l

27 S£I) = (C{J)*SfI)-C(I)*5(J))/(C(J)-C(I))
I s 1 + 1



IFCI-INT1) 27,27,28
26 CONTINUE

Y2CNN) * SCINTl)
30 CONTINUE

KPMIN s KPMIN+i
40 CONTINUE

KSAVE s KPMIN
C
C*****INTERPOL*TIUN,..PSI FROM U = 0 TO EDGE

DO 60 NBNMIN,NMAX
NN • N
DO 45 KsKSAVE,KMAX
KK B K
IFCPSHKK)-POUT(NN)) 45,45,46

45 CONTINUE
46 KK = KK-1

IFCKK-KPMIN) 47,47,48
47 KK = KPMIN

GO TO 49
48 M a KK+2

IFCM-KMAX) 49,49,46
49 KSAVE s KK

DO 50 jsl,3
C(J) = POUT(NN)-PSKKK)
S(J) a YST(KK)

50 KK = KK+1
S(2) = CC(l)*S(a)-C(Z)*S<l))/(C(l)-C<2))
S(3) = (CC1)*3(3)"C(3)*8(1))/(C(1)-C(3))
Yl(NN) B CC(2)*3(3)-C(3)*S(2))/(C(2)-C(3))

60 CONTINUE
Kl B 0
IFCNO-NMIN) 75,75,65

65 NO! = NO-1
DO 70 L=NMJN,NOl
Kl s Kl + 1
POUTCK1) « POUT(L)
Y l C K l ) B YKL)
Y2CK1) B Y2CL)

70 CONTINUE
75 CONTINUE

KIM B Kl
K2 B KIM
DO 80 L B NO,NMAX
K2 = K2 + 1
POUTCK2) B POUT(L)
YKK2) s YKL)

80 CONTINUE
K2M = K2
RETURN

END

52 52.125 .24 0, 1. 0.
0.9 0.9 0.05



,25
0,00000
0,0830«
0.16597
0,24648
0.33003
0,10991
0.48726
0.56111
0.63047
0.69442
0,75216
0.60313
0,64704
0,88390
0,91400
0.93790
0.95632
0,97010
0,98010
0,98712
0,99191
0,99506
0,99708
0,99832
0,99906
0,99949
0,99973
0.99986
0,99993
0,99996
0,99998
0,99999
0,99999
0,99999
0,99999
0,99999
0,99999
0,99999
0,99999
0,99999
0,99999
0,99999
1.00000
1.00000
1,00000
1,00000
1,00000
1,00000
1,00000
1,00000
XENDDS

50
0.00000
-0.00519
-0.02075
-0.04665
-0,08281
-0.12906
-0.18513
-0.25065
-0.32513
•0.40793
-0.49834
-0,59555
•0.69869
-0.80687
-0,91924
-1,03496
-1.15337
-1.27377
-1.39566
-1.51861
•1.64230
-1.76649
-1.69100
•2.01571
-2.14055
-2,26546
-2.39041
-2.51538
-2.64037
-2.76537
•2.89036
-3.01536
-3.14036
-3,26536
-3.39036
-3.51536
-3.64036
•3.76536
-3.89036
-4,01536
-4.14036
-4.26536
-4.39036
-4.51535
-4.64035
•4.76535
-4.89035
•5.01535
-5.14035
-5.26535



INPUT VALUES

JMAX = 52
UMAX a 52

DX s .12500 XO B
OY s .24000 UEXO =

MO =

INITIAL VALUES

K
1
2
3
u
<3
6
7
e
9

10
11
12
13
14
15
16
17
16
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
36
39
uo
41
42
43
44
45
46
47
46
49
50

y
0.000000
.250000
.500000
.750000

l.QOQOOO
1.250000
1,500000
1.750000
2.00QOOO
2.250000
2.500000
2.750000
3.000000
3,250000
3.500000
3.750000
4.000000
4.250000
4,500000
4,750000
5.000000
5,250000
5.500000
5,750000
6.000000
6,250000
6.500000
6.750000
7.000000
7.250000
7.500000
7.750000
6,000000
6.250000
8.50QOOO
8,750000
9.000000
9.2£0000
9,500000
9.7SOOOO
10.000000
10.250000
10.500000
10.750000
11.000000
11.250000
11.500000
11.750000
12.000000
12,250000

U.
0.000000
,063040
.165970
.248460
,330030
.409910
,487260
.561110
.630470
.69U420
.752160
.603130
.647040
.883900
.91UOOO
.937900
.956320
.970100
.980100
.987120
.991910
.995060
.997080
.998320
.999060
,999490
.999730
,999860
.999930
,999960
,999980
,999990
.999990
.999990
.999990
,999990
,999990
.999990
.999990
.999990
.999990
.999990
.000000
.000000
.000000
.000000
.000000
.000000
.000000
1.000000

V
0.000000
-.005190
-.020750
-.046650
-.082810
-. 129060
-.185130
-.250650
-.325130
-.407930
-,498340
-.595550
-, 698690
-.606870
-.919240
•1.034980
-1.153370
-1.273770
-1.395660
-1.518610
-1.642300
-1.766490
-1.891000
-2.015710
-2. 140550
-2.265460
-2.390410
-2.515380
-2.640370
-2.765370
-2.890360
-3.015360
-3,140360
-3.265360
-3.390360
-1.515360
-3.640360
-3.765360
-3.890360
-4.015360
-4.140360
-4.265360
-4.390360
-4.515350
-4,640350
-4.765350
-4.890350
-5.015350
-5.140350
-5.265350

0.00000
1,00000
0.00000

ALPHV *
ALPHU =
ALPHM *

.90000

.90000

.05000
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