
https://ntrs.nasa.gov/search.jsp?R=19740021423 2020-03-23T06:13:49+00:00Z

-- HALLS _"

'- PROGRAMMER'S "
..

GUIDE ,
IR-63-3

?-

3 July 1974 ,

i
<

Prepared by:

P.M. Newbold

: R.L. Hotz

Typescript:

V.L. Cripps Approved. "

:/dr)d2;,

iJ' __ ,
_ Daniel J. Lickly '-

H_ Language/Compiler Dept.
Head

_proved: _

k& '
Dr. F. H. Martin

I Shuttle Program Manager

il INTERMETRICS INCORPORATED. 701 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

1974021423-002

_a

•- FOREWORD
, .

.._ This document was prepared for the Johnson Space
Center, Houston, Texas, under contract NAS 9-13864.

°-.

,B

T_

r_
1i

ii

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 0213B • (617) 661-1840

1974021423-003

'- CONTENTSOFPARTI

. m

1, STRUCTUREOFHALLS z-z
°.

i,i STRUCTURING AND HIGHER ORDER LANGUAGES 1-i

.- 1,2 THEBLOCKSTRUCTUREOF HAL/S I-2

•- 1,3 STATEMENT GROUPING IN HAL/S i-8

_ 1,4 SUMMARY 1-11

" 2, HALLSSYMBOLOGY 2-i "

"" 2,1 THE CHARACTER SET 2-1
._

2,2 RESERVED WORDS, IDENTIFIERS, AND LITERALS 2-2

: 2,3 FORMAT OF SOURCE TEXT 2-8

2,4 STATEMENT DELIMITING 2-10

', -- 2,5 COMMENTS IN HAL/S 2-1o

•" 2,6 SUMMARY 2-11

.- 3, A HALLSCOMPILATION- THEPROGRAMBLOCK 3-z

-- 3,1 OPENING AND CLOSING THE BLOCK 3-Z

_" 3,2 POSITION OF DATA DECLARATIONS 3-2

3,3 FLOW OF EXECUTION IN THE PROGRAM 3-3
ta

3,4 SUMMARY 3-4

4, DATADECLARATION 4-1 :

I] 4,1 HAL/SDATA TYPES 4-1
4,2 SIMPLE DECI._,RATIONSTATEMENTS 4-2

l_ 4,3 INITIALIZATION OF DATA 4-10

q 4,4 SUMMARY 4-13

)

! INTERMETRICS INCORPORATED • 701 CONCORD AVENL_E ° CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

............. L-- ,"

1974021423-004

REPLACESTATEMENTS s-z

5,1 THE REPLACE STATEMENT 5-i

5,2 USING REPLACESTATEMENTS 5-2

5,3 SUMMARY 5-5

DATAREFERENCINGANDSUBSCRIPTING 6-i

6,1 SUBSCRIPTS OF UNARRAYED DAtA TYPES 6-1

6.2 SUBSCRIPTS OF ARRAYED DATA TYPES 6-8

6,3 SUMMARY 6-12

EXPRESSIONS 7-1

7,1 ARITHMETIC OPERATIONS 7-i

7,2 CHARACTER OPERATIONS 7-18

7,3 BOOLEANOPERATIONS 7-20

7,4 COMBINING OPERATIONS & PRECEDENCE 7-23

7,5 SOME EXPLICIT CONVERSIONS 7-26

7,6 BUILT-IN FUNCTIONS 7-32

7,7 SUMMARY 7-36

ASSIGNMENTS 8-1

8,1 GENERALFORM OF ASSIGNMENT 8-1

8,2 ARITHMETIC ASSIGNMENTS 8-2

8,3 CHARACTERASSIGNMENTS 8-7 1

8,4 BOOLEANASSIGNMENTS 8-10

8,5 MULTIPLE ASSIGNMENTS 8-11 I
i

8.6 SUMMARY 8-13

l
INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • 16171661-1840 t

1974021423-005

9. CONDITIONALSTATEMENTSANDBRANCHES 9-1

9,1 THE CONDITIONAL STATEMENT 9-i

9.2 RELATIONAL EXPRESSIONS 9-7

9.3 LABELS AND BRANCHES 9-15

9.4 SUMMARY 9-19

10. STATEMENTGROUPS zo-z

10,1DELIMITING STATEMENT GROUPS 1o-1

10.2REPETITIVE EXECUTION OF STATEMENT GROUPS I0-5

10,3 SELECTIVE EXECUTION OF STATEMENT GROUPS ZO-Z3

.. 10.4 BRANCHING IN STATEMENT GROUPS 10-15

-' 10,5 SUMMARY 10-21

11, FUNCTIONSANDPROCEDURES zz-zt -
,"

11.1 BLOCK DEFINITIONS 11-i
I

" 11.2 PARAMETER LISTS 1Z-1

11,3 PROCEDURE CALLING 11-1

11,4 FUNCTION INVOCATION 11-1

1!,5 SUMMARY 11-1

t 12, INPUT/0UTPUTSTATEMENTS z2-z
12,1 HAL/SINPUT/0UTmTCONCEPTS Z2-Z

12,2 THEWRITESTATEMENT Z2-4

:_ 12,3 THEREADSTATEMENT z2-e

J 12,4 INPUT/0UTPUT FORMATTING 12-11 i

'l } .
INTERMETRICS INCORPORATED .701 CONCORD AVENUE "CAMBRIDGE. MASSACHUSETTS 02138 . (6171 661-1840

1974021423-006

12,5 DEVICEATTRIBUTES 12-18

12,6 SUMMARY 12-19

13. REALTIMEFEATURESOFHAL/S 13-1

13.1 HAL/SREALTIMECONCEPTS 13-1

13,2 DEFININGTASKS 13-1

13,3 SCHEDULINGPROCESSES 13-1

13,4 OTHERFEATURES 13-1

13,5 SUMMARY 13-1

14, SUMMARYOFPART1 z4-z

if!
1

]

]
INTERMETRICSiNCORPORATED• 701CONCORDAVENUE• CAIViFIRIDGE,MASSACHUSETTS02138• 1617)881-1840]

1974021423-007

INTRODUCTION

HAL/S is a programming language developed by Intermetrics, Inc.
for the flight software of the NASA Space Shuttle program.

HAL/S is intended to satisfy virtually all of the flight

software requirements of the Space Shuttle. To achieve this,

HAL/S incorporates a wide range of features, including appli-
cations-oriented data types and organizations, real time
control mechanisms, and constructs for systems programming
tasks.

As the name indicates, HAL/S is a dialect of the original

HAL language previously developed by Intermetrics [I].
Changes have been incorporated to simplify syntax, curb

excessive generality, or facilitate flight code emission.

REVIEWOF THEL GUAGE

HAL/S is a higher order language designed to allow programmers,

analysts, and engineers to communicate with the computer in a

form approximating natural mathematical expression. Pa_ts of

' the English language are combined with standard notation to
provide a tool that readily encourages programming without

demanding computer hardware expertise.

HAL/S compilers accept two formats of the source text, the

usual single line format, and also a multi-line format corres-

ponding to the natural notation of ordinary algebra.

DATA TYPES AND COMPUTATIONS

HAL/S provides facilities for manipulating a number of different
data types. Its integer, scalar, vector, and matrix types,

. together with the appropriate operators and built-in functions
provide an extremely powerful tool for the implementation of

guidance and control algorithms. Bit and character types are
also incorporated.

i HAL/S permits the formation of multi-dimensional arrays of
homogeneous data types, and of tree-like structures which

are organizations of non-homogeneous data types.

i
! INTERMETRICS INCOI-,'PORATED• 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (611) 661-1840

A

1974021423-008

REAL TIME CONTROL

HAL/S is a real time control language. Defined blocks of

code called programs and tasks can be scheduled for execu-
tion in a variety of different ways. A wide range of commands

for controlling their execution is also provided including

mechanisms for interfacing with external interrupts and other
environmeDtal conditions.

ERROR RECOVERY

HAL/S contains an elaborate run time error recovery facility

which allows the programmer freedom (within the constraints
of safety) to define his own error processing procedures, or

to leave control with the operating system.

SYSTEM LANGUAGE

HAL/S contains a number of features especially designed to

facilitate its application to systems programming. Thus,

it substantially eliminates the necessity of using an

assembler language.

PROGRAM RELIABILITY

Program reliability is enhanced when software can, by its
design, create effective isolation between various sections

of code, while maintaining ease of access to commonly used

data. HAL/S is a block oriented languaqe in that block_

of code may be established with !ocally defined variables that
are not visible from outside the block. Separately compiled

program blocks can be executed together and communicate through

one or more centrally managed and highly visible data pools.
In a real time environment, HAL/S couples these precautions with

locking mechanisms preventing the uncontrolled usage of sensitive
data or areas of code.

i

I

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840, }

1974021423-009

]

' ABOUTTHEPROGRAMMER'SGUIDE

The Progra_ner's Guide presents an informal description

of the HAL/S Language to the potential HAL/S programmer.
It is in no way meant to be an exhaustive catalog of all

the various rules of the language. That is the function
of the HAL/S Language Specification Document. However,

after the HAL/S programmer has absorbed the material

presented herec he should have been able to gain enough

insight i;_to the workings of the language to enable him
to use the Language Specification to clarify any ambiguities.

In order to execute a HAL/S program on any given machine, the

programmer will need information coz_ained in the HAL/S User's

Manual appropriate for that machine.

The Programmer's Guide is divfded into three parts:

• PART I is aimed at the new HAL/S uber and contains

enough information on the compiler lah_uage constructs

to enable him to begin progra_,ing.

• PART II describes other, more complex, HAL/S constructs

which will be used regularly in applications programming.

• PART III presents programming ex_:ptes designed to
illustrate and clarify important complex HAL/S Language

constructs. Some of the examples are constructs too
advanced to be described in PARTS I and II, but which

are formally defined in the HAL/S Language Specification.

t

l
INTERMETRICS INCORPORATED. 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

M

1974021423-010

PART!

Part I of the Programmer's Guide is oriented toward new users
of HAL/S. It covers all the simpler constructs of the language

and contains sufficient information for suprisingly complex

programs to be written. Sections of text delimited by hori-
zontal bars are cor_ments referring to the existence of more

complex HAL/S constructs to be explained in Part II.

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

1974021423-011

1, STRUCTUREOFHAL/S

This section gives an overview on an abstract level of the

overall properties of HAL/S _ompilations, and tries to relate
these properties to the need for good programming practice.

Later sections of the Guide i_._rpret these properties in te_.is

of actual HAL/S Language constructs.

i,i STRUCTURINGANDHIGHERORDERLANGUAGES

A common method of problem solving is the so-called "top dowr"
approach. The algorithm for solving the problem is first out-

lined broadly, and then. step by step, delineated in successively

deeper levels of greateT detail. The success of the algorithm

in arriving at the solution lies as much in its ability to break
down the problem into its simplest component parts, as in its

ability to resolve the problem as a whole.

If a problem is to be solved by programming it in a higher order

language, then the "top down" approach is of especial interest
because it lends insight into how the program can be organized.

Specifically, the organization takes the form of an outer program
block enclosing numerous nested "subroutines"*. On the outernlost

level, the program is only concerned with the broad outlines ef
the solution, and relegates the first level of detail to the outer
set of subroutines. These in turn relegate the next level of
detail to an inner set of subroutines, ar,d so one until each

level of the problem has been relegated te the appropriate set
of subroutines.

,l, ,,• ,,,,

" Here the term "subroutine" is loosely ur_d in its generally

recognized sense, conveying the idea of a subordinate block
of code executable as a unit on demand. HAL/S uses different

terminology, to be introduced later.

I-I

INTERMETRICS INCORPORATEF, 10t CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02136 • (617) 661-1840

1974021423-012

This particular programming tecnnique is partly what is meant

by "structured programming". This term also implies an ability to

form nested groups of executable statements inside a program

or subroutine. On each level of nesting, a statement group
has the ability to behave as if it were a single executable
statement.

The overall effect of structured programming techniques is to

introduce an orderliness into the writing of programs that

not only makes them easier to read but also far less prune to
error. Most modern higher order languages possess constructs

out of which structured programs can be created: the constructs

of tile HAL/S language have beon defined deliberately with
structured programming in mind.

1,2 IHEBLOCKSTRUCTUREOF HAL/S

The structure of a HAL/S compilation, aq indicated below,
generally consists of a program block wittl procedure .and
function blocks nested within it.

program

blocks at l

i ,

i 1-2 ""

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) S61-1840

i

1974021423-013

I
Function and procedure blocks comprise the "subroutines" of

Section i.i. The more deeply nested a block, the deeper the
level of detail of the problem solution it is supposed to

handle. The difference between function and procedure blocks
lies in the manner in which they are invoked, and is clarified
later in the Guide.

The HAL/S compilation, then, consists of blocks containing
executable statements, some of whi a perform operations
on defined data.

In addition, any procedure or function block nested within a

program block may declare local data - data known only in that

particular block and in blocks nested within it - as indicated
below:

m
region where

I _ data declared

local to X are

known

m
. i:::!:{_::;:._am re g ion whe reYS• . data declared_L_± :'--'±± ± ._-'-'-'_.

_±::::::: local to Y are
known

SCOPINGOFBLOCKNAMES .! "

The program block, and every procedure or function within it
are named: block names have scoping rules identical with the ..

scoping rules for data already described. The name of any

procedure or function block is deemed to have been "declared" _ #

in the outer block in w>ich that procedure or function is nested. _
This bounds the region where the name is known, and therefore _ .

from where the procedure or function may be invoked. Thus, the !
name of any procedure or function nested at the program level T _

is known anywhere in the program. However, since in HAL/S _
recursion is not allowed, such a procedure or function may be

invoked from anywhere except from inside itself, as indicated: I

1-4

INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 I
INTERMETRICS

..... ,._. [,,., _
t <

1974021423-015

1-5

INTERMETRICSINCORt_ORATED. 701 CONCORD AVI:NU[• (:AMt{I,_II_(_t M,V,,,',,%_Ittl,'q I It; 0,'1 ._¢• _61 ") 6hi II-LI0

I i
k

1974021423-016

Similarly, inner procedures and functions may be invoked from
anywhere in the block enclosing them except within themselves.

In the following example, inner block B and C can only be

invoked from inside regions X and Y respectively:

m , ,,

m

Xl_ region where

block B may be
invoked

Bo

Y: i i _ region where
block C may be

C " _ invoked "

!

i

]

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE MASSACHU,qFTT,q 02138 • (61/) 661 1840 1

1974021423-017

!'_]

i

It should be noted that all forms of recursion in HAL/S

are illegal. The form o_'-_ecursion not prevented by

the rules given above is that in which procedures P and
Q are not contained in each other, but P calls Q and Q
calls P.

-- It is also possible for a program

(or any block within it) to in-
" yoke entities outside the compila-

. tion unit; i.e. other compilation
units. Procedures and functions

.. may be compiled independently for

this purpose.
" " See : (tbd]

o,_

:l
1-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 a,

1974021423-018

1,3 STATEMENTGROUPINGINHALLS

In _5/S, the actual step by step solution of a problem is
performed by executable statements contained in the blocks

comprising the program. Sequences of executable statements

may be grouped together and treated as a single compound
statement. Such statement groups are said to be "well-

bracketed" - they begin with a special st, tement (a "DO"

statement), and end with another special statement (an "END"
statement). Execution of the sequence of statements in the

group can be controlled in various ways depending on the form
of the opening "DO" statement:

• the sequence may be executed once only;

• the sequence may be executed repetitively until specified
conditions are met;

• one statement: in the sequence may be selected as the
only one to be executed.

Sequences of compound statements may also be grouped together

in the same way and, in turn, be treated as a more complex com-

pound statement, and so on to an arbitrary degree of nesting.

Use of this grouping property in conjunction with other HAL/S _ ,
constructs can substantially eliminate the need for a "GO TO"

statement (in the Fortran sense, for example), which from the
structured programming viewpoint is recognized to be "dangerous"
because it destroys the readability of a program, and makes it _
more error-prone, i

STATEMENTGROUPSANDGOTO STATEMENTS !

The design of HAL/S minimizes the dangers of "GO TO" statements

by limiting the regions which can be branched to by them, in a way ,,
analogous to the limits imposed on data by the scoping rules

described in Section 1.2. _!

1

1-8 '

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138"(6171661-1840 I

i

1974021423-019

Consider a program containing nested groups of executable
statements as shown below:

program

outermost

(0 O) group X

innermost

[roup Y

0

i
t

1-9

INTERMETRICS INCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACFttkqE]1,_ 02t:t8. (6171 661 1840

1974021423-020

The region of legal destinations of "GO TO" statements contained

in group Y are as indicated below:

innermost

_roup ¥

It is evident from the examples that while groups can be branched
out of, or branched within, they may not be branched into.

INTERACTIONWITHBLOCKSTRUCTURE

Since procedure and function blocks may appear al.ywhere in a program,

including inside statement groups, the problem arises of branches

by nleans of "GO TO" statements in and out of such blocks.

In HAL/S, the destinations of "GO TO" statements are labels attached

to executa)le statements. Because the scope rules for statement
labels are the sam_, as for decared data, it follows that it is

impossible to branch into a procedure or function block. Additionally,
a rule is made that branches may not be made out of a block (even

though by scope rules the label of the destination is visible).

This leaves the reciprocal processes of call and return-to-caller

the only ways of entering and leaving procedures ard functions,
which is in accordance with structured programming principles.

I-i0
P

INTERMEIRI('S INCORPOf_AI_[) • 7t)l (h)N('()HD AV[NLI[• (;AMt_I()_ d MA,';'_,_ _t[,:4 I l,', i/,'l _ • _61 '_ o61 1_40

1974021423-021

J
r

1,4 SUMMARY

This section has been concerned with the -tructural properties
of HAL/S compilations on an abstract level. It remains to be
demonstrated in the ensuing sections of PART I how the properties
are translated into sequences of actual HAL/S constructs. Section
2 begins this on the most basic level by describing the
characteristics of HAL/S source text.

I

1-11

INTERMETRICSINCORPORATED.701 CONCORDAVENUE . CAMBRIDGE,MASSACHUSETTS02138 . (617) 661-1840

1974021423-022

I

2, HAL/SSYMBOLOGY

HAL/S source text has its own particular chaEacteristics;

a specific character set, special combinations of characters

set aside as reserved words, and certain rules dictating
the form of statements. This section is an introduction

to these characteristics c(the HAL/S Language.

2,1 THECHARACTERSET

The HAL/S language uses the following character set:

|,i, ll, • , i | J

ABCDEFGHI JKLMNOPORSTUVWXY Z

abcde fghi jklmnopqr stuvwxy z

0123456789

+-*.ll"f,=<>O_$,;:'"i(_I¢

(blank)

|i ulii

This character set is a subset of the standard character sets
ASCII and EBCDIC.

Although the user r_ally needs only the above character set

when writing a HAL/S program, there are additional special
characters which can be used in comments and in character

: string literals (described later in this section).

[1{}_?

The output listings produced by a HALLS compiler may use these

extra special characters for annotation.
i

!

. 2-1 i
........ "'^_ "vcn,,_nlPr "_ 'nA_,,_'ll_ ._A'dRRIDGE, MASSACHUSETTS021_.1617)_1-1840

1974021423-023

2,2 RESERVEDWORDS,IDENTIFIERS,ANDLITERALS

The HAL/S language uses four kinds of primitive elements as
basic constructs:

• RESERVED WORDS are a fixed part of the language and consist

•of combinations of upper case alphabetic characters;

• IDENTIFIERS are user-defined names used for data or labels,

and consist of combinations of the alphanumeric characters;

• LITERALS express actual values, and can consist of any of the

symbols in the character set;

• SPECIAL CHARACTERS serve as delimiters, separators or

operators, and consist of the non-alphanumeric
characters of the HAL/S set.

RESERVEDWORDS i

Reserved words are words having a standard meaning in the _AL/S

language. As their name suggests, the user cannot use reserved .
words as identifier names. There are two major categories of

reserved words ". 1
!

• KEYWORDS are used to express parts of HAL/S statements, for

example:GO TO, DECLARE, CALL, and so on. A complete

tlist can be found in Appendix .

• BUILT-IN FUNCTION NAMES are used to identify a library of

common mathematical and other routines, for example, "I
SINE, SQRT, TRANSPOSE, and so on. A complete llst can .!
be found in Appendix .

l

l

2-2 I _INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • t6171 661-1840 m,

1974021423-024

!

7

IDENTIFIERS

An identifier name is a user-assigned name identifying an
item of data, a statement or block label, or other entity.
The following rules must be observed in the creation of
any identifier name*.

i |m

1. The total number of characters in the name
must not exceed 32;

2. The first character must be alphabetic;

3. The remaining characters may be either
alphabetic or numeric;

4. Any character except the first or last
may be an underscore ().

Examples:

SL Pe"r_ D ASTLE
A1 _ legal
P

IB } illegalXX
m_

i

I * Some i_lementations of HAL/S may place extra restrictions _,• upon the names of identifiers.

(

2-3

INTERMETkllCSINCORPORATED.701 CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840

1974021423-025

LI!ERALS

The three basic kinds _f _erals described here are arithmetic,
charactor string, an,_ _oci: _n. The utility of arithmetic
literal:_ is obvieus. _:'_L_ple programming problems, character
string literais find _,t use in the generation of output.
Boolean literals are used to state logical truth or falsehood.

• ARITHMETIC LITERAL3 express numerical values in decimal
notation. The generic form of an arithmetic literal
is:

, |, •, , i, i

mantissa _ _--_ _-exponent
*ddd. dddE±ddd

i. ddd represents an arbitrary
number of decimal digits.

2. The exponent is optional.

3. The + signs are optional.

4. The decimal point is optional.
If absent, it is considered to be
to the right of the least signi-
ficant digit of uhe mantissa.
If the decimal point is present,
it may appear anywhere in the mantissa.

5. The minimum number of digits in the
mantissa, and in the exponent, if
present, is one. The maximum
number is implementation dependent.

(See Appendix). -_
!I|I

;I

]
2-4

,NTERMETRICSINCORPORATED"701CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138. (617) 661 t840]

f

1974021423-026

; i

Examples:

0.123E16
45.9
-4

It _s important to note that HAL/S makes no d_stinction

of type between a Integral-valued literal and a fractional-
valued literal. Either integer (with possiDle ro_ing of
value) or scalar (i.e. floating-point) type is assumed
according to the context in which the literal 18 used.

, II

The use of multiple exponents,
and of binary, hexaaecinal or
octal exponents, in also allowed.
See, (t_xl;.

!
i

2-5 IINTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 6611840

_e
,I , 4L_

1974021423-027

• CHARACTER STRING LITERALS consist of strings of characters
chosen from the entire HAL/S character set. The

generic form is:

'CCCCCCC'

i. The quote marks delimit the

beginning and end of the
literal.

2. cccc represents an arbitrary

number of characters in any
combination.

3. Quote mcrks within the literal

must be represented by a pair
of quote marks to avoid con-

fusion with the delimiting
quotes.

4. The minimum number of characters

is zero (a 'null' string), the
maximum is 255*.

t

!

- <

* This value is implementation dependent. See Appendix]
for exceptions.

!
2-6

INTERMET81CS INCORPORATED •701 CONCORD AVENUE •CAMBR!DGE. MASSACHUSETTS 02138 .(617)661-1840 I

1974021423-028

Examples:

##

'ONE two THREE'
'DOG''S'

If a literal consists of a single

character, ou character sequence

repeated may times, a condensed

form of literal using a repeti-
tion factor may be used.
See: (tbd).

• BOOLEAN LITERALS express logical truth or falsehood,

and are generally used to set up the values of

Boolean data items (see later). Their forms are:

i

TRUE } expressing truth, orON binary "l"

FALSE [expressing falsehood
OFF _ or binary "0"

| ,ii

i i

Literal strings of binary values ;

i also exist. !
See (tbd). :"

;)

J
2-7

INTERMETRICS INCORPORATED • t01 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138 • (617) 661 1840

1974021423-029

2.3 FORMATOF SOURCETEXT

HAL/S is a "stream-oriented"language, that is, statements

may begin anywhere on a line (or card), and may overflow

without special indication onto succeeding lines or cards.
Several statements may be written on one line (or card) as

required.

HAL/S is among the very few languages which permit subscripts

and exponents to be represented as they _ro mathematically,
using lines below and above the main line respectively as needed.
This multi-line format is an optional alternative to the HAL/S

single-line format.

Even when multi-line format is n,,t used, the first character

position of each line (or card) is reserved for a symbol
denoting the kind of line format, subscript, main, or

exponent.
7

SINGLE-LINEFORMAT

In single-line format, the first character position of each line
is left blank, denoting a main line. (An M can alternatively

be used but is generally not preferred by users.

• EXPONENTS are denoted by the operator **

: Example:

t+2 ""
X is coded as: i

:M X**(T+2)

• "!
• SUBSCRIPTS are denoted by parenthesizing the subscript and _" :

preceding it with the symbol $.

.I
Example:

ai+ 1 is coded as: I

IS A$ (I+l)

1I

2-8 1'INTERMETRICSINCORPORATED'701CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS02138.(6171661-1840

1974021423-030

+

MULTI-LINEFORMAT

In multi-line format, the first character of a main line
is either left blank or M is inserted as before. The first.

character of an exponent line is E, and that of a subscript
line is S.

t EXPONENTS are written on an exponent line (_..-line) ilmuediately
above the main line.

•- Example :

x t+2 is coded as:

:E T+2

:M X
i

SUBSCRIPTS are written on a subscript line (S-line) immediately
below the main line.

Example :

: ai+ 1 is coded as:

'M A
"S I+l

-_ When using multi-line forma_., care must be taken to en_ure that

_ nothing on the E- and S-lines overlaps anything on the M-line.

I

i ill i i i i i[i dl

C_ Exponents of exponents and sub- -
! scripts of subscripts use extra ,1

subscript and exponent lines.

_I Special rules apply if exponents
are subscripted, or if subscripts

possess exponents.

See: (tbd). ,.

I I

1

i'-i

2-9 !

! INTERMETRICS INCORPORATED "701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . 1617) 661-t840 i

1974021423-031

£

2,4 STATEMENTDELIMITING

As Section 2.3 indicated, HAL/S statements may be written in
free form without regard for line (or card) boundaries. B_
cause of this there is _he need to explicitly indicate the
end of each statement with a special symbol. HAL/S uses a
semicolon for this purpose. The following statemen_ arbitrarily i
selected from the language show the placement cf the semicolon.

i

Examples: !

DECLARE I INTEGER;
I = I + i;
CALL P(I,J);

2,5 COMMENTSINHALLS

The use of comments is a sine _ on of good programming practice. "
HAL/S possesses two mechanisms _. the inclusion of comments in a :
compilation.

• IMBEDDED COMMENTS may be placed anywhere on main, exponent
or subscript lines of HAL/S text. •

• COMMENT LINES may appear between main, exponent and subscript T
lines of HAL/S text. .!

IMBEDDEDCOMMENTS I

An imbedded comment takes the form:

]
/* ... any text (except */) ... */ 1

! i
I

1974021423-032

I

Such comments may appear between HAL/S statements or imbedded
"- in a statement. They may not appear in the middle of a literal,
._ reserved word, or identifie-_. As far as the sense of the source

text is concerned, an imbedded comment is treated as if it were
-- a string of blank characters.

._ Example:
!

•- 'M X = X + i; /. ADD ONE TO X */
!

!

.. COMMENTLINES

-- Comment lines are input lines specially reserved solely for comments

by placing the character C in the first character position of the

" line. The rest of the line may contain any desired text.

Examples:

:M X = X + i;
-" :C ADD ONE TO X

'C THEN CARRY ON
0

-- 2,6 SUMMARY

In Section 2, the most basic elements of the _b_L/S Language have
"" been outlined: reserved words, identifiers, literals, the

formatting of the source text, and alternate forms of comment..

insertion.

In Section 3, the overall form of a HAL/S program will be explained,

[_ with special references to how declarations of data and executable
statements may be arranged within it.

q
II

:! i
2-11

' INTERMETRICS INCORPORATED •701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 i

1974021423-033

, i

l
t

-, |

.i j_"1

.!

it
] -

! !
j 2-,2 !, ,.TI= .LJI=TR *q I_' mr,qpt_ _IATI=rl • 7111P,t3NP.(3RI3 AVFPJt)E • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661.1840

1974021423-034

I

3, A HALLSCOMPILATION- THEPROGRAMBLOCK

The structuring of HAL/S programs was dealt with on the conceptual

level in Section I. Section 3 begins to interpret this infor-
mation in terms of actual HAL/S language constructs.

For the purposes of Part I, an entire HAL/S unit of compilation
is known as the "program block". The term "block" has a special
connotation in this Guide. It is taken to mean a coherent

body of data declarations and executable statements enclosed in

statements delimitin_ its o_enin_ and closing, and identified
with a name.

3,1 OPENINGANDCLOSINGTHEPROGRAMBLOCK

The first statement of a HAL/S program is that statement defining

the name of the program and opening the program block. The last

statement of a HAL/S program is that statement closing the program
block. Between the two are all the statements comprising the body

of the program.

PROGRAMOPENING

The statement that opens the program block takes the form:

! I

<label>: PROGRAM;

I. <label> is any legal identifier
1 name, and constitutes the name

! of the program.

i .ml ; im

!

J

3-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 861-1840

1974021423-035

PROGRAMCLOSING

The program block is closed with the statement:

l i ill

CLOSE <label> ;

i. The identifier <label> is

optional.

2. If <label> is supplied, it

must be the program name,
i.e. the <label> on the

opening statement of the
program block.

i i

Example:

' TEST: PROGRAM;J

t
, body of program goes in here

II

: CLOSE TEST;
J

3.2 POSITIONOF DATADECLARATIONS "

1 Normal HAL/S programs require the use of data. The names used I

i to identify this data must be declared before use by the meansof data declaration statements. Data declarations (and,

I additionally, certain other kinds of statements) must be "i
placed after the program opening statement and before the "_
first executable statement.

"I I

3-2 _INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138. 16171661-1840 I

1974021423-036

Example : _.J

' TEST: PROGRAM;
I

i:_ L--edatal declaration statements

Ii l--eexecutable statementsi

I CLOSE TEST;

3.3 FLOWOFEXECUTIONINTHEPROGRAM

The program begins execution at the first executable state-
ment after the data declarations, and thereafter follows a

path determined by the kinds of executable statements encountered.

Unless statement groups, or branching or conditional statements

intervene, execution is sequential*. Finally, the path either

reaches a statement terminating execution of the program, or

reaches the closing statement of the program block, which has
the same effect.

As described in Section I, procedure and function definition

blocks may be interspersed between the statements in a program

block. The only way of executing such blocks is by explicit

invocation: if they are encountered in the path of execution

they are passed over as if non-existent.

. .

This order is called the "natural order" of execution.

3-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSA(.ltlJSEIIS 0:,1_. _61,'_ 661-1840

I

1974021423-037

Example:

' TEST: PROGRAM;

'//' 1 data
t declaration
t

'i I =statementsi

i

utable

• •O• : statements

/ilil
71 {•in)ro=edure__finition

block
i •00••

path of I
execution i

s

I

I \

0 CLOSE block invoked
, and returned

from

3,4 SUMMARY

P

Section 3 has described the opening and closing of a program I
block, has shown where data declarations are placed in it, and

has explained the path of execution followed through a program

block. The following chapters of Part I will begin to fill
in the details of the possible contents of the block. Section 4 L
describes how data is declared and referenced. It begins to

build on the fundamental information given in Section 2.

3-4

INTE'RMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-038

4, DATADECLARATION

Programming largely consists of the manipulation of numerical
data. The diversity of the data types in a language determines
its utility for any required task. HAL/S contains an exceptionally
diverse set of data types.

Identifiers of the kind described in Section 2 are used to name

items of data. Identifier names used to represent data items
mus____t*be defined in data declarations appe,-ring in the appropriate
program, prodcedure or function block. The effect of placing
data in different blocks is described in Section i. The position
of data declarations within a program block is described in
Section 3.

This Section now proceeds to describe the detailed construction
of data declarations.

4,1 HAL/SDATATYPES

In the HAL/S language, arithmetic data of the following t}_e8
can be declared:

• INTEGER for the representation of integer-valued quantities;

• SCALAR for the representation of "floating-point" quantities!

• VECTOR for the representation of algebraic row or column
i vectors (without distinction), and each element of which is

_i a SCALAR quantity;

" • MATRIX for the representation of algebralc matrices, and each
element of which is a SCALAR quantity.

i

* The HAL/S language prohibits the use of implicitly declared
_] data iteens considerJ.ng it to be an ur4esirable programming
/ practice.

4-1

INTERMETRICSINCORPORATED•/01 CONCORDAVENUE"CAMBRIDGE,MASSACHUSETTS02138 • (6t7) 66t-1840

1974021423-039

The3e arithmetic data types may be specified in either single

or double precision. In the case of INTEGER, the precisio_
determines the maxim,mm absolute value the identifier may take

on. In all other cases, it determines the number of signifi-

cant digits in the mantissa of the value.

In addition, HAL/S also possesses the following data types:

• CHARACTER for the representation of strings of text;

• BOOLEAN for the representation of binary-valued (logical)
quantities.

It is possible to declare arrays (or tables) of any of the six

above types.

HAL/S in fact allows more

data types than just those
described here. It also

allows hierarchical organ-
izations of data-types
called "structures".

See: (tbd)

4,2 SIMPLEDECLARATIONSTATEdENTS i

Data declaration statements define identifiers used to nam_ data.

The simplest forms of declaration statement for each data type
listed above are examined on the following pages.

i

]
t 4-2

i CAMBRIDGE. MASSACHUSETTS 0213S • (61=) 661.1840 1

-p

INTERMETRICS INCORPORATED, 701 CONCORD AVENUE
[

1974021423-040

!

INTEGER ..

!
i DECLARE <name> INTEGER;
, DECLARE <name_ II_TEGER SINGLE;
i DECL%RE <name> INTEGER DOUBLE;
I

i. In each of the forms <name> is any legal
HAL/S identifier.

2. Presence of the keyword SINGLE specifies
single precision.

3. Presence of the keyword DOUBLE specifies

double precision. _:

4. Absence of either keyword implies default
of single precision.

For the integer data type, single precision usually implies
halfword and double precision fullword, depending on the
implementation*.

Examples :
!
I DFCT_ARE Il INTEGER;
I DECLARE BIG I INTEGER DOUBLE;
I

i

* See Appendix .

4-3

INTERMETRICSINCORPORATED. 7'01CONCORDAVENUE. CAMBRIDGE,M,_SSACHUSEi'TS 02138. (617) 681-1840

197402142:3-041

SCALAR

DECLARE <name> SCALAR;i

DEC RE <name> SCALAR SINGLE;
I

; DECLARE <name> SCALAR DOUBLE;
!

i. In each of the forms, <name> is any

legal identifier.

2. Presence of the keyword SINGLE specifies

single precision.

3. Presence of the keyword DOUBLE specifies

double precision.

4. Absence of either keyword implies a de-

fault of single precision.

5. The keyword SCALAR may be omitted.

Double precision usually implies increased range of exponent
and increased numbe_ of digits in the mantissa, but it is

implementation dependent*.

Examples: i

DECLARE SI;
DECLARE $2 SCALAR;

DECLARE $3 SCALAR DOUBLE;

T

* See Appendix .

1
4-4

_NTERMETRICSINCORPORATED .701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840]

1974021423-042

I

T

MATRIX

!

DECLARE <name> MATRIX (m, D) ;

i DECLARE <name> MATRIX (re,n) SINGLE;

i DECI2%RE <name> MATRIX(m,n) DOUBLE;

1. In each form <name> is any legal identifier.

2. Keywords SINGLE and DOUBLE have the same

significance as for SCALAR and VECTOR types.

3. m and n denote respectively the nu_er of

rows and columns in the matrix. They must
lie in the range 1 < m, n ,< 16".

4. If the size specification (re,n) is absent,
a 3x3 matrix is assumed.

Examples:
0
t

, DECLARE M1 MATRIX(2,4);!

,DECLARE M2 MATRIX (4,5) DOUBLE;

' DECLARE M3 MATRIX;
!

_a 3x3 matrix

* This value may be implementation dependent. See Appendix
for exceptions.

i

4-5 i

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 i

1974021423-043

--7 ,

I

VECTOR

,;DECLARE <name> VECTOR (n) ;

' DECLARE <name> VECTOR(n) SINGLE;!

, DECLARE <name> VECTOR(n) DOUBLE;
0

i. In each form <name> is any legal
identifier.

2. Keywords SINGLE and DOUBLE have the

same significance as for SCALAR type.

3. n specifies the length of the vector

and must lie in the range 1 < n _< 16".

4. If the length specification (n) is
omitted a length of 3 is assumed.

Examples:

;DECLARE Vl VECTOR (i0) ;I

,DECLARE V2 VECTOR(3) DOUBLE;

'DECLARE V3 VECTOR;

i _a 3-vector

* This value may be implementation dependent. See Appendix
for exceptions. -_

I J

I :l
I 4-6 "I,NTERM_TR,CS,NCORPORATED.70_CONCORDAVENUE•CAMBRtDGF.MASSACHUSETTS02,38.(6,7186,-_840--_

_-- _11 ill t i

1974021423-044

CHARACTER

• ,DECLARE <name> CHARACTER(n) ;
e
!

° i. <name> is any legal identifier.

2. n specifies the maximum length of the text

string that the data type may carry. (i.e.
the maximum number of characters). It must

lie in the range of 1 $ n _ 255".

3. The actual length of the string of text

carried may vary during execution between
zero (a "null" string) and the maximum n.

Example :

DECLARE C1 CHARACTER(80);

BOOLEAN

!

IDECLARE <name> BOOLEAN;
J

o .

! i. <name> is any legal identifier.

Example:

iDECLARE B1 BOOLEAN;

I
* This value may be implementation dependent. See Appendix

) 4-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSET rS 02138 • (617) 661-1840

1974021423-045

ARRAYS

In any of the above declarations, regardless of data type,
the part of the declaration between the <name> and the

terminating semicolon which establishes the type (and

possibly precision and size) constitutes the "attributes"
of the declaration.

To declare an array of any data type an ARRAY specification
is inserted between the <name> and the attributes:

DECLARE <name> ARRAY(n) <attributes>;

i. <attributes> stands for any legal form of

attributes for any data type described.

2. n denotes the number of elements in the array
(i.e. entries in the table) and must lie in

the range 1 < n Z 32768*.

Example s:

:DECLARE AS1 ARRAY(500) SCALAR;

:DECLARE AM1 ARRAY(20) MATRIX(4,4) ;

I

l

* This value may be machine dependent. See Appendix "|
for exceptions. .I

4-8

INTERMETRICS INCORPORATEO • 701 CO_ICORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 -_

1974021423-046

I i
T

!

COMPOUNDDECLARATIONS

If a program contains declarations of many data items it is

tedious to _epeat the keyword DECLARE in every declaration.

Many separate declarations may be condensed into one compound
declaration as shown below.

Example :

1

f DECLARE S;
DECLARE I INTEGER DOUBLE;

DECLARE M3 MATRIX ;

i DECLARE M6 MATRIX (6,6) ; separate declarations
I DECLARE B BOOLEAN;

I DECLARE C ARRAY(5) CHARACTER(20);
I DECLARE V ARRAY (3) VECTOR;
i

I DECLARE S,
I INTEGER DOUBLE, _

I M3 MATRIX,

I M6 MATRIX (6,6) , equivalent compound _,

B BOOLEAN, declaration

I C ARRAY(b) CHARACTER(20), ?V ARRAY(3) VECTOR;
I

Note the commas separating the declaration of each data item.

If the identifiers in a compound
declaration have some attributes

i in common a third even more
compact form of declaration
called a factored declaration

i can be used.
See: (tbd)

; <

4-9

INTERMETRICS INCORPORATED "701 CONCORD AVENUE 'CAMBRIDGE, MASSACHUSETTS 02138 . (617) ,_61-1840 _.

]97402]428-047

4.3 INITIALIZATIONOFDATA

A HAL/S data item of any Lype may be initialized by incorporating

an INITIAL specification into its declaration statement. The o_
form of such a specification differs depending on whether the
data item is "uni-valued" or "multi-valued".

• UNI-VALUED data items are those having only one element:

unarrayed scalars, booleans, and characters.

• MULTI-VALUED data items are those having more than one

element: unarrayed vectors and matrices, and arrayed

data items of any type.

In either case, the INITIAL specification is placed after the type,

precision, and size attributes of a declaration. This positioning
will become apparent in the examples to follow.

UNI-VALUEDDATAITEMS

The two variations of the form of INITIAL specification for
uni-valued data items are:

INITIAL (<value>)

CONSTANT (<value>)

i. ihe two forms have the same effect in

that the data item is initialized to

the i_.I _.A_ <value>.

2. The form using the keyword CONSTANT is

required only if the user wishes not
to change the initial value during
execution*.

3. The type of the literal <value> must
be compatible with the type of the data

item as determined from the following
table :

!

i literal value

i CHARACTER character string
{ BOOLEAN boolean _I

i INTEGER _ _ :
SCALAR _ arithmetic " _.

i ,i 1

i :,i* In many respects a data it_a initialized this way is akin to

a literal.

i 4-1o .[
INTERMETRtCSINCORPORATED'70I CONCORD AVENUE " CAMBRIDGE MASSACHUSETTS 02138' (617) 661-1840 .: i

1974021423-048

!

!

Examples :

I
DECLARE A SCALAR INITIAL (3),I

B SCALAR CONSTANT (4.5E-3) ,

I C CHARACTER(80) INITIAL('YES'),
I D BOOLEAN INITIAL(TRUE);

I
i Note: initial working length of C becomes 3.

I
MULTI-VALUEDDATAITEMS

There are two corresponding variations of the INITIAL specification 'I
for multi-valued data items: 'i

i

!

INITIAL (<value>, <value>,)

CONSTANT (<value >, <value>,) !
I

i. The meaning of the keyword CONSTANT is l

the same as for uni-valued data items, iI

2. The type of the literal <value> must be I

compatible with the type of the data item, i
as determined from the following table. }

data type literal value [

CHARACTER character string

BOOL EAN boo iean !/

INTEGER I _
SCALAR arithmetic !

VECTOR I IMATRIX

3. The number of <value>s in the list must

equal the total number of elements implied

by the data declaration.

Note that if all the elements of a multi-valued data item are to
be initialize_--to the same value then the form used for uni-valued

data items may be used.

7

4-11

INIERMETRICS INCORPORATED' 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETIS 02138. (617) 661 1840

1974021423-049

_.m

Examples :

IDECLARE V VECTOR INITIAL(I,2,3.5)

[S ARRAY(2) CONSTANT(I,0),
I T ARRAY(_ _ VECTOR(2) INITIAL(4.7,-5.3,0,0) ;
!

IDECLARE V VECTOR .:_ITIAL (0),
! S ARRAY(100) INTEGER INITIAL(256);

|

a ll_elements of these data

items are identically
initialized.

ORDEROF INITIALIZATION

To complete the specification of initialization the order of
initialization of the elements of multi-valued data it_

needs to be defined.

The following ordering rules, though applied here to the

initialization of multi-valued data items, holds true when-

ever the ordering of elements is called into question.

• VECTOR data items are initiallzed in order of increasing
index.

• MATRIX data items are initialized row by =ow in order of
increasing index.

• ARRAY data items are initialized array element by array element

in order of increasing index. Where the array element are
themselves multi-valued, each array element in turn is

initialized completely according to the previous rules before
going on to the next.

Example : i

DECLARE M ARRAY(2) MATRIX(2,2) INITIAL(I,2,3,4,5,6,7,8);

if M 1 is the first array element, and M 2 is the second, then:

.!
' 4-12

INTERMETRICS INCORPORATED " 701CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (617) 661 1840

k

1974021423-050

!

!

Additional more compact initialization

forms are ,available if only partial

initialization is required, or if

I subsets of the initial values areidentical. See: (tbd)

I

4.4 SUMMARY

Section 4 has dealt with how data is declared in HAL/S

compilations, and how it initialized. The next logical

1 step is to begin to discover how it may be used. However,

this is put off until Section 6. Section 5 deals with a

useful HAL/S construct which allows the user to replace

]- frequently-repeated HAL/S expressions by defining and

l substituting a symbolic name.

I_ Study of Section 5 can be omitted without detriment to the

i. understanding of the remainder of Part I of the Guide.

F

[

I

l
,'?

4-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (61 lj 661-1840

1974021423-051

!

-- {

, b

og

!
4-14

INTERMETRICSINCORPORATED• 701CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138 • (617) 661.1840 I

1974021423-052

J

I
I

5, REPLACESTATEMENTS "

When it is necessary to repeat a particular HAL/S construct

exactly many times during a program, the user can avoid the

tedious process of laboriously writing it at length each time

by defining a symbolic name to represent the construct, and
then replacing the construct with the symbolic name.

This kind of substitution can be of advantage in seve_a!

ways. For instance, the value of a literal recurring many times
can be easily changed between successive compilations. The user

need only define a symbolic name to represent the literal, then

replace the one with the other. Only one line of the program
needs to be recoded as opposed to the many lines that would

- need recoding if the user had to find and change the literal
each time it occurred•

The definition and substitution of the symbolic name is
accomplished by a REPLACE statement.

5,1 THEREPLACESTATEMENT

The REPLACE statement is placed together with the data

-" declarations of the program, procedure, or function block in
which it to be used. It takes the form:

-. |

I REPLACE <name> BY "XXXXXXXXXXX";
• _ |

i. XXXXXXX represents the HAL/S source text which
"" it is desired to substitute. The text is de-

limited by double quote marks, and must be
written in single line format.

: 2. <name> is the symbolic name chosen to repre-
.. sent the text. It may be any legal identifier

name.

": 3. XXXXXXX may be any legal source text of arbi-
trary length Imbedded double quote marks• . •

must be represented as a _ of double quote
•" marks to avoid confusion wltn the delimiters.

4. The text must not begin or end in the middle
of a reserved word, identifier, literal, or

! imbedded comment.
iml

5-1

tNTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSE rTS 02138 • (61 l) 661-1840

jT w.--.-.,.,,.,.w.ll

1974021423-053

Examples :

, REPLACE OUTPUT BY "WRITE(6)";
' REPLACE INCREMENT BY "X=X+I;";
I

!

5,2 USINGREPLACESTATEMENTS

The following examples show the way in which the symbol

substitution defined by the REPLACE statement is used.

Examples:
l

' REPLACE DV BY "VECTOR DOUBLE INITIAL(0)";
I

, DECLARE VECI DV,

i VEC2 DV,
, VEC3 DV;

!

- by expansion of DV it ts evident that
VECI, VEC2, VEC3 are all double precision
vectors initialized to zero.

I

, REPLACE N BY "4";

• DECLARE Vl VECTOR(N),
I

M1 _L_TRIX'N,N),
I

, M2 MATRIX (2,N) ;

- this shows the utility of the REPLACE

statement in making it easy to change the
sizes of sew "al vectors and m_trices

simul taneous ly.

s

$

REPLACE X BY "VECTOR(2)";l

, REPLACE Y BY "ARRAY(5) X";
%

' - this is an example of nested sub-
stitutions. The expansion of Y is
ARRAY (5) VECTOR (2).

l

I

, REPLACE X BY "REPLACE Y BY""Z"'"; T
, x;

, DECLARE Y SCALARI
s

- although this i8 a legal use of REPLACE statements, it i

does not lend itself to clarity. The sequence of state- "'

ments culminates in Z being declared as a scalar data "4

item. .i

5-2 .,

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 ..

s k

197402142:3-054

!

!

A KEPLACE statement takes effect only after it apLears.

It does not modify the entire block, _,nly that section that

follows its appearance.

Example :
I

DECLA]{E V1 VECTOR(N);
! REPLACE N BY "4";

i DECLARE V2 VECTOR(N);

t •

- the REPLACE statement will only be

ef{ective starting with the s,_cond
declaration statement• N is un-

known in the first declaration and

compilation would detect the error•

Care must be taken in usinq REPLACE statements because

uhe ways in which they are affected by the block structure

of the HAL/S program in which they appear are not always
obvious.

Exalnple :

REPLACE X BY "Y"; _e Program

/

" i ,_Procedure block
" DECLARE X SCALAR;

-- I - the user must remember

J that the X of the local

decla, ation inside the

_- procedure block is st111

: subject to the REPLY.L:
statement at the program
level.

-f

5-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRID(AE MASSACHltSE TIS (3:'138 • _6t 7_661 It4.t_

1974021423-055

The _ case in which a REPLACE statement in an outer block
becomes ineffective in an inner block is when the inner block
has a REPLACE statement in it with the same name.

Example:

..<......<.............:................\%._ j4 Program
REPLACE X BY "Y";_ /

, ', ,, ,

:'_;":'_:":_":""_"""_"''"':×':,:,.;, ,. ,,,,, ,"_"'" /Procedure block.,,.._....L_:_.. ...n: ,. ; ,_,'

_

• , _,. ,,ep,,,:'-," b rocedure block

[i.....
_,,, _ region where X is

_ replaced by Y

region where X is
replaced by Z

Replace statements may also

possess parameters, turning

them into a sophisticated

macro expansion facility.

See: (tbd).

5-4

INfERMETRICS INCORPORAIED. 701 (;ONCORD AVENUE • CAMBRIDGE MASSACt-iUSETIS ()01;_,_;. (617_ 661 !840

/

1974021423-056

!

I

• .

5,3 SUMMARY

Section 5 has dealt with a mechanism for symbolic replacement

of HAL/S source text. Section 6 begins to examine the way in

which executable statements are constructed by describing how
data is referenced.

5-5 i

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-057

.

i
I

l

]7

I"

II

II

I
5-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE ° CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 _11

1974021423-058

!

6, DATAREFERENCINGANDSUBSCRIPT!NG -"

Any appearance of the name of a previously-declared data item
in an executable statement constitutes a reference to its value

(and possibly causes a change in its value)*. Sometimes it is
necessary to be able to reference elements of vectors, matrices,

and arrays, and also to reference parts of character strings.

HAL/S has a wide range of subscript forms designed for this
purpose.

Two kinds of subscripting are relevant to the data types
described in Section 4.

. • COMPONENT SUBSCRIPTING allows the user to select elements

or subsets of elements from vectors and matrices, and to

select substrings from character data items.

• ARRAY SUBSCRIPTING allows the user to select elements or

subsets of elements from arrays of any data type.

Depending on the nature of a particular data item, either or
both kinds of subscripting may be affixed to it.

6,1 SUBSCRIPTSOFUNARRAYEDDATATYPES

"" Unarrayed data types, i.e. those whose declarations contain no

array specification, may at most possess only component subscript-

ing. Unarrayed data items of integer, scalar, and Boolean

types may not possess any subscripting. Allowable subscripts
for the remaining types, - character, vector, and matrix - are
now each described in turn.

* This Section, for convenience, includes appearance causing

change in value under the term "reference", even though
this is not the most usual meaning of the term.

6-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHtJ£FT1S 00138 • (61 ,') 661-1840

1974021423-059

CHARACTER

In a character data item, character positions are indexed left
to right starting from i. In the subscript forms given below,

STRING represents an unarrayed data item of character type with

current working length L.*

• To select the _th character from STRING:

STRING

i. e is an integer expression in

the range 1 _ e _ L.

• To select e characters from STRING, starting from the
8th:

STRING
AT 8

i. _ and 8 are integer expressions.

2. _ is in the range 1 < 8 _ L.

3. e is in the range 0 _ e _ L - 8 + i.

. o

* In the case where reference of a subscripted character data

! type causes a change in its value (e.g. on the left hand side "
, of an assignment), somewhat different interpretations of the

i subscript forms hold true. An account of these is given in ""Section 8.3. -

i 6-2 _,.
'i fNTERMETRICS INCORPORATED • 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 • (6,17) 661-1840 " ";

• _ wamm,m.-

1974021423-060

I

!

• To select a substring starting with the eth character

of STRING, and ending with the Bth:

STRING
a TO B

i. a and 8 are integer expressions in
the range 1 $ a, _ _ L.

2. 8 4 _.

Examples:

if the value of C is 'ABCDEF' then:

C 5 is 'E'

C2 AT 2 is 'BC'

C4 TO 6 is 'DEF' '

VECTOR

" Elements of a vector are indexed starting from I. In

the following subscript forms, VEC represents an unarrayed
vector data item of length L.

• To s_l_ct the _th element from VEC:

VEC

; ;

' "' i. a is an integer expression in the

i range i _< _ _< L.

, 2. The resulting data type is SCALAR.

?

t :

6-3 iINTERMETRICSINCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUbP_ITS02138. 1617)661-1840

1974021423-061

• TO select an u-vector partition starting from the 8th
element of VEC:

VEC
_AT B

i. e is an integer literal value in
the range 2 _ 8 _ L.

2. 8 is an integer expression in the
range 1 $ B 6 L - _ + i.

• To select a partition starting from the uth element of
VEC and ending with the 8th.

VEC
_ TO B

i. e and B are integer literal values

in the range 1 _< u, 8 _< L.

2. _ > _.

Examples :

if V = [9._I. then:

I_.II
[2.7]

, V 1 - 4.5 (scalar)

V 3 = (2-vector)TO 4

i = [4.5[(2-vector) ";v2A_'l 19.31 ..I
I

1 .ti
!t

! 6-4 -,
INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMRRIDGE _4ASSACHI qlFTT_ 0213.6 • (617) R61 1840 :

1974021423-062

I

!

MATRIX

Rows and columns of a matrix are indexed starting from i.
Any matrix subscript must consist of a row subscript follo_,_d

by a column subscript. In the following subscript forms, MAT

represents an unarrayed M x N matrix data item.

• To select the element of MAT common to the _th row and
8th column:

I. _, B are integer expressions.

2. _ is in the range 1 _ _ _ M,

and 6 is in the range 1 $ 6 _ N.

3. The resultant data type is SCALAR.

• To select the eth row of MAT:

MAT

I. _ is an integer expression in the

range 1 ,< e _<M.

2. The resultant data is N-VECTOR.

3. If the asterisk is replaced by a

TO- or AT- subscript under the

rules given for VECTOR data t_es,
a vector partition from the s_,,

.. row may be selected.

i
6-s I

cINTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRID_I_, MAoSACttUSFTTS 02138 • 1617) 661-1840

oi,

" ' " " k b_ ,41"'

1974021423-063

• To select the 8th column of MAT:

MAT
*,B

i. 8 is an integer expression in the
range 1 _ 8 < N.

2. The resultant data type is M-VECTOR.

3. If the asterisk is replaced by a
TO- or AT- partition under the

rules given for VECTOR data types,

a vector partition from the 8t h

column may be selected.

• To select a _ x y matrix partition starting from the
8th row and 6uh column of MAT:

MAT
AT 8, y AT 6

i. e, y are integer literal values in

ranges 2 ,< _ _< M, 2 <_ y _< N
respectively.

2. 8,y are integer expression in

ranges 1 _< 8 _< M - _ + i,

1 _< 6 _< N - y + respectively.

3. Either or both the AT- subscripts

may be replaced by TO- subscripts
under rules already given by VECTOR

and MATRIX types.

4. Either of the AT- subscripts may in
addition be replaced by an asterisk
if all M rows or all N columns are

to be included in the partition.!

i

I """ i

6-6

' INTFRMETRIGS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • 1617) 661-1840 ,. :

1974021423-064

!

!

Examples :

if M = i.I 1.2 1.3 then:

.i 2.2 2.

_.i 3.2 3

M2,3 = 2.3 (scalar)

M,,I= I ._I. (3-vector)

M2, 2 TO 3 = [_:2_ (2-vector)

M,, 2 AT 1 = [i! III 2.23.21"2I (3x2 matrix)

M1 TO 2, 1 TO 2 = [12"1.1 2.21.2] (2x2 matrix)

6-7

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • I617) 661 -t840

1974021423-065

6,2 SUBSCRIPTSOF ARRAYEDDATATYPES ...

Arrayed data types, i.e. those whose declarations contain

an array specification, may possess array subscripting.
If the data types are vector, matrix, or character, then

they may, in addition, possess component subscripting.

ARRAY"'JBSCRIPTINGONLY

Arrays are indexed starting from I. In the array subscript

forms given below, TABLE represents an array of length L

of .any data type.

• To select the _th array element from TABLE:

TABLE

i. _ is an integer expression in the

range 1 _ s < L.

i. The colon is o_tiona ! if the data
type of TABLE is INTEGER or SCALAR.

, . .

• To select a sub-array of length s starting from the Bth
array element of TABLE:

TABLE
AT 6:

i. s is an integer literal value in the

range 1 _< _ 4 L.

2. 6 is an integer expression in the
range 1 _< 8 < L - a + I. i

3. The colon is optional if the data .o

type of TABLE-T__GER or SCALAR. i

I

f 6-8]_ ,NTEaM_TR,CS,NCORPORATEO.70,CONCO,DAVENUE.CAMBn,DGE._SS,C,USE_TS02,a8._6,7,_,-'_0

1974021423-066

• TO select a sub-array starting from the sth array

element of TABLE and ending with the 6 th.

TABLE
TO _,:

I. _, 8 are integer literal values

in the range 1 _ _, 8 _ L.

2. 8 _ a.

i
3. The colon is optional if the data i

type of TABLE is INTEGER or SCALAR. i
i
!

Examples:

if T is a 4-array of booleans with values
(TRUE,FALSE,TRUE,TRUE) then:

T2 : is FALSE (unarrayed)

T3 TO 4: is (TRUE,TRUE) (still arrayed)

if T is a 4-array of integers with values
(I,2,3,4) then:

T 2 is 2 (unarrayed) I optional colon

T3 TO 4 is (3,4) (still arrayed) _ omitted

if C is a 3-array of characters, with values
('YES','NO','MAYBE') then:

., CI: is 'YES' (selects first array element)

C2 TO 3: is ('NO','MAYBE') (still arrayed)

•

{

INTERMETRICS INCOqPORATED • 70' CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • ;617p 661-1840

k

1974021423-067

ARRAYANDCOMPONENTSUBSCRIPTING

If TABLE represents an array of vector, matrix, or character

data type, then the following rule shows how array and
component subscripting are juxtaposed.

TABLE<array ss>:<component ss>

i. <array ss>: represents array sub-

scripting of any of the forms
previously described.

2. <component ss> represents any form
of component subscripting legal

for the data type of TABLE, as
described in Section 6.1.

The purpose of the colon now becomes clear: it is required

to distinguish and separate array and component subscripting.

Examples:

if C is a 3-array of characters, with values
('YES','NO','MAYBE') t'_en:

C3:3 is 'Y' (selects 3rd character from third
array element)

if M is a 2-array of 2x2 matrices with values

M2:2, 2 = 8 (element in 2nd row, 2nd column _.
of second array element)

"" i

""i6-i0

=

INIERMETRICS INCORPORATED • 701 CONCORD AVEN : • CAMBRIDGE, MASSACHUSETTS 02138 • {61 }'1 661.1840 o j

1974021423-068

r

!

Apparently, the colon should be

optional on Boolean data types
also. It is not because the

Boolean data type is a degener-
ate case of a bit string data

type whlch may possess com-
ponent _ubscr iptIng.
See: (tbd).

COMPONENTSUBSCRIPTINGONLY

When an arrayed data item of vector, matrix or character

type is required to be given only component subscripting,

array subscripting cannot be totally omitted. Rather, it
must be replaced by an asterisk. Let TABLE represel.t such

a data item; the subscripting form is then requir(d to be:

TABLE
• : <component ss>

i. <component ss> represents any form
of component subscripting legal for

the data type of TABLE, as described
in Section 6.1.

Examples:

if C is a 3-array of characters with values
('YES','NO','MAYBE') then:

C,: 1 is ('Y',_N','M') (makes 3-array from first character
of each item)

if M is a 2-array of 2x2 matrices with values

;I,l; , oo,
M = (I 5) (2-array of scalars)
,:i,I

6-i1

INTFRMFTRICSIN(_ORPORATED.701COrlCORD AVENUE .CAMBRIDGE _IASSACHUSETTS 02TJ8._617_ _T-T340

1974021423-069

HAL/S allows mere general fo_ms of

subscript expressions than just
those stated in Sectien 6. In

addition, a symbolic form of

reference to the la3t array or

other element of a data type is

allowed. Even more complex

forms of subscripts apply to parts

of tree organizations of data

('structures').

See: (tbd)

6,3 SUMMARY

This section has comprehensively described the forms of

subscripting available in HAL/S. At this point in the Guide,

sufficient information has been given to allow the user to be
able to reference different kinds of data. Section 7 shows

how o _ra*ions may be performed on the data so referenced.

t

! ""

I 6-12

t

INTERMETRICS INCORPORATED •701 CONCORD AVENUE •CAMBRIDGE. MASSACHUSETTS 02138 • (617)661-1840

1974021423-070

I

7, EXPRESSIONS

Section 6 dealt with the referencing of declared data items.

At this point it is appropriate to describe how the values of
these data items can be manipulated. In HAL/S the construct

which specifies operations on data items is called an
"expression"*. In many cases it is very close Jn form to

the generally accepted notion of a mathematical expression. !

Generally, expressions consist of sequences of operations,

possibly parenthesized in places to override the precedence

rules of HAL/S. Each operation is cemprised of one or two
operands and an operator. The very simplest form of expres-

sion is one in which there are no operations and just one

operand. An operand may be a data item, possibly subscripted,

or a built-in function, or an explicit conversion function.
This section begin_ by describing the legal HAL/S operations,

and then continues to show how they are combined into
expressions.

Previous sections of the Guide have divided data items and

literals into three broad classes: arithmetic, charactez,

and Boolean. It is convenient to divide the operations to

be described into the same three classes. The type of an

expression is the type of the value resulting from its
execution, and may, in general, be different from the types

of some of its operands, t

7,1 ARITHMETICOPERATIONS

Arithmetic operations are the most numerous of all operations
in the HAL/S language. They comprise operations on vector,

matrix, integer, and scalar data types. HAL/S recognizes _I

the fo]lowing operations:

i:
l

tl

* The storing of the resu]t of a HAL/S expression into a
data item is performed by an ASSIGNMENT statement, of

which the expression forms a part.

7-1

INTERMFTRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

B _Ji% , i

1974021423-071

Symbol Purpose

** exponentiation, inversion.
transposition

(blank) multiplication

* vector cross product

• vector dot product

/ division

+ addition

- subtraction, negation

I

NEGATION
Negation is a binary operation applicable to any arithmetic
data type:

Symbolic form: - R

i. The legal data types for R are given

by the _ol]owing table:

R tZ_£
MATRIX
VECTOR

SCALAR

INTEGER

2. Negation of vector and matrix types

implies element-by-element negation.

Examples :

' if I is an integer and I _ 5

|

I then -I _ -5 [1.5] _

} if V is a 3-vector and V _ [-iiil

_ and- V-[._I!! 1 -" ', _!
7-2 "" i

INTERMETRICS INCORPORATED. 701 CNNCORD_AVENUE • CAMBRIDGE MASSACHUSETTS 02138. {617) 661-1840 ,,_"
I

l

1974021423-072

!

!

ADDITIONANDSUBTRACTION ,--'

Addition and subtraction can only take place between compatible
arithmetic data types:

Symbolic form: L ± R

i. The legal combinations of data types
are indicated by the following table: _

i -type R -type

MATRIX MATRIX

VECTOR VECTOR

SCALAR } I SCALARINTEGER INTEG' .

2. Operations on matrix and vector operands

imply element-by-element addition and
subtraction.

3. The operands in a matrix addition or
subtraction must have the same row and
•-..-.1,,.. dimens-_s.

4. The operands in a vector addition or

subtraction must have the same lengths.

5. In a mixed integer-scalar operation, the

result is scalar. The in_ _.r operand is ,_
first converted to single _cision
scalar.

i

7-3 !_

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184
p ...

kmla '.

1974021423-073

Example s :

7f I is integer with I _--5

S is scalar with S _ -4.2

then

I + 1 _ 6 (inteqer result)

I + 0.5 __ 5.5 (scalar result)

S + 1 _ -3.2 (scalar result)

I - S _-9.2 (scalar result)

v sa3vectorwthV
V2 is a 4-vector with V2 _ [_15]

then the operation Vl + V2 is illegal because the lengths of
VI, V2 do not match;

but

V1 - V21 TO 3 _ I-i'_I is legal because subscripting
-2. of the R operand has produced
i. a 3-vector.

Using S, Vl above,

S + V1 is illegal because the types are incompatible;

but S + Vl 3 - -i.0 is legal and has a scalar result because
subscripting has changed the R operand to

scalar type.

i

: !

" 7-4 .,

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-184(" -.

1974021423-074

I

I

!

i_Mlisa3x2matrixwithM1_[i0S!I°

M2isa2x2matrixwithM2 l°' 100Jl
then M1 - M2 is illegal because the row dimensions of the

operands do not match;

but, MI2 AT i,, - M2 _I 0.5 0.5J is legal because the-i 5 -2 0 number of rows in the

i operand have been

reduced to 2 by sub-

scripting.

DIVISION

In division, the dividend may be any data type, but the divisor

must either be integer or scalar.

Symbolic form: L /

i. The legal combinations of data types are

given by the following table:

i -type R -type

MATRIX I

VECTOR { SCALAR
SCALAR I INTEGERINTEGER

2. If the dividend is of matrix or vector

type, element-by-element division by the

Roperand is implied.

3. If either or both operands are of integer

. type, they are first converted to scalar
type.

I

in

i
7-5 |

INTERMETRICS INCORPORATFD • 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (61?) 6,31-1840 i-

f,,.......... _

1974021423-075

Examp le s :

1/2 _ 0.5 (both integer operands converted to scalar)

if V is a 3-_ector with V _ [!_!!.

S is a scalar with S _ 0.5

then S/M is illegal since the R operand may not be of matrix
type,

but M/S - 12"00.4-i'011.2

DOTPRODUCT

The HAL/S dot product operation corresponds to the mathematical

dot or inner product of two vectors. In mathematical notation:

S = <U, V> or S = uTv

where u, v are column vectors and T denotes the transpose.

Note that HAL/S does not require the user to distinguish between

row and column vectors because the position of the operand in the

operation is sufficient in itself to allow it to be interpreted
as one or the other.

Symbolic form: L . R

i. The operands of the dot product must be
as shown :

i -type I R -type
!

VECTOR I VECTOR

, 2. The lengths of each operand must be
the same.

3. The result is of scalar type.

7-6

[
_ INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

1974021423-076

t

!
!

Example :

If V is a 3-vector with V--[!.5].5

then V.V = 1.5
J

CROSSPRODUCT

The HAL/S cross product operation corresponds to the mathematical

vector cross product in 3-dimensional EuclideaD space:

if w is perpendicular to u, v

as shown,

"_ and lwl = lullvlsin 0
then w = u × "v" "

Symbolic form: L • R

I. The type of the operands must be vector:

L -type I R-type
I

VECTOR I VECTOP

2. Both operands must be of length 3.

3. The result is a 3-vector.

Example : _

. if V1 is a 3-vector with V1 _ [!.5] ii!

0.25

7-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-077

MULTIPLICATION

The HAL/S language has no explicit symbol for multiplication:
the adjacency of two operands signifies this operation. Multi-

plication can take place with arithmetic operands of any type:

• If operand types are either integer or scalar, multiplication

in the regular arithmetic sense is implied; ...CASE Q

• if one operand is integer or scalar, and the other vector or

matrix, then element-by-element multiplication is implied;

...CASE Q

• if both operand_ are vectors then the outer product is implied,

the result being a matrix; ...CASE Q

• if both operands are matrices, the matrix product is implied;

...CASE Q

• if one operand is a matrix, and the other a vector, then

a vector-matrix product is implied, the result being a
vector CASE (5)

The symbolic form for multiplication is as shown:

Symbolic form: L R

i. At least one blank character must

separate the L and R operands.

The additional rules applicable to each of the cases described above
are now listed in turn.

. .
7

! ?-e .,
INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

k

1974021423-078

!

CASE Q

2. The operand types are:

L-type I R -type

SCALAR _iv SCALAR

3. If both operands are integer, the

result is integer, otherwise it is
scalar.

4. if one ¢perand is integer, then it

it first converted to single precision
scalar.

Example:

If _ is integer with I _ i0

then 1.5E-2 I - 0.15 (scalar result)

CASE Q

2. The operand types are:

L -type R -type

I TEGER{VECTOR

MATR IX SCALAR

3. Element-by-element multiplication

of the vector or matrix is implied.

! 4. If an operand is of integer type, it

it first converted to single precision
scalar.

7-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1974021423-079

Examples:

if S is scalar with S _- 1.5

M is a 2 x 2 matrix with M - I 0 0.3 1- .i 0.4

then S M 21 _ 0.45]- .15 0.

and M S -I 0 0.45]-0.15 0.

CASE Q

2. The operand types are:

L-type j R-type

VECTOR I VECTOR

3. If the L-operand is of length m,
and the R operand is of length n,
the result is an m x n matrix.

Examples:

If V1 is a 3-vector with V1 5 F_v|[l[_]
[l.OJ

then V1 V2 _ [0.5 0.6] (3 x 2 matrix)

• I-°'5 -o.61_ 0.5 0.61

i and V2 V1 5 [00165-0.5_0.60.6j0"5](2x 3 matrix) '

!

7-10 -,
p

, INTERMETRICSINCORPORATED"701CONCORDAVENUE"CAMBRIDGE.MASSACHUSETTS02138 " (617) 661-1840 ..

1974021423-080

I

T

CASE Q

2. The operand types are:

i-type I R-typeMATRIX MATRIX

3. The number of columns in the

L operand must equal the number of

rows in the R operand.

4. If the t operand is an m x n matrix

and the R operand is an n x p matrix,
the result is an m x p matrix.

Examples :

If M1 is a 2 x 3 matrix with M1 ---11"00.5 -0.51"0 2.0II.

-- M2 is a 3 x 2 matrix with M2 _ [i 110i!]

10.5 -0.5 i:0j0.5 -0.5 1

Note that by using partitioning subscripts that

•- MI*,2 TO 3 M2 is illegal because of dimension mismatch;

but M2 Ml,,2 TO 3 - 0.5 -0

0.5 -0

7-11

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

k

1974021423-081

CASE Q

2. The operand types are:

_type I _type

VECTOR MATRIX

MATRIX VECTOR

3. If the L operand is an m x n matrix,

the R operand must be an n-vector,
and the result is an m-vector.

4. If the t operand is an m x n matrix,
the R operand must be an m-vector, and
the result is an n-vector.

Note that the position of the vector operand again determines

its interpretation as eith_r a row or column vector.

Examples:

and M V is illegal because of dimension mismatch_

i

_ ;

t

7-12

_, INTERMETRICS INCORPORATED. 101 CONCORD AVENUE . CAMBRIDL;r: MASSACHUSETTS 02138 . 16171661-1840

1974021423-082

I •

EXPONENTIAT!OI !,INVERSIONANDTRANSPOSE

In HAL/S, a single operator serves for exr_nentiation, matrix

inversion, and matrix transpose, the opeland types serving to
distringuish between them.

• If both operands are integer or scalar, then exponentiation

is implied; ...CASE Q

• if the left ope'and is a square n_trix, and the right is

an integer-valuea literal, a repeatea matrix product or repeated

product of inverce is implied; ...CASE

• if the left operand is a mat£ix, and the right operand is

the character 'T', then the transpose is implied CASE Q

These operations take the general symbolic form:

Symbolic form: t '' R

i. This is the one-line format version.

In multi-line format the operator symbol

is omitted and R is placed on an exponent
line See Section 2.3.

The rules for each of the cases listed above are now described in
turn.

7-13INTERMETRICS INCOqPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 07138 • (617) ,2,61-1840

1974021423-083

CASE O

2. The operand types are:

L -type R -type

INTEGER} IINTEGERSCALAR SCALAR

3. If the i operand is integer and ;

the R operand is a non-negative

integral-valued literal, then the

result is integer, otherwise it is
sca iar.

4. Consistent with Rule 3, if the result

as scalar, then any integer operands

are first converted to si.,gle-precision \
scalar.

Example_:

£f I is an integer with I _ 5

then I ** 2 _ I0 (integer result)

and I**-i _ 0.2 (scalar result)

also 2**0.5 z _ (scalar result)

r

t

J_

7-14

INTERMETRICS INCORPORATED 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-084

!

I
[CASE Q

2. The operand types are:

i-type I R -type
I

MATRIX I INTEGER

3. The i operand is a square matrix.

4. The _ operand is an integral-valued
literal. The following table shows

the effect of different _anges of

values of the R operand:

value result
< - 2 repeated product of inverse

-i inverse
I 0 unit matrix

1 no-operation

> 2 repeated product

I Examples :
I

l ___,a_x_ma_r__ _= 0.__I-0,5 uj

I ithen M 2 _ -0.25 0.

-0.5 -0.

0
b and : .0 0

1.0

7-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE 'CAMBRIDGE MASSACHUSETTS 02t38. 1617) 661-1840

1974021423-085

CASE Q

2. Tl,e operand types are:

-type I R -type

MATRIX I T

3. If the L operand is an m x n matrix,
then the result is an n x m matrix.

4. If R is symbolically T, then transpose
is indicated even if T is a declared
data item.

Examp ies :

If M is a 2 x 3 matrix with M - Ii'020 00 4.3"_I

then MT 5 Ii'013.0 4.002"0]

if V is a 3-vector with V-{i.!]2.3.

then VT is illegal because the L operand is not matrix type.

The transpose of a vector is not needed in the HAL/S language.

{

4_

, 7-16
m

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 1
i

1974021423-086

i

NOTEON PRECISIONCONVERSION

It is possible that the precisions of the two operands may differ

in any of the operations described. In these cases, precision

conversion usually takes place before the operation is e×ecuted.
The rules under which it takes place are as follows:

i. No precision conversion is possible in
unary - _ -_ +_ _ si_onupera_o,,_: ..ansro _ is

considered a unary operation.

2. Where an operation specifies typ_ con-

version from integer to single precision
scalar, this conversion is carried out
first.

3. If only one operand is integer and no
-r---,

type conversion is implied, no preclslon
conversion takes place.

4. If both operands have the same precision,

the result is of the same precision (even
if not of the same type).

5. If the operands have mixed precision, the

single precision operand is converted to
double precision. Then rule 4 is applied.

7-17

INTERMETRICS INCORPOPATED '701 CONCORD AVENUE 'CAMBRIDGE, MASSACHLISETTS 02138 . (617) 661-1840

1974021423-087

7,2 CHARACTEROPERATIONS

There is only one character operation in HAL/S: concatenation
of character strings.

S_mbol Purpose

Ii 1 catenationCAT

CATENATION

The utility of catenating character strings is obvious in

the generation of output listings. The rules related to

the catenation operation are as follows:

Symbolic form: L II R
CAT

i. The L and R operands are not just

restricted to character type: some
degree of implicit type conversion

is allowed. The following types are
legal.

L-type _ R-type

INTEGER _I_INTEGER
SCALAR _SCALAR
CHARACTER}|_CHARACTER

2. The rules for converting integer and

scalar types to character type are to

be found in Appendix .

7-1B

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-088

l

!
|,

.. it

I:

Examples : _

If C is a character item with C - ' UNITS'

I is integer with I 4 i0

then 'TEN' I I C _ 'TEN UNITS'

I C - '10 "" m_,uL'_l•o

01
and I I -: 'i010'

I

7-19

r

tNTEFIMETRIC$ INCORPORATED. 701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-'340

1974021423-089

7,3 BOOLEANOPERATIONS

Boolean operations are logical (binary) transformations on Boolean

operands. HAL/S recognizes the following operations:

S_mbo i Purpose

1 logical intersection
&

AND ,

!I _ loaical conjunctionOR i -

I logical complement

COMPLEMENT

The complement operation complements the logical value of a
Boolean operand. It takes the following form:

J
Symbolic form: - R I

NOT I
i. The R operand is of Boolean type. I

I

Example :

If B is _3oolean with B -TRUe:

then _B _ FALSE

l

J

, 7-20

[

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184fl :

1974021423-090

!

CONJUNCTION -"

The conjunction operation causes the logical values of two

Boolean operands to be OR'ed together.

Symbolic form: [I R
• - OR

i. The L and _ operands are of Boolean type.

2. The truth table for the resulting Boolean
is as follows:

T=TRUE [

F=FALSE T F

T T T
R

F T F

Examples:

If B is Boolean with B _ FALSE

then BIB 2 FALSE

BITRUE _ TRUE

!

7-21

I_:EF_METRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

k , ,

1974021423-091

INTERSECTIOI

The intersection operation causes the logical values of two

Boolean operands to be AND'ed together.

Symbolic form: L & RAND

i. The L and R operands are of Boolean type.

2. The truth table for the resulting Boolean
is as follows:

T=TRUE L
F=FALSE T F

._

R T T F

F F F

Examples:

If B is Boolean with B z FALSE

then B&TRUE z FALSE

B&B _ FALSE

!

I °i
7-22

t INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • t617) 661-1843

1974021423-092

b

!

7,4 COMBININGOPERATIONS& PRECEDENCE

It is obviously desirable to be able to combine operations so

as to create expressions of any required complexity• In combining

operations, the following information is necessary:

• The order in which operations are executed (the order

of "precedence");

• the way in which the precedence order can be overriden.

ARITHMETICANDCHARACTERPRECEDENCE

The precedence of HAL/S operations on arit_netic and character

data types are shown in the following table:

Symbol Precedence Purpose

FIRST

** 1 exponentiation, etc.

(blank) 2 multiplication

* 3 cross product
• 4 dot product
/ 5 division
+ 6 addition

- 6 subtraction, negation
II, CAT 7 catenation

LAST

Two rules clarify and modify this information:

• Sequences of operat%ons of the same precedence are evaluated

].eft to right, except for *_ and /, which are evaluated rig_,t
to left.

• Sequences of multiplications are sometimes reordered to minimize
the number of elomental products required.

7-23 i

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

-- ,, m

1974021423-093

Examples:

In the following expression, the numbered pointers show

the order of execution of operations:

'_su_.T oF STEP' I INII' lS '11sl
Xvl.v2/2/2

BOOLEANPRECEDENCE

The precedence rules for Boolean operations are stated separately
because there are no implicit conversions causing interaction

with arithmetic and character operations.

Symbol Precedence Purpose

FIRST

_, NOT 1 complement

&, AND 2 intersection

I, OR 3 conjunction
LAST

Sequences of operations of the same precedence are evaluated

left to right.

Examples:

In the following expression, the numbered pointers show the

order of execution of operations:

-BIIB2 &-B3

! ..

! 7-24 -!

INTERMETRICS INCORPORATED • 701 CONCORD..VENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1974021423-094

I

I

i OVERRIDINGPRECEDENCEORDER
I
i In HAL/S, the order of precedence can be overriden at will by

the use of parentheses, nested to any arbitrary depth.

! Examples :

In the following Boolean expression,

BlIB2 _,B31B4 _ B5

eggg
parentheses may change the precedence order as shown:

(BIIB2) & ((B31B4J & B5)

In the following arithmetic expression,

Sl + S22 + S3/2

parentheses may change the precedence order as shown:

HAL/S allows the opezandl

-- in an expression to be

arrayed, causinq pazal_el
evaluation on an element-

by-element basis.
See: (tbd).

7-25

INTERMETRtCS iNCORPORATED. 701 CONCORD AVENUE • CAMBR}DGE, MASSACHUSETTS 02138 • (617) 661.1840

k

1974021423-095

7,5 SOMEEXPLICITCONVERSIONS

As evidenced in Section 7, there are few implicit type conversions

in the HAL/S language. However, there is a comprehensive range of

explicit conversions, some of which are now described.

PRECISIONCONVERSION

Any arithmetic expression may have its precision explicitly
changed as follows:

(<expression>)@ DOUBLE

(<expression>)@ SINGLE

i. In the first form, if <expression> is

a single precision arithmetlc precision,
it is converted to double precision.

If it is already double precision, the
conversion has no effect.

2. In the second form, if <expression> is

a double precision arithmetic expression
it is rounded to single precision. If

it is already single precision, the
conversion has no effect.

Example :

If A and B are single precision, then the result of

(A + B)@ DOUBLE

is double precision, the type remaining unchanged.

-- }

l
7-26

" i,
tNTERMETRICS II_4C.ORPORATED• 70: CONCORD A'_ENUE • CAMBRIDGE. MASSACHUSETTS 02138 • 16171661-1840

.I

1974021423-096

4

!

VECTORCONVERSION

A vector ca_ be synthesize_ from a list of scalar cr integer

expressions using the &onstruct shown in the following table:

(<exp>, <exp>.)VECTOR n

i. mhe subscript number n specifies the
length of the vector to be created, and

lies in the range 1 < n < 16".

2. If n is omittc_ the resulting vector is

assumed to be of length 3.

3. Each <exp> is a _calar or integer
expression.

4. The number of expressions in the list

must match the implicit or explicit

result length.

5. The _esult of the above conversion is in

single precision.

6. The matrix is assembled row by row from
the list.

-- Examples :

VECTOR{I, 2, 3)

* This value may be implementation dependent. See Appendix
for exceptions.

7-2; .'

IN rCRMETRtCS iNCORPORATED • 701 CONCORD AVENUE • C#,,.,_SRIDGEMASSACHUSETTS 02138 • (617) 66:-1840 ._

4
A

1974021423-097

!

if S is a scalar with S _ 0 5 then ["

S 2
VECTOR 4 (S, , S+l, 0)

creates a 4-vector with value [ii5]j o =

Note that even if the arguments are double precision the rest.it

is in single precision. To specify do,'ble precision in a vector
conversion, the following modified form is used:

VECTOR@ DOUBLE, n (<exp>, <exp>)

1. The meanings of <exp> and n are as before.
T

2. If n is not specified, the preceding comma I
is also omitted.

!

Examples : "I

V_.CTOR@ DOUBLE {1' 2, 3) ..

l

VECTOR@ DOUBLE, 4 (1' 2, 3,4)

]I
l

,_ 7 -28

INTERMETRICS iNCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) e'J61-1840]

L
|IT__ T .

L

1974021423-098

I

MATRIX CONVERSION

,i
There exists a method of synthesizing a matrix from a list of

integer or scalar expressions analogous to the vector conversion

I described:

I MATRIX (<exp>, <exp>,)m, n

i i. The subscript numbers m, n specify therow and column dimensions of the matrix

to be created, and must lie in the range

_. 1 < m, n _< 16".

-- 2. The subscript may be omitted, in which
case the resulting matrix is assumed to

- be 3 by 3.
.o

3. Each <exp> is a scalar or integer
-- expression.

"" 4. The number of expressions must match the
total number of element_, in the resulting

:? matrix.
oa

5. The result of the above conversion is in

"" single precision.

mp

* This value may be implementation dependent, q?¢ Appendix i
for exceptions. •

7-29

INTERMETRtCS INCORPORATED . 701 CONCORD AVENUE 'CAMBRIDGE, MASSACHUSETTS 02138 . 16171661-1840 ,_

1974021423-099

Example s: _-
L

&

MATRIX(l, 2, 3, 4, 5, 6, 7, 8, 9)

creates a 3 x 3 matrix wit_ value [i 852 i]

MATRIX2, 3(1"5' 0, 0, 0, 0.5, 0)

creates a 2 x 3 matrix with value Ii.5 0 010.5 .

Note the order of assembly in each case.

As in the case of vector conversion, a modified form is required

if the result is to be in double precision:

(<exp>, <exp>) "
MATRIX@ DOUBLE, m, n J

i. The meanings of m, n and <exp> are as
before, i

2. If the dimension subscript is omitted, the .

preceding comma is also omitted, i i

t

Examples : ._]

MATRIX@ DOUBLE(I, 2, 3, 4, 5, 6, 7, 8, 9) ii !

ou "epreoi.ion..rix [!.,_!18

MATRIXA DOUBLE, 2, 3(1.5, 0, 0, 0, 0.5, 0)]
or._o.._oo_o,r.o_._on___._r_xw__a_uo!1o"_°o._."!

7-30INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661 1840

1974021423-100

I

The explicit conversions ,lescribed

" are those most commonly required for

numerical analysis. However, HAL/S

contains many other explicit con-

.- version function forms corresponding

to conversions between most data types.

" See : tbd.

.

• J

! 7-31

! INTERMETRICS INCORPORATED" 70: CONCORD AVENLIE 'CAMBRIDGE MASSACHUSETTS 02138 . (017) 661-1840 t *

1974021423-101

7,6 BUILT-INFUNCTIONS ""

HAL/S possesses a comprehensive range of built-in functions

that can be used as operands in expressions. Built-in
functions have zero, one, or two arguments, and are written
in a form akin to standard mathematical notation.

.-4

Built-in functions are divided into five different classes, -.

roughly according to purpose:

• arithmetic

• algebraic _,

• vector-matrix

• character "

• miscellaneous

A full description of all built-in functions is given in
Appendix . A brief explanation of some of the more

important functions in each class is given below.

ARITHMETICFUNCTIONS

Arithmetic functions perform simple arithmetic operations
on scalar or integer arguments. Some arithmetic functions !

are: _.

Function Comments "i_ i

ABS(a) returns lal (the absolute value of _

a). a may be integer or scalar. "_ i

DIV(a,8) returns the result of integer divi-

sion of a by 8. u and 8 may be !

scalar or integer: scalar values |
are rounded to integer before use. "_

ROUND(o) rounds , scalar a to an integer. T!

ODD(o) returns a Boolean result, which is

TRUE if a is odd, and FALSE if a I
is even. J

SIGN(a) returns +i if a)0 and -1 if a < 0.

,i,, i i ... J

7-32]IN'ERMETRICS iNCORPORATED .701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 021_ . (617) 661-1_0

1974021423-102

_p

C

ALGEBRAICFUNCTIONS

-- Algebraic functions perform trigonometric and other
transformations on scalar arguments. Some common

"" algebraic functions are:

f

•- Function Comments
J

Q.

COS(a) returns cos a

a
EXP (a) returns e

.. LOG (_) returns lOge_
t

-- SIN(_) returns sin

" SQRT () returns V_- :

TAN (c_) returns tan _
_m

• VECTOR-MATRIXFUNCTIONS

_; Vector-matrix functions perform operations on vectors or
._ matrices. Common vector-matrix functions are:

Function "- ' Comments'
ta

.. ABVAL (_) returns length of
,-, vector

INVERSE(_) returns inverse of

! square matrix _
UNIT(a) returns unit vector

in same direction

as vector

q 7-33

• !

i INTERMETRICS INCORPORATED . 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 681-1840 :-

1974021423-103

oJ

CHARACTERFUNCTIONS
i

-o

Character functions perform operations on character data. !
Some common character functions are:

/

Function Comments ""
!

7

LENGTH(s) returns current length
of character string

TRIM(s) strips leading and
• trailing blanks from

string
}

MISCELLANEOUSFUNCTIONS
]

Some of the more important miscellaneous functions are:
i

Func£ion - Con_ent's

DATE returns c ate at time of
executior

iMAX(_) r_turns the maximum
value in the integer
or scalar array

MIN (_) returns the minimum ,!
value in the integer

or scalar array _
!

RANDOMG returns random number
from Gaussian distrl-
bution with mean zero,

_ variance i.

J]

! 7-34 I
__ INTERMETRICSINCORPORATED• 701CONCORDAVENUE . CAMBRIDGE,MASSACHUSETTS02138 . (617) 661-1840 -|

1974021423-104

/

Examples of use:

I
• 1 SINE = SIN(X/2) + SIN(Y/2);

• I X = ABVAL(VI,V2);
IF ODD(X) THEN RETURN;

7-35
, !

_ _ INTERMETRICS INCORPORATED . 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 • (617) 1_1-1840

1974021423-105

7,7 SUMMARY

Section 7 has described how HAL/S expressions are synthesized

from operands and operators, and in what order such expressions

are executed. Expressions, particularly of integer and scalar _
type, form parts of many HAL/S language constructs. Section 6

referred many times to the use of integer expressions in sub-

scripting.

Section 8 describes the assignment statement, which causes the

result of an expression to be stored in some data item or "'
items.

"T

. °

i

.J

7-36]

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840]

IL ---

1974021423-106

t

I

I

8, ASSIGNMENTS

Section 7 described, in detail, the creation of HAL/S

expressions used in numerous places in the language.
The _ssignment statement is one such instance in which

the value of an expression is assigned to a data item.

For convenience, an assignment is classified according

to the type of the receiving data item; that is, the

data item being assigned into. Because HAL/S allows

implicit type conversion, this type is not necessarily
the same as the expression whose value is used in the

operation.

• Arithmetic assignments are assignments to matrix,

vector, integer or scalar data items.

• Character assignments are assignments to character
data items.

• Boolean assignments are assignments to Boolean
data items.

8.1 GENERALFORMOFASSIGNMENT
. .

The assignment statement is an instance of a HAL/S executable

statement It has a general form applicable to all types
, "" of assignment:

L-

-] Symbolic Form: L - R;

" i. i is the receiving data item. It

may be subscripted or unsubscripted.

i 2. Usually, R is an expression whose
resultant value is to be used in the

i assignment. It may, of course, consist, merely of a single operand.

,, , , ,, ,-- , u

I

8-I

INTERMETRICS INCORPORATED •701 CONCORD A%_NUE •CAMBRIDGE. MASSACHUSETTS 02138 •(617)661-1840

1974021423-107

Additional assignment rules are applicable which differ •

according to assignment type.

8,2 ARITHMETICASSIGNMENTS

Arithmetic assignments are those in which the receiving
data type is matrix, vector, integer or scalar.

MATRIX

The receiving data item is a matrix. 1

i. The operand types are: i
I

L-type I R-type !

_TSlXII_TRIX 1{INTEGER (rule _1

2. The number of rows and columns

of the R-expression must be the

same as those of the receiving
data item.

3. The on_ condition under which
the R-type is integer is if it is
the literal value zero. The

assignment teh-_ creates a null
matrix.

• o

Examples: ..

If M1 is a 2x3 matrix with M1 _ [I.0 1.0 2.0l
LO.5 -0.5 I.0J !.A

M2 is a 2x2 matrix,

M3 is a 2x3 matrix; l

]
8-2

INTERMETRICS INCORPORATED .701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 .i

1974021423-108

T ,

I

_w

then

IM3 = -MI;

resu'':_ "_M3 £ I-I'0-0.5 -I.00.5 -i.0-2"01
I

_ IM2 = MI; is illegal (column mismatch)
I

but

I
IM2 = M1
I ,, 2 AT 2;

IM3 = 0; results in M3 = 0 0 _
I 0 0

but
I

IM3 = I; is illegal

I

VECTOR
3-

The receiving data item is a vector.

i | , , Lw

I. The operand types are:

L-type R-type

VECTOR { VECTORINTEGER (rule 3)

2. The length of the R-expression
, must be the same as that of the

receiving data item.

I 3. The _ condition under which -
the R-type is integer is if
it is the literal value zero.

] The assignment then-'_'_'eates a

i null vector.
ii , i i _ _ i i i i

{

i

;

8-3

i INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (8",)661-1840

1974021423-109

.ge

Examples :

If V1 is a 3-vector with V1 - [I.0I,

M2 i0 a 3x3 matrix,
V2 is a 3-vector;

then

J
IV'_ - -VI;
J

re,u1_,i.V2=(-i_IL-_1
I

IM2 - Vii is illegal (type mismatch),
J

but

I

IM21 - VI_ is legal since subscripting reduces
I the L-type to 3-vector.

• : ,'
17 indicates values unchanged by assignment).

Note
I
IV2 -0; create_ a null vector.
I

_8

_w

-Ip

I
8-4

INTERMETRICSINCORPORATED• 701CONCORDAVENUE • CAMBRIDGE.MASSACHUSETTS02138 • (617) 661-1840

1974021423-110

!

!
T

INTEGER/SCALAR

Integer and scalar assignments can be treated together

because their rules are nearly identical.

i. The operand types are:

i-type I R-type

INTEGER III INTEGERSCALAR SCALAR

2. If the L- and R-types
do not match, type
conversion of the result

of the R-expression takes
place before assignment.

3. Sualar-to-integer conversion

implies rounding of the value

of the R-expression.

Examples :

If I is an integer,
S is a scalar, and

M a 2x2 matrix, then

I I = 5; results in I - 5

I I = 7.7; results in I - o

I
I S = 7.7; results in S -= 7.7

Given the last values above for S, I
• !

IM2 2 = I - S;
J

results in M - [g 0.3?]

(? indicates values unchanged by assignment)
l

IM2, , = I; is illegal (type mismatch)
I

8-5

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (817) 881-1840

1974021423-111

NOTEONPRECISIONCONVERSION

In an arithmetic assignment, the precisions of the receiving
data item and of the R-expression may differ. In these

cases, precision conversion of the latter takes place before
assignment, under the followzng rules:

I. The R-expression is converted to the
precision of the receiving data item

as necessary before assignment.

2. If type conversion from integer to
single precision scalar is implied,

it takes place before precision
conversion.

i

8-6

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 66!-1840 .

1974021423-112

!

8,3 CHARACTERASSIGNMENTS "

The receiving data item is cha: _cter type.

i. The operand types are:

L-type R-type

CHARACTER

CHARACTER INTEGER
SCALAR

2. R-expressions o_ integer or

scalar type are converted ',
before assignment to character

type. Conversion rules are to

be found in Appendix .

Examples:

If C is a character with C E 'ABCDE' and

C2 is a character,

then

!

IC2 = C3; results in C_ _ 'C'
J
I C2 = 1573; results in C2 '1573'

These apparently straightforward rules can become more complex
in some situations.

Generally, when the receiving data item is unsubscripted, its

working length becomes the same as the length of the R-

expression. However, if this would cause the declared

maximum length of the receiving data item to be exceeded,
then truncation of the excess from the right takes place.

8-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 , (617) 661 1840

.......... -_'_-_,-:_:_,,.._- _-_-L--- I ._[__T

1974021423-113

Examples:

If C1 is character of maximum length 10

C2 is character of maximum length I,

then '"

I
ICI = 'ABCDE';
I

results in C1 £ 'ABCDE' ef working length 5

but

I

IC2 = 'ABCDE';
I

results in C2 _ 'A' of working length 1

If the receiving data item is subscripted, then this causes
an additional complication. The rules applicable in such
a case are as follows:

Let

STRING

denote a receiving data item of

character type :

N is declared maximum length

n is working length before assignment

I. The range of the subscript expression
is presumed to be in the range 1 - NI
otherwise an error results.

2. The length of the R-expression is adjusted

to the length implied by _, either by I
truncation of the excess from the right, i

or by padding on the right with blanks. '

3. If the range of _ lies inside the range i
l-n, then simple substitution of the char-

acter positions implied takes place.

4. If the range of _ lies partly beyond the ._

i

range 1 - n, then the working length of

STRING is increased appropriately. _

5. If the rang_ of a lies totally beyond the i
range 1 - n, th_ working length of STRING

is increased appropriately, and the gap
between the n un character and the first .I
position implied by s (if any) is filled

with blanks.], , _ . |

"']INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 |

|

1974021423-114

' |

T Examples :

Let Cl be character of declared maximum length 10
-- with value C1 - 'ABCD'

Then by Rules 2 and 3:

i

C12 'QQ' ;i TO 3 =
6

results in Cl - 'AQQD'

I

C12 '1234't TO 3 = ;
!

results in C1 -= 'AI2D'

I
Ix'

I C12 TO 3
!

results in C1 -- 'AX D'

By Rules 2 and 4:

I

i Cl 4 TO 5 = 'QQ';
I

results in Cl -= 'ABCQQ'

-- (working length increased by i)
i

I C14 = 'X'TO 5 ;

results in C1 - 'ABCX '

(working length increased by i)

By Rules 2 and 5:
I

'CI 5 = ,QQ,, TO 6 ;
{

i _ results in C1 - 'ABCDQQ'

i_ I (working length increased by 2)

f -_ IiC17 TO 9 = 'FGH'

i results in Cl - 'ABCD FGH'

Ii 'IC16 = 'FCH' ;
I

results in C1 - 'ABCD F'

i

_-9 .,

It,ITERMETRICS INCORPORATED . 701 CONCORD AV_NbE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

IIIII I Jill II II........ III If - I]JI

L

1974021423-115

t
- I

!

8,4 BOOLEANASSIGNMENTS -"

The receiving data item is of a Boolean tyoe. .+

i. The operand types are:
!

, L-type I R-type .

BOOLEAN I BOOLE_

2. The logical value of the

R-expression is transferred

to the receiving data item.

+

Example:

If B is Boolean, then
!
I B = FALSE;
!

results in B 5 FALSE

t

]

8-10
%

INTERMETRICS INCORPORATED, 701 CONCORD AVENUE . CAMBFIlDGE MASSACHUSETTS 02138 • (617) 661-1840 J

/

1974021423-116

I

I

8,5 MULTIPLEASSIGNMENTS

Several data items may be assigned to the same R-expression

in the same statement. The general form of such a multiple

assignment is as follows:

Symbolic form:

LI, L2, ... Ln= R;

i. The value of the R-expression

is assigned to all Ll ... Ln
in turn.

2. Any [-type must be compatible with

the R-type according to the rules

stated in Sections 8.2 through 8.4.

3. No particular order of assignment is

guaranteed.

Examples:

If M1 is a 2x2 matrix,
V1 is a 3-vector
i

IMI, Vl = 0;

i results in M1 _ [_ _], Vl _ I_

If C is a character,

; i I is an integer,t

JC, I = 127.2;

I results in C _ '1.2720000E+02', I _ 128

8-11

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

1974021423-117

With the above data items,
I

IMI, C = 5;
I

is illegal because of data type mismatch between M1

end the R-expression.

The following example illustrates the importance of Rule 3:

If further I _ 2, then
i

i Vl I, I = I + i;i

has an ambiguous result, depending on the order
of assignment.

If I is assigned before Vl I'

then VlI _ liJ' otherwise VII _I_

(? indicates values unchanged by assignments)

{

In HAL/S, the .%ceiving data item

or items may be arrayed. _is can
produce varying effects depending on -.
whether or not the R-expression also

is arrayed (i.e. has arrayed operands). "_
See: tbd.

18

]

]
8-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 l

!

1974021423-118

I
T
_w

.m
• •

8,6 SUMMARY

Section 8 has described assignment statements by

which the results of expressions can be assigned to
one or more data items. Assignments often form the core

of a program but are generally limited in effectiveness
unless their execution can be controlled with a degree

of flexibility.

Section 9 begins to describe now execution can be

controlled by introducing the HAL/S conditional, or IF,
statement.

8-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-119

! !

1

8-14 "1
INTERMETRICS INCORPORATED" 701 CONCORD AVENUE . CAMBRIDGE. MASSACHUSETTS 02138 " (617) 661-1840

T

1974021423-120

!

9, CONDITIONALSTATEMENTSANDBRANCHES

Section 9 is primarily concerned with the HAL/S conditional
statement, by which other executable statements may be

conditionally executed (or by which their execution may be

conditionally avoided). Together with statement groups,
which will be described in Section 10, they form acr _ally

important part of the HAL/S language.

The HAL/S language encourages programmers to avoid using
GO TO statements to cause branches in execution. Their
total elimination, however, is not desirable. This

Section therefore also describes the HAL/S GO TO state-

_ent, and statement labels, which are their destinations.
Statement lapels are, in addition, needed for other constructs

to be described in Section 10.

9,1 THECONDITIONALSTATEMENT

In HAL/S, the simple version of the conditional statement is

an "IF clause" containing an expression evaluable as either
TRUE or FALSE, followed by a "true part" which is executed

only if the IF clause is TRUE. The simple varsion may be

augmented by a "false part" which is executed only if the
IF clause if FALSE.

9-1

INTERMETRICS INCORPORATED" 70t CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840

1974021423-121

SIMPLEIF STATEMENT

The form of the simple version is:

!

, IF <exp> THEN <statement>;
!

I. <exp> is an expression which is
evaluable as either TRUE or

FALSE. It may be either a

BOOLEAN expression or a rela-
tional expression (these are
described in Section 9.2).

2. <statement> constitutes the true

part of the conditional statement.

Except as noted in Rule 3 it may
be any executable statement,

either simple or compound.

3. <statement> may no___tpossess a
label, and may not be another
conditional statement.

4. If <exp> is FALSE, execution proceeds
to the next statement. If TRUE,
<statement> is executed first.

• t

!

2
9-2]INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02t 38 • (6t 7) 661 1841['1

1974021423-122

!

r Examples:

I IF BIC THEN X = 0;

. I y=l;

X is _et to 0 if either B or C o_ both is true:
the flow diagram for these events is:

evaluate
BIC

Yes

. o

No

Set

X=O

d

!

!
, I IF B IC THEN DO;

"" I X,'X- 1;
I Y=Y+ I;

i _,ND;

i The true part is a compound statement containing
two assignments.

I
i IF B THEN',IF C : ;

--J

I Illegal because true part is a conditional statement,
in violation of Rule 3.

9-3

INTERMETRICSINCORPORATED• 701CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138 • 16171661-1840

.............. II

1974021423-123

AUGMENTEDIF',;IATEMENT

When argumen_'d with a false part, the IF statement takes
the fo]:m:

!
i IF <exp> THEN <statement>;
I ELSE <elJe s_nt>;

I. The form of the IF clause and

true part are the same as in
the simple conditional state-
ment.

2. <else stmt> constitutes the

false part of the conditional

statement. It may be any
unlabelled executable state-

ment either simple or compound.

3. If <exp> is FALSE, execution

proceeds to the next statement
via <else stmt>. If TRUE, it

proceeds to the next statement
via <statement>.

f

-u

l

9-4 4.

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 .(617) 661-1840 ..

& _

1974021423-124

Examples :

I
I IF B Ic THEN X = 0;
I ELSE X = i;

I
X is set to 0 if B or C or both is true,
otherwise X is set to i. The flow diagram

for these events is.

evaluateBic I

No _ Yes

{ I i ISet Set

X=l I X=O

.. I I
I

I if BIC THEN DO;
X = i;

I Y = 2;

I END;

I ELSE DO;

i I x = 2;
Y = I;

I END;

Here, both true and false parts are compound
statements each containing two assignments each.

9-5

INTEHMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
L;

1974021423-125

I IF B THEN X = 0;
ELSE IF C THEN X = i;

Iy=2;
I

This is legal: the false part of a conditional

statement may itself be another conditional
stltement: the flow diagram for these events
is:

No _ Yes

=o J

I
_ e

= 2

I

l _
: :

: ;

9-6

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-1840 i

J

1974021423-126

!

9,2 RELATIONALEXPRESSIONS

As was stated in Section 9.1, there are two valid forms

of expression in an IF clause, BOOLEAN, and relational.

BOOLEAN expressions were described in Section 7; relational

expressions only appear in a limited number of HAL/S
constructs, among them conditional statements, and are now
to be described.

The simplest form of a relational expression is merely a

comparison between two like quantities. The result is

either TRUE or FALSE. More complex forms of relational
expressions result from combining comparisons with the

BOOLEAN operators &, I, and -.

COMPARATIVEOPERATIONS

HAL/S recognizes the following comparative operators:

Symbol Purpose Class

> greater than

< less than

<= less than or equals

NOT_> > } not greater than I

> = greater than or equals

NOT < 1< not less than

= equals
II

NOT_= = 1 not equals

. 9-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-127

i

The operands of comparative operations may, in general,

be expressions of any of the types described in Section 7.

Depending on the type of operand, the operators may be
restricted to Class II only, or may be either Class I or
Class II.

• CLASSII ONLY

Symbolic form: L NOT = R

I. Legal combinations of data types

are indicated by the following
table:

L-type R-type

VECTOR VECTOR

MATRIX MATRIX

BOOLEAN BOOLEAN

CHARACTER CHARACTER

2. Comparison of vector and matrix

operands implies element-by-element
comparison.

3. The operands in a vector comparison
must be the same length.

4. The operands in a matrix comparison
must have the same row and column

_m-6nslons.

9-8

" INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-128

!

!

Examples-

If STRING is character type with

STRING 5 'ABC '

STRING = 'PQR'

is FALSE.

STRING = 'ABC '

is FALSE - character strings must be of the same

length.

If V, W are 3-vectors with

viiiv [!]
then V = V1 is FALSE,

V1 - V = 2 V is TRUE.

If further V2 is a 2-vector with V2 E I_1
_ a

then Vl = V2 is illegal because of length mismatch,

but Vl I TO 2 = V2 is TRUE.

l

9-9

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

1974021423-129

!

• CLASSI ANDCLASSII

m m

<

>=

<-.

NOT >

Symbolic form: i _> R

NOT <
<

NOT =

"= I
I. Legal combinations of data types are

indicated by the following table:

L-type R-type I

INTEGER} I INTEGERSCALAR SCALAR

2. In a mixed integer-scalar operation,
the integer operand is converted to

scalar before the comparison takes
place.

Examples:

If I is an integer with I =- 5

then I = 5 is TRUE

I < 4 is FALSE

I >= 5 is TRUE

!
.&

9-I0

_ INTERMETRICS INCORPORATED. 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840]

' I I III I I I I I- - "

1974021423-130

V

!

I
NOTE ON PRECISION CONVERSION

It is possible that the precisions of the two operands

may differ in any of the operations described. In these

cases, precision conversien takes place before the opera-
tion is executed. The rules under which it takes place
are as follows:

J

1. ?_ere an operation specifies type

conversion from integer to single
precision scalar, this conversion
is carried out first.

2. If only one operand is integer and

no type conversion is implied, no
precision conversion _akes place.

3. If both operands have the same

precision, the result J_ of the

same precision (even if not of
the same type).

4. If the operands have mixed precision,

the single precision operand is
converted to double precision. Then

rule 3 is applied.

9-11

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1974021423-131

COMBININGCOMPARATIVEOPERATIONS

Comparative operations may be combined as if they were

BOOLEAN operands, using the rules for Boolean operations

described in Section 7. It is important to note however,
that comparative operations are not BOOLEAN operands in

the sense that they can be mixed--with actual BOOLEAN data
items.

• Boolean expressions may contain no comparative operations.

• Relational expressions may contain no Boolean operands.

Examples :

If Vl, V2 are 3-vectors with

and C is character with C - 'ABC'

then

V1 = V21C 1 = 'A' is TRUE

V1 = V2 & C1 = 'A' is FALSE

If B is Boolean then

BIV1 = V2 is illegal
i

.!

"J i
9-12

t

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • 1617) 661-1840 j

1974021423-132

!

I

PRECEDENCE

The following table shows the precedence of operations
involved in a relational expression:

Symbol Precedence Purpose

FIRST

operations involving1 operands of comparisons

<

<=

NOT > -> comparative

' > 2 operations>=

NOT <, _<

NOT =, _= J

&, AND 3 logical operations
on comparisons

I, OR 4

_, NOT *

• Any operand of th_s operator must alway_s be parenthesized,
i and is evaluated immediately a--_r _ation of the

operator itself.

i

I i
9-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840
i

'r

1974021423-133

Example •

In the following expression, the numbered pointers show
the order of execution of operations:

i IF S1 + $2 = 01_ ($3 > 0) & _ ($4 < 01S5 > 0) THEN

@ ®® ®

Section 9.2 ends with some more examples designed to
clarify the foregoing.

Examp les:

eo,orw v
I
I IF V = 1 & V = 2 TH_.N V = 0;
s 1 2 3
I
I IF V > 0 I V < 0 THEN V = 0;

is 3 2

The first statement will cause V3 to be set to
zero since both comparisons are TRUE. Then

In the second statement, neither comparison in the {
relational expression is true. Hence, the "t_ue

part" is not executed and finally

v:. I .!

as.fore, ii

:i
9-14

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 !

1974021423-134

I

!

|
J

9,3 LABELSANDBRANCHES

In HAL/S, there are two entities in_ ulved in the

branching operation: a GO TO statement, which, when
executed causes the branch; and a "statement label"

which is the destination of such a branch. HAL/S

also uses statement labels for other purposes, which
will become clear in Section i0.

LABELS

Labels are names chosen by the programmer and attached to

statements. More than one label may be attached to a

statement. The way of attaching a single label to a
statement is as follows:

!

, <label>: <statement>;
!

i. <statement> is any executable
statement or statement group
(see Section i0), wi_:' two

exceptions.

2. <statement> may not be the

"true part" or "ELSE part" of
a conditional statement.

3. <label> is a user-defined

identifier name (see Section

2.2).

i

9-15
%

INTERMETRICS INCORPORATED • 701 CONCORD AVF.NUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 j_

_ i II II

1974021423-135

Examples :

I
I ONE: X = X + i;
I TWO: Y = 0;
I

The following are illegal since they violate
Rule 2 :

I
I IF X = 0 THEN ONE: Y = 0;

IIF X = 0 THEN X = i;

IELSE TWO: X = 3;

How_ "er, the conditional statement itself may
be labelled:

I

ITHREE: IF X = 0 THEN Y = i;
I

If more than one label is required, then they follow each
other in sequence.

Exa_tple:
!
IONE: TWO: THREE: X = X + i;

I

I

ii
i

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE .CAMBRIDGE, MASS_,CHUSETTS 02138 . (617) 661-1840 .=

1974021423-136

I

I

!

!
GOTOSTATEMENT

QJ

4. The GO TO statement specifies the label to which
execution branches: it takes the form:

°.

"_ I GO TO <label>;

i. <label> is a label attached to

some statement to which execution

is to branch.

Examples:

I
i GO TO ONE;
I

The GO TO statement itself may be labelled:

I TWO: GO TO THREE;
I

It is important to note that HAL/S places relatively
severe restrictions on the placement of GO TO

statements and where they may cause execution to
branch to. Section 1.3 described this on the abstract

level, and Section i0 further discusses it in connection

with statement groups.

i

i

_ 9-17

INTERMETRICS INCORPORATED . 70! CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840
J

iii |1 I

1974021423-137

ELIMINATINGGOTO STATEMENTS

The Guide has stressed throughout that, according to structured

programmirg principles, GO TO statements are inherently un-
desirable because they tend to disguise the program's flow
of execution•

It will be found t_t hAL/S contains a sufficient number of

other constructs to allow GO TO statements to be substantia!ly

eliminated from a program. Following is an example showing
the elimination of GO TO statements.

Examples :

I IF X > 1.5 THEN GO TO ALPHA;

I IF X < 1.5 THEN TO TO BETA;

I Y = Y + i;GO TO GAMMA;

IALPHA: X = X - 0.05;

I GO TO GAMMA;
BETA: X - X + 0.05;
IGAMMA: .

I
I

This exa_,ple is programmed in HAL/S in the simplest way

(possibly having been translated from Fortran or an assembly

language). The profusion of GO TO statements disguises the

simple flow of execution, which is interpreted by the following

flow diagram: /_

i . I - i !
' 9-18

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) e_1-1840 -.

1974021423-138

The same algorithm is more clearly programmed
as follows:

! IF X > 1.5 VHEN

i X = X - 0.05;

l ELSE

| IF X < 1.5 THEN

I X=X+0.05;

I ELSE

Y = Y + I;

9,4 SUMMARY

Section 9 has described conditional statements, labels,

GO TO statements, and the ways in which they affect the
flow of execution in a H_J_/S program. Some attempt has

been made to point out both the good and the bad ways
of using these statements. Section i0 goes on to describe

statement groups and how the usage of the constructs described

in Sections 9 and i0 are very often interrelated in well-
designed HAL/S programs.

.. 9-19

,- INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 881-1840

i iL J _ IL Elii, i

1974021423-139

!
_e

i0, STATEMENTGROUPS

Section 1.3 of the Guide introduced, on an abstract level,

the idea of "statement groups", which could be treated as

if they were simple executable statements, and could be

nested one inside the other. The power of such a facility

can be seen, for example, when it is used in conjunction
with the conditional statement: (this is demonstrated later

in Section i0.i).

There is, in fact, a second, equally important reason for

grouping statements in HAL/S: the execution of such groups

can be controlled in a variety of ways. If no explicit
specification is made, the sequence of statements is executed

once only. By explicit specification:

• the sequence may be repetitively executed until some
condition is satisfied;

• a single executable statement (or nest statement group)

of the group, selectable at execution time, may be
_xecuted.

Section i0 explains in detail how statements are grouped,

and how execution control of the groups is specified.

i0,1 DELIMITINGSTATEMENTGROUPS

In HAL/S, groups of statements are said to be "well-bracketed":

they are delimited explicitly by opening and closing statements
which are themselves considered executable.

i0-i iINTERMETRICS INCORPORATED "701 CONCORD AVENUE "CAMBRIDGE, M/-SSACHUSETTS 02138 . (617) 661-1840 •

1974021423-140

THEDOSTATEMENT

Every statement group is opened with a "DO" statement which

is also used to specify control of execution within the group.
It takes the generic form:

| DO <control>;I
!

i. <control> is a construct to be

described. It specifies the manner

in which the sequence of statements
is to be executed.

2. <control> is optional. If it is
absent, the sequence of statements
is executed in its natural order*

once only.

3. The DO statement is executable in

that it may be labelled according
to the Rules of Section 9.

The particular instances of DO statements will be explained
in Section 10.2.

-T

i I

i * The "natural order" of execution was explained in

I Section 3.3. T

L ,
: i0-2

i INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-141

4

i I

"" THEENDSTATEMENT
s

Every statement group is closed with an END statement:

! END <label>;
!

i. The END statement is executable

"" in that it may _ labelled according
to the Rules of Section 9.

-- 2. <label> is optional: if present,

the opening DO statement of the group
_" must be labelled with <label>.

-- The label specification in an END statement is never

functionally necessary in HAL/S. However, it should be
"" regarded as good programming practice because it

.. facilitates cross-checking by the compiler.

Exauaples :
. °

.. Two instances of statement groups are shown below.

Even though details of execution control have not

-- yet been explained, the form of the construct should
be clear.

• . |

I DO WHILE I > 0; } opening DO statement
"" ; I = I- i; i

_ A = 0; 1 group of statements
"" !S I !

!

-_ ; END; 1 closing END statement

!

_ ; FIX: DO FOR I = 1,25,16,2;, A = -A ;
•_': ',S I I _ one statement in group

'. END FIX; _ label specification in
"" ' END matches label of DO

10-3

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840

• "k --"

1974021423-142

The following examples show the importance of being able
to group statements together for use in conjunction with a
conditional statement.

J

. IF S = 0 THEN I = 2;

c = '_SETV_UEOrI TO'IIf;!
0 •

I
I

It is required to conditionally
execute both assignments: one
solution--l-s--

!
!

' IF S _= 0 THEN GO TO NOSET;
I

0 I = 2;
!

I C = 'RESET VALUE OF I TO 'liI;
0NOSET:

, :I

!
I

This solution is error prone and
not in accordance with structured

programming concepts: a better
solution is -

I
l

IF S = 0 THEN DO;
i I = 2;

i C = 'RESET VALUE OF I TO 'llI;
o END;I

I

I

, The whole of the group enclosed

by DO ... END is subject to
conditional execution.

• ?

. .

-t

_m

10-4

IINTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 681-1840

1974021423-143

!

!
!T

-. 10,2 REPETITIVEEXECUTIONOFSTATEMENTGROUPS

The sequence of statements in a group can be executed

" repetitively until some condition is satisfied. In

this section, two basic forms of DO statement causing
repetitive execution are described:

• The DO WHILE statement, in which execution is

repeated while a relational or BOOLEAN expression
remains TRUE in value;

• The DO FOR statement, in which the sequence is
executed once for each of a set of assigned values
of a "control variable".

THEDOWHILESTATEMENT

The form of the DO WHILE statement is:

#

, DO WHILE <cond>;
!

1. <cond> is any relational or

_" BOOLEAN expression. It is

. evaluated prior to each cycle
of execution of the statement

sequence in the group.

"" 2. The next cycle of execution of

the group proceeds if the value
of <cond> is TRUE.

T i
3. If the value of <uond> is FALSE,

' the stopping condition is satis-

fied. Execution proceeds to the• •

! statement following the END state-
ment of the group.

!

10-5

INTERMETRICS INCORPORATED. 101 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-144

Examples : _"

,,
aI = 9;
DO WHILE I > 0;

I = I - 2;

; END ;

Here the group is executed 5 times, after which
the value of I is -i. In flow diagram form,

the sequence of events is:

½

Iset I
I=9

J Set i

I = I- 2

Yes

lNo
I
i

I

It is possible for a group never to be executed: !
i
i

, DO WHILE FALSE_

, I = I - 2; !

' END;| - .
I

-?

--4

10-6
-?

INTERMETRICS INCORPORATED "701 CONCORD AVENUE "CAMBRIDGE MASSACHUSETTS 02138 . (817) 661-1840 I

.... i ! i i ji J_ mnm_

1974021423-145

!

!

It is also possible for a group to be executed
forever :

] ,
.J i I = 0;

' DO WHILE TRUE;I
"_ , I = I - 2;

!

! , END ;
!
! •

' Normally in this case, the pi-ogrammer would insert

statements in the group removing this possibility:
!

'--.=9;
I
• DO WHILE TRUE;
i

, I = I - 2;
, IF _ < 0 THEN GO TO ALL DONE;

l END;!
0

0
I

There exists a variant of

the DO WHILE statement

called the DO UhTIL state-

ment. Here execution of

the group is assured at least
once, whatever the value of

the controlling expression.
See: (tbd).

[! 10-7

i

' _ INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-146

THEDOFORSTATEMENT

The most widely used form of the DO FOR statement is:

,:DO FOR <var> = <init> TO <final> BY <inc>;
0

i. <var> is an unarrayed INTEGER or SCALAR

data item (it may be subscripted if

required). It is called the "control
variable" of the DO FOR statement.

2. <init>, <final > and <inc> are integer

or scalar expressions:

• <init> is the initial value

assigned to <var>.

• <inc> is the amount by which
<var> is incremented on each

cycle of execution of the sequence
of statements in the group.

• <final> is the value against which
<var> is tested at the start of

every cycle to determine if the

stopping condition is satsified.

All three expressions are evaluated

once prior to the first cycle of
execution.

3. The stopping condition is met when
the value of <var> lies outside the

range bounded by <init> and <final>.

4. <inc> may be either positive or

ne@ative. The phrase

BY <inc> _"

is optional. If omitted, the implied
increment is +i.

10-8

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (6171 661-1840 r

...... : i i ,lira |hi ii : i

1974021423-147

Examples :
6

: DO FOR I = 1 TO i0;
i, X = I;
0

,S I
i END;

Here the group is executed 10 times. I is
initially i, and increments each time until
i0 is reached. At the end of execution of
the group, the value of I is 11. In flow
diagram form, the sequence of events is: I|

I=l

V,
I by

1 ? Yes I
I

!
I

i Set 1
Xi = I

l

10-9

INTERMETRICSINCORPORATED-701CONCORDAVENUE"CAMBRIDGE,MASSACHUSETTS02138 . (617) 661-1840

k

1974021423-148

;I = 7;

: DO FOR I = I + 5 TO I - 3 BY -2;

I X = X + I;

; END;

This example demonstrates some of the subtleties
of the DO FOR statement. The initial and final

values are precomputed as 12 and 4 respectively.
Then I is reused as the control variable: the

group is executed 5 times, and after the last

cycle of execution, I retains the value 2.

Care must be taken if the

control variable is integer

and the range expressions are

scalar: rounding occurs

during assignment of values
in such cases.

This DO FOR statement may

possess a WHILE or UNTIL
clause which furnishes a

supplementary stopping con-
dition.

See (tbd).

T

!
10-10 7

!
INTERMETRICS INCORPORATED .701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 881-1840 . ._

1974021423-149

I

I

°_

The DO FOR statement has a second form which is used if

the values of the control variable do not form a regular
progression:

I

I DO FOR <var> = <exp>, <exp>, ... <exp>;
I

I. <vat> is the control variable as before.

2. Each <exp> is an integer or scalar

expression. Values of the <exp>'s are

assigned to <vat> in turn prior to the
execution of each cycle, on a left-to-

right basis.

3. Each <exp> is evaluated immediately prior

to the cycle of execution in which it
will be used.

Examples :
!
0

DO FOR I = 17,5,12,4;
0

, X = I;
'S Ie

; END;

Here, I takes the successive values 17, 5, 12, and 4.

After the end of the last cycle, the value of I remains
at 4.

0

, I = 7;
0

DO FOR I = I + 5, I + 3, I + i, I - i, I - 3;0

: ., ' X = X + I;

: : END ;

Superficially, this example looks like a different

way of expres_inq the second example for the first
form of DO FOR statement:

i
0

I = 7;
I
, DO FOR I = I + 5 TO I - 3 BY -2;
,' X - X + I;

, END;
0

10-11

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

1974021423-150

However, the successive values of I in the new

form (by Rule 3) are:

12, 15, 16, 15, 12

as opposed to

12, 10, 8, 6, 4

in the old form.

Rounding also occurs if the

control variable is integer

and any of the control expres-
sions are scalar.

As before, the DO FOR statement

may possess a WHILE or UNTZL
clause which furnishes a

_upplementary stopping condi-
tion.

See: _cl).

-?

!

t
10-12

INTERMETRICS INCORPORATED •701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (6171 661-1840 J.

1974021423-151

I

10,3 SELECTIVEEXECUTIONOFSTATEMENTGROUPS

One statement of a group may be selected for execution

by means of the DO CASE statement. The form of the
DO CASE statement is:

DO CASE <exp>;

i. <exp> is an integer or scalar
expression.

2. If its value is k (after rounding

if necessary), then the kth state-

ment of the group is se]ected for
execution.

3. A run time error results if k < 0

or k Js grea_er than the number of
statemeDts in the group.

The flexibility of a DO CASE statement is understood when

it is realized that the selected statement may be a

compound statement (i.e. it may itself be a statement
group).

Example:

I = 3;

DO CASE I;

X = 4; case 1
X = 3; case 2

DO; IX = 7;

y = _ case 3
JEND;

X = I; case 4

X = 0_ case 5
END;

10-13

INTERMETRICS INCORPONATED • 701 CONCORD AVENUE • CAMBRIDGE. MASSACI--"JSET'TS02138 • (617) 661-1840

l

1974021423-152

Execution results in the third statement beirg

scheduled for execution, and the _ollowing

values being set:

X - 7, Y - 3

An ELSE clause may be added

to the DO CASE statement which

is executed instead of an

error being signalled, if the
value of the case variable is

outside the legal range for the

statement group.

See: (tbd).

10-14 I

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840 I

|

1974021423-153

10,4 BRANCHINGINSTATEMENTGROUPS

Execution may branch out of any statement group via

a GO TO statement. In those csses where the group is
being respectively executed, execution obviously ceases

before the stopping criterion is satisfied. Because GO TO

statements are viewed unfavorably from the standpoint of

structured programming, HAL/S possesses two statements
expressly for executing controlled branches in statement

groups.

• The EXIT statement is, in effect, a controlled branch

ou___tof a statement group.

• The REPEAT statement only applies to statement groups
executed repetitively, and is a controlled branch back

to the beginning of the group.

THEEXITSTATEMENT

The simplest form of the EXIT statement is:

. EXIT;
i

, i. Its execution causes an immediate

branch out of the innermost state-
ment group in which it is enclosed.

-j 2. Execution is directed to the first

statement following the END of the

group branched out of.

10-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

k
i

1974021423-154

Example s :

i
I

, DO :
' X = i;
i

' Y = 2;
' IF Z = 3 THEN EXIT;!

, Z = 4;

' END ;
I

, X= X + l;q
t
i

Arrow sh_vs branch in execution if Z - 3

o

' DO WHILE X > 0;

,i X = X - i;

i IF X > 2 THEN DO;
i

IF Y = 3 THEN EXIT;

I END;
, END ;
I

Arrow shows branch in execution if Y - 3: execution

branches to the end, but not out of DO WHILE group.

There exists a second form of the EXIT statement to allow branches

out of other than the innermost statement group:

. ,

T
10-16 "" %

• INTERMETRICS INCORPORATED 701 CONCORD AVENUE CAMBRIDGE, M_,SSACHUSETTS 02138 . (617) 661-1840

t

1974021423-155

I

I •

I EXIT <label>;
I
I

i. Its execution causes a branch out

of the enclosing statement group

whose DO statement possesses the
label <label>.

2. Execution is directed to the first

statement after the END of the group
branched out of.

Example :

ONE: DO WHILE X > 0;

', X=X-±;
, DO FOR I = 1 TO 10;
I

A = A + X;w

iS I I

i IF X = I THEN EXIT ONE;I
IF X = 0 THEN EXIT:¢

I END;I

l END;

,' X = 0;

The first EXIT statement causes a branch out of the

outer group rather than the inner, by virtue of its
label.

[
10-17 lINTERMETRICS INCORPORATED • 701 CONCORD _VENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

k ' ' 4'

1974021423-156

THEREPEATSTATEMENT

The simplest form of the REPEAT statement is:

; REPEAT;

i. It must be enclosed in a DO FOR

or DO WHILE group.

2. Its execution causes an immediate

branch to the beginning of the

innermost enclosing DO FOR or

DO WHILE group.

3. The next cycle of execution of
the group then starts (unless

of course the stopping condition
is satisified).

Examples :

I

i DO WHILE X > 0;
I
, X= X- i;

; IF X : 4 THEN

' Y = Y + X;I

IT Y = 1 THEN REPEAT;

END;I

I END ;

If Y _ 1 then a branch back to the beginning of the

DO WHILE is made. Note that although the DO WHILE
is not the innermost group, it is the innermost

repetitive group.

-qm

l
10-18

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 i

197402142:3-157

I

, X = 4;

, DO WHILE X > 1
' X= X- i;

i IF X = 1 THEN REPEAT;
' Y = X;
Is x
i END;I

When X E 2 the REPEAT branch is executed:

a new cycle of execution does not begin
however because the initial test shows that

the stopping condition is satisfied.

As with the EXIT statement, there exists a second form of

the REPEAT statement allowing branches back to the beginning

of other than the innermost DO WHILE or DO FOR group:

: REPEAT <label>;

i. Its execution causes an immediate

branch to the beqinning of the

enclosing DO FOR or DO WHILE

group whose DO statement possesses
the label <label>.

2. The next cycle of execution of

the group then starts (unless the

stopping condition is satisfied).

10-19

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

i i.r

1974021423-158

Example :

t
, ONE: DO FOR I = 1 TO 10;q

i J = I;
{ 13)(9WHILE J > 0;_

I J= J- I;
I X = X + J;

IS J J

I IF X = 25 THEN REPEAT;
IS J

i IF X = 0 THEN REPEAT ONE;
IS J

I £ND;
I END ;
I

Z = 0;I

The second REPEAT statement restarts the outer DO FOR

group rather than the inner DO WHILE by virtue of its label.

°o

i

10-20 "

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840 I

1974021423-159

I
T

I0,5 SUMMARY

Section i0 has explained how statements may be grouped

together into compound statements, and how such groups

may be executed repetitively or selectively.

At this point in the Guide, programs can be constructed

using assignment statementb, and controlling execution
through conditional statements and statement groups.

The judicious use of procedures and user functions is

essential to the well-ordered structure program .

Section ii thus goes on to describe how procedures
and functions are defined and invoked.

i

10-21

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

i

1974021423-160

t

10-22

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 i

1974021423 161

I

7

I 11, FUNCTIONSANDPROCEDURES(TBD)
11,1 BLOCKDEFINITIONS(TBD)

11,2 PARAMETERLISTS (TBD)

11,3 PROCEDURECALLING(TBD)

11,4 FUNCTIONINVOCATION(TBD)

11,5 sUrIMARY(TBD)

11-1

INTERMETRICSINCORPORATED.701 CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840

= k I"

1974021423-162

I

12, INPUT/OUTPUTSTATEMENTS -.'-

Higher order languages possess I/O statements to provide

programs with a means of communicating with their environ-
ment. In HAL/S, simple forms of I/O statement provide

for the sequential input or output of data, including the

generation of printed listings.

This section first introduces the HAL/S conce_t of

sequential I/O and then goes on to describe t**e construc-
tion of I/O statements.

12,1 HAL/SINPUT/OUTPUTCONCEPTS

The form of sequential I/O statements in HAL/S is based

on a specific conceptualization of the input-output process.

In this conceptualization, I/O takes place through a number
of "channels", each identified by an integer code. Each
channel is connected to an "I/O device", of which there

are two kinds, "unpaged", and "paged".

UNPAGEDDEVICES

An "unpaged I/O device" can be used for both input and

output. It can be visualized as consisting of a "device
mechanism" which performs I/O on a continuous strip, across

which data is written. The data is organized in "columns"
across the strip, and in "lines" down it:

12-1 !

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 6_1-1840 i

k

1974021423-163

first

column-----_ columns of data
D

%

first l_ lines of data
line

_device mechanism

The device mechanism moves from column to column along
each line, and from line to line as it performs I/O.
Normally, the performance of I/O is accompanied by move-
ment from left to right across each line, and downwards
from one line to the next. However, special positioning
commands can modify this behavior.

12-2
turk

INTERMETRICSINCORPORATED.701CONCORDAVENUE"CAMBRIDGE,MASSACHUSETTS02138 . (617) 661-1840 i

i
I II I _ III i ii iiiiiII _ i

1974021423-164

I

On output, the strip continually lengthens as new lines
;,re written on the device. On input, the strip is of

fixed length, and a run time error occurs if the device
mechanism is requested to read off the lower end.

Data output to an unpaged device is physically written
so that it may, on some future occasinn, be read in again

via an unpaged device.

PAGEDDEVICES

A "paged I/O device" can only be used for output. It can
be visualized in much the same way as an unpaged device,

except that the lines of data are organized into "pages":

first columns of

column _ data

first _-=I "'!--

line (lines of data

first page

(
first

line i

second page device mechanism

first

line i

third page

mm

12-3

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSET1S 02138 • (617) 661-184(,

.J
aP

Ill

1974021423-165

I

q,

The paged device is designed to generate printed listings.
The form in which data is physically written on the device

is different from that on an unpaged device. Such data
cannot normally be read back again via an unpaged device.

DATASTORAGE

Data is conceived as being "stored" on a device, even

though in physical reality the device may be a line printer,

the data becoming inaccessible to the computer.

In HAL/S, data is written on the I/O device in "fields" which
can be separated by blank columns, or by a separator character.

The I/O pro<eRR is stream-oriented: within the conf%nes of
a single z/O statement, the column and line alignment of data

fields need be of no consequence. Data fields may even be

broken over line or page boundaries.

12,2 THEWRITESTATEMENT

The WRITE statement is an executable statement for the

output of data to a paged or unpaged I/O device. The form
of the WRITE statement is as follows:

WRITE(n) <exp>, <exp>, ... <exp>;

I. n is the channel code number, and

lies in the range 0 _ n _ 9*.

2. <exp> is any HAL/S expression whose
value or values are to be written on the

device. The list of expressions may be

arbitrarily long. Alternatively, none
need be supplied. ..

i

3. Each expression in turn frc_ left to

right is evaluated, and its value _or

values) written on the specified device. _ _|

* Thls Value .ay be implementationdependent. See Appendixfor exceptions. _

, _ 12-4 r

I
i INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 021_ • (617) 661-1_0

1974021423-166

!

!

!
in execution, the sequence of events is as follows:

If the WRITE statement is the first to be executed
for the specified device, the device mechanism
positions itself at column 1 of line 1 (on page 1

I if the device is paged). Otherwise, the devicemechanism moves down one line from its current

position, and repositions itself at column i.

I • Data fields are written from left to right along the
line, each field being separated from the next by
5 blanks*.

I

• When the end of a line is reached, the device
mechanism moves to column 1 of the next line and

continues writing data fields. Unless the data
field is of character type, the device does not

attempt to break it over a line boundary if there

is not room for it at the end of a line. Instead,
it begins writ±ng it on the next line.

• After finishing execution, the device mechanism is
left positioned one column to the sight of the end of

the last data field written. Alternatively, if the
data field abuts the end of a line, it is positioned
at column 1 of the next line.

• If no expressions are supplied in the WRITJ statement,

the device merely performs its initial positioning.

* This value may be implementation dependent. Some

- implementations may allow the user to vary the value by
a run-time option.

12-5

INTERMET_ICSINCORPORATED'701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSE]TS 02138"(617) 661-1840

1974021423-167

DATAFORMATS

The format of a data field depends on the type of

expression whose resultant value is being written on
the device, and on whether or not the device is paged.

The formats are, in general, implementation dependent.

Typical formats are shown in Appendix _.

Uni-valued expressions each give rise to a single data
field. Multi-valued expressions each give rise to a
series of data fields, which are written on the device

sequentially in the followi_g way:

• a f-vector expression yields Z scalar data fields,
one for each element. The data fields are laid out

along a line, separated from each other by the standard

number of blanks, and overflowing onto succeeding lines

as required.

• an m x n matrix expression yields mn scalar data fields,

one for each element. The matrix is laid out row by row.
Each row is written as if it were an n-vector. The first

element of the second and subsequent rows begin a new
line, vertically aligned under the first element of the
first row.

• arrays are written array element by array element,
completing the requirements for one element before

going on to the next. The last data field of one

array element is separated from the first data field
of the next element by the standard ntunber of blanks,

or starting a new line if required,

Examples :

Let: M be a 3x3 matrix with M- [ii 555 0.11"01"51010ii] :_;

I be a 3-array of integers

with I - (46-2) i
I

C be a character with C --'VALUE' I

B be a Boolean with B - TRUE i
!

then I
I
I WRITE(6) C,M,I; J
I WRITE (6) B;
I

would result in output of the following form:

12-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACt_USETTS 02138 . (617) 661-1840 :,

1974021423-168

I

I
paged output: [132 columns/line]

!
C M INITIAL POSITION ._

T OF DEVICE MECHANISM

ALUE 5.0000000E-01 1.S000000£*00 0.0
:.5000000[*00 1.0000000[*00 1.0000000E*00

-- 5.0000000[-01 S.g999954[-02 1.0000000[*0_ 4 6 -2

I

FINAL POSITION
B

OF DEVICE MECHANISM

unpaged output: [80 columns/line]

INITIAL POSITION

Q C M DEVICE MECHANISM

-F I.....
'VALU[I 5.0000000[*01 1.S000000E*00 0.0

2.S000O00[*0O 1,0000000[*00 1.0000000[*00
S.00O0000[*01 g, _Jggg64[-02 1.0000000[*01 4

IS -,m

B I
FINAl POSITION

OF DEVICE MECHANISM

NOTES :

single precision scalar data fields are a fixed 14 columns

wide.

single precision integer data fields are a fixed II columns

wide. 12-7

INTERMFTRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

It

1974021423-169

].2,3 THEREADSTATEMENT

The READ statement is an executable statement for the

input of data from an unpaged I/O device. The form of
the READ statement is as follows:

READ(n) <var>, <var>, ... <var>;

i. n is the channel code number, and

lies in the range 0 Z n Z 9*.

2. <var> is any type of data item,

either subscripted or unsubscripted.

The list of items may be arbitrarily
long. Alternatively, none need be

supplied.

3. The specified device reads values
into each data item in turn from

left to right.

In execution, the sequence of events is as follows:

Q If the READ statement is the first to be executed

for the specified device, the device mechanism positions
itself at column 1 of line i. Otherwise, the device

mechanism moves down one line from its current position
and repositions itself at column 1.

• Data fields are r._ad from left to right along the line.

The device expects each data field to be separated from

the next by a comma and/or at least one blank.

[
• When the end of a line is reached, the device mechanism

moves to column 1 of the next line and continues reading.

Data fields may be broken over the line boundary. F
l

|

* This value may be implementation dependent. See IAppendix _ for exceptions.

12-8 IINTERMETRICS II_CORPORATED ' 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

'-- , ;'_..... , , J -- _%[j I. _'

1974021423-170

I

• After finishing execution, the device mechanism

is left positioned one column to the right of the

end of the last data field read in. Alternatively,
if the data field abuts the end of a line, it is

positioned at column 1 of the next line.

• If no list of data items is supplied in the READ

statement, the device merely performs its initial

positioning.

• If the device reads two consecutive separating
commas, then the value of the data item which would

have been changed by reading a data field between
the commas, is instead left untouched.

DATAFORMATS

The formats of data fields expected by a device on input

depend on the type of data item being read into. The

formats are, in general, implementation dependent. Typical
formats are shown in Appendix e

Uni-valued data items cause single data fields to be read.
Multi-valued data items cause a series of data fields to be

read sequentially.

• A vector data item causes one data field per vector
element to be read.

• A matrix data items causes one data field per matrix
element to be read. Values are read into the matrix

row by row.

• Arrayed data items are read into array element by
array e!ement, completing the read requirements for

each element before going on to the next.

12-9

INTERMETRI_S INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

1974021423-171

Examples :

Let M be a 3x3 matrix with initial values given

by M -= [0.5 1.5 0 i]12.5 l.o ii[0.5 0.1 i0

Let I be a 3-array of integers,

C be a character data item of maximum length i0,

B be a Boolean.

Then

I READ(5) M,I,C;J
READ (5) B;

I

• • : INITIAL POSITION
OF DEVICE MECHANISM

I

---- _ 0.i , 0 ,,

0 0.i 0

0 0 0.i

-4 -5 -7 'GOODBYE' 'i'_

FINAL POSITION
OF DEVICE

MECHANISM

would result in:

,oo,°'°:°o:il_0. this value not changed
by READ statement.

10.0 0 0 0

I - (-4 -5 i) _.

C - 'GOODBYE'

,_ B - TRUE

12-10 1

INTERMETRICS INCORPORATED '701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 " (617) 861-'1840

1974021423-172

I
I
T

12,4 INPUT/OUTPUTFORMATTING

The formatting of I/O embraces two separate concepts:

Q the shape of data fields;

• the position of data fields.

In terms of in2ut, formatting implies that a device can

be made to recognize different shapes of data fields in

a variety of positions. In terms of output, formatting
implies that a device can generate different shapes of
data fields in a variety of positions.

Data field positioning is effected by direct movement

of the device mechanism. Commands in the form of pseudo-
functions can be inserted into READ and WRITE statements

to cause repositioning of the mechanism.

There is no direct capability in a READ or WRITE statement

for defining different data field shapes. It should be
noted however, that for outuput, the equivalent of arbitrary

data field shaping can be achieved by using HAL/S's

character string handli_ _ features.

There exists a second type
of input statement called

:he READALL statement,

which can be used to input
arbitrary strings of
characters. This can form

the basis for arbitrary
data field shape recogni-

tion on input.
See: (tbd)

12-11

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

1974021423-173

DEVICEMECHANISMPOSITIONING

HAL/S possesses five pseudo-functions which can reposition

a device mechanism during execution of a READ or WRITE

statement. The pseudo-functicns are placed in the READ
or WRITE statement as if they were normal data items or

expressions.

Three basic rules underlie the operation of the pseudo-

functions in positioning device mechanisms:

• Horizontal and vertical positioning are separately and
independently controlled.

• The operations of the pseudo-functions are independent

of whether a device is being used for input or output.

• An explicit repositioning command taking effect at a
particular point in execution overrides the default
movement in the same direction (horizontal or vertical)

which would otherwise be made by the device mechanism.

Particular instances of these rules are noted as the

device positioning pseudo-functions are described below.

HORIZONTALPOSITIONING

The two _seudo-functions TAB and COLUMN serve to position

a device mechanism horizontally on a line. Their form is
as follows:

12-12

INTERMETRICS INCORPORATED .701 CONCORD AVENUE .CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

ilJ, _--

1974021423-174

!

TAB (e)

COLUMN (8)

i. e and 8 are integer expressions.

2. TAB(n) moves the device mechanism

left or right by the number of
columns specified by e. Negative
values of u denote movement to the

left; positive values, movement to

the right.

3. COLUMN(8) moves the device mechanism

left or right to the column indicated

by 8.

4. Values of e or 8 must not be such as to

try to move the device mechanlsm left

past column i, or right past the right-
most column*.

If a TAB or COLUMN pseudo-function appears at the

beginning of a READ or WRITE statement, it overrides the
default positioning at column i.

It does not of itself inhibit movement onto the next
line.

If a TAB or COLUMN appears between two expressions in
a WRITE statement, it overrides the standard data field

separation.

Successive TABs are cumulative in action.

* The number of columns on any device (i.e. the logical i

record length) is assumed constant but implementation i

dependent. Its possible values may be found in the iUser's Manual for the implementation.

12-13

INTERMETRICS INCORPORATEO • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 i

1974021423-175

Example :

If Cl, C2, C3 are character data items

with C1 - 'FIRST'

C2 - 'SECOND'

C3 - 'THIRD'

and if channel 6 is a paged device

then
!
I
t WRITE(6) TAB(-50),CI',COLUMN(5),C2,C3,TAB(2) ;
i

produces output of the following form:

INITIAL

POSITION OF

......... j DEVICE MECHAfIISM

(
SECOND THIRD FIRST

4 i *I
I j

TAB LEFT 50

COLOUMNS, MOVE
DOWN 1 LINE

BY DEFAULT

DEFAULT MOVE TO

5 BLANKS COLUMN 5

FINAL POS_T_ON _ ,
TAB RIGHT OF DEVICE MECHANISM

2 COLUMNS ":

"?

12-14
=O

INTERMEIRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 ..

L k

1974021423-176

!

!

VERTICALPOSITIONING

The three pseudo-functions SKIP, PAGE, and LiNE serve to

positlon a device mechanism vertically. PAGE can only be
used in I/O via a paged device; the behaviour of LINE is

different depending on whether a device is paged or unpaged.

The form of the three pseudo-functions is as follows:

SKIP(_)

PAGE(8)

LINE (y)

i. s, 8, and y are integer expressions.

2. SKIP(e) moves the device mechanism

downward by the number of lines spec _-
fled by e. The value of e may be zero,

in which case SKIP can suppress a de-
fault line advancement. However,

may not be negative (indicating up-

wards movement). SKIPs over page
boundaries are allowed.

3. PAGE(8) moves the device mechanism

downward by the number of pages

specified by 8. As in SKIP, 8 may
be negative in value. The relative

line number remains unchan@ed.

4. For unpaged devices, LIN:(T) positions
the device mechanism at line 7. The
value of y must not be such as to cause

upwards movement of the device mechanism.

5. For paged devices, LINE(y) has a different
behaviour. Let the device mechanism be on

line f prior to execution of LINE(y). If
y . _ then the device mechanism moves to

line f on the next page. If y 5 I th_n the

device mechanis--_oves to line y on the cur-
rent page. The value of y must lie in the
range 1 4 Y _ L, where L is the number of

lines per page*.

* T_e number of lines per page is implementation dependent.

Its value may be found in the User's Manual for a given
implementation.

12-15

INTERMETRICS INCORPORATED •701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1_0

=, /

1974021423-177

- £f a SKIP, LINE, or PAGE pseudo-function appears at the

beginning of a READ or WRITE statement, it overrides the
default downward movement of one line.

SKIP, LINE and PAGE pseudo-functions do not of themselves
inhibit the default horizontal movement to column i. Neither

does their appearance between two expressions in a WRITE state-

ment affect the standard data field separation.

Successive SKIPs and PAGEs are cumulative in effect.

Examples:

If CI, C2, C3 are character data items

with Cl _ 'FIRST'
C2 _ 'SECOND'

C3 _ 'THIRD'

an4 if channel 6 is a paged device

then
I
I
t WRITE(6) SKIP(0),CI,LINE(1),C2,C3;
i

produces output of the following form:

INITIAL POSITION
DEVICE MECH_/YISM

ADVANCE TO

NE)[I'PAGE IRS

,.------._ _._ START IN COLUMN 1
SKIP(0) INHIBITS

" DEFAULT LINE MECH_%NISM

I

* rnn

FINAL POSITIONING -.
OF DEVICE MECHANISM

-o

I Ii DEFAULT 5 BLANKS
J

* 12-16

INTERMETRICS INCORPORAFED .701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 " (817) 661-1840

1974021423-178

!

!

4'

Note: If channel 6 were unpaged, the WRITE statement

- would be illegal since it would be calling

for an upwards movement from line 40 to line 1.

Further,
!

I WRITE(6) C1,PAGE(1),C2;
I

produces the output of the form:

Q © 7
INITIAL POSITION OF

DEFAUL_ .'EMECHANISM
MOVEMENT TO --- --

COLUMN 1

LINE 41 I

I --------PAGE5

I

DEFAULT I
5 BLANKS

/_I L --.

LINE 41

OF NEXT PAGE _ |
I

| --PAGE 6

I

J

FINAL POSITION OF DEVICE
MECMANISM

12-17

INTERMETRICS INCORPORATED •701 CONCORD AVENUE •CAMBRIDGE MASSACHUSETTS 02138 •(617)_1-1840

!

k

1974021423-179

12,5 DEVICEATTRIBUTES

In HAL/S, devices have been characterized as either paged

or unpaged. In the absence of any specific direction on
the part of a user, the following rules determine whether

a devic_ being used is paged or unpaged.

• If only V'RITE statements appear in a compilation

for a given channel, then the de_ice on that channel
will be paged.

• If only READ statements appear, or if both READ and
WRITE statements appear for a given channel, then

the device on that channel will be unpaged.

The user may specifically direct certain channels to be

paged or unpaged, overriding these rules*.

I

* See the User's Manual for a given implementation I

t

12-18

INTERMETRICS INCORPORATED "701 CONCr_RO AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . 16171661-1840

.._......_--.----I _,,._.,/

1974021423-180

1
I

I
I i2,6 SUMtiARY
l

Secticn 12 of the Guide has described in detail the

HAL/S constructs concerning sequential I/0, and has
discussed the results of using different kinds of READ
and WRITE statements. Sectipn 13 introduces Lne user

to the basic concepts involved in real time programming
in HAL/S.

HAL/S contains a FILZ

statement by which random-

access I/O may be effected.
See: (tbd)

12-19

INIERMETRICS INCORPORATED • ?',31CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

#

i

1974021423-181

!

I

I 13. REALTIMEFEATURESOF HAL/S(TBD)

I
13,1 HAL/SREALTIMECONCEPTS(TBD)

13,2 DEFININGTASKS(TBD)

13,3 SCHEDULINGPROCESSES(TB/

13,4 OTHERFEATURES(TBD)

13,5 SUMMARY(TBD)

ol

L

13-1

INTERMETRICS INCORPORATE[.}.701 CONCORD AVENUE "CAMBRIDGE, IVlASSACHUSETTS02138 . (617) 661-1840
i

1974021423-182

I
!
T

.J

iq, SUMMARYOFPARTi

14-1

INTERMETRICSINCORPO_ATED,701 CONCORDAVENUE• CAMBRIDGE,MASSACHUSETTS02138 • (617) 661-1840

1974021423-183

I
!

INDEX

ABS 7-32

ABVAL 7- 33

addition and subtraction 7-3, 7-4, 7-5

algebraic functions 7-33

arithmetic functions 7-32

arithmetic operations 7-1, 7-2

arithmetic precedence 7-23

array 4-2, 4-8, 12-6

array subscr. 6-8, 6-1

arrayed data types 6-8

array and component 6-10

subscripting

ARRAY 4-8, 4-12

asterisk 6-6, 6-11

asterisk, in subs. 6-5

AT- 6-5

attributes 4-8

AT 6-6

assignment statement 7-1

augmented IF statement 9-4

blocks 1-2

block structure 1-2

built-in function names 2-2 i
I

Boolean 2-4, 2-7, 9-2, 4-V, I
4-10, 4-11, 9-7, 9-12
10-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 . (617) 661-1840

1974021423-184

Boolean

d. type 4- 2
operations 7-20

precedence 7-24
subs. 6-1

binary literal strings 2-7

branches 9-15

branching IC-15

built-in functions 7-32

catenation 7-18

characte_ 4-7, 4-10, 4-11

data type 4-2
functions 7- 34

operations 7-18
precedence 7- 23

character string literals 2-4:2-6

character set 2-1

character subscripts 6-1, 6-2, 6-3

channels 12-1, 12-4

class I operators 9-7, 9-10

class II operators 9-7

class II 9-8, 9-10

colon

use of 6-10

use in Boolean data types 6-11

use of in arrayed subscript 6-8, 6-9 n

columns 12-1, 12-13 ..

combining operations and 7-23 i
precedence I

i combining comparative operations 9-12 f
4

1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 I

1974021423-185

!

!
_. comma

in declarations 4-9

use in double precision 7-28 "_
use of in Matrix double

precision 7-30
use of 12-9

comments, HAL/S 2-.10

comment lines 2-11

comparative operations 9-7

comp lement 7- 20

compound statements 1-8, 10-13

compound declarations 4-9

component subscripting 6-1

component subscript 6-11

conditional statement 9-1, 10-1

<cond> 10-5

conj unction 7- 21

control variables 10-5, 10-10

<control> 10-2

constant 4-10, 4-11

COS 7- 33

crossproduct 7-7

data declarations i-3, 4-1, 5-1

position of 3-2

data fields 12-4, 12-5, 12-6, 12-8,
12-11

data formats 12-6, 12-9

data referencing 6-1

data storage 12-4

data subscripting 6-i

data types 4-i i

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 i
!

1974021423-186

DATE 7-34

decimal notation 2-4

DECLARE 4-9

declaration statements 4-3, 4-10

delimiters 2-2

delimiting statement groups 10-1

device attributes 12-18

device mechanism 12-1, 12-2, 12-5, 12-8

device mechanism positioning 12-12

division 7-5

DIV 7-32

DO statement 10-2

DO CASE statement 10-13

DO CASE...ELSE 10-14

DO...END 10-4

DO FOR statement 10-5, 10-8

DO FOR I0-i0, 10-18, 10-20

DO UNTIL statement 10-7

DO WHILE statem_.t 10-5 .

DO WHILE 10-16, 10-18, 10-20

Dot Product 7-6 [
L

DOUBLE 4-3, 4-4, 4-5, 4-7, 7-26,

7-28, 7-30 l
double precision 4-2, 4-4 '

<else strut> _-4

END statement 10-3

INTERMET_ICSlNCORPORATED'701CONCORDAVENUE "CAMBRIDGE, MA;_SACHUSETTS02138"(617) G61-1840

]97402]423-]87

!

!

I error recovery 1-2
execution, path of 3-4

I XIT 10-17, 10-16

EXIT stmt 10-15

I
. exponents 2-8, 2-9

- exponentiation 7-13

expressions 7-1

EXPRESSION 7-1

<expression> 7-26

<exp> 7-27, 7-28, 7-29, 12-4

._ EXP 7-33

factored declaration 4-9

FALSE 9-1, 9-2, 9-4, 9-7

<final> 10-8

floating point 4-1

flow of execution 3-3

format 2-8

single line I-!
"" multi line I-I

fractional-valued literal 2-5

full word 4-3

functien block 1-2, 1-3, 5-1°.

. function name 1-4

-- GO TO statement 1-8, 9-17

GO TO 9-1, IC 15

GO TO statements
elimination of 9-18

and statement groups i-8
: "" legal destinations 1-9, i-i0

i block structure i-I0

INTERMETRICSINCORPORATED.701 CONCORD AVENUE .CAMBRIDGE MASSACHUSETTS 02138.(617) 661-1840

{,

1974021423-188

hal fword 4- 3

horizontal positioning 12-12

identifiers 2-2, 2-3, 4-1, 4-2, 5-1

IF clause 9-1

IF statement 9-2

imbedded comment 5-1

implicitly-declared data items 4-1

<INC> 10-8

INITIAL 4-10, 4-11

<init> 10-8

initializat'_on of data 4-10

I/O device 12-1

"nput/o_,tput formatting 12-11

input/output statements 12-1

integer 4-10, 4-11, 6-1, 7-1
data type 4-1, 4-3

intersection 7-22

_ntegral-valued literals 2-5

inversion 7-13

INVERSE 7-33

keywords 2-2, 4-3

<label> 3-1, 3-2, 9-15, 9-17, 10-3

label (<statement>) 9-2

labels 9-15

LENGTH 7- 34

lines 12-1

, LINE 12-15, 12-16

literals 2-1, 2-2, 2-4, 5-1 i

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-189

T

!
i local data 1-4

LOG 7-33

T matrix 4-5, 4-11, 4-12, 5-2,

_ 6-1, 7-1

"" m_trix conversion 7-29

mJtrix, data type 4-1

matrix subscripting 6-5, 6-6, 6-7

'.4AX 7-34

MIN 7-34

miscellaneous functions 7-34

multi-line format 2-9

multiplication 7-8, 7-9, 7-10, 7-11,
7-12

multiple exponents 2-5

multi-valued data items 4-10, 12-9

multi-valued data 4-11, 4-12

multi-valued expressions 12-6

<NAME> 4-3, 4-4, 4-5, 4-6, 4-7

4-8,5-1

negation 7-2

nesting 1-2, 1-8

nested s_stitution 5-2

ODP 7-32

operators 2-2

order of initialization 4-12

overriding Precedence Order 7-25

output listings 2-1

PAGE 12-15, 12-16

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1974021423-190

paged I/O device]2-3, 12-4, 12-18

parenthesis

use of in expressions 7-1
Boolean 7-25

partial initialization 4-13

precedence (relational) 9-13

precision conversion 7-17, 7-26, 9-11

procedure block 1-2, 1-3, 5-1

procedure name 1-4

program block 1-2, 3-i, 5-1

program block name 1-4

program closing 3-2

program opening 3-1

pseudo- functions 12-12

quotation marks 5-1

RANDOM 7- 34

READ statement 12-8, 12-9, 12-10, 12-11

12-12, 12-13, 12-16, 12-18

REPEAT statement 10-15, 10-.18, 10-19

real time contrcl I-2

recursion 1-4, 1-7 .

relational expressions 9-7, 9-12, 10-15

repetition (literal) 2-7

replace statements 5-1, 5-2

REPLACE 5-I, 5-2, 5-3 f
and block structure 5-3

replace parameters 5-4 T
J

: reserved words 2-1, 2-2, 5-1

i round 7-32 I
?

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840 I

1974021423-191

I
rounding 7-26, i0-i0, 10-12

SCALAR 4-10, 4-11, 6-3 .-_

scalar, data type 4-1
scalar 4-4, 7-1

scalar subscripts 6-1

scoping i- 3

scop_ng of block names 1-4

-- sequence (Boolean) 7-24

sequence (precedence) 7-23

sequential I/O 12-1

semicolon, use of 2-10, 4-8
.,

separators 2-2 (see special
characters)

SIGN 7-32

SIN 7-33

SINGLE 4-3, 4-4, 4-5, 4-6,
7-26,

single line format

.. single pr cision 4-2

SKIP 12-15, 12-16

" source text 2-i, 2-8, 5-1

special characters 2-1, 2-2
..

SQRT 7-33

<statement> 9-2, 9-15

statement delimiting 2-10

-" stutement grouping l-a i

statement groups i0-i
J

statement labels 1-10 i
I

INTERM£TRICS INCORPORATED . 701 CONCORO AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (8171 881-1840 1
]

1974021423-192

!

!
|

[stream-oriented I/O 12-4

structures 4-2, 6-12 --
?

i structured programming 1-2

structuring i-i

subroutines I-i

, subscripts 2-8, 2-9

subscripts of unarrayed data items 6-1

symbolic name 5-].

TAB 12-13

TAN 7-33

TO- 6-5

transpose 7-6, 7-13, 7-16

TRUE 9-1, 9-2, 9-4, 9-7

UNIT 7-37

unpaged I/O device 12-1, 12-2, 12-.3, 12-8,
12-18

uni-valued data 4-10

uni-valued data items 12-9

uni-valued expressions 12-6

<value> 4-10, 4-11

<var> 10-8

vector, data type

vector 4-6, 5-2, 6-1, 7-1

', VECTOR 4-ii, 4-12

vector conversion 7-2"

I 'vector - matrix functions 7-33

vector s_'_ :ript8 6-3, 6-4 ._ •
I

INTERMETRICS INCORPORATED "701 CONCORD AVENUE "CAMBRIDGE. MASSACHUSETTS 02138 . (617) 661-1840 t

1974021423-193

I
7

vertical positioninq 12-15

well-bracketed 1-8, I0-i

WRITE statement 12-4, 12-5, 12-11, 12-12

12-13, 12-16, 12-18

°

¢
i

I

INTERMETRICS INCORPORATED • 70t C

1974021423-194

