
THEORETICAL CHEMISTRY INSTITUTE

THE UNIVERSITY OF WISCONSIN

TIME-DEPENDENT PERTURBATION OF A TWO-STATE

QUANTUM MECHANICAL SYSTEM

David Roger Dion

WIS-TCI-502 7 June 1974

PERTURBATION OF A TWO-STATE QUANTUMMECHANICAL SYSTEM (Wisconsin Univo)
341 p HC $20°25 CSCL 12A Unclas

G3/19 54893

MADISON, WISCONSIN

st~ S

MrADISON, WISCONSIN

https://ntrs.nasa.gov/search.jsp?R=19740021915 2020-03-23T06:22:08+00:00Z



TIME-DEPENDENT PERIODIC PERTURBATION

OF A TWO-LEVEL QUANTUM SYSTEM

David Roger Dion

(Under the supervision of Professor Joseph 0. Hirschfelder)

ABSTRACT

This thesis is concerned with a two- (non-degenerate) level

quantum system interacting with a classical monochromatic radiation

field.

The existing work on this problem is reviewed and some novel

aspects of the problems are presented. The new contributions are:

(1) The problem is treated in a more general manner than

previously: all values of the four essential parameters are

considered; a diagram shows which of thirteen methods is optimum

for a given parameter range; each of these methods is derived and

discussed; and, three of these methods (T3, T5 and T8) are novel.

(2) Using the Floquet (1883)-Poincare (1892,1893,1899) theory

and following Shirley (1963,1965), the time-dependent parts of the
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wavefunction are -Fourier analyzed to obtain an equation analogous to

a static "Schrodinger Equation." The Fourier Expansion Coefficients

play the role of an orthonormal complete basis. The Floquet

characteristic exponent, p , plays the role of energy. Zeroth-order

exact degeneracies occur when the time-dependent perturbation is weak

and its angular frequency is very large. Here, standard degenerate

Rayleigh-Schrodinger perturbation theory is used to give novel

solutions (T5).

(3) Resonances correspond to zeroth-order almost degeneracies

in the static problem. Certain-Hirschfelder (1970a,b,c) partitioning

perturbation theory (T6 and T7) is used to overcome difficulties

inherent in using Salwen's (1955) (used by Shirley) or Winter's (1959)

almost degenerate perturbation theories.

(4) When no near or exact zeroth-order degeneracies occur in

the static problem, non-degenerate Rayleigh-Schr6dinger

perturbation theory is used to obtain Tl-solutions. It is shown

that these solutions are equivalent to Sen-Gupta's (1970) solutions

(T2).

(5) The Langhoff-Epstein-Karplus (1972) factorization of the

time-dependent wavefunction is applied to the two-level system and,

novel approximations, (T3), to the two Floquet Solutions are thereby

obtained.

(6) Solutions for the two-level system are obtained by using

the Langhoff-Epstein-Karplus (1972) formalism (which was formulated

ii



for the infinite-level system). The adiabatic turn-on is explicitly

considered and the following important properties of.the resulting

solutions are emphasized:

(a) The solutions are of the Floquet form: D(r,t) exp[-iT] ;

where 0 is a space-dependent function periodic in the time, and P

is a constant.

(b) The solutions illustrate Young and Deal's (1970) adiabatic

theorem which asserts that an adiabatic turn-on of a periodic

perturbation puts a system in a Floquet Mode Solution.

(c) The solutions converge asymptotically whenever the energy

Ssplitting divided by angular frequency almost equals a non-zero

positive integer because of almost vanishing denominators. The

Langhoff-Epstein-Karplus solutions for the infinite-level system

near resonances should have the same sort of asymptotic convergence

difficulties.

(7) If a(T) and b(T) are the wavefunction's time-dependent

coefficients, then, the equations for (a(T)/b(T)) and (b(T)/a(T))

are treated by singular perturbation theory (T8) to obtain the two

Floquet Solutions for a(T) and b(T) as power series expansions

in powers of the angular frequency divided by the energy splitting.

This novel treatment is peculiar, since, the singular perturbation

solutions

(a) do not, in general, behave like outer solutions.
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(b) may be used to generate both linearly independent Floquet

Solutions without ever having to find "inner solutions."

(8) The Floquet-Poincare Theory allows a(T) and b(T) to be

of the form Tc(T)exp[-ipT] where c is periodic and p is

constant. Whereas previous authors have not even considered this,

in Chapter III a proof that it cannot occur is given.
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Intro-1

INTRODUCTION

Motivation

The Semi-Classical Theory of the interaction of radiation and

matter combines the great triumph of Nineteenth Century physics,

Maxwell's Equations, with the great triumph of Twentieth Century

Physics, the laws of quantum mechanics. In the Semi-Classical

Theory, the electromagnetic radiation is described by Maxwell's

Equations, and, the radiation field is thereby specified with

arbitrary accuracy. The material system, however, is described by

the laws of quantum mechanics.

Although, as Dirac (1927) first showed, the field may also be

quantized, the Semi-Classical Theory alone explains many phenomena.

Wentzel (1927) described the photoelectric effect, Klein and

Nishina (1929) correctly explained the scattering of radiation from

a free electron and Klein (1927) treated absorption and stimulated

emission of radiation by an atom, without quantizing the field.

Bloembergen (1965) has treated nonlinear optics in a completely

Semi-Classical manner. In fact, it is generally conceded that the

radiation field needs to be quantized only in treating such

phenomena as the Lamb Shift and the Spontaneous Emission of radiation.

In this thesis we are concerned with the simplest Semi-Classical

system: one in which the quantum system has only two energy levels
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and the classical radiation field is monochromatic. In spite of its

simplicity, it is an important system. A thorough understanding of

it is a necessary prelude to the thorough understanding of a many-

leveled quantum system in a classical field. It is an interesting

system since it exactly corresponds to a spin 1/2 particle in a

sinusoidally oscillating electric or magnetic field. It is also a

good model for a many-leveled system in which only two states

strongly interact under the influence of the time-varying field.

The two-level system is Semi-Classically described by two first

order, coupled, linear, homogeneous differential equations with

periodic coefficients. Floquet (1883) studied the solutions of the

general n-th order linear differential equationwith periodic

coefficients and Poincare (1892,1893,1899) investigated the practical

construction of such solutions. Moulton (1920,1930) completely

describes the solutions for n first order coupled, linear,

homogeneous differential equations with periodic coefficients. From

these studies, the functional form of the solution to the two-level

system is known. In spite of this fact, a closed form solution has

never been found. Many authors have sought approximate solutions

and their studies appear under such diverse titles as "Stark Effect

in Rapidly Varying Fields"* and "Optical Pumping and Related Topics."t

Furthermore, the appropriate approximate technique depends on the

Autler and Townes (1955).

Series (1970).
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field's strength, its frequency and the magnitude of the energy

splitting.

No review of the two-level problem appears in the literature,

and, there is therefore a need for a systematic, complete review

of the problem. This thesis is an attempt to fill that need.

However, this thesis is more than a review since it discusses some

novel aspects of the problem. These new contributions are:

(1) Treating the problem in a more general fashion than

previous authors:

(a) If a (r) and b(r) are the wavefunctions for the two

states and V(r) is the spatial part of the time-dependent

perturbation, then most authors consider Vab = <~a(r)(V(r) b (r)>

but neglect Vaa and Vbb . We consider Vaa and Vbb as well

as Vab

(b) We introduce into the Hamiltonian, an operator y which

allows for transitions out of either of the two levels which are not

caused by the time-dependent perturbation. However, y does not

allow for spontaneous transitions from the upper to the lower state.

(c) All possible values of the four essential parameters

occurring in the problem are considered.

(d) A diagram, Figures VI-A and VI-B, is given which shows

which technique is best to use for any particular choice of

parameters. There are eight different perturbation methods and

three numerical techniques which are optimum for different ranges

of the parameters. This diagram summarizes our study of the
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convergence and range of applicability of a total of nine perturbation

techniques and four numerical techniques.

(2) Using the Floquet (1883)-Poincare (1892,1893,1899) Theory,

we follow Shirley (1963,1965) and Fourier analyze the time-dependent

parts of the wavefunction to obtain an equation analogous to a

static "Schrjdinger Equation." The Fourier Expansion Coefficients

play the role of an orthonormal basis set which spans the space of

the "time-independent Hamiltonian." The Floquet characteristic

exponent, p , plays the role of energy. When the angular frequency

of the time-dependent perturbation is much larger than any of the

system's resonance frequencies, there is a zeroth-order double

degeneracy between each of the Fourier components of state a and

the corresponding Fourier component of state b . Our new

contribution is to solve the problem of the perturbation's effect

by using standard degenerate Rayleigh-SchrSdinger Perturbation

Theory. This new method is T5.

(3) Resonances occur whenever the ratio of the energy splitting

to the perturbation's angular frequency is almost equal to a

positive non-zero integer, n . In the static formulation, this

corresponds to a zeroth-order almost degeneracy between the j-th

Fourier Component of state a and the (j-n)-th Fourier Component

of state b . This correspondence has been noted before by Winter

(1959) and Shirley (1963,1965). Our contribution is

(a) using the Certain-Hirschfelder (1970a,b,c) partitioning

perturbation theory to handle these resonant almost-degeneracies (T6,T7).
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(b) demonstrating that Certain-Hirschfelder theory is the

preferred way to treat these almost degeneracies.

Shirley treated them by using Salwen's (1955) almost degenerate

perturbation theory which, as we prove in Chapter XI, will not yield

exact results even if carried to infinite order. Winter's scheme

(which is Heitler's (1960) perturbation theory extended to handle

almost degeneracies) cannot be used to treat the non-hermitian static

Hamiltonian which arises when the rate of non-radiative transitions

out of state a does not equal the rate of non-radiative transitions

out of state b . We use "non-radiative transitions" to mean those

transitions not caused by the time-dependent perturbation (i.e. those

caused by the introduction of the operator y into the Hamiltonian).

(4) We take note of the fact that when the time-dependent

perturbation's angular frequency is less than the highest resonant

frequency but not almost equal to any of the resonance frequencies

or zero, then no Fourier Coefficients are almost or exactly degenerate.

Here, standard non-degenerate Rayleigh-Schrodinger perturbation theory

is used to obtain approximate solutions (Tl) which are equivalent to

the solutions obtained by application of Sen Gupta's (1970) technique

(T2). Our contribution here is to show that even though T2 does not

involve a reduction of the original time-dependent problem to a

static problem, it is equivalent to doing so and then using standard

non-degenerate Rayleigh-Schridinger Perturbation Theory.

(5) Langhoff, Epstein, and Karplus (1972) develop a formalism

for finding the steady-state solutions for the general quantum
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system, i.e., the solutions which arise when the quantum system is

in one of its non-degenerate stationary states before the time-

dependent periodic perturbation is adiabatically turned-on. An

aspect of their treatment is writing the time-dependent wavefunction

as a time- and space-dependent periodic part multiplying an

exponentiated part. The argument of the exponent only depends on

time and it consists of terms linear in time and terms periodic in

time. Our minor contribution here is the simple application of their

factorization to the two-level system to obtain novel approximate

solutions (T3) to the two linearly independent Floquet Solutions.

(6) The Langhoff, Epstein, and Karplus (1972) paper gives a

method of finding the steady-state solutions for a general quantum

system. Their formalism is applied to the two-level system and

solutions are thereby obtained. The adiabatic turn-on is explicitly

considered and the following points about the two-level solutions

are emphasized.

(a) The solutions are of the Floquet form. @(r,t)exp[-iwr] ;

where 4 depends on spatial coordinates and is periodic in the time,

and p is constant.

(b) The solutions illustrate Young and Deal's (1970) assertion

that turning a periodic perturbation on adiabatically brings the

system into a Floquet Normal Mode Solution.

(c) The solutions converge asymptotically whenever the ratio of

the energy splitting to the perturbation's angular frequency is

almost equal to a positive non-zero integer because of almost
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vanishing denominators. The same convergence difficulties should

occur when the Langhoff-Epstein-Karplus technique is applied to the

infinite-level system near a resonance.

We have privately communicated the foregoing convergence

analysis to S. Epstein and P. Langhoff and they said they were 
aware

of these difficulties. No such analysis, however, appears in the

literature and we therefore feel that putting this discussion of

convergence in print is a contribution.

(7) Another novel contribution is the use of singular perturbation

theory, in Chapter XIII, to find linearly independent Floquet Solutions

as a power series expansion in (1/E), where, E is the energy

splitting divided by the angular frequency. These solutions converge

in a range of parameters not covered by any previous perturbation

treatmentsg the regime in which both the field strength and energy

splitting are large compared to the angular frequency of the time-

dependent perturbation. Singular perturbation theory is used to

find outer solutions for (a(T)/b()) and (b(T)/a(T)) where a(T)

and b(T) are the time-dependent coefficients of a(r) and *b(r) .

The Floquet Solutions for a(T) and b(T) are then recovered from

these quotients. A unique feature of this treatment is that inner

solutions are never needed. the outer solution for (a(T)/b(T)) is

the inner solution for (b(T)/a(T)) and vice-versa. We have not

found any other example of singular perturbations having this unique

feature.
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(8) We prove that general solutions for a(T) and b(T) which

contain terms of the form

r (T) e - i t

(where P is a constant and 4(T) is a periodic function), may

never occur. (See Chapter III.)

Summary

The two-level system's Semi-Classical Hamiltonian is written

down in Chapter I. None of the spatial-interaction-operator's

matrix elements are allowed to vanish and we phenomenologically allow

for non-radiative transitions out of either of the two levels by the

introduction of an operator y . (y does not, however, take into

account spontaneous transitions from the upper to the lower of the

two states.)

The Dirac form of solution is assumedg

T(rt) = na(t) a(r) + nb(t)1b()

where the two states are labelled "a" and "b" . From the

Schrddinger Equation, we derive differential equations for na and

nb •

In Chapter II, a new independent variable, T , is introduced

and new functions a(T) and b(T) are defined in terms of n and
a

nb . Eqs. (11-4) and (11-5) are taken as the working equations for
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the entire thesis since they contain only four independent parameters,

whereas, the equations for na  and ob contain eight independent

parameters. The four independent parameters are called a, 8, c and

6 . a and 8 are related to the field strength and the magnitude of

the spatial-interation-operator's matrix elements. e is related to

the energy separation between levels and 6 is related to the rate

of non-radiative transition out of either of the two levels.

In Chapter III, we describe the three possible functional forms

of the exact general solution. Proofs of these are given in Appendix

A. The general solutions are arbitrary linear combinations of two

normal (or Floquet) modes. These Floquet modes involve a characteristic

constant (or exponent), p , and periodic functions, 0 , which have the

same periodicity as the cost-perturbation. One of the three possible

forms (Form III: see Eq. (111-12)) contains terms linear in T . We

give a proof that solutions of this form cannot occur for the two-level

system, whereas, previous authors have not even considered the

possibility of Form III solutions. Chapter III also includes

derivations of some useful properties of the exact solutions.

There are four limits in which exact solutions to Eqs. (11-4)

and (11-5) are known. These are discussed in Chapter IV. We find,

however, that no one perturbation technique solves the problem for

arbitrary values of a, 8, 6 and e . In fact, nine different

perturbation techniques (Techniques Tl through T9) are described in

this thesis. For some values of a, 8, 6 and e , no perturbation

solutions have been found and numerical techniques must be used.
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Four such numerical techniques are given and they are Techniques

T10 through T13.

The thirteen techniques are listed in Table VI in Chapter VI.

This table gives the descriptive name of each technique, its range

of applicability and where, in this thesis, it is discussed.

Figures (VI-A) and (VI-B) diagrammatically indicate which technique

is best depending on the values of a, B, 6 and 6 . Throughout this

thesis, care has been taken to note the range of convergence of each

and every perturbation technique. Not all of the thirteen techniques

are totally distinct. Techniques Tl and T2 are, respectively, just

the static and dynamic formulation of the same approximation scheme.

Techniques T3 and T4 are equivalent if 6 vanishes. T6 and T7 are

essentially identical and we split them up for organizational purposes.

Following Shirley (1963,1965), the dynamic problem of Eqs. (11-4)

and (11-5) is transformed into a static eigenvalue-eigenvector problem

in Chapter V. With this transformation, the whole arsenal of quantum

mechanical stationary state approximation techniques can be brought

into play. For example, non-degenerate Rayleigh-Schrodinger

Perturbation Theory (its formulation and convergence is discussed in

Chapter VII) is used as Technique Tl. It is shown to be the static

equivalent of Sen Gupta's (1970) treatment which is called T2.

In Chapter VIII we also describe T3: solving the equations for

the quotients a(T)/b(T) and b(T)/a(T) by a perturbation expansion

in the field strength. Although no other authors have specifically

treated the two-level problem in this manner, T3 is merely an
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application of a more general time-dependent perturbation theory given

by Langhoff, Epstein, and Karplus (1972). T4 is the Langhoff-Epstein-

Karplus (1972) v"steady-state" perturbation theory and we hopefully

clarify their formalism by applying it to the two-level system with

6= 0 .

T5 is the application of degenerate Rayleigh-Schrodinger

perturbation theory to the static eigenvalue-eigenvector problem.

This technique, which is described in Chapter IX, yields novel

approximations to the problem.

When the radiation's angular frequency, w , is such that

nw = AW (where AW is the energy difference between states and

n is a positive non-zero integer), zeroth order near (or exact)

degeneracies occur in the static formulation of the problem. This

difficulty is overcome by using the Certain-Hirschfelder (1970a,b,c)

partitioning perturbation theory which is described and discussed in

Chapter X.

The case of Th = AW corresponds to the main resonance. In

Chapter XI, the Certain-Hirschfelder theory is applied to this case

(T6). We also discuss the treatments of the two-level system's

main resonance given by Rabi (1937), Bloch and Siegert (1940),

Stevenson (1940), Shirley (1963,1965), Silverman and Pipkin (1972),

Winter (1959) and Pegg (1973b). Where appropriate, these techniques

are compared to T6. Shirley's formulation of the main resonance

differs from ours only in the perturbation theory used2 he uses a

perturbation theory due to Salwen (1955). At the conclusion of
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Chapter XI we therefore show how Salwen's perturbation theory will

not give exact results even if it is carried to infinite order.

Technique T7 is intzoduzed in Chapter XII and it is just the

Certain-Hirschfelder partitioning perturbation theory applied to the

sub-harmonic resonances where sub-harmenic resonances occur whenever

ifnrw z AW (nr  is a integer greater than unity). We find that

depending on the values of nr , and N (where N is the order

of field strength through which the solutions are correct), T7 is

equivalent to Tl. We, therefore, give Figure (XII-A) which

diagrammatically tells when TI is preferred over T7. Chapter XII

concludes with a discussion of Shirley's (1963,1965), Pegg's (1973b)

and Winter's (1959) work. Particular attention is paid to Winter's

(1959) treatment, because, although his formulation is quite different

from T7, we show that his results are exactly the T7 results when

6 = 0 and "Certain-full-normalization" is used in T7.

Chapter XIII contains the most novel aspect of this thesis: the

application of singular perturbation theory to the two-level system

(T8). In Technique T8 we solve the equation for b(T)/a(T) to find

one Floquet Mode as a power series in inverse powers of E . We then

solve the equation for a(T)/b(T) to find the other Floquet Mode as

a power series in inverse powers of E . Even though singular

perturbation theory is utilized to obtain both solutions, we obtain

the anomolous result that

(a) the singular perturbation solutions do not, in general,

behave like outer solutions.
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(b) the singular perturbation solutions may be used to generate

both linearly independent Floquet solutions. Thus, we never need to

find "'inner solutions."

The final perturbation technique, T9, is introduced in Chapter

XIV. T9 has been used by Shirley (1963) and Series (1970) and it is

extended to include non-vanishing values of the parameters 8 and

6 . This technique is useful when the applied field is quite strong

compared to the energy splitting between states. It is formulated as

a matrix eigenvalue-eigenvector problem which is solved by degenerate

Rayleigh-Schr6dinger Perturbation Theory.

The main body of this thesis concludes with four numerical

techniques which are to be used when a, B, 6 and E are such that no

perturbation techniques are available. These numerical techniques

are introduced and compared in Chapter XV,

Chapter XVI contains a recipe for using the Meadows (1962)-

Ashby (1968) numerical technique (T1O). It consists of finding the

characteristic exponent, v , by solving a transcendental equation

for p which involves the determinant of a v-independent infinite

matrix. The exact form of the transcendental equation depends on

whether 6 vanishes and whether e is almost (or exactly) equal to

an even integer. We therefore distinguish between Case A (Eq. (XVI-2))

and Case B (Eq. (XVI-4)). These two equations are derived and the

chapter concludes with a discussion of numerically finding the Fourier

Expansion Coefficients of the Floquet "N-functions."
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T11 (the Autler-Tornes (l955) nurearical solution) is describe6

and derive. j.. Chapter XVI. I't conrists of finding by

ncmericall avin- Eq,. (XVII-1) which is an equation equating i

with the sum of t-ic infinite continue( frac:tins which theselves

contain i . The Fourier Expansion Coe 'ficient- are fot.nd by

evaluating p-dependent infinite continul fract: ons. must vani .h

if Ti1 is to be used.

T12 is introduced in Chapter X'III. It is simply direct computer

diagonalization of a rea!, syrnetric tridiagonal matrix. It only

applies when both 6 and B vanish.

The last numerical technique (T13) applies for arbitrary values

of a, , 6 and E . It is diccussed in Chapter XIX and it involves

direct numerical solution of Eq,. (II-4) and (II-5) for specified

initial conditions. These solutions are used to construct a 2 x 2

matrix, the eigenvalues of which are directly related to the

characteristic exponents (see Eq. (XIX-12)).

There are two appendices. Appendix A contains an exposition of

Floquet Theory and Appendix B contains a discussion of the equations

Lfor a*(T)a( , b*(T)bo') and a*(T)b(T) . References are placed

after the appendices.



I. FORMULATION OF THE PROBLEM c 8

best avala _ -

The Hamiltonian for the zwo-level system is given by (1-1).

H H(r) + 2FV(r)ccs wt - Y(I-)

In (I-1) f has been set equal to unity, H0(r) is the Hamiltonian

for the unperturbed system for which

H 0 (r r) r) W.(r) "j=a,b

For convenience we will define Wb > W F is the field strength

and the field interacts with the system through the interaction

operator V(r) . The operator y is defined by:

Ya(r = ya () and Wb(r) b b(r)

Ya .and yb are scalars. The effect of y is to introduce damping

constants into the wavefunctions. Thus.y takes into account in a

phenomenological way transitions away frcm levels Va and 4 b which

we are not explicitly considering (Weisskopf (1930)o Also see

Maitland (1969), Chap. 3, Sec. 3)). These "away rransitions" could

be, for instance, spontaneous relaxation by emission of radiation,



1-2

collisional de-excitation, or relaxation by giving up energy which

goes into lattice excitation. Whatever the "away transitions" are,

they can be taken into account by the inclusions of y as long as

these transitions obey a linear rate law.

If Ya and yb are not both zero, the normalization of the

wavefunction for the two state system is not preserved. Note that

this present formulation, with y defined the particular way it has

been defined, does not take into account spontaneous transitions

from the upper to the lower of the two states.

The time dependent Schrodinger equation for the system is:

i~(r,t) = HY(r,t) (1-2)

In (1-2), t has again been set equal to unity and the dot over T

denotes differentiation with respect to time. Assuming that

T(r,t) = na(t) a(r) + nb(t)lb(r) (1-3)

substitution of (1-3) into (1-2) yields equations for na and nb

i a = Wa0 - ia 2 + 2FVaacos wtn a + 
2FVabcos tn (1-4)

Yb
i b  = Wb b - i - b + 2FVab cos tnl + 2FVbbcos tnb (1-5)

V ij < (rCV(r)j r
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(1-4) and (1-5) are the time-dependent equations about which we will

be concerned in the rest of this report.
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II. STATEMENT OF WORKING EQUATIONS

The time-dependent equations (1-4) and (1-5) can be simplified

by replacing na (t) and nb(t) by the new variables a(t) and

b(t) which are defined by

n ( t ) = a(t)exp[-iWa t -2 t - 21' -a sin wt] (II-1)

Ya FV

Y FV
nb(t) = b(t)exp[-iW t - - t - 2i a sin ot] (11-2)

Then if we let wt = T and define the following reduced parameters:

= (Wb -Wa)/w , a = FVab w

(11-3)

8 = F(Vbb - Vaa)/W , 6= 3 (Yb - Ya ) / W

equations (1-4) and (1-5) become,

a(T) = - 2 ia(cosT)b(T) (11-4)

b(t) = -i(E - is + 28cos T)b(T) - 2 ia(cosT)a(T) (11-5)

We will take equations (11-4) and (11-5) to be the working

equations for the rest of this report. They are convenient
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since they only invorve four independent parameters whereas

equations (1-4) and (1-5) had eight independent parameters.

In Appendix B, the time-dependent equations are expressed in

terms of the square of the amplitudes a*(r)a() and b*(T)b(T)

as well as the correlation function a*(T)b(T) . However, these

equations are not used in the remainder of this report since they

offer no advantages in terms of simplifying the mathematics. For

the case of 6 = 0 , these amplitude equations are, however,

analogous to certain classical vector equations (Feynman (1957)) and

they therefore enable us to relate the two-level time-dependent

problem to the easily visualized problem of a constant-length three-

dimensional vector rotating in space.
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III. THE EXACT SOLUTION

Although we are ignorant of the exact solution of equations

(11-4) and (11-5) in terms of elementary functions, we know its

exact functional form from the Poincare-Floquet theory which is

explained in detail in Appendix A. The Poincard-Floquet treatment is

used in many branches of applied mathematics. In the present section

some of the theorems are given and specific applications to the present

problem are pointed out.

To fit equations (11-4) and (11-5) into the notation used in

Appendix A, let

x1 = a(T) , x2  = b(T)

If there are two sets of particular solutions {al(T), bl(T)}

and {a2 (T),b 2 (t)} , then, in the notation of Appendix A, al(T ) =

x1 1 , bl(T) = x2 1 and a2(T) = X 12 and b2 (T) = X22

If we further let

611(T) = 0 e 1 2 (T) = -2iccos T

e2 1 (T) = -2i1cos T e 2 2 (T) = -i(c - iS + 28cos T)

Moulton (1930), Chap. XVI. For less detailed discussions see:

Ince(1956), Sect. 15.7.; Margenau (1956), pg. 80. Brillouin (1948 and

1950) also discusses the Poincar6-Floquet theory.
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Then equations (11-4) and (11-5) become a special case of the

following set of homogeneous linear differential equations.

dx1 (T)

dT - e 1 1 (T)x 1 (T) + e 12 (T)x 2 (t)

(III-1)

dx 2 (T)

d = 2 1 (T)x 1 (T) + e 2 2 (T)x2(T)

Floquet-Poincarg Theory for Periodic Equations

If, in (III-1), the time-dependent functions, ij , are

periodic with the period of 2r ,

8ij(T + 2n) = ij () , (111-2)

then the solutions to (III-1) are arbitrary linear combinations of

two normal modes. The normal (or Floquet) modes involve a

characteristic constant (or exponent), p , and functions, .

The O's have the same periodicity as the 0 ij's . Thus

O(T + 21) = O(T) . (111-3)

(n.b., these are not to be confused with the "capped" $'s in Appendix A.)

There are only three possible forms which the solution can take.

It should be noted that most statements of Floquet's theorem which

appear in the literature are incomplete, i.e. they only allow for "Form

I". Moulton (1930), however, gives a very complete statement and our

discussion, in Appendix A, is complete for the two-level system.
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Form I. (p, l p2 + n , n any integer or zero)

The two modes are

{Xl = e-i11t 11 , x2 = e-iVT 4 2 1  (111-4)

and

{xl = e 1 2 2 , 2 = e-1'22} (111-5)

These linearly independent solutions may be linearly combined to form

a general solution given by (111-6). The constants C1 and C2 are

chosen to satisfy initial conditions.

xl = Cle-i Tf11 + C2 e-iP2T 12

(111-6)

x2 = Cle-i' 2 1 + C2e-i2T 22

Form II. (G = P1 = P2 + n , n any integer or zero)

When p~ = P2 + n , there are two possible forms of solution.

For one, the Floquet modes are

{xl = e-i T 11 , x2 = e-ip-r 21 (111-7)

and

{xl = e-ip 1 2 , x 2 = e-iP1T 2 2 } (111-8)
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These may be combined to form the general solution.

X1 = e (Ci 11 + C2412)

(111-9)

X2 = e (C10 2 1 + C24 22)

Form III. (G = P= = P2 + n , n any integer or zero)

For the other type of solution corresponding to 1 = 2 + n ,

the Floquet modes are

{xl = e ii1 , x2 =" e 21i (III-10)

and

{xi = e1T [Tj11 + 12] , 2 = e [T 2 1 + c 2 2 ]} (III-11)

which may be combined to form the general solution which can satisfy

arbitrary initial conditions.

x I = e (Cll1 1 + C2[T 1 1 + 0121)

(111-12)

X2 = e-iPT(C1021 + C2[T21 + 022])

Notice that the "Form III" solutions contain terms linear in t . No

such terms appear in the "Form I" or "Form II" solutions.
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We wish to state at this point some theorems which will be

useful in later stages of the report and which will give us some

information in addition to the bare-boned Floquet results.

Relationship between Any Two Solutions

The first result we wish to state gives a relationship between

any two solutions. Assume we have found two solutions to (III-1).

If we form the quantity D(T) defined by

D(T) = xllr()x 2 2 (T) - X12(T)x21(T) ,

then in accord with Theorem I in Appendix A, we have the useful result

D(t) = D(ro)exp[J (6 1 1(t + 82 2 (r'))dr'] (111-13)

If we apply (111-13) to (11-4) and (11-5) and let TO = 0 , we find

that

D(T) = D(0)exp[-icT - 6r - 2isin T] (111-14)

The proof (111-13) is very simple and merely involves differentiating

D(T)* to find

dD(r) D(r)(0 1 1 (T) + 82 2 (T))
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This is a differential equation for D(T) which may be immediately

solved to give (111-13).

From Eq. (111-14) it follows that for finite values of ,

D(T) can only be zero if D(O) = 0 . Furthermore, if D(0) = 0 ,

then D(T) is zero for all times. Thus, if two particular solutions,

{xll(T),x2 1 (T)} and {x12(T),x22(T)} , correspond to a non-vanishing

value for D(0) , they form a fundamental set of solutions to Eqs.

(11-4) and (11-5).

The Normalization Equation

We wish to now consider the function A(T) which is defined by:

A(T) = xI(T)x1(r) + x 2(T)x 2(T)

{xI(T),x 2 (T)} is any solution to equations (III-1). Differentiating

A(T) we find, in general,

dA(T) * * * *
dr = x 1xl(e 1 + eIl) + x 1x 2 (e 2 1 + 812)

+ x2 x2 (8 2 2 + 022) + x1 x 2 (e 1 2 + 021)

For the special case of equations (11-4) and (11-5) for which

x, = a and x2 = b , we have

d * * *
d [a (T)a(T) + b (T)b(T)] = -26b (r)b(r) (111-15)
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(111-15) tells us that for the case of 6 = 0 , A(T) is a constant

for all time. When 6 # 0 , this is not true.

Since Y(r,t) is given by Eq. (1-3) in terms of na and nb

which are given by Eqs. (II-1) and (11-2), the relationship between

the normalization integral and A(T) = a a + b b is

(r,t)Y(r,t)dr = aa + bb

= A(T)exp[- (ya )T]

Thus, in order for the normalization to remain invariant with respect

to time, it is necessary that, in addition to 6 = 0 (or ya =b )

that ya = 0 . This is consistent with the statement that both ya

and Yb remove particles from both state a and state b

Knowledge of A Second Linearly Independent Solution

From Knowledge of Any Particular Solution:

6 = 0 and 6 0 0

Let us first rewrite equations (11-4) and (II-5) in the following

manner:

a = -ifb

(111-16)
b = -[ig + 6]b - ifa

f(T) and g(T) are defined in the following manner:
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f(T) = 2acos T ; g(T) = E + 28cos T

We wish to consider (111-16) first when 6 = 0 and then when 6 # 0

Note that the results we derive will apply to any system in which

f(T) and g(T) are real functions and 6 is a real parameter.

Case I: 6 = 0

Suppose that when 6 = 0 , we have found a particular solution to

(111-16) which we will call {al,bl} . We can immediately write down

another linearly independent solution which we will call {a2 ,b2 }.

The second solution is given by

* -' [ig]dt'
a 2  = - ble

(111-17)
* -f [ig]dT'

b2 = ale

From equation (111-17) it follows that

D(0) = a l al+b l b 1  = A(0)

For the solutions of (11-4) and (11-5) where g(T) = e + 2Bcost

and 6 = 0 , equation (111-17) becomes

* -ieT- 2 isinT
a2  = - ble

(111-18)
* -ieT-2iSsinT

b 2 = ale
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This second solution (111-17) may be derived by comparing

(111-15) and (111-13). For this case of 6 = 0 , equation (111-13)

becomes

al(T)b 2 (T) - bl(T)a 2 (T) = D(0) e - [ig]dT'  (1-19)

According to the normalization equation (equation (111-16)), we

have, when 6 = 0 ,

al(T)al(T) + bl(T)bl(T) = A(0)

A(0) is some non-zero constant since we assume that {aj(T),bl(T)}

is a non-trivial solution. Multiplying both sides of the normalization

equation by

(D(O)/A(O))exp[- [ig]dT'] ,

we find:

D(0) * d
A(O) [a1(T)a 1 (T) + bl(T)b( T )]e -fO [ i g ] d T '  D(O)e - f [ i g ] d T '

(111-20)

Comparison of (111-20) with (111-19) demonstrates the validity

of (111-17).
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Case II: 6 #0

Here we are considering (111-16) for the case of 6 0 .

Suppose that we have found a particular solution to (111-16) which we

will call {al,bl} . Form the functions {al,bl} by replacing 6

wherever it appears in {al,bl} by (-6) . {aj,b I} must obey the

following equations:

a - -ifb 1

bl = -[ig - 6]b 1 - ifal

We assert that another linearly independent solution to (111-16) is

given by:

a2 - ([1) exp(- [ig + 6]dT']

(111-21)

b2 = (a1) exp[-J ,ig + 6]dr']

as long as g(T) and f(T) may be expanded in a power series in T

for sufficiently small values of T For the case of equations

(II-4) and (11-5) where f(T) = 2acost and g(T) = E + 28cost

(here, therefore, both f(T) and g(T) can be expanded in power

series in T ), equation (III-21) becomes

a2 (T) = - (bl) exp[-iET - 6T - 2iSsint]

(111-22)

b 2 (T) = (al) exp[-iT - 6 - 218sinT]
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The proof of (111-21) involves two steps. The first is showing

that the solution, {a2 ,b2} of equation (III-21), .does indeed satisfy

(111-16). This is shown by simple differentiation of (111-21) and

utilization of the equations for a l and bl

The second step is showing that {al,b 1)} and {a2 ,b2 } are

linearly independent. The linear independence is shown by proving

that

ab 2 - ba 2  a(a 1 )* + b(b 1 ) *]exp[-f [ig + 6]dT'] $ 0

0

Since g is by hypothesis pure real, the exponential term in the

previous equation can certainly never equal zero for finite values

of T . The linear independence is therefore shown by demonstrating

that

B(T) = al(al) + b 1 (b 1 ) j 0 . (111-23)

Utilizing the differential equations for al, bl, a1  and b1 , we may

eail . ,r, aL. the deruLvative of B(T) with respect to T is zero.

Therefore,

al(al) + bl(b 1 ) = constant

We must show that this constant is non-zero. This is done by looking

at the solution to (III-16) when all quantities are expressed in their

power series in i . e therefore assume
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f(T) = f(0) + f(1)T + f(2)T2 +

(111-24)

g(T) = g(0) + g(1)T + g(2)T2 +

If we look for the particular solution for which a(0) = a ,

b(O) = b(0) where a(0) and b 0) are arbitrary complex numbers

and both may not simultaneously be zero, for sufficiently small

values of T , we may write

a(T) = a(0) + a(1) + a (2)2+ ...

(111-25)

b(T) = b ( 0 ) + b(1)T + b(2)T2+...

Using the expansions (111-24) and (111-25) in (111-16), we find that

the resulting equations for the expansion coefficients, a(n) and

b(n) , may be solved in terms of the arbitrary constants a and

b(0) and the given values of 6 , the f(n)'s and the g (n),'s

For instance,

a = if(O)b ( )

b(1) = (0ig)b(0) if (0)a (0) + 6b0)

If some particular solution is

0
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a = a(0) + a(1) +

(111-26)

b = b ( ) + b(1)' +

by definition we have,

a = a ( 0) + a(1)T +

(111-27)

b = b ( 0 ) + [b( I ) - 26b(0)]T +

Using (111-26) and (111-27) in (111-23) we find that

a(a) * + b(b)* = a(O) (a(0) * + b ( 0 ) (b( 0 ) * (111-28)
a(a) + (b) = a (a ) + b ( ) (III-28)

The term on the right-hand side of (III-28) can never be zero unless

both a(0) and b(0) are zero. This situation, by hypothesis,

cannot occur. Therefore, we have demonstrated that equations (111-21)

and (111-22) give linearly independent second solutions.

"Form III" Solutions Can Never Occur for

Equations (111-16)

Provided that the functions f(r) and g(r) which appear in

(111-16) are periodic so that

f(T) = f(T + P) ; g() = g(T + P) ,
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the first Corollary of Appendix A tells us that there is always one

particular solution to (111-16) of the form

l() = e-iTal() , bl(T) = e-irbl(T) . (111-29)

Here, P is a constant and gi(T) = i(T + P) (i = al,bl) . Certainly

the functions in (III-29) have no terms linear in . According to

equation (111-21), we can write down another linearly independent

solution as

a2(T) = -e T (r)expl- [ig + 6]dT']

* (III-30)
b2(T) e al (T)exp[-I ig + 6]dT']

The "barred" quantities are related to the "unbarred" quantities by

replacing (6) wherever it appears in the "unbarred" quantities by

(-6) . Certainly, because of the way they have been defined, a2

and b2  can have no terms in them which are linear in T Since

{al,bl} and {a2 ,b2 } are linearly independent, all solutions to

(III-16) may be written as

a = qlal + C2a2

b = C1bj + C2b2
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Ci and C2 are arbitrary constants. Therefore, there are no

solutions to (111-16) having terms linear in T . We may therefore

conclude that "Form III" solutions may never occur in equations (111-16).

The application of this present discussion to equations (11-4)

and (11-5) is that these equations may never have "Form III" solutions.

We cannot a priori tell, however, whether the solution is of "Form I"

or "Form II." As later sections of this report will show, we have

found "Form I" solutions to be the general rule, although we must

allow for "Form II" solutions for certain "accidental" values of the

parameters a, B, E and 6

The Characteristic Exponent for "Form II" Solutions

Let us assume that the Floquet Normal Mode solutions to (11-4)

and (11-5) are of "Form II". We therefore have two linearly

independent particular solutions:

al = e al b1  e b1

a2  = e-i , b

a2 = e a2  , = e

P is a constant and i ij(T) = ij(T + 2f)(i = a,b , j = 1,2)

Substituting these solutions into (111-14), we have

alb2 - a2bl]e -2i = D(O)e [-i-6-2iin (III-31)
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Since the term in brackets on the left-hand side of (111-31) has

periodicity 27 as does exp[-2isinT] , we may equate the linear

terms in the exponents in (111-31) to write the "Form II"

characteristic exponent as

2 2

The Characteristic Exponents for "Form I" Solutions

If the solutions to (11-4) and (11-5) are "Form I" solutions,

we may write two linearly independent solutions as

a, = e-ilTal , bl = e-islX bi

i1 2Ta1 -ib1 2T

a2 = e Oa2 ' b2 = e1 b2

The p's are constants and P1 0 P2 + n (n any integer or zero). The

O's are periodic with periodicity 2 .

Substituting these solutions into (111-14), we have:

[alb2 - a2bl]e-i(1+12)T = D(O)e[-ie-f6T-2iSsinT]

By the arguments we used above, we may write:

[Oalb2 - Oa2obl ] = D(O)exp[-2iBsinT]

and
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P1 + 42 = E - i6 (111-32)

If 6 = 0 , p is Pure Real

Write pl and P2 in terms of their real and imaginary

components:

vi = (1)r + i(Fl)i

P2 = (P2)r + i(P2)i

From Eq. (III-32), when 6 = 0,

Let the two Floquet Normal Modes be written according to:

a = e-iT aj

b. = e-iJ T
3 bj

where j = 1 or 2 . From Eqs. (111-18) we have:

e-iV2T a2 _ei(pl) T * e-iT -2 iBsinT
a2 =bi e

e -P2T = e i91) e-iET -210sinT
Ob2 al
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Comparing left- and right-hand sides of the above equations, we have:

U2 = -(11) + C

Since e is by definition pure real,

(U2)i  (i)i

If it is true that both

(01)t = -(P2) t  and (G) i  (2) t

then it must be true that

(1) = (2) i = 0

and therefore, if the Floquet Normal Mode solutions are defined

according to

j = e-P aj

b = e b j = 1,2

when 6 = 0 , j is pure real. When 6 / 0 , will, in general,

be complex.
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Exact Solutions in Terms of Fourier Coefficients

The Poincare-Floquet theory has been used to derive complicated

but exact solutions to (11-4) and (11-5) by taking advantage of the

fact that the Floquet Form of solution is a periodic function

multiplying an exponential function. Since we may write the solution

to (11-4) and (11-5) as

a(T) = a(T)e-iT

(111-33)

b(T) = b(T)e

where p is a constant and .j(T + 2w) = 4j(r) , we may further,

by using Fourier's Theorem, write,

a(T) = e i j  b(T) = B.e i j  (111-34)

Substituting (111-33) and (111-34) into (11-4) and (11-5), we obtain

an algebraic equation of the form

(M - PI)C = 0 . (11-35)

Here p is the characteristic exponent of expressions. (III-33),

I. is the infinite unit matrix, M is an infinite square matrix the

elements of which involve the parameters c, 6, a and 8 as well as
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integers. C is an infinite column matrix whose elements are the

F6urier expansion coefficients. M has double indices so that a

typical element is Mk,£;k',a' where k or k' is either A or B

and k or ' is any (positive or negative)integer or zero. Thus

A,n represents An  and the double indices are used to avoid the

printing difficulty of a subscript on a subscript. The matrix

elements of M are

A,J;A,j

(M)B,;B, + - i
z B,j;B,j

(111-36)
(M)A= = (M)A,j;B,j±l B,j;A,j±l

(M)
B,j;B,j±l =

It is convenient to write the rows or columns in the order

... A,n; B,n; A,n-l; B,n-l; ...

(111-35) is explicitly written out in equation (V-5) of this

report.

In order that there be a solution to (111-35) it is necessary

that

detjM - pI I = 0 (111-37)
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Note that (111-37) is an infinite secular equation which must be

solved to find v . Once p is known, the Fourier coefficients

Aj and Bj may be computed and thus the problem is solved.

From equation (111-37) of this section, we know that if the

solution is of Form I, once we know ~1 , we can immediately write

down 12 . The elements of M are given by (111-36) and if we look

at (V-5) we see the infinite, square M matrix explicitly written

out. Inspection of M and consideration of equation (111-37) leads

us to this important result which is also stated in Appendix A: if

pL is a solution to (II-37), so is 1i + n where n is any integer

including zero. The proof of this statement is simple. Because of

the periodic nature of the infinite matrix M , (M - pil) is the

same infinite matrix as (C - (11 + n)) .

Four numerical methods for finding the characteristic exponents

have been proposed. These are useful when the values of e, 6, c

and B are such that we are unable to find perturbation solutions.

Meadows (1962) and Ashby (1968) have shown, that for the two-

level problem, equation (111-37) may be manipulated to obtain a

simple transcendental equation for V which involves an infinite

determinant which depends only on E, 6, a, a and known integers.

This infinite determinant is closely related, but not identical to

the determinant of the matrix M of equation (111-37). So if this

determinant is evaluated, p may be exactly computed.

We give more details concerning this method in Chapter XVI

where we describe how the Meadows-Ashby method can be used to find
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numerical values for the characteristic exponents. The application

of this method to more complicated problems is found in Ashby's (1968)

article and in Ross's (1969) thesis.

Autler and Townes (1955) have obtained an exact formal solution

of equations (11-4) and (11-5) for the case of 6 = = 0

Starting with (111-35), they obtain an equation for p in terms of

two infinite continued fractions which themselves depend on P . In

Chapter XVII we trivially extend their work to include non-vanishing

6 and describe how their formulas are used to numerically find .

Unfortunately, their technique cannot be extended to take into

account non-vanishing 8 .

When 6 = 8 = 0 , equation (111-35) reduces to the problem of

finding the eigenvalues and eigenvectors of a real, symmetric tri-

diagonal matrix. A direct numerical attack of this latter problem

is discussed in Chapter XVIII.

Shirley (1963) utilized equation (A-12) (see Appendix A) to

obtain numerical values of the characteristic exponents. The basic

input into (A-12) is the result of a numerical solution to equations

(11-4) and (11-5). We discuss this technique and the simplifications

which arise when either 6 or 8 (or both) vanish in Chapter XIX.

None of the four techniques mentioned above are useful in

obtaining formal perturbation solutions since such results obtained

from them can be more easily obtained by more familiar and more

direct methods. The four techniques are however important, since in
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the regimes where we have not been able to find simple perturbation

solutions, recourse must be made to one of the four techniques

mentioned above to find numerical solutions of the problem.
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IV. LIMITS IN WHICH EXACT SOLUTIONS ARE KNOWN

Although we do not know the exact solution of (11-4) and (11-5)

in terms of elementary functions, we can solve (11-4) and (11-5) in

the following three limits:

(A) c - 0

(B) e + 0 and 6 + 0

(C) w - 0

Case (A): a -+ 0

Here equations (11-4) and (11-5) become uncoupled and are

solved by simple quadrature to obtain

a(T) = a(0)

b(T) = b(0)exp[-icT - 6T - 2 iBsinT]

Case (B): E - 0 and 6 - 0

For this case, we can solve the resulting equations by changing

the independent variable to z = sinT . Doing this we obtain

da/dz = -2iab

(IV-1)

db/dz = -2iab - 2iaa
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Equations (IV-1) are simultaneous, homogeneous first order differential

equations with constant coefficients which may be easily solved to

give

a(T) = Cl e - i+sinT + C2 e
- i l -sinT

(IV-2)
b(T) = (2a) - '[ C1 +e - i A+sinT + C_e - i X- s i n

C1 and C2 are arbitrary constants and A is defined by

+ = (S2 + 4a2)2 (IV-3)

Case (C): w - 0

In this case, coswt in equation (I-1) should be replaced by

unity. Thus, transforming the independent variable back from T to

t , (II-4) and (11-5) become:

da/dt = -2iFV abb

(IV-4)

d/dt = -2AFVaba - [(W b - a - 2(Yb - Y +a 2F(Vbb - aa]b

(IV-4) and (IV-1) are the same type of differential equation system

and we may easily solve (IV-4) to obtain:

See Protter (1964) and Morrey, Chap. 16, Sect. 10, or any book on

ordinary differential equations.
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a = C 1e + C 2e
- i t

(IV-5)

b = (2FVab- 1 [4-ie + + C 2  -i't

where

S = (q 2 + 16F2(Vab)2]

and

q = (Wb -W a ) -2( b - ya ) + 2F(Vbb - V ) (IV-6)

We have briefly mentioned these solvable limits since the solutions

obtained in these limits will form the zeroth order starting points of

the perturbation techniques which we will use in the remainder of this

report.
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V. TRANSFORMATION OF THE TIME-DEPENDENT PROBLEM TO A ,TlIE-iUDEPENDENT

QUANTUM MECHANICAL PROBLEM

In section III of this report, we transformed the time-dependent

problem of equations (11-4) and (11-5) into a time-independent

eigenvalue-eigenvector problem which is succinctly stated by (111-35).

In this section we wish to restate the latter algebraic problem of

determining the value of the eigenvalue p and its corresponding

A , B eigenvectors in terms of well-known quantum mechanicaln n

stationary state perturbation techniques using Dirac's bra-ket

notation to represent the Fourier coefficients. The matrix M

of (111-35) will correspond to the matrix of a Hamiltonian HF ,

will correspond to the energy of the system and (V-5) will become

the system's secular equation. As we will see, HF is a non-hermitian

operator. This fact has caused us no difficulty in subsequent sections

of this report. Doing this, we will be in effect showing that the

original time-dependent problem is equivalent to a stationary-state

quantum mechanical problem and we may then apply all of the powerful,

well-known perturbation techniques which are utilized to solve this

latter type of problem.

We should first recall that in section III we used Floquet's

Theorem (equation (111-33)) and Fourier's Theorem (equation (111-34))

to obtain the algebraic equation given in (111-35). Following

Shirley (1963,1965), we can manufacture the following stationary-state
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quantum mechanical problem which is equivalent to the problem

expressed in (III-35).

First define a basis Ik,n> such that the index k can be

either A or B . Let the index n range from -m to = and let

the basis be orthonormal, i.e.,

<k,n z,m> = 6k,k6n,m (V-l)

The "deltas" on the right-hand side (V-l) are "Kronecker deltas" .and

are not to be confused with the parameter 6 which has no subscripts

on it.

Define the non-hermitian Floquet Hamiltonian, HF , so that

HFIA,j> = jjA,j> + a[IB,j + 1> + IB,j - 1>]

(V-2)

HFIB,j> = (j + e - i)IJB,j> + a[IA,j + 1> + IA,j - 1>]

+ a[jB,j + 1> + IB,j - 1>]

If we ask "what are the eigenvalues of HF ", we are, in effect,

asking for the solutions to the Schridinger-type equation

HFII> = P,lp> (v-3)

where p is an eigenvalue of HF and IP> is the associated

eigenvector. The function IP> can be expressed as a linear combination

of the complete set of basis functions IA,j> and IB,j> so that
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I> = E (A.lA,j> + BjIB,j>) (V-4)

where the AJ's and B. 's are expansion coefficients. Substituting

(V-4) into (V-3), we may multiply the resulting equation in turn by

each and every bra <k',n'l . Doing this we are led to equation

(V-5) which is the matrix representation of the following set of

equations:

I <k',n' IHFk,n><k,nlp> - p<k',n'I> = 0
k,n (V-6)

k' = A or B ; n' = -m to

Here the <k',n'IHFIk,n> correspond to the elements of M and the

<k,nlf> correspond to the elements of the column vector C in

equation (111-35).

After we have found an eigenvalue, p , of HF and after we

have found the expansion coefficients A. and B. , the time-

dependent functions a(T) and b(T) may be recovered by the

following relationships:

a(T) = e- iT I A.eijT (V-7)

j=_e



* 2 0 0 a 0 0 0 0 0 0 *.. A2  A2

* 0 2+E-is6 8 0 0 0 0 0 0 .. B2  B2

* 0 a 1 0 0 a 0 0 0 0 *.. Al Al

*a 0 1+E-i6 a B 0 0 0 0 *.. B1  B1

S* 0 0 0 a 0 0 0 a 0 0 Ag A
- v (V-5)

* 0 0 a 8 0 E-i6 a 0 0 *. Bo B0

* 0 0 0 0 0 a -1 0 0 a •** A-1 A-1

0 0 0 0 a 8 0 -1+E-i6 a "' B_1  B- 1

0 0 0 0 0 0 0 a -2 0 **. A-2 A-2

0 0 0 0 0 0 a B 0 -2+-i ..*** B_2  B_2

* * * * * * *...
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VI. SUMMARY OF AND GUIDE TO THE REMAINING SECTIONS

In the remainder of this report we are concerned with finding and

justifying perturbation solutions to Eqs. (11-4) and (11-5). Since no

one perturbation scheme is useful for arbitrary values of a, B , 6

and e , we find that each range of values for a, B , 6 and e has

associated with it, its own appropriate perturbation scheme. We shall

explain nine different perturbation schemes which lead to converging,

approximate expressions for the Floquet Normal Mode particular solutions.

We will call these schemes Technique Tl, Technique T2, etc. For certain

ranges of the parameters no perturbation solutions to (11-4) and (11-5)

have been found. In these instances we will have to resort to one of

four numerical methods of solution which we will call T10,...,T14.

In Figures (VI-A) and (VI-B), we have drawn a flow chart which

tells what technique to use for any values of the reduced parameters

a, 8 , 6 and c . To use it, one must first specify the values of

e, 6 , a and B . In these charts, Emin is defined as the integer

which is closest to

0 < <inE .- Imin - I

(If e is half-integer, min could have either of two values.) If

a and $ are both much smaller than unity we must specify N where N
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START

ARE YES IS YES USE
S<< 1? >> a,? T1,T2 or T3

N NO

s YES -USE IS YES
6 << 1? T 9 E>~ ,? I

NO NO

IS NO USE v s E

8 = 0? 1 T1C C T5

YES

USE
T10

o TO FIG. (VI-B)

FIGURE (VI-A). Best techniques to use to obtain a(T) and b(T) for any

values of the parameters 1, , 6 and



STARTA * You must be sent here by Fig. (IV-A).

NO
NO

s YES IS YES USES YES
<< O? cE >> 2a,28,6 T8I >> ?

US I s YES isIS YES

6 i 0 ? = ?ES
NO NO NO

USE USE T7 W T 1 E
TT2 m in i1? Y S T6

NO

YES IS Emin rYES DOES IS NO'
aEVENT . 0? 2N + 1 > c

-EVEN.?L

YES

USE USE T7 WITH
T1,T2 or T3 nr = mi n

FIGCURE (VI-B). Continuation of Fig. (VI-A). Emi is the integer closest to c 0 < 1Emin - C < 2 *
N is the order of field strength (FN) through which we require a(T) and b(T) to be accurate.
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is the order of field strength (FN ) through which we want the "q-parts"

of the Floquet Normal Modes to be accurate.

The flow chart has been drawn so that when more than one technique

is applicable, the reader is led to the preferred technique. When no

one technique is clearly superior, the end box in the flow chart indicates

all the techniques which may be used.

In Table VI we indicate the names of the techniques, their locations

in the appropriate chapter of this report and the ranges for which

the techniques give quickly converging perturbation solutions. By

inspecting Table VI we can see that the techniques overlap. For example,

if a, B , 6 and e are all much less than unity we could use either

T9 or T5 to obtain approximate solutions.



TABLE VI. The descriptive names of the techniques, their locations in this report and their ranges
of applicability.

Technique Name Location Range of Applicability

T1 Non-degenerate Rayleigh-Schrddinger VIII Either
Field Strength Expansion a,B << 1; 6 >> a,

6 arbitrary
T2 Sen Gupta's Technique VIII or

Sa, << 1; min- >>
T3 Field Strength Expansion of VIII 6 arbitrary

Quotient Equations

T4 Steady State Perturbation Theory VIII 6 = ya b 0, a,B << 1

Emin - e >> ,B

T5 Degenerate Rayleigh-SchrSdinger IX a,8,, << 1
Field Strength Expansion

T6 Partitioning Theory for the Main XI c 1; ,B, < 1
Resonance

T7 Partitioning Theory for the XII nr ; n = any integer greater
Subharmonic Resonances r r

than 1; ct,B,6 << 1

T8 (fV) Expansion of Quotient Equations XIII >> 1; e >> 2a,2B,6

T9 The (e - i6)-expansion XIV s,6 << 1; a and B arbitrary

T10 Meadows-Ashby Technique XVI a,B,6,e arbitrary

Tll Autler-Townes-Technique XVII B = 0; a,6 , arbitrary



Technique Name Location Range of Applicability

T12 Numerical Diagonalization of a Real, XVIII = 6 = 0 ; e, a arbitrary
Symmetric Tridiagonal Matrix

T13 Numerical Solution of Eqs. (II-4) XIX 6, , 6, e arbitrary
and (II-5)
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VII, POWER SERIES EXPANSIONS IN THE FIELD STRENGTH, F

In this section we consider expanding the solutions to equations

(II-4) and (11-5) in powers of the field strength F . This can be

accomplished by solving (V-3) by non-degenerate Rayleigh-Schr6dinger

Perturbation Theory. This would first involve splitting up HF  in

the following manner:

S = H() + XH (VII-1)

where ; is an ordering parameter which is set equal to unity. We

will split up HF so that the zeroth order Hamiltonian, HF , is

defined by

H(0)IA,j> = j A,j>

(VII-2)

H ) I B , j > = (j + - iS) B,j>

The kets fk,n> (defined in Section V) are non-degenerate eigenfunctions

of H . This non-degeneracy is strict as long as 6 is non-vanishing.

A good concise treatment of non-degenerate Rayleigh-Schrodinger

Perturbation Theory is given in Chap. VII of Schiff's (1955) book.

For a more detailed treatment see the Hirschfelder (1964), Byers-Brown,

Epstein review article.



If 6 vanishes and if E equals some integer, *k Cthis cjrrccpnds

to a resonance frequency), then accidental degenea:cies may ~uc

(i.e. in such a situation IA,j> and IB,j - k> would be degenerate).

When L is nearly (or exactly) equal to an integer and 6 : 0 so

that the zeroth order is almost (or exac.ly) doubly degenerate,

parcitioning perturbation techniques (which are more generally

applicable than Rayleigh-Schrodinger technf.ques) can be used to

obtain a solution (Certain, Hirschfelder (1970a)). This is discussed

in Section IX.

The (0) is Hermitian when 6 =0 , but it is non-Hermitian
F

when 6 # 0 . In the case that 6 # 0 ,

<k,n' IH(0) Ik,n> = <k,nH ( O)Ik',n'>

but

<k',n' (H0)* k,n> <kn11 0 k',n'

The HF is defined by

H ( ') IA ,j> = a[IB,j+l> + JB,j-l>]

(VII-3)

H ( 1)IB,j> = a[IA,j+l> + IA,j-l>] + [ B,j+l> + IB,j-l>]
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Note that the operator H )  depends only upon the parameters a

and 8 , therefore in terms of the "non-reduced" parameters, the

split-up of the hamiltonian which is described by (VII-2) and (VII-3)

is equivalent to a perturbation expansion in the field strength, F

H1) , unlike H) , is a hermitian operator.

The usual non-degenerate Rayleigh-Schrodinger perturbation

theory assumes that we may find the solutions to

HFIP> = PIP >  
(VII-4)

by expanding both v and Iu> as power series in the ordering

parameter X , i.e.,

I>  = nIP(n)> (VII-5)
n= 0

= Xn (n) (VII-6)
n-0

IP(0)> would, of course, be one of the Ik,n> kets. Substituting

(VII-5), (VII-6) and (VII-1) into (VII-4), we may group together all

terms proportional to n , set them equal to zero and solve the

resulting equations. For instance, a zeroth order equation is

H(O) k,n> k,n>HF = k,n

(0)
where 1kn is the zeroth order non-degenerate eigenvalue of Ik,n>
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Let us suppose that we are seeking the perturbed wavefunction

which arises from the zeroth order ket Iko,no> . Therefore

(0) Iko,no> = v(0) Ikono>
HF  = yk0,nk

where

Iko,no> = u0)

The higher order corrections to IkO,n> , call them I m)> (m > 1) ,

may be expressed in terms of the spectrum of the unperturbed

hamiltonian, H(0 )

m)> = (m)lk,j> (VII-7)
k=A,B j=-k

( m )
where the k,j's are the expansion coefficients and the primes on the

summations indicate that the state Ik0 ,n0> is to be excluded. This

exclusion is perfectly all right if we stipulate that

<ko,n01o m > = 0 m > 1

This stipulation, in the jargon of perturbation theory, is usually

called "intermediate normalization." The point we wish to stress is
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that the expansion coefficients in (VII-7) are always products of

terms of the form:

<k,n H(1) k',n'>
G = (0) (0) (VII-8)

k,n ko,no

where kO,k,k' = A or B , no,n,n' = any integer or zero with the

stipulation that if k equals k0  then n may not equal no .

We wish to use (VII-8) in postulating a crude criterion of when a

non-degenerate Rayleigh-Schrddinger series should quickly converge.

The rule of thumb is this: the series should quickly converge if
(0) (1)

HF  and HF are chosen so that G (defined by (VII-8)) will

always be much less than unity. We say this, since, if G is always

much less than unity then we can be sure that the component of the

zeroth order ket, Ik,n> , in the m-th order correction, I m)

will be smaller and smaller as m gets larger and larger. We will

further assume that if the wavefunction is quickly converging, the

energy will also quickly converge. Our criterion is hardly

uophisticated, but we will take it as a working postulate.

If we now ask, "Under what conditions will a non-degenerate

Rayleigh-Schridinger perturbation treatment converge if HF is split

up according to (VII-2) and (VII-3)?" , we can answer this by looking at

See equations (11.17), (II.18) and (11.19) in Hirschfelder's (1964)

review.
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(VII-8) and by trying to determine the conditions under which G will

be small. It will certainly be small if the magnitude of the

denominator is much larger than the magnitude of the numerator.

Case I: k = kg = A or B, n # no

If k = k g = A or B , then from equation (VII-2), we can see that

since n can never equal no , the quantity

(0) (0)
k,n kO,n0

will.be some (positive or negative) integer. It's smallest magnitude

is therefore unity. Since the numerator of G can only be a, 5 or 0

when its denominator must be unity or larger, we get the first

requirement for the quick convergence of the non-degenerate Rayleigh-

Schrodinger perturbation series, namely:

both a and 8 << 1 (VII-9)

Case II: k # k0 ; n = no

If k # ko and n = no , the magnitude of the denominator of G

will be c - i! . The numerator of G will be a, 5 or 0 . Thus,

in addition to the requirement that a and B be much less than

unity, we must impose the condition

both a and B << E - i6 (VII-10)

for the non-degenerate Rayleigh-Schrodinger series to quickly converge.
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Case III: k j k0 ; n # no

This is the last possibility we must consider. Again, the

numerator of G can either be a, 8 or 0 . The denominator of G

for this case is

(n - no0 (c - is))

where the plus sign is taken if k = B and the minus sign is taken

otherwise. The quantity (n - no) may never equal zero. We therefore

obtain the last requirement for the quick convergence of the perturbation

series:

both a and 8 << n - no ± (c - id)j (VII-11)

where (n - no) is some non-zero integer. We may combine (VII-11)

and (VII-10) into one expression and therefore conclude that the

non-degenerate Rayleigh-Schrodinger perturbation series will quickly

converge if both of the following conditions are satisfied

both a and << 1 (VII-12a)

and a and 8 << IN - E + i6i where N (VII-12b)

is any integer or zero.

To determine the ranges of parameters for which (VII-12b) holds,

we should first recall that the complex quotient
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= q + iqi
Z + iZ. r ir I

where y, Z , Zi, qr and qi are all real numbers will be small

(i.e. both qr and qi will be much less than unity) if

(a) Z >> y

(b) Z. >> y

(c) both Z and Z. are much great than yr 1

Next define Kmin to be the integer which makes the quantity

IKmin - as small as possible. Kmin could be zero, if c < 0.5

If e is half integer then there is a trivial ambiguity in Kmin

In any case, K . has been defined so that for a given value of

, 0 <_ K in - < 0.5 .

With this definition of K . , we can say that the
min

non-degenerate Rayleigh-Schrodinger perturbation series will quickly

converge if either condition (a) or condition (b) is fulfilled:

(a) both a and 8 << 1 ; 6 >> a and 8 ; c arbitrary.

(b) both a and << 1 ; IKmi n - >> a and 8 6

min
arbitrary. Kmin  is the integer which makes

IKmin - I as small as possible.

(VII-13)

If the conditions given by (VII-13) are not met, then other

techniques must be used. These other techniques form the basis for

the rest of this report.
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VIII. FOUR FIELD STRENGTH EXPANSIONS

In this section we discuss four techniques for expanding the Floquet

Normal Modes in a series expansion in powers of the field strength F .

In "Technique Tl" the non-degenerate Rayleigh-Schrddinger perturbation

theory is used in terms of the bras and kets which we introduced in

Section V and which are related to the Fourier expansion coefficients.

"Technique T2" involves the original differential equations (II-4)

and (11-5). It involves solving them by perturbation theory without

making any Fourier expansions.

In "Technique T3" instead of directly solving the equations for

a(T) and b(T) , we focus our attention on the differential equations

for the quotients (a(T)/b(T)) and (b(T)/a(T)) . We solve for these

quotients by a perturbation expansion in the field strength without

making any Fourier expansions.

"Technique T4" is just standard steady state perturbation theory.

This is a technique which yields particular solutions for the functions

Na(t) and nb(t) in (1-3) under the restriction that ya = b = 0 .

They are particular solutions for the region of t where t > 0 . They

arise when, at t = -m , the two-level system is in either pure stationary

state 1a(r) or in pure stationary state "b(r) before the costt

perturbation is adiabatically turned on during the time interval:

See Epstein (1969) and Langhoff (1972).
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Convergence of Techniques T1, T2, T3 and '74

All four techniques which we are about to describe converge under the

conditions described by (VII-13). The reader who is interested in finding

a solution for some regime of the parameters which is included in (VII-13),

need only study Technique I since the other techniques include nothing

fundamentally different.

Technique Tl: Non-Degenerate Rayleigh-Schr6dinger

Perturbation Theory to Solve (V-3)

In this technique, we will solve the time-independent Schr6dinger-type

equation, equation (V-3), by making a non-degenerate Rayleigh-Schridinger

expansion in powers of the field strength. Once we have solved the static

problem, we may recover the solutions to the dynamic problem of equations

(11-4) and (11-5) by utilizing equations (V-7) and (V-8).

HF  is broken up according to (VII-1) and (VII-2) and the expansions

(VII-5) and (VII-6) are assumed.

We find that we can obtain one of the Floquet Normal Modes if we choose

the zeroth order wavefunction, Ip(o)> , to be

( 0 ) > = IA,j> (VIII-1)

(our zeroth order energy, (0) , is therefore j ). We can easily compute

the higher-order energies and wavefunctions by the well-known Rayleigh-

Schridinger prescription. By using relationships (V-7) and (V-8) we can
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use the solution obtained for the static Floquet Hamiltonian to

generate a time-dependent Floquet Normal Mode. The final time-

dependent result is invariant to the choice of j in (VIII-1).

The other time-dependent Floquet Normal Mode is obtained by

letting

I( ) > = IB,j >  (VIII-2)

and, therefore

(C) = j + - is

We now detail the manipulations involved in using non-degenerate

Rayleigh-Schrodinger perturbation theory to find the solution of

HF IH> = VIP>

which corresponds to choosing

1(0) = j and I (0)> = IA,j> (VIII-3)

where j is any integer or zero. Since HF, IP> and P are all

expanded in powers of X according to (VII-1), (VII-5), and (VII-6)

respectively, we match terms in like powers of X to obtain a set

of solvable equations for the (n)'s and I(n)>,,s



8-4

(0) (0) (0) (0)(viii-4)R>= jo (> (VIII-4)

H(0) I(1)> + H(1) l(0) >  = 1(0) 1(1)> + p(1) I(0) >  (VIII-5)
F + = + (VIII-5)

o(0) (2),> + (1)() (0) (2) ) + (2)(0)

etc. (VIII-6)

The choice of (0) and IV > given by (VIII-3) certainly

satisfies equation (VIII-4) and, with this choice, the equation for

11(1)> becomes:

H( > + H IA,j> = j1 (1)> + p i IA,j> (VIII-7)

We now solve (VIII-7) by assuming that I,(1)> may be expanded in

the IA,k>;IB,k> basis:

S)  =(1) C I,k> (VIII-8)
k=- £=A,B

where the Ck's are expansion coefficients. If we substitutek,k

(VIII-8) into (VIII-7) and left multiply the result by <A,jI , we

find (1)

(1 ) - 0
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By then left multiplying the result by each and every <£,k i we

(1)find that all expansion coefficients vanish except C +1 and
B,j+1

(1) (1)
C C'' is not determined by (VIII-7). It is however
B,j-1 A,j

determined by choosing intermediate normalization of I> :

<(O) (n) 60n

and, with this choice of normalization, CA, = 0 . 1)
A,j

therefore is:

(1) = a Bj-l> IB,+l> (VIII-9)(1 - C + i) 1 + e - i6

IP(2)> is found by solving equation (VIII-6). We again assume

that I (2)> may be expanded in the spectrum of H 0) and by using

the procedure we used to obtain p(1) and jp(1)> , we can find

(2) and 1(2)> . We may, of course, continue this algorithm to

obtain results of arbitrary accuracy. The quantities p 2) and

I((2)> are given in the following summary of results.



p(1) = = (3) ; (2) 2a 2 (E - i6)
1 - (8 - i6)2

I()> = _LBi + 1> IB,j - 1>
1 + C - id 1 - g + i

1p(2)> 2 Aj + 2> A,j - 2>21 + - i 1 - + i(VII-10)

+ IB,j - 2> 21B,1i>
(1 - + i)(2 - + i6) 1- ( - i6)2

+ IB,j + 2>

(1 + E - i6)(2 + E - i6)

From Eq. (VIII-iO), by utilizing the correspondence between the

eigenvalue-eigenvector problem and the time-dependent problem, we

can write a solution to for a(T) and b(T) which is correct

through second order in A . This solution will be called a1 (T)

and bI (T) where the subscript "1" is utilized in anticipation of

finding another linearly independent solution. This first solution

(in which A has been set equal to unity) is given by:
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2a2(: - i6) +
1 - (c - i6) 2

2 
2 i T  -2

iT

al(T) = ei [ +- + i6 +2 1 + e - iU 1- + 16

bl(T) = e j bl

-i iz (VI-)e= ee

bl( )  = 1 - + i6 1 + e -

2iTe 2
(1 + E - i6)(2 + E - i6) 1 - (E - i6) 2

-2iT
+ e

(1 - E + i6)(2 - E + i6)

Letting hi(0)> = IB,j> and (0) j + c - i , we can obtain

the other Floquet Normal Mode which we will call {a2 (T),b 2 (T) }

It is correct through second order in X and it is given by:

P2 = e - is - i6) +1- (E - ia)2

2 T  -iTe iT
a2 (T) e 2ta(. e e

1 + e - i 1 - 1 + i6

-2iT 2i2
e+ a+( e ++e )

(2 + - i6 2 - + i6 "'

b2(r) = e-iI2r 1 + (e i - eT)

+ 2(e -2i + e 2iT)

2 -2iT 2ir
+21+ ie e
2 1+ c - i + 1 - c + i6
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From (VIII-il) and VIII-12), we can ~: . ; c:f2. the

convergence conditions we postulated in (VII-10). We can also check

the algebra involved in deriving our results by using the relationship

between any two linearly independent solutions which is given by

(111-21). Further, since the solutions are either Form I or Form II,

we may express the general solution which satisfies arbitrary initial

conditions in terms of (VIII-11) and (VIII-12):

a(T) = Clal(T) + C2a 2 (r)

b(T) = C 1 b l (T) + C2 b 2 (T)

where C, and C2  are arbitrary constants.

Sen Gupta's Technique: Technique Ti

The next approach to be considered (call it "Technique 12") was

used by Sen Gupta (1970). It involves directly solving the

differential equations, (11-4) and (11-5), without first making a

Fourier Expansion.

The first step in the approach is to assume that the solution is

of the Floquet form:

a(T) = e-iT a (T)

b(T) = e-i1 b
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We do not make a Fourier Expansion of a and b but rather

substitute (VIII-13) into (11-4) and (11-5) to obtain equations for

the 's .

;a = iy a - 2iacsTb

;b = in b - i(E - i6)b - 2 icosTb - 2 iacosT4a

We will consider a and B to be the perturbations in (VII-i), We

may formally do this by introducing the ordering parameter A which

will be set equal to unity whenever final results are reported. With

the introduction of X , (VIII-14) becomes:

;a = ii a - 2iAacosTpb

(VIII-15)

;b = igb - i(C - i6) b - 2iA6cosT b - 2iacosra

We next assume that a' b and the characteristic exponent, ,

may be expanded in a power series in A :

(n) (T ) = n (T) k = a,b (VIii-16)
n=0 n=O

Note that the introduction of A in this manner is equivalent to

an expansion in the field strength, F .
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Substituting the expansions (VIII-16) into (VIII-15) and grouping

together terms in similar powers of X , we can obtain solvable

equations for and kn) (k = a,b) . In solving these
equations, for (n)a (ad)
equations, the (n)'s are determined by requiring that the (n), s

have the proper periodicity, i.e.

(n) (T )  (T + 27) ; k = a,b; all n . (VIII-17)
k k

For example, the zeroth order equations are:

;(0) 1(0) (0)
a a

(VIII-18)

(0) (0) (0) i(0)
b b -

(VIII-18) are uncoupled and therefore may be immediately solved

to give

(0) K() ei(0)
a a

(0) = (0) ei[l(0)-C+i6]
b =

(0) (0)where K (a and Kb are constants of integration.

(0) (0) (0)
We must now choose the constants ( , Ka and K so

that condition (VIII-17) is obeyed. If e is non-integer, this may

be accomplished in two ways:
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(0) (0) 0 )  itrary
Choice I: I = m ; Kb = 0 ; a arbitrary

Choice II: P = m + e - i ; a = 0; Kb arbitrary

where m is any (positive or negative) integer or zero. When e

is non-integer, choosing the constants of integration is a simple

matter since any term which involves an arbitrary constant times an

exp[±iCT] factor can only be properly periodic if the arbitrary

constant is set equal to zero. When 6 = 0 and e is integer,

slight complications arise which we can ignore, since, when E is

exactly or almost equal to an integer, we recommend that entirely

different perturbatio techniques be used (see Chapters XI and XII).

If we start with Choice I and carry out the calculation to higher

orders, we find that the p(n)'s are determined in each and every

order by the requirement (VIII-17). Furthermore starting with

Choice I, we are led to exactly the same result as the result given

by (VIII-11), i.e. we are led to one of the Floquet Normal Modes.

Starting with Choice II, we end up with the other Floquet Normal

Mode, i.e. exactly the expression in equation (VIII-12).

Manipulations Involved in T2.

To accomplish the task of explaining Technique T2, we only need

to follow the development arising from Choice I since the manipulations

arising from Choice II are similar. We will also find that the

results are exactly same no matter what we choose m to be. If,

for simplicity, we let m = 0 and let K (0)= 1 we have the
a

Choice I-zeroth order solution:
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(0)() (0)( - 0 ; a) = 1 ; (  = 0 (VIII-19)

Using (VIII-19) in the perturbation equations proportional to A

we have

=i(1) (VIII-20)a

b =-i( - i6) (b - 2iacost (VIII-21)b b

These first order equations may be easily solved to obtain:

(1)= K( I ) + ip(l) Ta a

-iT it
(1) K1) exp[-i(e - i6)T]+ 11 C + i - 1 + e - "

where K ( I ) iand 1)i)

where K(1) and (1) are constants of integration. (1) isa N

periodic only if we choose P(I) = 0 . This manner of determining

the P (n)s is a hallmark of this technique, namely: the p(n) s

are chosen so that they cancel out terms linear in T which appear

in the (n)s To use an older phraseology, the u(n)'s are chosen

to make the secular terms in the (n),s vanish and thereby make the

(n),(n),s have the proper periodicity.

* (1)The equation for )b is a standard equation--the solution of

which is given by Dwight (1961) on page 252.
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If E is non-integer, )b is periodic if and only if

K1) = 0 and therefore the periodicity requirement determines the

constant of integration.

* (1)
Choosing K = 0 , we summarize the first order results:

a

(1) (1)
b = 0; =0b a

(VIII-22)
-it it

(1) e e
b 1 - + is 1 + E - 16

With the zeroth and first order results established, we write

the equations proportional to 12 :

*(2) (2) - 2(1)
= i - 2iacosT Qa b

2) = -i(c - i)02) - 2i cost 0b - 2iacost a(

These equations are easily solved to obtain expressions for 2)
a

(2) (2)and (2) which involve the constants of integration Ka  and

(2)

We are free to choose K( )  to be anything we want. This

corresponds to choosing normalization.
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(2) (2) (2) ia 2 (2- ie 2 i ) (2r + ie - 2 i T

SK + ip T + [(2 +J_a a 2 (1 + - i) (1- E + id)

2it
(2) (2) e2iT2) = ) exp[-i(E-i)T] + (+-i)(2+a-i
b (1+e-i6)(2+E:-i6)

- 2 iT
+ e
(1-e+i6)( 2-E+i6)

2

[1-(s-i) 2]

(VIII-23)

In Eq. (VIII-23), is made periodic by choosing V(2) so that

it cancels out the terms linear in T . For b2) to be periodic,

(2)
we must set 2) equal to zero. Therefore, we let

(2) = 0 and 2a2(e-i6)
N 1-(E:-6) 2

We can continue this procedure to obtain even higher order

corrections. We would find that all Kn)'s and all p(n)'s would

be uniquely determined by the periodicity requirements on the

(n)s . The K (n, are arbitrary and are chosen to fit whatever
j a

normalization requirements we might impose. If we specify K (0 ) = 1
a

and K (n) = 0 (n > 0) , the solution we obtain is exactly the Floqueta

solution given by (VIII-11).

Similarly if we use this perturbation scheme starting off with

Choice II, we will get exactly the Floquet solution given by (VIII-12)

if we choose the normalization:
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(() n)
0) = 1 ; n) = 0  (n > 0)

The fact that this technique leads to solutions exactly

equivalent to the non-degenerate Rayleigh-Schrodinger results,

means that this technique will give solutions which are quickly

convergent only under the conditions given in (VII-13). This

observation should make us stop and think before we apply techniques

such as "Technique II" in solving systems such as (VIII-15). With

this technique, in zeroth order we are neglecting only terms

proportional to X (i.e. proportional to the field strength). We

are retaining the terms a ' b and -i(c - i ) b . We might,

at first sight, expect the perturbation solutions obtained to

converge for large e and large 6 . They will not converge, of

course, in the case of arbitrary large e , because by (VII-13),

if e =.n (n any integer) and 6 is very small, the solutions

would not be quickly convergent.
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The Technique T1 formulation of the original time-dependent problem

as a static problem therefore has an advantage over the Technique T2

formulation. Because of our familiarity with the static problem and

its convergence properties, Technique Tlgives us a set of convergence

requirements which are not as easily seen in techniques such as T2

which do not directly involve the Fourier Expansion.

Technique T3: Field Strength Perturbations

Of the Quotient Equations

The approach which we are calling "Technique T3" starts off by

considering the differential equations for the quotients b(T)/a(T)

and a(t)/b(t) . In it, no Fourier Expansions are made. The resulting

equations, however, are solved by a perturbation expansion in the field

strength, F

Block and Siegert (1940) used these quotient equations in considering

the effect of the field strength on the resonance frequency. Their

method of solution, however, is very different from the technique we

are about to describe. The Langhoff-Epstein-Karplus (1972) time-

dependent steady state perturbation formalism, when applied to the two-

level system with ya = Yb = 0 , essentially reduces to solving the

quotient equations by making a perturbation expansion in the field

strength, F

In Technique T3,, we start off by letting

b l (T)/al(T) = I1 (z) (VIII-24)
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For the case of {al(r),bl(T)} being one of the Floquet Normal Mode

particular solutions,

01(T + 2r) = 1(T)

Using (11-4) and (11-5), we may find the differential equation which

01 obeys. It is:

$l = -i(e - i6 + 2$cosT)0 1 - 2iacosT + 2icosT(0 1)
2  (VIII-25)

Note that the equation for 01 is a first order non-linear equation.

Once 01 is known, however, we can recover al(T) and bl(T) , since

by using the definition of l in equation (11-4), we have:

al = -2iacosT4 1a

therefore

a1  K exp f(-2iacos (t )d...

where Ka is a constant of integration. If we define e1(T) by,

;1 = -2iacosz 1(t) (VII.-26)
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then we may write the solution to (11-4) and (11-5) as

al(T) = exp[e(1 T)

(VIII-27.)

bl(T) = Dj(T)exp[e 1 (T)]

Solving equations (VIII-25) and (VIII-26) is equivalent to solving

(11-4) and (11-5).

In the same manner, we can look at the quotient

a2 (T)/b 2 (T) = 12(T) (VIII-28)

The equation for 02(T) is first order and non-linear:

;2 = -2iacosT + i(c - i6 + 2 $cosT)0 2 + 2iacosT(0 2 ) 2  (VIII-29)

Once we know 2 (T) , we can recover a2 (T) and b2 (T) by substituting

a2 (T) = D2 (T)b 2 (T) into (11-5). If we define 62 (T) by

62 = -i(E - is + 28cost) - 2iacosTc 2 (T) (VIII-30)

then we may write the solution to (11-4) and (11-5) as

Note that if Q2 (T) is known, 62 (T) may be found by simple

quadrature.
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a 2 (T) = 02 ()exp [82 ()

(VIII-31)

b2(T ) = exp[e 2 ()1

Equations (VIII-29) and (VIII-30) are therefore also equivalent to

equations (11-4) and (11-5).

What we now want to do, is to solve the non-linear equations,

(VIII-25) and (VIII-30), by an expansion in the field strength to

obtain the Floquet Normal Modes. We will find that solution of (VIII-25)

will yield one Floquet Normal Mode and that solution of (VIII-30) will

yield the other one.

Let us first focus on (VIII-25), If we assume that

al(T) = e a(T) bl(T) = e b (T)

where p is a constant and Pk(T) = 4k(T + 2rr) (k = a,b) , then it

follows that

01(T) = 01(T + 2a) (VIII-32)

Therefore, to obtain a Floquet Normal Mode particular solution, we

must impose condition (VIII-32) on 01.

We can obtain a perturbation solution for 0l in powers of the

field strength. We do this by introducing the ordering parameter X

and by replacing a and 8 wherever they appear in (VIII-25) by

Xa and XS respectively.:
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1 = -i(s-i6)4 1 - 2ilBcosT 1 - 2iXacost + 2iXacosT(1I) 2 (VIII-33)

We assume the following expansion for P,

I 1(T) = n (Tn)(T) (VIII-34)
n=0

Substituting this expansion into Eq. (VIII-33), we match like powers

of the ordering parameter X to obtain a set of solvable perturbation

equations the first three of which are:

01 = -ise-i) ( 0 ) (VIII-35)

1 -i(~ - 2iosT + 2iacosr[o O ] - 2iccos

(VIII-36)

-(2) (2) (1) (1) (0)01 -i(c-i) - 2iBosT01 + 4 iacosr1 1

(VIII-37)

Since we have defined 1 by

41(T) = bl(T)/al(T )

if we are seeking a Floquet particular solution we must require

1(T+2w) = 0 1 (T)
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In terms of the X-expansion of 01 , this requirement becomes:

(n) - (n)n) (T+27) = el () all n . (VIII-38)

The solution to (VIII-35) is

1 = KO) expl-i(e-i6)T]

If e is non-integer, the only way in which (VIII-38) can be

(0)fulfilled is by requiring K1 = 0 . Stipulating that e be

non-integer we therefore have:

(0)0 = 0 (VIII-39)

We now solve equation (VIII-36) which becomes with ~0) = 0 :

1I) = -i(c-i6)l) - 2iacost

Letting K 1  be the constant of integration, we write the

(1)solution for 01

If 6 = 0 and E is integer, K1 is not determined by the

zero-order periodicity requirement. It will be determined in some

higher order of the perturbation. We can ignore this complication,

since, when c is integer we recommend that entirely different

techniques of solution be used.
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-iT it
(1) e e ( -i(E-i6)T

1 = 1-+i6 l+s-i6 + K1 e

Since e is non-integer, the constant of integration, K1)

must be set equal to zero if 41) is to obey (VIII-38). We use

(1) (2)
1) in (VIII-37) and obtain the equation for 2). In solving

this equation, we again find that proper periodicity requires that

the constant of integration appearing in it be set equal to zero.

(2)
01 is found to be:

2iT -2iT
(2) e 2 e
2) = @8[(1+ _i6)(2+-i6)  _1-( i)+ (1-+i6)(2-E i)

(VIII-39).

This development may easily be carried on to obtain the higher

order terms in 01 . We may also use exactly the same techniques to

find a periodic solution to (VIII-29).

Since we have an approximation to c1 , we now obtain an

approximation to 81 by using (VIII-26). In doing this we must

resolve the question of normalization. In order to easily compare

our present results to the Technique Tl solutions we impose the

following normalization condition:

X2 2  (VIII-40)

exp[e1(TO)] = 1 + 1-(Ei6)2 (VIII-40)
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To apply this condition, we will first assume that 61 may be

expanded in a power series in A

(0) (1) + + 22 ) + ... (VIII-41)

If this expansion is substituted into (VIII-40) and if the

exponential is expanded according to:

e1 e61  [i + 1xe1) +2(e 2) + (1)2) +

we now match like powers of A and set T = 0 to obtain:

ei (0) = 0 ; e ) (0) = 0 ; ( 2 ) (0) = a 2
1-(E-16)2

(VIII-42)

In solving (VIII-26), we first replace a by (a) .

Inserting the A-expansions of 81 and 01 , we obtain the

equations proportional to 0X and A :

(0) 1)

Both 01 and 01) are therefore constants, and by the

normalization in (VIII-42) both of these constants must be zero.

From the equation proportional to A2 we have:
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*(2) (1)
1 -2iacosTt1

Its solution is simply:

(2) (2) 2ia2(2-i6)t 2 2i e2iT
81 = K + -[- +  i ]

e 1-(e-i6)2 2 1-E+i6 1+-i6

(2)K may be found from the normalization conditions given by (VIII-42):

(2)K

(2)Since we know 2) , we could continue this process to find

(3)61 Since nothing illustrative is gained by doing so, we will

just report the results giving 81 correct through 2 .

All of these results for 1I(T) and 81(T) are now used in

Eq. (VIII-27) to obtain expressions for {al(T);bl(T) . We get a

Floquet particular solution which is correct through second order in

X , and, in which, X has been set equal to unity:

a l (T)  = exp[el(T)] ; bl() = 1 (T) exp[6 1(T)]

-2ia 2 (c-i6)T a 2  e e-2
1 1-(e-i6)2 2 1+-16 +1-+i6 ] +

-it it 2i-r 2
e e + e 2

l-E+i6 1+-i6 (+s-i6)(2+E-id) 1-(E-i6) 2

-2iTe

+ ]+(1-e+i6)(2-e+i) ] +

(VIII-43)
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The normalization given by (VIII-40) has been chosen to facilitate

the comparison of the results in (VIII-43) with the previous results

given by (VIII-11).

Notice that secular terms (terms linear in T ) appear only in

e1 . If we write (VIII-43) in terms of the independent variable

t = T/w and let e = AW/w , a = FVab/w , etc., we find that terms

in inverse powers of w appear only in e1 . This is in accord

with what Epstein (1969) and Langhoff (1972) predict for solutions

which have been written as (VIII-27) and (VIII-31).

Note the curious fact that the field stength perturbation

expansion of (VIII-25) yields only one of the Floquet Normal Modes

in spite of the fact that all solutions b(T)/a(T) obey (VIII-25).

To obtain the other Floquet Mode, we must perturbatively solve

(VIII-29) using a field strength expansion.

Proceeding in the same manner as we did in deriving the first

Floquet Mode (equation (VIII-43)), we can derive the other Floquet

Normal Mode. It is given by the following expression which is

correct through X2 and, in which, X has been set equal to unity.
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a2 = 2 (T)exp[O2 (T)] ; b2 = exp[e 2 (T)]

02 (T) = -(ie + 6)T + $(e - i  e i) + 2 + 2ia 2 (s - id)T
1 - ( - i) 2

+2  - 2 ir 2iT+T+ e
2 (1 + - is) (1- +i)

-iT iT (VIII-44)
02(T) e e

1 + E i 1 - e + is

-2iT

1 -(- i6) 2 
- (2 + E - i6)(1 + - id)

2iTe

(2 - E + i6)(1 - E + iS)

We have normalized (VIII-44) according to

exp[e 2 (0)] = 1 + 82 + a
1 - (s - iS)2 +

Mere inspection of (VIII-43) and (VIII-44) would lead us to

postulate that they will only converge under the same requirements we

imposed for Technique I solutions to converge. This postulate is

further confirmed when we realize that (VIII-11)can be obtained from

(VIII-43) and (VIII-5) can be obtained from (VIII-44). For example

the equivalence of (VIII-43) to the solution given by (VIII-1) can

be established by taking (VIII-43) and expanding those terms in the

exponent of al and bl not linear in T In detail, we can do

this by separating 81 into
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eQ(C) = 6f(T) + O1(T)

el contains only the terms linear in T and 6 1 , contains all

other terms. Now expand exp(81) according to (VIII-45)

exp[e1] = exp[6 + 8i] = [1 + 6 + 2 + ... ]exp[el] (VIII-45)

If we use (VIII-45) in (VIII-43), replace a by Xa and $ by

AB , we find after regrouping like powers of X that we have

recovered the solution given in (VIII-1I)after we have discarded

terms going as An where n > 3 and have set X equal to unity.

We can generate (VIII-12)from (VIII-44) in exactly the same

manner.

The Technique T3 Solutions for na and nb When

Ya b = 6 = 0

We wish to write down the Technique III solutions for na and

nb when ya = Yb 6 = 0 . We will need these in subsequent sections

of the report when we discuss the steady-state perturbation theory.

Recall that {na(t),nb(t)} is related to {a(T),b(t)} by

(II-1) and (11-2) and the reduced parameters are related to the non-

reduced parameters by (11-3). The Floquet Normal Modes Solutions given

by .(VIII-43) and (VIII-44) for the case of ya = Yb = 0 give the

following solutions for ln(t) and n b(t)
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The Floquet Normal Mode which has been obtained from (VIPI-43)

may be written as:

al = exp[x(t)] ; = '(t)exp[8'(t)]

FV 2i(FV ab) 2AWt
a(t) = -iW t - 2i----sint Z (W)

(FVab ) 2iw t  - 2 iwt
+ abLe + e (VIII-46)

2 [wb + AW w - W

e-iwt -_eiwt

i'(t) = FV eAW
t =Fab i - AW W + AW

+ F2V AV e 2 e
ab, ( + AW)(2w + AW) 2 - (AW)2  (w - AW)(2w - AW)

where AW = Wb - Wa and AV = Vbb - Vaa

The other Floquet Normal Mode is obtained from (VIII-44) and it is:

)a2 2(t)exp[8'(t)] ; b2 = exp[e'(t)]

2iFVbb 2i(FVab )2 AWt
'(t) = - sinwt + (F2AV)2 + 2

b 2 L - (AW)2

(FV )2 -2it e2imt

+ 2 L + Aw W - AW (VIII-47)

2 ab L + AW W - AW

r -2iwt 2iwt

F2VabV 2 e e aw)
ab w2 + (AW)2 (2m w + AW)(W + AW) - (2w - AW)(w - AW)
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Inspection of (VIII-46) and (VIII-47) as well as consideration of

the convergence criteria given by (VII-13), leads us to postulate that

the expressions (VIII-46) and (VIII-47) for the Floquet Normal Modes

will be quickly convergent under the following conditions:

FVb FV FV
ab aa and are all much less than unity

and these quantities are all much less than

(VIII-48)
I)- K . where K . is the integer which makesW min min

i - K . as small as possible.
w min

The one point which we wish to stress (and we will come back to

this point when we discuss steady-state perturbation theory) is that

we do not expect expressions (VIII-46) and (VIII-47) to be convergent

expressions whenever AW/w is almost equal or exactly equal to some

non-zero integer. In fact, if AW/w = n (n some non-zero integer) we

would expect that the n-th order correction to ' and ' would to1 2

be infinitely large. This is so because we expect to have a

denominator of the form

(nw - AW)

in the n-th order of perturbation.



8-30

Technique T4: Steady-State Perturbation Theory

The last remaining field-strength expansion technique which we

wish to discuss is the "Steady-State Time-Dependent Perturbation

Theory." This technique is very fully discussed in Epstein's (1969)

report and in the 1972 review article written by Langhoff, Epstein

and Karplus.

The steady-state perturbation theory is meant to apply to the

original equations for na(t) and nb(t) (equations (1-4) and (1-5))

under the conditions that ya = Yb = 0 . The theory gives us the

appropriate particular solution for

T(r,t) = n (t) a(r) + n b(t)N (r)

in the regime of time, t > 0 , when at t = -- the two-level system

is in the pure quantum state k(r) (k = a or b) and the coswt

perturbation is adiabatically turned on. These "steady-state"

solutions are the particular solutions used in the computation of the

optical properties of matter such as the index of refraction, etc.

We use our simple two-level model problem to demonstrate two

points.

The first point we show is that these steady-state solutions are

just the Floquet Normal Mode particular solutions. If at t = -- ,

the two-level system is in quantum state a (r) and if the coswt

perturbation is adiabatically turned on, in the regime of t > 0 , the

system will be in one of the Floquet Normal Modes. The system will
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be in the other Floqet Normal Mode, if before the coswt perturbation

is adiabatically turned on, the system is in pure stationary state

Sb(r ) . The equivalence between the steady-state solutions and the

Floquet Normal Modes has been discussed in the recent literature.

Young, Deal and Kestner (1969) call the Floquet particular solutions

"quasi-periodic states" and assert that these quasi-periodic solutions

are the steady-state solutions. Sambe (1973) and Okuniewicz (1972)

discuss how, after one has made the correspondence between the Floquet

solutions and the steady-state solutions, one may treat the problem

of a quantum system in a periodic perturbation by borrowing some of

the techniques used in time-independent quantum theory. In their

treatment of the high-frequency Stark Effect, Hicks, Hess and Cooper

(1972) seek the steady-state solutions for a periodically perturbed

system by seeking the Floquet Modes of the system. Young and Deal

(1970) prove that an adiabatically turned-on periodic perturbations

will put a quantum system in a Floquet Normal Mode.

The other point we show is that the Langhoff-Epstein-Karplus

formalism yields expressions for the Floquet Normal Modes which

(aside from phase and normalization) are exactly equivalent to the

expressions for the Floquet Modes which we would obtain if we applied

Technique T3 to the equations for na(t) and nb(t) and let

Ya = Yb = 0 , i.e. expressions (VIII-46) and (VIII-47).

We discuss and demonstrate the two points we have just mode

after we restate the formalism described by Langhoff, Epstein, and

Karplus (1972).



8-32

Restatement of the Langhoff-Epstein-Karplus Formalism

Consider the general quantum system having a time-dependent

Hamiltonian of the form:

H(r,t) = HO(r) + 2FV(r) T(t) (VIII-49)

where HO(r) and V(r) are spatial operators, F is a parameter

and T(t) is a time-dependent function which we may leave

unspecified for the time being.

Let HO(r) have orthonormal eigenfunctions, Ij(r) . W. is

the eigenvalue associated with the eigenfunction ij(r) :

HO(r) (r) = Wij (r) (VIII-50)

If we set S = 1 , the description of the system's quantum

mechan4cal motion may be obtained by slvng thk mchr~dnger

differential equation:

:(r,t) = H(r,t)>(r,t) (VIII-51)

after we have specified '(r,t 0) : the state of the system at the

initial time to

We assume throughout that both HO and V are hermitian

operators. This stipulation means that when applying the
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Langhoff-Epstein-Karplus formalism to the Hamiltonian defined by

Eq. (I-1), we must let ya = Y 0 .

We are concerned with solutions to the time-dependent Schrodinger

Equation which obey the following initial condition:

Y(r,t0) = *0(r)e - i Wot 0  (VIII-52)

where i0(r) is a non-degenerate eigenfunction of Eq. (VIII-50),

W0  is its non-degenerate eigenvalue and to is the initial time of

interest. The key idea in the Langhoff-Epstein-Karplus formalism is

that the solutions which

(a) obey the initial conditions given by Eq. (VIII-52)

(b) result from an adiabatically turned-on periodic perturbation

may be written:

i(r,t) = nO(t)O(r,t)e i Ot (VIII-53)

The relationship between Eq. (VIII-53) and the usual Dirac variation

of constants solution is easy to discuss. Let the Dirac expansion of

the wavefunction be written as

Y(r,t) = nj(t)j(r)e - i WOt (VIII-54)

where j ranges over all eigenstates of HO(r) . Comparison of

Eqs. (VIII-53) and (VIII-54) allows us to identify no in (VIII-53)
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as the expansion coefficient of 00 (r) in (VIII-54). The time- and

space-dependent function O(r,t) is given by:

4(r,t) = 0 (r) + --- (r) (VIII-55)
jQ no(t) i(r)

Thus, the factorization of Y(r,t) given by Eq. (VIII-53) is

equivalent to factoring out the expansion coefficient of i0 (r) in

the Dirac expansion. The purpose of the factorization is to include

any over-all normalization and time-dependent phase factors in the

function n0 (t). We will have more to say of this later.

Substituting Eq. (VIII-53) into the time-dependent Schrodinger

equation, we obtain a non-linear, first order differential equation

for O(r,t) . Knowledge of D(r,t) completely determines nO(t)

and therefore solution of the equation for ((r,t) is equivalent

to the solution of the original Schrodinger Equation for '(r,t)

To demonstrate all of this, substitute expression (VIII-53) into

Eq. (VIII-51) to obtain:

n0(t)
$(r,t) + [- - i W 0 + iH(r,t)]1(r,t) = 0 (VIII-56)

From Eq. (VIII-55) we have

< 0(r) (r,t)> = 1 ; <*O(r)j$(r,t)> = 0 (VIII-57)
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where the bra-ket notation is used to denote an integration over

spatial coordinates:

Therefore, left multiplication of Eq. (VIII-56) by 0 (r) and

subsequent spatial integration gives:

n00(t)
= -2iFI(t) (VIII-58)

where

I(t) E T(t)<i0(r)JV(r)D(r,t)>

Noting that the initial condition on rO(t) is

g(t0) = 1

we write the appropriate particular solution to Eq. (VIII-58) as:

no(t) = expl-2iF f I(t')dt'] (VIII-59)

t0

Thus, n0 (t) is completely determined by q(r,t) and we rewrite

the expression for (r,t) as:
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(r,t) = (r,t)exp[-iW0 c - 2iF I(t')dt'] (VIII-60)
tO

To find the differential equation for P(r,t) , substitute Eq.

(VIII-60) into Eq. (VIII-51) to obtain:

i;(r,t) = [H(r,t) - W0])(r,t) - 2FI(t)¢(r,t) (VIII-61)

Solution of Eq. (VIII-61) is equivalent to solution of the original

Schrodinger Equation: Eq. (VIII-51) The non-linear structure of

Eq. (VIII-61) is made more apparent by rewriting the expansion for

P(r,t) (Eq, (VIII-55)) as

O(r,t) = *0(r) + Y bj(t)Mi(r) (VIII-62).

where

3 'O0(t)

Substituting (VIII-62) into (VIII-61) we find the following set of

first order non-linear equations for the bk's (k # 0) :

ibk = (Wk - W0)bk + 2 FT(t)[Vk - V00bk

(VIII-63)

+ 2FT(t) b10 bJ Vkj - V0j b k ]
j~ j j
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where

Purpose of Langboff-Karplus-Epstein Formulation

The purpose of the fcrmulat3on we have just described is two-fold.

Firstly, it gives us a method of computing the part of Y(r,t) which

alone is needed in computing properties: )(rt) . To see this,

assume that we wish to find the expectation value of the quantum

mechanical operator P(r,t) where (r,+t) contains no time

derivatives. The expectation value of P(r,t) is given by

P(t) ( ) (rt)> (VIII-64)

If y(r,t) is given by (VIII-53), we have:

i* (r,t)P(r,t)Q(r,t)dr
P(t) = (rt)(rt)dr (VIII-65)

and therefore only the function O(r,t) is needed to compute such

properties.

The second purpose of the formulation is concerned with the

particular solutions of the Schrodlnger Equation which corresponds

This restriction may be released by hermitizing the time-derivative

operator. See footnote 33 in the Langhoff, Epstein, and Karplus

review article,
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to the.steady-state response to an adiabatically turned-on periodic

perturbation. When we use the present formulation to obtain the

steady-state solutions as perturbation series in the parameter F ,

we expect the following convenient form:

2r
(a) c(r,t) = O(r,t + -) and P(r,t) has no terms in it

proportional to (1/w)

(b) n0 (t) = exp[0(t)] where all secular terms and all terms

proportional to (ljc) are included in 6(t) .

A point we wish to emphasize is that, in general, only the

steady-state solutions for a periodic perturbation will have the

above convenient form. We demonstrate this by using the two-state

system in a periodic perturbation as an example.

Consider the solution to (1-2) which obeys:

M(r,O) = a (r) (VIII-66)

By Floquet's theorem the solution will be:

T(r,t) = (Cle-iIlt al(t) + C2
e - i P2 t a2(t))a (r)

(VIII-67)

+ (Clei bl(t) + C2 e - i  b2(t)) b(r)

Recall that we have stipulated y = Yb = 0
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where P, and V2 are real constants, .i(t -) = ij(t) and

C 1 and C 2 are constants which will in general be non-vanishing if

the initial condition in Eq. (VIIT-66) is to be obeyed.

We can always factor Eq. (VIII-67) according to (VIII-53). The

function 4(r,t) in this factorization will only be periodic, however,

when either C- or C2 is set equal to zero, i.e. when the initial

conditions are such that the system starts off in a Floquet Mode.

So then, in terms of the vocabulary used in this report, the

underlying ideas in the Langhoff-Epstein-Karplus treatment are:

(a) Turning a periodic perturbation on adiabatically brings the

system into initial conditions at t = 0 which give rise

to a Floquet Normal Mode.

(b) The steady-state solutions are just the Floquet Normal

Modes of a quantum system,

We now demonstrate these underlying ideas by using the two-state

quantum system as an example.

Example: Two-State Quantum System

Consider the Hamiltonian defined by Eq. (VIII-49). Let HO(r)

have two orthonormal quantum states:

H0 (r) i (r ) = W j (r) j = a,b

This statement is true as long as p! does not accidentally equal

12
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The operator V(r) has real matrix elements defined by

<-k r)V(fr))k(r)> = VkY

T(t) is defined by

T(t) = est coswt (VIII-68)

where s. is a real positive parameter. We consider to = -" and

look for the state of the system at t = 0 . We then let the

parameter s go to zero. The multiplicative factor, exp(st) ,

plays the role of a switching function which, in the limit of s

going to zero, turns the harmonic perturbation on adiabatically.

To clarify the role of the switching function, consider the case

of large s . Here, T(t) is not large until t is very close to

zero. The smaller the value of s , however, the more slowly the

perturbation is turned on. In the limit of s going to zero, the

coswt perturbation will be turned on adiabatically (with infinite

slowness).

There is a problem with this form of the switching function. Namely:

dt
lim [dT(t)] # 0 .

We overlook this difficulty, however, since it does give us the desired

particular solution for O(r,t) (t > 0) which contains only the

frequencies w and nw (n integer).
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Using Eq. (VIII-68) in Eq. (VIIT-61), we solve the resulting

equation by a perturbation expansion in the field strength:

D(r,t) = Fn ,(n)(r,t)
n=0

and require (rto) = Ta (r) where to = -= In terms of the

series expansion of 4(r,t) , we require:

D( n ) ( r , t ) = a6 ; t o 
= -m (VIII-69)

For example, the zeroth order equation

is(0)(r,t) = H(O)(r) (0)(r,t) - Wa (0)(r,t) (VIII-70)

is already satisfied by our choice:

Q(0)(r,t) = 0a(r) (VIII-71)

The equation for 0(1)(rt) is:

i(1)(r,t) = (H(0)(r) - W a)t4 (rc) + 2V(r)estcoswta (r)

(VIII-72)

- 2V e stcoswta (r)aa a
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By assuming the Dirac expansion:

C(1)(r,t) = A(1) a r) + A() (t)b(r)

we find the following equations for the time-dependent coefficients:

() ; i = AWAbCl) + 2V e tcoswt (VIII-73)
a b b ab

where AW E Wb - Wa We easily solve these equations and we determine

the constants of integration by using Eq. (VIII-69). Doing so, we

obtain:

iwt -iwt

(1) = -V est[ eWis + e ((r) (VIII-74)
ab AW+W-is AW-W-is]b

We continue in an exactly similar fashion to find:

(C2) = AVVb e2st (AW+w-is) AW+2-2is + AW-2is b )

1 2iwt 1

+ W-w-is) AW-2w-2is +W-2i

(VIII-75)

where' AV = Vbb - Vaa . We find even higher order correction in an

exactly similar fashion.

Since (r,t) is completely specified by use of Eq. (VIII-60),

we need now to merely evaluate the integral:
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-2iF t dt' es coswt'< a(r) V(r)I( (r,t) + Fc(1)(r,t) + ... >
-OO

= FE) + F2E(2) +

We find that

iwt -imt
) = -iv et_ + eaa s+iw s-i "

i(V )2 e2 st 2iwt -2iwt(2) ab 1 e 1 1 e 1
E = [ + + [ +2 AW+-is s+iw s W-is s-im s

(VIII-76)

Accumulating results we have

(r,t) = [a + Fp ( 1) + F2(2) + .. ]exp[-iWat + FE ( 1 ) + F2E(2) + .

(VIII-77)

where (1) and m (2) are respectively given by Eqs. (VIII-74) and

(VIII-75). E'' and E are given by (VIII-76). We are now

interested in using Eq. (VIII-77) to find

lim \(r,O)
s 0

This will give us the initial conditions appropriate to the "steady-

state" solution. Taking the limit of each and every term is trivial

except for the term E ( ) :
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,(2) (Vab) 1 1 1 1 1 i 1,,
2 AW+W-is s+iw s AW-W-is s-iw s

(VIII-78)

The bothersome terms in E (0) are terms proportional to (1/s)

They are handled, however, by looking at the following

refactorization of E ( ) :

-2(Vab) 2 [(AW) 2 + w2 ]

lim [E(2)(0)] = ( )2  W22

s + 0 [(W)Z - WZ]Z

(VIII-79)

b_ AW+w AW-_
+ 2 lim [ W+ + + AW s2

2 s 0 s[(AW+w) 2 + T s[(AW-w)z + s7

In the refactorization, there is still a term going as (s)- 1

Note, however, that although this term is indeterminate as s goes

to zero, it is an indeterminate pure imaginary number. This term

appears as multiplying Y(r,0O) by exp(iE) where E is some

indeterminate real number. This term can be thought of as an

undetermined time-independent phase factor and it can therefore be

ignored. We will then take

m E(2) 2(Vab) 2 [(AW) 2 + 2]

s lim 0 [(AW) 2  z]z

and thereby ignore this phase factor in computing the final result.

With the limits taken, we find the following initial condition

appropriate to the steady-state wavefunction:
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(r,0) = e0 1a + l' b e 1

where

2F 2 (V ab) 2 [AW2 + w2]
SW2- ab_ ] F

(VIII-80)

2 FVabW 22 1 1
S - (AW) - + F2 ab A-w (AW+w)(AW+2w) (AW-w)(AW-2m)]

+ F3 ...

But note that aside from a normalization factor, Eq. (VIII-80) give

the same initial conditions which are obeyed by the Floquet Normal

Mode solution given by Eq. (VIII-46).

We, therefore, conclude that if the two-level system is in

quantum state *a(r) before the harmonic perturbation is

adiabatically turned-on, at t = 0 the system will be in the Floquet

Normal Mode solution which corresponds to

lim a(0) = 1 ; lim nb(0) = 0
F 0 F 0

where na and nb are defined by Eq. (1-3).

Carrying out an exactly similar analysis, we find that if the

two-level system is in quantum state b(r) at t = -m , an

adiabatic turn-on of the harmonic perturbation yields the other
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Floquet Normal Mode solution at t > 0 : namely, the Floquet

solution corresponding to:

lim na(0) = 0; lim nb(0) = 1
F- 0 F O 0

We have therefore given a simple example which demonstrate the

assertion that the steady-state solutions of a general quantum

system may be defined in the following simple manner:

If a quantum system is in the non-degenerate quantum state

pj(r) , an adiabatic turn-on of a coswt perturbation puts the

system in the Floquet state:

^ -iit
Y (r,t ) = (r,t)e

2r
where P is a constant, Q(r,t + ) = 4(r,t) and, if E. is the

eigenvalue associated with 4I(r)

lim F(r,t ) = j(r)e-iEj
t

The Convergence of the Steady-State Solutions

Expressed as a Power Series in F

We have already discussed the conditions we must impose-if

(VIII-46) and (VIII-47) are to converge. These conditions are

detailed by (VIII-48) and they are, therefore, conditions which we

must impose on the steady-state results if they are to quickly



8-47

converge. There is a problem, however. The steady-state solutions

are successfully used in the theoretical computation of optical

properties in the entire region of 0 < w < AW and because of criteria

(VIII-48) we would not expect this to be so. For instance we would

expect the steady-state solutions to be poor approximations when

Case (a). w is very, very small.

(Case(b). AW/w approximately (or exactly) equals some positive

integer n

Case (a).

When w is very, very small, no matter how small the field

strength, F , is, we would expect FV ij/w (i,j = a,b) to be of

order unity or larger in some region of very small w . In this

instance, the steady-state solutions do not quickly converge.

Case (b).

If AW/w z n , a denominator in the n-th order of perturbation

would almost equal zero. This would clearly not give rise to a

quickly converging approximation.

How can we reconcile the fact that the steady-state perturbation

technique gives results in agreement with experiment when we claim

that it should not in Cases (a) and (b)?

In Case (a), we can resolve the apparent contradiction by

remembering that we are talking about using (VIII-27) and (VIII-28)

to compute average values of properties, P . Therefore, we are

looking at expressions of the form
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Pt (r,t)P(r)T(r,t)dr
P( *(r,t)(r,t)dr (VIII-81)

Where P(t) is the time-dependent expectation value of the spatial

quantum mechanical operator P(r) . Consider the particular

solution given by (VIII-46). For this case

'(r,t) = W(r)e61 + b(r)1e (VIII-82)

Using (VIII-82) in (VIII-81) we obtain

[Pa + 2Re[Pab'] + bb(') ((')]
P(taa ab 1 b )(t) = (VIII-83)

1 + (4I)*(4i)

where

Pij -  i (r)P(r) j (r)dr

Since P(t) is an observable, it is pure real and furthermore, it

does not involve 0 . Since only 0' contains terms in inverse

powers of w , P(t) contains no terms in (w)- 1 . Therefore, the

resriction imposed by Case (a) can be ignored when average values

of properties are computed. We obtain the interesting result that

we may obtain a quickly converging result for a property with a

wavefunction which is slowly convergent or divergent.



8-49

If we consider the particular solution given by (VIII-28),

(rt) = 4a (r) 'e + 1b(r)ee2

and substitute it into (VIII-30), we also find that since terms in

(w)-1 appear only in e'(t) , these terms do not appear in P(t)

These observations are not new. They are discussed in the

Langhoff-Epstein-Karplus review article.

Now, what about the difficulty described by Case (b)? We

would expect that denominators of the form

AW - nw

would make P(t) non-converging when such denominators are zero or

almost zero. This difficulty has been pointed out to Epstein and he

has suggested that even though we do not expect convergence of the

series for w < AW because of the appearance of denominators which

are approximately zero the low order results may have some sort of

relevance since if w << AW the "bad" denominators will not appear

until very high order in the perturbation theory. We therefore

conclude that the series is asymptotically convergent.

S. T. Epstein, private communication.
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IX. TECHNIQUE T5: DEGENERATE RAYLEIGH-SCHRbDINGER PERTURBATIONS:

a B z 6 AND ALL ARE MUCH LESS THAN UNITY

In (VII-13) we gave the convergence conditions for the solution

of (V-5) by a non-degenerate Rayleigh-Schrodinger expansion in the

field strength. The case of a, 8, E and 6 all having the same

magnitude and all being much less than one:

a 8 6 << 1 (IX-)

was not covered by (VII-13). This is because the conditions given in

(IX-l) would give rise to expansion coefficients, the C (n) , ofk,j

(VII-7), which would involve factors of the form

a
E - i6 ' - i6

These factors are clearly of order unity if the conditions (IX-1)

hold. If the expansion coefficients are of order unity, we would not

expect the perturbation series to quickly converge.

We can easily overcome this difficulty by splitting up HF in a

new way. The problem with splitting up HF  into a part independent

to the field strength and a part directly proportional to the field

strength (i.e. the split-up given by (VII-2)'and (VII-3)) is that
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when both E and 6 are very, very small, some of the zeroth order

eigenvalues are almost degenerate. For instance the zeroth order

energy associated with IB,j> differs from the zeroth order energy

associated with IA,j> by the quantity ±(E - is) which, by hypothesis,

is very, very small. In the new split-up of H , we will make the

zeroth order energies exactly rather than almost degenerate. This

process is the text-book method of treating the difficulty of an

almost-degenerate zeroth-order Hamiltonian. For example, Messiah

(1964) discusses this general technique in Vol. 2, p. 711. Certain

(1970b), Dion and Hirschfelder give a simple example of this procedure.

As far as we know, no other authors have applied this technique to

the specific problem of the two-level quantum system in a coswt

field. This is not surprising, since the conditions given by (IX-1)

seldom arise. For example, if e << 1 , w must be such that it is

much greater than all of the resonance frequencies of the system. This

is clearly a regime of w which is not of great physical interest.

The first step in Technique T5 is to split HF  (defined by (V-2))

in the following manner:

HF = H O)+ i) (IX-2)

where A is again an ordering parameter which will be set equal to

unity at the end of the calculation. Bars have been put on H0) and

-(1)) and
HF to distinguish them from the "unbarred" operators, HF and

(1)H , which were defined by (VII-2) and (VII-3) respectively.
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Ho) is defined by

R0) k,j >  = jlk,j> k = A or B (IX-3)

-(0) -(1)HF is a hermitian operator, whereas, Hi) is a non-hermitian

operator:

i(1)IA,j> = [B,j+l> + jB,j-l>]

(IX-4)
~)IB,j> = c[ A,j+l> + A,j-l>] + (E - i)IB,j>

+ B[IB,j+l> + IB,j-l>]

Note that has degenerate eigenvalues since, IA,j> and IB,j>

-(0)have the same eigenvalue with respect to H(0) .

We again wish to solve the Schrodinger-type equation

HFP> = PI > (IX-5)

by assuming that both the eigenvalue, p , and the eigenvector, Iv>

can be expanded in a power series in X

W (n 00
Pn (n) ; I = I (n)> (IX-6)

n=0 n=0
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We can substitute the expansion (IX-6) and the split-up of HF given

by (IX-2) into (IX-5). After regrouping terms in similar powers of

X , we can obtain a solvable set of perturbation equations. These must

be solved by degenerate Rayleigh-Schrbdinger perturbation theory.

Once we obtain solutions to the static problem (IX-5), we can

recover the solutions to the dynamic problem of (11-4) and (11-5) by

utilizing the equivalence of the two problems described by (V-7) and

(V-8).

The zeroth order degenerate Rayleigh-Schrodinger equation is:

0) (0)> ( )> (IX-7)

It has as its most general solution

= C ) >= A A,j> + CBO jB,j>

and

(0) j

where P(O) ,(0)where (0) and BC(0) are constants which will be determined by the

first order perturbation equation. Since the final time-dependent

results are invariant to the choice of j , let us, for the sake of

simplicity, take j = 0 . We therefore have

For a discussion of degenerate Rayleigh-Schrbdinger perturbation

theory see Schiff (1955), Pauling and Wilson (1935) or any other

elementary Quantum Mechanics text.
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i(O)> = CA()IA,O> + C(O)IB,o>

(0) A(IX-8)
=0

(0) (0)The constants, CA and C , as well as the first order

(1)
energy, P , are determined from the first order perturbation

equation:

_(1) II(0)>+ -(D) I P(1)> = 11(1) 1(0) 11) (1)j + (IX-9)

Using (IX-8) in (IX-9) we obtain

( )(C(O)IA, > + G IB,0>) = (1)(c(0)A,0> + C( B,O>) (IX-10)

-(0) (1)
+ H F  p >

Equation (IX-10) may first be multiplied by <A,01 and may then be

multiplied by <B,0 I to obtain the following linear homogeneous system

of equations:

P )C( = 0
(IX-11)

(1)C (0) = C(0))(C i)
B . B

The system (IX-11) has a two non-trivial, normalized solutions:

To obtain Eq. (IX-11), we use that fact that since I(1)> may by

expanded in the ortho-normal {IA,j>,IB,j>} basis we have:

<k,0 (°0)j(1)> = 0 (k = A or B)mF
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Choice I: (1) = 0 , C = 1, (0) = 0A B
(IX-12)

(1) _(0) (0)Choice II: ) = ( - i) , C = 0 , CB ) = 1A B

The degeneracy has therefore been broken in the first order of the

perturbation and the higher order corrections may easily be obtained.

We will find that the solution to (IX-5) arising from Choice I will

give rise to one of the Floquet Normal Modes. The solution arising

from Choice II will give rise to the other Floquet Normal Mode.

For example, let us consider Choice I. Put the subscript "1"

on the perturbation eigenvalues, (n) , and the perturbation eigenvectors,

I,(n)> , to indicate that they arise from Choice I. Therefore,

(0) (0) (1)
1~ > = IA,0> , p( = 0 , 1) = 0

The first order equation, equation (IX-9), becomes

H' ) IA,> + j()l)> = 0 (IX-13)

In solving (IX-13), we must resolve the question of normalization.

We can choose the component of JIO)> in ,(n)> (where n > 1 )

to be anything we want. We will make the following simple choice:

<1) 1)> = 6, (IX-14)n ,0
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(0) (0) IP(1)
If J11 > is the Choice II zeroth order wavefunction, <P2

is not determined by (IX-13). It is, however, determined by the

equation for 1P 2)

To detail the T5 procedure, let lI(1)> be expanded in the

spectrum of HF) :

M)> = c( 'Ik,t> (IX-15)

k=A,B £=- k

where the ck,(1) s are expansion coefficients. Substitution of
k,9

Eq. (IX-15) into (IX-13) and subsequent left-multiplication of the

result by each and every <k,kI , gives the following results:

(1) cA is zero by imposing Eq. (IX-14).
) A, 0

(1)(2) cB0( is not determined by the first order equation.
) B,

(3) All other expansion coefficients vanish except CB,l and

(1)
c .The former is -a and the later is a

B,-1

We therefore have

(1)> = cB'l0B,O> + alB,-l> - IB,1>] (IX-16)(1)

where c(,0) will be determined by the second order equation:
B,0

() (2) (+ )(1) (2)
F 1 > + ( 1 i 1 IA,O> (IX-17)

We again assume that 112)> may be expanded in the IA,j>;IB,j>

basis
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1 2) > = ' (2) Ik,k> (IX-18)
k=A, B £=-_ ,

where the Ck,s are expansion coefficients and the prime on the

summation means that because of (IX-14) we will exclude the state

IA,0> from the summation. Using (IX-18) in (IX-17), we left-

multiply the result by <A,OI to find

(2)1 = 0 .

Left-multiplication of the result by <B,0O determines that c(1)B,O
(2)vanishes. cB,O , however, is not yet determined. Continuing this

procedure with the other <k,J2's , we find only six non-vanishing

coefficients. The second order correction, therefore, is:

P1 > = cB B,O> + a(e - i6)[IB,l> + IB,-l>]

2[IjA,2> + IA,-2>] + {[IB, 2 > + IB,-2>]

After making a spectral expansion of I1(3)> and then substituting

it into the third order equation, we determine cB(2)0 and 3) by

left-multiplying the result by <A,01 and <B,01 . Neither quantity

vanishes and we find that

(3) 2 ( - (2)1 2 2( -C 2aa
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This procedure may be continued to obtain a solution of arbitrary

accuracy. We assemble the Choice I results (which are correct through

third order in the energy and second order in the wavefunction) in the

following expression:

p, = X32a2 (c - i6) +

i1> = IA,0> + Xa[lB,-l> - IB,1>]
(IX-19)

+ X2 72aaIB,0> + a(c - i6)[IB,l> + IB,-l>] +

+ {A,2> + IA,-2>] + [JB,2> + IB,-2>]

Setting the ordering parameter, A , equal to unity and utilizing

(V-7) and (V-8) to obtain a time-dependent solution, we obtain one of

the Floquet Normal Modes:

a l = e-iJT al ( T) ; b1 e - i I T b (T)

S= 2a2( - i6) + ...

(IX-20)

alI  = 1 + a2cos(2T) + ...

bl = -2iasinT - 2aa + 2a(E - i6)cosT + aacos(2T) + ...
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The second choice of I (0)> and i(1) leads to the other

Floquet Normal Mode:

a2 = e-i2T (T) ; b2 = e-i 2Tb2T

P2 = (2 - is) - 2i2 (C - i6) + ...

(IX-21)

a2(T) = -2iasint - 2a(c - i6)cosT + a cos(2T) + ...

b2(T) = 1 - 2iBsinT + (a2 + B
2 )cos(2T) + ...

Inspection of (IX-20) and (IX-21), confirms the hypothesis that

they should be quickly converging solutions for the Floquet Normal

Modes when a, a, e and & are all much less than unity.
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X. PARTITIONING TECHNIQUES FOR FIELD STRENGTH EXPANSIONS

Introduction

In order to obtain solutions for those cases where the zeroth order

energy of the Floquet Hamiltonian is almost (or exactly) degenerate, we

can use the standard partitioning perturbation techniques. Lwdin's

(1966) procedures may be the most familiar but we shall describe how

the Certain-Dion-Hirschfelder (1970a, 1970b, 1970c) version applies to

the Floquet problem. In this way, when we solve

HFIP> = PIPI>

we obtain the wavefunction, IP> , accurate through the n-th order in

the field strength and, correspondingly, the energy accurate through

the (2n+l)-th order. However, this procedure is not a Rayleigh-

Schridinger perturbation since the energy is not expanded in a power

series in the field strength.

General Considerations

In section VII we discussed the solution to (11-4) and (11-5) by

splitting up the static Floquet Hamiltonian into a zeroth order part,

(0)HF , which did not depend on the field strength and into a perturbation,

(1)
H 1) which directly depended on the field strength. We saw that if we

applied non-degenerate Rayleigh-Schr6dinger perturbation theory to HF
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split up in this manner, the resulting solutions would only converge

for certain ranges of the parameters a, B, e and 6 . Those ranges

were given by (VII-13). The problem was that G (defined by (VII-8))

would be large for ranges of s and 6 which made the denominator in

(0) (0)G very small. Suppose, for simplicity, that only one (k n - ,n0)

in all of the possible G's is small enough to make the fraction G

much larger than unity. Call it

(0) (0)
(P (0) )(X-l)kl,n I  k0 ,n 0

If we could somehow exclude the term involving the very small or

vanishing quantity

(0) (0)
kl,n - k0 ,no

from all higher order corrections to the zeroth order eigenfunctions and

eigenvalues, we would then obtain a quickly converging perturbation

expansion. The technique which accomplishes this is partitioning

perturbation theory. The technique is not restricted to the case of

there being only one "bad denominator" of the form (X-l). For our

purposes, however, we need only consider this case.
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The bad denominator appeared in the non-degenerate Rayleigh-

Schr5dinger perturbation expansion because two zeroth order states,

the states I(0) > and (0) > , had zeroth order energies which
k1 ,n1  k0,n

were almost (or exactly) degenerate. This caused poorly converging

higher order corrections. The idea behind partitioning is that instead

of solving for either the perturbed state arising from I(0k,n)

or the perturbed state arising from 1F ,n 0> we solve for the

perturbed two component row vector, X , which arises from the zeroth

order 1 x 2 now vector

(0) (0) (0)>)
S = k1 ,nl> , k 0,n0  (X

As we will show, doing this we can avoid "bad denominators" of the

form (X-l) appearing in the final energies and wavefunctions. Now

what is this row vector X ? To answer this question, let us first

assume that we have solved

HFIP.> = Pij > j = 1,2 (X-3)

where j is an eigenvalue of HF and P > is its associated

eigenvector. We can write these two Schrdinger equations in matrix

notation:

For example, if 6 = 0 and e = 1 , the states Ip(0)> and /p(O)>
A,1 B,Q

have exactly the same zeroth order energy.
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H Y = T W (X-4)

where T is the two component row vector

Y = (I1> , IP 2>) • (X-5)

In order that (X-3) be satisfied, we define W to be the following

2 x 2 matrix:

P1 0
W = 1 (x-6)

0 
P2

X may now be defined in terms of Y : the row vector X is a two

component vector, each component of which is a linear combination of

two exact solutions to the SchrSdinger Equation, I1i> and I12>

In matrix notation, we may therefore write X in terms of T

and a 2 x 2 non-singular matrix of constants c

x = c. (x-7)

Since

- x ~-1 (X-8)

we may use this expression for T in (X-4). We may then right multiply

result by c to obtain the following "scrambled" Schrodinger Equation:
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HF X " X E (X-9)

where E is a 2 x 2 matrix defined by:

E = c- 1 W c (X-10)

In partitioning perturbation theory, we solve equation (X-9) (which

is a "scrambled" Schrdinger equation) rather than the Schridinger

equation itself (equation (X-4)). We will find that if we perturbatively

solve (X-9) we may avoid the "bad denominators" which appear in the

straightforward non-degenerate Rayleigh-Schr6dinger perturbation

solution of (X-4).

Exact Solution of (X-9)

Assume we have solved (X-9). We therefore know X

x = (IXa> ' IXb>) (X-ll)

where we have written out the (1,1) component of X as IXa> and

its (1,2) component as Xb> . E will be a 2 x 2 matrix and it

is not necessarily hermitian. The 2 x 2 matrix c which relates

X to Y is not necessarily unitary. If 6 = 0 , however, HF

becomes a Hermitian operator. In this case, we make E hermitian

and c unitary by specifying that X is normalized according to

"Certain-full-normalization." By this we mean that we require

<XX> = 1 (where 1 is the unit matrix) and we require that the
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phase of X be determined according to equation (17) of Certain

and Hirschfelder's (1970a) paper.

The prescription for recovering T and W is this. We may

recover the diagonal elements of W as the roots to the following

secular equation (the off-diagonal elements of W are zero):

detlx (HF-W)xi = 0 (X-12)

where in defining Xt we must take note of whether HF is hermitian

or non-hermitian.

Case (1). Let HF be hermitian and let

X = (Ej C alj>,Ej Cjbl>) where the Cji 's are expansion

coefficients and the index j ranges over all members of a basis

set which spans HF . For this case X becomes:

X (I C a<j ,C <j j) (X-12a)

where "T" indicates taking a matrix transpose. Thus in this case,

Xt is just the hermitian transpose of X .

Case (2). Let HF be non-hermitian, and in particular, let it

be given by Eq. (V-2). Let X be expanded in the (IA,j>,JB,j>)

basis:

X =  ( Ckj(a)k,j>, I Ckj(b)k,j>) (X-12b)
k=a,b J=- k=a,b J=-=
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where the Ckj(a)'s and Ckj(b)'s are expansion coefficients. For

the case of HF being given by Eq. (V-2), X is defined by:

X = ( Ckj (a)<k,j ,  C j (b)<k,j) T  (X-12c)
k=a,b j=- k=a,b j=-m

where the "T" again indicates taking a matrix transpose. Note that

when 6 = 0 , Case (2) reduces to Case (1) because a and 8 have

been defined as real.

In terms of the components of X , the secular equation (X-12)

explicitly is:

<X aHF[ Xa> <Xa IF Xb>. <Xa Xa> <XaIXb>1

det - W j 0 (X-13)
Xb HFIa >  <Xb! F Xb> 

b Xa: < IXb X

where again we must take care in defining the matrix elements. Let

HF  be given by Eq. (V--2) and let 6 be an operator equal to HF

or unity. Using the definition of X given by Eq. (X-12b) we have

<X-lxm " e , I YtZ Ckj(P) Ck',j'(m)<k,jl6lk',j'> (X-13a)
kj k j

where Z, m, k and k' can equal a or b and j as well as j'

ranges from -- to +m .

Call the twc rocts of (X-13), Vi' and i-2 . W therefore is

h 1 0
Lo =.2
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If the eigenvector associated with p, is put in the first column

of a 2 x 2 matrix and if the eigenvector associated with P2 is put

in the second column of the same 2 x 2 matrix, the resulting matrix is

just c-1 (the inverse of the square matrix c in (X-7)). Therefore

T is recovered by:

= X c- 1  (X-14)

Perturbation Solution of (X-9)

In what went just before, we assumed that we knew the solution to

(X-9). For the sake of completeness, we showed how to unscramble

(X-9) to recover the solutions to the Schr6dinger equation, equation

(X-4). In point of fact,(X-9) is every bit as difficult to solve as

(X-4). To solve (X-9) we must use perturbation theory.

Assume that HF  has been broken up according to the field strength

expansion:

H H(0) + AHF  (X-15)F FF

where H ( 0 )  is defined in terms of the Ik,j> basis by (VII-2) and

H F) is defined in terms of the same basis by (VII-3). X is an ordering

parameter.

We will further assume that both X and E may be expanded in

powers of A :
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X = (n) ; E nE ( n )  (X-16)
n=0 n= 0

The X (n)s are 1 x 2 row vectors and the E(n)'s are 2 x 2 matrices.

After substituting the expansions (X-15) and (X-16) into (X-9), we

may group terms in like powers of X to get the following solvable set

of matrix perturbation equations:

H(O)(O) = (O)E ( 0 ) (X-17)

H(0) (1) + H(1) (0) = X(0) (1) X(1)( ) (X-18)F+ F_ + (x-18)

H (0)X(2) + (1) () = X(0) (2) + X(1) +(1) X(2) (0)
*F (  F ~ + E

(x-19)

. . . . . . . . etc.

If the zeroth order states lkl,nl >  and Ik0 ,n0 > are almost (or

exactly) degenerate, we would choose

X(0) (Ikl,n> , Iko,no>) (X-20)

and, therefore,

(0)

(O) = kj,nl 0

(0)
kg,ng,
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where klOnI is the zeroth order energy associated with Jkl,n 1>ke ,nn

and p(O) is the zeroth order energy associated with the statek0 ,n0

Ik0,nO> . The perturbation equations can be solved order-by-order

if we choose "intermediate" normalization which is defined by:

<X ( 0 ) X(n ) > Ma ij

where i,j = a or b and 6n0 and 6. are Kronecker deltas.
nO13

The important point in this perturbation theory is, however, that it,

unlike the Rayleigh-SchrSdinger treatment, allows us to avoid bad

denominators of the form

(0) (0)
kl,n 1  ko,n0

in the higher order wavefunctions and energies.

Introduction of some new notation is in order at this point.

Assume that we know X )  (1) (2) (N)us define the, X ,X ,- Letusdefinethe

partial sum, X(N) , by:

N
X(N) = X An ( n )  

(X-21)
n= 0

We can make analogous definitions for the components of X :
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N (n)> N (n)

a(N)> = (n) ; IXb(N)> = n n> (X-22)
n= 0 n= 0

If we have solved the first (N+l) perturbation equations so that we

know X(N) , we may recover approximations to two eigenvalues and two

eigenvectors of HF by forming the approximate secular equation:

<Xa(N) H FIX (N)> <Xa(N) IHFIXb(N)>]

<Xb(N) IHFIXa(N)> <Xb(N)IHFIXb(N)>J

KXa(N) I Xa (N)> <Xa(N) IXb(N)>- W = 0 (X-23)

<Xb(N) IXa(N)> <Xb(N)IXb(N)>}

where the above matrix elements are defined in analogy to Eq. (XI-13a).

We call (X-23) an "approximate" secular equation because its roots

are approximations to the exact solutions to (X-4). We will call the

two approximate roots to (X-23) vl(N) and P2 (N) . We will use the

argument "N" on the approximate roots to indicate that they arise from

a secular equation in which the X is accurate through N-th order.

The roots themselves are accurate through (2N+l)-th order.

Associated with the approximate root, p,(N) (j = 1,2) , is an

approximate wavefunction. Call this approximate wavefunctions jlj(N)>

We can obtain IpJ(N)> from the secular equation (X-23) in the

following manner. Associated with the root iju(N) is the eigenvector

The odd-looking notation for the vector-components is chosen to keep

this discussion in accord with equation (X-14).
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-1
c(N)

32

With this eigenvector we can recover the approximate wavefunction

associated with 9 (N) by the following relationship:

c(N).Ix a(N)> + c(N) 21 Xb (N)> (X-24)
ji a j2 b

The lj(N)>'s , however, are correct only through order XN

In the partitioning, therefore, we may obtain a whole heirarchy

of approximate expressions for p and Ij> , depending upon the

accuracy of the X we use in the secular equation (X-23). If, for

example, we use x(O) in (X-23), we will call the resulting

approximate j (0)'s and I1 j(0)>'s the "zeroth order" partitioning

approximation. X(1) will give rise to the "first order" partitioning

approximation, etc.

In terms of the time-dependent Floquet Normal Modes, the i j(N)'s

correspond to approximations to the Floquet characteristic exponents.

The f-part of the Normal Modes may be recovered from (X-24) (i.e. the

eigenvector associated with the root ij(N) ) by using the equivalence

between the static problem and the dynamic problem described by (V-7)

and (V-8).
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Convergence of the Partitioning Perturbation Theory

We intend to use partitioning to include some of the ranges of the

parameters which are not covered by the cases given in (VII-13).

Specifically we will use it to cover the cases in which 6, a, and

B << 1, but e z nr (where nr is some non-zero, positive integer).

The cases in which e = nr are very interesting. When E = 1 ,

this means that the frequency, w , is nearly or exactly equal to the

separation between energy levels, AW , This is, of course, the

Bohr Frequency Condition (with 4i set equal to unity). Thus when

s i, we are describing the two-level system's Main Resonance. Finding

partitioning perturbation approximations in this regime is fully

discussed in Section XI of this report. The cases in which c = n

where nr is some integer greater than one, correspond to the

system's Sub-Harmonic Resonances. These are more fully discussed in

Section XII of this report.

If s = nr and 6 is very small (or vanishing), let

(0) (IA,j 0> , IB,jo-nr>) (X-25)

jo any integer or zero

We have made this choice because

(0) (0)
A,0 B,j0n (n - E + is) Z 0 (X-26)A~j0 B,,j0-n r r
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and with this choice, the partitioning theory enables us to avoid the

occurrence of small denominators such as (X-26) in the highxE order

corrections to X(0) (and therefore in the approximate expressions for

the solutions to HFIU> = plu> ).

Let us assume that the components of X may be expanded according

to (X-22). The functions IX(n)> and IX(n)> may in turn be expanded

in terms of the spectrum of H0) in this manner:

IX(n)> = t t g(n)|l,m>a £=A,B m=-c g m

(X-27)

(n)> = , , (n) ,m>
£=A,B m=-m

(n) (n)

where the g n s and the d(n) 's are the expansion coefficients and

the primes on the summation signs mean that the states IA,j 0> and

IB,j0-n > are to be excluded from the sums. The important thing we

wish to stress is that the g (n) s and d (n) 's may be expressed

as products of terms of the form

(1) ,

<k,njHl Ik',n'>

G = (0) - (0) (X-28)
k,n kg,n O

The (0) . (0)The pOm 's are eigenvalues of HF O

(0) (0) m>E) ,m> = P 1,m>
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(X-28) differs from a similar expression which we used to discuss the

convergence of the non-degenerate Rayleigh-Schr8dinger perturbation

series (i.e., expression (VII-8)) only by the restrictions placed on

the indices. In (X-28), if k0 = A , then no can only equal jo.

If k 0 = B , then no can only equal (j - nr) . If k = k0  then

n may not equal no . If kO = A , then n may not equal (jo - nr)

Similarly, if k0 = B , then n may not equal jo . Otherwise, k

and k' may be either A or B . n and n' can equal any integer

from -- to +- .

If all terms of the form of G are small, we would expect that

the partitioning perturbation expressions for the p(N)'s and

jI(N)> 's would be quickly converging.

From the definition of H) in (VII-3), the numerator of G can

be either a, 8 or zero.

In considering the denominator of G , we will look at the

following three cases:

Case i: k = k0 = A or B.

If k = k0 = A or B , the denominator of G is always some non-

zero integer. In this case the smallest magnitude of the denominator

is unity. For terms of the form G to be much smaller than unity we

require:

both a and a should be much less than unity.
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Case 2: k # kO = A; 6 << 1.

In this case, the denominator of G is of the form

(n + E - 16 - jO) . (X-29)

Since n can never equal (jO - nr) , (X-29) is of the form

(m - 16)

where m is some (positive or negative) non-zero integer. Clearly,

since 6 << 1 , (m - 16) is of order unity or larger. Thus we get

no additional requirements for the speedy convergence of the partitioning

perturbation series.

Case 3: k # k0 = B; 6 << 1.

The arguments and conclusions in this case are the same as those

we used in discussing Case 2.

We may therefore summarize and conclude this discussion by saying:

If nr where nr is a positive non-zero integer and, if a, 8

and 6 are all much less than unity, we may use partitioning perturbation

theory to obtain'rapidly converging field-strength perturbation solutions

to HF > = pIP> .



XI. TECHNIQUE T6: PARTITIONING PERTURBATION THEORY APPLIED TO THE

MAIN RESONANCE: E = 1 . a B AND 6 ARE ALL MUCH LESS THAN UNITY

Introduction

In this section we will discuss the solutions to

HF1> = PIP> (XI-1)

under the conditions that e = 1 and a, 8 and 6 are all much less

than unity. In terms of the non-reduced parameters, this, of course,

means that w zAW . The conditions are therefore the conditions

under which the Bohr Frequency condition is met: (Wb - Wa) 
= fiW

To separate this regime of c Z 1 from the regime of e = nr

where nr is some positive integer greater than unity, is somewhat

artificial. Partitioning pertubation theory is used to handle both

regimes. The separation is justified, however because of the great

amount of previous work devoted to the case of e = 1 .

We split this section up into two parts. In the first part we

use partitioning perturbation theory to obtain systematic, converging

approximations to the eigenvalue-eigenvector problem given by (XI-1).

Once (XI-1) is solved, we can recover the time-dependent solutions to

(11-4) and (11-5) by utilizing the equivalence between the static and

dynamic problems which we have already established. Our method of



11-2

solution closely parallels that of Shirley (1965). We differ from

Shirley in not restricting our attention to the special case of

Vaa bb 'a = 'b = 0 . Furthermore, Shirley uses a partitioning

scheme formulated by Salwen (1955) in which the higher order

corrections to X(0) are only approximately found whereas we obtain

(0)exact solutions for the higher order corrections to X

In the second part we discuss how our work fits in with the work

previously done on the main resonance of the two-level system. We

find that the partitioning perturbation theory is a useful tool for

relating and comparing our work with that of Rabi (1937), Bloch

and Siegert (1940), Stevenson (1940), Shirley (1965), Silverman

and Pipkin (1972), Winter (1959) and Pegg (1973b).

Part I: Partitioning Perturbation Solutions When e = 1 . a, 8 and

6 Are All Much Less Than Unity.

When e z 1 and 6 << 1 , the kets IA,j0> and IB,jo-l> are

almost degenerate with respect to HFO) when jo is either zero or

any positive or negative integer. In order to avoid perturbation

denominators of the form (e - 1 + i6) which result from this almost

degeneracy, we use partitioning perturbation techniques. First, HF

is split into a zeroth order part which is independent of the field

strength and a first order perturbation proportional to the field

strength. Then we choose X to be the two-component row vector:
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(0) = (IA,j0 > , IB,jo-l>) (XI-2)

where jo is any integer or zero.

Since the final time-dependent results for the characteristic

exponents and the Fourier components do not depend on the choice

of jO , we will for the sake of simplicity choose jo = 0

Therefore let

x(°) = (IA,0>, IB,-l>) (XI-3)

The Zeroth Order Partitioning Approximation

Since we have chosen X by (XI-3), we may now obtain the

zeroth order partitioning approximation. This involves solving the

secular equation (X-23) with N = 0 . By definition,

x() = x( )  (xI-4)

With this expression we may explicitly write the zeroth order secular

equation:

det = 0 (XI-5)
a (C-l-is)-W
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In writing the zeroth order secular equation we have set the ordering

parameter, A , equal to unity.

There are two roots to (XI-5), p1(0) and 12(0) , which

correspond to approximations to the Floquet characteristic exponents

accurate through first order in the field strength. The roots are

explicitly given by:

pi(0) = K2[(E - I - i6) - {( - 1 - i6) 2 + 42 j 2 ]  (XI-6)

P2(0) = 2[(E - 1 - iS) + {(e - 1 - i6) 2 + 42}/2] (XI-7)

Using the notation already defined in section X, we may write

the eigenvector associated with pl(O) as:

1(XI-8)

Associated with the root P2(0) is the eigenvector:

c(O)221 
(XI-9)

1 (0 -1

Using (X-24) and (XI-8), we may write the approximate wavefunction

associated with the approximate root pi(O) as:
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1(0)> I A,0> + IB,-l> (XI-10)

Associated with the approximate root P2(0) is:

122(0)> =A,0> + IB,-1> (XI-11)

With these approximate energies and wavefunctions, we can use

the equivalence between the static and dynamic problems to obtain

the "zeroth order" partitioning approximation for the two time-

dependent Floquet Normal Modes:

First Mode

I(0) = 12[(E - 1 - ia) - {(E - 1 - 16) 2 + 4ca2} 2 ]

a1  e- 4(O)T ; a a = 1

(XI-12)
Se-i(O)T 1(0) ) -iT

b ei ) bl1 bl )e

Second Mode

2(0) = [(- 1 - i) + {( - 1 - 16) 2 + 4a2}R2]

a2 . e -i2(0)T Oa2 a; 2 a//42 (0)

(XI-13)

b 2 - e-i 2(0)T b2 ; tb2 e-i
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Again we wish to note that in these "zeroth order" expressions

for the Floquet solutions the characteristic exponents are accurate

through first order in the field strength whereas the "#-parts" of

the Floquet Modes are accurate only through zeroth order in F . It

is also interesting to note that the parameter B does not appear

in this zeroth order approximation. It does, however, appear in the

higher order partitioning approximations.

The First Order Partitioning Approximation

We may obtain more accurate results for the Floquet Normal Modes

by using the "first order" partitioning approximation. By this we

mean that we find an expression for the row vector X which is

correct through first order in the field strength, i.e. we determine

X(1) . This X(1) is then used in the secular equation, (X-23).

The resulting secular equation may be solved to obtain two roots,

.l(1) and P2(1) , which correspond to approximations to the

Floquet characteristic exponents which are accurate through third

order in F . The approximate eigenfunctions, I1i(1)> and

I12(1)> , which are related to -l(1) and P2(1) respectively may

be used to obtain the "p-parts" to the Floquet Normal Modes which

are correct through first order in F

We have already chosen

X(0) = (JA,0>, B,-l>). (XI-14)
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In order that the zeroth order perturbation equation

H(0) (0) X(0) E(0)

be satisfied, we must choose

E = (XI-15)
Z 0 (-l-i6)

(1)
X obeys the equation:

(0) (1) (1) (0) (1) (0) (0) (1)H X + H X = X E + X E (XI-16)

In solving (XI-16), we must specify the normalization of X

We will choose "intermediate normalization":

<k,klX(1)> = 0 ; j = a or b ; (k,k) = (A,0) or (B,-l) (XI-17)

Substituting

(1) = ( X)( >,lx(1)

into Eq. (XI-16), we obtain the following equations for JX(1)> anda

IX()>
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H(0) IX(1)> + H(1)IA,0> = (E(1))11A,O> + (E(1)) 2 11B,-1>

(XI-18)

[H(0) - + 1 + i6]xb(1)> + H(1)IB,-l> = (E(1)) 1 2 1A,0> + (E(1))221B, 1

(XI-19)

To fulfill the normalization condition in Eq. (XI-17), we let

Ix()> (1)(1 - 6 6 )(1 - 6 6 )) , m>
a £=A,B m=-M,, ,B m,-1

(XI-20)

XXbl) d()(1 -6 6 )( ),m>
£=A,B m=-= 2,m £,A m,0 £,B m,-l

(XI-21)

where the g,) 's and d (n),'s are expansion coefficients and theP,,m Z,m
6 is are Krinecker "deltas." Substituting the expansions (XI-20)

and (XI-21) into Eqs. (XI-18) and (XI-19), we multiply the resulting

equations first by <A,01 and then by <B,-ll to find:

(E )) = a(6 - 1)

where 6ij is the Krinecker "delta." In a similar manner we find:
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(1) _ -a)> = - IB,1>a (; + i - i )

(XI-22)

X(1)> = (B,-2> - IB,0>) + + 1 IA,-2>b (E + 1 - id)

Setting A equal to unity X(1) is simply

x(1) = x(0) + x()

where X( 0)  is given by (XI-14) and X (1) is given by (XI-22).

We may now form the first order secular equation by using

X(1) in (X-23) to obtain:

hl, h12 r 11l 0

det - = 0 (XI-23)
h 2 1 h2 2  0 s22

where A has been set equal to unity and where:
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h 11  = -a 2 /(E + 1 - i6)

h12 = h21 = + a 2 /( + 1 - i)

h 2 2  = (e - 1 - i6)(1 + 282) + 2a2 (8 - i6)/(c + 1 - i6) 2  (XI-24)

S11 = 1 + a2/(E + 1 - i6) 2

s22 = 1 + 2 2 + a2/(, + 1 - iS) 2

Just as we did in discussing the zeroth order partitioning

approximation, we may use the j-th root of (XI-23), pj(1) (j = 1,2),

and its associated eigenvector

-1
c(l)I

-1
c(L)

2j,

to obtain approximate expressions for the time-dependent Floquet

Normal Modes.



First Mode:

a, = e - 1 (l)t al; b = e-iI1(l)T bl

Ph _ (-2 2 + _) _ hlh22 - (h12 )2 321

i(1) = 2 + 11 2+ h12 - 4-( )

s2 2  sll s2 2  Si1 Slls22

-1 h12

21 (S1111(1) - hll)
S- h(XI-25)

-1 -2ir
ac(l):2 1 e

S (E + 1 - iS)

S -ae e + c(1)2 [e-iT + (e - 1)]
bl (C + 1 - i)]

Second Mode:

a 2  = e-i12(1)T a2; b 2  = e ib2

112(1) = 1 h22 + h + h22 + h 2 _ 4hlh22 - (h12)2 ]2]
s2 2  s11 s22 Sil Sll12 2

-1 h 12
12 I 2(1)s1 h h11

2 ()Sl - (XI-26)

-2ir
-1 cae

a2 = (1)12 + + 6)

-it -2iT c(1)1  aei
S= e + (e - 1) - (+12-

bi (E + 1 -16)

The sij's and hij's which appear in (XI-25) and (XI-26) have

already been defined in terms of the fundamental parameters of the

problem by the expressions in (XI-24).
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The Second Order Partitioning Approximation

We may use partitioning to obtain still better approximations.

For example, we may form the second order correction to X ,

(2) = (x(2)> (2))a -b

This function is found by solving (X-19). If we impose intermediate

normalization

<k, X(2)> = 0 ; j = a or b ; (k,k) = (A,O) or (B,-l)

we find the following results for IX(2)> and Ix2)
a b

1 (2)> =a 2  _ _ _ _ _ _

Xa> 2(E + 1 - i [A,2> - A,-2>] - ( + 1 - i) B>

+ as IB,-2> + aIB,2>

(8 - 2 - i) (E + 1 - i6)(c + 2 - i6)

(XI-27)

x (2)> =a5 IA,-3>- aB A,1>b (e + 2 - i) A,-3> - 2 - 6)

2 U-3> 2 a2
+ (If + _( i6))' , 3 + 2 a2

2 2(e+Il s 1 ) '2 -2(c + 1 -is)

Using (XI-3), (XI-22) and (XI-27), we may form x(2) . This X(2 )

is correct through second order in A and it may be used to form

the second order partitioning secular equation, i.e. equation (X-23)
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with N = 2 . We will obtain from this secular equations two roots

correct through fifth order in F . These roots correspond to the

Floquet characteristic exponents. We will also obtain two

approximate wavefunctions, ij(2)> j = 1,2 , which will be correct

through second order in F . These will correspond to the " -parts"

of the Floquet Normal Modes. The explicit results of the second

order partitioning approximation are not given since

they are algebraically cumbersome.

Part II: Relationship of Partitioning Perturbation Solutions to

Other Solutions. E = 1

Since the regime of e = 1 is of great spectroscopic interest,

many authors have considered the two-level system at its main

resonance. Since the problem is usually considered with 8 = 6 = 0 ,

we will first discuss the solutions under the conditions that

= 6 = 0 .

Textbook Solutions: 8 = 6 = 0

If we set S and 6 equal to zero, equations (11-4) and (11-5)

become

a = -2ia cost b

(XI-28)
b -ieb - 2i cost a
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The usual textbook solution to (XI-28) proceeds in the following

manner. First transform (XI-28) by letting

b(T) = b'(r)e

The equations for b'(T) and a(T) therefore become:

a(T) = -ia(l + e-2ir)b'(T)

2i. (XI-29)
b'() -i(s - l)b'(T) - ia(e 2 i + l)a(T)

The prescription is to now neglect all of the time-dependent coefficients

in (XI-29) to obtain an easily soluable system of two linear coupled

homogeneous differential equations with constant coefficients. The

justification of this prescription is that the (e 2 i r) terms are

negligible because they are quickly oscillating and therefore average

out to zero. There are two linearly independent solutions obtained

by this prescription and they are:

al = exp[-[(s - 1) - {(: - 1)2 + 4a2}It]]
(XI-30)

b l = [( - 1) - {( - 1) 2 + 4a2} )a l e - i T

See, for example, L. D. Landau and E. M. Lifshitz (1965), p. 139.
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2o eir b2
a2 [( - ) + [(E - 1)2 + 4 2 ]1/2]

(XI-31)
b 2 = e-i exp[-[(C - 1) + {(C - 1)2 + 4a2}2T]]

By inspection we can see that (XI-30) is the same as expression

(XI-12) if, in (XI-12), we set 6 equal to zero wherever it appears.

Similarly, (XI-31) is equivalent to (XI-13). The "textbook"

solutions are therefore just the zeroth order partitioning

perturbation approximation to the Floquet Normal Modes. The

partitioning theory therefore gives a justification for the ad hoc

"textbook" method of solving (XI-28).

The solutions given by (XI-30) and (XI-31) are the exact solutions

to the Schr6dinger Equation for a spin /i particle in a rotating

magnetic field. These exact solutions were first derived by Rabi

(1937). When (XI-30) and (XI-31) are used as approximate solutions

for a two-level system in an oscillating field, it is customary to

call them the "Rabi Rotating Field Approximation."

Bloch-Siegert Solutions: B = 6 = 0

The first attempt to improve upon the Rabi Rotating Field

Solutions was made by F. Bloch and A. Siegert (1940). Their

important work led to the realization that the main resonance of a

spin / system (or, equivalently, of any two-level system) in an

oscillating linearly polarized magnetic (or electric) field would
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not occur at the frequency w = AW (or, c = 1), but would be slightly

"shifted," i.e. would occur at a frequency wO such that

W0 = A W + terms proportional to the field strength.

In their treatment, Bloch and Siegert change the independent

variable in Eqs. (XI-28) to

x = 2 T + 2n

and they then derive an equation for the quotient u(x) = a(x)/b(x) :

du
du iacos(x/2) + - icos(x/2)u2  (XI-32)

Bloch and Siegert further assume that u(x) has the following

functional form

ix/2 i(z(x)-Px) + (
u(x) e [= ( )  (XI-33)

e i(s(x)-Px)]

where

S= -[(1-E) + ((l-c)2 + 4a2) 2]

2 2
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and z(x) is a function which is to be determined. Using Eq. (XI-33)

in Eq. (XI-32) we find that z(x) is determined by a non-linear

differential equation:

dz A 2 (eix + e - ix ) + eiz(e-i(l+p)x i(-p)x (XI-34)

L+e-iz ( - i(1 - p) x  1 i(l+p)x)

where A = a2/4p

At the main resonance, e = 1 and A = a/4 . A is clearly a

small quantity if the field strength (and, therefore, a ) is small.

Bloch and Siegert, consequently, use perturbation theory to solve

Eq. (XI-34) after first assuming

z(x) = Anz(n) . (XI-35)
n=O

The zeroth order solution to Eq. (XI-34) is z(0) = c where c is

an arbitrary constant. Choosing z(0) = 0 we find that at x = 0 ,

the zeroth order approximation to u evaluated at x = 0 has the

value = . This corresponds to the system's being in state p a(r)

at x = 0 . Choosing z(O) = 0 further gives the following zeroth

order approximation for a (x)a(x) :

* (1-c)2 + 2a2(1+cospx)a (x)a(x) + (1-C )2 + 4 2S (XI-36)
(1e)Z + 4ca



11-18

Eq. (XI-36) corresponds to the Rabi Rotating Field approximate

expression for the amplitude a (x)a(x) . Finding the higher

order corrections to z(x) may, therefore, be thought of as finding

corrections to the Rabi Rotating Field approximation.

The Bloch-Siegert technique is cumbersome to work with; it

makes no reference to the known Floquet Form of solution, and it lacks

ease of extension to quantum systems with more than two energy levels.

For these reasons, we do not recommend its use.

The Stevenson-Moulton Approach: 8 = 6 = 0

Soon after Bloch and Siegert's work was published, Stevenson

(1940) rederived their result for the "resonant shift" using less

cumbersome techniques.

Stevenson's starting point is equations (XI-28). He makes

explicit use of the Floquet Theory by assuming that a(T) and

b(T) may be written according to:

a(T) = a(T) e-

(XI-37)

b(T) = Ob(T) e e

We wish to note that the equations for z (n ) (n > 0) are solvable

only after exp[±iz(x)] has been expanded in the usual series

expansion for the exponential:

exp[±iz(x)] = 1 ± iz(x) - 1[z(x)] 2
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where p is a constant and

0i(T + 27) = Oi(T) i = a,b .

The equations for the 4.'s become:

a = ioa - i(l + e-2i ) b

(XI-38)

b = i b - i( - 1)4 b - ia(l + e2i)r a

The technique which Stevenson recommends is one due to Moulton

(1920). It is one in which the time-dependent terms in Eqs. (XI-38)

are taken to be perturbations on the static terms. This is formally

accomplished by replacing any a which multiplies a time-dependent

term in Eqs. (XI-38) by (Xa) where A is an ordering parameter.

The quantities v, 0a and 0b are expanded in powers of A and a

set of perturbation equations are derived which may be solved under

the stipulations:

1(n) is constant for all n

(n) (T) (n)(T + ) ; all n; j = a,b

Note that because of the transformations of Eqs. (XI-37) the

"o-parts" of the Floquet solutions have periodicity 7r rather than

periodicity 2w
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The zeroth order solutions obtained by use of this technique are just

the Rabi Rotating Field approximate solutions, i.e. Eqs. (XI-30) and

(XI-31). The higher order corrections may, therefore, be thought of

as corrections to the Rabi solutions. This technique differs from

techniques such as Technique T2 (see Chapter VIII) in that the

equations for the correction functions are inhomogeneous coupled

(rather than homogeneous coupled) differential equations. The

Stevenson-Moulton technique is similar to Technique T2 in that the

(n),s and the constants of integration (aside from normalization)

are determined by the requirement that the 4j's be properly periodic.

There is, however, a problem with the Stevenson-Moulton technique:

the perturbation series is not quickly convergent. To most easily

demonstrate this, we reformulate the dynamic problem of Eqs. (XI-38)

as a static problem.

As we have done before, we use Floquet's theory and Fourier's

Theorem to write:

SA .e 2 ir ; b = j .e2 ijT (XI-39)
=-03j=00 3

where A. and B. are constants and where we use the fact that the

#-functions in Eqs. (XI-38) have periodicity n rather than

periodicity 2w .

Substituting expressions (XI-39) into Eqs. (XI-38), we derive

static equations for P and the Fourier expansion coefficients.
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(2j - O)A. + aBj + B+ = 0

(XI-40)

(2j + [-1i] - p)Bji j aA + aXAj- = 0

In order to reformulate the problem posed by Eq. (XI-40) into a

problem which has zeroth order solutions corresponding to the Rabi.

approximate solutions, we merely need to change basis by defining

the coefficients P. and Q. :

P. = . + B.
j j c j

(0)  (XI-41)

Q = . + B.j j c

where

(0) = [(-)+ ]

and

R = (E-1)2 + 4a2

From Eq. (XI-41) we write:

(0) (0)
. = Qj P

(XI-42)

B A (P -Q
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Using these definitions and using Eqs. (XI-40), we find the equations

for P. and Q. :

(0)
(0) + 0  (n (0) Xa2(2j + )+ - 11)P. + (" - - P. ) + -R(PJ - Qj+) = 0

(XI-43)

)2+ X(0)
(2j + (0) _ )Q + -(Pz (0) Q (0)P ) 0- i - j+1 j+1 r + j-1 - j-1

(XI-44)

In exact analogy to what we did in Chapter V, we reformulate

Eqs. (XI-43) and (XI-44) into the Schridinger-like problem:

Hs IP>  = IP> (XI-45)

where Hs  is an operator, p is an eigenvalue and 1P> is a

function which may be expressed in an orthonormal basis composed of

all the IP,j>'s and JQ,j>'s :

<k,i1m,n> = 6k,m 6£,m

where k,k = P or Q and j is any integer including zero. Hs is

written as

H = H(0) + AH(1)  (XI-46)
s s S
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where

H(s Pj> = (2j + (O) :p,j>S +

(XI-47)

H(O)IQ,j > = (2j + (0)) IQ,j >

and

(0)
(1+ () 2

H(1)s +  Q,j-> - () P,j-l>) + -(IP,j+l> - IQ,j+1>)
S+F

(XI-48)

> (2 0)
H(1)Q, > = (P,j + 1 > - IQ,j+l>) + - (-- 0) Q,j-1> - O)l,j-1>)

s FR +

(XI-49)

We recover the solution to the dynamic problem of Eqs. (XI-38)

from the solution to the Schr6dinger-type problem of Eq. (XI-45) by

the following prescription. Assume we know IV> and v . In

particular, assume we know Iv> as:

> = Z c. .i,j> (XI-50)
i=P,Q j=-m 3,

where the c. .'s are expansion coefficients. P. is equal to the

coefficient of IP,j> in the expansion (XI-50). Qj is equal to the

coefficient of IQ,j> . . and B. are found by Eqs. (XI-42) once
J J

P. and Q. are known. Knowing Aj, B. and , we have completely

solved the original equations, Eq. (XI-38).
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The Stevenson-Moulton method is equivalent to solving Eq. (XI-45)

by using Rayleigh-Schridinger non-degenerate perturbation theory and

(1) (0)considering the term H to be the perturbation on H . We
s s

first seek the solution which corresponds to

(0)
lim P =  P ; lim '> =  IP,0>

since, in zeroth order, this solution leads to one of the Rabi

approximate solutions. The other Rabi approximate solution is the

zeroth order solution to Eq. (XI-45) which is defined by:

(0)
lim P = P( lim I> = JQ,0>'.
X+O X -O

From the discussion of Chapter VII, we know that the higher

order corrections in the Rayleigh-Schr3dinger non-degenerate

perturbation theory will contain terms of the form given by Eq.

(0)(VII-8). For the Hamiltonian H , the smallest difference

between zeroth order energies is ±/ and when e is very nearly

unity,

When a : 1 , all the matrix elements of H(1) are of order of
s

magnitude a . Thus, some of the correction terms obtained by this

method may be of order unity--the same order of magnitude of the
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zeroth order solutions. Thus, we do not expect the Stevenson-Moulton

technique to give a quickly converging series approximation to the

original problem.

Shirley's Approach: 8 = 6 = 0

Our technique of solving (XI-28) by using Floquet Theory and

Fourier's Theorem to reduce the time-dependent problem to a

time-independent eigenvalue-eigenvector problem, has been taken from

Shirley's (1963,1965) work. Shirley reduces (XI-28) to the problem

of solving

HFIP> = PIl>

in the IA,j> , IB,j> basis. Since he considers only the case of

8 = 6 = 0 , HF would be defined by (V-2) in which both 6 and 8

have been set equal to zero. For the case of = 1 , Shirley takes

note of the fact that standard Rayleigh-Schr6dinger perturbation

theory may not be used to obtain quickly converging approximations.

To handle this case, Shirley uses a partitioning perturbation scheme

formulated by Salwen (1955). The Salwen scheme is one in which the

higher order perturbation equations are only approximately solved.

In the scheme we use, the higher order perturbation equations are

exactly solved. We, therefore, disagree with Shirley in the first

correction and in all higher corrections.
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Salwen's Perturbation Scheme

The Salwen perturbation scheme is formulated for solving the

problem

HFIP> = pIp> (XI-51)

where there is an almost (or exact) degeneracy in zeroth order. Let

HF have the expression

(0) + XH(1)
HF = HF

where X is an ordering parameter. Further let H(0 ) have the

(0'orthonormal set of eigenfunctions, Ij> , with eigenvalues P!0

H(o)lj> = (o)j
F j "

For simplicity, denote the two kets which are almost (or exactly)

degenerate in zeroth order as f1> and 12>

Write the solution to Eq. (XI-51) as:

Ij > = <Iip>Ii> + <21p>12> + I' (Cn<llp> + Dn<2 >)In> (XI-52)
n

where the prime on the summation is used to indicate that n = 1,2

is to be excluded from the summation and where C and D are
n n

P-dependent constants. By substituting Eq. (XI-52) into (XI-51)
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and by subsequently multiplying the result first by <11 and then

by <21 we obtain the following two equations:

[<1IHFIl> + I' C<1H Fln> - V]<1IU>
n

(XI-53)

+ [<IHFI 2> + I' Dn<lIHFn>]<21> = 0
n

[<21H Fll> + I' Cn<21HF n>]<lII>
n

(XI-54)

+ [<21HF 1 2>+ ' Dn<21HFIn> - 1i<211> 0
n

In order that there be a solution to Eqs. (XI-53) and (XI-54), the

determinant of the coefficient matrix must vanish. This means that

two eigenvalues of HF are found as eigenvalues to the following

2 x 2 matrix:

<1IHFIl> + I' Cn<IHFIn> <21HFll> + ' Cn<21HFIn>
n n

(XI-55)

<lIHF12> + I' Dn<IHF n> <2 1HF 2> + I' Dn<21HFIn>
n n

That the roots of Eq. (XI-55) correspond to the perturbed

eignvalues arising from states II> and 12> may be confirmed by

(0)
noting that when X + 0 , the roots of Eq. (XI-55) are just p1

and 0). Of course, before finding the roots of Eq. (XI-55), we
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must first find the coefficients C and D . These are found by

first noting the equality:

<nIHIII> = p<nl > n # 1,2 . (XI-56)

Using the expansion of Ip> given by Eq. (XI-52), we have

<lIp><nIHFIl> + <211><nIHF12> + '(C <li > + D <21u>)<nIHFIj>

= (Cn<1 i> + D <21p>) n # 1,2

(XI-57)

Eqs. (XI-57) are satisfied if we choose the coefficients C and
n

D so that they obey:

I" C <nJHFIj> + (<niHFln> - )C = -<nIH Il>

(XI-58)

" D <nHFlj> + (<nIHFln> - )Dn = -<nIH12>

where the double prime is used to mean that j = 1,2,n is to be

excluded from the summation and where n # 1 or 2 .

In summary then, the Salwen formulation is first to solve Eqs.

(XI-58) for the coefficients Cn and Dn . These coefficients are

then used to form the 2 x 2 matrix given by Eq. (XI-55). The roots

of this matrix are two exact eigenvalues of (XI-51). The fly in the
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ointment is, of course, the fact that we must know beforehand that

which we seek: we must know an exact eigenvalue, p , before we can

solve for the C 's and D 's since Eqs. (XI-58) depend on pn n

Solving Salwen's Equations '

The formulation, so far, just changes the original problem from

one in which we have a known matrix (the matrix H in the Jj>

basis) which will be difficult or impossible to diagonalize to a new

problem in which we must diagonalize an unknown 2 x 2 matrix.

Salwen, however, suggests two approaches in attempting to find the

elements of the 2 x 2 matrix. One is an iterative scheme and the

other is a perturbation scheme.

(a) The iterative scheme: The iterative scheme is simply to

first select an approximate value of V . Use this approximate

value of p in solving Eq. (XI-58) for the coefficients Cj and

D. . With these coefficients known, (XI-55) can be evaluated and

then diagonalized. Select the appropriate root of (XI-55) as the

new approximate value of p with which to again carry out another

iteration. Continue this cycle until a value of p of sufficient

accuracy is found. Although this is an interesting scheme of

solution, we will not pursue it further here since Shirley does not

use it and we are primarily interested in this report in comparing

Shirley's previous work to our present work.

(b) The perturbation scheme: The specific perturbation scheme

which Salwen and Shirley use is the following: Let p which appears

in Eqs. (XI-58) be given by either 0)or ~ . Then solve
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Eqs. (XI-58) perturbatively by expanding H, C. and D. in powers of

A . Use the perturbation approximations for C. and D. in

forming the 2 x 2 matrix of Eq. (XI-55). The eigenvalues of the

resulting matrix are taken as approximate values of .

Relationship of the Salwen-Shirley Perturbation Theory

to Partitioning Perturbation Theory

Recall the basic equation of partitioning perturbation theory:

Eq. (X-9). Assume that we know X exactly where

lim X =  (11>,12>) = X0o (XI-59)

Two exact eigenvalues of HFIP> = ul > are recovered as roots to

the following secular equation:

detlXO(HF - W)XI = 0 . (XI-60)

As the first step in explaining the Salwen-Shirley scheme write X

and E as:

X Xo + 1 ; =  
0 + (XI-61)

where XO has already been defined by Eq. (XI-59) and EO is, at

this point, arbitrary. X1 and E1 are, therefore, correction terms

which make the definitions in (XI-61) valid.
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Using Eqs. (XI-61) in (X-4) we have:

HFXO + HFX1 = X0-O + XO 1 + X10 + X1E 1  (XI-62)

The Certain-Hirschfelder scheme is to first take

(0)
1 0

0 (0)
0 11

and to then perturbatively solve for Xi and W 1 . The Salwen-

Shirley scheme is equivalent to first approximating Eq. (XI-62)

by neglecting the term X1EI . Salwen and Shirley then let

E0 (0) 1E = ( 1

(0)
where 1 is the 2 x 2 unit matrix and Pv is either one of the

(0)two unperturbed almost (or exactly) degenerate eigenvalues of HF .

The resulting equation is then perturbatively solved to find X1 and E1

and, approximate eigenvalues are found by then finding the roots to

(XI-60). The important point to note is that the Salwen-Shirley

scheme (unlike the Certain-Hirschfelder scheme) will not yield exact

eigenvalues even if the perturbation theory is carried to infinite

order.

Demonstrating our analysis of the Salwen-Shirley perturbation

scheme in terms of the Certain-Hirschfelder theory is simple. Let

the exact Xi be given by:
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xi = (' c.lj>,' d.l >) (XI-63)
j jX 3

where c. and d. are expansion coefficients and the prime means

that states ji> and 12> are to be excluded from the summations.

The eigenvalues of HFIP> = iIP> are found by use of Eq. (XI-60)

which leads us to seek the eigenvalues of

<lIHFI1> + ' c.<l1HFIj> <11HF 2> + ' dj<11 HFj>

IJ F( X I -6 4 )

<2 HFIl> + ' c <21HFIj> <21HFi2> + Y' d <21HFiJ>

We now show that the Salwen-Shirley scheme of finding the c.'s and

dj's is equivalent to solving:

HFXO + HFX = X00O + XOIl + X1OO (XI-65)

where X = (11>,12>) and E = (0) 1 , j = 1 or 2 . Writing Eq.

(XI-65) out explicitly we have

(HF - 1 0))(Il> + I' cklk>) = (E)111 1> + (EI)2112> (XI-66)k

(HF - jO))(1 2 > + I' dklk>) = (E1)1211> + (EI)2212> (XI-67)

Left-multiplying both Eq. (XI-66) and Eq. (XI-67) by <nl (n 0 1,2)

we find that the c 's and d j's are determined by:
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i" ck<nHF k> + [<nHF n> - )]cn  = -<nlHFI1>

(XI-68)

I" dk<nIHFk> + [<nlHF n> - (0)]dn = <nHF2>
k n

where n # 1,2 and the double prime indicates that states II> ,

12> and In> are to be excluded from the summation.

Comparing Eqs. (XI-68) with Eqs. (XI-58) we see that if V in

(0)Eqs. (XI-58) is replaced by , is the same as C. and d.

is the same as D. and thus our description of the Salwen-Shirley

scheme in terms of the Certain-Hirschfelder partitioning is correct.

The Pegg-Series Technique: 0 = 6 = 0

Pegg and Series have developed techniques to handle the problem

of quantum mechanical spin systems in periodic classical fields.

Pegg (1973b) applies these techniques to a study of the two-level

system at its main resonance and at its subharmonic resonances.

Here we discuss Pegg's application of the Pegg-Series technique to

the main resonance and we defer a discussion of his treatment of the

Subharmonic resonances until Chapter XII. Throughout this present

section we report on Pegg's (1973b) paper although we call the

technique the "Pegg-Series" technique.

To discuss the Pegg-Series technique, let us rewrite Eqs. (XI-28)

in matrix notation:

Pegg and Series (1970) and (1973a).
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iA = H A (XI-69)

where

0 2acost

H = 2acosT

The two-by-two solution matrix A is given by

a l ( T )  a2(T)

z bl(T) b2(T)

where the solution pairs {al(T);bl(T)} and {a2 (T);b 2 (T)} form

linearly independent solutions to Eq. (XI-28).

An approach to solving Eq. (XI-69) is this. Let S be a

two-by-two time-dependent matrix and let A' be defined by

A' = SA

The equation for A' is

' = [iS S-1 + S H S-1]A' = HA (XI-70)

where H is defined by Eq. (XI-70) and where in deriving Eq. (XI-70)

we have made use of the identity:

S -1= - S-1
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If S is chosen so that H is not time-dependent, we may easily

and exactly solve Eq. (XI-70). For example, if H is a matrix of

constants, we may always find a similarity transformation such that

-1Q- = A (XI-71)

where Q is a nonsingular two-by-two matrix of constants and A is

a two-by-two diagonal matrix with the eigenvalues of H along the

diagonal. If H is hermitian, Q can be chosen to be a unitary

matrix. The solution matrix A is recovered by back-transforming:

A = S- 1 g -  K (XI-72)

where K is an arbitrary two-by-two matrix of constants in which

(in order not to get trivial solutions) we require that det(K) # 0

The basic idea behind the Pegg-Series treatment is to choose S

so that the time-dependent terms in H are small. Ignoring these

small terms should, therefore, give a good approximation to A

Pegg (1973b) formulates the problem in terms of spin operators. Our

matrix formulation is, of course, equivalent. In recent papers,

Ansbacher (1973a,b). also uses a matrix formulation. Ansbacher lets

a = 6 = 0 and he attempts to replace the Hamiltonian of our Eq. (1-1)

by an approximate Hamiltonian, Ha , which makes the Schrodinger

Equation solvable. Ha , in general, contains adjustable parameters,

which Ansbacher chooses so that (H-Ha)2 is minimized.
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Example

Before describing and discussing the Pegg-Series choice of S

let us show how the Rabi Approximate solution can be derived using

this formalism. To obtain the Rabi Approximate solution, let S be

defined:

-iT/2 0
S= /2 (XI-73)

With this choice of S , the matrix H is Eq. (XI-70) becomes:

S(1+e-
2 i Tr

H= ( 1+e2iT) C-

Approximate H by ignoring its time-dependent terms. Doing this we

are neglecting off-diagonal terms of order a . We now diagonalize

the approximated H-matrix to find

AT 0 cos e -sin
A 2 - =  

(XI-74)0 .- r sine cos

where R = (E-1)2 + 4a2 , cosO = (1-)//R and sine = 2a/i .

Letting K be the unit matrix, we use the Eq. (XI-74) approximations

to A and Q in Eq. (XI-72) to recover an approximation to A

The result (aside from a normalization factor) in the same as the

Rabi Approximate solutions* which we have already written in Eqs.

(XI-30) and (XI-31).

In making the comparison we must set 6 = 0 in Eqs. (XI-30) and (XI-31).
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The Pegg-Series Transformation

The Pegg-Series choice of S is written as:

S = PV Q (XI-75)

where

e ir/2 0 cos(6/2) sin(ep/2)

Q= - V =
0 e -ir/2 = -sin(Op/2) cos(Qp/2)J

(XI-76)

e iP()/2 0

z e-iP(T)/2

8 is defined by

p p
p p

where R = (E+1)2 + 4a2 . P(T) is a function of T and will be

left unspecified at this point so that we may derive general

expressions. Reading from right to left, we interpret S in the

There is a typographical error in Pegg's 1973b paper. Pegg's

Equation (5) should read.

^-1
S(t) = exp{i J (asin2wt + (p+l)wt}R (6) exp(-i Jzwt)

Similar corrections must be made in Pegg's Equation (6). This

misprint has been confirmed by Pegg in a private communication with us.
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following manner. Q represents a transformation to a reference

frame which is rotating in the direction opposite to the Rabi-frame.

V diagonalizes the part of the transformed Hamiltonian which is

static in this new frame. P is chosen to make certain remaining

time-dependent terms small.

With S chosen according to Eq. (XI-75), H becomes:

(H)11  = asin(8 )[1 + cos2T] + Esin2 (8 /2) - T)- 1,cos(6p p 2 cos (p

()12 = e [e2i cos 2 ( /2) - e2i sin 2 (Qp/2)]

(XI-76)
()21 = ae [e 2i cos 2 (p /2) - e 2i sin 2 (p /2)]

(H)22 = ) 1/2cos( ) + Ccos 2 (e /2) - asin(e )[l + cos2r]Z 2 p p p

The above expressions are rigorous. In applying the Pegg-Series

technique, Pegg obtains his approximation to H at the main

resonance by

(a) Letting

P(T) = asin(p ) sin2T - 2T (XI-77)

(b) Fourier analyzing exp(±iP(T)) according to:*

exp[±iP(T)] = e 2i J (asinp ) e±2iq T  (XI-78)

See Abramowitz and Stegun (1964), Eqs. 9.1.42 and 9.1.43.=

See Abramowitz and Stegun (1964), Eqs. 9.1.42 and 9.1.43.
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where Jq (asine p) in the integer order Bessel Function of order q

and argument asin(Op) .

(c) Retaining only the static terms which are left in H

after steps'(a) and (b).

Step (a) alone makes (H)11 and (H)22 static:

(H)1 1  1/2 - R] + 1
p

(XI-79)

()22 = 1/2[ + Rp] - 1

With steps (a) and (b), the static off-diagonal terms are both equal

and are both given by:

a[cos 2 ( p/2) JO(asine ) - sin2 (p /2) J2 (asinO )] (XI-80)

Recalling that e+1 z 2 at the main resonance and recalling that

a is assumed to be much less than unity, we find that the largest

ignored dynamic terms are of order 0(a3) .

With H approximated in this manner, we obtain the corresponding

approximations to A and . We find the Pegg-Series approximation

to the solution matrix A to be of the Floquet form. The eigenvalues

of the approximated HI matrix correspond to the Floquet characteristic

exponents. Since these eignvalues were obtained by neglecting

off-diagonal terms of order O(a3 ) , they are correct through 0(a5)

The corresponding eigenvectors (correct through 0(a2) ) are involved

in the expressions for the "C-parts" of the Floquet Normal Modes.
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A disadvantage to the Pegg-Series technique is that the

transformation are ad hoc and there is no prescription for obtaining

solutions of arbitrary accuracy. Furthermore, the Pegg-Series

technique is not applicable when 8 does not vanish.

The relationship of the Pegg-Series technique to partitioning

perturbation theory.

Relating the matrix formulation outlined above to the

partitioning theory outlined in Chapter X is straightforward. Let

A be the Floquet solutions:

A = e IFT (XI-81)
zF

where

= 1 a2 ;

Hbl b2 J Z0 1121

The lj's (j = 1,2) are the characteristic exponents and the 0ij's

are the periodic parts of the Floquet solutions. Using Eq. (XI-81)

in Eq. (XI-69) we find after first left multiplying the result by

exp[ipFT] and then right multiplying the result by T-1 that
ZF _F

[ii 1F + -1H ~F]  (XI-82)F FF zF zF
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By comparing Eq. (XI-82) with Eq. (XI-70) we see that a

transformation matrix which makes H in Eq. (XI-70) both static

and diagonal is the choice:

S =
z zF

From Eq. (111-19), det(OF) is nonvanishing for all values of T
-ZF

and thus 4-1 exists for all T . Note that if we make the choice

S = c 4-1 (XI-83)
zF

where c is a nonsingular two-by-two square matrix of constants,

the matrix H in Eq. (XI-70) becomes

H P

which is clearly a (in general, nondiagonal) constant matrix. The

transformation matrix given by (XI-83) contains c . The matrix c

merely linearly combines (or scrambles) the elements of - . Since
=F

the partitioning theory is equivalent to finding linear combinations

of the .-parts of the Floquet solutions, the partitioning theory is a

way of systematically finding a matrix S which makes L static.

Pegg's method differs from the partitioning theory in that his

transformations are ad hoc and in that he gives no method of

systematically finding S to arbitrary accuracy.
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The Silverman and Pipkin Technique: S = 0; 6 # 0.

Silverman and Pipkin (1972) have studied the two-level system

at its main resonance allowing for decay. They use the matrix

formulated which we have just outlined in describing the Pegg-Series

technique. Since they consider decay, let E in Eq. (XI-69) be

replaced by (e-i6) .

Their choice of S is the same as Pegg's choice (see Eq. (XI-75))

except:

(a) P(T) = 2r

(b) In the matrix V replace 0 by 8 where
z p s

Cos E-16+l -2a= cos-- sine =

s s

R = (e-i6+1)2 + 4a2

Note that because of the inclusion of nonvanishing 6 , the S-matrix

is no longer hermitian. Silverman and Pipkin use this transformation

to obtain H . is then approximated by retaining only static

terms. This procedure gives, an approximated H-matrix of the form:

Silverman and Pipkin's Eq. (35) is wrong. The off-diagonal elements

in their R matrix should be divided by (1 + K2 ) . The algebraic

results following from (35) are therefore erroneous. Professor Pipkin

has confirmed these observations in a private communication with us.
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(V)11 ' -i6 - T]1 - 1 ; (22) = /2 [-i + R + 1s s
(XI-84)

(H)12 = (H) = = -asin2 (6 /2)

In obtaining this approximation to H , they neglect diagonal terms

of magnitude 0(a 2 ) and of periodicity r . They neglect off-

diagonal terms of magnitude O(a) and of periodicity (7/2)

In back-transforming to obtain A , their procedure yields

Floquet solutions correct through 0(a) in the characteristic

exponents and correct through 0( 0 ) in the periodic parts of the

Floquet solutions.

Like the Pegg-Series technique, the Silverman-Pipkin technique

lacks ease of extension to obtain results of arbitrary accuracy.

Winter's Technique: B # 0, 6 = 0.

Winter (1959) has studied the main as well as subharmonic

resonances of two-level system. He has considered the case of

nonvanishing B . He does not, however, allow for nonvanishing

values of 6

Although he does not explicitly mention the Floquet theory, he

derives solutions of the Floquet form. He uses a perturbation theory

which, although outwardly different in its formal development, is

equivalent to the Certain-Hirschfelder theory. Since he is primarily

concerned with the subharmonic resonances, we defer a more complete

discussion of Winter's work until the end of Chapter XII.
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The Case of B # 0 and 6 # 0.

We have found no previous work which considers both nonvanishing

8 and nonvanishing 6 . In Part I of this section, however, we have

given a method of solving for this general case to any desired degree

of accuracy.
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XII. PARTITIONING PERTURBATION THEORY APPLIED TO THE SUB-HARMONIC

RESONANCES

Introduction

This chapter is split into two parts. In Part I we show that-

when e s nr (where nr is some integer greater than unity), the

sub-harmonic resonances are treated either by the Technique T7,

which we shall introduce here, or by Technique TI which has already

been discussed in Chapter VIII. Which technique to use is determined

by the values of nr, 8 and N , where, throughout this chapter, we

define N to be the order of field strength through which the

"t-parts" of the Floquet solutions are correct. Figure (XII-A) is

a flow chart which summarizes when to use Technique T7 and when to

use Technique Tl depending upon the values of N, nr and 8 .

In the second part of this chapter we compare our treatment of

the sub-harmonic resonances to the work of Shirley (1963,1965) and

Winter (1959). We also discuss Pegg's (1973b) work in which Pegg

uses the Pegg-Series technique to treat the sub-harmonic resonances.

Part I: Solutions for .a Sub-Harmonic Resonance

Technique T7 is just the partitioning perturbation theory in

which we define

X(0) = (IA,0>,IB,-n >) (XII-1)
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Technique T7 therefore consists of the following steps:

Steps to follow in using Technique T7.

Step (1). Let X(0) = (IA,0>,IB,-n >) because, by hypothesis,

the states IA,j> and IB,j-nr > are almost degenerate with respect

(0)to HF . Since the final time-dependent results are invariant to

the choice of j , for the sake of simplicity choose j = 0

Step (2). Solve Eq. (X-9) by using perturbation theory after

HF X and E have been expanded in powers of the field strength.

The first three perturbation equations have already been explicitly

written out in Eqs. (X-17), (X-18) and (X-19). Furthermore, it is

convenient to use intermediate normalization in solving the

perturbation equations:

<k,j Ix(n)> = 0 (XII-2)

where n > 0 ; £ = a or b ; (k,j) = (A,0) or (B,-n) )

Step (3). Form the secular equation, Eq. (X-23). The elements

of this secular equation are defined by Eq. (X-13a).

Step (4). Diagonalize Eq. (X-23). The eigenvalues correspond

to the Floquet characteristic exponents and they are correct through

(2N+1)-th order in the field strength. By using Eqs. (X-24), (V-7)

The partitioning perturbation theory is fully discussed in Chapter

X. An example of its application to the main resonance has been

given in Chapter XI.
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and (V-8), the eigenvectors associated with each root are used to

find the Fourier coefficients correct through N-th order in the

field strength.

Techniques Tl and T7 applied to the sub-harmonic resonances.

Two different techniques Ti and T7 are used in treating the

sub-harmonic resonances. This is so because when partitioning

perturbation is applied to the sub-harmonic resonances, we are led

to a partitioning secular equation (Eq. (X-23)) in which off-diagonal

elements vanish for certain values of N, nr and B . When the

off-diagonal elements of Eq. (X-23) vanish, the partitioning

solutions are equivalent to the non-degenerate Rayleigh-Schrodinger

results and therefore Ti and T7 differ only in normalization.

Figure (XII-A) diagrammatically shows when to use Ti and when

to use T7 depending on the values of a, N and nr . The spirit of

Figure (XII-A) is this. Suppose that N, nr and 8 are such that

the application of partitioning theory leads to vanishing off-diagonal

elements. We have therefore used a new technique (T7) to obtain

results equivalent to results already obtained by an old technique

(Tl). So why not save time and energy and figure out when this is

going to occur beforehand? Figure (XII-A) does just this.

We arrive at Figure (XII-A) by detailed consideration of the

Xa(N)'s and Xb(N)'s where N = 0,1,2,...etc. Consider first

N = 0 .
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START

DOES YES IS YES
8 = 0? n even?

r

NO NO

IS USE
2N+1 > n ? T1

YES

USE
T7

FIGURE (XII-A). Best technique to use to obtain a(T) and b(T)

correct through N-th order in the field strength

when c = nr ( nr any integer greater than zero)

and a, 8 and 6 are all much less than unity.
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N = 0

If N = 0 , then XaO) = Xa(0) = IA,0> and Xb( = Xb(0) =

IB,-n r> . HFIX (0)> therefore has components in

[IA,O>,IB,±l>] (XII-3)

By this we mean that <k,jlHFXa(0)> vanishes unless (k,j) = (A,0)

or (B,±l) .

HFIXb(0)> has components in

[IB,-nr>,IA,-nr±l>, IB,-nr±l>] (XII-4)

By this we mean that <k,jIHFIXb()> vanishes unless (k,j) =

(B,-nr),(A,-nr ±1) or (B,-nr ±1) . Furthermore, if any of the kets

which appear in the brackets are multiplied by B , then there are

no components of those kets in HFIXb(0)> when the parameter B

vanishes. Thus, if B = 0 , HFIXb(0)> has no components in

B,-nr±l> . This notation and phaseology is used throughout the

present discussion.

From the definition of X(0) and from the expressions (XII-3)

and (XII-4), we see that when N = 0 , Eq. (X-23) has off-diagonal

elements only if nr = 1 . This is true regardless of the value of B

N = 1

If N = 1, from the first order partitioning perturbation

equations (Eq. (X-18)) and from the normalization



12-6

<k,jx (n)> = <k,jlX(n)> = 0

n > 1 ; (k,.j) = (A,O) or (B,-n r)

it is clear than Xa(1) has components in:

[ IA,0>,IB,l>] (XII-5)

Xb(1) has components in:

[IB,-nr>, A,-nr+l>, IB,-nr l>] (XII-6)

HFXa(1) has components in:

[IA,0>B,>,B,+I>,A,2>,B IB,0>, B,+2> (XII-7)

and HFXb(1 ) has components in:

[ B,-n > nA!-n +l>, B,-nr> ,B,-n..+92>, B,-n ril>, I1A -n r2>,IA-n >]

(XII-8)

Knowing the components of Xj () and HFXj(1) (j = a,b) ,it is

easy to see that if N = 1 in Eqs. (X-23), Eq. (X-23) will have

non-vanishing off-diagonal elements

(a) if 8 0 , only when n < 3.

(b) if 8 = 0 , only when nr - 1 or 3
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N = 2

Forming the partitioning secular equation with N = 2 , from

considerations exactly similar to those in the above discussions,

we find non-vanishing off-diagonal .elements

(a) If # 0 , only when nr < 5
r-

(b) If 8 = 0 , only when nr = 1,3 or 5

N< 2

From consideration of the cases of N < 2 as well as the

cases N = 0,1,2 , we find the following behavior:

The off-diagonal elements of Eq. (X-23) are non-vanishing only

under the following two sets of conditions:

(a) if B # 0 , only when nr < (2N+l)r m

(b) if B = 0 , only when n < (2N+l) and nr is odd.

The consequences of these two sets of conditions are summarized by

Figure (XII-A).

The Technique Tl convergence requirements if 8 = 0 .

The Technique Tl convergence requirements were given in Eqs.

(VIII-13). It was stipulated that

min e > a

where Kmi n  is the integer (including zero) which makes IKmin-l1

as small as possible. When 8 = 0 , however, T7 is equivalent to
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T1. This means that for 8 = 0 , denominators of the form,

K'.in - E, where K'.in is an even (non-zero) integer, never occur.min min

If 8 = 0 , the non-degenerate Rayleigh-Schrodinger perturbation

series (the Ti solutions) will quickly converge if

a << 1 ; IK'.-el >> a ; 6 arbitrary. K'. is the odd
mmin min --

integer (or zero) which makes K'. -el as small as possible.
mmn

(XII-9)

As Winter (1959) has shown, there is a physical manifestation

of the fact that when 8 = 0 and nr is even the T1 solutions

are the appropriate solutions. If 8 = 0 , a two-level system shows

resonance absorption peaks only at values of e equal (or almost

equal) to an odd integer. If, on the other hand, 8 # 0 , a two-

level system shows resonance absorption peaks at all integer values

of e . Margerie and Brossel (1955) were the first investigators to

experimentally observe the sub-harmonic resonances. They observed

radio frequency transitions in sodium vapor corresponding to

e = 1,2,3 and 4 .

Part II: Other Treatments of the Two-Level System's Sub-Harmonic

Resonances.

Shirley's Approach: 8 = 6 = 0

The approach we have just used to treat the sub-harmonic

resonances is basically Shirley's (1963,1965) technique extended to
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account for non-vanishing values of 8 and 6 . The only difference

between our approach and Shirley's approach is that we solve the

perturbation equations exactly.

We have already discussed Shirley's perturbation theory in

Chapter XI. All the results, discussion, conclusions, etc. apply

here.

The Pegg-Series Technique: 8 = 6 = 0

In his (1973b) paper, Pegg uses the Pegg-Series technique to

obtain solutions for the two-level system's sub-harmonic resonances.

Since we have already discussed the Pegg-Series technique fully in

Chapter XI, we assume the reader's familiarity with the ideas and

notation contained in that discussion.

In considering E = nr ( nr here can be any integer greater

than zero), Pegg (1973b) suggests that the transformation S be

defined just as we defined it in Eq. (XI-75) except that, for the

general n , P(r) be defined by

P(T) = asin( p)sin2T - 2n T (XII-10)

where e has already been defined in the discussion following Eq.

(XI-75). Clearly, for nr = 1 , Eq. (XII-10) reduces to Eq. (XI-77).

Just as we did in Chapter XI, we form the matrix H ( H has

been defined by Eq. (XI-70)). After Fourier analyzing exp[±iP(T)]

according to
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exp[±iP(T)] = e+2inrT J (asin ) e±2iqr (XII-11)
q=-c p

where the functions Jq (sinp ) have already been defined by Eq.

(XI-78), we retain only the static terms of H . No dynamic terms

must be ignored in the diagonal part of H and the diagonal part of

H is given by

(H)1 E - R_p + n
p r

(XII-12)

(H)22 = 2[e + Rp] - n

For the case of nr = 1 , Eqs. (XII-12) reduce to Eqs. (XI-79).

The static off-diagonal terms of H are both equal and are

given by:

a[cos 2 (p /2)Jnr-1 (asine ) - sin 2 (ep/2)Jnr+1 (asin p)] (XII-13)

For nr = 1 , Eq. (XII-13) reduces to Eq. (XI-80). Just as before,

the Pegg-Series prescription is to approximate H by its static part.

This approximate H leads to approximate expressions for the Floquet

Normal Mode solutions.

When nr 0 1 , however, we always neglect a dynamic term

proportional to

acos 2 (p /2)JO (asin p) (XII-14)
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This term is of order 0(a) and the Pegg-Series prescription for

the sub-harmonic resonances leads to Floquet solutions correct

through O(a) in the characteristic exponents and correct only

through zeroth order in the " -parts" of the Floquet Normal Modes.

Because of its low formal accuracy and because of its ad hoc

nature, we do not recommend using the Pegg-Series technique in

treating the sub-harmonic resonances.

Winter's Treatment: 8 # 0 and 6 = 0

Winter (1959) considers the sub-harmonic resonances with B

non-vanishing and 6 vanishing. Although his end results are just

our results, his formulation of the steps leading to these equivalent

results is quite different from our formulation. The differences

occur both in the transformation of the dynamic problem into a static

problem and in the solution of the static problem in the regime of

near (or exact) degeneracies.

Transformation to a Static Problem

Winter considers equations equivalent to Eqs. (11-4) and (11-5)

under the stipulation that 6 = 0 :

a = -2iacosTb

(XII-15)

b = -iEb - 21icostb - 2iacosta

Rather than directly using Floquet's Theorem, he makes the ansatz

that a(T) and b(T) may be written as:
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a(T) = an(T) e inT (XII-16)
n=-0o

b(T) = bn(T) ein (XII-17)
nl=--0

where the a n()'s and b n()'s are functions not constants. First

letting

cost = 14(e i T + e- i )

and then substituting (XII-16) and (XII-17) into Eqs. (XII-15),

Winter matches terms multiplying each and every eij T  to obtain

the following equations for the functions an(T) and b (T)nn

an (T) = -inan(T ) - ia[bn-1_(T) + bn+(T)]

(XII-18)

bn(T) = -i(E+n)bn(T ) - i [bnl(T) + bn+l(T)] -ia[an_-1(T) + an+1 (T)]

where n ranges from -= to o.

Notice that Eqs. (XII-18) are an infinite set of linear,

homogeneous coupled differential equations with constant coefficients.

They have a solution of the form

an(T) = e A

(XII-19)

b (T) = e- i T B
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where P , the A 's and B 's are constants. Using Eqs. (XII-19)
n n

in (XII-18) we arrive at exactly the same matrix eigenvalue-

eigenvector equation which we have already written as Eq. (111-35).

Thus, the p in Eq. (XII-19) corresponds to a Floquet characteristic

exponent and the A 's and B 's in Eq. (XII-19) are exactly the
n n

Fourier Expansion coefficients of Eqs. (111-34). Therefore,

although Winter never invokes Floquet's Theorem or Fourier's Theorem,

he implicitly uses them to recast the time-dependent problem into the

static eigenvalue-eigenvector problem which we have already given by

Eq. (111-35).

The Winter-Heitler Perturbation Theory

Winter recognizes that resonances occur when E = nr and that

resonances correspond to near (or exact) degeneracies in the M

matrix (see Eq. (111-36) for M's definition). To handle the

problem of near degeneracies, Winter extends a formalism due to

Heitler. At first glance, the Winter-Heitler Perturbation Theory

appears different than the Certain-Hirschfelder partitioning

perturbation theory. We show, however, that the two are equivalent

if "Certain-full-normalization" is used in the partitioning theory.

In explaining the Winter-Heitler theory, it is convenient to

replace the (B,j)-th row of M by its (B,j-n )-th row2r

(j -=,...,O ) to generate a new matrix M' . The rows and columns

of M' are still ordered according to

Heitler (1960), Chapter 4, Section 14.
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...A1,B1,AO,B0,A_1,B_1,... (XII-20)

and, by definition, we therefore have,

(M') = (M)A,j;k, A,j;k,

(M') = (M)SB,j;k,t B,j-n ;k,£r

where k = A or B and = - M' has been defined so that

the almost degenerate pairs

j and j + s - n

occur adjacent to each other along the diagonal of M' . Further

define the column vector C' in terms of the vector C of Eq.

(III-35). The elements of C' are ordered according to (XII-20)

and therefore:

B,j B,j-n (XII-21)

(C')A,j = C)A,j

where J -,.., It is evident that the problem (M-I)C - 0

is exactly equivalent to the problem

(M'-P)C' = 0 (XII-22)
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It is this latter problem to which the Winter-Heitler perturbation

theory is applied.

M' still has almost (or exact) degeneracies along its diagonal:

(M') = (M')
A,;A,j B,j;B,j

To overcome the difficulties which these near (or exact) degeneracies

cause in the perturbation solution of Eq. (XII-22), a unitary

transformation, S , is sought which has the property

S M' S = K ; S S = I (XII-23)

where I is the infinite unit matrix and K is an infinite square

matrix. The rows and columns of K are ordered according to

(XII-20) and K is defined so that all its elements vanish except

its diagonal elements and the elements:

(K) (K)
A,j;B,j ; (B,J;A,j

With S and K defined in this manner, Eq. (XII-22) becomes:

(St M' S- PI)(S t C') = (K - plI)(S t C') = 0 (XII-24)

Since K is block diagonal with 2 x 2 matrices along its diagonal,

solving Eq. (XII-24) is a simple task. The difficult task is to find
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S and K . Winter suggests that they be found by a field-strength

perturbation solution to

M' S = S K (XII-25)

We show that the Winter-Heitler procedure is equivalent to the

Certain-Hirschfelder treatment by noting that the S matrix is

merely a matrix containing "scrambled" eigenvectors of M' . Since

the Certain-Hirschfelder treatment also seeks scrambled eigenvectors

of M' , the two treatments are equivalent if Certain-full-

normalization is required in the Certain-Hirschfelder treatment.

We demonstrate this assertion by first denoting the exact

eigenvalues and eigenvectors of M' by:

M' C' = p C'-26)
~kR k, ~k, (XII-26)

where k = A or B and Z = -o,...,M . The complete solution to

Eq. (XII-22) is written as

M' C' = C' p (XII-27)

By this we mean that when, HF is Hermitian (i.e., 6 = 0 ), we

choose c of our Eq. (X-7) to be unitary. See Certain and

Hirschfelder's (1970a) paper for more details.
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where C' and p are infinite square matrices, and, the rows and

columns of both are ordered according to (XII-20). The (k,Z)-th

column of C' contains the solution vector C' and I is
;~Uk, Z

diagonal and

k,£;k,e k,£

where k = A or B and £ = -m,..o,= . Since C' contains the

eigenvectors or a real, symmetric matrix,

(CI)t C' = I

where I is the infinite unit matrix.

Define an infinite set of arbitrary 2 x 2 unitary matrices,

V(j) where j = -=,...,m . Further define an infinite square

matrix V the rows and columns of which are ordered according to

(XII-20). V is block diagonal having the matrices v(j) along its

diagonal. Therefore, all elements of V are zero except:

(V) = (v(j))
Z B,j;B,j 22

(XII-28)

(V)= (v(j))
B,j;A,j 21

(V) = (v(j)) 12- A,j;B,j
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We now assert that S is simply given by

S = C' V . (XII-29)

S is unitary and it is composed of "scrambled" (or linearly

combined) eigenvectors of M' . With S defined by Eq. (XII-29),

we have:

St M' S = Vt(CI') M' C' V = Vt p V (XII-30)

From the definitions of p and V it is clear that V p V may

be identified with K . Therefore, the Winter-Heitler and Certain-

Hirschfelder treatments are equivalent as long as Certain-full-

normalization is used in the latter.
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XIII.. TECHNIQUE THE (1 T E-EXPANSIO OF THE UOTIENT EUATIONS

APPLIED TO E >> 1 AND (2a). (28) AND 6 ALL MUCH LESS THAN E

Introduction

In this section we present perturbation solutions of Eqs. (II-4)

and (11-5) which are useful for the following ranges of the parameters:

E >> 1 and (2a), (2$) and 6 are all much less than E

In Technique T8 we do not directly deal with Eqs. (11-4) and

(11-5). Rather we solve the equation for b(T)/a(T) to find one of

the Floquet Modes as a power series in inverse powers of e . We

then solve the equation for a(r)/b(T) to find the other Floquet

Mode as a power series in inverse powers of c . We believe that

this is a new way of obtaining solutions for the two-state time-

dependent problem.

There are two solutions for b(T)/a(T) as a series in powers

of (1/c) . One of these series has terms in (1/) n where

n = 1,2,3,... and corresponds to one of the Floquet Modes. .The

other power series has terms with n = -1,0,1,... and (although it

corresponds to the other Floquet Normal Mode) it is not useful for

us since many of the individual terms become infinite for particular
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values of T . Similarly, there are two series in powers of (1/e)

for a(r)/b(T) . The series with n = 1,2,3,... corresponds to

the Second Floquet Mode. Again, the solution with n = -1,0,1,...

is not useful.

Knowing an asymptotically convergent series for one of the

Floquet solutions to b(T)/a(T) and an asymptotically convergent

series for the inverse of the other Floquet solution to b(T)/a(T)

we construct approximations to the two liqearly independent Floquet

solutions of Eqs. (11-4) and (11-5). We may linearly combine

these latter solutions to obtain a (1/E) expansion of a solution to

Eqs. (11-4) and (II5) obeying arbitrary initial conditions.

Although the equations for b(T)/a(T) and a(T)/b(T) appear

to be singular perturbations in the parameter (1/6) , when 6 = 0

their solutions do not approach an "outer" solution as T becomes

large. This anomalous behavior and also the convergence of the

series is discussed at the end of this chapter.

Statement of Quotient Equations

Let

a(T) = e1(T ; b(T) = 41(T)e81(T) (XIII-1)

From the definitions of 81 and 0i in (XIII-1), we see that
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S1 (T) = b(T)/a(T) .

Substituting (XIII-l) into equations (II-4), and (II-5),, we obtain

01 = -2iacosx 01 (XIII-2)

and

i * i6 2 2a 2ai~ = 1 - 1 + P -- cost P + -- C - -- COST(4 1 ) 2  (XIII-3)
6 E g E

From Eq. (XIII-2) it follows that if 01 is known, 61, may be

found by simple quadrature. Eq. (XIII-3) has already appeared in

Section VIII in connection with Techniques T3 and T4.

Similarly, if we define the functions 82 and D2 by:

a(T) = 2 (T)e62(T) ; b(T) = e 82 (
) , (XIII-4)

then the differential equations for. 82 and D2 are:

62 = -i(c - is) - 2iBcosr - 2iacosT 02 (XIII-5)

and
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i 2 = 2 - i 'Di 2 + 2aCOST 2 2a COST + 2COST(02)2.. 2.2 cosT 2 -- cos + 2cosT(C2)

(XIII-6)

Once Eq. (XIII-6) is solved for 02 , e2 is found by a simple

integration.

We use Eqs. (XIII-2) and (XIII-3) to find an approximation to

one of the Floquet Normal Modes. We use Eqs. (XIII-5) and (XIII-6)

to find an approximation to the other linearly independent Floquet

solution.

The (1/E)-Solution of Equations (XIII-3) and (XIII-6)

If Y, (6/), (2B/) and (2Ca/) are all much smaller than unity,

then every term in (XIII-3) is a perturbation on the term (i) .

Such a perturbation is called a "singular perturbation" since the

highest order derivative term is included in the perturbation terms.
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Let (1 be expanded according to:

S= (l/C)$(n) (XIII-7)
n=q

From the indicial equation obtained by substituting (XIII-7) into

Eq. (XIII-3), there are two solutions with finite values of q

one with q = -1 and another with q = 1. As mentioned previously,

Defining

0 = E - 16 + 2cosT

and rewriting Eq. (XIII-3) as

2ai 2 2a 2
l " 1 -- COST + cosz(1)

it is tempting to seek approximations to the solutions for 0l as

power series expansions in (1/0) . This approach is not recommended

because it has two disadvantages:

(1) The results for {a(T);b(T)} are not of the Floquet

functional form.

(2) The radius of asymptotic convergence is smaller than that

of the (1/)-expansions.
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we consider the case where q = 1 and disregard the solution with

q = -1 since this latter solution contains terms which become

infinite at certain values of T .

The general n-th order term for the q = 1 solution is:

1(n) = i(n-l) + (i6 - 28cosT)41(n - l) + 2acos[-6jl + n (n-

j=0

(XIII-8)

where n > 1 and the "delta" with subscripts is the Krtnecker delta.

From expressions (XIII-8) we see that n) is determined by the

1 's where n > j . Furthermore, the equation for 1n) is not

a differential equation and we therefore have no flexibility in choosing

boundary conditions.

The first few orders of 0l are:

(1) =1 = -2acosT

(XIII-9)
(2)2)1 = 2isint - 2a(i6 - 2 8cosT)cost

Higher order corrections are easily obtained by using Eq. (XIII-8).

We obtain 61 by substituting the results of the (l/e)-expansion

of 01 into (XIII-2). Choosing the arbitrary constant of

integration (which is equivalent to choosing the normalization), we

obtain:
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81 i -[2T + sin(2T)] + 2sin 2T - 26T- 6sin(2T) +

- i-2i sin(3T) - 6iasinT

We recover expressions for the functions a(T) and b(T) by

using (XIII-1). Since 01 contains only periodic terms and since

61 contains periodic terms and terms linear in T , when we assemble

the expressions for a(T) and b(T) , we find that we have obtained

a Floquet Normal Mode as a power series in (1/E) . The explicit

expression for this Floquet particular solution correct through

second order in (1/e) is:

First Mode:

al = e-iJir cal

(XIII-10)

bl = e-111T bl

where

2c2  2ia 26
E1 - +

#al = exp[ i- 2 sin(2T) + [2sin2T - 6sin(2T) - 2i6 sin(3r) - 6isinT]

+ ...]

2a 2ar
bl = Oall- - Cost + a[i sinT - (i6 - 28cosT)cost] + ...]E ET
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In an exactly similar manner, we find that-anot-her Floquet

particular solution is found by again assuming a (1/E)-expansion

for D2 :

2 = (1/)n 2n)2 (XIII-11)
n=q

Substitution of the expansion (XIII-ll) into Eq. (XIII-6)

yields an indicial equation which admits of a solution for two

finite values of q : q = -1 and q = 1 . We again disregard the

solution with q = -1 since we have already obtained its inverse:

the solution of l with q = 1 . We focus on the solution to

02 with q = 1 . (The inverse of this solution was the solution

to 01 which we disregarded.) The general n-th order term of the

q = 1 solution is:

Dn) = _i$ n-l) + (i6 - 28cosT)O( n - 1) + 2 acosT[ 6 n1 - ) n-l-j)

j=l

(XIII-12)

where n > 1 . The various 0(n)'s are easily found by use of

(XIII-12). The approximation to 02 which is generated in this

manner is substituted into Eq. (XIII-5) to obtain the function e2
The results for 02 and 82 are used in Eq. (XIII-4) to obtain

solutions for a(T) and b(T) . This procedure generates another
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(1/e) solution of the Floquet Form. As we will demonstrate, it is

linearly independent of the solution given by (XIII-10). This

second Floquet Normal Mode explicitly is:

Second Mode:

a2 = e- 1 2T a2

b2 = e-i2T b2

2c2  2ica6
2 = E - i6 + + 2i +

Oa2 = b2[-- cosT + -[i sinT + cosT(i6 - 2ScosT)] + ... ]

Ob2 = exp[-2iSsinT - --- sin(2T) + [ 2sin2T + 6sin(2T) + .. ]

2ig
+ 3 sin(3T) + 6isin

(XIII-13)

Note that we really did not have to do a separate perturbation

calculation to derive the second Floquet Normal Mode. Knowing the

particular solution {al(T),b 1(T)} , we could have obtained the other,

linearly independent Floquet particular solution by using (111-22).

In any case, (111-22) may be used to check the algebra used in

deriving (XIII-10) and (XIII-13).
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The Linear Independence of the Two (1/s)-Solutions

Using the results of Eqs. (XIII-10) and (XIII-13), the determinant

D(T) = al(T)b 2 (t) - a 2 (T)bl(T)

is given by,

D(T) = - cos2T exp -i( - i6)T - 2iesinT

8a2  4c2
8 COS2T(i6 - 2BCOS) + .. + - sin 2 T +

Thus, D(T) cannot vanish for sufficiently small values of 1/

(2a/E), (2B/e) and (6/) .

Since D(T) # 0 , the two solutions which we have obtained by

the (1/s)-expansions correspond to linearly independent Floquet

Normal Modes.

Convergence of the (1/e)-Expansions

To discuss the convergence of the (1/E)-expansions, we look at

the general expression for the various !n)'s :
3

n) (2) a (2 )b 6 f(n) (cost,sinT) (XIII-14)j n abc
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f is a polynomial in cost and sinT and it is therefore
abc

bounded. a, b and c are positive integers (or zero) such that

a+b+c < n.

If (1/E), (6/c), (26/e) and (28/E) are all less than unity, we

expect that the coefficients.

(2,)a' (28) 6 c

cn+l

from the .(n+l)-th'order are smaller than the coefficients

(2a)a (2a)b 6 c
n

from the n-th order. There is no way of being sure, however, that

( n+l) is always smaller than 1n) for all T and all n . We
j j

therefore expect the series to converge asymptotically. This is

the general behavior of singular perturbation solutions.

We form Floquet solutions for a(T) and b(T) from 1. and

e(j = 1,2) . The function 6. appears as an exponentiated function

in the Floquet solutions and we must therefore look at its convergence.

Consider e. (j = 1,2) . From Eqs. (XIII-2) and (XIII-5) we

write the expression for e. as:
J
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S-i[ - is)r + 28sinT]6 - 2ia cosTr dT (XIII-15)

where j = 1,2 and 5j2 is the Kronecker delta. The result of

carrying out the integration on the right-hand side of Eq. (XIII-15)

is to obtain a function containing only terms linear in T and

periodic terms. These terms will involve products of (1/0), (6/c),

(28/c) and (2u/c) . If the latter terms are all much less than unity,

the series expression for the result of the integration is

asymptotically converging. Multiplication of an asymptotically

converging series by a constant, 2a , does not affect its convergence.

We therefore conclude that the (1/c)-expansions for 6j will

asymptotically converge as long as (1/c), (2ct/), (2 B/c) and (6/c)

are all much smaller than unity.

We summarize the present discussion by saying: The (1/c)-

expansions of the Floquet Normal Modes given by Eqs. (XIII-10) and

(XIII-13) will asymptotically converge if:

(1/c), (6/c), (28/) and (2a/c) are all much less than unity.

Discussion of (1/c)-Expansions

As we pointed out in our statement of the quotient equations,

the problem of finding solutions to the linear, homogeneous, first

order equations, Eqs. (II1-4) and (11-5) may be reduced to the

problem of solving one, nonlinear, first order equation: either

Eq. (XIII-3) or Eq. (XIII-6). The equations for Pj (j = 1,2) are
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generalized Riccati equations. Since both equations are first order,

the specification of $. requires one arbitrary constant of

integration.

Consider 01 . From Floquet's Theorem we write the general

solution to Eq. (XIII-3) as:t

b(T) Cle - IlT bl + C2 e
- i 2T b2

a(T) - 1 2Cle  I al + C2
e-i1 2T Pa2

where C1 and C2 are arbitrary constants, i. is a constant and

ij (T) = 4(T + 2r) . Using the relationship between the two

characteristic exponents given by Eq. (111-32), we write

Clbl + C2 b2e-iT-6T+2iI
T

1 =  (XIII-16)
Cl al + C 2 a 2 e-iT-T+2ijT

Inspection of Eq. (XIII-16) shows that there are always two periodic

solutions to Eq. (XIII-3) which are periodic with periodicity 2T.

These correspond to

C 1 arbitrary ; C2 = 0 ; 1 = Obl/4al

C1 = 0 ; C2 arbitrary ; 01 = b2/0a2

See Ince (1956), Sec. 2.15.

Recall that in Section III we showed that Eqs. (11-4) and (11-5)

never have Form III solutions.
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We call these particular solutions the Floquet particular solutions

for $l since each corresponds to a ratio of Floquet Normal Mode

particular solutions.

The Floquet solutions for 01 are unique in that one of them

may be expanded solely in terms of inverse powers of c . The

other one has an expansion in e1, 60 and all inverse powers of e

To express all other particular solutions to DI other than the

Floquet solutions, all positive and negative powers of e are

required as well as a term proportional to cO . Similar considerations

apply to the Floquet solutions to Eq. (XIII-6).

We found one Floquet solution to Eq. (XIII-3) as a power series

in (1/e)n n = 1,2,...,- . We found the inverse of the other Floquet

solution to Eq. (XIII-3) as a (1/e)n (n = 1,2,..., ) power series

solution to Eq. (XIII-6).

Relationship of T8 to Usual Singular

Perturbation Treatments

When E is very large, Eqs. (XIII-7) and (XIII-11) are "stiff"

equations (the coefficient of the highest order derivative term is

very small). When the term ;. is included in the terms taken to

be the perturbation, the perturbation is said to be singular.

The textbooks by Nayfeh (1973) and Cole (1968) have excellent

discussions of singular perturbations. Also see, Curtiss and

Hirschfelder (1952).
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The solutions to stiff equations typically have the following

behavior. All solutions, regardless of their boundary conditions,

rapidly approach a single function as the time variable moves forward

or backward. The approached solutions are called "outer solutions."

The singular perturbation series usually gives an asymptotic

approximation to such an "outer solution." The solution in the

immediate vicinity of the boundary is called an "inner solution" and

it must be found by some technique other than singular perturbation

theory.

Our present treatment differs from the typical singular

perturbation problem in two respects: The first is that we never

have to compute "inner solutions." The (1/e)-expansion for ¢1

asymptotically approximates one Floquet solution for . The

(l/e)-expansion of 02 asymptotically approximates the inverse of

the other Floquet solution for 01 . We use these approximations

to obtain two linearly independent Floquet solutions to (II-4) and

.(II-5) which may be combined to write a solution obeying arbitrary

boundary conditions.

The second atypical aspect of Technique T8 is that although the

Floquet solutions are the particular solutions which are asymptotically

See Cole's (1968) discussion (in Chap. 2) of an overdamped harmonic

oscillator of extremely small mass as an example of a "typical" singular

perturbation problem.
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approached by the singular perturbation treatment, the Floquet solutions

play the role of outer solutions only when 6 # 0 and

(-6 + 2Re(iil)) # 0 . To demonstrate this assertion, look at the

general expression for 01 given by Eq. (XIII-16). (Analogous

arguments can be made for 02 .) Consider first the case of

nonvanishing 6 . When 6 # 0 , the characteristic exponent, ,

is in general complex and we must therefore discuss the following

cases:

Case (A): 6 # 0 ; (-6 + 2Re(ivp)) > 0 .

When these conditions hold, as T gets positively large all

particular solutions approach b2/4a2 . All particular solutions

approach Obl/4al for large negative values of time. In this case,

therefore, the Floquet solutions are true "outer" solutions because

all particular solutions approach the Floquet solutions as T is

allowed to become (positively or negatively) large.

Case (B): 6 # 0 ; (-6 + 2Re(iul)) < 0 .

The behavior of an arbitrary particular solution in this case

is that it will approach either bl/Pal or 4b2/Oa2 as the time

is allowed to get (positively or negatively) large. In particular:

1 Obl/al as

1 h Ob2 Oa2 as T + -
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The Floquet solutions are therefore typical outer solutions in this

instance.

Case (C): 6 # 0 and (-6 + 2Re(iil)) = 0 ; or 6 = 0

When either of the two above conditions are met, the term

(-ic - 6 + 2ipl)

has no real component (recall that from Chapter III, when 6 = 0

the characteristic exponents, pl and u2 , are pure real).

If (-E + 2Re(pj)) is non-integer, from Eq. (XIII-16) we see

that the Floquet particular solutions for 41 are the only two

particular solutions having periodicity 2w . All others (those

which must have both Cl and C2 nonvanishing) do not have

periodicity 2w . Clearly, the particular solutions which have both

C1 and C2 nonvanishing will never have periodicity 2w no matter

how far we let the time progress either in a forward or a backward

direction and thus the Floquet solutions are not "outer solutions"

in this instance.

If, on the other hand, (-e + 2Re(p1 )) is an integer, all

particular solutions are Floquet solutions and there is no approach

to an "outer" solution.
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XIV. TECHNIQUE T9: THE ( - i6)-EXPANSION. a AND 8 ARBITRARY

AND BOTH e AND 6 ARE MUCH LESS THAN UNITY.

Introduction

In this section we solve equations (11-4) and (11-5) by a

perturbation technique which will converge when

both e and 6 are much less than unity
(XIV-1)

and a and 8 are arbitrary.

The technique, which we will call "Technique T9," consists of first

solving (11-4) and (11-5) when both e and 6 are set equal to

zero. We take these solutions to be the zeroth order solutions and

the terms proportional to e and 6 are taken to be perturbations

on the zeroth order solutions. By this technique we obtain the

Floquet Normal Mode Solutions. The technique which we will detail

has been used by Shirley (1963) and by Series (1970), although,

neither author considers nonvanishing 8 and 6

We are especially interested in using this technique for the

case of either a or 8 being much larger than unity, since, when

a, a, E and 6 are all much smaller than unity we may use "Technique

T5" which has already been explained in Section IX.
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The General Method

If we start with (11-4) and (11-5) and let both c and 6 go

to zero, the resulting equations can be exactly solved. We have

already given these solutions by equations (IV-2) and (IV-3).

Let us express the solution to (11-4) and (11-5) in the form:

a(T) = F(T)e-i(X+)sinT + G(T)e - i(A - )sinT

(XIV-2)
A -+ )-i(X+)sinsinTb(r) = F(T)ei(+)s + G(T) e-i()sin
2a 2a

where F(T) and G(T) are functions to be determined and ( +)

and (X_) have already been defined by (IV-3). Such a choice of

a(T) and b(T) may be considered a solution of (11-4) and (11-5)

by the "variation of constants" method. Using (XIV-2) in (11-4)

and (11-5) we may obtain equations for F(T) and G(T) :

(* )F (X-) 2i/R sinTS-(iE + 6)[ ( T e G] (XIV-3)

S+ 0a(+)F -2iv sinTF (X-)G(ie + 6) e F + ] (XIV-4)

%where R is defined by

R = R2 + 4a 2
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The coefficients of F and G in (XIV-3) and (XIV-4) are periodic

with periodicity (2r) . We may therefore use Floquet's Theorem to

write F and G in the following form:

G = e e

(XIV-5)
-ip' T -i(e-i6)W21F = Fe e

where P' is a constant and both G and F are periodic

functions with periodicity (27) . The equations for F and 4G
now become:

(is + 6)B (iE + 6)(X+) -2i/R sinT
- i- 2e F = 0

(XIV-6)

F - i'F + (i + 6) F + (ie + 6)(A_) 2ivR sinr =F 2e 2 G

(XIV-7)

At this point we can assume that i' , F and 4G may be expanded

according to

' = (iE + 6)n ,(n)

n=O

(XIV-8)

=0j ' (is + 6 n) (n
n=O
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We can further substitute the expansions (XIV-8) into (XIV-6) and

(XIV-7), match terms in like powers of (iE+6) , to obtain a set

of perturbation equations which may be solved to obtain the n)'s

and 1'(n)'s . However, it is more convenient to recast the time

dependent problem into an algebraic, time-independent problem.

Transformation of (XIV-6) and (XIV-7)

Into a Time-Independent Problem

To accomplish this transformation we first use Fourier's

Theorem to write #G and cF as:

=G G. ejT F F. e i j T  (XIV-9)
j=-0 j=-O,

where the G.'s and F.'s are constants. We next write

exp[±2iR sinT] as a Fourier series:

exp[±2iR sinai = J (2/R)e ± i q , (XIV-10)
q

where J (2vR) is the Bessel Function of integer order q with

argument -(2/R) .

We may now substitute the Fourier expansions (XIV-9) and (XIV-10)

into equations (XIV-6) and (XIV-7) and after we group terms multiplying

each and every eijT (j = c to -m) we obtain the following

Abramowitz and Stegun (1964), Chap. 9.



14-5

time-independent algebraic equations for the constants F. and G.

(E - i6)BGi ( - i6)(+ )
(j - (')G - - iJ .(2/R)F = 0J 2V 2 =- P-J p

(XIV-11)

(c - id)F (E - i6)( _)(j -')F. + - ( J . (2/R)G = 03 2 t 2AR- 3-P Pp=-o

(XIV-12)

In both of the above equations, the index j ranges from -o to + .

Restatement of (XIV-11) and (XIV-12) As A Quantum

Mechanical Stationary-State Problem

In analogy with Section V, we may think of equations (XIV-11)

and (XIV-12) as the following quantum mechanical problems: solve

the Schridinger Equation

hF :'> = y'1 '>  
(XIV-13)

in the orthonormal (IF,j>;IG,j>) basis. The operator hF  may be

written as

h = h) + ( - i)h (1)  (XIV-14)

h(o) k,j> = jlk,j> k = F,G-15)j = - to (xv-15)
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h( I ) is defined by:

h IF,j> Fj> + ( J. (2vR) G,p>
2 R 2/ Y p=- P

(XIV-16)

h()IG,j> =-IG,j>- - J .(2/v)IF,p>

The operator hF  is non-hermitian and we have split it up into

a part independent of e and 6 and into a part linearly depending

on c and 6 . Once we solve the time-independent Schrddinger

Equation, equation (XIV-13), we may recover the time-dependent

solutions to (11-4) and (II-5). The eigenvalue, p' , is related to

a Floquet Characteristic exponent, and, if I1 '> is expanded in the

(IF,j>;IG,j>) basis, the expansion coefficients of the basis

functions correspond to the Fourier expansion coefficients of F

and G

Perturbation Solution to (XIV-13)

Next we split up hF according to (XIV-14) and solve (XIV-13)

by assuming that both p' and IJ'> may be expanded according to

o' = u',(n)( - i)n ; _,> = (E- iS)nJl'(n)>
n=O n=O

(XIV-17)
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If the expansions (XIV-17) are substituted into the Schridinger

Equation, equation (XIV-13), we may obtain a set of perturbation

equations, each equation of which, is proportional to certain power

of (e - i6). For example, the zeroth order equation

h 0  9 (O)> = (XIV-18)

The solution to (XIV-18) is:

,(o) = j ; I= C(>jF,j> + (GjIG,j> (XIV-19)

where j is any positive or negative integer or zero and C (0)  and
F,j

(0)
CG,j are to-be-determined constants. The problem is thus one of

degenerate perturbation theory, and just as we did in Technique T5,

we shall solve it using degenerate Rayleigh-Schrbdinger perturbation

theory. Since the final time-dependent results for the Floquet

Normal Modes are invariant to the choice of j in (XIV-19), we will

choose:

j = 0 .

See Section IX of this report.



14-8

We therefore have:

(0) = 0 I, 0>= C(),G,O> (XIV-20)

(0) ad (0) (1)
The constants, CF, and CG, as well as '(1) are found from

F,0 G,0

the first order perturbation equation:

h(1) 1p(0) > +h (0) I (1)> = (1) ,(0) (XIV-21)
F hF > (XIV-21)

Multiplying (XIV-21) first by <F,0I and then by <G,0 we obtain

() (0) - XJ 0 (2 )= 0
( - ' )))J(2R)C 0

2VR- F,0 2Y'R G, 0

(XIV-22)

( JO (2 R )C(O) + P, (1)C0) = 0
2 F,- 2 G,0

Equations (XIV-22) have a nontrivial solution if

(I) /2 (XIV-23)

where

R' = B2 + [2aJ 0(2/R)]
2
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The degeneracy is therefore broken in first order and ) will

lead to one of the Floquet Normal Modes and the choice (1) ill

lead to the other. Since J 0 (2/) may at its largest be unity,

the magnitude of p(1) is at its largest, /2 .

Aside from normalization, the constants CO) and C(0) areF,0  G,O
now determined since we know (1) Associated with the root

,(i)

(0)+ (S - VRFT) G,0>SJ 0 2 R) (A+) (XIV-24)

Associated with the root (1) is

(0)> = (A+)Jo (2 )GO>
( + )> IF,0> +  G,0>

(o + VRT)

Let us now find the first order correction to l (0)> . This

correction is given by the equation

h(1)h I(0)> + h = i, (1) I(0)> (XIV-25)

We may assume that I+ (1)> may be expanded in the basis set:

C1)(1) . k = F,GI+ ( >  = C k, >  
(XIV-26)k,j =- o .
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Substituting (XIV-26) into (XIV-25), we may solve for the C kj's
k,j

to obtain

S > = C(1)IG,O> + C)IF,>
+ G,0 F,0

(XIV-27)

+ (B - R) , p(2V ) (J (2/)Gp >

+ J P (2/R) IF,p> -IGp>
2/V JO(2rR) p P 2 I p P

where we have used a prime on the summation signs to indicate that

p = 0 should be excluded from the summations. The coefficients

multiplying IG,0> and IF,0> are not as yet completely determined

even if we impose the normalization

S0 (XIV-28)

These coefficients, as well as the second order correction to ' are,

however, determined from the second order perturbation equation:

hF( ) j+p(1)> + h(o) J(2)>= +) ()> + (2) (0)> (XIV-29)

If we first multiply (XIV-29) by <F,01 and then by <G,01 we get

the following two equations:
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C1 - (A+) JO(2VJ)C(l) + (X+)() (J-
2/R F,O 2VF G,0 4R j

(XIV-30)

R F + , 1+

(0 )J(2 C) (1) (_)(B- Y) (J j(2))2C(1) - .C +
2/R F,O 2vR G,O 2JO (2V R)R jF

(XIV-31)
1  

-'- + 1,(2) (8 - (RXE)2

R G,O J(2/)(X +)

Since for integer order Bessel functions

J. = (-1) Jj (XIV-32)

the summations over Bessel functions which appear in (XIV-30) and

(XIV-31) vanish. For the resulting equations to have a solution we

find that

,(2)
+ = 0 . (XIV-33)

If we further require the normalization condition given by (XIV-28),

we find that

(1) (1)
F,0 CG,0
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We could continue this procedure to obtain approximations to

(XIV-13) to any desired degree of accuracy. We, however, will stop

here and summarize our first approximate solution:

First Solution

+ = 12(s - i) + (...)( - i6) 3 +

I> = IF,O> + (8 - ) G,0> + (E - i6)(8 - 1/R) , p_(2)F,p>

( +)J0 (2/V) 2/R J 0 (2/R) p P

J (2/R) IG,p>
- i(_ ) _, -p + (...)(: - i6)2 + ...

2R p P

(XIV-34)

where

R = 82 + 4a2 ; R' = 82 + [2aJo(2/R)]2 ; -

In a completely analogous manner, we may obtain the solution

arising from I( O)> . Writing p_ accurate through (e - i6) 2

and writing Ip_> accurate through (e - i6) , it explicitly is:
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Second Solution

I ( - i6) R+ (...)(E - i) 3 + ...

X+JO(2'R)IF,O> ( i)22 J_ (2/)IG,p>
+ (2'> =0+ IG,0> + ( - i)2a , p

(B + VRT) R( + R ) p p

J (2/~)IF,P>
+ (E - p6)14 + (...)(E - i6) 2 + ...

2/R p P

(XIV-35)

where

A = +R

The Time-Dependent Floquet Normal Modes

From equations (XIV-34) and (XIV-35), we may write to solutions

for F(T) and G(T) . By use of (XIV-2), we may write two Floquet

particular solutions as a power series in (E - i) . p is related

to p' by: p = j' + Y 2(6 - iS) . If I'> is expanded in the

(IF,j>;IG,j>) basis, the expansion coefficient of Ik,j> corresponds

to the Fourier expansion coefficient k. (k = F,G) For notational

convenience, we will write the j-th Floquet Normal Mode as

a. = e- j ca
j aj

(XIV-36)

b e bjJ ~ bj
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where

S -i(X+)sin + -i(X_)sinT

aj Fj e + Gj e

and

(X+) e-i(A+)sinT ) e-i ()sinr
bj 2a Fj 2a Gj

The two modes may therefore be written down by utilizing the

following results:

First Mode

1 = 2(E - i6)( + ) + ..

S= 1+ - i)( -+ ...

Fl 2iR J 0 (21V) p P

( - )i )( J (2 R)e i p

G1 0 it _p +..
(A+)Jo(2I) 2 V( p

(XIV-37)

Second Mode

P = ( - i6)(1- A ) +...

(A+)J0(2 i) + (E - i6)(X+) J (2/R)eip
F2 P

(B + v'R~ 2)R p

J (2vR)e pT
g2 = + (  - i6)(2a2 ) -

(B + R')V p p

(XIV-38)
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Convergence of (E-i6)-Expansion

The eigenfunctions of (XIV-13), may be expanded in the

(jF,j>;IG,j>) basis:

I'> = Ck,jik,j> (XIv-39)
k=F,G j=-o

If we use the degenerate (E-i6)-expansion to solve (XIV-13), we will

find that the C k's may be written as
k,j

Ck = . (c-iS) n c ( n )

kj n k, (XIV-40)

(n)Each and every Ck,j may be written as sums and products of terms

of the form

B J (2 AR) (A)J (2 ) (R) +)J (2ri)
,P- j 2 .(XIV-41)

2V j 2 j 2V j

where p is any integer and j is any integer except zero. j ,

at its smallest, has the mangitude of unity. J (2/i) at its

largest can be unity. B/2v/ can at its largest be (1) and

both (XA)/(2/R) and (A +)/(2/R) can be at largest of magnitude

unity. We therefore expect the (c-i6)-expansion to converge as long

as e and 6 are much smaller than unity regardless of the value

of a and . Because of the cumbersome nature of this expansion

we will only recommend using it, however, when either a or 8

is much larger than unity.
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XV. FOUR NUMERICAL SOLUTIONS

In the following four chapters, we discuss four methods of

numerically finding the Floquetcharacteristic exponents. The

problem has the fundamental simplification that once one of the

characteristic exponents is known (call it pl ) the other (call it

12 ) is immediately and simply known by Eq. (111-32):

12 = E - i6 - P. (XV-1)

Knowledge of the characteristic exponents allows us to solve Eqs.

(III-35): the homogeneous linear equations for the Fourier

Expansion Coefficients.

In Chapter XVI we discuss the Meadows (1962)-Ashby (1968)

general method of obtaining numerical values of the characteristic

exponents. We call this technique, T10. Following Meadows and

Ashby, we derive a transcendental equation which involves P and

the determinant of an infinite matrix which is independent of P

and which depends only upon the parameters a, 8, 6 and e . The

determinant is numerically approximated and this result is used in

solving the transcendental equation for a numerical approximation .to

p . In Chapter XVI we also discuss how, once the values for p
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are known, the Fourier Expansion Coefficients are most simply found.

Results from Chapter III are used to introduce simplifications in

finding these expansion coefficients when either or both 6 and

vanish. We freely draw upon results established in Chapter XVI

in the chapters following it.

In Chapter XVII we discuss the Autler and Townes (1955)

numerical technique: T11. This technique only applies when 8 = 0

We give an expression for one of the characteristic exponents in

terms of two infinite continued fractions both of which depend on

the characteristic exponent. Numerical iterative techniques are

described which yield values for p . The ratios of the Fourier

Expansion Coefficients (BjIl/A ) are given as p-dependent infinite

continued fractions. These may be used to obtain numerical values

for the Fourier coefficients.

In Chapter XVIII, we discuss T12. In this technique we take

note of the fact that when B = 6 = 0 , the problem of finding the

Floquet Normal Modes reduces to the problem of numerically finding an

eigenvalue and an eigenvector of a real, symmetric infinite tridiagonal

matrix. As Technique T12,we recommend direct computer diagonalization

of some large order but finite truncation of the infinite matrix.

This is an extremely fast and easy procedure when we seek eigenvalues

of a real, symmetric, tridiagonal matrix.
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In Chapter XIX we give Technique T13. This technique applies

for arbitrary a, 8, 6 and E . The heart of the technique is

numerically solving Eqs. (11-4) and (II-5) to find {a!(T');b!(T')}

where, j = 1,2; T' is w when 8 = 0 and 2r otherwise; and

I I
{al(O) = 1 ; b;(O) = 0}

{a(O) = 0 ; b 2 (O) = 1}

We use the quantities {a'(T');b'(T')} to form a two by two matrix.

Once the eigenvalues of this matrix are known,we easily find the

characteristic exponents from them.

Comparison of the Four Numerical Techniques

We ask at this point: "If we must obtain a solution to Eqs.

(11-4) and (11-5) in a range of the parameters which is not treated

by a perturbation method, which numerical technique should be used?"

The answer depends on whether or not either or both a and 6 vanish.

Case (A): 8 # 0, 6# 0

In this instance, only T10 and T13 apply. In the Autler-Townes

technique we require that = 0 and in the direct diagonalization

method we require that both a and 6 vanish. So, if we wish to

write a computer program able to handle arbitrary values of the

parameters, either T10 or T13 must be used.
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In T10 the major computational hurdle is approximating an

infinite order determinant. In T13 we must numerically solve complex

differential equations. Since the infinite matrix in T10 has many

vanishing elements, there are far fewer arithmetical steps in T10

than in T13 and T10 is therefore preferred.

Case (B): B # 0; 6 = 0

Since only T10 and T13 can handle this case, we again recommend

using T10 for the reasons given in Case (A)'s discussion.

Case (C): B = 0; 6 # 0

Here, we can use either T10, Tll or T13. In computing p , T11

involves iterations on as well successively larger truncations of

infinite continued fractions. T10 only involves successively larger

order truncations of a matrix and finding determinants of these

matrices. There are therefore fewer arithmetical operations involved

in T10 and it is the preferred technique.

Case (D): B = 0; 6 = 0

Here T12 is preferred since the diagonalization of a real,

symmetric triadiagonal matrix is especially fast on a computer and

routines for doing so are well documented and are often found as

standard computer soft-ware.
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XVI. TECHNIQUE T10: THE MEADOWS-ASHBY NUMERICAL SOLUTION:

e, 6 , B AND a ARBITRARY. THE NUMERICAL DETERMINATION OF

FOURIER EXPANSION COEFFICIENTS.

Introduction

In this section we describe the Meadows (1962) or Ashby (1968)

method of numerically finding the Floquet characteristic exponents.

It is a non-perturbation method in which we derive a transcendental

equation for p which involves the evaluation of the determinant

of an infinite matrix which independent of U . The exact form of

the equation to be solved depends on whether 6 vanishes and whether

e is almost (or exactly) equal to an even integer. We therefore

must distinguish between Case (A) and Case (B).

Case (A): a, 8, 6, E Arbitrary Except That If 6 = 0 , E Must.Not

Almost (or Exactly) Equal an Even Integer.

If 6 # 0 , p may be found by:

Step Al: Evaluate the determinant of the infinite matrix Al(0)

where A1(0) is defined in the following manner: The rows and

columns of A1(0) are ordered according to

... A2,B2alt,A,BA,B0,A_1,B ...etc.

and all elements of A1(0) vanish except for
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10))= ((0)) =1
( (O)A,j;Aj ( B,j;B

(A(0))A,j;B,jIl j - '/(c - i6)

(XVI-1)

(A(0))B,j;B,j±l j + 2(E - i6)

((0))B,j;B,jil j + /2(s - i6)

Step A2: Once det(Al(0)) is known, P is found by solving,

sin2 [Tr(p - Y2(C - i6))] = sin2[2(C - i6)]det(Al(O))

(XVI-2)

Case (B): a and B Arbitrary. 6 = 0 and E = N Where N Is

Some (Positive) Even Integer.

When 6 = 0 and E = N , p is found in the following manner:

Step Bl: Evaluate the determinant of the infinite matrix A 1(0)

where Z1 (0) is identical to A1 (0) except for its (N! 2)-th row

and its (B_N/2)-th row. Letting e = N + & where 5 is by

hypothesis some small or vanishing real number the matrix elements

of A1 (0) which differ from those of A 1(0) are given by:
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N/2
(ci(0))A,I2;A, = (-1) sin (

2a(-1)N / 2 sin( /2)
( 1(0)) A,N/;B,N±I =

N/2

(z(0)) B,N;B, N2 = (-1) N/2 sin( -) (XVI-3)

2a(-) sin(7r/2)
( 1(0))B,-N2;A,- + 1  =

(1 (0))B N N28 (-1) sin(nE/2)
(Z~ 0B,-N ;B,-± E

To numerically evaluate these matrix elements, we note that:

sin(ff/2) = y (r/2)3 c2 (7/2)5 4 (-1)n (r/2)2n+1 2n

2 3! + 5! "' (2n + 1)!

(XVI-4)

In the limit of E going to zero, expression (XVI-4) tends to (7/2)

Step B2: Evaluate p by solving the equation:

sin2[7( - )] = det(Al(0)) (XVI-5)

In the prescriptions for finding p which we have give above,

the solution of either (XVI-2) or (XVI-5) offers no special difficulty.

The major computational hurdle is in evaluating the infinite order
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determinants. This is done, however, by truncating A1 (0) or

Al(0) at some high but finite order. Since many elements of the

matrices vanish, efficient computer programs may be written to evaluate

the required determinants. Successively higher order truncations

should be done to check the convergence of this procedure.

The present method was given by Meadows in 1962. Meadows

considered a general system of N first-order linear homogeneous

differential equations with periodic coefficients. He made no

requirements such as stipulating that the matrix of coefficients be

hermitian etc. As a numerical example, he applies his technique to

the Mathieu equation.

Ashby independently formulated this technique in 1968 and he

is the first author to apply it to the problem of a two-state

quantum system in an oscillating classical field. Ashby considered

the case of non-vanishing 8 but did not allow the "energy" to have

an imaginary component (i.e., he required 6 = 0 ). We extend

Ashby's results to include non-vanishing 6 and we give explicit

expressions for handling the special case of 6 = 0 and E equal

(or almost equal) to an even integer. In the remainder of the section

we prove the results given by Eqs. (XVI-2) and (XVI-5). Our method

of proof is a composite of the ideas of Meadows and Ashby.
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Preliminaries to the Derivation

Of Eqs. (XVI-2) and (XVI-5)

Define the functions a+ () and a (T) by

a(T) = (T) exp[- - i6)T]
(XVI-6)

b(r) a= -(T) exp[- 2 (C - i6)T]

Using (XVI-6) in equations (11-4) and (11-5), we obtain the

+
differential equations for the functions a and a :

a %(E - i6)a + + 2iacosTo = 0

(XVI-7)

a + i2(c - i6)a + 2icosta- + 2iRcosta 0

From Floquet's theory and from Fourier's theorem, we may write the

solution to Eqs. (XV-2) as

a = e I A.e i

(XVI-8)

a = e p B.ejT

j=0 3

We work with the functions a and a rather than the functions

a and b since this allows us to avoid division by zero in the

ensuing analysis.
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where p , the A. 's and the B. 's are constants. By the

definition of a and a in terms of the a(T) and b(T) in

Eqs. (XVI-6), and by comparison of Eqs. (XVI-8), (111-33) and (111-34)

we relate the quantity p in (111-33) to the quantity p in (XVI-8)

by:

S= + 2 (C - i6) (XVI-9)

The A.'s and B. 's in (XVI-8) are exactly those which appear in
J J

Eq. (111-34). Substituting (XVI-8) into (XVI-7) we obtain two

equations of the form:

I C. exp[-i(p - j)] = 0

If these are to be valid for all values of the variable T , then

each coefficient, C. , must be zero. Thus we obtain two sets of

equations:

[j - I2( - i6) - V]A + ac[Bj+ + Bj_] = 0 (XVI-10)

[j + 2(c - i6) - -]B + a[A j+ + A1 + B[Bj+ + Bj_] = 0

(XVI-11)
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Dividing Eq. (XVI-10) by [j - /2(c - i6)] and dividing Eq. (XVI-ll)

by [j + -(c - i6)] , we obtain

[ - (-iA) ] [B +B ] = 0

j - ( - ) j j - (E - i) [Bj+l + Bj-l] 0

[j + 2(e - i6) - ] + B
j + Y2 ( - i6) j j + 2(E - i[Bj+l + Bjl]

+ +A + )[Ajl+ Aj_ ] = 0
j + V2(C - i 3)j+1 j-1

(XVI-12)

Eqs. (XVI-12) can be compactly expressed by the infinite matrix

equation:

AC = 0 (XVI-13)

where C is the infinite column vector the elements of which are

ordered:

... ,A1 ,B 1,A O,B 0 ,A - 1,B - I , ..

and A is an infinite square matrix. In A we order and label the

rows and columns according to
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.... •,A ,B l ,A ,B 0 ,A - 1,B_  .

All elements of A vanish except for the following:

(A) [j - 2(-i) - ]
z~ A,j;A,j j - 1/2( - i6)

( [j + 11(s- i) - ]
B,j;B,j j + 14(E - i6)

(A,j;B,jl j - 1/(( - i6) (XVI-14)

B,j;B,j±l =j + 12( - i6)
(A)

B,j;A,j±l j + 1(E - iM)

If Eq. (XVI-13) is to have a non-trivial solution for the vector

C , the determinant of A must vanish. The equation which determines

u therefore is:

det( (p)) = 0 (XVI-14a)
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Derivation of the Transcendental Equation for p

Eq. (XVI-14a) is difficult to solve and we therefore approach the

problem of determining p by first defining the matrix A1 which

is obtained from A by dividing every row in A by its diagonal

element. A1 , therefore, has all its diagonal elements equalling

unity. All elements of A1 vanish except for the following:

(1)A,j;A,j = )B,j;B,j = 1

()A,j;B,j j i) -

(XVI-15)

Bj;Bjl+ ( - is6) -

()B,j;A,j±l j + ( i) -

where we label and order the rows and columns of 1i just as we
labelled and ordered the rows and columns of A . Clearly, Al
and A~(0) are related by 1i(0) = _lim (A ).

S+O
The determinants of the two matrices A and A1  are related by:

det(A) = n - ( - i) - n + 1(c - is) -
~ n=-(- n 1- (E _ is) n + (- i) )Jdet(Al)

(XVI-16)
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Using the infinite product:

sinZ = Z H (I + I n = -m..+o
n#O

we find,

sin[w( 1/(E - i6) - p)]sin[(Y2(e - i6) - -)]det(4l)
det(A) -

sin2[/2( - i)]

By using trigonometric identities, we rewrite the previous equation

as:

det() [1 - in ) det(l) (XVI-17)
sin2 [wk(c - i6)] d

Let us now study det(Al(p)) as a function of the complex

variable . It is easy to see that det(Al(p)) is a periodic

function of :

det(A1l( + n)) = det(4l(p))

where n is any positive or negative integer. This follows from

the fact that the infinite matrix A1 (p) is identical to the infinite

matrix A1 (p + n)

See Abramowitz and Stegn (1964)., Eq. 4.3.89.
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By inspection of (XVI-15), it is evident that det(Al(j)) has

poles at P = ±V( - i6) + q where q is any positive or negative

integer or zero. These poles are simple poles. This assertion is

validated by noting that the function

f(P) = (2(E - i6) + q - 11)det(A 1 (0))

has no poles at = +12(s - i6) + q . Multiplication of one row of

a determinant by a scalar is equivalent to multiplication of the

determinant itself by the same scalar. f(p) , therefore, is the

determinant of the matrix obtained by multiplying the row containing

the denominator (±1(e - i6) + q - p) by the quantity

(±2( - i) + q - ) . The matrix obtained in this manner (and,

therefore, its determinant) has no poles at 1 = ±1/2 (e - i6) + q

We finally note that the residue at the poles (±1 4( - i6) + q)

is independent of the value of the integer q . This follows

immediately from the periodicity of det(Al(p))

With the preceeding properties in mind, we write a formal

expansion of det(Al(p)) as:

det(Al()) = K0 + K A q +  - -
q=-o [1 1(E6- i) +q-] +q=- [q - 14(E- ) -

(XVI-18)
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where K0 , KA, and KB are constants. Using the fact that

q+z = ncotrZ
q=-m q 

+ z

we write,

(q + 1/(E- ii)) 7 = Tcos[7(±2( - i) - 1)
q=o

(XVI-19)

Using the summation (XVI-19) in (XVI-18), we obtain:

det(Al(p)) = K0 + KA cot[7(1e2 ( - i6) - 1)] +

(XVT-29)
+ KB cot[-7(1/ 2(c - i6) + I)]

We determine the expansion coefficients in (XVI-18) by considering

the limit of Eq. (XVI-18) as the imaginary part of p goes to + .

When the imaginary part of p becomes (positively or negatively)

extremely large, the off-diagonal elements of A1 tend to become

very small and Al tends towards the infinite unit matrix. In the

limit, we therefore have:

lim [det(A 1 (P))] = 1 (XVI-21)

See Jolley (1925), Eq. (450a).



If we consider the cotangent of the complex argument

(Z - iZ.) , we have

i[eZi + -2iZr e-Zi]

r - iZi) [eZi - e-2iZr e-Zi

Taking the limit offers no difficulty and we obtain:

lim [cot(Z - iZ.)] = ±i (XVI-22)

If we now look at Eq. (XVI-20) and take its limit letting the

imaginary part of V go first to +- and then to -m , we

respectively have:

1 = KO + i7KA + i7KB (XVI-23)

1 = K0 - i7KA - iTKB (XVI-24)

Add (XVI-23) to (XVI-24) to find K0 = 1 . Subtract (XVI-23) from

(XVI-22) to find KB = -KA . We rewrite (XVI-20) by using

trigonometric identities and the fact that KB = -KA  and KO = :

sin[ (c - id)]cos[2(E - iS)]det(Al(P)) = 1 + 2 KA [ ( - i6)]cos[ n2 - 6)] (XVI-25)A sin2 [/2(C - i6)] - sin, (T)
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This equation is valid for all values of x , and in order to

evaluate the constant, KA , let us set p equal to zero to obtain

K A tan[/2( - 1 0)J[det(Al(O) - 1] (XVI-26)
A 2T Z

Substituting (XVI-26) and (XVI-25) into Eq. (XVI-17), we find an

expression for det(A(u)) in terms of :

sin (T)
det(A(p)) = det(Al(0)) - sin2[(XVI-27)

Eq. (XVI-27) is the important result since we use it to obtain

an equation for the characteristic exponents. The original Floquet

problem had a solution if det(A(p)) = 0 . Use this relation in

(XVI-27) to find:

sin2 (p~) = sin2[/2(e - i6)]det(al(0)) (XVI-28)

If we rewrite this equation in terms of p by using

we have Eq. (XVI-2): the basic result for numerically determining

the characteristic exponents when e does not equal a positive even

integer if 6 vanishes.
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Case of 6 = 0 and e Exactly (or Almost)

An Even Integer

Clearly, if 6 = 0 and e is exactly or almost equal to an even

integer, Eq. (XVI-28) is not useful in determining a numerical value

for P . If we let e = N + 4 where 4 is some small or vanishing

real number and N is some positive even integer, then for 6 = 0

the AN/2-th row of A1 (0) contains terms proportional to (1/) .

The B_N/2-th row of A1 (0) also contains terms proportional to

(1/4) . Such terms are indeterminate as C approaches zero and are

very large for 4 very small. We must therefore patch things up.

This is easily done by noting that the right-hand side of

(XVI-28) may be rewritten as

det(Al(0)) (XVI-29)

where the matrix (Z1(0)) is generated from the matrix (1i(0)) by

multiplying the A/ 2-th row of A1(0) by sin[fs/2] and

multiplying the B_N/2-th row of A1 (0) by sin[w/2] . Letting

E = N + 4 , we have

sin(-) = (-1)N/2 sin

The effect of these row multiplications is to produce a right-hand

side of (XVI-28) which converges for 4 going to zero. We therefore
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have found how to re-express Eq. (XVI-2) for the instance of 6 = 0

and e being an even integer, by finding is appropriate limiting

form. We have summarized the procedure to be used in this case as

Steps Bl and B2 in the introduction to this chapter.

Numerical Determination of Fourier Expansion Coefficients

We now focus our attention on numerically finding the Fourier

Expansion Coefficients. Our present discussion does not depend on

how we numerically find p . As usual, we write the Floquet Normal

Modes as:

ak = e-ik Ajk e i j T
=-k

(XVI-30)

bk  = e-k Bjk ei

where k = 1 or 2 , 1k is constant and the A jk's and B jk's are

the Fourier Expansion Coefficients. We have already derived the

infinite linear homogeneous equations which determine the expansion

coefficients and they are given by Eqs. (111-35).

Assume a value of V has been found by any of the numerical

techniques. Call it p, . The other characteristic exponent, P2 ,

is found by

P2 = E - is - P1 (XVI-31)
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The expansion coefficients {A j;B j} and {A. ;Bj2} are associated
31 ji { 2;B 2

with pl and 12 respectively.

Using pk in Eq. (111-35) to find {Ajk;Bjk} we numerically

solve Eq. (111-35) by truncating the infinite set of equations to a

set of M homogeneous linear equations in M unknowns. These can

be solved by well known numerical techniques. (See Wilkinson (1965),

Chap. 4.) Successively larger order truncations should be taken to

insure that this numerical method of approximation is converging.

Care must also be taken in knowing p to sufficient accuracy, since,

if the determinant of the truncated coefficient matrix is not

exceedingly small (or zero) numerical instabilities will be introduced

into the problem. The expansion coefficients will in general be

complex constants. We then use the same technique to find the

expansion coefficients associated with the other value of p . We

do find however that if certain parameters vanish, simplifications

are introduced into the problem. We therefore discuss the following

four cases:

Case Cl: a # 0; 6 0 0.

In this case the coefficients are complex. No simplifications

may be introduced and Eq. (III-35) must be solved once with p = 1l

and again with = 112 to find {A.j;Bjl} and {Aj2 ;Bj2}

respectively.
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Case C2: B = 0, 6 # 0.

Although the Fourier Expansion Coefficients are complex, a

slight simplification will arise. If = 0 , Eq. (111-35) shows

that only even B .'s are coupled to odd A.'s and only odd Bi's

are coupled to even Aj's . This means that for the Fourier

Expansion Coefficients associated with p, we will find either (a)

all odd A.'s and all even B.'s vanish, or (b) all even A 's

and all odd B.'s vanish. Except if we use the Autler-Townes

Technique (T11), we do not 9 priori know whether type (a) solutions

or type (b) solutions correspond to the numerically computed value

of pi . We will i posteriori find this out. In the computation of

the expansion coefficients corresponding to P2 we will therefore

know whether to assume type (a) or type (b) solutions. This

knowledge will save some computational effort.

In the Autler-Townes technique (T11), we know before we compute

it, whether p1 corresponds to type (a) or type (b) solutions. We

therefore may automatically set half of the expansion coefficients

equal to zero when computing them. The same is true of P2 and the

expansion coefficients associated with it.

Case C3: 8 # 0, 6 = 0.

A fundamental simplification which arises in this case is that

the Ajk's and Bjk's must be pure real. In Chapter III we showed

that U is pure real when 6 = 0 . The matrix M in Eq. (111-35)

is pure real and therefore the Ajk's and Bjk's are pure real.

Complex arithmetic need not be used in numerically computing them.
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A further simplification arises because the Aj2's and Bj2's

are obtained in terms of the Ajl. s and Bj 's by:

Aj2 - (Bkl)Jjk( 2 8 )

k=-00

(XVI-32)

00

Bj2 = (Ai)J_j_k(28)Bj2  I ( k'~ -j-k
k=-oo

where J (28) is the integer order Bessel Function of order q and

argument (28) . If (28) is small only a few terms in (XVI-32)

need be retained since J (28) is given by

J (28) = (-1)q (-2)k
q k=O k!(q + k)

and it is therefore small for small values of (2) .

To prove (XVI-32), we note that from Eq. (111-18), we have:

* -iT -2iSsinT
a 2  = -bl e e

(XVI-33)

* -iCT -2isint
b 2 = al e e

If al,a 2 ,b1 and b2 are given by (XVI-30), we use the fact that

P2 = E - V1 to write:

Abramowitz and Stegun (1964), Eq. (9.1.10).
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I Aj2 - Bjl e-ijT e-2iBsinT

j=-= 2 j=-0 1

(XVI-34)

I B,? e ijT Al e - i jT e- 2 i8sinT
j=- J- j=0 j

Substituting

-2isinT J (2)e - i q Te = J (28)e
q=-ooq

into Eqs. (XVI-34), we obtain two equations of the form

C C.[e - i j ] = 0

If these are to be valid for all values of T , the result given by

(XVI-32) must be true.

Case C4: 8 = 0, 6 = 0.

We again know that the expansion coefficients are real and in

this case, the determination of the A 2's and B j2's from the A 's32 12 jl
and Bjl's is very easy. Take the limit of Eq. (XVI-32) as 8 goes

to zero. Using the result:

lim [J (2a)] = 6 q0

Abramowitz and Stegun (1964), Chap. 9.
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we have

Aj2 = -B_jl

(XVI-35)

Bj2 - A_j 2
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XVII. TECHNIQUE T11: THE AUTLER-TOWNES NUMERICAL SOLUTION:

E, 6 AND a ARBITRARY. B = 0 .

Introduction

If 8 = 0 , we can numerically determine the characteristic

exponents and the Fourier Expansion Coefficients by a technique

first formulated by Autler and Townes (1955). We call the technique

T11. Autler and Townes derived an expression for the characteristic

exponent for the two-level system in an oscillating field. We

trivially extend their work to include the case of non-vanishing

6 . Their technique involves the following steps:

Step 1: Find the characteristic exponent associated with the solution

which has all odd A.'s and all even B.'s equal to zero by using
j J

the following exact expression for :

L 1 1
a M1 -1 M 1 -1

M 2  ___M2 - 1 M._ - 1
M3 - 1 M 3 - 1

(XVII-1)

Unfortunately, T11 cannot be extended to cover the case of

non-vanishing B .
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where

M. j evenj a

(XVII-2)
1

M. - (j + E -16 -p) j oddj a

Eq. (XVII-1) gives the (in general) complex quantity p in terms of

two infinite continued fractions which themselves involve P . As

it stands, we are not able to manipulate Eq. (XVII-1) to obtain p

as an explicit function of the parameters a, e and 6 . It is,

however, amenable to numerical solution and Autler and Townes report

that the following algorithm has been successfully used to obtain .

A trial value of u is used in (XVII-1) and the two continued

fractions are evaluated with two or three denominators retained. If

the sum of the two fractions does not equal the original trial value

of U , try a new value of u between the computed value and the

original trial value. Continue this procedure until the trial value

and the computed value agree within some specified accuracy. Repeat

this procedure using several additional denominators. When the

result is unaffected by using two additional denominators, we can

consider the final value of p to be the final result.

Step 2: The value of p from Step 1 (call it pl ) is associated with

the solution which has all odd A 's and all even B 's vanishing.
JThe non-vanishing coefficients are computed from

The non-vanishing coefficients are computed from,
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B
A- = -M +1 (XVII-3)Aj M -1

JMj+ 2 - 1jl

Mj+ 3 - 1
M +4

and

j = -M + 1 (XVII-4)

M. -1
3j-2

M. -1
-3

M j - ..

We are free to choose normalization and therefore the procedure is to

arbitrarily set A0 = 1 . We find B.1 from (XVII-3) and we find

B1 from (XVII-4). Knowing B1 we use (XVII-3) to find A2 . A-2

is found by using the value of B-1 in (XVII-4), etc. This procedure

is continued until we find that the coefficients generated are smaller

than some predetermined magnitude. The bottleneck in the procedure is,

of course, the evaluation of the infinite continued fractions which are

dependent on the known value of p . This offers, however, no great

difficulty. We compute (Bj l/A ) by first retaining, for example,

two denominators. Successively retain two more denominators until

the numerical value of (Bjl /A ) does not change within some

specified accuracy.
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Step 3: P2 is simply given by

P2 = - -

If 6 # 0 , repeat the procedure in Step 2 now choosing B0 = i

since we seek the solution with all even A.'s and all odd B "s

equal to zero. If 6 = 0 the second set of Fourier Expansion

Coefficients are found by inspection from Eq. (XVI-35).

Derivation of Tll

In what follows we derive the equations used in the Autler-.

Vownes method. We give results in terms of the notation already

introduced and we trivially extend Autler and Townes' results to

include non-vanishing 6 .

Starting with Eqs. (11-4) and (11-5), we set 8 = 0

a = -2iacosTb

(XVII-5)

= -if.(- iS) - 2iacosTa

We make use of the Floquet results as well as Fourier's Theorem to

write the solutions to !(XVII-5) as:
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a = A. eiT
j= _ j

(XVII-6)

b = e- i  B. e i j T

j=0 J

where the A 's and B 's are Fourier Expansion Coefficients.

Substituting (XVII-6) into (XVII-5) we obtain two sets of equations

for the expansion coefficients which involve the as-yet-undetermined

characteristic exponent:

M.A. +B +B = 0 (XVII-7)3J j-1  j+l

Mj+ Bj+ 1 + A + Aj+ 2 = 0 (XVII-8)

where

1
M. = (j - ) j evenj a

(XVII-9)

S (j + e - i6 - ) j odd

If we now let

B B
x = and y = j + (XVII-10)
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then Eq. (XVII-7) becomes

M. + x. + y_ = 0 (XVII-11)
3 J J

and Eq. (XVII-8) can be written in either of two forms:

1 1
M. + 1---- = 0 (XVII-12)
j+1 y xj+2

or

1 1Mj + + y = 0 (XVII-13)
ji Y j-2

From Eqs. (XVII-11) and (XVII-12), we eliminate yj to obtain for

x.

xj = -M + 1 (XVII-14)
M + + 1
j+1

Xj+2

By iteration on Eq. (XVII-14), we have:
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B
- = x. = -M. + 1A. 3 3

M - -1
S+j+2

M., + 1J +3
x j+4

(XVII-15)

- M. +1

Mj +1 -1
M -1

Mj+ 3 - 1

Mj+4

This is just the expression which we wrote as Eq. (XVII-3) and which

we use in the numerical determination of Fourier Expansion

Coefficients. Similarly, if we eliminate x. between Eqs. (XVII-11)

and (XVII-13), we obtain yj as:

y = -M + 1 (XVII-16)

M +1
j-1

YJ-2

Performing iterations on this expression we have:

A. yj -M + 1 
(XVII-17)

3 M-. - 1

M. - 1

Mj_ 3 - 1

M -4
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This is just the expression previously written as (XVII-4).

It is also easy to obtain l/xj and 1/y. as infinite

continued fractions. From (XVII-13) we have

A._A 1 -M 1

Bj-1 xj - j-2

Combining this with Eq. (XVII-16),

A.
- - Mj-1 + 1 (XVII-18)
3-1 M. - 1

M M - -
3 -4 1

M -1
3-5

In an exactly similar fashion we combined Eqs. (XVII-12) and

(XVII-15) to find:

A.
--- =+1 (XVII-19)

Bj+ M j+2-

Mj+ 3 - 1

Mj+4 - 1

j+5
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Since Eqs. (XVII-7) and (XVII-8) couple even A.'s with odd

B.'s and vice versa, there are two linearly independent particular

solutions to Eqs. (XVI-3) and (XVI-4):

First solution: All A.'s even; all B.'s odd.
J J

Second solution: All A 's odd; all B.'s even.
j j

These two particular solutions correspond to the two Floquet Normal

Modes.

The value of V for the first particular solution (or Floquet

Mode) is obtained from Eq. (XVII-11) with j = 0

MO + XO + Y0 = 0

Using Eqs. (XVII-15) and (XVII-17), we obtain an expression for

the characteristic exponent P which is a sum of two infinite

continued fractions both of which contain .

a 1 1
S MI - i L1 - 1 (XVII-20)

M2 -1 M 2 - 1
M3 -1 M_ - 1

M4 - ... M_ 4...

This equation is, of course, just (XVII-1) rewritten.

The value of p for the second solution (or Floquet Mode) is

obtained by first setting j = 1 in (XVII-11) and by then making

use of Eqs. (XVII-15) and (XVII-17):
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_ 1( 1 1
a M2 -1 M0 -1

M3 -1 M _ - 1

M4 - ... M_2 - ...

(XVII-21)

However, the value of p for the second mode is most easily and

quickly obtained by using Eq. (111-32) and thereby excluding the

evaluation of the continued fractions in Eq. (XVII-21).
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XVIII. TECHNIQUE T12. COMPUTER DIAGONALIZATION OF REAL, SYMMETRIC

TRIDIAGONAL MATRIX. B = 6 = 0 . E, a ARBITRARY.

This technique is simply stated: find one eigenvalue and one

eigenvector of

(M - PI)C = 0 . (XVIII-1)

where, p is the eigenvalue. C is an infinite column vector the

rows of which are ordered according to

... A2,B,A2,B,A,B-,A-2,B-3. (XVIII-2)

I is the infinite unit matrix and M is an infinite square matrix

having rows and columns ordered according to (XVIII-2). All elements

of R vanish except for the following:

(H) = j+E()B,j;B,j

Aj ;Aj j  (XVIII-3)

kil= aAJ;BJ±B,;Aj
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is therefore real, symmetric and tridiagonal. It is, however,

infinite and we approach the numerical solution of (XVIII-1) by

truncating M and C at some large but finite order. Because of

M's special form, solving the truncated eigenvalue problem is an

extremely easy computer problem. Wilkinson discusses this at length

in Chapter 5 of his (1965) book. Because of the indeterminacy in

V , we need find only one eigenvalue and one eigenvector of (XVIII-1)

to determine one of the Floquet Modes. The other mode is found by

using Eq. (XV-1) with 6 = 0 . The Fourier coefficients corresponding

to the other mode are simply found by applying Eqs. (XVI-35).

We recommend this direct computer diagonalization of a matrix

only for the case of 6 = = 0 since it is only for this case that

the problem is especially simple.

Derivation of Eq. (XVIII-1)

We have already derived the linear equations for the Fourier

Expansion Coefficients. These are given by Eqs. (XVII-7) and (XVII-8).

Multiplying these latter equations by a and then setting 6 equal

to zero, we obtain:

(j - p)A + [B+ + Bj_] = 0 (XVIII-4)

(j + s - p)Bj + a[Aj+1 + AJ_ 1 ] = 0 (XVIII-5)
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Noting that these equations have a solution for A = Bk = 0 where

j is odd and k is even, we set these coefficients equal to zero

and thereby derive the matrix equations given by (XVIII-1).
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XIX. TECHNIQUE T13: NUMERICAL SOLUTION OF EQOS. (11-4) and (II-5)

TO OBTAIN CHARACTERISTIC EXPONENTS.

Introduction

T13 is a numerical method for finding the exact values of the

characteristic exponent. Shirley (1963) derived this technique for

$ = 0 = 6 but it can also be used when 6 and B are non-vanishing.

Since the major computational hurdle is numerically solving

differential equations, it is easily computer programmed since

routines numerically solving differential equations are often found

in standard computet soft-ware.

The basic idea in T13 is to numerically find at T' = n or

T' = 27 the values of {al(T');b'(T')} and {a'(T');b'(T')} where

{a!(T');b'(T')} (j = 1,2) satisfy Eqs. (11-4) and (II-5) and obey

the following initial conditions:

Solution 1: a'(0) = 1 ; b'(O) = 0

(XIX-1)

Solution 2: a'(0) = 0 ; b'(0) = 1

Solutions 1 and 2 are not in general Floquet particular solutions.
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We find {a!(T');b!(T')} by using the Runge-Kutta or some

other numerical method. We use {a!(t');b!(T')} in finding the
J J

roots to the following secular equation

a ' ( T ') - s a ' (T')

det o 0
b ' ( T') b(T') - s

This determines the characteristic exponents since the roots of the

secular equation are related to the characteristic exponents by:

s = exp[-ipT']

We need only find one of the characteristic exponents because both

are immediately known once one of them is known:

P1 + P2 = E - i6 (XIX-2)

The optimum recipe to use in obtaining the characteristic

exponents depends on which (if any) parameters vanish. We therefore

break the discussion into four cases. Knowing values of p , we

find the Fourier Expansion Coefficients by using the methods already

discussed in Chapter XVI and we thereby numerically find the Floquet

solutions.

See Carnahan, Luther, and Wilkes (1969), Chap. 6.
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Case A: a, , 6 and e Are All Non-Vanishing

With definitions (XIX-1) in mind, the prescription is to find

by some suitable numerical technique the quantities: a'(2), b'(2w),

a'(2f7 ) anc b'(2w) . These are, in general, complex quantities.

The complex value of p is found by:

S.

1 _ tan- - _ ] (XIX-3)
r 2T s

r

= 1 n(sr) 2 + (si)2 ) (XIX-4)

where v = r + ipi ' and sr and s. are respectively the real and

imaginary components of the complex number s : s = s + is.. s is
r 1

given by:

s[a'(2r) + b'(2Tr) + [(a'(27T) + b2(2r)) 2 - 4e - 2 ie e-26r]2]

(XIX-5)

Use (XIX-2) to find the other value of .

Case B: a, s, 8 Are All Non-Vanishing. 6 = 0

Here we merely need to know a'(27) . Calling

al(2f) = a + ia. , (XIX-6)
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p is pure real and it is given by:

P= 2.1 cos-1[Y1 cos(e) + (1- (y1)2) 2 sin(esr)] (XIX-7)

where Yi = a cos(er) - a.sin(en) . Again use (XIX-2) to find the
r 1

other characteristic exponent.

Case C: a, e, 6 Are All Non-Vanishing. 8 = 0

For this case, we only need to find solutions 1 and 2 (defined

in Eq. (XIX-1)) at ' =  . Assume that we know a'Tr) and b'f .

The complex quantity i is defined by

= Pr + ill

and it is computed by:

tan 1 [- -] (XIX-8)
r s

r

_ 1n(/(S )2 + (s) 2 ) (XIX-9)

where sr and si are respectively the real and imaginary components

of the complex number s where

s = s + is.r 1
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and,

s = 12[a'() - b'(rT) + [(a(7r) - b(7r))2 + 4e - i  e- I 2 ]

(XIx-lO)

The other characteristic exponent is most simply found by use of

Eq. (XIX-2).

Case D: e, a Non-Vanishing. 6 = B = 0

Here we only have to know a'(7) . It completely determines

one of the characteristic exponents. Let us define

a' (7) = a + ia.I r I

The quantity p is pure real and it is given by

1= cos-lY 2sin(e7/2) + [1- (y2)2]/2 cos(es/2)]
IT

(XIX-11)

where

Y2 = a sin(Er/2) + a. cos(Ew/2)r I

Use Eq. (XIX-2) to find the other characteristic exponent.



19-6

Derivation of Results

The fundamental result which we use in this technique is found

in Appendix A as Eq. (A-12). The result, applied to Eqs. (11-4) and

(11-5), is that if we know aI(2n), bi(2n), a'(27) and b'(27) and

if

-2iirls = e

s is given as the roots to the following secular equation:

al(27) - s a'(2r)

det 2 0 (XIX-12)
b'(2T) b'(27) - s

Eq. (XIX-12) has two roots (which may or may not be distinct). It

is sufficient, however, to deal with only one of them since we know

that the two characteristic exponents are related by Eq. (XIX-2).

We get the expressions for p given in the introduction to

this chapter from (XIX-12). Simplifications are made in the final

results by using some results from Chapter III.

To match up the notation used here with the notation used in Eq.

(A-12) make the following identifications: n = 2; t O = 0; P = 27;

11 = aj; P12 = a'; 21 = b' = b'21 dp 2
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Case A: s, a, 6 and B Are All Non-Vanishing

Expanding the determinant in Eq. (XIX-12), we find a quadratic

equation in the quantity s . The solution for s corresponding

to taking the plus sign in the quadratic formula is:

s =1/2 ai(2w) + b'(2w) + a(2) + b'(2))2 2

-4[a'(2Tr)b'(2) - b'(2T)a'(2r)]

(XIX-13)

From (111-14), we have

-2iSr -26w
a ' (2 T )b'(27) - a ' (2)b(2 7r) = e e (XIX-14)

Eq. (XIX-14) is used to simplify the expression for s given by

(XIX-13). We thereby obtain the expression for s given by Eq.

(XIX-5). Since we write

s = s + is i

and

s = e-2i(Pr + ili)
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we obtain the following two equations which determine pr and i :

the real and imaginary components of p respectively:

sr = e2i cos(2np )

(XIX-15)
si = -e sin(2npr )

These have the solution given by Eqs. (XIX-3) and (XIX-4).

Case B: c, e, B Are All Non-Vanishing. 6 = 0

When 6 vanishes we have the fundamental simplification that

p is pure real (see Chapter III for proof). Furthermore, by

applying relations (111-18), we have

* -2isir
a'(2Tr) = -(b'(27)) e

(XIX-16)
* -2isrr

b'(27) = (a'(2r)) e

The secular equation, Eq. (XIX-12), is therefore simplified to

a' (2Tr) - s -(bl(2r).) e-2i

b'(27) (a'(2n)) e-2i: - s

(XIX-17)
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We expand the determinant and use the fact that from Eq. (111-15) we

have

a'(2r)(a'(2r)) + bl(2 r)(b(2)) = 1

to obtain:

s 2 _ s(a'(2n) +(a'(2)) e- 2i) + -2ie 0 (XIX-18)

Thus s depends only upon e and a'(2w) .Calling

a'(2) = a + ia1 r

we find a solution for s as:

s = e -i[y1 + i(l - (y1)2) ] (XIX-19)

where

Y1 = a cos(e) - a. sin(Er)Since s is related to the characteristic exponent by

Since s is related to the characteristic exponent by
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s = e

and since p is pure real, we obtain the solution for p given

by Eq. (XIX-7).

General Consideration When 8 Vanishes

When 8 vanishes, a fundamental simplification occurs: we

need carry out the numerical solution of Eqs. (11-4) and (11-5)

only to T' = r rather than T' = 27 .

To demonstrate this, consider the functions {p(T);d(T)}

which in terms of a(T) and b(T) are defined by:

c(T) = a(T)

(XIX-20)

d(T) = b(T)eiT

From Eq. (11-4) and (11-5), we derive equations for c(T) and b(T) :

c = -ia(l + e-2iT)d

(XIX-21)

d = -i( - 1 - i6)d - ia(l + e 2i)a

By Floquet's Theorem, there exist particular solutions to Eq. (XIX-21)

of the form:
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ck e-i ckT

(XIX-22)

dk = e-ik dk()

where k = 1,2 ; jk(T + T) P jk(T) where j = c,d and k = 1,2

and Vk is a constant. We have already shown that for 8 = 0 , one

of the Floquet solutions for {a(T);b(T)} is written

al(T) = e-li i Ajl e

(XIX-23)

bl(T) = e i Bjl e

The other is given by:

a() = e-ig2T A 2  i(2j+l)T
j=-00

(XIX-24)

b 2 (T) = eiP2T I Bj 2 e2ij

j=-0o

Because of the indeterminacy in the characteristic exponents, we may

write P2 as

2 - 1

and thereby write (XIX-24) as:
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a 2 (T) = e 1112T I A e2i

i =-CO

(XIX-25)

b2(T) = e-iP2T g2 ei(2j+1)T

From the definition of {c(T);d(T)} in terms of {a(r);b(T)} we

see that there are two particular solutions to Eqs. (XIX-21) of the

form:

cl(T) = e-i11P  
I Ajl e 2 i jT

j=-(X

(XIX-26)

dj(T) = e-iPT I B. e2 i(j+l)T

and

Co

C2 (T) = ei2T A. e2i(j+1)T

(XIX-27)

d 2 (T) = e -" 2 T  " Bj2 e2i(j+)

Comparison of Eqs. (XIX-22), (XIX-26), and (XIX-27) shows that the

characteristic exponents associated with the functions {c(T);d(T)}

are exactly those associated with the functions {a(T);b(T)} . When

S = 0 , therefore, we find the characteristic exponents associated

with {a(T);b(T)} by solving
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detc (7) - s c0() = 0 (XIX-28)
d' () ,d () - s

,where s = e-ip and,

c'(O) = 1 ; d"(O) = 0

c'(0) = 0 ; d'(0) = 0

Since c(T) and d(T) are defined in terms of a(T) and b(T) by

Eq. (XIX-20), we rewrite the secular equation, Eq. (XIX-28), as:

a" (7) - s a,(7r)
(det ) )  0 (XIX-29)

_b' (r) -b' () - s

where s = exp[-irr] and

a'(0) = 1 ; b (0) = 0

a'(O) = 0 ; b(0) = 1

Therefore, to numerically obtain the characteristic exponents when

8 = 0 , we need only numerically solve Eqs. (11-4) and (11-5) from

= 0 to T = 7 instead of from t = 0 to T = 2r .
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Case C: a, e, 6 Are All Non-Vanishing. e = 0

Expanding the determinant in (XIX-29), we find s by solving:

s2 - s[a'(r) - b(Tr)] - a (r)b () + a ()b'() = 0

(XIX-30)

From Eq. (111-14), we have

a(Tr)b(Tr) - aj()b(r) = e e (XIX-31)

This result is used to simplify Eq. (XII-29):

2  s[a' ( ) b ( ] - i e -6w
2 - s[a'(T) - b'(r)] - e e = 0 (XIX-32)

Using the quadratic formula and taking the solution for s

corresponding to the plus sign we find that s is (in general)

complex and is given by the expression we have already written as

Eq. (XIX-10). s and 1 are complex and we therefore write:

s = s + is.r 1

P = Pr + ipi
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Since s = e , we have the following equations which determine

one value of :

sr = eiiz cos(Pr )

(XIX-33)

s. = -e"i sin( p )
1 r

Eqs. (XIX-33) have the solutions we have already written in Eqs.

(XIX-8) and (XIX-9).

Case D: d, c Arbitrary. 8~ = 6 0

In this case, we set 6 = 0 in Eq. (XIX-32) to find

s 2 - s[a'(7) - b2'()] - e = 0 (XIX-34)

This result is further simplified by noting that from Eq. (111-18)

we have:

* -is'i
b'(T) = (a'(n)) e2

s is therefore determined by,

s2 - s[a () - (a'()) e- i ] - e - = 0
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The evaluation of s only requires knowledge of the first

particular solution. Defining,

a' ( ) = ar + ial

a solution for s is:

s = [iY 2 + [1 - (y2)2 2]e - ieF/2 (XIX-35)

where

Y2 = ar sin(e/2) + ai cos(e7/2)

Since

s = e = cos(pr) - i sin(vp)

we match real components of s and exp[-ipr] to obtain the

expression for p given by Eq. (XIX-11). A redundant expression

for v is found by equating the imaginary components of s and

exp[-i]
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APPENDIX A. SOME RESULTS CONCERNING LINEAR DIFFERENTIAL

EQUATIONS WITH PERIODIC COEFFICIENTS

This appendix will be devoted to an exposition of some mathe-

matical results concerning systems of linear, homogeneous, first

order differential equations with periodic coefficients.

We will be concerned with systems of differential equations

of the form:

n

x.(t) = 6.(t)x.(t) i = 1, ..., n . (A-)
Sj=l 1

For convenience we will let t be the independent variable and we

will let a dot over a function denote the first derivative of that

function with respect to t . The differential equation results in

this appendix have been taken from Moulton's excellent book on dif-

ferential equations, which contains a generalization of the Poincar-.

Floquet theory. We will also have cause to refer to results from

linear algebra and we will use Noble's book on this subject as our

reference on linear algebra.

Before we specify that the e..(t)'s in (A-i) be periodic, let

us make a few statements about the more general case of the ..ij(t)'s

being arbitrary functions of t

F. R. Moulton (1930).

B. Noble (1969).
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The broadest statement of the mathematical problem we are faced

with is:

Find a set of functions {x.(t)} (i = 1, ... , n) which satisfy

equations (A-1) and let these functions be such that we may fulfill

the following conditions:

xi(t 0 ) = xi0 i = 1, ... , n

where to is some arbitrary value of t and x.(t) evaluated at
1

to equals some arbitrary number xi0 . The functions, x.(t) ,

defined in this manner, constitute a "general solution" to equations

(A-1).

Suppose we have found a set of functions which satisfies

equations (A-1). Call this set {xil(t)} i = 1, ... , n . This set

of functions can be evaluated for t = to and this set will satisfy

a particular set of initial conditions, i.e. whatever the value of

the functions is at t = to . This set is therefore called a

"particular solution" to (A-1).

Suppose that we have found (n - 1) more particular solutions so

that we now have a total of n sets of particular solutions. Call

them

{xil(t)}, {x i2(t)} , ... , {in(t)} i = 1, ... , n
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It is possible to define a new set of functions {x.(t)} i = 1, ... , n

which is composed of linear combinations of the particular solutions,

Define this new set by the following equations:

n
(t) = C.x..(t) i = 1, ... , n . (A-2)

j=l i

The C.'s appearing in (A-2) are constants and therefore the

functions {x.(t)} satisfy (A-1). But, does this new set constitute
1

a general solution to the original problem? The answer is "yes" if

and only if the constants, C. , can be chosen so that

x. (to) = x i = 1 , n

where again the xi0 are arbitrary numbers which correspond to

arbitrarily chosen initial conditions. The C. 's can be appropriately

determined if and only if the determinant, D(t) , does not vanish

when evaluated;at t = to . D(t) is defined through the following

expression:

x 1 1(t) x 12 (t) . Xln(t)

x 2 1 (t) x 2 2 (t) . . . X2n(t)

xnl(t) x n2(t) Xnn (t)

Noble, Theorem 7.9, p. 209.
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Thus if D(t0) # 0 , it is possible to solve the algebraic

problem which determines the C.'s and therefore our newly defined

functions, the i (t)'s , constitute a general solution to the problem

and the functions xijt) , which are the components of the xi(t)'s

are said to be a "fundamental set of solutions" to the original

problem.

This concept of a fundamental set is important from both a

practical and a theoretical standpoint. From the practical standpoint,

it is convenient to seek the fundamental solution for which

x.ij(t 0 ) = ..ij . 6ij is the Krbneker delta and it is used in defining

a special fundamental set which obeys special, convenient initial

conditions. Once these initial conditions are specified we could

find the functions, {x..(t)} , which obey them by direct numerical

integration of equations (A-l). D(t0) , in this instance, is just

unity and the determination of the C.'s for an arbitrary set of

initial conditions is a trivial matter. It will be seen as this

appendix unfolds that the concept of a fundamental set greatly

facilitates the theoretical analysis of differential equations.

We need one result which will be used later. It concerns the

function D(t) which was defined by (A-3). It is: Theorem I: If

D(t) is the determinant of a fundamental set of solutions, then,

t n
D(t) = D(to)exp[ 6ei(t')dt']

tO i=l

For a proof, see Moulton, pp. 234-235.
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This result tells us that D(t) is finite and non-zero for all

values of t for which the .. (t) are continuous (i.e., all values
11

of t for which the solution is defined). The result also tells.us:

that the function D(t) is the same (aside from normalization) for

all of the infinitely possible fundamental sets and that this

function, D(t) , is dependent only upon a constant times a function

of the diagonal coefficients of the original equations.

We are now ready to restrict ourselves to the case of interest,

namely, let the coefficients in (A-1) have periodicity P , i.e.

0..(t) = e..(t + P) i,j = 1, ... , n

As an immediate consequence of the coefficients having periodicity P ,

we can show that if {xi(t)} is a solution to (A-l), then {xi(t + P)}

is also a solution to (A-l). It is easy to demonstrate that this fact

follows from the periodic nature of the coefficients in (A-l).

Suppose that {xi(t)} satisfies (A-l). Let us now show that

{x.(t + P)} also satisfies (A-l) by supposing it is true and then.

demonstrating that no inconsistencies arise. If {x.(t + P))

satisfies (A-l), then

dx.(t + P) n

dt = .ij(t)x.(t + P) i = 1, ... , n
dt j=1 3

Changing variables to T = t + P we obtain: (as long as 8 ij()).

e. .(T - P) )1J
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dx.(T) n n

dr = 0 ij (T - P)x j() = ij (T)x (T)
j=l j=l

Thus, if {x.(t)} is a solution to (A-1), then {x.(t + P)} must
1 1

also be a solution to (A-1).

Corollary

We shall now demonstrate that if ij (t) = .ij(t + P) , the

equations (A-l) always have at least one particular solution of the

form:

xi(t) = e- ityi(t) i = 1, ... , n. (A-4)

where V is a constant and yi(t) = yi(t + P)

The demonstration proceeds in two steps:

(a) The first step is to find the differential equations for

the Yi(t)'s and to make sure that these equations are such that

Yi(t) - i(t + P) = 0 for all i

(b) The second step is this: we must make sure that the functions

which we want to test can be expressed as appropriate linear combinations

of some functions which make up a set of solutions which is known to be a

fundamental set. We must therefore see if the algebraic problem of

finding the linear expansion coefficients has a solution. This step,

as well as step (a), will hopefully be illuminated by what follows.

We must now substitute (A-4) into (A-I) to get equations for the

Yi(t)'s . These equations are:
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n
Yi(t) = iy.(t) + 6 .ij(t)y.(t) (A-5)

j=l

If, by hypothesis, Yi(t) = Yi(t + P) , then it must follow that:

y.(t) - Yi(t + P) = 0 (A-6)

Evaluating (A-6) by using (A-5) and the relations:

Yi(t) = yi(t + P) ; eij(t) = .ij(t + P)

we can see that (A-6) is satisfied.

To show that satisfying criteria such as (A-6) is no trivial

matter, let us suppose that there is a particular solution to (A-l)

of the form:

-it 2

{x.(t) = e1 t2 Y(t)} i = , ... , n (A-7)

where p is a constant and Yi(t) = Yi(t + P). With this choice of

functional form, the equations for the Yi(t)'s are:

n
yi(t) = 2iptyi(t) + I eij(t)y.(t)

j=l

If the Yi(t)'s are to be periodic, then it must be true that (A-6)

is obeyed. Evaluating (A-6) we find that:

2pPy i (t) = 0 for all i
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Since P does not equal zero and not all y (t) = 0 , then i

must be zero and therefore a particular solution of the form (A-7)

does not exist for p not equal to zero. This result is to be

contrasted to the result we obtained by applying (A-6) to form (A-4).

namely, a particular solution of form (A-4) for non-zero p can

exist (at least as far as criterion (A-6) is concerned).

We must next decide whether a solution of form (A-4) can be

expressed in terms of fundamental set of solutions. We will attempt

to express it in terms of the fundamental set for which

xij(t 0  ij . Call this fundamental set { ij (t)} . Thus if

x. (t) = j(t)

the" $.i (t)'s satisfy (A-1) and A .(t o ) = 6.. Ifj ij 1j
(ijit {A .-itt{x(t) = e tyi(t)}is to be expressed in terms of { (t)} , thnSijthen

it must be true that

n
Yi ( t ) = eiit I C j Wj(t) i = 1, .. , n . (A-8)

j=l

where the C.'s are constants. By hypothesis,

Yi(t + P) - Yi(t) 0 i = 1, ... , n . (A-9)

Substituting (A-8) into (A-9), we get the n equations

These 's are not to be confused with the "uncapped" 's in the
main body of the report.
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S(t+P) n n
e (t+P C (t + P) - e i t C.ij(t) = 0

j=1 j=l

i = i, ..., n. (A-10)

If we require that t = to and define s = e we can write (A-10)

as (A-11) if we utilize the following property of the fundamental set:

ij ( t O ) = 6ij
ij 1J

n
SC.j[ij (t O + P ) - s6..] = 0 i = 1, ... , n . (A-11)

j=1 j 1J

(A-11) is the equation for the C.'s which must be satisfied. If a

solution to (A-ll) exists, then we can express our assumed functional

form of solution in terms of a fundamental set and thus our assumed

form of solution is indeed a solution. (A-11) is nothing but an

eigenvalue-eigenvector problem and, as is well known, there is a

solution to (A-11) if and only if the following determinant vanishes:

A
11(t0 + P) - s 1 2 (t 0 + P) . . . (t0 + )

In

+21(t ) + P) - n(to + P)216 00 F) 22(tO + P) -s . . . 2n

det

( t o + P) n2 (to + P ) nn (t o + P ) -s

(A-12)

Noble, Chapter 9.
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s is to be chosen by expanding the determinant and thereby obtaining

n
a polynomial in s If s is set equal to a root of this

polynomial, (A-12) vanishes. The lead term in this polynomial is,

n
of course, s . The coefficient of sO is just the determinant

of the n x n matrix which has as its i,j-th element ' i(to + P)

But this matrix is just a matrix of a fundamental set of solutions

and therefore its determinant can never be zero or infinite. (See

Theorem I and the discussion which follows it.) Since the coefficients

of the: terms in sm(m = 1, ... , n - 1) are composed of sums of the

products of various ij (to + P)'s , from Theorem I we know that

these coefficients can never be infinite (it is possible, however,

to have them equal to zero). Thus the characteristic polynomial

equation is of the form:

s + (finite terms in s n-, ., ) +

(a number not equal to zero or infinity)

Thus s can itself never be zero or infinity. So then, there must

be a finite, non-zero s such that (A-11) can be solved for the C.'s

This of course means that what we set out to demonstrate is indeed

true, namely, there does indeed exist a particular solution to (A-l)

of the form given by (A-4).

Noble, Theorem 9.1, p. 280.
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Corollary

Note also that knowledge of s does not completely determine

. Suppose that we have values of p and s (call them U1 and

s1 respectively) such that s I = e -i1P is satisfied. If we define

a new , call it p' , by p' = +- 2n (n = zero or any integer),-ii 'P

then s1 = e is also satisfied. Thus p is not determined up to

2n.
an additive factor of p However, this in no way changes our

result since if we say that {e-iUlty (t)} is a solution which has

the form of periodic functions multiplied by a linear exponential term,
2 n - .

then {e P )tyi(t)} is also a solution which has the form of

periodic functions multiplied by a linear-exponential term. We can

therefore ignore this indeterminacy in y .

The crucial point in the argument that our supposed solutions

exist was the existence of a non-zero, finite root to the

characteristic polynomial equation. But, if we have one such root

to the n-th degree polynomial, we must necessarily have a total of

n such roots (some of which may be repeated). We will now direct

our attention to the consequence of the characteristic polynomial's

having n roots. We will limit ourselves to the following two cases:

(a) all n roots are distinct.

(b) (n - 2) roots are distinct and one root is doubly

degenerate.

We could treat the more general case of the number of distinct

roots being arbitrary and the number of repeated roots as well as
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their degeneracy being arbitrary, but since the important features of

the general case are displayed in this restricted case of one double

degeneracy, we will just treat cases (a) and (b).

Case (b) must actually be broken up into two subcases, since, a

doubly degenerate eigenvalue may have only one linearly independent

eigenvector associated with it, or, it may have two linearly

independent eigenvectors associated with it. If there are two

linearly independent eigenvectors associated with the root s ,n-i

(call this case (b-l)), then if we form the determinant (A-12) with

s set equal to sn-1 , all first minors will be equal to zero. If

there is only one linearly independent eigenvector associated with

the root sn-1 , (call this case (b-2)), then if we form the

determinant (A-12) with s set equal to s , there will be atn-i

least one first minor which will not be equal to zero.

To tie up this appendix with the two-level system and the main

body of the report, we will note at this point that case (a) yields

what we have called "Form I" solutions (see (111-4) and (111-5)).

Case (b-l) gives rise to the "Form II" solutions (equations (111-7)

and (111-8)). Case (b-2) will correspond to the "Form III" solutions

which are given by equations (III-10) and (III-11).

For case (a), we can write the following theorem: Theorem II:

If (A-12) has n distinct roots, then there are n solutions to

(A-l) of the form:

The general case is treated in Moulton, Chapter 17.

Noble, pp. 349-351.
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-iukt t
{xik(t) = e k Yik(t)} i,k = 1, ... , n .

The indices are such that xik is the i-th function in the k-th

solution. ik is a constant and the k-th P is distinct from all

other v's and yik(t) = Yik(t + P) (i,k = 1, ... , n) The set

{xik(t)} is a fundamental set of solutions to (A-l). The k-th

solution may be called the k-th Floquet or normal mode.

The application of this theorem to the two-level problem is

this: one possible functional form of-the solutions to .(1 -4) and

(II-5) is what we have called "Form I" and have written in equations

(III-4) and (III-5).

This theorem is not difficult to prove. The fact that there

are n solutions of the desired form follows from the hypothesis

that (A-12) has n distinct roots. Order these roots as

{sl, s2, ..., sn) . Since there are n distinct values of sk

there must be a value of Pk associated with each sk such that the

2 7n
1ks are distinct and no two differ by (n any integer or zero).

Also associated with the root, sk , is an eigenvector (Clk, C2k

..., Cnk) The root and its eigenvector are related by equation

(A-13) which is just equation (A-ll) rewritten for the k-th root and

its eigenvector.

n

SCjk i j ( t + P) - 6 sk] = 0 i = 1, ... , n . (A-13)
j=l
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Since the Cjk's express a solution of the desired form in

terms of a fundamental set, it follows that we have n such

solutions. They explicitly are:

the first {xil(t) = e-i1tyil(t) =  Cj 1 i j (t)} i = , ... , n
j=l

the second Xi2(t) = e -i i2 j2i(t)} i = 1, ... , n
j=1

n
the n-th {x. (t) = e-inty in(t) = C. j . (t)} i n

j=1
(A-14)

But now we ask, "Do the x..(t)'s form a fundamental set of
1J

solutions?" We want a "yes" answer to this question and we get it by

forming the matrix X(t0) (where (X(t 0))ij = iij(t 0 ) ) and by then

showing that its determinant is non-zero. By the discussion preceeding

Theorem I, we know that if detjX(to)j # 0 , then the R..(t)'s are a
1J

fundamental set of solutions. Knowing that the ij (t)'s have been

defined so that .ij(t ) = 6ij , we can use (A-14) to find that

(X(to)). = Ci. . Thus the j-th column of X(t 0 ) is just the

eigenvector associated with the j-th root of (A-12). The columns of

X(t0) are therefore linearly independent because of the fact that the

eigenvectors of a n x n matrix which has n distinct eigenvalues are

linearly independent. Because the determinant of a matrix with

Noble, Theorem 9.3, p. 281.
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linearly independent columns can never vanish, we have the result

that detlX(to)I # 0 and therefore Theorem II stands confirmed.

Example AI:

In order to illustrate Theorem II, let us consider an example

of a simple system to which it applies. This example is included

at this particular juncture both to clarify the method of demonstration

we have used and to clarify the notation used in the method. Let the

system be:

x1 (t) = cost x1 (t) + ax 2(t)

(A-15)

X2 (t) = - axl(t) + cost x2 (t)

Let a be a constant not equal to , in equal to zero or

any integer).

To solve this system of equations we can use Kamke's

prescription for solving equations of this type, or we can simply

note that if we let

X 1 = xlexp[sin t], X 2 = x'exp[sin t],

(A-15) becomes

Kamke (1943), p. 611, Vol. 1.
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x'= and x -ax

We therefore have

x' + a 2 x' = 01 1

which is easily solved by elementary methods to yield the two

solutions for xl and x2 which are given by (A-16).

solution I {cos(at)e ; sin(at)ein t

(A-16)

solution II {sin(at)esin t ;cos(at)esin tI

That these solutions form a fundamental set may be easily demonstrated

by using the definition in (A-3) to form D(t) :

D(t) = exp[2sin t]

D(t) can never equal zero, thus (A-16) forms a fundamental set and,

for to = 0 , the fundamental matrix of these functions is the unit

matrix. We can therefore make the following identifications:

A sin t A sin tl(t) = cos(at)e 12 (t) = sin(at)e

S sin(t)in t A in t
2 1(t) = - sin(ct)e 22(t = cos(at)e



A-17

A
The notation is such that if we were to arrange the functions

into a matrix, the i,j-th I would be the i-th function in the

j-th solution. According to what has gone before, to see whether

we have a solution of the e y(t) form, we must find the roots of

(A-12). P for this example is 27 , and, as we have already said,

tO is taken to equal zero. We therefore have:

cos(2fa) - s sin(27a)
det = 0 (A-17)

- sin(2Ta) cos(27a) - s

(A-17) has the solution s+ = exp[±2iffa] . Since s = exp[-ip]) , we

have two values of p not differing by an integer or

zero and we therefore expect two solutions of the e-i ty(t) form

which will form a fundamental set of solutions. If we call

-1 = -a and P2 = a , it can be easily shown that associated with

p1 is the eigenvector

(l,i) = (C11,C 2 1 )

Associated with P2 is the eigenvector

(1,-i) = (C12 ,C2 2 )

Using the notation of (A-14) and the results so far obtained in

this example, we can explicitly write the Floquet Normal Mode

Solutions:
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iat sint iat sint
{xl1(t) =e e ; x21(t) = ieit esint

(A-18)
-iat sint ie-iat sint

{x 1 2 (t) = e e ; x 2 2 (t) = -ie e

We can make the following identifications for this simple example:

sin t
P1 = -P2 = -a ; Yll(t) = Y 1 2 (t) = -iy 2 1 (t) = iy 2 2 (t) = e

That the solutions of (A-18) form a fundamental set may be demonstrated

by evaluating D(t) . It explicitly is:

D(t) = -2ie2sin t

It can be easily seen that D(t) can never equal zero, and therefore,

the Floquet 'Normal Mode Solutions are a fundamental set of solutions.

This concludes the discussion of the example.

We can now proceed to consider case (b-l). Consideration of

(b-l), leads to the following theorem which we are calling Theorem III.

The application of this theorem to the two-level system is this: there

is the possibility of having a solution of "Form II", where, "Form II"

is given by equations (111-7) and (111-8). These equations can be

found in the main body of the report. Theorem III: If (A-12) has only

(n - 1) distinct roots because the (n - l)-th root is doubly

degenerate and if there exist two linearly independent eigenvectors

associated with the doubly degenerate root, sn- 1 , then there are

(n - 1) solutions of the form:
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i= , ... , n
{xik(t) = e-ivktyik(t) } (A-19)

k= 1, ... , n-i

and, there is an additional solution of the form

{Xin(t) = e-in-lt in(t)} i = , ... , n . (A-20)

The p's are constants and there is a total of (n - 1) distinct

ips not differing by p ( k equals to zero or any integer).

For all Yik(t)'s it is true that

Yik(t) = Yik(t + P) i,k = 1, ... ,n

The set of solutions composed of solutions (A-19) together with

solution (A-20) forms a fundamental set of solutions to (A-i).

The proof of Theorem III is simple. In outline, it consists

of realizing that since we can find (n - 1) eigenvalues with n

associated eigenvectors for (A-12), we can get the n solutions

given by (A-19) and (A-20). Since the eigenvectors associated with

the degenerate root are linearly independent of each other and since

eigenvectors of distinct roots are also linearly independent of each

other, all n eigenvectors taken together form a linearly independent

set of vectors. Utilization of the same chain of reasoning we used in

discussing Theorem II tells us that (A-19) and (A-20) taken together

form a fundamental set of solutions to (A-I).
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Example A2:

A simple example of a non-trivial problem which has the type of

solution described by Theorem III is the following

x 1 (t) = ax l(t) + cos t x2 (t)

(A-21)

x 2 (t) = - cos t x 1 (t) + ax 2 (t)

Let a be a non-zero constant not equal to im ( m any integer or

zero). The solution is obtain by using Kamke's prescription. His

prescription directly yields a set of fundamental solutions which,

when evaluated for t = to = 0 , yield the unit matrix:

at A at
$ 1 1 (t) = e cos(sin t) 12 (t) = e sin(sin t)

(A-22)

T21(t) = -eatsin(sin t) p2 2 (t) = eatcos(sin t)

We can also solve (A-21) by defining the new functions x'(t)

and x'(t) by,
2

S= x at , 2 = xeat

(A-21) now becomes

x x cos t, -xIcos tKamke Vol. I . 611.

Kamke, Vol. I, p. 611.
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or

dx/d(sin t) = x , dx/d(sin t) = -x'

so that

d2 x'/d(sin t)2 + x, = 0

This second order. equation may be solved by elementary methods to

recover the solutions obtained by Kamke's prescription.

The indices on the 4's which appear in (A-22) have again been

chosen so that .i(t) is the i-th function in the j-th set of

solutions. Since P = 2r , (A-12) for this particular example

becomes:

exp(2fra) - s 0
det = 0

0 exp(2fa) - s

s is obviously doubly degenerate and equal to exp(2a)

Associated with s are the following two linearly independent

eigenvectors: (1,0) and (0,1) . The Floquet Normal Modes, then, are

just the solutions given in (A-22) and therefore the Floquet Normal

Modes form a fundamental set of solutions to equations (A-21). In

addition, for this simple example, we can make the following

identifications:



A-22

P = ia; Yll(t) = Y2 2 (t) 
= cos(sin t) ; -Y2 1(t) = Y 12 (t) = sin(sin t)

at
and x(t) = e yij (t) i,j = 1,2

1n ij

With the example concluded, we can now proceed to "case (b-2),"

i.e., the matrix in (A-12) has a doubly degenerate eigenvalue and this

eigenvalue has one and only one linearly independent eigenvector

associated with it. The theorem which applies in this case is

Theorem IV and from it we obtain the "Form III" solutions which are

given by equations (III-10) and (III-11) in the main body of the

report. Theorem IV: If (A-12) has only (n - 1) distinct roots

because the (n - l)-th root is doubly degenerate and if there exists

one and only one linearly independent eigenvector associated with this

doubly degenerate root Sn_ 1 , then there are (n - 1) solutions of the

form

i= 1, ... , n

{Iik(t) = e lkt ik(t)} i(A-23)
k= , ... , n- .

and, there is one additional solution of the form

{x. (t) = e-in-lt[Yi (t) + ty i,nl(t)]} i = 1, ... , n . (A-24)

The P's are constants there is a total of (n - 1) distinct p's not

differing by "-- ( k equal to zero or any integer). For all

Yik(t)'s
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Yik(t) = Yik(t + P) i,k = 1, ... , n

It is true that the set of solutions composed of solutions (A-23)

together with (A-24) forms a fundamental set of solutions to (A-i).

Proving this theorem is a more difficult task than proving

Theorem III. From the arguments given in the proof of Theorem II,

we know that the first (n - 1) solutions which are given by (A-23)

are indeed solutions and do form (n - 1) linearly independent

solutions. To complete the proof of Theorem IV, then, we must show

that (A-24) is indeed a particular solution by seeing if

(a) the equations for the yin(t)'s are consistent with the

presumed periodicity of the yin(t)'s , i.e., does

in(t) - in (t + P) = 0 for all i = 1, ... , n ?

(b) the x in(t)'s can be expressed in terms of the

ij(t)'s , i.e., the unit diagonal fundamental set.

We must then show that the n solutions described by (A-23)

and (A-24) taken together form a fundamental set of solutions.

The reader should note that whenever the index n is used in

the following discussion, it always refers to the dimensionality of

the original problem as stated by (A-l). It is never used as a

running index. We further always call the solution given by (A-24),

the n-th solution.

In what follows, we will presume that the solutions given by (A-23)

are known and therefore the Cij's are known for i = 1, ... , n and

j = 1, ... , n-l . Define the n x 1 column vectors, C. , by:
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c2j
C. j = i, ... , n- .

C .

nj

From the arguments used in the discussion of Theorem II, it is

known that these vectors, C. (j = 1, ... , n-1) , form a set of

n - 1 linearly independent vectors.

In proving Theorem IV, the first thing we will ask is: is

the periodicity condition

Yin(t) - in(t + P) = 0 i = 1, ... , n (A-25)

fulfilled? The answer is "yes". To show this, start off by

substituting the particular solution (A-24) into (A-1) in order to

obtain:

Yin(t) = ip nl[y i (t ) + tYin l(t)] - Yinl(t)
in n-1 in i,n-1 i,n-i

n
- tyin-l(t) + e ij(t)[Yin(t) + tYi,n-l(t)]

j= = , .. , n (A-26)

i = 1, ... , n . (A-26)
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Evaluating (A-25) through use of (A-26), and, using the relationships

e. j(t + P) = 6..(t) ; in-(t) = Yin- (t + P) i,j = , .. n

we obtain:

Yin ( t ) - Yin ( t + P) = P i (t) -in y ( t ) (A-27)

n

- ij(t)i,n I (t)
j=l in-

i = , ... , n

But, because of the differential equation satisfied by the y n-(t)'s,n-L

(see (A-5)), the term on the right-hand side of (A-27) which is in

brackets vanishes. Thus, condition (A-25) is fulfilled.

We must now find out whether or not the particular solution

given by (A-24) can be expressed in terms of the unit diagonal

fundamental set we called the 's . This is equivalent to finding

out whether there exists a set of constants, Cin , such that

n

x. (t) = C.nj (t) = e in-1t[y (t) + ty (t)]
in j=l nij in in-1

i = i, ... , n . (A-28)



A-26

From equation (A-28), we get that

Yi(t) = -tYin (t) + eilln - lt  Cjn j(t)
j=1

i = I, ... , n . (A-29)

We next impose the condition:

Yin(tO + P) - Yin(t 0 ) = 0 i = 1, ... , n . (A-30)

By utilizing the fact that ij (t 0 ) = 6ij and by imposing condition

(A-30), we find that the C. 's must obey the following set of
jn

equations:

[ij..(to + P) - s 6  ]Cn Py ( t O + P)e-inl (t0+P)
j=l n-1 1J jn i,n-1

i = i, ... , n . (A-31)

The term on the right-hand side of (A-31) may be related to the

C. 's by the following considerations. We know that
J,n-i

Y (to + P)ei'n-_l(tO+P) (to + P)
in-I j=l j,n-i j

i= , ... , n.
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But, by hypothesis, the C. 's are such that
J,n-i

n

C [i (tO + P ) - .s ] = 0 i = 1, ... , n

j=1 3,n-I j "" n-1

We therefore have that

n
s CC C. (t + P ) i = 1, ... , nn-1 ,n-1 = j,n-1 j

We can now rewrite (A-31) in matrix form as:

11 - Sn 12 " 1n C,n-

P21 12 n-1 l  2n 2n C2,n-2

= PS
n-i

A -nn C C
ni n2 nn n- I nn nn-1

(A-32)

In reading (A-32), the reader should take note that the suppressed

argument of all the ij's is (t + P). (A-32) is a non-homogeneous

linear equation for the C. 's and to see if it has a solution, it isjn

convenient to cast the problem into matrix notation. Define the

nx n matrix by ( = j(t O + P) If the nx 1 column

vectors C. are defined by letting the i-th row of the j-th vector be

Cij , then, in matrix form, (A-32) becomes:
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C - s C = Ps C (A-33)z~n n-1~n n-i~n-1

By hypothesis, has n - 2 non-degenerate eigenvalues and one

doubly degenerate eigenvalue and, for such a matrix, there exists a

non-singular matrix R such that

R- R = V

The matrix V is given by:

si 0 0 0

0 s2 0 0

V (A-34)

0 0 s v
n-1

0 0 * s
n-1

where v (for our supposed case of there being only one linearly

independent eigenvector associated with the root s ) is somen-i

non-zero number. It is easy to see that V has the same eigenvalues

To deduce this result, see Noble, Theorem 11.7 (p. 352) and 11.8

(p. 354).

In the V matrix all off-diagonal elements are zero except the

((n - 1), n)-th element which is v .
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as A . It is also easy to see that the eigenvector associated with

the eigenvalue s. (j = 1, ..., n) is e. where e. is the n x 1

column vector which has all elements zero except the j-th which is

unity. In particular we have, that, if I is the n x n unit matrix

(V - s I)e 0 (A-35)
n-z --n-1

and, further, e is the only eigenvector of V associated with

the eigenvalue sn- 1 . Premultiplying (A-33) by R-1  (we can do

this because R is non-singular), we can write (A-33) as,

R-1 RR-1C - s R- 1C = Ps R- 1C (A-36)~ _n n-1= _n n-1z -n-I

Because C is an eigenvector of associated with-n-1

eigenvalue s , we have the following relationships:n-I

Is )C = (R- Rs )R- 1C = (R-I R - Is n)R- 1 Cn-1 -n-i z R n-1 -n-1 Z n-1 -n-1

S0 = (V - Is )e (A-37)Z n-1 -n-1

Z ~n- ~n-1

becomes:

V(R-1*C ) - s (R-1*C = Ps e (A-38)- n n-1 -n n-1-n-1
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Showing the explicit structure of (A-38) in (A-39),

si - s 0 0 0 (R-1*C)1 -0n-I Z n

0 S2 - Sn-2 0 0 (R-1C )2 0

(A-39)

o 0 v (R-1C ) Ps-n n-1 n-1

0o * 0 0 (R- 1 *C ) 0S ~n n

it is easy to see that (A-38) can be solved for (R-1.C ) : the
~n

(n - l)-th element of (R-1.C ) is arbitrary and the n-th element~n

of (R-1 C ) must be equal to Ps /v . Since P and v are byZ n n-1

hypothesis non-zero and since s can never be equal to zero (see
n-I

arguments in the discussion of Theorem II), (R-1.C ) can never ben n

equal to zero. C is recovered from (R-1 C ) by simply premultiplying

(R-1*c n ) by R . Since a non-singular n x n matrix multiplying a non-

null n x 1 column vector can never yield as a product the null n x 1

column vector, a non-null C exists. Thus we have proved what we set~n

out to prove: Theorem IV is true insofar as there is a particular

solution of form (A-24).

We have one simple task left, namely, to prove that the solutions

(A-23) together with (A-24) form a fundamental set of solutions to

In the n x n matrix of (A-39) all off-diagonal elements are zero

except the ((n - 1), n)-th element which is v .
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(A-1). It is easy to see that (R-1C ) and e are linearly
~ -n -n-I

independent: i.e., there exists no non-zero scalars, c1 and

a2 , such that

al( R -1* C ) + "2 e = 0
~n ~n-1

From this it follows that there exist no non-zero scalars, al

and a2 , such that

n n- -n n-1

Thus C and C are linearly independent. Since the set of
~n ~n-1

vectors CI, C2, ... , Cn-i form a linearly independent set and since
-n-i

C and C are linearly independent, it follows that the set of
-n -n-1

vectors C 1 , C2 , .. , C form a linearly independent set of vectors.
~ ~n

From this fact, the reader can use the arguments already used in

Theorems II and III to establish that the set of particular solutions

composed of the solutions (A-23) and (A-24) form a fundamental set

of solutions to (A-l). For.the two-level system, these solutions

correspond to what we called "Form III" in part II of the main body

of this report.

The proof of Theorem IV being complete, we will conclude this

appendix by giving a simple system of differential equations governed

by Theorem IV.
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Example A3:

Consider a system of differential equations given by (A-41).

xj(t) = (/2 - sin t)x1 (t) - /2x 2 (t)

(A-41)

x 2 (t) = -2x 1 (t) - (V2 + sin t)x 2 (t)

We can solve (A-41) by first defining x' and x' through:

x, = x'exp(cos t) ; 2  'exp(cos t) .

(A-41) becomes:

Since x- x= 0 , it must be true that x - x k where k is

an arbitrary constant. From this it follows that the most general

solutions for the functions {x',x'} is:1 2

= kt+ c ; (c - k) + kt
1 2 2 2

We can now recover the most general solution of (A-41) as:

kt kt
xl = (- + c)exp(cos t) x = [(c - k) + ]exp(cos t)

2
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With xl and x 2 known, we can let tO = 0 , and find the unit

diagonal fundamental set of solutions which are given by:

1 1 (t) = (2e)-1 [t + 2 ]eCOS t '1 2 (t) = -(2e)-1teOS t

i21(t) = (2 e)-ltecos t 22(t) = (2e)-1 [2 - t]ecos t

(A-42)

For these fundamental solutions, the fundamental matrix (Equation

(A-12)) with t o = 0 and P = 2w becomes:

S+l- s -7
det = 0 (A-43)

1- 7 - s

(A-43) is easily solved for s and we find that (s - 1)2 = 0

Hence, s is doubly degenerate and equal to one. Only one linearly

independent eigenvector can be found for s = 1 and it is:

(1,1) = (C1 1,C2 1)

We therefore have a first particular solution which has the form:

x11(t) = Cl1l 1 1(t) + C2 10 12 (t) = (e)-lecos t

(A-44)

x21(t) = l1(t ) + C21A 2 2 (t) = (e)-lecos t
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(A-44) is a solution of the form given by (A-23). Since s = e

we can make the following identifications:

I cos t I cos t
u = 0 ; yll(t) = - e ; Y2 1(t) = - e

e e

The other Floquet Normal Mbde can be found by solving (A-32)

written for this example:

I( C12 = 2 (A-45)
7 -T C22

(A-45) has a solution and it is:

C12 - C2 2 = 2

There is a degree of arbitrariness in (A-46), but we can say that

C12 and C22 can never both be zero. Thus (C12 ,C2 2) and (C1 1,

C2 1) form a linearly independent set of vectors. This is, of

course, what is expected on account of our discussion following

Theorem IV. For simplicity, choose (C12 ,C2 2) = (2,0) . Using

relationships analogous to those given by (A-44), we obtain the

second normal mode:

x 1 2 (t) = (e)-1[2 + t]ecost ;t) (e)itecos t
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To put meat on the bare-boned expressions used in Theorem IV, we can

make the following identifications:

Y12 = 2elecos t Y2 2 (t) = 0

To demonstrate that the R(t) solutions form a fundamental set of

solutions, form a matrix composed of the R(t) functions, take its

determinant and show that the determinant can never vanish. For the

simple example at hand,

ll1 (t) i 1 2 (t) 2 2cos t
det - -e # 0 for all t.

x21(t) R22(t)

Thus, the R(t) functions do indeed form a fundamental set of

solutions.

One final word is in order. Because the vector (C12 ,C2 2) is

non-zero but not unique, the yi2(t) functions can never be both

zero, but, they are not unique. They, however, will always be periodic

(this follows immediately from Theorem IV).

The Floquet modes may be simply related to the general solution

which we have written down immediately preceeding (A-42). To recover

the first mode, we merely let k = 0 and let C = (e)-1 . The

second Floquet mode may be recovered by letting

2
C = k - .

e
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APPENDIX B: THE EQUATIONS FOR a*a, b*b AND a*b

In this appendix we derive and briefly discuss the equations

for the functions a*a, b*b and a*b

Define the functions P , Q and R by:

P(T) = a*(T)a(T) ; Q(T) = b*(T)b(T) ; R(T) = a*(T)b(T)

(B-l)

By differentiating P, Q and R and by using Eqs. (11-4) and (11-5),

we find

P = 2iacosT[R*-R]

Q = -26Q + 2iacosT[R-R *] (B-2)

R = -i(e-i6 + 2Bcost)R + 2iacosT[Q-P]

Although Eqs. (B-2) are equivalent to Eqs. (11-4) and (11-5), they

are just as intractable as Eqs. (11-4) and (11-5). When 6 = 0 ,

Eqs. (B-2) are, however, related to the easily visualized problem of

a constant length magnetic moment vector rotating in space under the

influence of a classical magnetic field.

Assume P, Q and R are known. The ratio, b(T)/a(T) , is obtained

by [b(r)/a(r)] = [Q/R]*. Knowing b(T)/a(T) , a(T) and b(T) are

found by using Eqs. (VIII-27).
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Feynman, Vernon and Hellwarth (1957) have shown that for 6 = 0 ,

Eqs. (B-2) are equivalent to the classical vector equation:

d((T)) = w(T) x r(T) (B-3)
dT~

If w(T) corresponds to a magnetic field and r(T) corresponds to

a fixed length magnetic moment vector, the motion of the magnetic

moment is found by solving an equation of the form of Eq. (B-3).

To demonstrate this, let

r(T) = (R +R)x + i(R -R)y + (P-Q)z (B-4)

w(T) = 4acosTx - [E + 2BcosT]z (B-5)

where x, y and z are the unit vectors in the x, y and z directions

respectively. Simple substitution of Eqs. (B-4) and (B-5) in Eq.

(B-3) demonstrates the validity of (B-3). That the vector is a

constant length vector is demonstrated by noting that

d{(R*+R)2 + [i(R -R)]2 + (p-Q) 2 } = 0
dr

See, for example, Goldstein (1965), pp. 176-178. Or see, Pople,

Schneider, and Bernstein (1959), Sect. 3-3.
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