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SUMMARY

The,work done under this grant can be broken into three phases. A

description of these phases is given in Table 1. Additional comment on these

phases follows.

Phase I (1969-1971) Design of uniform shells (mainly cones) using a

membrane prebuckling analysis, the Langley developed SALORS program for
2 3

general buckling, the Fiacco McCormick and Powell Penalty functions, and

Davidon Fletcher Powell4 and Marquardt's5 methods for function minimization.

Seven design variables were considered. All derivatives exact except general

buckling load derivative. This work was an extension of Morrow and Schmit's6

work. Work was published in Journal of Spacecraft and Rockets.7

Phase II (1971-1973) Design of completely nonuniform shells (cones, spheres,

toriodal segments) using a linear bending prebuckling analysis. The design

problem was formulated and solved as a control theory problem. A first order

differential equation formulation was used. General buckling was not included

in the design process but was checked after a design was obtained for local

yield and buckling constraints. A total of 245 design variables were used.

This work is described in the Ph.D. thesis of D.K. Majumder,8 a graduate

student supported by the grant.

Also during this period, difficulties with the SALORS problem were en-

countered and a new program, named SORAN (Shell of Revolution Analysis) and

based on Cohen's computer approach, was developed.

Phase III (1973-1974) The design process of Phase II was revised to reduce

the number of design variables to about 30 by considering piecewise uniform

designs. Also, the SORAN program was incorporated into the design scheme

so that general buckling could once again be considered in the design process.

A perturbation formula based on the SORAN program was derived and this allows

exact derivatives of the general buckling load to be computed with very little
10

additional computer time. A paper which presents this formula has been

accepted for publication in the AIAA Journal.

In order to reduce the computer time required, a mixed interior-exterior

penalty function is used which allows a reduction in the number of times the

1<



Table 1. Outline of Work Accomplished Under NASA Grant NGL-33-007-075.

Phase/Dates Description of Work Publication or Thesis Significant Results

1/1969-1971 Design of uniform stiffened shells, "Synthesis of Stiffened Conical Direct extension of work of
membrane prebuckling state, SALORS Shells," Journal of Spacecraft Morrow and Schmit as reported
Buckling program. Exact derivatives and Rockets, Vol. 9, No. 3, in NASA CR 1217, December 1968.
except for general buckling. Seven March 1972, pp. 189-195.
design variables. Two penalty
functions and two unconstrained
minimization techniques tried.
Results obtained for cones and cones
with slight meridional curvature.

II/1971-1973 Design of completely nonuniform Ph.D. Thesis by D.K. Majumder 1.) First attempt at automated
stiffened shells, linear bending submitted to Clarkson College of preliminary design of general
prebuckling state, general buckling Technology, September 1973. shells with nonuniform wall.
tacked on after termination of thickness and nonuniform
design process. Exact derivatives stiffeners. Direct extension
of all constraints obtained through of work of Cohen as reported

A a control theory approach. A total in NASA CR 1424, August 1969.
of 245 design variables were con- Limitation is exclusion of
sidered. Results for cones, spheres, general backing constraint.
and toriodal segments obtained. Also Also, a piecewise uniform con-
a new general buckling program figuration would be more
(SORAN) based on Cohen's shell practical.
formulation was developed to allow 2.) SORAN program developed-
general buckling to be brought back provides nucleus for phase III
into the design process in the next of work.
phase.

III/1973-1974 Design of piecewise uniform shells. 1.) "Reanalysis Information for 1.) Practical approach to
Discrete rings treated as pre- Eigenvalues derived from a dif- preliminary design of non-
scribed parameters. Linear ferential uniform shells because of
bending prebuckling analysis and piecewise uniformity of shell ,
SORAN buckling analysis included in

(Continued next page)



Table 1 (Continued)

design formulation. Exact derivatives Equation Analysis Formulation," which should allow easy
of all constraints included (for the accepted for publication in the fabrication.
general buckling load this required AIAA Journal. 2.) Self Adjoint formulation
the derivation of a new formula for 2.) "Optimal Stiffened Shells of SORAN buckling program
eigenvalue perturbations.). A of Revolution," to be sub- allows efficient calculation
total of 30 design variables are mitted for possible publication of derivatives of general
considered. A mixed interior-ex- (see Appendix this report). buckling load.
terior penalty function is used in con- 3.) Perturbation formula for
junction with the Fletcher-Reeves buckling loads of a general
method. shell of revolution derived.

4.) The Phase III design
capability is probably the
most general preliminary static
design capability presently
available for shells of re-
volution.
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general buckling load must be computed. Also, this latest approach allows

discrete-rings to be included in the design process as prescribed parameters.

A paper describing this latest design approach has been written (see Appendix)

and will be submitted for publication shortly. The capability presented in

this paper is felt by the principal investigator to be the most general

preliminary shell of revolution static design capability presently available.

Detailed Description of Work Done

A total of ten Status Reports have been submitted during the course of

the grant. These give the detailed description of the work done. The work

done during the final report period (Dec. 1973 to May 1974) is contained in

the Appendix to this Final Report in the fbrm of a paper to be submitted for

publication.- This paper and the others noted in Table 1 will complete the

dissemination in the open literature of the work described in the various

Status Reports.

General Discussion

Goal of Research - Limitations - Art of Design

The goal of this research was to attempt the automation of the design

process for general stiffened shells of revolution. In the context of pre-

liminary design of parts of a complex shell structure such as a missile (S4-B

etc.), this goal has been accomplished.' Two qualifying words (preliminary and

parts) need further clarification.

By "preliminary" design a preliminary sizing of the elements of the

shell by means of relatively crude design formulas is meant. For a

stiffened shell, this usually means computing the general buckling load

with"smeared" stiffeners (the equivalent shell is an orthotropic monocoque

shell) and treating the failure modes of the stiffeners themselves and the

shell wall between stiffeners as independent (or uncoupled).

By "parts" of a shell a distinction is made between the shell structure

which generally will be fabricated of several shells joined together by

discrete stiffeneing rings and the "part" of the shell structure between-

4<
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these discrete rings.

In the ,design of any shell structure composed of several parts which

are connected by stiffening rings, these rings must of course also be

designed. At the present state of the art, it is felt that the design of

these rings is best left to the experienced designer. With the preliminary

designs for the parts of the shell obtained from the capability developed under

this Grant, and an advanced computer capability (such as NASTRAN or the

program developed by Bushnell1 1 for handling branched shells), the experienced

designer can reliably size the stiffening ring (or rings) and make whatever

modifications are necessary in the preliminary designs of the shell parts to

arrive at a final design.

There are two reasons why it is felt that the final design including

connections is best done manually at present.

I.) There is quite a bit of art involved in the design process. It is

one thing to automate the design of parts of a structure and quite another to

automate the design of a structure as a whole. As an example of the kind of

thing involved here, consider the approach to design of the stiffening ring
12

used in Cohen's NASA CR 1424. (Aug. 1969). Here, the stiffening ring at the

base of the shell is sized to suppress the n =2 shell buckling mode. This

allows the design of the shell to be uncoupled from the design of the

stiffening ring. While the entire shell (shell plus end rings) could be designed

by an automated process, it seems clear that Cohen's approach is the superior

one.

2.) If all the art involved in design were able to be quantified into

a computer automated design approach, the only way a final design could be

obtained directly would be by incorporating such programs as Bushnell's

branched shell analysis into the design process. Considering the core and

run time necessary for such programs, this seems prohibitively expensive at

the present time.

5<
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Analysis Methods for Design

13
It has been noted by Storaasli and Sobieszczanski that a need exists

for analysis techniques which are developed with an eye on their use in

design. The basic idea here is to develop analysis techniques which do not

require complete re-solution when small changes are made in parameters

which govern the results obtained from the analysis. Then, using, for in-

stance, a Taylor series expansion in the design variables about the initial

design point, analyses for neighboring points can be determined without re-

solving the problem if the derivatives are available from the first solution.

In buckling problems, symmetry and self-adjointness are properties of the

formulation which are central to efficient re-analysis, since in this case

the required derivatives can be calculated-without re-analyzing the problem.

Since -the SALORS program is not a symmetric-formulation, it is difficult to

use in a redesign environment. This prompted the development at Clarkson of

the SORAN program which has the self-adjoint property. Basically, the difficulty

with nonsymmetric or nonself adjoint formulations is that either the adjoint

eigenvalue problem must be solved or the derivatives of the eigenvectors must

be found in order to get the derivatives of the eigenvalues. If the adjoint

problem is solved, generally its solution is just as costly as the solution

to the original eigenvalue problem, thereby greatly degrading the efficiency

of the design program.

The design programs developed during Phase III of this Grant (Table 1)

are based on self-adjoint prebuckling and buckling analyses and this property is

exploited to create an efficient redesign process. The prebuckling and buckling

formulations are both formulated as sets of first order ordinary differential

equations. These equations are integrated by the fourth order Runga Kutta
1

method and the integration method of Anderson, et al. For the design of piece-

wise uniform shells, this first order formulation has the following ad-

vantages over the second order approach of SALORS:

1.) The shell must be segmented to provide for an accurate solution. This

segmentation allows for an obvious piecewise uniform shell. The SALORS

approach requires no segmentation and thus an artificial segmentation must

be introduced to provide for piecewise uniformity of the shell.

2.) The first order formulation requires no derivatives of design variables
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with respect to meridional position whereas SALORS does. At points of

segmentation these derivatives do not exist. Hence, in SALORS, some

special steps must be taken to compute these derivatives on either side of

the segmentation point.

Optimality Criterion for Design

The design method developed under this grant uses the versatile

math programming techniques and thus is guaranteed to converge to at least

a local minimum. During the last few months of the grant, an optimality

criterion approach based on a variable energy method,1 4 which was developed

at Clarkson for use in frame and curved beam design, has been applied to

shell design. Excellent results were obtained for a monocoque cone. Considering

6 segments and stress and general buckling constraints, a minimum weight design

was obtained with only 8 reanalyses and no derivative calculations. This can

be contrasted with about 90 reanalyses (about 30 of which also require

derivative calculations) which would be required for the math programming method.

At present the energy ratio method is limited to one design variable per

segment. That is why a monocoque shell was studied. For the stiffened shell,

there are 5 design variables per segment. For the energy approach to be applied

to these shells either 4 relationships must be introduced to reduce the 5

design variables to 1 or some more general energy approach must be taken.

Some preliminary studies considering the energy in the wall as a whole as

opposed to the separate energies of the parts of the wall (skin, rings,

stringers) have been made but no general results have been obtained and no

conclusions can be made at present about this approach. The great potential

reduction in reanalyses (90 to 8) required for an optimal design should

provide the impetus to explore further an energy based optimality criterion

method for stiffened shell design.

7<
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Directions for Further Research

1.) The probuckling and buckling analyses have been formulated and utilized

within the design process in a very efficient manner. The math programming

method used could be improved. The method of Schmit and Farshi 5 using "hyper-

circles" appears promising in this respect. Alternately, an energy based

optimality criterion method for multiple design variables per segment

should be developed. Preliminary results (as noted in the preceding section

of this report) indicate that a method of this kind would greatly reduce

the number of reanalyses required for an optimal design.

2.) If an optimality criterion method proves feasible for this problem, the

number of reanalyses required for an optimal design can be expected to be

reduced by a factor of about 10. With this kind of reduction, it begins to

become feasible to consider incorporating a shell analysis using discrete

rather than smeared rings into the design process. This would give a more

accurate accessment of local ring buckling (stringers would still be "smeared"),

skin yielding and skin buckling. The resulting designs would still be

preliminary designs because the connections of the shell (or shell part) to

its environment would very likely still be considered manually by the

designer.
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Appendix

Contains a paper which will be submitted for possible publication.

This paper contains the work done during the last report period,

Dec. 1973 - May 1974.
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Optimal Stiffened Shells of Revolution1

D.K. Majumder 2 and W.A. Thornton3

Department of Civil and Environmental Engineering
Clarkson College of Technology
Potsdam, New York 13676

Summary

A method to produce piecewise uniform optimal stiffened shells of

revolution is presented. The method uses a first order differential

equation formulation for the shell prebuckling and buckling analyses and

the necessary conditions for optimality are derived by a variational ap-

proach. A variety of local yielding and buckling constraints and the general

buckling constraint are included in the design process. The local constraints

are treated by means of an interior penalty function and the general buckling

load is treated by means of an exterior penalty function. This allows the

general buckling constraint to be included in the design process only when it

is violated. The self adjoint nature of the prebuckling and buckling

formulations is used to reduce the computational effort. Results for four conical

shells and one spherical shell are given.

1. This work was supported by the National Aeronautics and Space Administration
under Grant NGL 33-007-075

2. Research Associate; presently Structural Engineer, Reutter Assoc., Camden,
New Jersey.

3. Associate Professor of Civil Engineering; on leave 1974-1975 as Director
of Engineering, Cives Corp., Syracuse, New York.
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Introduction

Several papers have dealt with the problem of optimal shell design.
(1) (2) (3)

Among these are papers by Salama and Ross , Cohen and Thornton

Salama and Ross (1 ) consider nonuniform unstiffened shells for stress and

natural frequency constraints. They use a finite element computer program

for the analysis and couple this with two alternative mathematical programming

techniques. Only one load condition is considered, but the generality of the

approach is such that multiple load conditions could easily be considered.

Cohen (2 ) considered stiffened conical shells for local and general buckling

constraints. One load condition, uniform-external pressure is considered.

A membrane prebuckling state is used for all local constraints. An empirical

correlation formula is used to include the general buckling load in the design

process. A simultaneous failure mode design technique is used. The wall

thickness is uniform and nonuniform ring size and spacing are included.

Stringers are not designed. Thornton (3 ) has treated conical ring and stringer

stiffened shells. Local stress and buckling constraints and general buckling

are included, the latter by means of a general shell of revolution buckling

analysis, the SALORS (4 ) program. The local constraints are based on a membrane

prebuckling state. The wall thickness is uniform, as is the ring and stringer

size and spacing. The design process uses a mathematical programming technique.

Results for one load condition, uniform external pressure, .are presented, but

the generality of the approach permits the inclusion of multiple load conditions.

This paper sketches an approach to shell design which is felt to be an

extension of the approaches used in the above papers, because: 1. linear

bending shell theory is used for the prebuckling analysis and all local constraints,

2. the shell wall thickness, the stiffener size parameters, and the stiffener

spacings, are treated as piecewise uniform functions of meridional position,

3. the general buckling load is used as a constraint only when it plays an

active role in the design, and 4. results for conical and spherical shells

have been obtained.

.13<
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Structural Analysis

'The piebuckling behavior of the shell is assumed axisymmetric. In

this case, the prebuckling equations can be written as six first-order

ordinary differential equations as

ry' + ay - bz = p
(1)

rz' - cy + dz = 0

where the prime denotes differentiation with respect to meridional position,
T

s, y is a vector of meridional forces, y = LP, Q, M,_ , z is a vector of

meridional displacements, zT=1 ,,Xj , r defines meridional position, p is a

vector of loads per unit area, p = X1,X,LJ , and a, b, c, and d are

matrices which satisfy the self adjointness-conditions

T T T
a+d =r'I, b = b , c = c (2)

The notations for y, z, and p are from Ref. 5, and the coefficient matrices

a, b, c, and d can be obtained indirectly from Ref. 5.

The general buckling analysis can be formulated as eight first order

ordinary differential equations as

rY' + AY - BZ - X F = -paY - pZ + pF
e

(3)

rZ' - CY + DZ = -j'Z

where the notation of Eqs. 6 of Ref. 6 is followed except that upper case

Y and Z are used here to distinguish the eigenvector of meridional forces

and displacements from the prebuckling forces and displacements. The

coefficient matrices a and 8 can be found in Ref. 6 and the matrices A, B,

and C can be found in Ref. 7 (denoted a, b, c there). Also, F is a vector

of perturbation forces, he is a reference buckling load and p is the buckling

load. The matrices A, B, C, D, a, 3, and 6 satisfy the self adjointness

conditions as

14<
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T T T - -T - -T
A + D = r'I, B B, C = C , + = 0, =T (4)

Eqs. 1 and Eqs. 3 are solved by the integration method of Appendix A of

Ref. 4. In order to provide for an accurate solution to these equations,

the shell must usually be segmented meridionally. Also, if concentrated

loadings or discrete rings are present, the shell must be segmented to

accommodate these loads or rings. The conditions that must be satisfied

by the prebuckling equations at points of segmentation are

ray - kz = L, s = s. (5)

where s. denotes the points of meridional segmentation, L is a matrix of

applied loads and k is the discrete ring stiffness matrix which can be found

in Ref. 7. The notation Ay is as defined by Eq. 11 of Ref. 7. The matrix

k is symmetric and this symmetry is necessary for a self adjoint formulation.

Conditions at the top and bottom of the shell are a special case of Eq. 5

and classical supports can also be considered by replacing Eq. 5 by the

appropriate classical condition, i.e., hinge, roller, fixed, etc. The

only requirement on the end conditions is that they result in a self

adjoint formulation.

At points of segmentation, the buckling analysis must satisfy the con-

ditions

rAY -KZ=KZ = -KZ = s. (6)

where K is given by Ref. 7 and K can be found in Ref. 6. Both K and K

are symmetric (which property is necessary for self adjointness). As in

the case of the prebuckling analysis, classical conditions at the ends

can also be considered but here again it is important that these classical

conditions provide a self adjoint formulation. The reason for this will be

seen later.

When the prebuckling and buckling equations have been solved, the

response of a particular shell design is available and the adequacy of this

design can be determined. The adequacy of a design is judged with respect

15<
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to constraints on the response of the design. If the response does not

violate the constraints, the design is acceptable, otherwise not. Defining

the "response ratio" 0~ = (stress in wall)/(yield stress), if 0 1 i, the

design is acceptable with respect to wall stress. Other constraints can be

put in the same form and if 0i. 1 for all i the design is acceptable. The
1

constraints considered in this paper are 1) skin yield, 2) stringer yield,

3) ring yield, 4) skin buckling, 5) circumferential panel buckling, 6) meri-

dional panel buckling, 7) normal displacement, 8) meridional rotation (X),

and 9) -general buckling. Minimum gage and fabricational constraints are

also included. Discussions on constraints 1, 2, 3, 4, 5, and 9 are contained

in Ref. 3. Normal displacement(6) and meridional rotation (7) are self ex-

planatory. Meridional panel buckling (8) considers the situation that would

exist if the shell were to be stiffened with stringers but no rings. The

meridional panel is a panel imagined to exist at each meridional position which

is of infinite length in the meridional direction and has a width equal to the

stringer spacing at the point under consideration. This constraint complements

the circumferential panel buckling constraint (called panel buckling in Ref. 3)

because circumferential panel buckling handles the case where only rings

stiffen the shell.

Local buckling of the stiffeners is not considered as a constraint.

Rather, each stiffener is proportioned to force stiffener yielding and buckling

to occur simultaneously, thus reducing the number of design variables.

Structural Design

Once a particular design has been judged acceptable (it is assumed that

at least one such design can be found) the problem becomes one of determining

whether or not this particular design is the best obtainable. The best (or

optimal) design will here be considered to be the one which weighs the least.
m

The weight of the shell is given by W = E I Wk ds where m is the
k=l k

number of segments into which the shell is partitioned and

16<4:



6

AA
R AS
K K

Wk= 2n W tW r + 2rrR S r + 2nS rK S (7)

K RK Sk

In Eq. 7, y = weight density, t = wall thickness, A = stiffener area, S

stiffener spacing, subscript W refers to the wall, subscript R refers to the

rings and subscript S refers to the stringers. Also, Ik is the length of the

kth segment and rk is the radius of the shell at the beginning of the kth

segment. The stringer spacing S is defined at the beginning of the kth
k

segment. The areas AR and AS are functions of the shape of the rings and

stringers. For circular rings of thickness tR and diameter DR , AR = T tRDR
For Zee rings of flange width/web height ratio of 2/5, thickness t and

web height DR , AR = 1.8 tRDR . Thus in general

A = A(t,D) (8)

The quantities t , ts , tR , Ds , DR , Ss, and SR , which in general are

different in each segment k of the shell, are called the design variables.

In order to reduce the number of design variables, the stiffeners are

assumed to yield and buckle locally simultaneously. Thus, for circular
8

stiffeners, the buckling stress aB is equated to the yield stress a ,
y

B = .4E t/D = 0 (9)
B Y

which yields

t = (a y/.4E) D (10)

For Zee stiffeners2

B = 3.35E ( 2 = y (11)
B D y

which yields

t = (a y/3.35E)1/2D (12)
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and other formulas can be derived for other stiffener shapes. In Eqs.

9-12, E.isYoung's modulus.

With the stiffener thicknesses eliminated through Eqs. 10 and 12, the

design variables reduce to t , D, DR , S and S . These five are collectedw s s R
into a vector u in the above order.

A concise statement of the design problem can now be given as; find

u = u such that W(u ) * min while i(u ).5 1, all i. This design problem

can be formulated in the following way. Introduce a new notation for the

constraints as fi = l- i so that an acceptable design is one for which

f. z 0. Let all constraints except the general buckling constraint have
1

indices which are members of a set I while the general buckling constraint

has an index which is the (sole) member of a set 0. Now define a function

Pk where

P = W + P + - i H.(f ) f 2  (13)
k k f P i 1 k. k. i

1

In Eq. 13, p is a parameter which approaches zero sequentially and H is the

Heaviside function, H. = 0 when fk. 0 and-H. = i when fk. < 0. Combining

the function Pk with the prebuckling equations using Lagrange multipliers y

and z gives

J = S [Pk + z (ry' + ay - bz - p) -y (rz' - cy + dz)] ds (14)
k k

The design problem can be stated in terms of J as; find u = u such that

J(u , y, z, y, z, , p) - min for a monotone decreasing sequence of values of

p. This is effectively a continuous form of the well known Fiacco-McCormick

penalty function method. The necessary conditions for a stationary value of J

in Eq. 14 are obtained by taking the variations of J with respect to

u, y, z, y, and z and setting 6J =0. The variations in y and z result in

the reappearance of the prebuckling equations, the variations and y and z give

the adjoint equations, and the variation in u gives the gradient of J which

18<



must vanish for 6J = 0. Thus, the necessary conditions are, for 6z and

6y

ry' + ay - bz = p

(15)

rz' - cy + dz = 0

and for 6Y and 6z

T

ry' + ay - bz = - (- )
az

(16)
T

rz' - cy + dz = - (a).

while for 6u

ap ap=k S Pk -T 6a -T ab

k k auk yp auk z k z auk

(17)

-T 6c -T ad
-y Y + y zds 0

uk auk

Eq. 17 is a shorthand notation. Writing Eq. 17 out for the jth element of uk
gives

G. p - k P + 6au Uj yq + ....] ds (18)
j k k a k pq p ujk

Regarding Eqs. 15 and 16 it will be noted that they are formally self

adjoint (they are not completely self adjoint because the right hand sides

differ). Since the boundary and intermediate conditions for Eqs. 15 (the

prebuckling equations) produce a self adjoint formulation and are uneffected

by the :terms on the right hand side of Eqs. 16, the boundary and intermediate

conditions are the same for Eqs. 15 and Eqs. 16. This is important because

it allows the 3 complementary solutions to Eqs. 15 obtained by the method of

Appendix A of Ref. 4 to be used as the 3 complementary solutions for Eqs. 16.

Thus, only one new particular solution must be obtained to solve Eqs. 16

once Eqs. 15 have been solved. <
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It will be noted that no explicit use of the buckling solution given

by Eqs. 3 and 5 has appeared in this section of the paper except for the

appearance of p in the constraint f , ieO and the derivatives a~/au k in

Eq. 17 (and Eq. 18). Eqs. 3 and 5 must be solved to provide p for f.,

icO to allow evaluation of Pk in Eq. 13. The terms p/6uk are obtained from

Ref. 10. For the jth design variable and for the assumed critical pth

buckling mode,

eT SA T aB T aC T
2 2 Y -Z Z + Y -Y ]ds +p j [2Z Y

ujk ak P ujk ujk j Ak p aujk

'-Z T Z ds T K T K Z/
S jk s. jk s. p Ujk

i 1

T- T T T(-2Z aY - Z pZ +F Z pds + Z ZpJ (19)
P P P P P s.P

The derivation of this formula depends on the self adjointness of the buckling

formulation.

All of the derivatives in Eq. 17 (Eq. 18) can now be computed in closed

form. Eq. 17 is used as the gradient for the Fletcher-Reeves method
(1 1 )

that is used to solve the sequence of unconstrained minimization problems

which result from the introduction of the penalty function. The Fletcher-

Reeves method was used in preference to the Davidon Fletcher Powell method

because it uses less core and core was at a premium in the computer used

(IBM 360/44). Of course, peripheral storage could be used and would most

likely result in improved run times.

One final point to be noted about the derivatives given by Eq. 19

is that the matrices a and are functions of u directly and also implicitly

through dependence on the prebuckling solution y and z. This latter dependence

is neglected in computing ap/bu with no noticeable effect on the results.

20<
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Results

'The shell design method outlined in the foregoing sections has been

used to obtain designs for a number of stiffened shells. All shells studied

were broken into six segments and 11 finite difference stations were used

per segment. The size of the computer used (IBM 360/44) dictated these

numbers. Also, because this computer carries only about six significant

figures and truncates rather than rounds, double precision was required

to obtain reliable results for the general buckling calculation.

The manner in which the penalty function given by Eq. 13 was used varied

depending on the problem. In some cases, the general buckling constraint was

completely ignored until convergence was obtained for the constraints depending

on the prebuckling analysis. Then if general buckling was violated, the pro-

gram was run further until this violation was eliminated. In other cases,

general buckling was checked in the beginning and at each change in the p

parameter. It is not possible to give one way which is best for all cases.

The designer is free to choose his own variation in approach.

Each shell studied was broken into six segments as mentioned before.

Since there are five design variables per segment each shell design involves

a total of 30 design variables (25 when stringers are prescribed to be con-

tinuous from top to bottom of the shell). Considering the complexity of

the analysis for this problem, 30 is a sizeable number of design variables.

It will be recalled that the Fletcher Reeves (as with the Fletcher Powell)

method requires a one dimensional search to be performed for each search

direction computed and that for a convex function of n variables, in general n

one dimensional searches will be required for convergence. In the present

problem n = 30 and the function to be minimized is not necessarily convex

which means that generally more than 30 one dimensional searches will be

required for convergence. Assuming for the sake of argument that 30 one

dimensional searches lead to convergence, that each one dimensional search

requires approximately 3 function evaluations, and that convergence is required

for a sequence of at least 5 values of p, it can be seen that something on the

order of 450 function evaluations will be required to complete a design. It

should now be clear why 30 is considered to be a sizeable number of design

21<



variables for a problem of this complexity.

Results for four cone designs and one sphere design are presented

here. Onlyone load condition is considered in each case. Multiple load

conditions have been treated in cases not presented here and cause no

difficulty except for a great increase in computer time required for a

solution.

Case I. This is a 700 cone with the geometry and boundary conditions of

the cone considered in Ref. 10. The loading is a uniform external pressure
6

of 3.75 psi and the material is Mg with a = 16000 psi, E = 5.8xl06 psi
3y

and density y= .066 lbs/in . The cone is stiffened with exterior Z

stringers and interior 0 rings. The stringers are continuous. Table 1

gives the design variables. The shell weighs 51.52 lbs. The constraints

which control the design (active constraints) are ring yield (.83), skin

yield (.86), stringer yield (.92), and skin buckling (.99). The numbers in

parentheses are the response ratios. The general buckling load is 4.67 psi

and the critical circumferential mode is 5. The minimum gage for the

stiffeners is .01 inches and for the wall .016 inch. Table 1 shows the

rings to be minimum gage constrained in all segments and the wall thickness

to be approaching minimum gage in segment 6. The design process started from

a uniform design with tW = .027, Ds = 1.17, DR = 1.02, Ss = 1.26, and SR = 1.07.

This design weighed 76.28 lbs. The number of function evaluations required

to determine the final optimal 51.52 lb design was 368. Note that a new search

direction must be computed approximately every 3rd to 4th function evaluation.

The search direction requires that derivatives of the objective function

and constraints be computed. These derivatives are easily computed and require

only 1 particular solution for Eqs. 16 and the evaluation of Eq. 19 for each

design variable.

Case II. This also is a 700 Mg cone with geometry and boundary conditions

identical to those of Case I. The cone is stiffened in interior Z stringers

and rings. The stringers are continuous. Table 2 gives the design variables.

The shell weighs 53.83 lbs, a small increase over the weight for Case I.

The constraints which control the design are stringer yield (.99), skin yield (.98),

22"~dC
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and skin buckling (.99). The general buckling load is 5.21 psi in mode number

6. No minimum gage constraints are active. The design process started with

the same uniform design as that used for Case I (which in this case weighs

93.0 lbs because of the use of Z rings). Convergence to the optimal 53.83

lb design required 250 function evaluations.

Case III. This again is a 700 cone with geometry and boundary conditions as

in Case I and II. The.stiffeners are internal Z stringers and rings, and

the stringers are here taken to be discontinuous (stringer spacing at the

beginning of any segment is independent of the stringer spacing at the

beginning of each other segment - this gives a total of 30 design variables).

The design process started with the same design variable values as in Cases

I and II but because of the stiffener change, this design now weighs 107.14 lbs.

Table 3 gives the design variables of the final optimal design which weighs

57.58 lbs. This weight represents a 7% increase over the weight of Case II.

The constraints which control the design are stringer yield (.97), wall

buckling (.99), and general buckling (.97). The general buckling load is

3.85 psi with mode 6. No minimum gage constraints are active. Convergence

to the optimal design required 454 function evaluations.

It was noted above that this design weighs 7% more than

the design of Case II. Since the stringers are free to take the best

spacing value in each segment, it was expected that the weight for this

case would be less than the weight for Case II rather than more. It is

expected that the use of more stringent convergence criteria would force

the weight of this case to less than that of Case II.

Case IV. As in Cases I, II, and III, this shell is a 700 Mg cone again

with the geometry and boundary conditions of Ref. 11. The stiffeners are the

same as those of Case I. The loading is a line load of 147.66 lb/in applied

at the center of the meridian (this is the segmentation point between

segments 3 and 4). The load of 147.66 lb/in was chosen so that the total

load applied to the shell is the same as the total for the 3.75 psi uniform

load. The design process started with a uniform design with tW = 0.8, Ds = 1.75,

D = 1.75, S = 2.0, which weighed 134.66 lbs. Table 4 gives the design
s s

variables of the final optimal design which weighs 71.77 lbs. The constraints
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that control the design are ring yield (.99), stringer yield (.99), skin yield

(.99), and wall buckling (.98). The general buckling load is 263.88 lbs/in

with mode number 7. Table 4 shows that the rings are minimum gage constrained

in all segments and the wall thickness is approaching minimum gage (.016) in

segment 6. The significant weight difference between this case and Case I

clearly shows the effect of differing load application. Convergence to the

optimal 71.77 lb design required 350 function evaluations.

Case V. This is a segment of a spherical shell as shown in Fig. 1. The shell is

stiffened with exterior Z stringers and interior Z rings. The material is

6 3
aluminum with a y = 40,000 psi, E = 10x10 psi, and density y = .1 lbs/in 3

The shell is loaded with a uniform external pressure of 10 psi. The stringers

are continuous. The design process started with a uniform design with

t = .6, D = .75; D = .75, S = 2.0, S = 2.0, which weighed 380.4 lbs.
W - s- R s R
Table 5 gives the design variables of the final optimal design which weighs

289.91 lbs. The constraints that control the design are ring yield (.89),

skin yield (.99), and wall buckling (1.0). The general buckling load is

22.75 psi and the critical mode is 19. No minimum gage constraints were

active. Convergence to the final design required 285 function evaluations.

Discussion

The 5 cases presented above demonstrate some of the versatility of the

shell design scheme presented in this paper. Actually the scheme is much

more versatile than the results presented here indicate. Discrete rings

can be included in the process. Their properties are prescribed parameters

which enter into the matrices K, k, and K. Also, a different shell wall

geometry can be considered in each segment, i.e., stringers could be included

in segments 1 and 6 but not in the other segments if this is appropriate.

Also, multiple load conditions can be included. The computer program which

was used to obtain the results in the preceding section of this paper has

this versatility built into it.

The results presented also both indicate and mask some of the under-

lying difficulties which are encountered in numerical optimum design. An

24<
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indication of difficulty is the fact that the weight of Case III was 7%

above the weight of Case II when it was expected that Case III would weigh

less. The difficulty here probably lies in convergence criteria, starting

point, just when the general buckling constraint is included in the process,

how fast p is reduced, and the starting value of p. All of these factors

are at the disposal of the designer and the quality of the results obtained

are directly proportional to his skill in manipulating these parameters.

This aspect of numerical optimum design is well known to its practitioners

but is usually not apparent to the uninitiated. The design method presented

here and all others known to the authors' require about as much art in

their use as there is science in their development.

Conclusions

The shell design problem is formulated and solved using first order

differential equations and forward integration techniques. All derivatives

are obtained exactly. Because of the self adjoint nature of the prebuckling

and buckling problems, these derivatives can be obtained with a minimum of

calculation (one additional particular solution to the prebuckling problem

and the evaluation of an integral over the shell meridian (Eq. 19) for each

design variable. Either 25 or 30 design variables are considered and con-

vergence to the final designs are obtained in 300-450 function evaluations.

This many function evaluations for a problem involving 25 to 30 design variables

is well within the humber of function evaluations which can be expected to

be required and thus demonstrates the efficiency of the design process. The

results indicate that, as with all other numerical optimum design techniques,

care must be taken in the choice of convergence criteria and other parameters

(e.g., p) which control the design process.

25i<
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Table 1. Case I 700 Mg Cone with Exterior Z Stringers, Interior 0 Rings, Weighing 51.52 lbs.

Shell Wall Stringer Ring Stringer Ring Stringer Ring
Segment Thickness Thickness Thickness Depth Diameter Spacing Spacing

t t t Dd DSw S tR DS DR SS
inches inches inches inches inches inches inches

1 .041 .023 .0 1c .79 .74 3.00 1.93

2 .042 .023 .0 1c .81 .96 3.00 1.80

3 .037 .027 .0 1c .95 1.15 3.00 1.68

4 .062 .031 .0 1c 1.09 .93 3.00 1.65

5 .028 .033 .01c  1.16 .74 3.00 1.68

6 .018 .033 .0 1c 1.15 .57 3.00 2.03

a
t = max (Eq. 12, .01)

b
t R = max(Eq. 10, .01)

c Minimum gage.

Stringer spacing at small end of cone (continuous stringers).



Table 2. Case II 700 Mg Cone with Interior Z Stringers and Rings Weighing 53.83.

Shell Wall Stringer Ring Stringer Ring Stringer Ring
Segment Thickness Thickness Thickness Depth Diameter Spacing Spacing

a b c
t t t D D S S
w S R S R S R

inches inches inches inches inches inches inches

1 .019 .028 .020 .97 .70 1.62 1.27

2 .021 .028 .019 1.00 .68 1.62 1.26

3 .028 .030 .019 1.04 .69 1.62 1.23

4 .029 .031 .019 1.07 .69 1.62 1.22

5 .029 .031 .018 1.08 .62 1.62 1.23

6 .026 .029 .016 1.03 .55 1.62 1.23

t = max (Eq. 12, .01).
s

b
t = max (Eq. 12, .01).

Stringer spacing at small end of cone (continuous stringers).

CO



Table 3. Case III 700 Mg Cone with Interior Z Stringers and Rings, Discontinuous Stringers, Weighing 57.58 lbs.

Shell Wall Stringer Ring Stringer Ring Stringer Ring
Segment Thickness Thickness Thickness Depth Diameter Spacing Spacing

a  b c
w SR S R S R

inches inches inches inches inches inches inches

1 .025 .025 .018 .86 .64 1.48 1.36

2 .026 .024 .019 .83 .67 1.49 1.35

3 .034 .024 .021 .82 .73 1.48 1.30

4 .036 .024 .020 .83 .71 1.52 1.30

5 .036 .023 .018 .81 .63 1.52 1.31

6 .029 .021 .017 .74 .60 1.53 1.34

a t s = max (Eq. 12, .01).

b
t R = max (Eq. 12, .01).

Stringer spacing at the small end of each segment.



Table 4. Case IV 700 Mg Cone with Exterior Z Stringers, Interior O Rings,. Weighing 71.77 ibs.

Shell Wall Stringer Ring Stringer Ring Stringer Ring
Segment Thickness Thickness Thickness Depth Diameter Spacing Spacing

a b d
t t t D D S S
w S R S R S R

inches inches inches inches inches inches inches

1 .035 .038 .01c  1.32 1.21 2.64 2.22

2 .055 .042 .0 1c 1.46 1.10 2.64 2.19

3 .060 .059 .01c  2.05 1.03 2.64 2.19

4 .041 .059 .01c  2.07 .87 2.64 2.21

5 .032 .047 .01c  1.63 .85 2.64 2.20

6 .019 .039 .01c  1.37 .77 2.64 2.23

tS = max (Eq. 12, .01).

b
tR = max (Eq. 10, .01).

Minimum gage.

d Stringer spacing at small end of cone.

o



Table 5. Case VI Al Sphere Segment with Exterior Z Stringers and Interior Z Rings, Weighing 289.91 lbs.

Shell Wall Stringer Ring Stringer Ring Stringer Ring
Segment Thickness Thickness Thickness Depth Diameter Spacing Spacing

a b c
t t t D D S Sw S R S R S R

inches inches inches inches inches inches inches

1 .048 .024 .024 .71 .70 2.07 2.01

2 .046 .024 .023 .71 .68 2.07 2.01

3 .043 .025 .023 .71 .66 2.07 2.01

4 .043 .024 ,023 .72 .66 2.07 2.01

A 5 .044 .023 .023 .66 .66 2.07 2.01

6 .044 .026 .022 .75 .64 2.07 2.00

ts = max (Eq. 12, .01).

b
tR = max (Eq. 17, .01).

Stringer spacing at small end of spherical segment.
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Fig. 1. Geometry and boundary conditions for spherical

segment, Case V.
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Figure Caption

Fig. 1. Geometry and boundary condition for spherical segment,

Case V.
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