

COMPATIBILITY TESTING OF SPACECRAFT MATERIALS AND SPACE-STORABLE LIQUID PROPELLANTS

FINAL REPORT ADDENDUM

ΒY

L. L. Constantino J. R. Denson C. S. Krishnan A. Toy

NO Approved: (E. A. Burns, Manager

E. A. Burns, Manager Applied Chemistry Department

Prepared for

JET PROPULSION LABORATORY Pasadena, California 91103

This work was performed for the Jet Propulsion Laboratory California Institute of Technology sponsored by the National Aeronautics and Space Administration under Contract NAS7-100, Task Order No. RD-31 and 93

ONE SPACE PARK + RECONDO BEACH, CALIFORNIA

CONTENTS

		. <u>Pa</u>	ιge
1.	INTR	ODUCTION	1
	1.1	Objectives	1
	1.2	Specific Task	1
2.	TASK	III - POST TEST CHARACTERIZATION	2
	2.1	Phase III - Post Test Characterization	2
		2.1.1 Microscopic Examination	3
		2.1.2 Light Optical Microscopic and Scanning Electron Microscopic Examination	3
		2.1.3 Pitting Analysis	4
		2.1.4 Characterization of Residues from Phase III Specimens	5
		2.1.5 Tensile Properties After Exposure	5
	2.2	Phase IV - Post Test Characterization	8
		2.2.1 Microscopic Examination	8
		2.2.2 Light Optical Microscopic and Scanning	_
		Electron Microscope Examination	9
		2.2.3 Pitting Analysis	9
		Specimens	9
		2.2.5 Tensile Properties	0
3.	CONCL	LUSIONS AND RECOMMENDATIONS	2
ΔΡΡ	FNDTX	A - MICROSCOPIC FYAMINATION OF SPECIMENS	7
ΔΡΡ	FNDIX	B = PICTORIAI SKETCHES OF POST TEST SPECIMENS	,/ .7
APP	FNDIX	C - SELECTED VIEWS OF TYPICAL DISCOLORED APEAS	./
		OF SPECIMENS	37
APP	ENDIX	D - DETAILED MICROSCOPIC EXAMINATION OF TEST	_
400			55
APP.	ENUIX	E - SCANNING ELECTRON MICROSCOPE EXAMINATION OF TEST SPECIMENS	19
APP	ENDIX	F - METALLOGRAPHIC CROSS-SECTION OF PRE- AND POST	5
		TEST SPECIMENS)7
APP	ENDIX	G - POST TENSILE TEST SPECIMENS	33

LIST OF TABLES

		Page
I	Phase III - Post Test Characterization	2
II	Summary of Pitting Analysis Results	4
III	Composition of Specimen Surface Washings for Phase III Characterization ••••••••••••••••••••••••••••••••••••	6
IV	Microprobe Analysis of Corrosion Products and Surface Deposits from Phase III	7
۷	Tensile Test Results of Phase III Propellant Exposed and Control Specimens	7
VI	Specimens Characterized in Phase IV	8
VII	Summary of Phase IV Pitting Analysis Results	10
VIII	Composition of Specimen Washings for Phase IV Samples .	11
IX	Microprobe Analysis of Corrosion Products and Surface Deposits	12
Х	Tensile Test Results	13
XI	Summary of Pitting as a Function of Exposure Duration .	14

1. INTRODUCTION

This document is an addendum to the Final Program Report (Reference 1) describing work performed by TRW Systems for the Jet Propulsion Laboratory under Contract 953486 during the period March 6, 1974 through May 15, 1974. The principal objective of this program was to obtain vital, long-term propellant/material of construction compatibility information for design of a liquid propulsion system using liquid fluorine or FLOX (88/12 w/w F_2/O_2 mixtures). The final report (Reference 1) provides descriptions of the new low cost method for conducting compatibility measurements at cryogenic temperatures together with the results of post test characterization of the two test materials, aluminum 2219-T87 alloy and titanium 6A1-4V alloy and the propellants after exposure durations of 36 and 45 weeks. This addendum documents the results of post test characterization after exposure durations of 61 and 70 weeks and provides an overview of the total test program through analysis of results as a function of the four exposure durations. Definitive information has been extracted from the test program regarding the compatibility of the the two test materials in the presence of liquid fluorine and FLOX. However, extended storage periods are recommended to ascertain whether these changes continue as a function of time to such an extent that they could seriously affect the reliability of the materials when used as hardware in advanced missions to outer planets which will require exposure to the propellants for periods as long as five to ten years.

1.1 OBJECTIVES

The objective of the work described in this addendum to the Final Report, Contract 953486, consisted of post test characterization of the propellants and metal test specimens which had been maintained in contact at $-320^{\circ}F + 10^{\circ}F (77^{\circ} \pm 4^{\circ}K)$ for durations of 61 and 70 weeks.

1.2 SPECIFIC TASK

The objective described above was accomplished through implementation of Task IV, Phase III and IV, Post Test Characterization activities of the propellants, test materials and interaction products on test termination. Phase III consisted of post test characterization of the following units after storage for 61 weeks:

- One (1) capsule containing aluminum and liquid fluorine
- Two (2) capsules containing titanium and liquid fluorine
- One (1) capsule containing aluminum and FLOX
- One (1) capsule containing titanium and FLOX
- One (1) capsule containing liquid fluorine
- One (1) capsule containing liquid FLOX

Phase IV consisted of the post test characterization of propellant and test specimens and the interaction products of propellants with the specimens and/or capsules of the remaining units after a total storage time of 70 weeks.

2. TASK III - POST TEST CHARACTERIZATION

2.1 PHASE III - POST TEST CHARACTERIZATION

Phase III consisted of opening five capsules after storage from 13 November 1972 to 17 January 1974 (61 weeks) containing propellant and double dogbone specimens, removing propellant for analysis, removing the specimens, analyzing the propellant residues, if present, and submitting the specimens to mechanical testing and metallurgical analysis. Also characterized were two control specimens to provide time zero information. The specimens characterized in Phase III are delineated in Table I. The specimen number corresponds to those identified in Reference 1. The methods used for the post test characterization were identical to those reported in

		TA	ABLE 1	[
PHASE	III	POST	TEST	CHARACTERIZATION

Specimen Number	Material	Liquid Propellant Exposure
7226	Al 2219T87	FLOX
7204	Al 2219T87	Fluorine
7228	Ti 6A1-4V	FLOX
7212	Ti 6A1-4V	Fluorine
7216	Ti 6A1-4V	Fluorine
7242	Al 2219T87	None (Control)
7248	Ti 6A1-4V	None (Control)

-2-

Reference 1 except that pitting analysis was repeated with previous specimens for the purpose of comparing pitting conditions of all specimens using the <u>same</u> observational criteria by the <u>same</u> analyst. This approach was undertaken at this time to avoid variation in judgment between individuals performing the analysis at different times which was the case in earlier work. Quantitative assessment is difficult because none of the specimens showed more than minimal superficial surface corrosion.

2.1.1 Microscopic Examination

Microscopic examination includes examination of specimen surfaces up to 32X using a stereo-microscope. Photographs showing general surface appearance of these specimens are presented in Appendix A as Figures A.1 through A.4. Except for the control specimens, all exposed specimens showed surface discolorations. A mapping of the surface appearance is better depicted in pictorial sketches presented in Appendix B as Figures B.1 through B.5. It is apparent that discoloration was more severe with titanium than with aluminum for both FLOX and F_2 exposures. Also FLOX seems to produce greater surface attacks (discoloration) than F_2 . These observations are again shown at slightly higher magnifications in Appendix C as Figures C.1 through C.11 which showed selected views of typical discolored areas.

2.1.2 Light Optical Microscopic and Scanning Electron Microscopic Examination

Microscopic examination of these specimen surfaces was conducted by using both light optical microscope and scanning electron microscope. Light optical microscope photographs are shown in Appendix D as Figures D.1 through D.6 and Scanning Electron Microscope (SEM) photographs are shown in Appendix E as Figures E.1 through E.12. In comparing the microstructures between the control specimens and the exposed specimens it is apparent that the surface topography of both titanium alloy and aluminum alloy has changed as the result of propellant exposures. The changes were not obvious with the aluminum for the following reasons:

- The aluminum alloy was not significantly affected by the exposure, and
- The aluminum specimens were initially chemically etched from acid cleaning prior to exposure.

As a general observation from these photomicrographs, vapor phase exposure seems to be less severe than liquid phase exposure. However, it is not obvious that FLOX has more or less effect on either the aluminum alloy or the titanium alloy than F_2 .

2.1.3 Pitting Analysis

Metallographic cross-sections of test specimens were used to perform quantitative pitting analysis. Typically, the profiles of the reacted surfaces are as shown in Appendix F as Figures F.1 through F.8. A field width of 0.08 cm linear surface from each specimen was analyzed by counting the number of pits and measuring the pit sizes. By assuming uniform distribution the pit concentration was calculated in 10^4 number per cm². By assuming circular cross-section on the surface the pit size was computed in 10^{-7} cm² area. The pit depth was calculated as linear height in microns, μ , $(10^{-4}$ cm). Table II summarizes results of Phase III analysis. It is difficult to draw conclusions from these results because the amount of corrosion exhibited by all specimens was extremely small. The corrosive effect on the aluminum alloy is insignificant. For the titanium alloy there seems to

Specimen No.	Mat1	Phase	Medium	Pit Concentration 10 ⁴ Number/cm ²	Pit Size 10 ⁻⁷ cm ²	Pit Depth µ
7228	Ti	Liquid	FLOX	5.	0.4 to 7.	5. & Below
7226	Al	Liquid	FLOX	3.	0.1 to 4.	4. & Below
7228	Ti	Vapor	FLOX	0.7	0.8 to 5.	8. & Below
7226	Al	Vapor	FLCX	5.	0.2 to 7.	5. & Below
7204	Al	Liquid	F ₂	2.	0.8 to 8.	6. & Below
7212	Ti	Liquid	F ₂	4.	0.1 to 6.	8. & Below
7216	Ti	Liquid	F ₂	9.	0.8 to 6.	5. & Below
7204	Al	Vapor	F ₂	2.	0.2 to 9.	5. & Below
7212	Ti	Vapor	F ₂	0.5	0.2 to 3.	4. & Below
7216	Ti	Vapor	F ₂	4.	0.2 to 10.	8. & Below
7242	A1	Control	Vac	0.7	1. to 6.	4. & Below
7248	Ti	Control	Vac	0.02	0.1 to 1.	2. & Below

TABLE II SUMMARY OF PITTING ANALYSIS RESULTS

be an increase in pit concentration and size as a result of exposure. However, one could not conclude readily from these results that the pitting condition becomes increasingly worse with time. One reason for this difficulty was that exposure time for these specimens may be still too short for quantitative assessment.

2.1.4 Characterization of Residues from Phase III Specimens

Table III provides the results of specimen weight measurements prior to and after propellant exposure together with analyses of the water extracted material from the surface of the specimens. These latter data were obtained to provide a basis for comparison with the studies being performed by the Boeing Company for JPL under Contract NAS7-789. These samples were obtained by washing the vapor and liquid exposed surfaces of the double dogbones and the inside surfaces of the glass capsules with 10 ml of water (adjusted pH 7.5) using a 5-ml pipet to dispense the water. After washing a minor amount of residue was retained on the specimens. These residues were examined by electron microprobe analysis as described below.

Electron microprobe analyses were performed on corrosion products and surface deposits which are easily removed from a number of specimens. Spectral scans were run on these powder samples to determine the atomic elements present. Quantitative estimates were made using the X-ray intensity results from the spectral scan data. Results are summarized in Table IV.

The white powder which showed high concentrations of Ti, O, and Si and low to medium concentrations of F, and C are most likely composed of oxides and fluorides of titanium and silicon (TiO_2, TiF_4, SiO_2) . The source of silicon was probably the glass capsules, however, no etching of the containers was observed. It is puzzling that the residue from Specimen 7216 was reddish brown in color and contained high percentage of carbonaceous material.

2.1.5 <u>Tensile Properties After Exposure</u>

Table V shows tensile test results of the Phase III specimens as well as four control (unexposed) specimens. Based on these results, it can be concluded that there were no deleterious effects on either tensile strength or ductility (elongation) of Ti-6Al-4V titanium or 2219-T87 aluminum alloys from exposure to liquid or vapor FLOX and F_2 . The tensile tested specimens as shown in Appendix G as Figures G.1 through G.4 indicated ductile fracture.

-5-

	CUADAC
	T T T
	DIACT
	ç, i
TABLE III	
-	
	L

COMPOSITION OF SPECIMEN SURFACE WASHINGS FUR PHASE III CHARACTERIZATION

[Ţ		T	T	ភ ភ	1
	>	. I I I	202 202 202		111		ı	1 🖓 🔗	
ļ :	=	111	875 175 600	475 75 25	225 50 225		ı	- <25 ^a <25 ^a	
bu M	u۳	6.5 7.5 2.0	1.0 0.5 0.5	0.5 0.5 0.0	0.5 0.0 1.0		U	<0.5 ^a <0.5 ^a <0.5 ^a	.002% HF
leight,	5	000	111	8 8 1	1 1 1		1	ן ני עריי עריי	ined <0
acted W	Ге	200 200 1	87 13 89	87 82 4	168 8 158		ı	- 27 - 19 - 19	nt conta
Extr	AI	450 520 80	100 50	803	533		\$	ء ما	Propellar
<u>ج</u>	24 -	10.0 10.5 10.2	10.3 10.5 1.0	275 190 10	15.4 18.7 3.1		8	- 2.8 0.0	a a
Weight Change	g	-0.0011	+0.0037	-0.0006	+0.0016	+0.0016	0	01 1	
Initial Weight	D	3.0789	4.8803	4.8820	4.9396	3.1104	3.1003	4.8612 - -	fethod
Sample	Location	Al-F ₂ Liquid Al-F ₂ Gas Capsule	Ti-F ₂ Liquid Ti-F ₂ Gas Capsule	Ti-F ₂ Liquid Ti-F ₂ Gas Capsule	Ti-FLOX	A1-FLOX	Al-Control	Ti-Control F ₂ Control Capsule FLOX Control Capsule	it of Analvtical N
Sample	No.	7204	7216	7212	7228	7226	7242	7248	al im

į

-6-

23162-6023-RU-00

MICROPROBE ANALYSIS OF CORROSION PRODUCTS									
AND SURFACE DEPOSITS FROM PHASE ITI									
Specimen 7228 7228 7216									
Propellant Exposure	FLOX Liquid	FLOX Vapor	Fluorine Liquid						
Deposit Color	Deposit Color White White Reddish Brown								
<u>Elemental Content</u>									
Oxygen	Oxygen High High -								
Carbon	Carbon Low Medium High								
Titanium High High High									
Silicon High High Medium									
Fluorine	Medium	Medium	Medium						

TABLE IV

· · ·

TABLE V

TENSILE TEST RESULTS OF PHASE III PROPELLANT EXPOSED AND CONTROL SPECIMENS

Specimen Number	Propellant Exposure	Yield Strength KSI 0.2% Offset	Ultimate Tensile Strength, KSI	Elongation % in 1 Luch
7242-1	Control-Al	53.6	65.9	8
7242-2	Control·Al	54.0	67.6	9
7248-1	Control-Ti	140.5	150.4	13
7248-2	Control-Ti	140.2	150.0	13
7216	Vapor-F ₂	139.4	150.0	14
7216	Liq-F2	139.3	150.4	13
7228	Liq-FLOX	138.8	148.4	16
7228	Vapor -F LOX	138.9	150.0	13
7204	Liq-F ₂	55.6	68.0	10
7204	Vapor-F ₂	55.2	68.4	8
7226	Liq -F LOX	54.6	67.4	10
7226	Vapor -F LOX	54.8	67.7 ·	9
7212	Liq-F2	139.3	149.2	14
7212	Vapor-F ₂	138.6	148.4	15

-7-

2.2 PHASE IV - POST TEST CHARACTERIZATION

Chemical-metallurgical post test characterization of Phase IV samples was implemented on tests terminated on 25 March 1974. These specimens had a total of 70 weeks storage in contact with the propellants. The specimens characterized in Phase IV are identified in Table VI.

Specimen No.	Material	Liquid Propellant Exposure
7218	A1-2219T87	None (control)
7246	Ti-6A1-4V	None (control)
7202	A1-2219T87	F ₂
7224	A1-2219T87	FLOX
7230	Ti-6A1-4V	FLOX
7222	A1-2219T87	FLOX
7206	A1-2219T87	F ₂
7236	Ti-6A1-4V	FLOX
7238	A1-2219T87	FLOX

SPECIMENS CHARACTERIZED IN PHASE IV

TABLE VI

2.2.1 Microscopic Examination

Microscopic examination included examination of specimen surfaces up to 32X using a stereo-microscope as shown in Figures A.5 through A.9. Except for the two control specimens all exposed specimens showed surface discoloration. However, surface chemical attack appeared to be very superficial and there was no evidence of gross corrosion occurring in any of the specimens examined. A mapping of the surface appearance is depicted in pictorial sketches presented in Appendix B, Figures B.6 through B.10. It is apparent that discoloration was more pronounced in the titanium specimens (7230 and 7236) than with the aluminum specimens. Slightly higher magnification views are shown in Appendix C, Figures C.12 through C.27 for selected areas.

2.2.2 Light Optical Microscopic and Scanning Electron Microscope Examination

Microscopic examination of the Phase IV specimen surfaces was conducted by using both light optical microscope and scanning electron microscope (SEM). Light optical photographs are shown in Appendix D, Figures D.7 through D.14 and SEM photos are shown in Appendix E, Figures E.13 through E.28. It is apparent by comparing the SEM photos that the Ti-6A1-4V specimens exhibited a chemically etched surface as shown in Figures E.15, E.16, E.25 and E.26. There was a slight modification of the aluminum alloy surface structure although a cracked coating of unknown material was noted on aluminum specimen 7238 (Figures E.17 and E.18).

2.2.3 Pitting Analysis

Metallographic cross-sections were performed on test specimens for quantitative pitting analysis. The profiles of typical reacted surfaces are shown in Appendix F as Figures F.9 through F.26. A field width of 0.08 cm linear surface as examined at 400 - 1000X was used for pit counts and pit size determinations. By assuming uniform distribution the pit concentration was calculated in number of pits per cm². By assuming circular pit geometry on the surface, the pit size was computed in cm² area. The pit depth was calculated as linear height in μ . Table VII summarizes results of pitting analysis for the Phase IV specimens.

2.2.4 Characterization of Residues from Phase IV Specimens

Table VIII provides the results of Phase IV specimen weight changes and characterization of 10 ml water extractions of the test specimens and glass capsules to determine the build-up of metals on the specimen surfaces. The procedure for extraction of the specimens was described in Section 2.1.4.

Electron microprobe analyses were performed on corrosion products and surface deposits that were easily removed from a number of specimens. Spectral scans were run on these powder samples which had been air dried at room temperature. Semi-quantitative estimates were made for each detectable element using the X-ray intensity outputs. Results are summarized in Table IX. The white powder from Specimen 7238 is most likely an oxide or hydroxide of aluminum. The deposits (both white and black) from Specimen 7236 are probably different forms of mixed oxides of Ti and Si. The high oxygen content

-9-

Spec. No.	Alloy	Exposure	Medium	Pit Concentrati 104 Number/cm ²	on P	it Size 10 ⁻⁷ cm ²	Pit Depth µ
7246	Ti	(Control-1)	Vac	0.05	0.1	to 0.3	0.9 & Below
	Ti	(Control-2)	Vac	0.3	0.03	to 0.3	3. & Below
7202	A1	Vap	F ₂	3	0.03	to 3	4. & Below
	A1	Liq	F ₂	7	0.1	to 6	6. & Below
7224	A1	Vap	FLOX	3	0.03	to 1	6. & Below
	A1	Liq	FLOX	2	0.1	to 6	6. & Below
7230	Ti	Vap	FLOX	5	0.0	to 5	2. & Below
	Ti	Liq	FLOX	7	0.1	to 50	4. & Below
7222	A1	Vap	FLOX	3	0.3	to 3	6. & Below
	A1	Liq	FLOX	3	0.5	to 6	4. & Below
7206	A1	Vap	F ₂	3	0.1	to 5	7. & Below
	A1	Liq	F ₂	4	0.03	to 6	9. & Below
7236	Ti	Vap	FLOX	. 4	0.1	to 8	4. & Below
	Ti	Liq	FLOX	9	1.0	to 60	8. & Below
7238	A1	Vap	FLOX	3	0.1	to 7	6. & Below
	A1	Liq	FLOX	3	0.3	to 8	5. & Below
7218	A1	(Control-1)	Vac	2	0.1	to 6	4. & Below
	A1	(Control-2)	Vac	2	0.03	to 6	5. 2 Below

TABLE VII SUMMARY OF PHASE IV PITTING ANALYSIS RESULTS '

found in the gray-black deposit from Specimen 7202 may be due to formation of aluminum oxide after exposing the specimen to air. It is not likely that the F_2 environment or the etched glass capsule is the source of such high oxygen content in the surface deposit.

2.2.5 <u>Tensile Properties</u>

Table X shows tensile test results of the Phase IV group of exposed specimens as well as two control (unexposed) specimens. Two tensile test specimens were derived from each double dogbone specimen. Based on these results as well as results from previous reports in this program the same conclusion may be drawn; that is, there were no deleterious effect on either the

-10-

TABLE VIII

COMPOSITION OF SPECIMEN WASHINGS FOR PHASE IV SAMPLES

		Initial	Weight		Ext	racted W	eight,	6 4		بين ميني 1997 - ميني
Specimen No.	Specimen Location	Weight, g	Change, g	Fa	Al	Fe	5	Mn	1i	>
7202	Al-F2 Liquid	3.0892	+0.0026	4-	2600 2700	120 134	~-	<0.5 5.0	11	1 L
	Al-F ₂ uas Capsule			10	630	10		<6.0	1	1
7206	Al-F ₂ Liquid	3.0604	-0.0004	، ۲	1080	142 164	<u> </u>	<0.5 4.0	11	1 1
	Al-F ² Gas Cansule			~ ~	210	16	- ~	2.0	1	1
6665	Al-FLOX Liquid	3.0466	+0.0008	10	1270	150	~~	2.0 2.0	I 1	1 1
1	A1-FLOX Gas			010	1000	8 8 8		0.5		ı
	rapsu re				5300	001	ø	7.5	1	ł
7224	Al-FLOX Liquid	3.0265	1700.04	01	5300	86]=	6.0	I	1
	Al-FLUX Gas Cansule			:=	550	10	2	7.0	1	I
1		2 007E	9000	~	950	114	2	<0.5	ı	1
7238	Al-FLOX LIQUID	3.00/0		10	1830	138	m	°0.5	ı	1
	AI-FLUX GAS			10	150	ω	2	<0•5 <0	ı	1
		A 8008	-0.0012	10	150	52	2	<0.5 .0	300	
/230	Ti-FLOX Gas)))	01	100	52	، س ر	⊖ < v. r	<10 <10	
	Capsule			רכ	230	7	1 I			JEO
7236	Ti-FLOX Liquid	4.8965	-0.0013	ດເ	2000	72		°.0 €.5		001
	Ti-FLOX Gas			10	600	12	~ ~	<0.5	400	<10
0102	Al_Control	3,0696	0	ı	I	1	I	١	I	1
017/		A OAED	C.	1	I	1	ı	I	ı	I
7246	Ti-Control	4.0409	þ					ļ	ſ	C F
	F ₂ Control Cancule			-	260	30	\	<0.5		2
	FLOX Control			7	290	8	27	<0.5	<10	<10
	capsule									

23162-6023-RU-00

^aPropellant contained <0.002% HF

į

-1]-

Specimen No.	7202	7238	7236	7236
Propellant Exposure	F ₂ Liquid	FLOX Liquid	FLOX Vapor	FLOX Vapor
Deposit Color	Gray-black	White	White	Black
Elemental Content				
0	High	High	High	High
Fe	Medium	Low	Low	-
Ti	-	-	High	High
A1	High	High	Low	Medium
F	High	Low	Low	Low
V	-	-	-	Low
Si	Medium	Medium	High	High

TABLE IX MICROPROBE ANALYSIS OF CORROSION PRODUCTS AND SURFACE DEPOSITS

tensile strength or ductility (elongation) of Ti-6Al-4V and Al-2219T87 alloy from liquid or vapor FLOX and F_2 exposures. The tensile tested specimens, shown in Appendix G as Figures G.5 through G.9 indicated ductile fracture.

3. CONCLUSIONS AND RECOMMENDATIONS

Subtle changes in the extent of chemical compatibility of aluminum and titanium alloys with FLOX and fluorine propellants over exposure periods up to 70 weeks have been detected. Gross properties, such as mechanical properties, were not significantly affected during the storage period. The most significant changes were observed on a microscale regarding the extent of chemical compatibility through an analysis of the pitting results as a function of storage time. These results are summarized in Table XI. This table lists both the pit concentration and pit size as a function of exposure duration, specimen type, and exposure environment.

Inspection of Table XI reveals that a great deal of variability exists between replicate analyses which tends to minimize the number of clear-cut conclusions which can be drawn from the data. However, the following general trends can be inferred from the Table XI data:

-12-

Specimen No.	Alloy	Propellant Exposure	Yield Strength Ksi 0.2% Offset	Ultimate Tensile Strength, Ksi	Elongation % in l-inch
7246-1	Ti	Control	141.2	150.0	17
7246-2	Ti	Control	141.8	149.6	13
7218-1	Al	Control	55.6	68.4	10
7218-2	Al	Control	55.6	68.4	. 9
7202L	A1	F ₂	54.7	67.7	10
7202V	Al	F_2	54.2	67.4	11
7206L	A٦	$\overline{F_2}$	54.2	67.6	9
7206V	Al	F_2	54.4	67.5	9
7222L	Al	FLOX	55.3	68.3	9
7222V	A1	FLOX	55.1	68.2	9
7224L	A1	FLOX	55.3	68.2	10
7224V	A1	FLOX	54.0	66.8	10
7230L	Ti	FLOX	140.5	150.0	14
7230V	Ti	FLOX	138.6	149.2	15
7236L	Ti	FLOX	141.9	152.9	15
7236V	Ti	FLOX	142.3	151.1	16
7238L	A1	FLOX	54.3	67.5	10
7238V	Al	FLOX	55.5	68.5	11

TABLE X TENSILE TEST RESULTS

TABLE XI SUMMARY OF PITTING AS A FUNCTION OF EXPOSURE DURATION

						Exposure Dura	ation, weeks			
			'n		4	15 1	Q		12	0
Material	Exposur	<u>و</u>	Conc. 19 ⁴ No/cm ²	Size 10 ⁻⁷ cm ²	Conc. 10 ⁴ No/cm ²	Size 10 ⁻⁷ cm2	Conc. 10 ⁴ No/cm ²	Size 10 ⁻⁷ cm ²	Conc. 10 ⁴ No/cm ²	Size 10 ⁻⁷ cm ²
	Vac	mun					0.02	0.1 - 1.	0.05 0.3	0.1 - 0.3 0.03 - 0.3
٨		Liquid			3.	61 - 7 6	4. 9.	0.1 - 6 0.8 - 6		
₽~FAð	Fluorine	Vapor			ъ.	9.2 - 7	7.5 4.	$\begin{array}{ccc} 0.2 & - & 3\\ 0.2 & - & 10\\ \end{array}$		
Rutaet		Liquid	4.	9.5 - 2.	2.	0.1 - 3n	5.	0.4 - 7.	7. 9.	3.1 - 50. 1 60.
÷1	FLOX	Vapor	2.	0.1 - 1.	э.	0.1 - 8	9.7	0.8 - 5.	5. 4.	0.1 - 5. 0.1 - 5.
	Vac	uur.					0.7	1 6.	2. 2.	9.1 - 6. 0.03 - 6.
Ĺ		Liquid			0.7	0.ī - 3.	2.	0.8 - 8.	7. 4.	0.1 - 6. 0.03 - 6.
810122	Fluorine	Vapor			0.2	0.1 - 1.	2.	0.2 - 9.	3. 3.	$\begin{array}{rrrr} 0.03 &- & 3.\\ 0.1 &- & 5. \end{array}$
տուլտոլ		Liquid			0.1	0.4 - 33	з.	0.1 - 4.		0.1 - 6. 0.5 - 6. 0.3 - 8.
¥	FLOX	Vapor			0.3	0.1 - 8.	0.7	9.8 - 5.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

23162-6023-RU-00

-14-

- Corrosive attack is extremely small on Ti-6Al-4V and Al-2219T87 alloys in liquid or vapor fluorine and FLOX environments for exposure as long as 70 weeks.
- The degree of corrosive attack appears to be more severe in the FLOX environment than in the fluorine environment.
- There appears to be a trend showing that A1-2219T87 is more corrosion resistant than Ti-6A1-4V in FLOX environments.
- Inconclusive data exist regarding the comparative resistance between the two metals in fluorine environment.
- The pitting condition of FLOX exposed Ti-6Al-4V appears to worsen with time, particularly in terms of pit size. The pit diameter was increased by two orders of magnitude after 16 months.

The findings of this program, particularly the differences of pitting as a function of storage duration provide the basis for the recommendation to extend the storage duration to improve on the definition of the effects of storage time. Clearly, the 70-week durations are insufficient to ascertain whether the observed corrosive phenomena rate levels off or accelerates as a function of time. These key data are needed to obtain unequivocal evidence to make valid extrapolations for hardware commitments of advanced missions to outer planets.

APPENDIX A MICROSCOPIC EXAMINATION OF SPECIMENS

This appendix contains photographs of microscope examination of the nine test specimens.

Figure A.1 Control Test Specimens

DERIGING EVON BLYNE NOR BRUNE

PRECEDING PACE BLANK NOT FILMED

Aluminum - Fluorine - Side Two

-18-

-19-

I

7216

Titanium - Fluorine - Side Two Figure A.4. Tensile Test Specimens After Propellant Immersion

Figure A.5. Tensile Test Specimens After Vacuum Exposure

-21-

-22-

Figure A.7. Tensile Test Specimens After Propellant Exposure

-23-

Aluminum - Flox - Side 1

722	4
VAPOR	LIQUID
	5)
720	6
Aluminum - Fluorine - Side	e 1 1X

Aluminum - Flox - Side 2

Aluminum - Fluorine - Side 2IXFigure A.8. Tensile Test Specimens After Propellant Exposure

-24-

Figure A.9. Tensile Test Specimens After Propellant Exposure

-25-

Mapping of Surface Appearance of Double Dogbone Specimen No. 7212 (Ti-6A1-4V) After Exposure to Fluorine

Figure B.1.

APPENDIX B PICTORIAL SKETCHES OF POST TEST SPECIMENS

This appendix contains ten pictorial sketches of post test specimens.

. .

4

PRECEDING PAGE BLANK NOT FILMED

.....

Mapping of Surface Appearance of Double Doggone Specimen No. 7204 (2219-T87 A1) After Exposure to Fluorine Figure B.3.

Y

i

۱

SPECIMEN NO. 7228

Į

Mapping of Surface Appearance of Double Dogbone Specimen No. 7228 (Ti-6Al-4V) After Exposure to FLOX Figure B.5.

23162-6023-RU-00

-31-

Figure B.6. Mapping of Surface Appearance of Double Dogbone Specimens 7202 and 7230 After Exposure

Specimen No. 7202 - Al-2219T87 - Fluorine

-32-

Figure B.7. Mapping of Surface Appearance of Double Dogbone Specimens 7224 and 7236 After Exposure

-33-

Figure B.8. Mapping of Surface Appearance of Double Dogbone Specimens Nos. 7222 and 7238 After Exposure

.

•

-34--

Figure B.9. Mapping of Surface Appearance of Double Dogbone Specimens Nos. 7206 and 7246 After Exposure

Specimen No. 7206 - Al-2219T87 - Fluorine

23162-6023-RU-00

K:

-35-

APPENDIX C

SELECTED VIEWS OF TYPICAL DISCOLORED AREAS OF SPECIMENS

This appendix contains twenty-seven 8X and 32X of selected discolored areas of test specimens.

-37-

Figure C.2. Specimen No. 7226 - A1-2219T87 - FLOX Vapor Exposure

-38-

32X

-39-

Figure C.4. Specimen No. 7204 - Al-2219T87 - Fluorine Vapor Exposure

32X Figure C.5. Specimen No. 7204 - Al-2219T87 - Fluorine Liquid Exposure

(b) 32X Figure C.6. Specimen No. 7212 - Ti-6A1-4V - Fluorine Vapor Exposure

-42-

Figure C.7. Specimen No. 7212 - Ti-6A1-4V - Fluorine Liquid Exposure

-43-

(b)

Figure C.8. Specimen No. 7216 - Ti-6A1-4V - Fluorine Vapor Exposure

-44-

-45-

Figure C.10. Specimen No. 7228 - Ti-6A1-4V - FLOX Vapor Exposure

(a)

Figure C.11. Specimen No. 7228 - Ti-6A1-4V - FLOX Vapor Exposure

1

-48-

(A) Ti-6Al-4V Specimen No. 7246

(B) A1-2219T87 Specimen No. 7218
Figure C.13. Control Specimens (32X)

-49-

Figure C.14. Specimen No. 7202 - A1-2219T87- FLOX Liquid Exposure

- 50 -

~)

Figure C.15. Specimen no. 7202 - Al-2219T87 - FLOX Vapor Exposure

-51.-

Figure C.16. Specimen No. 7206 - A1-2219T87 - Fluorine Liquid Exposure

Figure C.17. Specimen No. 7206 - A1-2219T87 - Fluorine Vapor Exposure

-53-

(A)

(B) 32X Figure C.18. Specimen No. 7236 - Ti-6A1-4V - FLOX Liquid Exposure

8X

-55-

(B)

Figure C.20. Specimen No. 7222 - A1-2219T87 - FLOX Liquid Exposure

(B)

Figure C.21. Specimen No. 7222 - A1-2219T87 - FLOX Vapor Exposure

Figure C.22. Specimen No. 7238 - A1-2219T87 - FLOX Liquid Exposure

-58-

Figure C.23. Specimen No. 7238 - A1-2219T87 - FLOX Vapor Exposure

Figure C.24. Specimen No. 7224 - A1-2219T87 - FLOX Liquid Exposure

-60-

Figure C.25. Specimen No. 7224- A1-2219T87 - FLOX Vapor Exposure

-61-

1

Figure C.26. Specimen No. 7230 - Ti-6A1-4V - FLOX Liquid Exposure

-62-

(B)

32X

ŧ

Figure C.27. Specimen No. 7230 - Ti-6A1-4V - FLOX Vapor Exposure

1

APPENDIX D

DETAILED MICROSCOPIC EXAMINATION OF TEST SPECIMENS

This appendix contains fourteen photographs of vapor and liquid exposed sections of the test specimens at 400X magnification.

(b) Surface Structure of Control Specimen No. 7242 - Al-2219-T87

Figure D.1. Surface Microstructure of Control Specimens

-65-

PRECEDING PACE BLANK NOT FILMED

I

(b)

Figure D.2. Surface Microstructures of Vapor Side (a) and Liquid Side (b) of Specimen No. 7226 Al-2219T87 - (FLOX Exposure)

(a)

400X

-67-

(a)

(b)

400X

Figure D.4. Surface Microstructure of Vapor Side (a) and Liquid Side (b) of Specimen No. 7212 Ti-6A1-4V - (Fluorine Exposure)

(a)

400X

٢

(b)

(a)

400X

400X

Figure D.6. Surface Microstructure of Vapor Side (a) and Liquid Side (b) of Specimen No. 7228 Ti-6A1-4V - (FLOX Exposure)

-70-

(a) Specimen 7218 A1-2219T87

400X (b) Specimen 7246 Ti-6A1-4V

Figure D.7. Surface Microstructure of Control Specimens -71-

Figure D.8. Surface Microstructures of Vapor Side (A) and Liquid Side (B) of Specimen No. 7230 - Ti-6A1-4V - (FLOX Exposure)

(A)

(B)

400X

Figure D.9. Surface Microstructures of Vapor Side (A) and Liquid Side (B) of Specimen No. 7206 - A1-2219T87 - (Fluorine Exposure)

Figure D.10. Surface Microstructures of Vapor Side (A) and Liquid Side (B) of Specimen No. 7202 - A1-2219T87 - (Fluorine Exposure)

Figure D.il. Surface Microstructures of Vapor Side (A) and Liquid Side (B) of Specimen No. 7236 - Ti-6Al-4V - (FLOX Exposure)

Figure D.12. Surface Microstructures of Vapor Side (A) and Liquid Side (B) of Specimen No. 7238 - A1-2219T87 - (FLOX Exposure)

(A)

Figure D.13. Surface Microstructures of Vapor Side (A) and Liquid Side (B) of Specimen No. 7222 - A1-2219T87 - (FLOX Exposure)

-77-

!

Figure D.14. Surface Microstructures of Vapor Side (A) and Liquid Side (B) of Specimen No. 7224 - A1-2219T87 - (FLOX Exposure)

-78-

APPENDIX E

SCANNING ELECTRON MICROSCOPE EXAMINATION OF TEST SPECIMENS

This appendix contains twenty-eight scanning electron microscope figures of propellant test specimens.

-79-

1

(b) 500X Figure E.2. SEM Photo of Surface of Specimen No. 7242 Aluminum Control

-80-

1

(b) 500X

-81-

(a) 250X

(b) 500X

1

(a) 250X

(b) 500X

-83-

(a) 250X

(b) 500X

(a) 250X

(b) 500X

Figure E.7. SEM Photo of Surface of Specimen No. 7212 Ti-6A1-4V - Fluorine Vapor Exposure

-85--

47.989 P.72

(a) 250X

-86-

(a) 250X

Figure E.9. SEM Photo of Surface of Specimen No. 7228 Ti-6A1-4V - FLOX Vapor Exposure

(b) 500X

Figure E.10. SEM Photo of Surface of Specimen No. 7228 Ti-6A1-4V - FLOX Liquid Exposure

(b) 500X

-89- -----

1

.

(b) 500X

-90-

Figure E.13. SEM Photo of Surface of A1-2219T87 Control Specimen No. 7218

-91-

Figure E.14. SEM Photo of Surface of Ti-6A1-4V Control Specimen No. 7246

-92-

Figure E.15. SEM Pholo of Surface of Ti-6A1-4V Specimen No. 7230 (FLOX Liquid Exposure)

į

......

Figure E.16. SEM Photo of Surface of Ti-6Al-4V Specimen No. 7230 (FLOX Vapor Exposure)

-94-

23162-0023-RU-00

Figure E.17. SEM Photo of Surface of Al-2219T87 Specimen No. 7238 (FLOX Liquid Exposure)

Ĩ

-95-

Figure E.18. SEM Photo of Surface of A1-2219T87 Specimen No. 7238 (FLOX Vapor Exposure)

and some on the second second

Γ

ł

•! \$}

•

Figure E.20. SEM Photo of Surface of A1-2219T87 Specimen No. 7224 (FLOX Vapor Exposure)

-98-

500X

Figure E.21. SEM Photo of Surface of A1-2219T87 Specimen No. 7222 (FLOX Liquid Exposure)

(B)

500X

Figure E.22. SEM Photo of Surface of A1-2219T87 Specimen No. 7222 (FLOX Vapor Exposure)

. .

Figure E.23. SEM Photo of Surface of A1-2219T87 Specimen No. 7206-A1 (Fluorine Liquid Exposure)

-101-

ŝ

• {

SEM Photo of Surface of A1-2219T87 Specimen No. 7206 (Fluorine Liquid Exposure) Figure E.24.

-102-

500X

Figure E.25. SEM Photo of Surface of Ti-6A1-4V Specimen No. 7236 (FLOX Liquid Exposure)

-103-

Figure E.26. SEM Photo of Surface of Ti-6A1-4V Specimen No. 7236 (FLOX Vapor Exposure)

-105-

Figure E.28. SEM Photo of Surface of A1-2219T87 Specimen No. 7202 (Fluorine Liquid Exposure)

-106-

APPENDIX F

METALLOGRAPHIC CROSS-SECTION OF PRE- AND POST TEST SPECIMENS

This appendix provides twenty-six figures of metallographic crosssection of pre- and post test specimens.

Figure F.1. Cross-section of FLOX Vapor Exposed Portion of Specimen No. 7226 (A1-2219T87) Showing Reacted Surface Profile

-107-

-109-

Figure F.5. Cross-section of Fluorine Vapor Exposed Portion of Specimen No. 7204 (A1-2219T87) Showing Reacted Surface Profile

-111-

← Aluminum

Figure F.6. Cross-section of Fluorine Liquid Exposed Portion of Specimen No. 7204 (Al-2219T87) Showing Reacted Surface Profile

-112-

.

1

Titanium

- 0.000 CM

400X

1000X

Nickel Plate Reacted Surface

Titanium

E 0.000 CM E 0.001 CM E 0.002 CM

0.005 CM

Figure F.9. Cross-Section of Ti-6A1-4V Control Specimen No. 7246-1.

-115-

Nickel Plate Reacted Surface Titanium - 0.000 CM t 0.005 см 400X Nickel Plate Reacted Surface Titanium E 0.000 CM E 0.001 CM E 0.002 CM 1000X

Figure F.10. Cross-Section of Ti-6A1-4V Control Specimen No. 7246-2

-116-

-117-

Figure F.14. Cross-section of Fluorine Vapor Exposed Portion of Specimen No. 7206-Al Showing Reacted Surface Profile.

-120-

.

а.

• •

.

•••

75

Nickel Plate Reacted Surface

Titanium

-122-

•••

•

1000X

Figure F.20. Cross-Section of Fluorine Vapor Exposed Portion of Specimen No. 7202 Showing Reacted Surface Profile

-126-

4.40

-127-

-128-

-130-

Figure F.26. Cross-Section of FLOX Vapor Exposed Portion of Specimen No. 7224 Showing Reacted Surface Profile

APPENDIX G POST TENSILE TEST SPECIMENS

This appendix contains nine figures of post tensile test specimens prior to and after propellant exposure.

Titanium 1.3X

-133-

Aluminum - Fluorine 1.3X

-134-

Aluminum - FLOX 1.3X

7216 V

÷ ...

17216 L

Titanium - Fluorine 1.3X Figure G.3. Tensile Tested Specimens -135-

Titanium - Fluorine 1.3X

Aluminum - FLOX 1.3X Figure_G.4._ Tensile Tested Specimens

-136-

4, 1

7218 VACUUM 7218 VACUUM ∿ 1.3X Aluminum - Vacuum (Control)

1

Titanium - Vacuum (Control) \sim 1.3X Figure G.5. Tensile Tested Coupons

7230LIQUID

Titanium - FLOX

 $\sim 1.3X$

Figure G.6. Tensile Tested Coupons

-138-

Figure G.7. Tensile Tested Coupons

-139-

7202 LIQUID

Aluminum - Fluorine \sim 1.3X Figure G.8. Tensile Tested Coupons

-140-

Aluminum - FLOX \sim 1.3X

Figure G.9. Tensile Tested Coupons