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Page 9: The statements in the DANSKY subroutine should read

30 A (J,NMI) = SAVE (unchanged)
DO 40 J = 1, NN (changed)

90 SUM = SUM + A (NMIP1,K)*A(K,11) (unchanged)
iF(1I.LT.NMI) GO TO 100 (unchanged)
IF(11.EQ.NN) GO TO 100 (unchanged)

SUM = SUM + A(NMIP1,11+1) (unchanged)
100 A(NMI,11) = SUM (unchanged but three

duplicate lines removed)

Page 14: The statements should read
CALL BOLLIN (A,AS,B,C,X,Y,Z21,22,Z3,N,NMAX)
DOUBLE PRECISION: AS, X,Y,Z1,Z2,23 must be double precision
NOTES: (1) A and B may be destroyed in call to DAVISO



This information is being published in prelimi-
nary form in order to expedite its early release.
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ABSTRACT

FORTRAN computer subroutines stemming from requirements to pro-
cess state variable system equations for systems of high order are
presented. They find the characteristic equation of a matrix using
the method of Danilevsky, the number of roots with positive real
parts using the Routh-Horwitz alternate formulation, convert a state
variable system description to a Laplace transfer function using
the method of Bollinger, and evaluate that transfer function and
obtain its frequency response. A sample problem 1s presented to
demonstrate use of the subroutines.
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COMPUTER PROGRAMS FOR CALCULATION OF MATRIX STABILITY AND
FREQUENCY RESPONSE FROM A STATE-SPACE SYSTEM DESCRIPTION
by Robert C., Seidel

Lewis Research Center

SUMMARY

FORTRAN computer subroutines stemming frem requirements te pre-
cess state variable system equations for systems of high order are
presented. They find the characteristic equatien of a matrix using
the method of Danilevsky, the number of roots with pesitive real
parts using the Routh-Horwitz alternate fermulatien, convert a state
variable system description te a Laplace transfer functien using the
methed of Bellinger, and evaluate that transfer function and obtain
its frequency response. A sample problem is presented to demonstrate
use of the subroutines.

INTRODUCTIGN

High~speed digital computers have made matrix state variable
metheds for system analysis practical. But for large systems, the
required execution time and the cumulative effect of round off errors
make it increasingly impoertant to employ efficient algerithms.

FORTRAN subroutines resulting from requirements to handle large

systems are reported herein. In particular, they find the charac-
teristic equatien of a system matrix, test that equation fer the num-
ber of roots with positive real parts, cenvert a state variable

system description te a Laplace transfer function and evaluate the
transfer function at a given frequency tec obtain its frequency response.

The FORTRAN program fer ebtaining the characteristic equation of
a system matrix uses the method of Danilevsky, reference 1. The pre-
gram includes a Gauss pivetal element condensation scheme te semewhat
increase its accuracy. A competing method is that of Leverrier,
references 1 and 2. However, to compute the characteristic polynemial
the Danilevsky method is known te be more accurate, faster, and re-
quire less storage. The FORTRAN program for determining the stability
of the characteristic polynemial uses the Routh-Horwitz alternate
formulation method, reference 3. The FORTRAN program for obtaining
the system transfer function uses the method of Bellinger, reference 4.
This methed appears more reliable than the method ef Davisen, refer-
ence 5, which in certain cases is known te cenverge improperly
(ref. 4). However Davisen's transformation, which permits the output
to be an arbitrary linear combination e¢f the states, is used in



conjunction with Bellinger's method. The inverse of this transfeor-
matioen is alse required, but is easily calculated in clesed form.
Once the transfer functien is obtained its frequency response is
easily calculated.

The FORTRAN listings and subroutine descriptions are presented
in the fellewing sectien. Equation symbols are defined in Appendix
A. TORTRAN symbels are defined separately for each program. A
sample problem demonstrating the use of the subroutines is described
in Appendix B.

COMPUTER PROGRAMS

Characteristic Equation

In subroutine BANSKY the characteristic equation of a matrix is
found by the method of Danilevsky, reference 1. The characteristic
equation of an nxn matrix A is an expansion of the determinant
equation

la = az| = -DPO" + 2111““1 +oeee +21) =0

where 1 1is the identity matrix and the pelynomial coefficients
sought are in the 21 vector. The Z1 vector ceefficients are
obtained in DANSKY through successive application of similarity
transformations which finally preduce the 2Z1 vector in the top row
of A. As noted in reference 1 the methoed allows use of a Gauss
pivotal element scheme te somewhat increase its accuracy. In DANSKY
this optien is implemented. The Gauss method performs similarity
transformations which interchange columns and rows of A to place the
element with the largest absolute value in pivet positioen. The
execution time for an 18x18 A matrix is about 0.35 sec (IBM-360-67 TSS
computer), DANSKY uses (as most of the programs) double precisien.
The time penalty for using double precisien is only about 0.02 sec

for the 18x18 matrix. One problem which eccurs with certain A matrices
when using DANSKY is that of expenent under or overflow. In such
cases the matrix A may be (time) scaled by multiplying each element

of A by a positive constant, r.  The characteristic polynomial of the
scaled matrix becemes

n-1l

n L -1 n
AR+ (211r)1 + + (Zlnr )

Fipure 1 i1s a description of the DANSKY calling statement transfer
variables. Figure 2 is a FORTRAN listing of DANSKY,



For compariseon with the Danilevsky method some results cobtained
with the Leverrier method are cited. For the same 18x18 matrix dis-
cussed earlier, the Leverrier program required 4.2 sec {compared to
0.35 sec for the Danilevsky method). Alse, two additional 18x18
double precisien scratch storage matrices are required fer the
Leverrier methed, and double precisien is required te obtain the same
accuracy achieved by DANSKY in single precision.

In DANSKY a call is made to subroutine POLMPY to multiply two
polynemials. In certain cases the method of Danilevsky obtains the
characteristic equation ceefficients in partially factored form and
the factors must be multiplied together to obtain the characteristic
equation. In DANSKY a call is made to POLMPY in all cases with one
of the pclynomials possibly unity. Figure 3 1s a description of the
POLMPY transfer variables, Figure 4 is a FORTRAN listing of POLMFY.

Stability

The subroutine RHWTZ performs a stability test upen the charac-
teristic equation. It counts the number of roots with positive real
parts witheut actually finding them. A simple recursive algorithm
which is well sulted to machine computatien is used. Its descriptien
is given in reference 3. The program is specialized in that it assumes
the leading poelynomial coefficient is unity as in the form returned
by DANSKY. The execution time for an eighteenth erder polynomial is
about 0.007 sec. Figure 5 presents a description of the RHWTZ trans-
fer varisbles and figure 6 presents a FORTRAN listing of RHWTZ,

For certain equations the test may fail if during the algorithm
executlen a zere appears as a diviser term. 1In this case the number
of unstable reots is set to =1 and the message "Test Failed M set to
-1" is output,

Transfer Function
BOLLIN is a subroutine for converting a state variable matrix

differential equation into an equivalent Laplace transfer functioen.
The system equations considered are

; = Ax + Bu, y = Ctx

where x, B, and C are n vectors, A is an nxn matrix, and u and
y are input and eutput scalars. The following steps are taken teo
obtain the system transfer function:



1. A call to subroutine DAVISO transferms the A and B system
matrices using the € vecter so as to make the output y a state
variable in the transformed system, reference 5. The transformed
system 1s

*

A% = tar~t

* *
s B =TB, and x = Tx
such that

o % % #
X =Ax +Bau

where T 15 the identity matrix except that the MC-th row is over-
written by the C~ vector. The integer MC 1is the position of the
element of C with the maximum absolute value. The Tl matrix is
similar teo inverses encountered in the proof of the Danilevsky method,
reference 1, and can be written down explicitly. The oeutput x* of
the modified system is the MC=th medified state varilable, Xyeo

2. The denominator polynemial Z1 {characteristic equation) of
tge system transfer functien is obtained by a call te BANSKY using the
A" matrix.

3. The numerator pelynemial is obtained in two more calls to
DANSKY using Bollinger's methogg reference 4. First, with the MC-th
column ef A" replaced by =B te obtain Z2; then, with a matrix*of
order {n-1) obtained by deleting the MC-th row and column from A
to obtain Z3.

4, The numerator pelynemial is computed as Z4 = Z2 - sZ3.,
5. The system transfer function vy(s)/u(s) 1s Z4(s)/Z1(s).

Execution times found for various order systems were about 1.0 sec
for an eighteenth order, 2,7 sec for a twenty-sixth order, and 9.7 sec
for a forty-first order system. Figure 7 is a description of the
BOLLIN transfer variables. Figure 8 is a FORTRAN listing of BOLLIN.
Figure 9 is a description of the DAVISO transfer variables and figure 10
is a FORTRAN listing of DAVISO. If the A matrix is time scaled by
multiplication by scalar r, the B vector and frequencies used to
evaluate the transfer function shoeuld alse be scaled by r. Teo handle
the more general case of multiple input, multiple cutput systems where
B and C are matrices, the program calling BOLLIN would start the
B and C matrices at the appropriate columns in the transfer variable
list to obtain the desired input/output relation, reference 5.



Frequency Response

The subroutine FRPOLY may be used to evaluate the Laplace trans-
form Z4(s8)/Z1(s) ratio of pelynemials for a given frequency s = ju.
The evaluation is performed in double precision with the real and
imaginary parts of the powers of jw handled separately. Figure 11
is a description of the FRPOLY transfer variables and figure 12 is a
FORTRAN listing of FRPOLY, To evaluate a system frequency respense
ever a range of frequencies, multiple calls te FRPOLY would be made.

CONCLUDING REMARKS

Six subroutines: DANSKY, POLMPY, RHWTZ, BOLLIN, DAVISO, and
FRPOLY were presented and discussed. The chart shown in figure 13
summarizes the flow from a state variable representation eof a system
through the warious subroutines., The major input and output relatiens
and alternate paths for various uses are noted.
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APPENDIX A
SYMBOLS
A system matrix, nxn
B Input vector; n
C eutput vector, n
I identity matrix, nxn

3 imaginary, \/CI

MC position of element in C with maximum abselute value

n system order

r scaling factor

s Laplace variable, sec T

t time, sec

T transfermatien matrix, nxn
u input

b4 state variable vector, n

y eutput

Z1 characteristic equation pelynemial
22 intermediate polynemial

Z3 intermediate polynemial

Z4 system numerater transfer functien polynomial

A root of characteristic equation
w frequency, hertz
Superscript:

denctes transfermed variable

transpoese



APPENDIX B

SAMPLE PROBLEM

4 third order sample problem demonstrating the combined use of the
subroutines is described next. The problem studied is the transfer
functien

y(s) _ s+ 6 s‘+ 6

ule) (2 L35 4 9)(s + 4) 83 + 782 + 21s + 36

In phase variable form the state matrices are

0 1 0 0 6
A = ) 6 1|, B=]0}], C=|1
1 0]

-36 -21 -7

Figure 14 is a FORTRAN listing of the sample preblem MAIN pregram.
First the A, B, and C matrices are output. Next after a call te BOLLIN,
the deneminator and numerator poelynomial coefficients are eutput. Then,
after a call te FRPOLY, the transfer function evaluated at one hertz is
- putput, and finally, after a call to RHWTZ, the number of unstable reots
is output,

Figure 15 ig a liﬁting of the pregram output. The deneominater 3
polynomial is 5~ + 78° + 215 + 36 with the unity ceegficient of s
understoed, The numeEator pelynomial is -2,220E-16 s~ + s + 6. The
coefficient of the s term should actually be zero but due te limited
numerical precision is slightly in error. The transfer functien is
evaluated at one hertz (5 = j2II) and has a real part of =-.03048 and
an imaginary part eof -.01142 or an amplitude of .03255 at -159.5
degrees. There are no roots of the denominator polynemial with pesitive
real parts. '

If enly a test of system stability were desired then it weuld net
be necessary to use BOLLIN. Instead DANSKY could be called to ebtain
the characteristic equation followed by a call te RHWTZ, BOLLIN is
organized such that it computes the denominator transfer functien ZI1
each time it is called. To save gomputations the user may wish to modify
this if the transformed matrix A 1s known te remain comnstant for a
particular set of B and/er C changes.



DANSKY
bPanilevsky
PURPQSE: To obtain the characteristic equation of a
square real matrix
USAGE: CALL DANSKY (A; X, Y, Z, N, NMAX)
Where A - square real matrix, order NxN
X - scratch vectoer, order N
Y = scratch vector;, order N
Z = characteristic pelynemial vector; order N
N = order of A
NMAX - dimension of A in calling pregram > N
DOUBLE DIMENSION: A must be deuble dimen—
sioned (NMAX, NMAX) in
calling proegram
DOUBLE PRECISION: A, X, Y, and Z must be
double precisien in calling
Program
NOTES: (1) A 1s destroeyed in obtaining Z
(2) The Z characteristic equation is
returned in the form
AR Z AT eee 4z A+ 2
: 1 ‘ n-1 n

Subroutines called: (1) POLMPY

FIGURE 1.-DESCRIPTION OF SUBROUTINE DANSKY TRANSFER VARIABLES
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€ COMPUTE THE CORFFICIFNTS OF . THF CHAPARTIMISTIC ENUATION
SURROUTINE NANSKYCA,Y,Y,Z,N,NMAX)
DIMENS IO ACHMAY,1),X(1),201),¥(1)
NOUBLE PREGISION SUH, A, SAVE,PIVOT,RK,X,Y,2
NM=N ‘
10 NM1aNN=1
IF{NM1,EQ,0) GO TO 125
Do 120 lal, MML
NMEaNN=|
| PYT=NMI
NMIMlaNHt =1
HMIP1=NME +1
£ FIND MAXIMUM ELEMENT IN PIVOT ROUW
AMAX=ACHMIPTL, M)
{F(NIML, AT, 0) 60 TO 15
IE(XHAY, FO,0,) GO TO 140
o TN S0
1% no 20 Kl=1,NMIM1
RaNME=K1
FRECARSCSHAL(ACNMIPL, K))) L LELADSCYIAN)) N0 TA 20
YMAYX=A(HMIPL, R)
_ 1PYT=K
20 COMTINUE
IECXMAY FOL,N,) GD TO 140
IFCIPYT.EOLHHL) RO TO 50
€ SIMULARITY TRAHSFORM &0 PIVOT ELFRENT |8 THE HAXIMUN
nO 30 Jsl,MHPY
SAVE=A{J, |PYT)
ACS, IPYTI=AC], M)
30 ACJ, MY )mSAVE
no &0 JJ1,M4
SAVE=ACIPYT, )
ACIPVT,J)mA(NMI, )
) ACNMI, J)mSAYE
C A UPDATE FNUALS A » M(SUR Nal)
50 PIYOT=1, JACNMIBL, HML)
no 80 Ke], NM
IF(K,ENNM1) RO TO &0
CKe=A{NMIPL, K)&P|VOT
PO Y0 Fle), NMY
10 AC)L, K)ﬂA(Il K)+A(II NMI)*PR
80 CONTINUE
Do RS 1=1,MM|
85 A(II.NMI)-A(Il.NMI)tPIVﬂT
£ MULT M(RUR Nel) [NVERSF TIMES A |BPATER
RO 110 Jl=), MM
SUMefl,
DO 90 Kel,MM]
90 SUMESUM*A(NP|FI,R

JrA
(FCHLLLT.NML) AR TA
|+

6 1}

¢

IECIY,EQ,NM) AB F0 1
SUM!SUH#MNNPl 11e}
IRCHILLT NMD) Af TA

IFCHDLEBA,NN) aB 70 1
§UM=8LIMsA(NNI BT, | |41

(K, !
10
e
)

19
an
)

100 ACNM], |1 )=8BIM
110 eoNFINUe
120 GONTINUE
125 NMIP1=1
. BLEMENTE OF 1 SET EGUAL T LAST ELEMENTS 1M RAW NWIB1 GE =
140 DA 150 J=NMIP1,N

NX=d=HMI P1el
150 NENX)==ACNMIP1
& MULTIBLY oUT PABTORS o PHARAGTER|ETIE EAUAT)AN
199 HYsN=NN

- BB 200 J=1,hY

2300 YE9)=Z{J)

GALL_POLIPYLX, ¥, 2, WX, Y, HYPHX)
¢ REPUEE SYSTEM RRAE %

NHENN=NX

[ECHM, 6F,8) GA TO 16

RETURN

END

FEGUEE 2:=F@E¥Rﬁ§ LIE?ZHG F@E EﬂﬁﬁﬂﬁTiﬁﬁ BAHEE?
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POLMPY
Polynemial Multiplication
PURPOSE: To multiply twe pelynemials X*Y

CALL POLMPY (X, Y, Z, NX, NY, NZ)
Where X - first polynomial, vector

Y - second pelynomial, vector

Z - returned preduct polynemial, vector
NX - order of X
NY - order of Y
NZ = NX + NY (order of Z) returned

NOTE: (1) leading coefficient of highest
power is assumed to be one, l.e.,

for X:

NX NX-1 . ...
AT+ KA + + Koy

DOUBLE PRECISION: X, Y, and Z must be
double precision in the

calling program

FIGURE 3.-PESCRIPTICN OF SUBROUTINE POLMPY TRANSFER VARIABLES
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C MULTIPLY XxY=? (LEANING POLYNOMIAL COEFEICIENTT ASSHMED UMITY)
SUBRNOUTINE POLMPY(X,Y,Z,NX, NY, MZ)
DIMEHSION X(1),¥(1),7Z(1)
DOUBLE PREFISIOM X,Y,Z,YJ
NZmNX+MY .
€ IF NX=0 MEANS POLY X=1;THEREFORE Z=Y
IF(NX.AT.N) GO TO 6

no 4 Jal,MY
L Z{dy=¥(d)
60 TO L0
€ IF NY=0 MEANS PALY Y=1;THERFFORE Z=X
6 IE(NY.AT.0) GO To 15
o pD 8§ J=1,M¥
8 Z{dYy=xX(M
GO TO LD

£ START MULTIPLICATION BY MAYINA ZaYeTxweNX
15 po 20 Jd=1,M :

YJ=Y(J)

IF(J.GT . NY)Y Yd=0,
20 Z{J)=Yd
C MULTIPLICATION LOOP

DO 30 K=1,MX

ZOKY=Z(R)+X(K)

Do 25 J=1,MY

KPJ= K+
25 Z(KPI)=Z(KPII+Y(J)#X (KD
30 CONTINUE
40 RETURM

END

FIGURE 4.-FORTRAN LISTING FOR SUBROUTINE POLMPY
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RHWTZ

ROUTH - HURWITZ ALTERNATE FORMULATION

PURPOSE: To compute the number of roots with pesitive real
parts of a pelynemial equation
USAGE: CALL RHWTZ (C,N,M)
Where C ~ ceefficlents of polynemial equation, vector

N - equation order

M - number of roeets with pesitive real parts
{M set to -1 if test fails due to attempted
division by zero)

RESTRICTION: The C vector starts with the second coefficient,
as the first is assumed unity; that is:

+ ¢ am1

<4 ovos
1 + Cn'

1l + Cn =0
NOTE: C is destreyed upen return

DOUBLE PRECISIGN: C must be double precisien
in the calling pregram

PROGRAM OUTPUT: "TEST FAILED M SET TO -1" out-
put if division by zere is
attempted

FIGURE 5,-PESCRIPTICN OF SUBROUTINE RHWTZ TRANSFER VARIABLES
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-/3-

€ ROUTN HOMUTTZ ALTERHATE FORPULATION STABILITY TEST

SUBRNUTINE RMUTZ{C,N,M)
. DOUBLE PRECISIOM C,CMM1,COEF,CHM2
RNIMENSION f‘(l)
HM1aN~1
M=0
C. PROVIDE FNR CASE M=D, 1 OR- 2
IF(M_LE.0) 60 TO 30
IF(N=-2) 4,8,10

& IF(C{1).LT.0.) Mal
60 T 30
8 CNM1al,
. 60 TN 25
10 CIF(C(1).EN.N,) 6O TO 3§
COEFal,/C(1)

C START ALRORITHM LOOP
PO 20 K=2,NM1°
IF{COEF,LT.N) MaM+l
no 15 J=K,NM1,2
15 C(J)=C({J)~COEF*r(J+1)
IF(C(K).EQ.0,) GO TO 35
< COEF=2C(K-1)/C(K)
20 COMT INUE
c FIMIQH REMAINING 2 MR ORDER POLYNOMIAL
CNM2=C(N=2)
'25‘_ 1F{CNM2Z#C(NM1},LT,0,) M=M+l
23 IF(C(MML) *C{N) LT, 0.) M=M+]
30 " RETURN
35 WRITE(E,45)
L5 FORMAT(IX 23HTEST FAILED M SET Tﬂ ~1)
- Mm-]
GO TO 30
END

. ?;GURE 6.—FDRERAN'LISTING FOR SUBROUTINE RHWTZ
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BOLLIN
Bollinggr
PURPGSE: To obtain a system transfer functien frem system
' matrix equations
USAGE: CALL BOLLIN (A,AS,B,X,Y,Z21,Z22,23,N,NMAX)
Where A - system matrix (NxN)

AS - scratch matrix (NxN)

B - system input vector (N)

C - system output vector {(N)

X - scratch vector (N)

Y - scratch vector (N)

Z1 - transfer functien deneminater, vecter (N)
Z2 - transfer function numerater, vecter (N}
Z3 -~ scratch, vector (N)

N - system order

NMAX - dimension ef A and AS in calling pregram > N

DOUBLE DIMENSION: A and AS must be double
dimensioned (NMAX, NMAX)
in calling program

DOUBLE PRECISION: AS must be double precisien
in calling program

NOTES: (1) A is destroyed in obtaining Z1 and 22
(2) The Z1 and Z2 are returned as in

= n n_l L]
21 = 3"+ Z1nT 4 .|.21n

3 n—l o a8
Z2 2211 + +22n

SUBROUTINES CALLED: (1) DAVISO
“(2) DANSKY

FIGURE 7.-DESCRIPTION OF SUBROUTINE BOLLIN TRANSFER VARIABLES
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€ CONVERT X(NOT)wAX+nl,YeC(TRANSPASE}Y TO TRANSFER
€ FUNRTION Y/U=Z2/Z1 RATIO OF POLYNOMIALS
SUBROUTINE BOLLIN(A,AS,B,C,X,Y,21,22,23,M, UAX)
DIMENSION A(MMAX,1),AS(NMAX,1),B(1),0(1), X (1), Y (1)}
DIMENSTAN 21¢1),72(1),Z3(1)
NOURLE PRECISION AS,X,Y,21,22,23
C TRANSFORHM Z=TX TO MAKF OHUTPUT A STATE
CALL DAVISO(A,B,C,N,NMAX, MC)
C SAVE A USING AS
nn 20 K=1,M
DO 10 J=1,M
10 AS(K,J)=A(K,J)
20 CONT I NUE
£ FIND DEMN IIAR FOM COEF'S
CALL DANSKY(AS,X,Y,Z1,N,NMAX)
€ SFT AS=A AGAEM AND OVER MRITE A{K,MC) rOLUMM WITH -B
DO 4O Kel, N
DO 30 J=1,N
30 AS(K, J)=A(K,d)
50 AS({K,MC)==8({K)
¢ FIND FIRST PART OF MUM CHAR EON
CALL DANSKY (AS,X,Y,Z2,N,NMAX)
C SET AS=A ARAIN; COLLAPSE M ROW AND COLUMN
NM1=N=1
DO 60 Kal,NM1
K1=K
AF(K.GE.MC) Kl=K+1
DO 50 J=1,NM1
Ji=y
IF(J.GE.MC) Jl=Jg+1
50 ASCK,J)=A(K1,J1)
60 CONT 1 QUE
C FIND SECOND PART OF NUM CHAR EQM
CALL DANSKY(AS,X,Y,Z3,NM1,NMAX)
C SUBSTRACT FIRST PART FROM SECOND PART
DO 100 J=1,NM1
100 Z2(J)=22(J)=23(J)
RETURN
END

¥IGURE 8.~FORTRAN LISTING FOR SUBROUTINE BOLLIN
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DAVISO
Davison
PURPOSE: Transform system to make output a state variable
USAGE: CALL DAVISO (A,B,C,N,NMAX,MC)
Where ' A -~ input system matrix Whiih upen return is

transfermed system TAT

B - input system vector which upon return is
transformed input vecter TB

C - system dutput wector
N - order of A
NMAX - dimension of A& in calling pregram > N
MC - pesition of maximum element in C vector

DOUBLE DIMENSION: A must be double dimensioned
(NMAX, NMAX) in calling pregram

PROGRAM OUTPUT: If all N elements of C are zero
' the message "All elements of C
are zero" is eutput and the pre-
gram is put in PAUSE

FIGURE 9.-DESCRIPTION OF SUBROUTINE DAVISO TRANSFER VARIABLES
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TRAMSFORM X(DOT)=sAX+BU, Ye{ (TRANSROSE)X USING Z=TY SUCD
THAT Y 15 A STATE VARIARLE OF Z(DOT)=TAT{INVERSF)+T2U
SUBRDUTINE NAVISO(A,B,C,MN,NHAX,MC)
DIMENSIOMN A{MMAY,1),B(1),C(1)
NOUBLE PRECISEON SUM
¢ FIND MAX ELEMEMT IN £ AS £(ME)
CM=0.
Me=Q
DD 5 J=l,H
IFCARS{C{J)) LT.CM} 60 TO 5
CHM=ARS{C(J))
MCmy
‘5 CONTIHUE
{F(MC,BT.D) GN TO 10
WRITE(E,7)
7 FORMAT(lX ZBHALL FLEMENTS OF C ARE ZER0O)
PAUSE
C PREMULT A BY T CHANGES MC ROL ONLY
10 no .17 Ke=1,H
SUMaD.
DO 15 J=1,H
15 - SUM=SUM+NRLE(C () %A{J,K))
17 ALME, K)=SUN
€ POST MULT A BY T INVERSF
c FOR J NOT = MC: A(K,J)=sA(K,J)=A(K, MCY=C{J)/n{MC)
PIYOT=1,/C{MC)
Do 30 J=1,N
IF(J.EQ.MCY GO TO 30
DD 25 K=1,M
25 ALK, J)=A(K,J)=A(K, MCY+C (1) +PIVOT
30 CONTIHUE
c FOR J=MC: ALK, MCI=ALK, MCY/CEMC)
Do 35 K=1,MN
35 ALK, MC)Y=A(K, HMC)*PIYOT
C PRE MULT B BY T CHANSES B(MC) ONLY
SUM=mD. ‘
no 37 J=1,H
37 SUM=SUM+DBLE(C{J)*B(J))
B{MC)=SUH
RETURN
END

(¢ Ny

FIGURE 10.~FORTRAN LISTING FOR SUBROUTINE DAVISO
: i
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FRPOLY

Frequency Respoense of Folynomials

PURPOSE: To evaluate system transfer functien poelynomials
' to obtain system frequency response
USAGE : CALL FRPOLY (21,Z2,HZ,G,AMP,PHA,N)
Where Z1 ~ denominator polynemial, vector order N

22 - numerator polynemial, vector order N
HZ - freguency in hertz

G ~ gystem transfer function Z2(jHZ)/Z1(jHZ)
evaluated at radian frequency HZ#*2y

AMP - transfer function amplitude, |G|
PHA - transfer function phase, ;G degrees
N - order of Z1

COMPLEX: G must be declared complex in the
calling program

DOUBLE PRECISIGN: Z1 and Z2 must be declared
R double precisien in the
calling program

NOTES: the Z1 and Z2 must be in the form:
] = n n~1l .ss
21 = A"+ ZL AT+ +z1
z2 = 222%™l 4 eee 422
1 n

FIGURE 11.-DESCRIPTION OF SUBROUTINE FRPOLY TRANSFER VARIABLES
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€ EVALUATE TRANSFER FUNGTION Z2(S)/21(S) FNP S=5,2P*HIe)
SUBROUTINE FRPOLY(Z1,Z2,HZ,G,AMP,PHA,!)
DIMENSINN Z1{1),22(1)
POUBLE PRECISINY AT,HJ, SUMIR, SUMLI, SUM2R, St21,221,272,21,72
COMPLEX 5, SUM1,SUM2
NH1=N~1
SUMIR=Z1(N}
SuMli=0,
SUM2R=Z2{N)
SUM21=0,
6T=1.
‘ VJ=MZ#6,2R31853
1 KKk=2
IF(NM1.EQ.0) GO TO 4O
DO 35 K=1,NM1 ,
NMKaN-K
GT=AT*I
ZZ1=Z1{NMK)*OT
2Z2%22(NMK) #GT
60 TO {(5,10,3,8),KK
3 Z221=-2I1
722=-272
5 SUM1R=SUM1R+ZZ1
SUM2R=SUIMIR+ZZ2
60 TO 30
8 271=-2121
772-272
10 SUML1=SUMT 14271
SUM21=5UM21+272
30 KK=KK+1
1F(KK.GT.4) KKel
35 CONTINUE
€ ADD OM S=«N TO DEM SUM1 . -
40 SUM1=CMPLX(SNAL (SUMIR), SNGL{SUML 1) )+GT*ld#» (CHPLX(0,,1.) ) w*(KK~1)
SUM2=CMPLX(SHAL (SUMZR)Y, SNGL(SUM21))
G=SUM2 /SHM1
AMP=1ABS(f)
PHA=ATANZCAIMAG(G),REAL(G))*57.29578
RETURN : ‘
END

FIGURE 12,-FORTRAN LISTING FCR SUBROUTINE FRPO'LYi
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SYSTEM STATE VARIABLE EQUATIGNS

Xx=Ax + Bu, y = ctx

A;B;C A
'IA,B,C Tthree
DAVISO © BOLLIN ,/ DANSKY
kK ~ ]
A B J, - times i DANSKY
-é———}‘
transfer POLMFY
function -characteristic
equatien
FRPOLY
_\j/ , . z
frequency '
response \L
stability

FIGURE 13.-FLOW CHART FOR FORTRAN SUBROUTINES
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> SAMPLE PROBLEM MAIN PROGRAM
DIMENSTON A(3,3),AS(3,3),B(3),0(3),21(3),22(3),23(3),X(3),Y(3)
DOUBLE PRECISION AS,Z1,22,23%,%,Y
COMPLEX G
BATA A/0,,0.,-36.,1..0.,=-21.,0,,1.,-7./
DATA B/0.,0,,1./,C/6.,1.,0./,HZ, N, HMAX/1.,3,3/
WRITE(6,1) (CA(1,d),J9=1,H),1=1,N)
1 - FORMAT(' A=',/,1P3E12.3,/,1P3E12.3,/,1P3F12.3)
WRITE(6,2) (B(J),d=1,N)
2 FORMAT(' B VERTOR=',1P3E12.3)
WRITE(6,3) (C{J),J=1,N)
3 FORMAT(' ¢ VECTOR=*,1P3E12.3) _
CALL BOLLIN(A,AS,B,C,X%,Y,21,22,73, N, HFAX)
WRITE(6,10) (Z1{J),J=1,N)
10 FORMAT(' DENOMINATOR=',1P3E12.3)
WRITE(6,20) (Z2(J),J=1,HM)
20 FORMAT(' NUMERATOR=',1P3E12,3)
CALL FRPOLY(Z1,Z2,HZ,G,AMP, PHA, )
WRITE(6, 30) HZ,G, AMP,PHA '
30 FORMAT(' AT',Fu.1,' HERTZ THE TRAMSFER FUMCTION =',-
1 1P2E12.3,/,' AMPLITUDE=',1PE12.3,' PHASE=',1PE12.3)
CALL RHWTZ(Z1,N,HM)
WRITE(6,50) M
i} FORMAT (' NUMBER DF UNSTABLE ROOTS=',15)
STOP
END

FIGURE 1k4,~ FORTRAN 1listing for sample problem main program

Anm
0.000 1.000E 00 0.000
0.000 0,000 1.000E nQ
-3.600E 01 -2.100E 01 =7.000E 00
E VECTOR= 0,000 p.000 1.0008 oo

C VECTOR= 6.000E 0N 1.000E 00 0.000D

DENOMINATOR= 7.000E 00 2,100E 01 3.600E nl

NUMERATOR= -2.220E-16 1.000E 00O 6.000E @0

AT 1.0 HERTZ THE TRANSFER FUNCTION = ~3_048E-02 ~1.142E-02
AMPLITUDE= 3.255E-02 PHASE= =1.585E 02

NUMBER OF UNSTABLE ROOTS= 0

FIGURE 15.-5AMPLE PROELEM PROGRAM OUTPUT



