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INTRODUCTION

Radiative transport theories involving multiple scufte-ring play an important role
in the engineering ana!ysis and simulation of the pérfonnonce of diathermanous materials.
Highly scattering dielectric materials have been proposed, for’ instance, for the eniry
heat protection of planetary probes [1]. Other appficoﬁons include the evaluuﬂ‘on of
the reflectance of condensed de pdsifs on cryogenic storage tanks [2] and the engineering
. analysis of opacity in the paint and paper industry [3]. Regardless of the application,
engineering approximations of radiative fransport continue fo.be employed déspite the
- increasing ease of computer modeling. Accordingly, this work attempts fo provide a
-ynified discussion of the radiative c_hc-raci'erisﬁcs of anisotropically scattering volume

reflectors through new num_ericql solutions of the equations of rcdic;ﬁve transfer, to
evoh.;are several approximations for parameters of importance in thermal uﬁaiysis, and
“to clarify the ties which exist between the equation of radiative transport and riwe
approximate theories. : -

_ - Of primary interest here is the investigation of the radiative energy fransport
characteristics of volume -reflecting heat shields for hypervelocity entry. In this
application a highly scattering, weakly ubs;:rbing dielectric material mounted on an

opaque, struciural subsfrate is irradiated by an intense, diffuse radiative flux. -Low ,
absorption i::l!ows the incident radiation to penetrate in depth with limited conversion
-of radiative to thermal energy. In addition, high scattering provides an infernal
-mechanism for spatially disfributed_reversal of the direction of the incident radiation.
In this way, dielectrics are capable of reflecting infense incident radiative fluxes

- efficiently while convective heating is also handled efficiently through ablation mecha~

nisms.



- Multiple scattering studies -including effecis of anisotropy have focused in the
past on the reflectance, transmittance, and emittance of plane-parallel layers exposed
to pt':raHeI incident irradiation [4,5,6]. Solutions of the transfer equaﬁén presented
here assume a diffuse, incident intensity field appropriate to the entry vehicle appli-
-cation. With this orientation, emphasis is placed on. rhermcl 'analsfsis paramefers and
their approximation. |

The approximations considered for isotropic scarfering stem from the Schuster~-
.Schworzschild [7] and Kubelka-Munk [8] two-flux models. Exact solutions of the two-
flux equations as wel! as approximations [9] and a reinterpretation [10] are evaluated
in relation fo radiative transfer equation solutions. An earlier evaluation of the
‘Schuster-Schwarzschild model [11] considered coupled radiative and conductive ené‘rgy
transport in a broader context whereas the present study focuses on the uncoupled, high

albedo problem.

ANALYSIS

Transfer Equation Formulation

The Equation of Radiative Transfer is considered to govern the transport of
-rat_:liéﬁon in dielectric media. . Polarization effects are known to be negligible in
thermal problems in@lving multiple scattering [12], and are therefore not considered.
A diffuse, gray radiative flux is assumed. The medium is assumed to be isothermal,
to be gray, to have unity index of refraction and fo have uniform absorption and
scattering cpefficienfs.- The rear boundary is opaque and reflects specularly with
@shnt reflectance Rg. |

In order to evaluate the influence of anisotropic scattering,a phase function

of the form P (@) = ®(1 + x cos @) is assumed [6]. Here w is the albedo, @ is the



angle between incoming and scattered beams at a point in the medium; and x .ils an
_anisotropy parameter which provides backward scattering (-1.0.5x <0), isofropic.
_—scc;ﬂering {x =0), and forward scattering (0 < x-:_<_: 1.0). |

. The intensity field is azimuthally symmetric in this pione-para!lél case and
may be représented by | (T, H) where i is the cosine of the angle befween an arbitrary
-beam and the inward normal to the medium boundary and Tis the optical depth measured

. from the incident flux boundary. The transfer equation is:
dl (T ,1) i (I
M e == (TR +ES S p(H, B n, D) 1 (r ) ddf +(1w)igg (1)

dT
-1 0
- -where in spherical coordinates P {8) becomes:
P ,EN,E) = { 14y [ +(142) V2 0)V/2 w-g)]} @)

" -Substituting (2) into (1) and integrating with respect to f yields the transfer -
: 'eqﬁah’on: .

_ “ di'%&) =<l 1) *%S] (1 ) i '.E)HE+'('I"”').' BB~ @)

21 : :

. Evaluating the integral of (3a) via Gaussian quadrature gives:
' k

.y dl ~ W
ui ;ﬁ: (T:ui)—- I(T .r""'i) +§i§_k

where the o, 's are the Gaussian weights, the u, s specify the Gaussian directions, and

o (1 +x}-1i|-1i‘) I (T ,l{i) + {1-w) fap (3b)
k is the order of the Gaussian quadrature. In (3b) aj <a and u-i = -l i Boundary
conditions for the transfer equdi'ion are given by a specified diffuse infensity field ot
‘¢ =0 and specular reflection at the boundary 'r = T.o given by:

rork ) =Ry 1T o it 45 )+ (1Rg) 1pp(To) | R @)

whére RB is the reflectance of the medium-substrate interface.



For purposes of evaluation of approximate theories discussed belows right and
left direci'ed half fluxes and net radiative flux are defined in terms of the transfer

equohon solution Feld I(T 1) as:

q*t)= an (e S mz‘ﬁ_]ai_uin(mi) | (50)
-1 : .

q (T)= 2rrS I(T H}J.du = -2”23 aluil('r,ﬂ-) | (5b)

q'('r.)=2ﬂsl(7,u)udu=q -q , | (6)

Of prime importance in the calculation oF- the hem%:erafure field due to radiative
absorption is the divergence of the radiative flux which in fhé plane -parallel case is
' pfopor_ﬁonal to the derivative dg/dv. In order to avoid 'numeric'ui differentiation an
exact expression for dg/dr may be obtained by integration of the transfer equation (3a)

over the entire solid angle. The resulting expression is: )
o

(-.-)_.2TT (1w) S‘I(T,u)du&dm (1w)lggz -2r (1= ofllr ) +47 (Idlgg )
- ‘ I~ .

It is .e\_ride.nt from equations (5), (6) and (7) that the radiative flux and radictive
flux divergence expressions do not depend explicitly on the anisotropy parameter. Thu;s
anl'soi"ropy influences those quantities only through the intensity field. Reflectance may be
determined when the intensity field at the left boundary is known. The hemispherical-
direcﬁon;i reflectance and hemispherical reflectance are:

RH_;D@J. =) =m KO,u _i)/qﬂO), E{_z q'_-(O)/q+(0) . . o - {8a,b)

Numerical Solution of the Radiative Transfer Equation

Replacing the derivative in (3b) by a forward difference quotient for H;>0anda

backward difference quotient for 4; < 0 yields the set of equations: -

—
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~ When an initial approximation to the radiation field is known and left boundary incfdenr
.- intensities are specified, equation {9a) can be uséd to compute the right directed inten-
- sities af successive nodal points. When the march fromT =0to T = To is comp!eiel, that
: #s, when all right-directed intensities have been computed, the rear surface boundary
-~condition provides values for 1{T M 'i)' Equation (%b) is fhe_n used to march back to the
~-incident flux boundary. The initial infensif); field approximation is then replaced by this
%ﬁewly computed field and a second iteration is performed. In practice the iteration
aiwr'pmc':e.du-re is continued until two successive iterates for the intensity field differ by less
-than a specified folerance. A similor procedure was employed in reference [13] .
Equations (Ya) and %) together with the appropriate boundary conditions can be
- wwritten in a matrix vector equaﬁo'n of the form | = MIFC where | is a vectof which has as
-=s;its.compone:;ts the intensities in all directions at all nodes, M is a coefficient matrix,
~=and C is a known vector determined from the specified boundary data and the yulues of
[(l-w)&'r/l H;“]IBB. This if_era-ﬁve procedure can be written:
"%'IQ";‘)=M10<)+Cfork--o,1,2,... - (10)
-zawhere flr(o)is the initial opproximation to the infensity ﬁeld'.l It is well known, [14], that
- -7the iterative scheme(10) is .convergenf if and only if P (M)<1 where p (M) denotes the

~=gpectral radius of the matrix M, In the case of isofropic scattering if:

T T < LI

RN T e . Y




where N is the number of nodes in the ﬁnifé difference approximaf.ion, it can be shoﬁn
- that ” M”m <1 where || MIL ‘denotes the infinity norm of the matrix M. Sinc;e
N p"(M)E || M” o rL14], if condition (1 1) is satisfied, convergénce of the iteration procedure
{10) is guaranteed. It is interesting to note that conaition (11) is satisfied if and only if
-the coefficient of 1T,k )} in (9) is non-negative. The convergence boundary given by
- {11} is shown in Figure 1 as related to quadroture order. For all cases attempted wfrhin
- -this convergence boundary, smooth convergent sotuﬁons were- obtained. However, it is
-possible to obtain converge'ni' solutions in cases where_ condition (11) is not satisfied, Thesé
-solutions are characferized by oscillatory irregularities in intensity near the phy;f.iccl
-boundaries and in directions closest to paralle! to the boundaries. On the other hand
-calculations performed for® =.9995 and (&T/rpin].gi‘)greater than about 2.0 diverged
‘ ;&rupidiy. For first order Gaussian quadrature, it can be shown analytically that the method
xmil diverge if (,QT/I M ‘ )> (2 0/w). While only a limited number of runs were made
: fur optical thicknesses other than 3.177 and uibeclos other than .9995, (AT /min |Ll ES (2 0/w)
.appears to be sufficient condition for divergence. It is worthwhile to remark that the
:-.ifergtion pro;:edure converges more rapidly when newly obfcinea intensity values are used
+«c8 soon as they are generated. This is not suprising since using new intensity values as soon
. i:hey are uvailable is analogous to changing from a Jacobi type iterative procedure to a
| -’?.Gauss-Seidell procedure. | |

-zln-order fo verify the accuracy of the iteration technique a com-putaﬂon r'ng;:le_- with
-=the ‘iferative technique was compared with an available unpublished solution obtained by
1the matrix eige.nve;c;’ror technique of [15]. The resulting intensity field using fourth order |
Gaussian quadrature and 21 nodes is shown in Figure 2. The solution corrésponds to radiai:ive

.. zstransfer between two black boundaries through a nonabsorbing isotropically scaitering medium

—



 (w=1.0) where the left boundary and medium are af I111°K and the right boundary is ot
| - 355.5°K. The intfensity fields are seen to be in good detailed agreement within about
1%. This is within the maximum error claimed in reférence [15]. For most of the cal-
- culations presented here the order of quadrature was increased to eighth and the number

of nodes to at least 101,

Approximate Methods
Thé approximate methods for radiative transfer considered stem from two-flux
mode s ‘which have found wide application. Models for isotropic scattering oﬁly are
considered. These models may be related to each other c;-:d to the equation of radiative
transfer discussed above. A link between the transfer equcﬁc;n and the two-flux rela-
tions known as the Schuster-Schwarzschild equations, reference [71, may be established
by assuming that the intensity field is fully described by two functions ;:f optical dépi'h
‘ only:r
. ), u>0
T )= |
I"(t), wu<o0 . | - (12)
Here |+représenrs the value of the directionally independent intensity of rays fraversing
the medium from :the incident flux boundary foward the rear (T increasing), and 1= |
similarly represents those rays ;Sroceeding forward from the rear (T decrea’sing); | Intro-
ducing fhese restrictions and separately integrating the transfer equation over the half
spaces I-J-> 0 and i < 0, the differential equations:
(/206 /1) =440 /200 ™H7) + (10 Ing N (%
-(1/2)(d1~/dr) = =17+ (0/2) (F #7) + (1w) Iy (13b)
are obtained. These are the Schuster-Schwarzschild equations obtained in reférence

{71 in a slightly more general context. The half fluxes and net radiative flux are



easily related to the infensities 17 and I~ using equations (4) and (5):
i 1

qQ'(r) =2 S Firuds =n1¥(r) | ()
T | | |
-1 _ .
q @) =2 S " (r)udu = 1”7 (1) (14b)
10 o S |
q=2 S Lrpudu =q7r) - q @) = [1'm) - 17 ) (14c)
-1 _ , -

- Using equaﬁor;s (13) and (14) the Schuster-Schwarzschild equations may be expressed
in terms of the half-fluxes as: |
(dq™/dT) = (y=2) " +@q”+ 21 (1w) Igg . (15q)
-(dq‘/d'r-) ={n-2)q~ tw q+ +2n ,(]-w) IBB ' (]5b_)
Equations (15) are the isotropic form of the transport equuﬁor-\s given by Bergquam and
'Sebaq [11]. In reference [11], equations (15): fogéfher with an e'nergy equation were
- solved iferﬁﬁvely on a digital computer to evaluate the two flux method for emission-
coupled cases.
- The albedo W and optical thickness ¢+ have similar inferprefdﬁons in the equation
of radiative transfer and in the Schuster~Schwarzschild equations. It is well known that
" these quantitites may be related to constant scattering, absorption and extinction co- :
efficients 5, Kand 8 through
T =gy, B =5+K, m="'§“‘ . ‘ . (léqf.blc)

S +K
where y is the physical depth measured from the incident flux boundary. It is through |

/

- these coefficients that direct associations may be made with another two—flux model to
be discussed later. Transforming the independent variable in equations (15) to y and
introducing the Scaﬁering and absorption coefficients,the Schuster-Schwarzschild equations

become:



]0

(dq +/dy) ==K +5) q* +5 g~ +27 K lag I  (17a)
 —{dq~/dy) = ~(2K +$)q  +$ q" 42T K IBtB - - (17b)
-An entirely separate tradition in r\;\ro*fiux radiation field analysis has devéfopeC!
:in the paint and paper indﬁstryq The basic equations attributed to Kubelka and Munk
7.4[.8] may also be formulated in terms of half fluxes g™ and q "~ and the physical depth y.
These equations, however, include independently defined scattering and absorption
- -coefficients s and k. The equations are formulated by re'qﬁiri'ng that each half flux be
 -gugmented by scattering from the opposing half flux and by emission, and be diminishéd |
- by scattering to the opposing half flux and by absorption. The Kubelka-Munk

- «differential equations are:

(dq*/dy) = ~(s +k) q" +sd i kg | (18a)
(dq/dy) = (s +K) q~ -sq* -7 k Ipp —— (18b)
‘»'.-‘Comparison of equations (17) and (18) shows that the simple relations: | |
s =5, k =2K | C | © (19,b)
allow association of the Kubelka-Munk equations with the Scl'n.uster—Schwarzschi!d
-;equcﬁonsund.hence with the eqﬁaﬂon of radiative trunsport. The optical dépth and
:.fulbet.;!o may then be relx.;ned to the Kubelka-Munk coefficients thfough:
= T=6tSy | | (20a,5)

Bk
- ““While the association of the Kubelka-Munk equations with the Schuster-.
--.£9chwarzschild rund radiative transfer equations discusséd cbove is satisfying in its
esimplicity, it is c!e;::r that the relations (19) and 20) are at best approximations
<swhich will be most realistic when the infens‘ify distribution in the medium approaches
the distribution given by equation (12). Many alternatives to the equations (19) are

.,:;,;poséible. Klier [10] has, for instance, shown that the Kubelka-Munk equations are
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- formally identical to a class of solutions of the radiative transfer equation for isotropiéa!ly,
highly scattering media. LJnder this approach the Kubelka-Munk s and k may be related
to the transfer equation parumete& fhr‘ou.'rgh |
s = 5F, ('é), k= Kfz— (!é) | N | L (21 a,b)
' The nonlinear Funcﬁons’ f and f, are tabulated in [10]. For weak absorption the reference
gives F .75 and f2 =2.0, Thus, in fhls case, equation (19) differs from the Klier |
- equations only in. the constant coeffi cient of the scattering coefficient relation.
In the Results and Discussion section, Kubelka-Munk solutions for reflectance,
radiative flux and rodiaﬁ‘ve flux divergence are compared with transfer equation solutions

wusing both relations (19) and (21). These solutions are given below:

- Exact Kubelka-Munk Soluﬁﬁﬁ for Finite Thickness

Following Hamaker [8] the exact solution of the Kubelka=Munk equations (with

“negligible emission) for the half fluxes muy- be written:

~JY.

qt =A (lw)e”._*B._(lme'“’,’-’, Cqe=A(1+Y)e”” +B (1Y )e (22 a,b)
~ where . . .
=KW, y =TT =0 /c425) (23 q, b)

-and A and B are determined by the b0undary conditions.

- For the case of a scoi'fenng, absorbmg, non-eml'rhng medl um w:fh mfense, o

Tpe I e Al A it ST

d'ffuse snmdeni' flux q (0) and opaque non-em:i'fmg subsrrate wﬂh reflecfcmce RB,

the coechueni's A and B are:

f a0y (R -1k | s
A% (I Z(TRGF TRyl s (55 ¥27 cosh 5 ) (24a)
B =9 *0)e? ° [y (14Rp)H1-Rg)] B | (24b)

2 {ly 4 (1+Rp)H1-Rp)l s:nh (65 ) +2Y cosh (05 )}

where & is the thickness of the scattering medium.



2

This solution is used together with equations (14) to provide an initial radiation field for
the numerical iteration of the tronsfer equation discussed earlier. The Kubelka=-Munk net
radiative flux and radiative flux divergence may be found by using equation (14c) and

eliminating derivatives using the Kubelka-Munk differential equations (18):

q= q*'q | - (25
d _dq*_ ;L . | |
dy“dy “dy -« (@ *+q) - (8)

The hemispherical reflectance of a layer of infinite thickness, R, and of a

finite layer may be obtained from (8) and (22) as:

Ro= 9:,——(0) —}= A=) o @

R = (1/R)(Rp- R.) ~ R, (Rg=1/Rw) exp [s8_(1/Re-Re)] -
- (Rg-Re) ~ (Rg=1/Re) exp [s8 (1/Rs=R)] ' (28)

and

: Approximate Solution for Weakly Absorbing Media

A good volume refleqtor is characterized by |0\-N absorption coefficient and hagh
scattering coefficient. In i'his-sifuaﬁon an ex-isﬁng approximate solution of i;he Kubelka-
- Munk equations with negl'igib!e emission may be useful. This approach, ysed in [9],
involves soluffbn of the Kubelka=Munk equations for the case of zero absorption coeffi-
cient subject fo a specified incident diffuse flux and specified overall reflecfunée. The
resulting solutions may be written as:

a*y) = 0) [y (1-R)], 4ty = 470) Resy(1R)] (29 a,b)
This approximation implies that the net radiative flux is given by: ‘

qa=q*-q7=q"(0) [1-R] 3 (30)
it is evident that in this opproxtmohon q is independent of depth. Using equation (26)
the radiative flux divergence may be upproxlmcted by combmchon with equation (29):

(dg/dy) = =k q7(0) [1+R = 2 sy (1-R)] | - @1
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- In these approximations the reflectance R is evaluated using equation (28). Other suitable
approximations may be used however. Note that expressions (29) and (31) are clearly limited

on physical grounds to depths for which the terms in brackets are positive.

RESULTS AVNDV DISCUSSION

Wﬁen an intense, diffuse radiative flux is incident on a highly scattering and weakly

- absorbing medium it is well known that an intense, diffuse reflection occurs. The reflected
flux, for medium indices of refraction close to one, originates as a result of penetration in.
. .depth of the incident rays, rather than as a surface pheno.menon. Internally, multiple scat=
fering processes cause a redirection of a large fraction of the incident radiant energy back
- toward its surface of entry. The ultimat-e re-emergence of the majority of the incident and
scattered photons is made possible by the absence of strong absorption within the medium.
. . The manner in which energy is redistributed is shown in Figure 2. There the infensity
- variation with depth is presented for a nonabsorbing, isc:;fropically scattering medium, (p=1.0),
.‘wil-h a black subsh;ate. It is evident that the incident transmitted rays diminish in intensity
-with depth even in the cbsence of radiative absorption. 'This effect is more pronoun;iced as

the path length increases (ui ap[.:rouches.zero). Photons penetrating to the black substrate

are absorbed there and new rays emerge directed toward the incident flux boundary. These
rays; iniﬁall)f equal in intensity, are ougmeritéd in intensity as they progress toward n=0

due to scufte;;'ing from each of the other r-ays. Again rays traversing greater'pct‘h lengths

are influenced more by scattering than those closer to the surface normal.

. The influence of the substrate reflectance on the dimensionless intensity field is
shown in Figure 3 for a weakly absorbing, isotropically scattering medium with negligible

emission. The lines and symbols show intensity distributions for substrate specular reflec-

“tances of 0 and 0.8 respectively. Comparison of the two intensity families shows clearly
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the importonc.e'of substrate refl'ecfunce even for optical thricknesses of the order of three.
The distributions of dimensionless intensity at the incident flux boundary (1 =0) are also
hen;lispherical-direclﬁonal reflectance disfribuﬁons.l The monotonic decrease in reflectance
toward the outward normal fo the incident flux surface is apparent. Evédenfly the increuséd
scattering influence due to pofh_ length discussed ;:bovel is conﬁolling rhi; distribution.

The influence of quadrature order on the intensity ﬁéld is demonstrated in Figué 3
also. lt is evident that quadrature orders above ‘four are necessary only for filling in the
di'sh‘ibution, as has been pointed out eisewhere in a related problem [4].

It is indicated above i;haf the influence of emission from the medium and substrate
may be negligible under an intense incident flux. For the incident field considgred in
‘Figure 3, corre5pon_ding to a black emitter at 3000°K, cclculcﬁoﬁs indicate that the:
intensity field changes by less than 1.5% when the medium and substrate remperufﬁfes
are changed from 300°K to 1000°K. Thus neglect of emission is well justified for a large
class of dielectric solids at moderate temperatures.

.The influence of am;sofropic scattering oﬁ the internal intensity field i.s presented
in Figure 4 by; comparing trqﬁsfer equoﬂonl solutions for strong forward scattering (x = 1.0)
and sﬁong backward scattering (x = =1.0) with the isotropic solution Rg = .8) of Figure 3.
It is clear fh;at evenh with this:exfreme anisotropy the basic character of the distributions ts .
" unchanged. It may be observed in Figure 4 that forward scattering reduces the aﬂenud-i‘ion
of incominé rays and that this effect becomes more pronounced wﬁ-h increasing depth.
.While the substrate-reflected infersity for forward scattering is greater than for the isofropi-c
'-c':use, reduced augmentation By scattering into rays directed toward the incident flux
boundary produces a Iov\;'er intensity level emerging from the medium than for isotropic

scattering. Thus the medium reflectance is reduced due to forward scattering with respect
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fo the isotropic case. This may be viewexcl simplistically as increased trapping of energy
due to deeper' penefruﬁon.by‘ forward scattering and due to absorption of this energy in

thg medium and at the substrate. Conversely f;)r béckword scattering leﬁs energy pene=
ﬁubs to a given depth to be frcpped'lrhon' for i_soi-ropic scattering . As a consequence,‘, more
.energy is returned to the incident flux'boundary i-n the emerging rays, leading to increased
reflech':mce for backward scattering media. Hemispherica I" ;eflecrunces calculated for
.each of these ccs;-:s un;e tabulated on the figure.

The total diffuse reflectance of isotropically scattering volume reflectors is con-
sidered in Figure 5 as a function of albedo, optical ihickne'ss and substrate reﬂécfance .
Values computed from the Kubelka~Munk reflectance equation {28) show the fransition
" from optically thin to optically thick media for several values of.glbedo and substrate
reflectance. The solid lines show the Kubelka-Munk reflectance interpreted rhrougE the
. .

- relations (19) whﬂe the broken lines utilize the Klier relations (21} and the tabular values
of f1 and fp from [10]. It is evident that fhé difference between the two represenfaﬁons '
grows with decreasing albedo.

Values of hemispherical reflectance based on solutions of the eqt;tcfion of radiative
transfer are also presented in Figure 5. In addition to values generated In the present sl;udy,
+ . published results from Lii and Ozisik [16] for media of finite optical thickness qnd Giovanelli

(17} for sem| Sinfinite media are mcluded. Three of the Lii and Ozmk cases were run for .

- comparison purposes with the present iterative program. Two of fhese were in agreement

~ to three significant figures using 8th order quadrature and 101 nodes. The third, within 1.4% |
of i'h.e Lii and Ozisik value, (To =5.0 and @ = .95) was rerun for 261 nodes and the results
were extrapolated in terms of 1;he reciprocal of the number of nodes. Extrapolation in this

“way to an infinite number of nodes yields agreement with the Lii and Ozisik value in the

fourth significant figure.
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The fransfer equation solutions must of course be regarded os. correct vch_.ué; for the
_reflectance of the scattering, absorbing medium. . The two representations of the Kube lka-
Muni( solutions both show the same qualitative trends as the trﬁnsfer equation solutions.
Quanﬁfaﬁvély, the Kubelka-Munk equations using the relations (21) show better agreement

with transfer equation solutions than when equation (19) is used.

-Flux and Flux Di\lrergénce'

The radiative flux and radiative flux divergence variations with depth are presented
in Figures 6 and 7 for the intensity field of Figure 3 Rp = .8). In these figures both t;epre-_
_sentations of the Kubelka~Munk exact and approximate fluxes and divergence are compcred-
with solutions of the transfer equation. The Kubelka=Munk results are seen to be regSOnub!e
approximations particularly when the Klier representation [10] is employed. For this partic~
“ular case (T =3.177) the Kubelka-Munk exact and approximate values are equally good.
' This is fortuitous except near thé incident flux boundary. It can be shown that oppr.oximai-e
and exact Kubelka-Munk expressions are idenﬁcal at 1 =0 and tend to deviate inca;easingly
~ -with depth. In all calculations performed, including several not presented here, Kubelka-
-‘Munk divergenc-:,e values were in excellent agreement with transfer equation valves at the
incident flux boundary. In view of the limitation of the approximate solutions discussed
following equation (31) two additional optical thicknesses are shown in Figure 7. It is evi-
- dent that B;)fh types of Kubelku-n;\f\unk solution deteriorate at the.highésr optical thickness——
- .the approximate solution the more rapidly.
:Also shown in Figures 6 and 7 are flux and flux—divergence distributions for the
anisc.;otropic cos;es of Figure 4. The increased penetration of the incident flux and net flux

for forward scattering and decreased penetration for backward scattering as discussed above
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are evident in Figure 6. Increased energy loss from the radiation field for forward
scattering and decreased loss for backward scattering are evident in the corres;bnding
inéréose and decrease in the diveréence distributions in depth in Figure 7. |
The influence of the albedo of highly scattering layers on the net radiative flux
and on a flux divergence parameter i$ shown in F-igures 8 cmd 9. 1t is evident that the
Kubelka~Munk exact solutions provide good approximations over the entire range ofw
-considered, parti cularly when equohon (21) is employed. It is also apparent that the
Kube Ika-Munk approximdrions are useful only for w >.995. That this is not a fafal
limitation is evident from Figure 5 which. shows that this rcr'mge includes optically thick
volume reflectors with reflectances as low as .85. The limitation of the approximate
' aivergence equation (31) discussed earlier is apparent in Figure 9. Notwithstanding
_their limitations, the Kubelka-Munk approximations may be utilized in the study of high

performance volume reflecting heat shields.

CONCLUDING REMARKS

At;curare numerical solutions of the equation of rodi;:five frcmsfer. have been
.develope'd for the evaluation of approximation methods for reflectance and radiative flux
- parémeters. Convergence and divergence criteria are given for the numerical solution of

the system of coupled differential equations t;rsed. New hemispherical reflectcr;ce values
are presented and compared with existing values in the literature. The Kube [ka~Munk and
Schuster Schwarzschild two-flux theories cre.obfained as consequences of the ;qdofion of
-radiative rransfer—un.der the assumption of directionally independent intensity fields. This
approach yields simple linear relations between transfer equation and Kubelka-Munk

scattering and absorption coefficients. An alternate inferpretation of the Kubelka-Munk

- theory as an exact theory of an asymptotic solution of the equation of radiative transfer
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yields slightly different nonlinear relations between the coefficients. Exact and approximate

Kube Ika-Munk solutions were compared with exact solutions of the equation of radiative

transfer using both inferpretations. The exact Kubelka-Munk solutions are found to provide

realistic approximations to transfer equation resulis over a wide range of conditions while

approximate Kube lka-Munk relations are applicable over a more restricted range of conditions.

10.

11,

12.
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" LIST OF CAPTIONS

Convergence Criteria for Numerical Calculations, w 9995 To =3.177
unless otherwise noted, x =0, Ry = .8, Negligible Emission.

Intensity Field for Isofroplcally Scattering, Nonabsorbing Medium with
Black Substrate. © = 1.0, T = 1.0, Medium Temperature = incident Flux

Temperature = 1111°K, Subsi-rafe Temperafure =555"K.

Influence of Quadrature Order on the Intensity Field for an Isotropicatly

‘Scattering Medium. w = .9995, T, =3.177, Negligible Emission.

Comparison of lnfensity Fields for Isotropic and Anisotropic Scattering.
To=3.177, w = .9995, Rg = .8, Neghgib{e Emission.

The Hemispherical Reflectance of lsotropic Scattering Layers Mounted on a
Opaque Substrate. Negligible Emission.

Comparison of Radiative Flux Distributions Calculated from the Transfer

-Equation and from the Kubelka-Munk Theory. T =3.177, @ = .9995,

RB = .8, Negligible Ernission.

- Comparison of Radiative Flux Divergence Distributions Caleulated from
the Transfer Equation and the Kubelka-Munk Theory. w=.9995, Ry = .8,
_Negligible Emission.

The Influence of Albedo on the Net Radiative Flux ot Three Ophccl Depths.
T,=3.177, Ry = .8, x =0, Negligible Emission.

The !nﬂuence of Albedo on fhe Rcdlatwe Flux Divergence at Three Opfical

Depths. T =3.177, Ry = =0, Negligible Emission.
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