19740021423 2020-03-23T06:13:49+00:00Z

@ https://ntrs.nasa.gov/search.jsp?R

e e v e A, - TEYRITNEIN R AT TIN5 Pt o2 T T B e

Az>m»uﬂx|_ucuqdv HAL/S PROGRAMMER'S

190 p HC $12.50

{Intermetrics, Iuc.)

L s 3HFT 7/

i
.

N A A

GUIDE

i SO wul ek el bed b~d bt 3 L00T

‘ﬁ L .M JRSF TR P T A L [R . A - s SN T

C¢SCL 098

nomew v meen

G3/08

N74-29536

Unclas
45357

ERMETRICS

INT

Ca e AL b g I B R O £< nE o - ' e o
&

HAL/S

PROGRAMMER 'S
GUIDE
) IR-63-3
3 July 1974
. Prepared by:
: P.M. Newbold
o R.L. Hotz
- Typescript:
" V.L. Cripps Approved:

Daniel J. Lickly
HAL Language/Compiler Dept.
Head

Approved:

|
I A e\ N&:’N"\

Dr. F. H. Martin
Shuttle Program Manager

n
i

"} INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

AR T X P it o © A aeam AT

- FOREWORD

This document was prepared for the Johnson Space
Center, Houston, Texas, under contract NAS 9-13864.

3 INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢+ (617) 661-1840

]

1

e rrd

CONTENTS OF PART I

STRUCTURE OF HAL/S

1.1 StrRucTurRING AND HIGHER ORDER LANGUAGES
1.2 THe Brock StrucTure ofF HAL/S

1.3 STATEMENT GRouPING IN HAL/S

1.4 SuMMARY

HAL/S SYMBOLOGY

2,1 THe CHARACTER SET

2.2 ReserveD WorDS, IDENTIFIERS, AND LITERALS
2,3 FORMAT OoF SOURCE TEXT

2.4 STATEMENT DELIMITING

2,5 CoMMenTs IN HAL/S

2,6 SuMMARY

A HAL/S COMPILATION - THE PROGRAM BLOCK
3.1 Openine AND CLOSING THE BLoCk

3.2 PosiTioN oF DATA DECLARATIONS

3.3 FrLow oF EXEcUTION IN THE PROGRAM
3.4 SuMmMARY

DATA DECLARATION

4,1 HAL/S Data Types

4,2 SimpLE DECIARATION STATEMENTS
4,3 INITIALIZATION OF DATA

4,4 SumMARY

4-1
4-~1
4-2
4-10
4-13

INTERMETRICS INCORPORATED + 701 CONCORD AVENLE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

8.

REPLACE STATEMENTS
5.1 THE REPLACE STATEMENT

5.2
5.3

UsiNG REPLACE STATEMENTS
SUMMARY

DATA REFERENCING AND SUBSCRIPTING

6.1
6.2
6.3

SuBsCR1PTS OF UNARRAYED DAt TYPES
SuBscriIPTS OF ARRAYED DATA TYPES
SUMMARY

EXPRESSIONS

7.1
7.2
7.3
7.4
7.5
7.6
7.7

ARITHMETIC OPERATIONS

CHARACTER OPERATIONS

BooLEAN OPERATIONS

CoMBINING OPERATIONS & PRECEDENCE
SoMe ExpLICIT CONVERSIONS
BuiLt-IN FuncTIONS

SUMMARY

ASSIGNMENTS

8.1
8.2
8.3
8.4
8.5
8.6

GENERAL FORM OF ASSIGNMENT
ARITHMETIC ASSIGNMENTS
CHARACTER ASSIGNMENTS
BOOLEAN AsSIGNMENTS
MULTIPLE AsSIGNMENTS
SUMMARY

Page

7-20
7-23
7--26
7-32

7-36

8-1
8-1

8-7

8-10
8-11
8-13

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

- e

e

. . . B - s

10.

11.

12.

CONDITIONAL STATEMENTS AND BRANCHES
9.1 THe CONDITIONAL STATEMENT

9.2 RELATIONAL EXPRESSIONS

9.3 LABELS AND BRANCHES

9.4 SuMMARY

STATEMENT GRGUPS

10.1 DeLiMiTING STATEMENT GROUPS

10,2 RePeTITIVE EXECUTION OF STATEMENT GROUPS
10,3 SeLecTIVE EXECUTION OF STATEMENT GROUPS
10.4 BRANCHING IN STATEMENT GROUPS

10.5 Summary

FUNCTIONS AND PROCEDURES
11.1 Brock DeriNiTIONS
11.2 PARAMETER LisTs
11.3 ProceburE CALLING
11.4 FuncTion INVOCATION
11.5 Summary

INPUT/OUTPUT STATEMENTS

12.1 HAL/S INput/OutPut CONCEPTS
12.2 THe WRITE STATEMENT

12.3 THE READ STATEMENT

12.4 INPUT/OuTPUT FORMATTING

9-15
9-19

10-1
10-1
10-5
10-13
10-15
10-21

11-1
11-1
11-1
11-1
11-1
11-1

12-1
12-1
12-4
12-8
12-11

i INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

!

e——y———-

12.5 Device ATTRIBUTES
12.6 SuMMARY

13, REAL TIME FEATURES OF HAL/S
13,1 HAL/S ReaL TiMe ConcEepTs
13,2 DeFiNING Tasks
13,3 ScHEDULING PROCESSES
13.4 OtHErR FEATURES
13,5 SummARrY

14, SUMMARY OF PART 1

INTERMETRICS iINCORPORATED + 7C1 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

12-18
12-19

13-1
13-1
13-1
13-1
13-1
13-1

14-1

w—

1

1
]
1

£ el

INTRODUCTION

HAL/S is a programming language developed by Intermetrics, Inc.
for the flight software of the NASA Space Shuttle program.
HAL/S is intended to satisfy virtually all of the flight
software requirements of the Space Shuttle. To achieve this,
HAL/S incorporates a wide range of features, including appli-
cations-oriented data types and oxganizations, real time
control mechanisms, and constructs for systems programming
tasks.

As the name indicates, HAL/S is a dialect of the ori?inal
HAL language previously developed by Intermetrics (1],
Changes have been incorporated to simplify syntax, curb
excessive generality, or facilitate flight code emission.

REVIEW OF THE LANGUAGE

HAL/S is a higher order language designea to allow programmers,
analysts, and engineers to communicate with the computer in a
form approximating natural mathematical expression. Parts of
the English language are combined with standard notation to
provide a tool that readily encourages programming without
demanding computer hardware expertise.

HAL/S compilers accept two formats of the source text, the
usual single line format, and also a multi-line format corres-
ponding to the natural notation of ordinary algebra.

DATA TYPES AND COMPUTATIONS

HAL/S provides facilities for manipulating a number of different
data types. 1Its integer, scalar, vector, and matrix types,
together with the appropriate operators and built-in functions
provide an extremely powerful tool for the implementation of
guidance and control algoritnms, Bit and character types are
also incorporated.

HAL/S permits the formation of multi-dimensional arrays of
homogeneous data types, and of tree-like structures which
are organizations of non-homogeneous data types.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

o ey

REAL TIME CONTROL

HAL/S is a real time control language. Defined blocks of

code called programs and tasks can be scheduled for execu-
tion in a variety of different ways. A wide range of commands
for controlling their execution is also provided including
mechanisms for interfacing with external interrupts and other
environmental conditions.

ERROR RECOVERY

HAL/S contains an elaborate run time error recovery facility
which allows the programmer freedom (within the constraints
of safety) to define his own error processing procedures, or
to leave control with the operating system.

SYSTCM LANGUAGE

HAL/S contains a number of features especially designed to
facilitate its application to systems programming. Thus,
it substantially eliminates the necessity of using an
assembler language.

PROGRAM RELIABILITY

Program reliability is enhanced when software can, by its
design, create effective isolation between various sections

of code, while maintaining ease of access to commonly used

data. HAL/S is a block oriented language in that blocks

of code may be established with locally defined variawles that
are not visible from outside the block. Separately compiled
program blocks can be executed together and communicate through
one or more centrally managed and highly visible data pools.

In a real time environment, HAL/S couples these precautions with
locking mechanisms preventing the uncontrolled usage of sensitive
data or areas of code.

r—

. . «
[S Saremng

R

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢+ (617) 661-1840 . !

i s Ao et i bt e T e - -
SO, et

—t

[)

ABOUT THE PROGRAMMER’S GUIDE

The Programmer's Guide presents an informal description

of the HAL/S Language to the poteatial HAL/S programmer.

It is in no way meant to be an exhaustive catalog of all

the various rules of the language. That is the function

of the HAL/S Language Specification Document. However,

after the HAL/S programmer has absorbed the material
presented here; he should have been able to gain enough
insight into the workings of the language to enable him

to use the Language Specification to clarify any ambiguities,

In order to execute a HAL/S program on any given machine, the
programmer will need infcrmation cor+ained in the HAL/S User's
Manual appropriate for that machine.

The Programmer's Guide is div.ded into three parts: ;

@ PART I is aimed at the new LAL/S uscr and contains
enough information on the compiler laiquage constructs
to enable him to begin programuing.

@ PART II describes other, more complex, HAL/S constructs
which will be used regularly in applications programming.

e PART III presents programming exac-rles designed to
illustrate and clarify important compiex HAL/S Language
constructs. Some of the examples are constructs too
advanced to be described in PARTS I and II, but which
are formally defined in the HAL/S Language Specification. ;

‘W’WW"‘W“’"“ -

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

PART 1

Part I of the Programmer's Guide is oriented toward new users
of HAL/S. It covers all the simpler constructs of the language
and contains sufficient information for suprisingly complex
programs to be written. Sections of text delimited by hori-
zontal bars are comments referring to the existence of more
complex HAL/S constructs to be explained in Part II.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

b s ———

1. STRUCTURE OF HAL/S

This section gives an overview on an abstract level of the
overall properties of HAL/S compilations, and tries to relate
these properties to the need for good programming practice.
Later sections of the Guide ir.crpret these properties in terms
of actual HAL/S Language constructs.

1.1 STRUCTURING AND HIGHER ORDER LANGUAGES

A common method of problem solving is the so-called "top dowr"
apprnach. Tha algoritim for solving the problem is first out-
lined broadly, and then, step by step, delineated in successively
deeper levels of greater detail. The success of the algorithm

in arriving at the solution lies as much in its ability to break
down the problem into its simplest component parts, as in its
ability to resolve the problem as a whole.

I1f a problem is to be solved by programming it in a higher order
language, then the "top down" approach is of especial interest
because it lends insight into how the program can be organized.
Specifically, the organization takes the form of an outer program
block enclosing numerous nested "subroutines"*. On the outermost
level, the program is only concerned with the broad outlines of
the solution, and relegates the first level of detail to the outer
set of subroutines. These in turn relegate the next level of
detail to an inner set of subroutines, arnd so one until each
level of the problem has been relegated tc the appropriate set

of subroutines.

* Here the term “subroutine®™ is loosely ufzd in its generally
recognized sense, conveying the idea of a subordinate block
of code executable as a unit on demand. HAL/S uses different
terminology, to be introduced later.

1-1
INTERMETRICS INCORPORATET™ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

s IR

This particular programming tecanique is partly what is meant

by "structured programming”. This term also implies an ability to
form nested groups of executable statements inside a program

or subroutine. On each level of nesting, a statement group

has the ability to behave as if it were a single executable
statement.

The overall effect of structured programming techniques is to
introduce an orderliness into the writing cf programs that

not only makes them easier to read but aiso far less prone to
error. Most modern higher order languages possess constructs
out of which structured programs can be c(reated: the constructs
of the HAL/S language have becn defined deliberately with
structured programming in mind.

1.2 THE BLOCK STRUCTURE OF HAL/S

The structure of a HAL/S compilation, as indicated below,
generally consists of a program klock witn procedure and
function blocks nested within it.

program

b

biocks at s sut L

level 3 =

blocks at level 1

\
o 7

° .
" N e d

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE MASSACHUSETTS 02138 « (617) S561-1840)

»

i e s e et g i w60 g gt 1 ot

- e)] : ' ‘ R

Function and procedure blocks comprise the "subroutines" of
Section 1.1. The more deeply nested a block, the deeper the
level of detail of the problem solution it is supposed to
handle. The difference between function and procedure blocks
lies in the manner in which they are invoked, and is clarified
later in the Guide.

The HAL/S compilation, then, consists of blocks containing
executable statements, some of whi n perform operations
on defined data.

SCOPING OF DATA

In HAL/S, all data must be defined in so-called "data declara-
tions". An important consequence of the structural properties

of HAL/S is its ability to place data declarations so as to bound
the regions in a program which may reference the declared data.
This feature is called "scoping".

Data declared at the program level may generally be used through-
out the entire compilation:

tePeds ..'.-‘
Ko
) 43 e o 63
- ARG % data declarations are
o PR £ % known; i.e. the "scope"
SRR TR oS of program data
SR S B3 declarations.

program

®
[CCTT LTI

I LR

BBk mi gk -

I -

: ; inner blocks
o

rt
w

...... N - L
3NTEBMETR‘CS INCORPORATED « 701 CONCORD AVENUE CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

f

e et B 3 Skt vy 1 o sz = e wmea i e ——

In addition, any procedure or function block nested within a
program block may declare local data - data known only in that
particular block and in blocks nested within it - as indicated
below:

data declared
local to X are

known

P e

region where
data declared
local to Y are
known

Ye

. N
oo f

SCOPING OF BLOCK WAMES

The program block, and every procedure or function within it
are named: block names have scoping rules identical with the
scoping rules for data already described. The name of any
procedure or function block is deemed to have been "declared"
in the outer block in wiich that procedure or function is nested.
This bounds the region where the name is known, and therefore
from where the procedure or function may be invoked. Thus, the
name of any procedure or function nested at the program level
is known anywhere in the program. However, since in HAL/S
recursion is not allowed, such a procedure or function may be
invoked from anywhere except from inside itself, as indicated:

s
. umy

»
v

Lo -}

1-4
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

,-“

e

S % e
‘;:-._:EE :.:.-:.,.
e 3
S
3 redglon where
g n) block A may be
A 2 invoke:!

A
R,
PN

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE MALSACHUST TS 02138 « 617 661 1840

Similarly, inner procedures and functions may be invoked from
anywhere in the block enclosing them except within themselves.

In the following example, inner block B and C can only be
invoked from inside regions X and Y respectively:

region where
block B may be
invoked

region where
block C may be
invoked

1-6

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (61/) 661-1840

» .
o o

L s

]

bl bd bewd Ld

RN i YN K 465 0ot et et <

S, it

e -

B D

o yemen 4

-~

T

<y

T

o~y

It should be noted that all forms of recursion in HAL/S
are illegal. The form of recursion not prevented by
the rules given above is that in which procedures P and
Q are not contained in each other, but P calls Q and Q
calls P.

It is also possible for a program
(or any block within it) to in-
voke entities outside the compila-
tion unit; i.e. other compilation
units, Procedures and functions
may be compiled independently for
this purpose.

See: (tbd)

1-7

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

s

nee e o mmr——————— . - JE—— . 1

1.3 STATEMENT GROUPING IN HAL/S

In HAL/S, the actual step by step solution of a problem is
performed by executable statements coritained in the blocks
comprising the program. Sequences of executable statements
may be grouped together and treated as a single compound
statement. Such statement groups are said to be "well-
bracketed" - they begin with a special st.tement (a "DO"
statement), and end with another special statement (an "END"
statement). Execution of the sequence of statements in the
group can be controlled in various ways depending on the form
of the opening "DO" statement:

e the sequrence may be executed once only;

e the sequence may be executed repetitively until specified
conditions are met;

e one statement. in tiie sequence may be selected as the
only one to be executed.

Sequences of compound statements may also be grouped together
in the same way and, in turn, be treated as a more complex com-
pound statement, and so on to an arbitrary degree of nesting.

Use of this grouping property in conjunction with other HAL/S
constructs can substantially eliminate the need for a "GO TO"
statement (in the Fortran sense, for example), which from the
structured programming viewpoint is recognized to be "dangerous"
because it destroys the readability of a program, and makes it
more error-prone.

STATEMENT GROUPS AND GO TO STATEMENTS

The design of HAL/S minimizes the dangers of "GO TO" statements

by limiting the regions which can be branched to by them, in a way
analogous to the limits imposed on data by the scoping rules
described in Section 1.2.

_ I

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840 I

NS

Consider a program containing nested groups of executable
statements as shown below:

outermost
group X

innermost
group Y

The region of legal destinations of "GO TO" statements contained
in group X are as indicated below:

: R 2 N outermost
> LS — %roup Xx

A region of
. . & legal des-
o ' o tinations
o " ‘ L of GO TO's

e S in X

5 f
«

1-9
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 « (617) 661-1840

The region of legal destinations of "GO TO" statements contained
in group Y are as indicated below:

Drogram

region of
legal des-

i §¢s., RPN o tinaticns B
:--'H-:h.\w.q:%u‘ bl 5>f GO TO's ESES
' in Y

””’,.innermost
_ group Y

. N

It is evident from the examples that while groups can be branched
out of, or branched within, they may not be branched into.

INTERACTION WITH BLOCK STRUCTURE

Since procecdure and function blocks may appear arywhere in a program,
including inside statement groups, the problem arises of branches
by rieans of "GO TO" statements in and out of such blocks.

In HAL/S, the destinations of "GO TO" statements are labels attached

to executarle statements. Because the scope rules for statement

labels are the same as for decared data, it follows that it is
1mp0551ble to branch into a procedure or function block. Additionally,
a rule is made that branches may not be made out of a block (even
though by scope rules the label of the destination is visible).

This leaves the reciprocal processes of call and roturn-to-caller

the only ways of enteringy and leaving procedures ard functions,
which is in accordance with structured programming principles.

1-10

INTERME TRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE MASSACHESE TTH 07138 61 7 bl 1840

1.4 SUMMARY

This section has been concerned with the structural properties

of HAL/S compilations on an abstract level. It remains to be
demonstrated in the ensuing sections of PART I how the properties
are translated into sequences of actual HAL/S constructs. Section
2 begins this on the most basic level by describing the
characteristics of HAL/S source text.

1-11
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

e e o —— ———— g A

L

R—

o

-

2. HAL/S SYMBOLOGY

HAL/S source text has its own particular characteristics;

a specific character set, special combinations of characters
set aside as reserved words, and certain rules dictating

the form of statements. This section is an introduction

to these characteristics cf the HAL/S Language.

2.1 THE CHARACTER SET

The HAL/S language uses the following character set:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz

0123456789
+-n. /]| -Ea=<>#0$,;:'") (_3¢
(blank)

This character set is a subset of the standard character sets
ASCII and EBCDIC.

Although the user rnally needs only the above character set
when writing a HAL/S program, there are additional special
characters which can be used in comments and in character

string literals (described later in this section).

()Y {yYy:2

The output listings produced by a HAL/S compiler may use these
extra special characters for annotation.

2-1
T AR iAAREA STER LI CC S N AVEMUE « CAARBRIDGE. MASSACHUSETTS 02138 » (617) 661-1840

o o s e i

2.2 RESERVED WORDS, IDENTIFIERS, AND LITERALS

The HAL/S language uses four kinds of primitive elements as
basic constructs:

® RESERVED WORDS are a fixed part of the language and consist
‘of combinations of upper case alphabetic characters;

@ IDENTIFIERS are user-defined names used for data or labels,
and consist of combinations of the alphanumeric characters;

® LITERALS express actual values, and can consist of any of the
symbols in the character set;

® SPECIAL CHARACTERS serve as delimiters, separators or
operators, and consist of the non-alphanumeric
characters of the HAL/S set.

RESERVED WORDS

Reserved words are words having a standard meaning in the HAL/S
language. As their name suggests, the user cannot use reserved
words as identifier names. There are two major categories of
reserved words:

o KEYWORDS are used to express parts of HAL/S statements, for
example:GO TO, DECLARE, CALL, and so on. A complete
list can be found in Appendix .

® BUILT-IN FUNCTION NAMES are used to identify a library of
common mathematical and other routines, for example:

SINE, SQRT, TRANSPOSE, and so on. A complete list can
be found in Appendix .

2-2
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

IDENTIFIERS

An identifier name is a user-assigned name identifying an
item of data, a statement or block label, or other entity.
The following rules must be observed in the creation of
any identifier name*.,

1. The total number of characters in the name
must not exceed 32;

2. The first character must be alphabetic;

3. The remaining characters may be either
alphabetic or numeric;

4. Any character except the first or last
may be an underscore (_).

Examples:

ELEPHANT _AND_CASTLE
Al f legal

} illegal

‘ * Some implementations of HAL/S may place extra restrictions
upon the names of identifiers.

2-3
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

B R i P

|

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661 1840

LITERALS

The three basic kinds c¢€ |
character string, an? Loorican.
literals is obvious.

® ARITHMETIC LITERAL3 express numerical values in decimal

it¢crals described here are arithmetic,
The utility of arithmetic

{» zimple programming problems, character
string literals find r: ¢t use in the generation of output.
Boolean literals are used to state logical truth or falsehood.

notation. The generic form of an arithmetic literal
is:
mantissa r-exponent
P ——
tddd.dddE:dadd
l. ddd represents an arbitrary
number of decimal digits.
2. The exponent is optional.
3. The + signs are optional.
4. The decimal point is optional.
I1f absent, it is considered to be
to the right of the least signi-
ficant digit of the mantissa.
If the decimal point is present,
it may appear anywhere in the mantissa.
5. The minimum number of digits in the

mantissa, and in the exponent. if
present, is one. The maximum
number is implementation dependent.
(See Appendix).

2-4

““-p

Examples:

0.123E16
45.9
-4

It is important to note that HAL/S makes no distinction

of type ietween a integral-valued literal and a fracticnal-
valued literal. Either integer (with possible rounding of
value) or scalar (i.e. floating-point) type is assumed
according to the context in which the literal is used.

The use of multiple exponents,
and of binary, hexadecimal or
octal exponents, in also allowed, i
See: (tbd;. :

2-5
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

3
|

-

® CHARACTER STRING LITERALS consist of strings of characters
chosen from the entire HAL/S character set. The
generic form is:

'ceceeccece!

l. The quote marks delimit the
beginning and end of the
literal.

2. cccc represents an arbitrary
number of characters in any
combination.

3. Quote mcrks within the literal
must be represented by a pair
of quote marks to avoid con-
fusion with the delimiting
quotes.

4., The minimum number of characters
is zero (a 'null' string), the
maximum is 255*,

.
. e ¥

4
* ol

»

‘

4
T

* This value .s implementation dependent., See Appendix
for exceptions.

o boend

2-6
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 I

[——}

« vaaws —ond

Examples:

'ONE two THREE'
'‘DOG''S'

If a literal consists of a single
character, o character sequence
repeated may times, a condensed
form of literal using a repeti-
tion factor may be used.

See: (tbd).

® BOOLEAN LITERALS express logical truth or falsehood,
and are generally used to set up the values of
Boolean data items (see later). Their forms are:

TRUE } expressing truth, or
ON binary "1"

FALSE } expressing falsehood
OFF or binary "0"

Literal strings of binary values
also exist.
See (tbd).

2-7

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

¢

e L

2.3 FORMAT OF SOURCE TEXT

HAL/S is a "stream-oriented" language, that is, statements
may begin anywhere on a line (or card), and may overflow
without special indication onto succeeding lines or cards.
Several statements may be written on one line (or card) as
required.

HAL/S is among the very few languages which permit subscripts
and exponents to be represented as they ave mathematically,

using lines below and above the main line respectively as needed.
This multi-line format is an optional alternative to the HAL/S
single-line format.

Even when multi-line format is nc.t used, the first character
position of each line (or card) is reserved for a symbol
denoting the kind of line format, subscript, main, or
exponent.

SINGLE-LINE FORMAT

In single-line format, the first character position of each line
is left blank, denoting a main line. (An M can alternatively
be used but is generally not preferred by users.

e EXPONENTS are denoted by the operator «=»

‘
L]

Example:
xt*2 is coded as: E
EM X« (T+2)
e SUBSCRIPTS are denoted by parenthesizing the subscript and
preceding it with the symbol §$.

Example:

ai+41

M AS$ (I+l)

| 3
is coded as: I
I

2-8
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 l

AU bbb e Nt HIPL A P AU ob < AU AR, B e nn

e

- all

MULTI-LINE FORMAT

In multi-line format, the first character of a main line

is either left blank or M is inserted as before. The first
character of an exponent line is E, and that of a subscript
line is S.

e EXPONENTS are written on an exponent line (E-line) immediately
above the main line.

Example:

xt+2 is coded as:
:B T+2
‘M X

s SUBSCRIPTS are written on a subscript line (S-line) immediately
below the main line.

Example:
a,,; is coded as:
‘M A i
; .8 I+l
3 When using multi-line forma:t, care must be taken to ensure that

nothing on the E- and S-lines overlaps anything on the M-line.

R

i Exponents of exponents and sub-~

] scripts of subscripts use extra

subscript and exponent lines. -
Special rules apply if exponents H
are subscripted, or if subscripts ’
possess exponents,
See: (tbd).

2-9

3
{
i
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 i

R L T

2.4 STATEMENT DELIMITING

As Section 2.3 indicated, HAL/S statements may be written in

free form without regard for line (or card) boundaries. Bu-
cause of this there is the need to explicitly indicate the

end of each statement with a special symbol. HAL/S uses a
semicolon for this purpose. The followingy statemencis arbitrarily
selected from the language show the placement cf the semicolon.

Examples:
DECLARE I INTEGER;

I=1I+1;
CALL P(I,J);

2,5 COMMENTS IN HAL/S

The use of comments is a sine ~ .on of good programming practice.
HAL/S possesses two mechanisms ... the inclusion of comments in a
compilation.

e IMBEDDED COMMENTS may be placed anywhere on main, exponent
or subscript lines of HAL/S text.

e COMMENT LINES may appear between main, exponent and subscript
lines of HAL/S text.

IMBEDDED COMMENTS

An imbedded comment takes the form:

/* ... any text (except */) ... %/

2-10

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

'm‘ ;ﬂ-m-' :ml :‘w

i
1
1

I O A

—

- o

-

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Such comments may appear between HAL/S statements or imbedded

in a statement. They may not appear in the middle of a literal,
reserved word, or identifier. As far as the sense of the source
text is concerned, an imbedded comment is treated as if it were
a string of blank characters.

Example:
)
:M X=X+ 1; /x ADD ONE TO X */

COMMENT LINES

Comment lines are input lines specially reserved solely for comments
by placing the character C in the first character position of the
line. The rest of the line may contain any desired text.

Examples:

EM X=X+ 1;

.C ADD ONE TO X
'C THEN CARRY ON

2.6 SUMMARY

In Section 2, the most basic elements of the HAL/S Lanauage have
been outlined: reserved words, identifiers, literals, the
formatting of the source text, and alternate forms of comment
insertion.

In Section 3, the overall form of a HAL/S program will be explained,

with special references to how declarations of data and executable
statements may be arranged within it.

2-11

A e e mri bad

2-12

I'ITE METR Q1M RPC RATFN « 701 CONCORND AVFNUF « CAMBRIDGE. MASSACHUSETTS 02138 + (617) 681-1840 I

ale

3. A HAL/S COMPILATION - THE PROGRAM BLOCK

The structuring of HAL/S programs was dealt with on the conceptual
level in Section 1. Section 3 begins to interpret this infor-
mation in terms of actual HAL/S language constructs.

For the purposes of Part I,an entire HAL/S unit of compilation
is known as the "program block". The term "block" has a special
connotation in this Guide. It is taken to mean a coherent

body of data declarations and executable statements enclosed in
statements delimiting its opening and closing, and identified
with a name.

3,1 OPENING AND CLOSING THE PROGRAM BLOCK

The first statement of a HAL/S program is that statement defining
the name of the program and opening the program block. The last
statement of a HAL/S program is that statement closing the program
block. Between the two are all the statements comprising the body
of the program.

PROGRAM OPENING

The statement that opens the program block takes the form:

<label>: PROGRAM;

l. <label> is any legal identifier
name, and constitutes the name
of the program.

3-1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

. o

PROGRAM CLOSING

The program block is closed with the statement:

CLOSE <label>;

1. The identifier <label> is
optional.

2. 1If <label> is supplied, it
must be the program name,
i.e. the <label> on the
opening statement of the
program block.

Example:

TEST:

R

PROGRAM;

RN, '

- body of program goes in here

..... ;

3.2 POSITION OF DATA DECLARATIONS

Normal HAL/S programs require the use of data. The names used
to identify this data must be declared before use by the means
of data declaration statements. Data declarations (and,
additionally, certain other kinds of statements) must be
placed after the program opening statement and before the
first executable statement.

3-2

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 * (€17) 661-1840 I ﬂ

“Y -“-n‘

EIPpP

#

' TEST: PROGRAM;

L_.data declaration statements

f"executable statements

' CLOSE TEST;

5.3 FLOW OF EXECUTION IN THE PROGRAM

The program begins execution at the first executable state-

ment after the data declarations, and thereafter follows a

path determined by the kinds of executable statements encountered.
Unless statement groups, or branching or conditional statements
intervene, execution is sequential*. Finally, the path either
reaches a statement terminating execution of the program, or
reaches the closing statement of the program block, which has

the same effect.

As described in Section 1, procedure and function definition
blocks may be interspersed between the statements in a program
block. The only way of executing such blocks is by explicit
invocation: if they are encountered in the path of execution
they are passed over as if non-existent.

¥ This order is called the "natural order" of execution.

3-3
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02144 « 61,1 061-1840

Example:

path of
execution

3.4 SUMMARY

. (X

TEST: PROGRAM;

f_ﬁstatements

executable
statements

procedure
definition
block

i

AL e -

block invoked
and returned
from

Section 3 has described the opening and closing of a program
block, has shown where data declarations are placed in it, and

has explained the

block.

path of execution followed through a program
The following chapters of Part I will begin to fill

in the details of the possible contents of the block.
describes how data is declared and referenced.

It begins to

build on the fundamental intormation given in Section 2.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 « (617} 661-1840

o MBI AL WS B b s o

-~

3-4

data
declaration

Section 4

r—g

L B

4, DATA DECLARATION

Programming largely consists of the manipulation of numerical

data. The diversity of the data types in a language determines

its utility for any required task. HAL/S contains an exceptionally
diverse set of data types.

Identifiers of the kind described in Section 2 are used to name
items of data. Identifier names used to represent data items
must®* be defined in data declarations appecring in the apprcpriate
program, prodcedure or function block. The effect of placing
data in different blocks is described in Section 1. The position
of data declarations within a program biock is described in
Section 3.

This Section now proceeds to describe the detailed construction
of data declarations.

4,1 HAL/S DATA TYPES

In the HAL/S language, arithmetic data of the following types

can be declared:

¢ INTEGER for the representation of integer-valued quantities;

e SCALAR for the representation of "floating-point" quantities;

e VECTOR for the representation of algebraic row or column
vectors (without distinction), and each element of which is
a SCALAR quantity;

® MATRIX for the representation of algebraic matrices, and each
element of which is a SCALAR quantity.

* The HAL/S language prohibits the use of implicitly declared
data items considering it to be an urndesirable programming
practice.

4-1

INTERMETRICS INCORPORATED - 701 CONCORD AVEMUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

R -

These arithmetic data types may be specified in either single
or double precision. In the case of INTEGER, the precisiou
deterrines the maximum absolute value the identifier may take
on. In all other cases, it determines the number of signifi-
cant digits in the mantissa of the value.

In addition, HAL/S also possesses the following data types:
® CHARACTER for the representation of strings of text;

e BOOLEAN for the representation of binary-valued (logical)
quantities.

It is possible to declare arrays (or tables) of any of the six
above types.

HAL/S in fact allows more
data types than just those
described here. It also
allows hierarchical organ-
izations of data-types
called “structures”.

See: (tbd)

4,2 SIMPLE DECLARATION STATEMENTS

Data declaration statements define idertifiers used to name data.
The simplest forms of declaration statement for each data type
listed above are examined on the following pages.

4-2

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840 I

INTEGER

DECLARE <name> INTEGER;
DECLARE <name> INTEGER SINGLE;
DECLARE <name> INTEGER DOUJLLE;

l. In each of the forms <name> is any legal
HAL/S identifier.

2. Presence of the keyword SINGLE specifies
single precision.

3. Presence of the keyword DOUBLE specifies
double precision.

4. Absence of either keyword implies default
of single precision.

For the integer data type, single precision usually implies
halfword and double precision fullword, depending on the
implementation®.

Examples:
|
1 DFCLARE 11 INTEGER;

| DECLARE BIG_I INTEGER DOUBLE;
'

* See Appendix .

4-3
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSE ITS 02138 + (617) 661-1840

r ———

SCALAR

DECLARE <name> SCALAR;
DEC RE <name> SCALAR SINGLE;
DECLARE <name> SCALAR DOUBLE;

1. In each of the forms, <name> is any
legal identifier.

2. Presence of the keyword SINGLE specifies
single precision.

3. Presence of the keyword DOUBLE specifies
double precision.,

4. Absence of either keyword implies a de-
fault of single precision.

5. The keyword SCALAR may be omitted.

Double precision usually implies increased range of exponent

and increased number of digits in the mantissa, but it is
implementation dependent*.

Examples:
DECLARE S1;

DECLARE S2 SCALAR;
DECLARE S3 SCALAR DOUBLE;

-——- . .= -

* See Appendix .

4-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138

]

- (617) 661-1840 I

AR B B, Cov a0

MATRIX

! DECLARE <name> MATRIX (m,n);

. DECLARE <name> MATRIX (m,n) SINGLE;
DECLARE <name> MATRIX(m,n) DOUBLE;

l. In each form <name> is any legal identifier.

2. Keywords SINGLE and DOUBLE have the same
significance as for SCALAR and VECTOR types.

3. m and n denote respectively the number of
rows and columns in the matrix. They must
lie in the range 1 < m, n £ 1l6*,

4. If the size specification (m,n) is absent,
a 3x3 matrix is assumed.

Examples:

DECLARE M1 MATRIX (2,4):;
DECLARE M2 MATRIX(4,5) DOUBLE;
DECLARE M3 MATRIX;

\\'a 3x3 matrix

* This valne may be implementatlon dependent. See Appendix
for exceptions,

4-5

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 i

D D . ' P

VECTOR

DECLARE <name> VECTOR(n);
DECLARE <name> VECTOR(n) SINGLE;
DECLARE <name> VECTOR(n) DOUBLE;

. = - - e

1. In each form <name> is any legal
identifier.

2. Keywords SINGLE and DOUBLE have the
same significance as for SCALAR type.

3. n specifies the length of the vector
and must lie in the range 1 < n £ 1l6*.

4. If the length specification (n) is
omitted a length of 3 is assumed.

Examples:

' DECLARE V1 VECTOR(10);
. DECLARE V2 VECTOR(3) DOUBLE;
' DECLARE V3 VECTOR;

|
\‘a 3-vector

* This value may be implementation dependent.
for exceptions.

4-6

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

See Appendix

‘ s 3 ¢
Sy .y

W dre

[

v s

e e s = s S——

CHARACTER

DECLARE <name> CHARACTER(n);

- eae a=

1. <name> is any legal identifier,

2. n specifies the maximum length of the text

lie in the range of 1 < n < 255*%,

3. The actual length of the string of text
carried may vary during execution between
zero (a "null" string) and the maximum n.

string that the data type may carry. (i.e.
the maximum number of characters). It must

Example:

DECLARE C1 CHARACTER(30);

BOOLEAN

DECLARE <name> BOOLEAN;

l. <name> is any legal identifier.

Example:

: DECLARE Bl BOOLEAN;

* This value may be implementation dependent. See Appendix

4-7

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 + (617) 661-1840

ARRAYS

In any of the above declarations, regardless of data type,
the part of the declaration between the <name> and the
terminating semicolon which establishes the type (and
possibly precision and size) constitutes the "attributes"
of the declaration,

To declare an array of any data type an ARRAY specification
is inserted between the <name> and the attributes:

'

: DECLARE <name> ARRAY(n) <attributes>;

1. <attributes> stands for any legal form of
attributes for any data type described.

2. n denotes the number of elements in the array
(i.e. entries in the table) and must lie in
the range 1 < n £ 32768*,

Examples:

DECLARE AS1 ARRAY(500) SCALAR;
DECLARE AM1 ARRAY (20) MATRIX (4,4);

*e wesmow

* This value may be machine dependent. See Appendix
for exceptions.

4-8

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

[P

ST e M"mew«-m

RN m e m e ame s e e on o o okt o

COMPOUND DECLARATIONS

If a prooram contains declarations of many data items it is
tedious to .epeat the keyword DECLARE in every declaration.
Many separate declarations may be condensed into one compound
declaration as shown below.

Example:

|
|
|
I
!
I
!

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

DECLARE

Note the commas

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

S;

I INTEGER DOUBLE;

M3 MATRIX;

M6 MATRIX (6,6):;

B BOOLEAN;

C ARRAY (5) CHARACTER(20);
V ARRAY (3) VECTOR;

separate declarations

S,
I INTEGER DOUBLE,

M3 MATRIX,

M6 MATRIX(6,6), equivalent compound
B BOOLEAN, declaration

C ARRAY(5) CHARACTER(20),

V ARRAY (3) VECTOR;

separating the declaration of each data item.

If the identifiers in a compound
declaration have some attributes
in common a third even more
compact form of declaration
called a factored declaration
can be used.

See: (tbd)

4-9

é»
s

-

it

K o et e

4,3 INITIALIZATION OF DATA

A HAL,/S data item of any i(yne may be initialized by incorporating
an INITIAL specification inte its declaration statement. The
form of such a specification differs depending on whether the
data item is "uni-valued" or "multi-valued”.

e UNI-VALUED data items are those having only one element:
unarrayed scalars, booleans, and characters.

® MULTI-VALUED data items are those having more than one
element: unarrayed vectors and matrices, and arrayed
data items of any type.

In either case, the INITIAL specification is placed after the type,

precision, and size attributes of a declaration. This pasitioning
will become apparent in the examples to follow.

UNI-VALUED DATA ITEMS

The two variations of the form of INITIAL specification for
uni-valued data items are:

INITIAL (<value>)
CONSTANT (<value>)

L. The two forms have the same effect in
that the data item is initialized to
the litcral indicated by <value>,

2. The form using the keyword CONSTANT is
required-only if the user wishes not
to change the initial value during
execution¥*.

3. The type of the literal <value> must
be compatible with the type of the data
item as determined from the following
table:

data type literal value
CHARACTER character string

BOOLEAN boolean
INTEGER))
SCALAR } arithmetic

* In many respects a data item initialized this way is akin to
a literal.

4-10

INTERMETRICS INCORFORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

ot

TP R

Ll s G e st

Examples:

lDECLARE A SCALAR INITIAL(3),

B SCALAR CONSTANT (4.5E-3),

C CHARACTER(80) INITIAL('YES'),
D BOOLEAN INITIAL(TRUE);

Note: initial working length of C becomes 3.

MULTI-VALUED DATA ITEMS

There are two corresponding variations of the INITIAL specification

for multi-valued data items:

INITIAL (<value>,
CONSTANT (<value>,

1. The meaning of the keyword CONSTANT is
the same as for uni-valued data items.

2. The type of the literal <value> must be
compatible with the type of the data item,
as determined from the following table.

<value>,)
<value>,)

data type literal value
CHARACTER character string
BOOLEAN boolean

INTEGER '

SCALAR . .
VECTOR s arithmetic
MATRIX

3. The number of <value>s in the list must
equal the total number of elements implied
by the data declaration.

Note that if all the elements of a multi-valued data item are to
be initialized to the same value then the form used for uni-valued
data items may be used.

4-11

INTERMFTRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 + (617) 661 1840

| w— . w———

——

3

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Examples:

:DECLARE V VECTOR INITIAL(1,2,3.5)
X S ARRAY (2) CONSTANT(1,0),
| T ARRAY (.' VECTOR(2) INITIAL(4.7,-5.3,0,0);

)
yDECLARE V VECTOR .NITIAL(O),
| S ARRAY (100) INTEGER INITIAL(256);

all elements of these data
items are identically
initialized.

ORDER OF INITIALIZATION

To complete the specification of initialization the order of
initialization of the elements of multi-valued data i1tems
needs to be defined.

The following ordering rules, though applied here to the
initialization of multi-valued data items, holds true when-
ever the ordering of elements is called into question.

¢ VECTOR data items are initialized in order of increasing
index. .
® MATRIX data items are initialized row by row in order of
increasing index.
@ ARRAY data items are initialized array element by array element
in order of increasing index. Where the array element are
themselves multi-valued, each array element in turn is
initialized completely according to the previous rules bhefore
going on to the next.
Example:

DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(1,2,3,4,5,6,7,8); f

if Ml is the first array element, and M2 is the second, then:

12 =56|
M) = |3 4 '+ My l? 8 o

4-12

o oad

S A

- e - T v 5

-

Additional more compact initialization
forms are :available if only partial
initialization is required, or if
subsets of the initial values are
identical. See: (tbd)

4.4 SUMMARY

Section 4 has dealt with how data is declared in HAL/S
compilations, and how it initialized. The next logical
step is to begin to discover how it may be used. However,
this is put off until Section 6. Section 5 deals with a
useful HAL/S construct which allows the user to replace
frequently-repeated HAL/S expressions by defining and
substituting a symbolic name.

Study of Section 5 can be omitted without detriment to the
understanding of the remainder of Part I of the Guide.

4-13

INTERMETRICS iINCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617, 661-1840

-a

§ wd

I
|

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 l

4-14

v e

tan s o e e

-

5. REPLACE STATEMENTS

When it is necessary to repeat a particular HAL/S construct
exactly many times during a program, the user can avoid the
tedious process of laboriously writing it at length each time
by defining a symbolic name to represent the construct, and
then replacing the construct with the symbolic name.

This kind of substitution can be of advantage in several

ways. For instance, the value of a literal recurring many times
can be easily changed between successive compilations. The user
need only define a symbolic name to represent the literal, then
replace the one with the other. Only one line of the program
needs to be recoded as opposed to the many lines that would

need recoding if the user had to find and change the literal
each time it occurred.

The definition and substitution of the symbolic name is
accomplished by a REPLACE statement.

5.1 THE REPLACE STATEMENT

The REPLACE statement is placed together with the data .
declarations of the program, procedure, or function block in
which it . to be used. It takes the form:

|
+ REPLACE <name> BY "XXXXXXXXXXX";
]

1. XXXXXXX represents the HAL/S source text which
it is desired to substitute. The text is de-
limited by double quote marks, and must be
written in single line format.

2. <name> is the symbolic name chosen to repre-
sent the text. It may be any legal identifier

name.
3. XXXXXXX may be any legal source text of arbi-
trary length. edded double quote marks

must be represented as a pair of double quote
marks to avcid confusion with the delimiters.

4. The text must not begin or end in the middle
of a reserved word, identifier, literal, or
imbedded comment.

5-1

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 « (617) 661-1840

5

Examples:

REPLACE OUTPUT BY "WRITE(6)";
REPLACE INCREMENT BY "X=X+1;";

- e® e

5.2 USING REPLACE STATEMENTS

The following examples show the way in which the symbol
subgtitution defined by the REPLACE statement is used.

Examples:

REPLACE DV BY "VECTOR DOUBLE INITIAL(O)";
DECLARE VECl DV,

VEC2 DV,

VEC3 DV;

- by expansion of DV it s evident that
VECl1l, VEC2, VEC3 are all cdouvble precision
vectors initialized to zero.

+ REPLACE N BY "4";

DECLARE V1 VECTOR(N),
M1 MATRIX (N,N)},

' M2 MATRIX(2,N);

- this shows the utility ¢f the REPLACE
statement in making it easy to change the
sizes of sev: ‘al vectors and matrices
simultaneously.

REPLACE X BY "VECTOR(2)";
REPLACE Y BY "ARRAY(5) X";

- this is an example of nested sub-
stitutions. The expansion of Y is
ARRAY (5) VECTOR(2).

REPLACE X BY "REPLACE Y BY""Z""";
X;
DECLARE Y SCALAR;

Py

. '
i §

- although this is a legal use of REPLACE statements, it
does not lend itself to clarity. The sequence of state-
mcnts culminates in 2 being declared as a scalar data
item,

5-2 .
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 :

- v - B

A REPLACE statement takes effect only after it ap, 2ars.
It does not modify the entire block. urly that section that
follows its appearance.

Example:

DECLARE V1 VECTOR(N);
REPLAI’E N BY "4";
DECLARE V2 VECTOR(N);

- the REPLACE statement will only be
effective starting with the s<cond
declaration statement. N is un-
known in the first declaration and
compilation would detect the error.

Care must be taken in using REPLACE statements because

the ways in which they are affected by the block structure
ot the HAL/S program in which they appear are not always
obvious.

Example:

REPLACE X BY "Y"; e Program

—

#Procedure block
DECLARE X SCALAR; IJFA”

- the user must remember
that the X of the locai
declaration inside the
procedure block is still
subject to the REPL? ..
statement at the program
level.

5-3
INTERMETRICS INCORPORATED ¢+ 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSE TS 02138 + (6171 €61 1840

‘- - - - - - - AR - - - S o o

.,

The only case in which a REPLACE statement in an outer block
becomes ineffective in an inner block is when the inner block

has a REPLACE statement in it with the

Example:

REPLACE X BY

\
NN
I AN

same hname.,

Program

Procedure block

/////,Procedure block

region where X is
replaced by Y

region where X is
replaced by 2

Replace statements may also
possess parameters, turning
them into a sophisticated
macro expansion facility.
See: (tbd).

5-4

INTERME TRICS INCORPORATED + 701 CONCORD AVENUE * CAMBRIDGL MASSACHUSETTS 02138 « (6171 661 1840

\ -

5.3 SUMMARY

Section 5 has dealt with a mechanism for symbolic replacement
of HAL/S source text. Section 6 begins to examine the way in
which executable statements are constructed by describing how
data is referenced.

5-5

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

£ I ettt NN RSt S dere st

— ‘..:"

s 8

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

& "
2 wren wonr

5-6

= b &3

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSFTTS 02138 + (61/) 661-1840

/

s

6. DATA REFERENCING AND SUBSCRIPTING

Any appearance of the name of a previously-declared data item
in an executable statement constitutes a reference to its value
(and possibly causes a change in its value)*. Sometimes it is
necessary to be able to reference elements of vectors, matrices,
and arrays, and also to reference parts of character strings.
HAL/S has a wide range of subscript forms designed for this
purpose.

Two kinds of subscripting are relevant to the data types
described in Section 4.

® COMPONENT SUBSCRIPTING allows the user to select elements
or subsets of elements from vectors and matrices, and to
select substrings from character data items,

® ARRAY SUBSCRIPTING allows the user to select elements or
subsets of elements from arrays of any data type.

Depending on the nature of a particular data item, either or
both kinds of subscriptinog may be affixed to it.

6.1 SUBSCRIPTS OF UNARRAYED DATA TYPES

Unarrayed data types, i.e. those whose declarations contain no
array specification, may at most possess only component subscript-
ing. Unarrayed data items of integer, scalar, and Boolean

types may not possess any subscripting. Allowable subscripts

for the remaining types, - character, vector, and matrix - are

now each described in turn.

* fThis Section, for convenience, includes appearance causing
change in value under the term "reference", ever though
this is not the most usual meaning of the term.

6-1

CHARACTER

In a character data item, character positions are indexed left
to right starting from 1. 1In the subscript forms given below,
STRING represents an unarrayed data item of character type with
current working length L.*

® To select the ath character from STRING:

STRING
o

l. o is an integer expression in
the range 1 < a & L.

® Tghselect o characters from STRING, starting from the
B8

= ot TEDET e T R YOI AN ¢ 2 Fn, 5 A Beeren e s vt

l.
20

3.

STRING
aQ

AT 8

a and B are integer expressions.

B is in the range 1 < B

a is in the range 0 < «

< L.

<L -8+1.

~N

*

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (€17) 661-1840

In the case where reference of a subscripted character data
type causes a change in its value (e.g. on the left hand side
of an assignment), somewhat different interpretations of the
subscript forms hold true. An account of these is given in
Section 8.3.

6~4

T e A S v - 4= -

" 1. a is an integer expression in the

Qp..q

® To select a substring starting with the ath character
of STRING, and ending with the gth:

STRINGG TO B

1. o and B are integer expressions in
the range 1 < a, B £ L.

2. B & a.

Examples:

if the value of C is 'ABCDEF' then:

3 [] L
C5 is 'E
3 [] L}
C2 AT 2 is 'BC
» . 1]
L4 TO 6 is ‘'DEF

VECTOR

Elements of a vector are indexed starting from 1. 1In
the following subscript forms, VEC represents an unarrayed
vector data item of length L.

® To select the ath element from VEC:

VEC
a

range 1 < a £ L.

2. The resulting data type is SCALAR,

6-3
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSE 1 TS 02136 + (617) 661-1840

- e or AR o ber oo
. S e el

R el

RTTIE D

S

e AT TSI TNRAGR S R0 Sh

® To select an a-vector partition starting from the gth
element of VEC:

VECa AT B

l. a is an integer literal value in
the range 2 < B < L.

2, B is an integer expression in the
range 1 < B L - a + 1.

® To select a partition starting from the ath element of
VEC and ending with the gth,

VEC, TO B8

l. o and B are integer literal values
in the range 1 < a, B £ L.

2. B > a.

Examples:
if v = [4.5] then:
9.3
7.1
2.7]
Vl = 4.5 (scalar)
V3 ™ 4 = 7.1 (2-vector)
2.7
v2 AT 1 = 4.5 (2=-vector)
9.3
6-4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRINGE, MASSACHIISFTTR 0213R + (A17) RR1-1840

T

e ot

-

MATRIX

Rows and columns of a matrix are indexed starting from 1.
Any matrix subscript must consist of a row subscript folloued

by a column subscript. 1In the following subscript forms, MAT

represents an unarrayed M x N matrix data item.

Tghselect the element of MAT common to the ath row and
B

column:
MATQ .8
1. o, B are integer expressions.
2, o is in the range 1 € a ¢ M,
and f is in the range 1 ¢ B £ N.
3. The resultant data type is SCALAR.

To select the oth row of MAT:

MAT

o, *

a is an integer expression in the
range 1 ¢ a ¢ M.

The resultant data is N-VECTOR.,

If the asterisk is replaced by a
TO- or AT- subscript under the
rules given for VECTOR data t{ges,
a vector partition from the a

row may be selected.

6-5

INTERMETRICS INCORPQORATED + 701 CONCORD AVENUE + CAMBRID 58, MASSACHUSFTTS 02138 « (617) 661-1840

® To select

the 8th column of MAT:

MAT* B

B is an integer expression in the
range 1 < B8 < N.

The resultant data type is M-VECTOR.

If the asterisk is replaced by a
TO- or AT- partition under the
rules given for VECTOR data types,
a vector partition from the gth
column may be selected.

® To select a a x y matrix partition starting from the

gth row and 6D column of MAT:

MAT . AT 8, y AT ¢

a, Y are integer literal values in
ranges 2 < a < M, 2 <y <N
respectively.

B,Y are integer expression in
ranges 1 B M-qa +1,
l<dgN-vy+ respectively.

Either or both the AT- subscripts
may be replaced by TO- subscripts
under rules already given by VECTOR
and MATRIX types.

Either of the AT- subscripts may in
addition be replaced by an asterisk
if all M rows or all N columns are
to be included in the partition.

INTERMETRICS INCORPORATED

6-6

* 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

\ .

e Y ad G Y T o s 44

o

P—"

Examples:
if M ={1.1 1.2 1.3 then :
2.1 2.2 2.3
3.1 3.2 3.3
M2'3= 2.3 (scalar)
My 1= |1-1 (3-vector)
' 2.1
3.1
M = [2.2] (2-vector)
2, 2 TO 3 = 2.3J vector
2.
M =[1.1 1.2 (3x2 matrix)
*2aTl 1577 2.2
3.1 3.2

Ml T0 2, 1 TO 2 = {é.i 1.2] (2x2 matrix)

6-7

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

—-———— = = e et it e miae —— e e - - - - - i e st nh e e e e ——— v b o v bt

\

o Ry

s

6.2 SUBSCRIPTS OF ARRAYED DATA TYPES

Arrayed data types, i.e. those whose declarations contain
an array specification, may possess array subscripting.
If the data types are vector, matrix, or character, then
they may, in addition, possess component subscripting.

ARRAY “'JBSCRIPTING ONLY

Arrays are indexed starting from 1. In the array subscript
forms given below, TABLE represents an array of length L
of any data type.

e To select the ath array element from TABLE:

TABLE
as
l. o is an integer expression in the
range 1 < a £ L.

2. The colon is optional if the data
type of TABLE 1s INTEGER or SCALAR.

® To select a sub-array of length a starting from the gth
array element of TABLE:

TABLEQ AT B:

l. a is an integer literal value in the
range 1 < a € L.

2. B is an integer expression in the
range 1 < B L -a + 1.

3. The colon is ogtional if the data .o
type of TABLE 18 INTEGER or SCALAR, {

6-8
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840 I

jep—

® To select a sub-array starting from the oth array
element of TABLE and ending with the g th,

TABLEOl TO £:

1. 4, B are integer literal values
in the range 1 < a, B < L.

2, B g a.

3. The colon is ogtional if the data
type of TABLE 1s INTEGER or SCALAR.

Examples:

if T is a 4-array of booleans with values
(TRUE,FALSE, TRUE, TRUE) then:

T,, is FALSE (unarrayed)

T3 TO 4: is (TRUE, TRUE) (still arrayed)

if T is a 4-array of integers with values
(1,2,3,4) then:

T, is 2 (unarrayed) t

2 optional colon |

’ omitted

Ty 1o 4 is (3,4) (still arrayed)

if C is a 3-array of characters, with values
('YES','NO','MAYBE') then:

C is 'YES' (selects first array element)

l:

C2 TO 3: is ('NO','MAYBE') (still arrayed)

6-9

INTERMETRICS INCCRPORATED + 70* CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + 617) 6611840

R

ARRAY AND COMPONENT SUBSCRIPTING

If TABLE represents an array of vector, matrix, or character
data type, then the following rule shows how array and
component subscripting are juxtaposed.

TABLE<array ss>:<component ss>

1. <array ss>: represents array sub-
scripting of any of the forms
previously described.

2. <component ss> represents any form
of component subscripting legal
for the data type of TABLE, as
described in Section 6.1.

The purpnse of the colon now becomes clear: it is required
to distinguish and separate array and component subscripting.
Examples:

if C is a 3-array of characters, with values
(*YES','NO','MAYBE') tlien:

Cy,q is 'Y (selects 3rd character from third
) array element)

if M is a 2-array of 2x2 matrices with values

(53] - [g]) enen

My.2.2 ™ 8 (element in 27d row, 2Pd chlumn
ree of second array element)

6-10

INTERMETRICS INCORPORATED + 701 CONCORD AVEN : « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

o A et n

"
[RS v

Apparently, tne colon should be
optional on Boolean data types
also. It is not because the
Boolean data type is a degener-
ate case of a bit strino data
type which may possess com-
ponent subscripting.

See: (tbd).

COMPONENT SUBSCRIPTING ONLY

When an arrayed data item of vector, matrix or character
type is required to be given only comporent subscripting,
array subscripting cannot b~ totally omitted. Rather, it
must be replaced by an asterisk. Let TABLE represent such
a data item; the subscripting form is then required to be:

TARLE
*: <component ss>

1. <component ss> represents any form
of component subscripting legal for
the data type of TABLE, as described
in Section 6.1.

Examples:

if C is a 3-array of characters with values
(*YES','NO','MAYBE') then:

C‘.,1 is ('Y','N','M') (makes 3-array from first character
' of each item)

if M is a 2-array of 2x2 matrices with values

1 2 5 6] ,
(|3 4 I 8') then:
M-:l,l = (1,5) (2-array of scalars)
M-;.,z = (f R Igl) (2-array of 2-vectors)

6-11
INTFRMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE MASSACHUSETTS 02138 « (617) vo!-17340

w HE N 3T M WY N e § ofrop e+ o -

HAL/S allows mcre general forms of
subscript expressions than just
those stated in Secticn 6. 1In
addition, a symbolic form of
reference to the last array or
other element of a data type is
allowed. Even more complex

forms of subscripts apply to parts
of tree organizations of data
('structures').

See: (tbd)

6.3 SUMMARY

This section has comprehensively described the forms of
subscripting available in HAL/S. At this point in the Guide,
sufficient information has been given to allow the user to be
able to reference different kinds of data. Section 7 shows
how o 2ra‘ions may be performed on the data so referenced.

6-12

INTERMETRICE INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

7. EXPRESSIONS

Section 6 dealt with the referencing of declared data items.
At this point it is appropriate to describe how the values of
these data items can be manipulated. In HAL/S the construct
which specifies operations on data items is called an
"expression"*. In many cases it is very close in form to

the generally accepted notion of a mathematical expression.

Generally, expressions consist of sequences of operations,
possibly parenthesized in places to override the precedence
rules of HAL/S. Each operation is comprised of one or two
operands and an operator. The very simplest form of expres-
sion is one in which there are no operations and just one
operand. An operand may be a data item, possibly subscripted,
or a built-in function, or an explicit conversion function.
This section begins by describing the legal HAL/S operations,
and then continues %o show how they are combined into
expressions.

Previous sections of the Guide have divided data items and
literals into three broad classes: arithmetic, character,
and Boolean. It is convenient to divide the operations to
be described into the same three classes. The type of an
expression is the type of the value resulting from 1its
execution, and may, in general, be different from the types
of some of its operands.

7.1 ARITHMETIC OPERATIONS

Arithmetic operations are the most numerous of all operations
in the HAL/S language, They comprise operations on vector,
matrix, integer, and scalar data types. HAL/S recognizes

the following operations:

* The storing of the result of a HAL/S expression into a
data item is performed by an ASSIGNMENT statement, of
which the expression forms a part.

7-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

PRI

Ly ‘M}

N e _a.

U A VU B A IR ey o hen

Symbol Purpose

*h exponentiation, inversion,
transposition
(blank) multiplication
* vector cross product

vector dot product
/ division

+ addition

- subtraction, negation

—

NEGATION

Negation is a binary operation applicable to any arithmetic
data type:

Symbolic form: - g

1. The legal data types for R are given
by the €following table:

R type
MATRIX
VECTOR
SCALAR
INTEGER

2. Negation of vector and matrix types
implies element-by~element negation.

Examples:
if I is an integer and I : 5
then -I = =5

_105

if V is a 3-vector and V = [4.2]
-1 1.5

and - V _[_4.2

-5,1

7-2
INTERMETRICS INCORPORATED ¢+ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

g B

[TrYr

k

ADDITION AND SUBTRACTION

Addition and subtraction can only take place between compatible

arithmetic data types:

Symbolic form: L% R
1. The legal combinations of data types
are indicated by the following table:
L -type | R -type
MATRIX MATRIX
VECTOR VECTOR
SCALAR } { SCALAR
INTEGER INTEG' .

2. Operations on matrix and vector operands
imply element-by-element addition and
subtraction.

3. The operands in a matrix addition or
subtraction must have the same row and
cclumn dimensions.

4. The operands in a vector addition or
subtraction must have the same lengths.

5. In a mixed integer-scalar operation, the
result is scalar. The int =2r operand is
first converted to single wcision
scalar.

7-3

INTERMETRICS INCORPORATED - 701 CONCCRD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184

14

Tl e AR R s

e ‘ﬁ‘#mﬁﬂ

ST pd o B 0 -
-~ - -

PR ST WP R Tty g i X ar L AR

T

Examples:

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184(

If T is integer with I = 5
S is scalar with § - -4.,2
then
I +1 = 6 (integer result)

I+ 0.5 = 5.5 (scalar result)
s +1 2 -3.2 {scalar result)

I-S5 = 9.2 (scalar result)

if V1 is a 3-vector with vli= [-1.0]
-2.5
| 3.2

V2 is a 4-vector with v2 = [0.5]
0

—2.2
[1.5]

then the operation V1 + V2 is illegal because the lengths of
V1l, V2 do not match;

but
vl - V21 T0 3 ° -1.5 is legal because subscripting
-2.5 of the R operand has produced
1.0 a 3-vectcr.

Using S, V1 above,

S +Vl is illegal because the types are incompatible;

but § + v13 2 -1.0 1is legal and has a scalar result because
subscripting has changed the R operand to

scalar type.

7-4

* .
- -

B v
v rne e

if Ml is a 3 x 2 matrix with M1l : 1.0 0
-0.5 -1.0

0 0
M2 is a 2 x 2 matrix with M2 = !O.S ~0.5
1.0 1.0

then M1 - M2 is illegal because the row dimensions of the
operands do not match;

but, Ml - M2

2 AT 1, % -] 0.5 0.5 is legal because the
’ -1.5 =2.0 number of rows in the
L operand have been
reduced to 2 by sub-
scripting.
DIVISION

In division, the dividend may be any data type, but the divisor
must either be integer or scalar.

Symbolic form: L /R

1. The legal combinations of data types are
given by the following table:

L -type I R -type

MATRIX)

VECTOR { SCALAR
SCALAR i INTEGER
INTEGER

2, If the dividend is of matrix or vector
type, element-by-element division by the
Roperand is implied.

3. If either or both operands are of integer

type, they are first converted to scalar
type.

7-3

INTERMETRICS INCOFPORATED + 701 CONCORD AVEN'JE - CAMBRIDGE, MASSACHUSETTS 02138 »+ (617) 631-1840

£ e e e

A e A T b i i i At o oy T

"mmmwu ket s 176 0

v B b o

e i s

AR BT A iR g v

Examples:

1/2 = 0.5 (both integer operands converted to scalar)

4.0

if V is a 3-vector with VvV = [2.0
6.0

then v/2 - 1.0
2.0
3.0

if M is a 2 x 2 matrix with M = [1.0 -0.5
0.2 0.6

S is a scalar with 8§ = 0.5

then S/M is illegal since the R operand may not be of matrix
type,

but M/S = [2.0 =1.0
0.4 1.2

DOT PRODUCT

The HAL/S dot product operation corresponds to the mathematical
dot or inner product of two vectors. 1In mathematical notation:

S = <u, v» ors = uly

where u, v are column vectors and T denotes the transpose.

Note that HAL/S does not require the user to distinguish between
row and column vectors because the position of the operand in the
operation is sufficient in itself to allow it to be interpreted
as one or the other.

Symbolic form: L ., R

1. The operands of the dot product must be

as shown:
L-type R-type
VECTOR | VECTOR
2., The lengths of each operand must be
the same.

3. The result is of scaliar type.

7-6

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

—

Example:

If V is a 3-vector with V

i

[}
OO
(V) N NE))
| S——

then V.V = 1.5

CROSS PRODUCT

The HAL/S cross product operation corresponds to the mathematical
vector cross product in 3-dimensional Euclidean space:

if w is perpendicular to u, v

w v as shown,
~ and |w| = |u||v]|sin 6
Mo LS then w = u x v '

Symbolic form: L %R

1. The type of the operands must be vector:

L-type | R.-type
1
VECTOR ' VECTOPR

2. Both operands must be of length 3.

3. The result is a 3-vector.

Example: :
if V1 is a 3-vector with V1 = [0.5 i'
0 i
[0 !
V2 is a 3-vector with v2 = [0 i
00 5 "
|0)
then V1 * v2 = [o]
0
l0.25
» 7-7

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

' . _——— -

%

.
e a

MULTIPLICATION

The HAL/S lanquage has no explicit symbol for multiplication:
the adjacency of two operands signifies this operaticn. Multi-
plication can take place with arithmetic operands of any type:

If operand types are either integer or scalar, multiplication
in the regular arithmetic sense is implied; ...CASE <:)

if one operand is integer or scalar, and the other vector or
matrix, then element-by-element multiplication is implied;

...CASE @

if both operands are vectors then the outer product is implied,
the result being a matrix; ...CASE <:>

if both operands are matrices, the matrix product is implied;
...case (@)

if one operand is a matrix, and the other a vector, then
a vector-matrix product is implied, the result being a
vector. ...CASE (:)

The symbolic form for multiplication is as shown:

Symbolic form: L R

1. At least one blank character must
separate the L and R operands.

The additional rules applicable to each of the cases described above
are now listed in turn.

.
P e

e e

7-8

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

2. The operand types are:

(-type | g -type

INTEGER}{ TNTEGER
SCALAR SCALAR

3. If both operands are integer, the
result is integer, otherwise it is
scalar.

4, if one cperand is integer, then it
it first converted to single precision
scalar.

Example:
If 7T is integer with I = 10

then 1.5E-2 I - 0.15 (scalar result)

case (2)

2., The operand types are:

L -type | R -type
INTEGER} {VECTOR
SCALAR MATRIX
VECTOR } {INTEGER
MATRIX SCALAR

3. Element-by-element multiplication
of the vector or matrix is implied.

" 4. If an operand is of integer type, it
it first converted to single precision
scalar.

7-9
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

PR

! -

I L

PP

e TR N1

Examples:

if S is scalar with S £ 1.5

Mis a 2 x 2 matrix with M =] 0 0.3
-0.1 0.4
then S M :[0 0.45]
-0.15 0.6
and M S El 0 0.45J
-0.15 0.6

CASE @

2. The operand types are:

L-type | R-type
VECTOR l VECTOR

3. If the L-operand is of length m,
and the R operand is of length n,
the result is an m x n matrix.

Examples:

11y

If V1 is a 3-vector with V1

1.0
-1.0
1.0

V2 is a 2-vector with V2 = IO.S]
0.6
then V1 V2 = 0.5 0.6 (3 x 2 matrix)
-0.5 =-0.6
0.5 0.6
and V2 V1 = [0.5 -0.5 0.5}(2 x 3 matrix)
10.6 -0.6 0.6
7-10

INYERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 _°

Examples:

2. The operand types are:
l-type | g-type
MATRIX rMATRIX
3. The number of columns in the
{ operand must equal the number of
rows in the R operand.
4. If the | operand is an m x n matrix
and the R operand is an n x p matrix,
the result is an m x p matrix.
If Ml is a 2 x 3 matrix with M1 = [1.0 1.0 2.0]
0.5 =0.5 1.0
M2 is a 3 x 2 matrix with M2 = [0 0.5
0 1.0
0 1.0
then M1l M2 = [0 3.5 (2 x 2 matrix)
0 0.75
and M2 M1l :

0.5 =-0.5 1.0
0.5 -0.5 1.0

Note that by using partitioning subscripts that

[0.25 -0.25 0.5] (3 x 3 matrix)

Ml‘.'2 TO 3 M2 is illegal because of dimension mismatch;

but M2 M1

#2703 " 1557 o5

0.5 -0.5

7-11

z [o.zs -o.zs] is still legal

INTERMETRICS INCORPORATED ¢« 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

e mm e -

S AR o i by

\

-

LERTIR s S . [I T T ety

S

- o+

CASE @

2. The operand types are:

I-type | Rtype

VECTOR MATRIX
MATRIX VECTOR

3. If the [operand is an m x n matrix,
the R operand must be an n-vector,
and the result is an m-vector.

4. If thel operand is an m x n matrix,
the R operand must be an m-vector, and
the result is an n-vector.

Note that the position of the vector operand again determines
its interpretation as eith:r a row or column vector.

Examples:

0 1.0

1f M is a 3 x 2 matrix with M =< [0.5 1.0]
0.2 0.4

V is a 3~-vector with V = 1.0
-1.0
1.0

1

then VM = [o.7l (2-vector)
0.4

and M V is illegal because of dimension mismatch;
however, M Vl TO 2 z :g.g
-0.2

is legal.

7-12

INTERMETRICS INCORPORATED + /01 CONCORD AVENUE - CAMBRIDUFE, MASSACHUSETYTS 02138 + (617) 661-

~-»

.

.

EXPONENTIATION, INVERSION AND TRANSPOSE

In HAL/S, a single operator serves for exronentiation, matrix
inversion, and matrix transpose, the opecand types serving to
distringuish be.ween them.

e If both operands are integer or scalar, then exponentiation
is implied; .. .CASE (:)

e if the left ope-and is a square matrix, and the right is
an integer-valuea literal, a repeatea matrix product or repeated
product of inverce is implied; .. .CASE C:)

e if the left operand is a matrix, and the rignt operand is
the character 'T', ther the transpose is implied. .. .CASE (:)

These operations take the general symbolic form:

Symbolic form: L ** R

l. This is the one-line format version. '
In multi-line format the operator symbol)
is omitted and R is placed on an exponent
line. See Section 2.3.

The ruies for each of the cases listed above are now described in
turn.

o M e v

)
7-13 i
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02:38 - (617) 561-1840

T T s T e mm e mrm e mmee - - pur et T

Example.;:

The operand types are:

L -type] R —type

INTEGER } { INTEGER
SCALAR SCALAR

If the L operand is integer and
the R operand is a non-negative
integral-valued literal, then the
result is integer, otherwise it is
scalar,

Consistent with Rule 3, if the result
1s scalar, then any integer operands
are first converted to si.gle-precision
scalar.

{f I is an integer with I : 5

then I *+x 2 = 10

{integer result)

and I#x-1 = 0.2 (scalar result)

also 2%xx0.5 =

S s TR R FYN n arenxtve. e,

S)

(scalar result)

7-14

INTERMETRICS INCORPORATED 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

i

2. The operand types are:

L-type | R -type
MATRIX INTEGER

3. The L operand is a square matrix.

4, The K operand is an integral-valued
literal. The following table shows
the effect of different ranges of
values of the R operand:

value result
< -2 repeated product of inverse
-1 inverse

unit matrix
no-operation

> 2 repeated product

Examples:

If Mis a 2 X 2 matrix with M

1

——
o
.
w
=

———

-0.5 0

then M2 = [—o.zs 0.5
-0.5 -0.5

Ml - g0 -]

1 1

0 -
and M~ = [1.0 0]
0 1.0
7-15

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

D R

o parpprrac -

e

2. Tne operand types are:

L -type l R -type

MATRIX T

3. 1If the [operand is an m x n matrix,
then the result is an n x m matrix.

4. If R is symbolically T, then transpose
is indicated even if T is a declared
data item.

Examples:

If Mis a 2 X 3 matrix with M

i
p—
-
(=]
o
Lo
L]
o
————

0 0

then MT 5[1.0 2.0]
3.0 4.0

if V is a 3-vector with V= 1.0
2.0
3.0

then VT is illegal because the L operand is not matrix type.

The transpose of a vector is not needed in the HAL/S language.

7-16
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSAGHUSETTS 02138 + (617) 661-

1840

[P

NOTE ON PRECISION CONVERSION

'It is possible that the precisions of the two operands may differ
in any of the operations described. In these casecs, precision
conversion usually takes place before the operation is executed.
The rules under which it takes place are as follows:

1. No precisicn conversion is possible in
unary operations: transposition is
considered a unary opcration.

2. Where an operation specifies type con-
version from integer to single precision
scalar, this conversion is carried out
first.

2. 1If only one operand is 1integer and no
. + . N - -—.,
type conversion is implied, no precision
conversion takes place.

4, 1If both operands have the same precision,
the result is of the same precision (even
if not of the same type).

5. 1f the operands have mixed precision, the
single precision operand is converted to
double precision. Then rule 4 is applied.

7-17

INTERMIETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHLUSETTS 02138 + (617) 661-1840

P

7.2 CHARACTER OPERATIONS

There is only one character operation in HAL/S: concatenation
of character strings. -

Symbol | Purpose

Dl } catenation
CAT

CATENATION

The utility of catenating character strings is obvious in
the generation of output listings. The rules related to
the catenation operation are as follows:

Symbolic form: L || R
CAT

1. The L and R operands are not just
restricted to character type: some
degree of implicit type conversion
is allowed. The following types are

legal.

L-type | R-type
INTEGER INTEGER
SCALAR SCALAR
CHARACTER CHARACTER

[8]

The rules for converting integer and
scalar types to character type are to
be found in Appendix .

7-18
INTERMETRICS INCORPORATED « 701 CONCNORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

o s e

b o

Examples:

If C is a character item with C = ' UNITS'

I is integer with I : 10

then 'TEN' || C = 'TEN UNITS'
I}/jc = 'iC UNITS'
and I i1 = '101l0'
7-19

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-+340

" —

TTTTIR RTINS S e s v e o e s 5 e, —mi ‘w -

7.3 BOOLEAN OPERATIONS

Boolean operations are legical (binary) transformations on Boolean
operands. HAL/S recognizes the following operations:

Symbol Purpose
& } . , .
AND [logical intersection
o , . :
OR f logical conjunction
- ' .
NOT logical complement

COMPLEMENT

The complement operation complements the logical value of a
Boolean operand. It takes the fcllowing form:

Symbolic form: =~ R
NOT

1. The R operand is o Boolean type.

Example:
If B is Boolean with B = TRUm

then ~B = PFALSE

e

7-20

i,_ INTERMETRICS INCORFORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

b AR o S

B k-

CONJUNCTION

The conjunction operation causes the logical walues of two
Boolean operands to be OR'ed together.

]
Symbolic form: L o R
Ul

1. The L and F operands are of Boolean type.

2. The truth table for the resulting Boolean
is as follows:

T=TRUE L
F=FALSE [T F
T T T
R proaas m=
F T F

Examples:

If B is Boolean with B = PFALSE

ht

then B|B FALSE

i

B|TRUE © TRUE

7-21

NTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERSECTION

The intersection operation causes the logical values of two
Boolean operands to be AND'ed tocgether,

; . L & R
Symbolic form: AND
1. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean
is as follows:

T=TRUE L

F=FALSE T F

R T T F
F F F

Examples:
If B is Boolean with B = FALSE

FALSE

H

then B&TRUE

FALSE

[t

B&B

VR ¢ a4 A

7-22

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + 1617) 661-1849

v

7.4 COMBINING OPERATIONS & PRECEDENCE

It is obviously desirable to be able to combine operations so
as to create expressions of any required complexity. In combining
operations, the following information is necessary:

® The order in which operations are executed (the order
of "precedence");

e the way in which the precedence order can be overriden.

ARITHMETIC AND CHARACTER PRECEDENCE

The precedence of HAL/S operations on arithmetic and character
data types are shown in the following table:

Symbol Precedence Purpose
FIRST
* % 1 exponentiation, etc.
(blank) 2 multiplication
* 3 cross product
. 4 dot product
/ 5 division
+ 6 addition
- 6 subtraction, negation
||, cCAT 7 catenation
LAST

Two rules clarify and modify this information:

® Sequences of operations of the same precedence are evaluated
left to right, except for ** and /, which are evaluated rigi.t
to left.

® Sequences of multiplications are sometimes reordered to minimize
the number of elemental products required.

7-23
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

R SR

T —

INTERMETRICS INCORPORATED « 701 CONCORD . .VENUE « CAMBRIDGE MASSACHUSETTS 02138 - (617) 661-1540

Examples:

In the following expression, the numbered pointers show
the order of execution of operations:

'RESULT OF STEP '||N|]|' 1S '||51+sz - V1.v2/2/2

bbdbb

The precedence rules for Boolean operations are stated separately
because there are no implicit conversions causing interaction
with arithmetic and character operations.

BOOLEAN PRECEDENCE

Symbol Precedence Purpose
FIRST

=, NOT 1 complement

&, AND 2 intersection

|, OR 3 conjunction
LAST

Sequences of operations of the same precedence are evaluated
left to right.

Examples:

In the following expression, the numbered pointers show the
order of execution of operations:

~51|32 & ~ B3

4 bbb

7-24 -

T . . o LT

o Rt e e sy RRIPIRINA

OVERRIDING PRECEDENCE ORDER

In HAL/S, the order of precedence can be overriden at will
the use of parentheses, nested to any arbitrary depth.

Examples:
In the following Boolean expression,
al]ag B3|B4 & BS
parentheses may change the precedence order as shown:

(B1|B2) & ((B3|B4) & BS)

d

In the following arithmetic expression,

2

S1 + 82 + 83/2

g bb

parentheses may change the precedence order as shown:

((S1 + S2)2 + §3)/2

HAL/S allows the operands
in an expression to be
arrayed, causing parallel
evaluation on an element-
by~element basis.

See: (tbd).

7-25

by

INTERMETRICS INCORPORATED + 701 CONCORD AVEMUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

. e T

\

vl

7.5 SOME EXPLICIT CONVERSIONS

As evidenced in Section 7, there are few implicit type conversions
in the HAL/S language. However, there is a comprehensive range of
explicit conversions, some of which are now described.

PRECISION CONVERSION

Any arithmetic expression may have its precision explicitly
changed as follows:

(<expre551on>)@ DOUBLE

(<expression>)e SINGLE

1. In the first form, if <expression> is
a single precision arithmetic precision,
it is converted to double precision.
If it is already double precision, the
conversion has no effect.

2. In the second form, if <expression> is
a double precision arithmetic expression
it is rounded to single precision. 1f
it is already single precision, the
conversion has no effect.

Exanple:

If A and B are single precision, then the result of

(A + B)g oouBLE

is double precision, the type remaining unchanged.

7-26
INTERMETRICS INCORPCORATED « 70 CONCORD AVZNUE + CAMBRIDGE. MASSACHUSETTS 02138 ¢« (617) 661-1840

PRSP

o e

- ot

s 1

- watl

VECTOR CONVERSION

A vector can be synthesize” from a list of scalar cr integer
expressions using the lonstruct shown in the following table:

VECTOR | (<exp>, <exp>.....)

1. ™he subscript number n specifies the
length of the vector to be created, and
lies in the range 1 < n < 16*,

2, If n is omitt~d the resulting vec%or is
assumed to be of iength 3.

3. Each <exp> is & scalar or integer
expression.

4. The number of expressions in the list
rust match the implicit or explicit
result length,

S. The »esult of the above conversion is ir
single precision.

6. The matrix is assembled row by row from
the list.

Examples:
VECTOR(1, 2, 3)

2

creates a 3~-vector with value 1l
3

*This value may be implementation dependent. See Appendix
for exceptions.

7-2%
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 66:-1840

. &wwﬂr

if S is a scalar with S £ 0.5 then

VECTOR, (S, s?, s+1, 0)

- ———
. .

creates a 4-vector with value

Note that even if the arguments are double precision the res.lt
is in single precision. To specify deble precision in a vector
conversion, the following modified form is used:

VECTOR@ DOUBLE, n (<exp>, <exp>)

1. T4ve meanings of <exp> and n are as before.

2. If n is not specified, the preceding comma
is also omitted.

Examples:

VECTOR@ DOUBLE\l' 2, 3)

creates a double precision o-vector with value [l]

2

3 - .
VECTOR, poimre, 4¢le 20 3, 4) L

&
—d
ot

creates a double precision 4-vector with value

(93 7-28

INTERMETRICS iNCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 561-1840

e ey peef G N R B

4'

Ex 3

Exl

MATRIX CONVERSION

There exists a method of synthesizing a matrix from a list of
integer or scalar expressions analogous to the vector conversion

described:

MATRIXm n(<exp>, <E@XP>, eseeses)

4

The subscript numbers m, n specify the
row and column dimensions of the matrix
to be created, and must lie in the range
1l <m, n<16*.

The subscript may be omitted, in which
case the resulting matrix is assumed to
be 3 by 3.

Each <exp> is a scalar or integer
expression.

The number of expressions must match the
total number of elemente< in the resulting
matrix.

The result of the above conversion is in
single precision.

¥ Tris value may be implementation dependent.

for exceptions.

7-29

fze Appendix

3
E]
H

;

INTERMETRICS INCORPGRATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 g

Ty

Examples:
MATRIX(1, 2, 3, 4, 5, 6, 7, 8, 9)

4 5 6

creates a 3 x 3 matrix wit» value [l 2 3]
7 8 9

MATRIX (.5, 0, 0, 0, 0.5, 0)
2, 3

creates a 2 x 3 matrix with value [1.5 0 0]
0 0.5 0

Note the order of assembly in each case.

As in the case of vector conversion, a modified form is required .
if the result is to be in double precision:

MATRIX (<exp>, <exp>)

@ DOUBLE, m, n

1. The meanings of m, n and <exp> are as
before.

2, If the dimension subscript is omitted, the Y
preceding comma is also omitted. i

Examples: A

MATRIX (L, 2, 3, 4, 5, 6, 7, 8, 9)

@ DOUBLE

4 5 6

creates a double precision 3 x 3 matrix with value [l .2 3]
7 8 9

MATRIX 3(1.5, o, 0, 0, 0.5, 0)

A DOUBLE, 2,

creates a double precision 2 x 3 matrix with value ll.S 0 0
0 0.5 0

7-30
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661 1840 }

————— -
]

ol

e

AR e G TP CEREEE D WD

R,

-3

—

—_—

™

G e afe s M ot . oL T

t
i
Frie s ‘

The explicit conversions .escribed

are those most commonly required for
numerical analysis. However, HAL/S
contains many other explicit con-
version function forms corresponding
to conversions between most data types.
See: tbd.

7-31
INTERMETRICS INCORPORATED « 70' CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - {G17) 661-1840 a

1 E————— .

B

o o

7.6 BUILT-IN FUNCTIONS

HAL/S possesses a comprehensive range of built-in functions
that can be used as operands in expressions. Built-in
functions have zero, one, cr two arguments, and are wricten
in a form akin to standard mathematical notation.

Built-in functions are divided into five different classes, .
roughly according to purpose:

arithmetic
algebraic

vector-matrix

character
® miscellaneous
A full description of all built-in functions is given in

Appendix . A brief explanation of some of the more
important functions in each class is given below.

ARITHMETIC FUNCTIONS

Arithmetic functions perform simple arithmetic operations s
on scalar or integer arguments. Some arithmetic functions {

are: - '
Function Comments ‘é i
ABS (a) returns |a| (the absolute value of P
@). a may be integer or scalar. B
AT
DIV (a,B) returns the result of integer divi- ;
sion of a by 8. o and B may be .

«
Dtre e

scalar or integer: scalar values
are rounded to integer before use.

ROUND (a) rounds a scalar a to an integer. 1
ODD (a) returns a Boolean result, which is :
TRUE if o is odd, and FALSE if a :
is even.] i
SIGN(a) returns +1 if a3 0 and -1 if a < 0.] :
7=-32 } 1
INTERMETRICS iNCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840 ‘

' -

iy

R e

-

e

=3

I

ALGEBRAIC FUNCTIONS

Algebraic functions perform trigonometric and other

transformations on scalar arguments. Some common

algebraic functions are:

Function Comments
COS (a) returns cos a
EXP (a) returns e’
LOG (o) returns logea
SIN(a) returns sin a
SQRT (o) returns \/o
TAN (a) returns tan a

VECTOR-MATRIX FUNCTIONS

Vector-matrix functions perform operations on vectors or

matrices. Common vector-matrix functions are:

Function Comments

ABVAL (o) returns length of
vector a

INVERSE (a) returns inverse of
square matrix a

UNIT(a) returns unit vector
in same direction
as vector o

7-33

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

CHARACTER FUNCTIONS

Character functions perform operations on character data. -
Some common character functions are:

Function Comments

LENGTH (a) returns current length
of character string a

TRIM(a) strips leading and
trailing blanks from
string a

MISCELLANEOUS FUNCTIONS

Some of the more important miscellaneous functions are: -y

“Function Comments
1
DATE returns cate at time of }
executior,
MAX (a) returns the maximum }

value in the integer
or scalar array o

—d

MIN (a) returns the minimum
value in the integer
or scalar array a

RANDOMG returns random number
from Gaussian distri- .
bution with mean zero,
variance 1. -

>

7-34
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

S

P

—

Examples of use:

SINE = SIN(X/2) + SIN(Y/2);
X = ABVAL(V1#V2);
I

|
|
: F ODD(X) THEN RETURN;

7-35

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

7.7 SUMMARY

Section 7 has described how HAL/S expressions are synthesized
from operands and operators, and in what order such expressions
are executed. Expressions, particularly of integer and scalar
type, form parts of many HAL/S language constructs. Section 6
referred many times to the use of integer expressions in sub-
scripting.

Section 8 describes the assignment statement, which causes the
raesult of an expression to be stored in some data item or
items.

0
-

. .
[—

7-36 7

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢+ (617) 661-1840 3

[pSE— 1

8, ASSIGNMENTS

Section 7 described, in detail, the creation of HAL/S
expressions used in numerous places in the language.
The issignment statement is one such instance in which
the value of an expression is assigned to a data item.

For convenience, an assignment is classified according
to the type of the receiving data item; that is, the
data item being assigned into. Because HAL/S allows
implicit type conversion, this type is not necessarily
the same as the expression whose value is used in the
operation.

® Arithmetic assignments are assignments to matrix,
vector, integer or scalar data items.

® Character assignments are assignments to character

data items.

® Boolean assignments are assignments to Boolean

data items.

8.1 GENERAL FORM OF ASSIGNMENT

The assignment statement is an instance of a HAL/S executable
statement It has a general form applicable to all types
of assignment:

Symbolic Form: L = R;

l. L is the receiving data item. It
may be subscripted or unsubscripted.

2. Usually, R is an expression whose
resultant value is to be used in the o
assignment. It may, of course, consist -
merely of a single operand. .

L.

8-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

T——

Additional assignment rules are applicable which differ
according to assignment type.

8.2 ARITHMETIC ASSIGNMENTS

Arithmetic assignments are those in which the receiving
data type is matrix, vector, integer or scalar,

MATRIX

The receiving data item is a matrix.

1. The operand types are:

L-type LﬁR—type

MATRIX ‘MATRIX
INTEGER (rule 2)

2. The number of rows and columns
of the R-expression must be the
same as those of the receiving
data item.

3. The only condition under which
the RK-type is integer is if it is
the literal value zero. The
assignment then creates a null
matrix.

Examples:
If Ml is a 2x3 matrix with Ml

0
—
o -
* L
"o
!
o+
L] .
"o
-N
Ld .
[==
——d

M2 is a 2x2 matrix,
M3 is a 2x3 matrix;

8-2
INTERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

- e e - . P g

Donmonane: & & St

*
s

L4 ®
L]

-4

o

muetall o

*
o then
!
{ =
*M3
resu’ L2 "
[
|M2 =
|
but
|
IM2 =
|

results in

|
:M3 =

but

IM3 =

VECTOR

The receivi

-M1l;
M3 E -'1 . 0 -1 . 0 -2 . 0
-0.5 0.5 -1.0
Ml; is illegal (column mismatch)
Ml* , 2 AT 2/
M2 = 1.0 2.0
-0.5 1.0
0; results in M3 = |0 0 O
0 0 O
1; is illegal
ng data item is a vector.
1. The operand types are:
L-type | R-type
VECTOR { VECTOR
INTEGER (rule 3)
2. The length of the R-expression
must be the same as that of the
receiving data item.
3. The only condition under which

the R-type is integer is if
it is the literal value zero.
The assignment then creates a
null vector.

8-3

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (6°.) 661-1840

‘—-ng.

e

Examples:

If V1 is a 3-vector with V1 = {1.0
2.0
0
M2 is a 3x3 matrix,
V2 is a 3-vector;

then

|
Ve = «V1;
i
results in V2 = [-1.0
-2.0
0

|
IM2 = V1; is illegal (type mismatch),
[

|
lMZl = V1; is legal since subscripting reduces
the L-type to 3-vector.

1 2 0
B ? ?
? ? ?

(? indicates values unchanged by assignment).

and results in M2

Note

IV2 = 0; creates a null vector.

8-4

tod

bl

o |

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840 &

—————— v

K.

INTEGER/SCALAR

Integer and scalar assignments can be treated together
because their rules are nearly identical.

1, The operand types are:

L-type | R-type
INTEGER } { INTEGER
SCALAR SCALAR

2. If the L- and R-types
do not match, type
conversion of the result
of the R-expression takes
place before assignment.

3. Scalar-to-integer conversion
implies rounding of the value
of the R-expression.

Examples:
If I is an integer,

S is a scalar, and
M a 2x2 matrix, then

: I =5; results in I = 5

| I = 7.7; results in I = ¢

|

| s =17.7; results in § = 7.7

results in M = [? ?]
? 0.3

(? indicates values unchanged by assignment)

|M2 . = Li is illegal (type mismatch)
’

8-5
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

e e ey e e = .

NOTE ON PRECISION CONVERSION

In an arithmetic assignment, the precisions of the receiving
data item and of the R-expression may differ. In these
cases, precision conversion of the latter takes place Defore
assignment, under the following rules:

1. The R-expression is converted to the
precision of the receiving data item
as necessary before assignment.

2. If type conversion from integer to
single precision scalar is implied,
it takes place before precision
conversion.

» e @

1

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 .g

e+ o ik oo RSO VYR |

© v mnd

8.3 CHARACTER ASSIGNMENTS

The receiving data item is cha: cter type.

1. The operand types are:

L-type |R-type

CHARACTER
CHARACTER | | INTEGER
| scaLar

2. R-expressions of integer or
scalar type are converted
before assignment to character
type. Conversion rules are to
be found in Appendix .

Examples:
If C is a character with C = 'ABCDE' and
C2 is a character,
then

C3; results in C2 = 'C!

O
»
i

0
[%)
[

1573; results in C2 1573

These apparently straightforward rules can become more complex
in some situations.

Generally, when the receiving data item is unsubscripted, its
working length becomes the same as the length of the R-
expression. However, if this would cause the declared
maximum length of the receiving data item to be exceeded,
then truncation of the excess from the right takes place.

8-7
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661 1840

:»:-'W

.- |

ML

abo -

Examples:

If C1 is character of maximum length 10
C2 is character of maximum length 1,

then

:Cl = 'ABCDE';
results in Cl = 'ABCDE' cf working length 5
but

ECZ = 'ABCDE’';

results in C2 = 'A' of working length 1

If the receiving data item is subscripted, then this causes
an additional complication. The rules applicable in such
a case are as follows:

Let
STRING
Q

denote a receiving data item of
character type:

N is declared maximum length
n is working length before assignment

1. The range of the subscript expression a
is presumed to be in the range 1 - N;
otherwise an error results.

2. The length of the R-expression is adjusted
to the length implied by o, either by
truncatinn of the excess from the right,
or by padding on the right with blanks.

3. If the range of o lies inside the range
l-n, then simple substitution of the char-
acter positions implied takes place.

4. If the range of o lies partly beyond the
range 1 - n, tien the working length of
STRING is increased appropriately.

5. If the range of o lies totally beyond the
range 1 - n, the working length of STRING
is increased agpropriately, and the gap
between the nth character and the first
position implied by a (if any) is filled
with blanks.

8-8
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 *

1
1
:3

(617) 661-1840 1

;

%

i

3;;

FRRTRp——"

i-4 OGN Mn

Examples:

Let Cl be character of declared maximum length 10

HY % 5 S e s ke we L

with value Cl = 'ABCD'

Then by Rules 2 and 3:

By

By

|
y C1

2

results

|
| Cl

'

2

results

|
: C12

results

Rules 2

:014

results

|
]
| Cl4

results

Rules 2
|

1
i C15
results

!

el
| 7
results

I
:Cl6

results

(working length increased by 1)

(working length increased by 1)

(working length increased by 2)

= f ‘.,
in C1 = 'AQQD'
= ',
T0 3 1234"';
in Cl1 = 'Al2D’
0 3 = X'
in Cl1 = 'aAX D'
and 4:
PO | .
TOS— QQI
in C1 = 'ABCQQ'
= tyt,
o5 - X'
in C1 = 'ABCX '
and 5:
= [
in C1 = 'ABCDQQ'
= ¢ '
T0 9 FGH')
in Cl1 = 'ABCD FGH'
= 'FCH';
in C1 = 'ABCD F'

-9

. n-mn—u-wl'.ﬂ‘l‘ o ad

INTERMETRICS INCORPORATED + 701 CONCORD AV:NUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

r
1

t

——ﬂ

i

T
E

3
4

8.4 BOOLEAN ASSIGNMENTS

The receiving data item is of a Boolean tyve.

1, The operand types are:

L-type I R-type
BOOLEAN ' BOOLEAN

2, The logical value of the
R-expression is transferred
to the receiving data item.

Example:

If B is Boolean, then
|
IB = FALSE;
|
results in B = FALSE

8-10

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840 }

i

8.5 MULTIPLE ASSIGNMENTS

Several data items may be assigned to the same R-expression
in the same statemer*. The general form of such a multiple
assignment is as follows:

Symbolic form:

(L, 12, L. LR g

The value of the R-expression
is assigned to all L1 .., (P
in turn.

Any L-type must be compatible with
the R-type according to the rules
stated in Sections 8.2 through 8.4.

No particular order of assignment is
guaranteed,

ll
2.
3.
Examples:
If M1 is

V1l is
|

a 2x2 matrix,
a 3-vector

:Ml, vVl = 0;

results in M1 = [0 0], vi =z |o
0 0 0

0

If C is a character,
I is an integer,

I
:C, I =127.2;

results in C = '1.2720000E+02', I = 128

INTERMETRICS INCORPORATED 701 CONCORD AVENUE ¢« CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

8-11

With the above data items,

I

IMl, C = 5;

|

is illegal because of data type mismatch between Ml
and the R-expression.

The following example illustrates the importance of Rule 3:
If further I = 2, then
|
:v11,1=1+1;

has an ambiguous result, depending on the order
of assignment.

If I is assigned before VlI,

then V1_ = |?| , otherwise V1. =|?
I 2 I 3
3 ?

(? indicates values unchanged by assignments)

In HAL/S, the -3ceiving data item

or items may be arrayed. 1i.is can
produce varying effects depending on
whether or not the R-expression also
is arrayed (i.e. has arrayed operands).
See: tbd.

8-12

1

INTERMETRICS INCORPORATED -« 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 I

ol

j:

PR

8.6 SUMMARY

Section 8 has described assignment statements by

which the results of expressions can be assigned to

one or more data items. Assignments often form the core
of a program but are generally limited in effectlveness
ur.less their execution can be controlled with a degree
of flexibility.

Section 9 begins to deseribe now execution can be

controlled by introducing the HAL/S conditional, or IF,
statement.

8-13

INTERMETRICS INCORPORATED * 701 CONCORD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 + (617) 661-1840

I R

8-14

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 ¢ (617) 661-1840

]

i {

|
|
R

9. CONDITIONAL STATEMENTS AND BRANCHES

Section 9 is primarily concerned with the HAL/S conditional
statement, by which other executable statements may be
conditionally executed (or by which their execution may be
conditionally avoided). Together with statement groups,
which will be described in Section 10, they form a cr .ally
important part of the HAL/S language.

The HAL/S language encourages programmers to avoid using

GO TO statements to cause branches in execution. Their

total elimination, however, is not desirable. This

Section therefore also describes the HAL/S GO TO state-

nent, and statement labels, which are their destinations.
Statement labels are, in addition, needed for other constructs
to be described in Section 10.

9.1 THE CONDITIONAL STATEMENT

In HAL/S, the simple version of the conditional statement is
an "IF clause" containing an expression evaluable as either
TRUE or FALSE, followed by a "true part"” which is executed
only if the IF clause is TRUE. The simple varsion may be
augmented by a "false part” which is executed only if the

IF clause if FALSE.

9-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 » (617) 661-1840

SIMPLE IF STATEMENT

The form of the simple version is:

IF <exp> THEN <statement>;

1. <exp> is an expression which is
evaluable as either TRUE or
FALSE. It may be either a
BOOLEAN expression or a rela-
tional expression (these are
described in Section 9.2).

2. <statement> constitutes the true
part of the conditional statement.
Except as noted in Rule 3 it may
be any executable statement,
either simple or compound.

3. <statement> may not possess a
label, and may not be another
conditional statement.

4, If <exp> is FALSE, execution proceeds
to the next statement. If TRUE,
<statement> is executed first.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

]
9-2]

Examples:

[
I IF B|C THEN X = 0;
|Y=l;

¥ is set to 0 if either B or C or both is true:
the flow diagram for these evente is:

i

evaluate
B|C

Yes

No

Set
X =0

—

!

y IF B|C THEN DO;
' X =X - 1;
| Y=Y+ 1;
| END;

The true part is a compound statement containing
two assignments.

\ IF B THEN'IF C THEN D = 0::

Illegal because true part is a conditional statement,
in violation of Rule 3.

9-3

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - {(617) 661-1840

— ‘ T T - —

—————y— - oo

P

AUGMENTED IF STATEMENT

When argumen.~3 with a false part, the IF statement takes
the form:

IF <exp> THEN <statement>;
ELSE <el.e stmt>;

1. The form of the IF clause and
true part are the same as in
the simple conditional state-
ment.

2. <else stmt> constitutes the
false part of the conditioral
statement. It may be any
unlabelled executable state-
ment either simple or compound.

3. 1If <exp> is FALSE, execution
proceeds to the next statement
via <else stmt>., If TRUE, it
proceeds to the next statement
via <statement>.

9-4 -
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

—_— e

Examples:

' 1F B|C THEN X = 0;
{ ELSE X = 1;

' X is set to 0 if B or C or both is true,

otherwise X is set to 1. The flow diagram
for these events is.

¥

evaluate
B|C

is
No result Yes

TRUE
\/

.
’

C THEN DO;
=2;

t
Z
O

Here, both true and false parts are compound
statements each containing two assignments each.

9-5
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617, 661-1840

ELSE IF C THEN X = 1;

I
| IF B THEN X = 0;
'Y=2;

|

This is legal: the false part of a conditional
statement may itself be another conditional
statement: the flow diagram for these events

is:
No Yes
Y
is
C Ye Set
TRUE S e
2 X =20

No I
Set
Y X =1 Y
Set
Y = 2

9-6
INTERMETRICS INCORPORATEL - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

!

——

s e

R % e—— [

9.2 RELATIONAL EXPRESSIONS

As was stated in Section 9.1, there are two valid forms

of expressicn in an IF clause, BOOLEAN, and relational.
BOOLEAN expressions were described in Section 7; relational
expressions only appear in a limited number of HAL/S
constructs, among them conditional statements, and are now
to be described.

The simplest form of a relational expression is merely a
comparison between two like quantities. The result is
either TRUE or FALSE. More complex forms of relational
expressions result from combining comparisons with the
BOOLEAN operators &, |, and .

COMPARATIVE OPERATIONS

HAL/S recognizes the following comparative operators:

Symbol Purpose Class
> greater than

< less than

<= less than or equals

EOT > } not greater than I
> = greater than or equals

<
SOE } not less than
= equals
II

§OE = } not equals

rSv—

9-7

INTERMETRICS INCORPQORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

e

¥

The operands of comparative operations may, in generzl,

be expressions of any of the types described in Section 7.

Deperding on the type of operand, the operators may be

restricted to Class II only, or may be either Class I or

Class 1II.

e CLASS IT ONLY

Symbolic form: L NOT =R

Legal combinations of data types
are indicated by the following
table:

L-type | R-type
VECTOR VECTOR
MATRIX MATRIX
BOOLEAN BOOLEAN

CHARACTER CHARACTER

Comparison of vector and matrix
operands implies element-by-element

comparison.

The operands in a vector comparison
must be the same length.

The operands in a matrix comparison
must have the same row and column
dimensions.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

R —- oo~ Tt o

9-8

[

o g

"t

AR BT o o e S AP ot e N e .

Exampleas-

If STRING is character type with
STRING = 'ABC '

STRING = 'PQR'
is FALSE.
STRING = 'ABC '

is FALSE - character strings must be of the same
length.

If V, W are 3-vectors with

IR

then V = V1 is FALSE,

v

Vl - V=2V is TRUE.

If further V2 is a 2-vector with V2 = [l]
1

then V1 = V2 is illegal because of length mismatch,

but V1 = V2 is TRUE.

1 TO 2

9-9
INTERMETRICS INCORPORATED + 7C1 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

e it s+ Aot et Aot S A e w2

® (CLASS 1 AND CLASS 11

, Symbolic form: L[—~> R i

2
Q
=

]

1. Legal combinations of data types are
indicated by the following table: ,,

L-type | R-type

INTEGER} { INTEGER
SCALAR SCALAR

2. In amixed integer-scalar operation,
the integer operand is converted to
scalar before the comparison takes

place.

Examples:
If I is an integer with I = 5

then I =5 is TRUE
I < 4 is FALSE
I>=5 is TRUE)

9-10

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 I

e e e

NOTE ON PRECISION CONVERSION

It is possible that the precisions of the two operands
may differ in any of the operations described. 1In these
cases, precision conversicn takes place bz2fore the opera-
tion is executed. The rules under which it takes place
are as follows:

1. where an operation specifies type
conversion from integer to single
precision scalar, this conversion
is carried out first.

2. 1If only one operand is integer and
no type conversion is implied, no
precision conversion takes place.

3. If both operands have the same
precision, the result is of the
same precision (even if not of
the same type).

4., If the operands have mixed precision,
the single precision operand is
converted to double precision. Then
rule 3 is applied.

9-11

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

B!

-—

COMBINING COMPARATIVE OPERATIONS

Comparative operations may be combined as if they were
BOOLEAN operands, using the rules for Boolean operations
described in Section 7. It is important to note however,
that comparative operations are not BOOLEAN operands in
the sense that they can be mixed with actual BOOLEAN data
items.

® Boolean expressions may contain no comparative operations.

® Relational expressions may contain no Boolean operands.

Examples:

If V1, V2 are 3-vectors with

V1l = 1 y V2 2 3
2 2
3 1

and C is character with C
then

V1l = V2|C, = 'A' is TRUE
V1l = V2 & C1 = 'A' is FALSE
If B is Boolean then

B|Vl = V2 is illegal

9-12
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

-e

i
B

AR e T -

Wt

e —"

PRECEDENCE

The following table shows the precedence of operations

involved in a relational expression:

Symbol Precedence Purpose
FIRST
1 { operations involving
operands of comparisons
,)
<
<=
NOT >, —> > 2 comparative
>= operations
NOT <, =<
NOT =, -=)
&, AND 3 logical operations
on comparisons
|, OR 4
=, NOT *

* Any operand of this operator mus

t always be parenthesized,

and is evaluated immediately after evaluation of the

operator itself.

9-13

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

\

en

o a3

i~

e e e

[

T

Example:

In the following expression, the numbered pointers show
the order of execution of operations:

IF S1 + 82 = 0|~ (S3 > 0) & = (S4 < 0|S5 > 0) THEN

b bibd L b

Section 9.2 ends with some more examples designed to
clarify the foregoing.
1
2
3
IFV =1&V =2 THENV = 0;
S 1 2 3

IFV >0 |V < 0 THEN V = 0;
S 3 2

Examples:

nt

Let V be a 3~vector with V
|
|
|
|
|

The first statement will cause V, to be set to
zero since both comparisons are TRUE. Then

vV = 1
2
0

In the second statement, neither comparison in the i
relational expression is true. Hence, the "t:iue ‘
part” is not executed and finally

vV = 1l ..
2
0 as before.)

9-14

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840 :,I

T —

MMM,

» G

9,3 LABELS AND BRANCHES

In HAL/S, there are two entities in' 2lved in the

ranching operation:
executed causes the branch; and a

which is the

destination of such a branch.

HAL/S

a GO TO statement, which, when
"statement label"

also uses statement labels for other purposes, which
will become clear in Section 14.

LABELS

Labels are names chosen by the programmer and attached to
More than one label may be attached to a
statement. The way of attaching a single label to a

statements.

statement is

as follows:

: <label>: <statement>;
)

<statement> is any executable
statement or statement group
(see Section 10), wiv' two
exceptions.

<statement> may not be the
"true part" or "ELSE part" of
a conditional statement.

<label> is a user-defined
identifier name (see Section
2.2).

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 ¢« (617) 661-1840

e

9-15

" ———————ER

e

i

Examples:

:ONB: X=X+ 1;

 TWO: Y = 0;

]
The following are illegal since they violate
Rule 2:

|

| IF X

= 0 THEN ONE: Y = 0;
| IF X = 0 THEN X = 1;
| ELSE TWO: X = 3;

Howr 'er, the conditional statement itself may
be labelled:

]
] THREE: IF X = 0 THEN Y = 1;
|

If more than one label is required, then they follow each
other in sequence.

Example:
|
IONE: TWO: THREE: X = X + 1;

9-1¢ -

i INTERMETRICS INCORPORATED - 701 COCNCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840 .

.,,.w.«mmmmi, PP

GO TO STATEMENT

The GO TO statement specifies the label to which
execution branches: it takes the form:

! GO TO <label>;
]

1. <label> is a label attached to
some statement to which execution
is to branch.

Examples:

GO TO ONE;

I

]

|

The GO TO statement itself may be labelled:

|
: TWO: GO TO THREE;

It is important to note that HAL/S places relatively
severe restrictions on the placement of GO TO

statements and where they may cause execution to

branch to. Section 1.3 described this on the abstract
level, and Section 10 further discusses it in connection
with statement groups.

9-17

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

_m

3

P

ELIMINATING GO TO STATEMENTS

The Guide has stressed throughout that, according tc structured
programmirg principles, GO TO statements are inherently un-
desirable because they tend to disguise the program's flow

of execution.

It will be found that HAL/S contains a sufficient number of
other constructs to allow GO TO statements to be substantially
eliminated from a program. Following is an example showing
the elimination o{ GO TO statements.

Examples:

I IF X > 1.5 THEN GO TO ALPHA;
| IF X < 1.5 THEN TO TO BETA;
l Y=Y+ 1;
GO TO GAMMA;

| ALPHA: X = X - 0.05;
| GO TO GAMMA;

BETA: X = X + 0.05;
| GAMMA :

This exawple is programmed in HAL/S in the simplest way
(possibly having been translated from Fortran or an assembly
language). The profusion of GO TO statements disguises the
simple flow of execution, which is interpreted by the following
flow diagram:

< compar >
1 X with
1.5
Y
increment Set Y decrement
X by to X by
0.05 Y +1 0.05
- -
9-18

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 - (617) 651-1840

IR ———

The same algorithm is more clearly programmed
as follows:

¢t IF X > 1.5 HEN
{ X =X - 0.05;
t ELSE

| IF X < 1.5 THEN
} X=X+ 0.05;
\ ELSE

' Y=Y + 1;

9.4 SUMMARY

Section 9 has described conditional statements, labels,

GO TO statements, and the ways in which they affect the

flow of execution in a HAL/S program. Some attempt nas

been made to point out both the good and the bad ways

of using these statements. Section 10 goes on to describe
statement groups and how the usage of the constructs described
in Sections 9 and 10 are very often interrelated in well-
designed HAL/S programs.

9-19

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, M+ SSACHUSETTS 02138 « (617) 661-1840

10, STATEMENT GROUPS

Section 1.3 of the Guide introduced, on an abstract level,
the idea of "statement groups", which could be treated as
if they were simple executable statements, and could be
nested one inside the other. The power of such a facility
can be seen, for example, when it is used in conjunction
with the conditional statement: (this is demonstrated later
in Section 10.1).

There is, in fact, a second, equally important reason for
grouping statements in HAL/S: the execution of such groups
can be controlled in a variety of ways. If no explicit
specification 1s made, the sequence of statements is executed
once only. By explicit specification:

® the sequence may be repetitively executed until some
condition is satisfied;

® a single executable statement (or nest statement group)
of the group, selectable at execution time, may be
ayxecuted.

Section 10 explains in detail how statements are grouped,
ard how execution control of the groups is specified.

10.1 DELIMITING STATEMENT GROUPS

In HAL/S, groups of statements are said to be "well-bracketed":
they are delimited explicitly by opening and closing statements
which are themselves considered executable.

19-1

Nt n o eI it - g 4

i
H
§
11
s

THE DO STATEMENT

Every statement group is opened with a "DO" statement which
is also used to specify control of execution within the group.
It takes the generic form:

l. <control> is a construct to be
described. It specifies the manner
in which the sequence of statements
is to b2 executed.

DO <control>;

2. <control> is optional. If it is
absent, the sequence of statements
is executed in its natural order*
once only.

3. The DO statement is executable in
that it may be labelled according
to the Rules of Section 9.

The particular instances of DO statements will be explained
in Section 10.2.

* The "natural order" of execution was explained in
Section 3.3.

10-2
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

I

i e

g e 3 o+

T 72

THE END STATEMENT

Every statement group is closed with an END statement:

\
) END <label>;
'
1. The END statement is executable
in that it may be labelled according
to the Rules of Section 9,

2. <label> is optional: if present,
the opening DO statement of the group
mast be labelled with <label>.

The label specification in an END statement is never
functionally necessary in HAL/S. However, it should be
regarded as good programming practice because it
facilitates cross-checking by the compiler.

Examples:

Two instances of statement groups are shown below.
Even though details of execution control have not
yet been explained, the form of the construct should

be clear.
E DO WHILE I > 0; | opening DO statement
;S §1—=10: b group of statements
: END; } closing END statement

FIX: DO FOR I = 1,25,16,2;

i

:S AI - -AI’ } ore statement in group

X END FIX; } label specification in

' END matches label of DO
10-3

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Ry

The following examples show the importance of being able
to group statements together for use in conjunction with a
conditional statement.

—— e wn e mmem we e

INTERMETRICS INCORPORATED + 70* CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

IF S =0 THEN I = 2;
C = 'RESET VALUE OF I TO '|]|I;
It is required to conditionally
execute both assignments: one
solution 1is -
IF S = 0 THEN GO TO NOSET;
I=2;
C = 'RESET VALUE OF I TO '||I;
SET:
This solution is error prone and
not in accordance with structured
programming concepts: a better
solution is -
IF S = 0 THEN DO;
I = 2;
C = 'RESET VALUE OF I TO '||I;
END;

The whole of the group enclosed
by DO ... END is subject to
conditional execution.

10-4

'3 N
g B erng

b

P

o

L o

b ot TN

10.2 REPETITIVE EXECUTION OF STATEMENT GROUPS

The sequence of statements in a group can be executed
repetitively until some condition is satisfied. 1In
this section, two basic forms of DO statement causing
repetitive execution are described:

® The DO WHILE statement, in which execution is
repeated while a relational or BOOLEAN expression
remains TRUE in value;

® The DO FOR statement, in which the sequence is

executed once for each of a set of assigned values
of a "control variable".

THE DO WHILE STATEMENT

The form of the DO WHILE statement is:

i DO WHILE <cond>;

1. <cond> is any relational or
BOOLEAN expression. It is
evaluated prior to each cycle
of execution of the statement
sequence in the group.

2. The next cycle of execution of
the group proceeds if the value
of <cond> is TRUE.

3. If the value of <cond> is FALSE,
the stopping condition is satis-
fied. Execution proceeds to the
statement following the END state-
ment of the group.

10-5
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

L W A r——————— - = o oo -

Examples:
; I = 9;
: DO WHILE I > 0;
: I =1~ 2;
¢ END;

Here the group is executed 5 times, after which
the value of I is -1. 1In flow diagram form,
the sequence of events is:

is
Yes I>0

It is possible for a group never to be executed:

DO WHILE FALSE;
I=1I--2;
END;

10-6
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (§17) 661-1840

o

‘d‘ g - -

. f s ’
[S— Had

'
-

It is also possible for a group to be executed

forever:
]
I = 0;
; DO WHILE TRUE;
' I =1 - 2;
; END;
1
'
|

Normally in this case, the programmer would insert
statements in the group removing this possibility:
]

; I =9;

* DO WHILE TRUE;

) I =1~ 2;

' IF % < 0 THEN GO TO ALL_DONE;
: END;

'

There exists a variant of

the DO WHILE statement

called the DO UNTIL state-
ment., Here executicn of

the group is assured at least
once, whatever the value of
the controllirg expression.
See: (tbd).

10-7

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

e

THE DO FOR STATEMENT

The most widely used form of the DO FOR statement is:

' DO

1'

4'

FOR <var> = <init> TO <final> BY <inc>;

<var> is an unarrayed INTEGER or SCALAR
data item (it may be subscripted if
required). It is called the "control
variable" of the DO FOR statement.

<init>, <final>» and <inc> are integer
or scalar expressions:

® <init> is the initial value
assigned to <var>.

® <inc> is the amount by which

<var> is incremented on each
cycle of execution of the sequence
of statements in the group.

® <final> is the value against which
<var> is tested at the start of
every cycle to determine if the
stopping condition is satsified.

All three expressions are evaluated
once prior to the first cycle of
execution,

The stopping condition is met when
the value of «var> lies outside the
range bounded by <init> and <final>.

<inc> may be either positive or
negative. The phrase

BY <inc>

is optional. 1If omitted, the implied
increment is +1.

INTERMETRICS INCORPORATED -

10-8

701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 l f

I

Examples:

DO FOR I =1 TO 10;
X =1I;
I

END;

wn

Here the group is executed 10 times. I is
initially 1, and increments each time until
10 is reached. At the end of execution of
the group, the value of I is 11. 1In flow
diagram form, the sequence of events is:

%
Set
I =1
is
increment I >10
I by >
1 ? Yes |
i
]
|
No
)\
Set
XI =1
10-9

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

I +5TO0O1I - 3 BY =2;
I

This example demonstrates some of the subtleties
of the DO FOR statement. The initial and final
values are precomputed as 12 and 4 respectively.
Then I is reused as the controli variable: the
group is executed 5 times, and after the last
cycle of execution, I retains the value 2.

Care must be taken if the
control variable is integer
and the range expressions are
scalar: rounding occurs
during assignment of values
in such cases.

This DO FOR statement may
possess a WHILE or UNTIL
clause which furnishes a
supplementary stopping con-
dition.

See (tbd).

10-10
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

The DO FOR statement has a second form which is used if
the values of the control variable do not form a regular
progression:

T

t DO FOR <var> = <exp>, <exp>, ... <exp>;

]

1l. <var> is the control variable as before.

2, Each <exp> is an integer or scalar
expression. Values of the <exp)'s are
assigned to <var> in turn prior to the
execution of each cycle, on a left-to-
right basis.

3. Each <exp> is evaluated immediately prior
to the cycle of execution in which it
will be used.

Examples:

DO FOR I = 17,5,12,4;
X =1;
S I
END;

Here, I takes the successive values 17, 5, 12, and 4.

After the end of the last cycle, the value of I remains
at 4.

I =7;

DOFORI =I+5,I+3,1+1], I-1,1-3;
X=X+ 1I;

END;

Superficially, this example looks like a different
way of expressing the second example for the first
form of DO FOR statement:

I = 7;

DOFORI=1I+5T01 - 3 BY -2;
X=X+ I;

END;

10-11

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

e

"‘—\—-—-u.p R |

However, the successive values of I in the new
form (by Rule 3) are:

12, 15, 16, 15, 12
as opposed to
12’ 10’ 8' 6’ 4

in the o0ld form.

Rounding also occurs if the
control variable is integer
and any of the control expres-
sions are scalar.

As before, the DO FOR statement
may possess a WHILE or UNTIL
clause which furnishes a
supplementary stopping condi-
tion.

See: (tbd).

10-12

INTERMETRICS INCORPORATED « 70t CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 1

S A S

mm——

10,3 SELECTIVE EXECUTION OF STATEMENT GROUPS

One statement of a group may be selected for exec.ution
by means of the DO CASE statement. The form of the
DO CASE statement is:

DO CASE <exp>;

1. <exp> is an integer or scalar
expression.

2. If its value is k (after rounding
if necessary), then the kth state-
ment of the group is selected for
execution.

3, A run time error results if % < 0
or k is greater than the number of
statements in the group.

The flexibility of a DO CASE statement is understood when
it is realized that the selected statement may be a
compound statement (i.e. it may itself be a statement

group) .
Example:
I = 3;
DO CASE I;
X = 4; case 1
X = 3; case 2
DO; '
X = 7;
Y = ‘ case 3
END;
X=1; case 4
X = 0; case 5
END;
10-13

INTERMETRICS INCORPOKATED + 701 CONCORD AVENUE - CAMBRIDGE. MASSACK'JSETTS 02138 + (617) 661-1840

T N—

Execution results in the third statement beirg
scheduled for execution, and the rollowing
values being set:

X =7, Y =3

An ELSE clause may be added

to the DO CASE statement which
is executed instead of an

error being signalled, if the
value of the case variable is
outside the legal range for the
statement group.

See: (tkd).

10-14

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 I

10.4 BRANCHING IN STATEMENT GROUPS

Execution may branch out of any statement group via

a GO TO statement. In those cases where the group is
being respectively exe~uted, execution obviously ceases
before the stopping criterion is satisfied. Because GO TO
statements are viewed unfavorably from the standpoint of
structured programming, HAL/S possesses two statements
expressly for executing contrelled branches in statement
groups.

® The EXIT statement is, in effect, a controlled braach
out of a statement group.

® The REPEAT statement only applies to statement groups
executed repetitively, and is a controlled branch back
to the beginning of the group.

THE EXIT STATEMENT

The simplest form of the EXIT statement is:

o

: EXIT;

l. 1Its execution causes an immediate
branch out of the innermost state-
ment group in which it is enclosed.

2. Execution is directed to the first
statement following the END of the
group branched out of.

10-15

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

» it

Examples:

]

: DO:

X X = 1;

' Y = 2;

' IF 2 = 3 THEN EXIT;
\ 2 = 4;

, END;

' X = X + 1;

1t
(V8

Arrow shews branch in execution if 2

DO WHILE X > 0;
X=X-1;
IF X > 2 THEN DO;
IF Y = 3 THEN EXIT;
Y=Y + 1;
END;
, END;
!

Arrow shows branch in execution if Y = 3: execution
branches to the end, but not out of DO WHILE group.

There ex’sts a second form of the EXIT statement to allow branches
out of other than the innermost statement group:

10-16)

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 - i
v e ————- - - -y ML

{ EXIT <label>;
l

1. Its execution causes a branch out
of the enclosing statement group
whose DO statement possesses the
label <label>.

2. Execution is directed to the first
statement after the END of the group
branched out of.

Example:
1 ONE: DO WHILE X > 0;
: X=X - 1;
: DO FOR I = 1 TO 10;
, A =A + X;
'S I I
: IF X = I THEN EXIT ONE;
‘ IF X = 0 THEN EXIT:
: END;
! END;
]
|

X=0;‘

Vo
The first EXIT statement causes a branch out of the
outer croup rather than the inner, by virtue of its
label.

10-17

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

R e L

THE REPEAT STATEMENT

The simplest form of the REPEAT statement is:

; REPEAT;
1. It must be enclosed in a DO FOR
or DO WHILE group.

2. Its execution causes an immediate
branch to the beginning of the
innermost enclosing DO FOR or
DO WHILE group.

3. The next cycle of execution of
the group then starts (unless
of course the stopping condition
is satisified).

Examples:
=DO WHILE X > 0;
: X=X -1;
: IF X = 4 THEN DO;
H Y=Y + X;
. I* Y = 1 THEN REPEAT;
X END;
| END;

If Y = 1 then a branch back to the beginning of the
DO WHILE is made. Note that although the DO WHILE
is not the innermost group, it is the innermost

repetitive group.

10-18

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

o

I
I
I

i X = 4,'

. DO WHILE X > 1;

! X=X «1;

i IF X = 1 THEN REPEAT;
; Y = X;

WS X

: END;

When X = 2 the REPEAT branch is executed:

a new cycle of execution does not begin
however because the initial test shows that
the stopping condition is satisfied.

As with the EXIT statement, there exists a second form of
the REPEAT statement allowing branches back to the beginning
of other than the innermost DO WHILE or DO FOR group:

REPEAT <label>;

l. Its execution causes an immediate
branch to the beginning of the
enclosing DO FOR or DO WHILE
group whose DO statement possesses
the label <label>.

2. The next cycle of execution of
the group then starts (unless the
stopping condition is satisfied).

10-19

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE. MASSACHUSETTS 02138 « (617) 661-1840

Example:

ONE: DO FOR I =1 TO 10;

|

|

| J = 1I;

f DO WHILE J > 0;

| Jg=J - 1;

| X =X + J;

1S J J

} IF X = 25 THEN REPEAT;
IS J

| IF X = 0 THEN REPEAT ONE;
1S J

| AZND;

: END;

i zZ = 0;

The second REPEAT statement restarts the outer DO FOR
group rather than the inner DO WHILE by virtue of its label.

10-20

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

et 4

-

L Sy bt < AW o 4w ae L

10,5 SUMMARY

Section 10 has explained how statements may be grouped
together into compound statements, and how such groups
may be executed repetitively or selectively.

At this point in the Guide, programs can be constructed
using assignment statements, and controlling execution
through conditional statements and statement groups.

The judicious use of procedures and user functions is
essential to the well-ordered structure program .

Section 11 thus goes on to describe how procedures
and functions are defined and invoked.

10-21

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

10-22

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 j_

e

11, FUNCTIONS AND PROCEDURES (TBD)
11.1 BLOCK DEFINITIONS (TBD)
11,2 PARAMETER LISTS (TBD)
11.3 PROCEDURE CALLING (TBD)
11.4 FUNCTION INVOCATION (TBD)

11.5 SUMMARY (TBD)

11-1
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

\ At

12, INPUT/OUTPUT STATEMENTS

Higher order languages possess I/0 statements to provide
programs with a means of communicating with their environ-
ment. In HAL/S, simple forms of I/0 statement provide

for the sequential input or output of data, including the
generation of printed listings.

This section first introduces the HAL/S concert of
sequential I/0 and then goes on to describe t.ie construc-
tion of I/0 statements.

12,1 HAL/S INPUT/QUTPUT CONCEPTS

The form of sequential I/0 statements in HAL/S is based

on a specific conceptualization of the input-output process.
In this conceptualization, I/O takes place through a number
of "channels", each identified by an integer code. Each
channel is connected to an "I/0 device", of which there

are two kinds, "unpaged", and "paged".

UNPAGED DEVICES

An "unpaged I/0 device" can be used for both input and
output. It can be visualized as consisting of a "device
mechanism" which performs I/0 on a continuous strip, across
which data is written. The data is organized in "columns”
across the strip, and in "lines" down it:

12-1
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

first

column columns of data

lines of data

first
line = | —cccmccmaccea-

E§§_~_'ﬂ________device mechanism

The device mechanism moves from column to column along
each line, and from line to line as it performs 1/0.
Normally, the performance of I/0 is accompanied by move-
ment from left to right across each line, and downwards
from one line to the next. However, special positioning
commands can modify this behavior.

12-2

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

- . e |

— g

On output, the strip continually lengthens as new lines
iire written on the device. On input, the strip is of
fixed length, anc a run time error occurs if the device
mechanism is requested to read off the lower end.

Data output to an unpaged device is physically written
so that it may, on some future occasinn, be read in again
via an unpaged device.

PAGED DEVICES

A "paged I/0 device" can only be used for output. It can
be visualized in much the same way as an unpaged device,
except that the lines of data are organized into "pages":

first columns of
column —m — data
\\\ -~
first I
line ._—_———_z‘ o lines of data
first page (| =-=-==--=----
first
lineg ————————=t | cmmccccccea=-

second page device mechanism

first
line

third page

12-3
INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSET1S 02138 - (617) 661-1840

[, P .
- w, K
. ol
.

LITTR

-

The paged device is designed to generate printed listings.
The form in which data is physically written on the device
is different from that on an unpaged Jdevice. Such data
cannot normally b~ read back again via an unpaged device.

DATA STORAGE

Data is conceived as being "stored" on a device, even
though in physical reality the device may be a line printer,
the data becoming inaccessible to the computer,

In HAL/S,data is written on the 1/0 device in "fields" which
can be separated by blank columns, or by a separator character.
The I/0 pruv-ess is stream-oriented: within the confines of

a single /0 statement, the column and line alignment of data
fields need be of no consequence. Data fields may even be
hroken over line or page boundaries.

12,2 THE WRITE STATEMENT

The WRITE statement is an executable statement for the
output of data to a paged or unpaged I/0 device. The form
of the WRITE statement is as follows: '

WRITE (n) <exp>, <exp>, ... <exp>;

1. n is the channel code number, and
lies in the range 0 < n g 9*,

2. <exp> is any HAL/S expression whose
value or values are to be written on the
device. The list of expressions may be
arbitrarily long. Alternatively, none
need ke supplied.

3. Each expression ir turn frow left to
right is evaluated, and its value (or

values) written on the specified device. -
-
This value nay be implementation dependent. See Appendix 1
_ for exceptions.
12-4 I
INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

i .) %—-vt----p

-

-

In execution, the sequence of events is as follows:

If the WRITE statement is the first to be executed
for the specified device, the device mechanism
positions itself at column 1 of line 1 (on page 1
if the device is paged). Otherwise, the device
mechanism moves down one line from its current
position, and repositions itself at column 1.

Data fields are written from left to right along the
line, each field being separated from the next by
5 blanks*,

‘Ahen the end of a line is reached, the device
mechanism moves to column 1 of the next line and
continues writing data fields. Unless the data
field is of character type, the device does not
attempt to break it over a line boundary if there
is not room for it at the end of a line. 1Instead,
it begins writing it or the next line.

After finishing execution, the device mechanism is
left positioned one column to the right of the 2=nd of
the last data field written. Alternatively, if the
data field abuts the end of a line, it is pesitioned
at column 1 of the next line.

If no expressions are supplied in the WRIT: statement,
the device merely performs its initial positioning.

*

This value may be implementaticn dependent. Some
implementations may allow the user to vary the value by
a run-time option.

12-5

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

\ %

DATA FORMATS

The format of a data field depends on the type of
expression whose resultant value is being written on
the device, and on whether or not the device is paged.
The formats are, in general, implementation dependent.
Typical formats are shown in Appendix _.

Uni-valued expressions each give rise to a single data
field. Multi-valued expressions each give rise to a
series of data fields, which are written on the device
sequentially in the following way:

® a {-vector expression yields £ scalar data fields,
one for each element. The data fields are laid out
along a line, separated from each other by the standard
numbe2r of blanks, and overflowing onto succeeding lines
as required.

® an m x n matrix expression yields mn scalar data fields,
one for each element. The matrix is laid out row by row.
Each row is written as if it were an n-vector. The first
element of the second and subsequent rows begin a new
line, vertically aligned under the first element of the
first row.

® arrays are written array element by array element,
completing the requirements fcor one element before
going on to the next. The last data field of one
array element is separated from the first data field
of the next element by the standard number of blanks,
or starting a new line if required,

Examples:

Let: M be a 3x3 matrix with M = [0
2
0

—Howun

I be a 3-array of integers
with I = (4 6 -2)

C be a character with C = 'VALUE'

B be a Boolean with B = TRUE

then

|
|} WRITE(6) C,M,I;
| WRITE(6) B;

| .
would result in output of the following form:

12-6

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 (617) 661-1840

\ <

A e A AL M, Bgtatfie = Meimne ABE i

- oug B

INTERMFTRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

paged output: [132 columns/line]

INITIAL POSITION
OF DEVICE MECHANISM

tALUE 5.0000000E-01

1.5000000E+00 0.0
2.5000000€+00 1.0000000E+00 1.00000C0E+00
$.0000000E-01 9.9999964E-02 1.0000000E+01 (l 6 -2

FINAL POSITION
OF DEVICE MECHANISM

unpaged output: (80 columns/linel]
INITIAL POSITION

OF DEVICE MECHANISM

v -F_.._-_._-__-___---]-----E
'VALUE'® 5.0000000E~01 1.5000000E+00 0.0
2.5000000€+00 1.0000000E+00 1.0000000E+00
. 5.00000005-012 9.9999964E~02 1.0000000E+01 [}
g | =
B I

FINAI POSITION
OF DEVICE MECHANISM

NOTES:

single precision scalar data fields are a fixed 14 columns
wide,

single precision integer data fields are a fixed 11 columns

1 e estvnn v s

Ll

o g

12,3 THE READ STATEMENT

The READ statement is an executable statement for the
input of data from an unpaged I/O device. The form of
the READ statement is as follows:

READ(n) <var>, <var>, ... <var>;

l. n is the channel code number, and
lies in the range 0 £ n £ 9%,

2, <var> is any type of data item,
either subscripted or unsubscripted.
The list of items may be arbitrarily
long. Alternatively, none need be
supplied.

3. The specified device reads values
into each data item in turn from
left to right.

In execution, the sequence of events is as follows:

® If the READ statement is the first to be executed
for the specified device, the device mechanism positions
itself at column 1 of line 1. Otherwise, the device
mechanism moves down one line from its current position
and repositions itself at column 1.

® Data fields are r~ad from left to right along the line.
The device expects each data field to be separated from
the next by a comma and/or at least one blank.

® Wwhen the end of a line is reached, the device mechanism
moves to column 1 of the next line and cortinues reading.
Data fields may be broken over the line boundary.

*¥ This value may be implementation dependent. See
Appendix _ for exceptions.

12-8

INTERMETRICS I HCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

-

d—'

dkatdnt e

I
!
I

—————. . -

® After finishing execution, the device mechanism
is left positioned one column to the right of the
end of the last data field read in. Alternatively,
if the data field abuts the end of a line, it is
positioned at coluian 1 of the next line.

® If no list of data items is supplied in the READ
statement, the device merely performs its initial
positioning.

® If the device reads two consecutive separating
commas, then the value of the data item which would
have been changed by reading a data field between
the commas, is instead left untouched.

DATA FORMATS

The formats of data fields expected by a device on input
depend on the type of data item being read into. The
formats are, in general, implementation dependent. Typical
formats are shown in Appendix _.

Uni-valued data items cause single data fields to be read.
Multi-valued data items cause a series of data fields to be
read sequentially.

® A vector data item causes one data field per vector
element to be read.

® A matrix data items causes one data field per matrix
element to be read. Values are read into the matrix
row by row,

® Arrayed data items are read into array element by

array element, completing the read requirements for
each element before going on to the next.

12-9
INTERMETRILS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

_ L) N

e -

Examples:

Let M be a 3x3 matrix with initial values given

by M = [0.5 1.5 0.0
2.5 1.0 1.0
0.5 0.1 10.0

Let I be a 3~array of integers,
C be a character data item of maximum length 10,
B be a Boolean.

Then

]
} READ(5) M,I,C;
| READ(5) B;

using the following data: INITIAL POSITION
OF DEVICE MECHANISM

FINAL POSITION

(3—s -4 -5 -7 ' GOODBYE' '1'E)‘V_\
OF DEVICE

"/~‘-_'\\V/\\\v/~\\/’ﬁ\V/’A\V/A\V//A\V//\\f/\qu HECHANISH

would result in:

M= (0.1 0.0 O0.C|= this value not changed
0.0 0.1 00 by READ statement.
0.0 0.0 0.1

I = (-4 -51)

C = 'GOODBYE'

B = TRUE

12-10

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

S o

——— i o

. . s
A -

— wem N

12.4 INPUT/OUTPUT FORMATTING

The formatting of I/0 embraces two separate concepts:
® the shape of data fields;
® the position of data fields.

In terms of innut, formatting implies that a device can
be made to recognize different shapes of data fields in
a variety of positions. 1In terms of output, formatting
implies that a device can generate different shapes of
data fields in a variety of positions.

Data field positioning is effected by direct movement

of the device mechanism. Commands in the form of pseudo-
functions can be inserted into READ and WRITE statements
to cause repositioning of the mechanism.

There is no direct capability in a READ or WRITE statement
for defining different data field shapes. It should be
noted however, that for outuput, the equivalent of arbitrary
data field shaping can be achieved by using HAL/S's
character string handlir ~ features.

There exists a second type
of input statement called
‘he REPDALL statement,
which can be used to input
arbitrary strings of
characters. This can form
the basis for arbitrary
data field shape recogni-
tion on input.

See: tbd)

12-11

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

\Vl’r‘ -

DEVICE MECHANISM POSITIONING

HAL/S possesses five pseudo-functions which can reposition
a device mechanism during execution of a READ or WRITE
statement. The pseudo-functicns are placed in the READ

or WRITE statement as if they were normal data items or
expressions.

Three basic rules underlie the operation of the pseudo-
functions in positioning device mechanisms:

® Horizontal and vertical positioning are separately and
independently controlled.

® The operations of the pseudo-functions are independent
of whether a device is being used for input or output.

® An explicit repositioning command taking effect at a
particular point in execution overrides the default
movement in the same direction (horizontal or vertical)
which would otherwise be made by the device mechanism.

Particular instances of these rules are noted as the
device positioning pseudo-functions are described below.

HORIZONTAL POSITIONING

The two pseudo-functions TAB and COLUMN serve to position
a device mechanism horizontally on a line. Their form is
as follows:

12-12
INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

TAB (a)
COLUMN (B)

1. o and B are integer expressions.

2. TAB(a) moves the device mecha..ism
left or right by the number of
columns specified by a. Negative
values of a denote movement to the
left; positive values, movement to
the right.

3. COLUMN(B) moves the device mechanism
left or right to the column indicated
by B.

4. Values of o or B must not be such as to
try to move the device mechanism left
past column 1, or right past the right-
most column*,

If a TAB or COLUMN pseudo-function appears at the
beginning of a READ or WRITE statement, it overrides the
default positioning at column 1.

It does not of itself inhibit movement onto the next
line.

If a TAB or COLUMN appears between two expressions in
a WRITE statement, it overrides the standard data field
separation ,

Successive TABs are cumulative in action.

¥ The number of columns on any device (i.e. the logical
record length) is assumed constant but implementation
dependent. Tts possible values may be found in the
User's Manual for the implementation.

12-13
INTERMETRICS INCORPORATECT « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

R

Example:

If Cl, C2, C3 are character data items

with Cl = 'FIRST'
C2 = 'SECOND'
C3 = 'THIRD'

and if channel 6 is a paged device

then
[}
! WRITE(6) TAB(-50),Cl,COLUMN(5),C2,C3,TAB(2);
]

produces output of the following form:

®

e

INITIAL
" POSITION OF
DEVICE MECHANISM

TAB LEFT 50
'\ COLOUMNS, MOVE
DOWN 1 LINE
BY DEFAULT

DEFAULT MOVE TO
5 BLANKS COLUMN S
FINAL POSTTION
TAB RIGHT OF DEVICE MECHANISM
2 COLUMNS
12-14

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

S R

VERTICAL POSITIONING

The tnree pseudo-functions SKIP, PAGE, and LINE serve to
position a device mechanism vertically. PAGE can only be
used in I1/0 via a paged device; the behaviour of LINE is
different depending on whether a device is paged or unpaged.

The form of the three pseudo-functions is as follows:

S¥IP(a)
PAGE (B)
LINE (y)

l. a, B, and y are integer expressions.

2. SKIP(a) moves the device mechanism
downward by the number of lines spec:-
fied by ao. The value of o may be zero,
in which case SKIP can suppress a de-
fault line advancement. However, a
may not be negative (indicating up-
wards movement). SKIPs over page
boundaries are allowed.

3. PAGE(B) moves the device mechanism
downward by the number of pages
specified by 8. As in SKIP, 8 may
be negative in value. The relative
line number remains unchanged.

4. For unpaged devices, LINC{Y) positions
the device mechanism at line y. The
value of y must not be such as to cause
upwards movement of the device mechanism.

5. For paged devices, LINE(y) has a different
behaviour. Let the device mechanism be on
line £ prior to execution of LINE(y). 1If
Y + £ then the device mechanism moves to
line £ on the next page. If y > £ then the
device mechanism moves to line y on the cur~
rent page. The value of y must lie in the
range 1 ¢ vy £ L, where L is the number of
lines per page*.

¥ The number of lines per page is implementation dependent.
Its value may be found in the User's Manual for a given
implementation. 12-15

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

T T \

TR 220 S0 s s e e s

H

Lf a SKIP, LINE, or PAGE pseudo-function appears at the
beginning of a READ or WRITE statement, it overrides the
default downward movement of one line.

SKIP, LINE and PAGE pseudo-functions do not of themselves
inhibit the default horizontal movement to column 1. Neither
does their appearance between two expressions in a WRITE state-
ment affect the standard data field separation.

Successive SKIPs and PAGEs are cumulative in effect.

Examples:

If Cl, C2, C3 are character data items

with C1 = 'FIRST'
C2 = 'SECOND'
C3 = 'THIRD'

and if channel 6 is a paged device
t?en

! WRITE(6) SKIP(0),Cl,LINE(1),C2,C3;
|

produces output of the following form:

?

INITIAL POSITION
OF DEVICE MECHANISM

l«—[d
—

ADVANCE TO
LINE 1 OF
NEX? PAGE fIRsT !

! L SKIP(0) INHIBITS

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

T~~~ DEFAULT LINE MECHANISM

["=DEFAULT 5 BLANKS

}
|
I
|
[
[
I
!
|
\J

SECOND THIRD [x] [1]
\._FINAL POSITIONING

OF DEVICFE MECHANISHM

DEFAULT 5 BLANKS

12-16

AR

e D s |

nd Boae M e)

eud A

4

Note: If channel 6 were unpaged, the WRITE statement

would be illegal

since it would be calling

for an upwards movement from line 40 to line 1.

Further,

)
| WRITE(6) Cl,PAGE(l),C2;
|

produces the output of the form:

DEFAULT swasmmra—
MOVEMENT TO

COLUMN 1 @_

LINE 41

DEFAULT
5 BLANKS

INITIAL

|
OF NEXT PAGE |
I
I

I
|
|
!
|
/ |
|
|
MOVE TO ~\\\",___—'J”,af'\\\\\~”'________
LINE 41

POSITION OF

" DEVICE MECHANISM

prsemes PAGE 5

p———=PAGE 6

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 681-1340

% EconD 3]
-
\
FINAL POSITION OF DEVICE
MECHANISM
12-17

v e

AOP Fdm s o e

12,5 DEVICE ATTRIBUTES

In HAL/S, devices have been characterized as either paged
or unpaged. In the absence of any specific direction on
the part of a user, the following rules determine whether

a devic? being used is paged or unpaged.

® If only VRITE statements appear in a compilation
for a given channel, then the device on that channel

will be paged.

® If only READ statements appear, or if both READ and
WRITE statements appear for a given channel, then
the device on that channel will be unpaged.

The user may specifically direct certain channels to be
paged or unpaged, overriding these rules®*.

i See the User's Manual for a given implementation.

12-18

INTERMETRICS INCORPORATED + 701 CONCNRD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-1840 l

WS

st —m.‘mm el

-y mnl MES

—

12,6 SUMNARY

Secticn 12 of the Guide has described in detail the
HAL/S constructs concerning sequential I/0, and has
discussed the results of using different kinds of READ
and WRITE statements. Sectirn 13 introduces l.iie user
to the basic concepts involved in real time programming
in HAL/S.

HAL/S contains a FILZ
statement by which random-
access 1I/0 may be effected.
See: (tbd)

12-19
INTERMETRICS INCORPORATED + 721 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

—t e wss GEE 0B

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 667-1840

13.1
13.2
13.3
13.4
13.5

13, REAL TIME FEATURES OF HAL/S(TBD)

HAL/S ReaL TiMe Concepts (TBD)
Derinine Tasks (TBD)
ScHEDULING Processes (TBL
OTHER FeaTures (TBD)

Summary (TBD)

13-1

oo

14, SUMMARY OF PART 1

14-1

INTERMETRICS INCORPOHATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

e e s -

INDEX

ABS 7-32

ABVAL 7-33

addition and subtraction 7-3, 7-4, 7-5

algebraic functions 7-33

arithmetic functions 7-32

arithmetic operations 7-1, 7-2

arithmetic precedence 7-23

array 4-2, 4-8, 12-6

array subscr. 6~-8, 6-1

arrayed data types 6-8

array and component 6-10

subscripting

ARRAY 4-8, 4-12

asterisk 6-6, 6-11

asterisk, in subs. 6-5

AT- 6-5

attributes 4-8

AT 6-6

assignment statement 7-1

augmented IF statement 9-4

blocks 1-2

block structure 1-2

built-in function names 2=-2 \

Roolean 2-4, 2-7, 9-2, 4-7, ’
4-10, 4-11, 9-7, 9-12 |
10-5 '

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

\ L

Boolean
d. type
operations
precedence
subs.
binary literal strings
branches
branching
built-in functions
catenation
charactecr
daata type
functions
operations
precedence
character string literals

character set

character subscripts

4-7, 4-10, 4-11
7-34
7-18
7-23

2-4, 2-6

6-1, 6-2, 6-3

channels 12-1, 12-4
class I operators 9-7, 9-10
class II operators 9-7
class II 9-8, 9-10
colon

use of 6-10

use in Boolean data types 6-11

use of in arrayed subscript 6-8, 6-9
columns 12-1, 12-13
combining operations and 7-23

precedence
combining comparative operations 9-12

-

I

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 '

e e e £

b s s m S ks oxE SAA Y A & it Ao LW S BB 5 b s Ay Bhont ke M%«.‘..mnu‘wmﬁ N
v
.

!

comma

in declarations 4-9
use in double precision 7-28
use of in Matrix double
precision 7-30
use of 12-9
comments, HAL/S 2~10
comment lines 2~11
comparative operations 9~7
complement 7~-20
compound statements 1-8, 10-13
compound declarations 4-9
component subscripting 6-1
component subscript 6-11
conditional statement 9-1, 10-1
<cond> 10-5
conjunction 7-21
control variables 10-5, 10-10
<control> 10-2
constant 4-10, 4-11
Ccos 7-33
crossproduct 7-7
data declarations 1-3, 4-1, 5-1
position of 3-2
data fields 12-4, 12-5, 12-6, 12-8,
12-11
data formats 12-6, 12-9
data referencing 6-1
data storage 12-4
data subscripting 6-1
data types 4-1

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASACHUSETTS 02138 » (617) G61-1840

DATE
decimal notation

DECLARE

declaration statements

delimiters

delimiting statement groups

device attributes

device mechanism

device mechanism positioning

division

DIV

DO statement

DO CASE statement
DO CASE...ELSE
DO...END

DO FOR statement
DO FOR

DO UNTIL statement
DO WHILE statema..t
DO WHILE

Dot Product

DOUBLE

double precisinn
ELSE
<else stmt>

END statement

10-1
12-18

12-1, 12-2, 12-5, 12-8

12-12

7-5

7-32

10-2

10-13
10-14

10-4

10-5, 10-8

10-10, 10-18, 10-20

10-7
10-5

10-20

4-3, 4-4, 4-5, 4-7, 7-26,

7-6
7-28, 7-30
4-2, 4-4
9-1, 9-15
-4

10-3

[

I
I
I
.

i

-—

-r

error recovery

execution, path of

EXIT 10-17, 10-16

EXIT stmt 10-15

exponents 2-8, 2-9
exponentiation 7-13

expressions 7-1

EXPRESSION 7-1

<expression> 7-26

<exp> 7-27, 7-28, 7-29, 12-4
EXP 7-33

factored declaration 4-9

1-2

3-4

FALSE 9-1, 9-2, 9-4, 9-7
<final> 10-8
floating point 4-1
flow of execution 3-3
format 2-8
single line I-1
multi line I-1
fractional-valued literal 2-5
full word 4-3

functicn block

function name

GO TO statement 1-8, 9-17
GO TO 9-1, 1C 15
GO TO statements

elimination of 9-18

and statement groups 1-8

legal dastinations 1-9, 1-10

block structure 1-10

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE +« CAMBRIDGE, MASSACHUSETTS 02138 ¢+ (617) 661-1840

s b ——— oo = <« o e = - . | ... ———...s

TR s e e <% a

halfword 4-3

horizontal positioning 12-12

identifiers 2-2, 2-3, 4-1, 4-2, 5-1

IF clause 9-1

IF statement 9-2

imbedded comment 5-1

implicitly~-declared data items 4-1

<INC> 10-8

INITIAL 4-10, 4-11

<init> 10-8

initialization of data 4-10

1/0 device 12-1

input/ouvtput formatting 12-11

input/output statements 12-1

integer 4-10, 4-11, 6-1, 7-1
data type 4-1, 4-3

intersection 7-22

integral-valued literals 2-5

inversion 7-13

INVERSE 7-33

keywords 2-2, 4-3

<label> 3-1, 3-2, 9-15, 9-17, 10-3

label (<statement>) 9-2

labels 9-15

LENGTH 7-34

lines 12-1

LINE 12-15, 12-16

literals 2-1, 2-2, 2-4, 5-1 .g

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

X , Tt I

c—t eumg SHE GEN

1)

local data 1-4

LOG 7-33

matrix 4-5, 4-11, 4-12, 5-2,
6-1, 7-1

m=trix conversion 7-29

miatrix, data type 4-1

matrix subscripting 6-5, 6-6, 6-7

MAX 7-34

MIN 7-34

miscellaneous functioas 7-34

multi-line format 2-9

multiplication 7-8, 7-9, 7-10, 7-11,
7-12

multiple exponents 2-5

multi-valued data items 4-10, 12-9

multi-valued data 4-11, 4-12

multi-valued expressions 12-6

<NAME> 4-3, 4-4, 4-5, 4-6, 4-7
4-8, 5-1

negation 7-2

nesting 1-2, 1-8

nested substitution 5=-2

oDP 7-32

operators 2-2

order of initialization 4-12

overriding Precedence Order 7-25

output listings 2-1

PAGE 12-15, 12-16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

I

B e TN

f

-

paged I/0 device
parenthesis
use of in expressions
Boolean
partial initialization
precedence (relational)
precision conversion
procedure block
procedure name
orogram block
program klock name
program closing
program opening
pseudo-functions
quotation marks

RANDOM

READ statement

REPEAT statement

real time contrcl
recursion

relational expressions
repetition (literal)
replace statements

REPLACE
znd block structure

replace parameters
reserved words

round

12-3, 12-4, 12-18
7-1

7-25

4-13

9-13

7-17, 7-26, 9-11
1-2, 1-3, 5-1
1-4

1-2, 3-1, 5-1
1-4

3-2

3-1

12-12

5-1

7-34

12-8, 12-9, 12-10, 12-11
12-12, 12-13, 12-16, 12-18

10-15, 10--18, 10-19
I-2

1-4, 1-7

9-7, 9-12, 10-15
2-7

5-1, 5-2

5-1’ 5-2' 5-3
5-3

5~-4
2-1' 2-2’ 5“1
7-32

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

oy Gl emg g

e Yo

. ASRROMABSAI Mt 13- 2on s R Ty 2 4 I et

mbéu T Panew o,

—t e N @GR

rounding

SCALAR

scalar, data type
scalar

scalar subscripts
scoping

scoping of block names
sequence (Boolean)
sequence (precedence)
sequential I/0
semicolon, use of

separators

SIGN
SIN

SINGLE

single line format
single pr cision
SKIP

source text

special characters
SQRT

<statement>
statement delimiting
stutement grouping
statement groups

statement labels

7-26, 10-10, 10-12
4-10, 4-11, 6-3
4-1

4-4, 7-1

6-1

1-3

7-24
7-23
12-1
2-10, 4-8

2-2 (see special
characters)

4-2

12-15, 12-16
2-1, 2-8, 5-1
2-1, 2-2

7-33

9-2, 9-15
2-10

l-8

10-1

1-10

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

TT TSI R P A o

ey

e TRAIE (U RIS

stream-oriented 1/0 12-4
structures 4-2, 6-12
i structured programming 1-2
: structuring 1-1
; subroutines 1-1
E subscripts 2-8, 2-9

subscripts of unarrayed data items 6-1

symbolic name 5=1
TAB 12-13
TAN 7-33
TO- 6-5
transpose 7-6, 7-13, 7-16
TRUE 9-1, 9-2, 9-4, 9-7
UNIT 7-37
unpaged I/0 device 12-1, 12-2, 1:;-3, 12-8,
12-18
uni-valued data 4-10
uni-valued data items 12-9
uni-valued expressions 12-6
<value> 4-10, 4-11
| <var> 10-8

vector, data type

vector 4-6, 5-2, 6-1, 7-1
¥- VECTOP. 4-11, 4-12 :
vector conversion 7=-27
vector - matrix functions 7-33 I
vector svt ‘ripts 6-3, 6-4 '
]

% INTERMETRICS INCORPORATED - 701 COMCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 i

™ . IR At e _ T TTT—

.
vertical positioning
well-bracketed
WRITE statement

g INTERMETRICS INCORPORATED « 701 C _

: -

Q""--——u—-'- oy —— - ‘

12-15
1-8, 10-1

12-4, 12-5, 12-11, 12-12
12-13, 12-16, 12-18

N

LT e gy mmmiﬁ“#ﬁm_%ﬁ
P N B ! '

