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SUMMARY

An investigation was conducted in the Langley l/8-scale V/STOL model

tunnel on a semispan delta wing with a leading-edge sweep of 740, to determine

the effectiveness of various locations of upper surface and reflection plane

blowing on leading-edge vortex bursting. Constant area nozzles were located

on the wing upper surface along a ray swept 790, which was beneath the leading-

edge vortex core. The bursting and reformation of the.leading-edge vortex

was viewed by injecting helium into the vortex core, and employing a Schlieren

system.

The results show that blowing from the nozzles in the wing upper surface

located generally on a path under the leading-edge vortex, showed that as

the distance from the apex to the nozzle location increases the flow rate

required to maintain the leading-edge vortex past the wing trailing edge,

at a given angle of attack, also increases. As the distance from the nozzle

location to the apex increases, the distance between the jet and vortex edge

becomes greater, which leads to the speculation that the jet of air enhances

the vortex life by producing a more favorable pressure gradient at the edge

of the vortex. Since the jet of air is at a relatively large distance from

the edge of the vortex when the nozzles are lodcated near the wing trailing

edge blowing from those nozzles produced no noticeable effect on the leading-

edge vortex bursting.

Blowing from the reflection plane parallel to the wing leading edge with

the nozzle extended from the reflection plane and located closest to. the apex,

25 percent of the root chord from the apex, produced the highest angle of

attack with the least amount of mass flow rate without the leading-edge vortex

bursting at the wing trailing edge.



INTRODUCTION

Employing fuselage blowing (blowing from the wing root) to enhance the

leading edge vortex of a highly swept delta wing has been shown to be effective

in increasing its maximum lift capability. Spanwise blowing enhances the

leading-edge vortex and delays its bursting, at the trailing edge of the wing,

to a higher angle of attack (reference 1). Considering this, it becomes

desirable to examine the potential benefits for aircraft technology offered

by upper surface blowing along the leading-edge vortex axis rather than at the

wing root as a means of achieving high lift. As part of a research program on

spanwise blowing the Langley Research Center recently conducted a qualitative

study to determine the effect of blowing location on the enhancement of leading-

edge vortex life. This study is being conducted with a semispan delta wing

having a leading-edge sweep angle of 740 (aspect ratio 1.18), and ten different

nozzles location on the wing upper surface and the reflection plane. The

bursting and reformation of the leading-edge vortex was viewed by injecting

helium into the vortex core through the nozzle located nearest the wing apex.

The vortex core could then be viewed by employing a Schlieren system. The tests

were conducted in the Langley 1/8 - scale V/STOL model tunnel at a dynamic

pressure of 1.56 lbs/ft2 at angles of attack between 130 and 420.

SYMBOLS

b wing span

c root chord

L distance of nozzle from apex

q dynamic pressure, lbs/ft2
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S semi-span wing area, in2

a angle of attack, deg.

a' .angle at which leading-edge vortex bursts at trailing edge,

deg.

A leading-edge sweep angle, deg.
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MODEL DESCRIPTION

A drawing of the model studied is presented in figure 1. Figures 2(a) and

2(b) show the semi-span model mounted on the side wall of the tunnel. The wing

is an aspect ratio 1.18, semi-span delta wing (A = 740) with six 1/4-inch con-

stant area nozzles placed flush to the wing upper surface (see figure 1, sect-

ion A-A) along a ray, which was swept 790. The location of the nozzles was

chosen such that the nozzles lie along the path of the vortex. The path of the

vortex was determined from data presented in reference 2. The chordwise posi-

tions of the nozzles are given in figure 1. The blowing was directed along

this 790 swept ray on the wing upper surface. Accompanying these six nozzles

are two additional wing surface nozzles (located at L/c = 0.17 and 0.25) of the

same specifications with the exception that their direction of blowing is along

a ray which is swept 780. The sharp leading edge and narrowness of the wing

in the apex region prevented the placement 'of these nozzles along the 790 ray.

In addition to blowing from nozzles located along the path of the vortex,

the present study included blowing from four nozzles located in the model

reflection plane. Two of the nozzles were located at L/c = 0.25 and two at

L/c = 0.34. All four nozzles were constant area, directed parallel to the

wing leading edge and located approximately 7/16 of an inch above the wing

upper surface.

One nozzle at each of the locations (L/c = .25 and .34) was mounted flush

with the reflection plane. These nozzles were 1/4-inch in diameter.

The second nozzle at each locations (L/c = .25 and .34) extended approximately

3/4 of an inch out.of the reflection plane (see figure 1 (b)) and had a 3/16-

inch diameter.
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The model was 11/32 inches thick, flat plate with a sharp leading and

trailing edge, and had a root chord of 15 inches. The wing was mounted on a

circular disk that was fitted into the reflection plane for simplified angle-

of-attack manipulation.

APPARATUS TEST

The present investigation was' conducted in the Langley l/8-scale V/STOL

model tunnel. The bursting of the leading-edge, vortex at the trailing edge of

the wing was determined by observing the vortex bursting bubble. This burst-

ing bubble was viewed by means ofa Schlieren system and the addition of helium

into the vortex core.. Helium,,was introduced: into the.vortex core by injecting

the helium into the flow.field at the nozzle located at L/c = 0.17. Since

helium is a low density gas, it migrated to the low pressure region of the

vortex core, thus enabling the core to be observed using the Schlieren system.

The complete setup is shown in figure 2(a).

High pressure air was also injected into the flow field at the locations

shown in figure 1 (except the location at L/c = 0.17 through which helium was

injected as. previously.stated). The mass ,flow rates of the helium and air

were obtained by means of flow meters shown in figure 2(a).

2Tests were made at a dynamic pressure of 1.56 lbs/ft2 at angles of attack

of approximately 130 to 420. The free-stream dynamic pressure was measured

using the static-pitot pressure tube shown ii figure 2(b). The model tests

were conducted with boundary-layer transition free. The blockage and jet-

boundary corrections were believed to be negligible and therefore were not

applied to the data.
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DISCUSSION OF RESULTS

As mentioned earlier, the leading-edge vortex of the aspect ratio 1.18

delta wing was viewed by injecting helium into the vortex core and viewing the

helium filled core with a Schlieren system. A sketch of the leading-edge vortex

and the leading-edge vortex bursting bubble as viewed is presented in figure 3.

A study was made to determine if an adequate helium blowing rate from a

flow visualization standpoint could be used without appreciably affecting the

vortex characteristics. The helium was injected into the vortex core through

the nozzle located nearest the delta wing apex (L/c = .17 station). Blowing

helium from that location had an effect on the angle of attack at which the

leading-edge vortex burst (see figure 4). Vortex breakdown was delayed up tD

about 420 for the higher blowing rates. With a helium flow rate of 1.4 cfm,

the vortex became visible at approximately 130 angle of attack, and burst in

the vicinity of the trailing edge at an angle of attack of approximately 33.70.

The experimental data of reference 2 shows that the leading-edge vortex burst

in the vicinity of the wing trailing edge with no blowing at an angle of attack

between 300 and 350. From the data of figure 4 it is indicated that the lower

blowing rates do not appear to alter the vortex break down characteristics.

For this reason the lower value of helium flow rate (1.4 cfm) was selected to

provide flow visualization for the entire test program.

Since the data was qualitative it was felt that three separate runs at

each nozzle location would be required to adequately define the trends. Figure

5 presents the data obtained from the three separate runs for the nozzle loca-

tions L/c = 0.25, 0.34, 0.45, 0.57. As can be seen, increasing the flow rate

increases the angle of attack that could be reached before the leading-edge
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vortex burst at the trailing edge. At the highest flow rates at each station

the high pressure jet of air appeared to mix with the helium jet thus making

flow visualization impossible. Increasing the helium flow rate when the air

jet flow rate was at the maximum amount shown for each nozzle location in figure

5 would have made flow visualization possible, but since the helium did affect

the leading-edge vortex bursting, the flow rate was not increased and the test

was terminated.

The data in figure 5(c) (blowing from L/c = .45) would seem to indicate

that increasing the blowing rate a small amount would yield much higher

attainable angles of attack without leading-edge vortex bursting. The reason

for the different shaped curve in figure 5(c) as compared to figures 5(a),

5(b) and 5(d) is not understood at this time.

The leading-edge vortex bursting for blowing from the L/c = 0.57 station

(see figure.5(d)) becomes very sensitive to angle of attack-, flow rate, and

disturbances in the tunnel flow, thus making repeatability very difficult.

Blowing from the location at L/c = 0.70, 0.80, and 0.91 produces no

visible effect on the angle of attack at which the leading-edge vortex burst.

Figure 6 shows the averaged data from the three runs of each nozzle

location of which data were obtained. As the distance from the apex to the

nozzle location increases the flow rate required to maintain the leading-edge

vortex past the trailing edge of the wing at a given angle of attack also

increases. In general, the distance between the jet of air coming from each

nozzle and the edge of the vortex becomes greater as the L/c increases. This

leads to speculation that the jet of air produces a favorable pressure

gradient of the edge of the vortex (ref. 3). This also would explain why
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blowing from the nozzles located at L/c = 0.70, 0.80, 0.91 had no effect on

vortex reformation; the jet of air was at a greater distance from the vortex

edge then that required to reform it.

A study was also made on the concept of blowing from the reflection plane,

parallel to the leading edge at the L/c stations of 0.25 and 0.34. The results

are presented in figure 7. Since the data for the L/c = 0.25 station, nozzle

flush to the reflection plane, and nozzles at the L/c = 0.34 station were

repeatable, only one run was made for the extended nozzle of the L/c = 0.25

station. (See figure 7(b).) Figure 8 presents averaged data from runs at both

nozzle locations in the reflection plane. It is noted that the extended

nozzle in both locations produces a higher angle of attack with a lesser amount

of air flow than that for the flush nozzle configurations. It is believed

that this is because the nozzle extension places the jet closer to the vortex

edge. The data in figure 9 indicates that less mass flow rate of air is

required from the nozzle located at L/c = 0.25, than for the nozzle located at

L/c = 0.34, to delay leading-edge vortex bursting at the same angle of attack.

Again the nozzle nearer the apex produces a more favorable curve.

Figure 10 presents a comparison between reflection plane blowing and

blowing from the wing surface beneath the vortex, core. It appears that the

nozzle located at the L/c = 0.25 station in the reflection plane, extended

configuration, proves to be the most efficient location studied. It produced

a higher angle of attack (400) with a lesser amount of air flow (less than

2.5 cfm) than any other location. At the L/c = 0.34 station, upper surface

blowing is shown to be more effective than reflection plane blowing.
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CONCLUSIONS

A study was conducted on a semispanT740 swept (aspect ratio 1.18) delta

wing to determine the effect of spanwise blowing on the enhancement of the

leading-edge vortex life. As a result .of this qualitative study, some of the

major conclusions that can be .drawn are:

1. Blowing from the nozzles in the wing upper surface located generally

on a-path under the leading-edge vortex, showed that:as the distance from the

apex to the nozzle location increases'. the flow rate required to maintain the

leading-edge vortex past the wing trailing edge, at a given. angle of attack,

also increases. As the distance from the' nozzle.location to the apex increases,

the distance between the jet and vortex edge becomes 'greater, which leads to

the speculation that 'the jet of air enhances.the vortex life by producing

a more favorable pressure: gradient at .the-:edge • of the vortex.

2. Since the jet of air is at a relatively large distance from the

edge of the vortex when the nozzles are located near the wing-trailing edge,

blowing fromfh'ose nozzles produced no noticeable effect on the leading-edge

votex bursting.

3. Blowing from the reflection plane parallel to the wing leading edge

with-the nozzle extended from the reflection plane and located closest to the

apex, 25 prcent of the root chord from the apex,.produced"the highest angle

of attack with the least amount-of mass flow rate without the leading-edge

vortex bursting at the wing trailing edge.
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(b) Extended nozzles on reflection plane,

Figure 1o- Continued.
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