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SECTION A

OPTIMIZATION OF COMPOSITE

STIFFENED CYLINDERS*

* an expanded version of this section will be submitted for presenta-

tion at the AIAA/ASME/SAE 16th structures, structural Dynamics, and Materials

Conference to be held in Denver, Colo. on May 27-29, 1975.



OPTIMIZATION OF COMPOSITE STIFFENED CYLINDERS

1. INTRODUCTION:- An optimization study of composite stiffened cylinders

is discussed in this section. The mathematical model for the buckling

analysis has been coupled successfully with the optimization program AESOP

(Ref. 1). The buckling analysis is based on the use of so called "smeared

theory" as used by Block, Card, and Mikulas (Ref. 2) for the buckling of

stiffened orthotropic cylindrical shells. The equations used by Block,

Card and Mikulas are modified to accomodate the laminated construction of

the shell walls.

2. DESIGN VARIABLES:- The loading, radius and length of the cylinder

are assumed to be known parameters. An optimum solution then should give

the value of cross-sectional dimensions and laminate orientations. These

will be design variables.

Figure 1 shows the optimized cylinder. It is assumed that stiffner

spacing a and ring spacing k are unknown design variables. The skins r

of cylinder is allowed to have three different laminate orientations al'

a2 , and a 3 which are assumed to be completely arbitrary. It should be

noted that skin is assumed orthotropic and each layer balanced. Hence,

so far, there are a total of 8 design variables as shown in figure 1.

Dimensions of the stringers and rings are discussed next.

Figures 2(a) and (b) show a sketch of the rings and stringers, respec-

tively. The rings and stiffners are assumed to behave as one-dimensional

members. At-this point the results previously obtained for the stiffened

flat-plate (Ref. 3) are used to reduce the number of design variables.
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Since the stringers and rings have similar characteristics, it will suffice

to discuss only one of them. The stringers are composed of ±450 laminates

and 00 laminates as is shown in Figure 2(b). It is assumed that b and
s

h are unknown design variables which decides the size of the stiffner.s

bls and b3s are assumed to be *4b s and *8bs respectively. These

values are based on previous results obtained for flat panels and this

leads to 5 design variables for the stringers and, similarly, 5 for the

rings. Hence, a total of 18 design variables are chosen as a starting

point for the optimization work.

3. BUCKLING MODES:- Five different types of buckling modes are considered.

These modes are as follows:

(a) Gross buckling

(b) Panel buckling (buckling between rings)

(c) Skin buckling (buckling of the skin between contiguous rings and

stringers)

(d) Local buckling of stringers

(e) Local buckling of rings

The buckling loads are determined from the analysis given in the next section.

4. THEORITICAL ANALYSIS

The notations and sign convention used in Ref. 2 is employed herein.

4.1 CONSTITUTIVE EQUATIONS

For a laminated shell the stress strain relations for pth layer are

given by



x [11 12 16 x

ay 12 Q22 Q261 y
T Q16 Q26 Q66 Yxy

then, for a symmetric laminate layup, it can be shown for a Donnell-type

analysis that (see ref. 4)

Nx  All A12 0 u',x

N = A12 A22 0 V,y + w/R

Nxy 0 0 A6 6 . u + Vx

or

{N) = [A] ({)

and

Mx 11 12 16 wx
M DI- D2 Dxx
My D12 D22 26 'yy

M D16 D2 6  D 66 zw,

or

(M) = - [D] (W



In these equations v, v, w and N N, N, M , M M are, respectively,

incremental displacements and stress resultants that take place during buck-

ling. There positive sign conventions are shown in Fig. 4. A comma denotes

partial derivative with respect to the indicated variable, and

P
A.i = (Qij)p (d -d )

p=1 p p

P
D i= (Q..)p (d3 - 3 )

p=l 
p

i,j = 1,2 and 6, d is the distance of the center of pth layer from
p

the reference axis, and P is the total number of layers.

In general D16 and D26 terms are not zero, but in the present work

they will be assumed to be zero.

4.2 BUCKLING ANALYSIS

Gross, Panel and Skin Buckling

With the above more general constitutive relationships, the buckling

equation of Ref. 2 have been modified to account for the laminated wall

construction. This yields:

K + 2 K23 K3 K22) K + (K2 K13 - 1 1 K2

(122 K22- 22 ( Kll K222 K23
x 2 + N N )2

x
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In this equation, N and N are prebuckling stress resultants (from
x y

now on, N will be taken equal to zero), m is the number of axial half

waves, n is the number of circumferential full waves, and

l = [All +(' )l( 2 + AR 2

K12 = [A12 + A66] (L ()

K13 = A12 s

K22 A66 Lm2  [A2 2  r nK2

[A EA ] +R/ R3

K23= 22 +  r R

33= ([ 1 ] + [2 (D12 +2D66)

+ [A22 + r 1 + 2EZ"n

In these expressions, EA is the extensional stiffness of the stiffners,

GJ is its torsional stiffness, and EIl is the bending stiffness of the

stiffner about the skin reference surface. Subscript s and r, respectively



represent stiffner and ring. For the gross buckling mode, the above equa-

tion is used directly, but for panel and skin buckling modes it is modified

slightly. For panel buckling, the length of the cylinder is assumed to be

equal to ring spacing and all the ring stiffness properties are set equal

to zero. And for skin buckling, all the terms due to stiffner stiffness

and ring stiffnesses are set equal to zero and a buckling load corresponding

to -

L = tr

n = Integer s)n , n 1, 2, 3....

gives the skin buckling load.

Calculation of stringer and ring stiffness properties:

Equation 1 requires knowledge of the stiffness properties of the rings

and stringers. These will now be determined. Since the stringer and ring

are similar geometrically, it will suffice to discuss the stringers only.

Figure 5 shows three members of the stiffner, each having a width bi.

The width of each element is given by

bl = bs

b (hs- -
)

2 cos B

b ='8b
b3 8 b

where



tsk + tls + t2s
- sk is 2s
s 2

1 b
tan = s

h
s

th
If [A]. is the extensional stiffness matrix for i member then

Young's Modulus E.. for i member in x direction is given by (see ref. 4)
xis

xis = A11  h

where h. is the thickness of the ith member given by

h = tls + t2s

h2 = t2s

h3 = t2s + t3s

Let EA. denote the extensional stiffness of each stiffner. Then the
is

total extensional stiffness of the stiffner, EAs is

EA 2 EA + 2 A + EA
s ls 2s 3s

and

EA. = Exis b h , i =1, 2, 3s xis 1 1
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The distance of the stiffner neutral axis from the skin reference

axis, z , is given by

2 EfA1 t s+ EA2 s (hs + t)+ EA h
s EA

s

The bending stiffness (EI )s  about the skin reference axis is given

by

2 3EXt b 2  2E A h

(EI)s = E Als hl + EX2 2sbE A3s 3
6 1 2

(hs + )2
+ 2 EA 2t + 2 EA 2  h S

is .s 2

+ EA h
3s s

The torsional stiffness (GJ)s of the stiffner is computed as follows

[ 2 b2  b3  bs
s 4 (9bihs) 2 [(A62 + (A6 6 3  +(A

The contribution of the inplane shear stiffness due to stiffner

(A6 6 )s is given by

( 8 b cos 8 + h sin 8 1 8 b

(A66 )s = (A66 )2  8 b cos B + h
s s s
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With the help of the above stiffness properties the gross, panel and

skin buckling loads can be computed.

In order to determine the local buckling of stringer and ring it will

again be sufficient to discuss only one of them.

Local Buckling

For the local buckling modes of the stiffners, the buckling of members

2, 3 and the skin between the webs is considered. All these members are

assumed to be orthotropic plate members simply supported on all four edges.

Hence the buckling load for it h member is given by (Ref. 5.)

= 2 DI D22 + D 1 2
+ 2 D66]ix6 b6.

4.3 CONSTRAINT CONDITIONS

* Buckling Constraints

For an optimum design to be a valid design, the applied load carried

by each member cannot exceed the buckling load of the corresponding member.

These buckling loads are now computed from a membrane prebuckling deforma-

tions, the relation between loads and strains can be written as

Nxp + 2 A22 A r] y

EA

or

{N} = [A]{e }
P p
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Hence

{C I = []-1 (N I
p p

The prebuckling strains can thus be computed from the total prebuckling

stress resultants 'N and N . Next the loads carried by the skin and the
xp yp

individual members of the stiffners will be computed.

• Load carried by the skin

Nx All A1 2  xp

N A A s
y sk A12 A22 sk yp

* Load carried by stringer members

P = EA E
xsi is xp

• Load carried by ring members

P = EA. E
xri ir yp

* Material Failure Constraints

The skin and stiffner laminates must be checked for possible material

failure. For the case of laminated composite stiffened cylindrical shells

it will be necessary to check the strain in each laminate for failure. This

is the most conservative failure criterian and is used for the present



problem in view of the lack of any other presently satisfactory failure

criteria.

If the laminate fibers are oriented at an angle 8 from the axial

direction, then the strains in that laminate are given by (see. Ref. 4)

E cos O 2  sin 2 2 sin 8 cos E x
1 xp

F_ = sin 82 cos28 -2 sin 8 cos 8e E

6Y11 -sin e cos 8 sin e cos 8 cos 2 8 -sin 2 _ Y yp

where c1 is strain along the fiber, c2 strain perpendicular to the fiber

and Y12 is the shear strain. The strains given by above equation are

constrained to satisfy the yield strains of the material in each laminate.

5. NUMERICAL RESULTS

5.1 COMPUTER PROGRAM

A priliminary listing of the computer program developed for the

optimization studies is given in appendix A. Detailed documentation of the

use of this program and its capabilities will be given at the completion of

this continuing effort.

5.2 CHECK CASES

In the use of smeared theory it is required to calculate the extensional,

torsional and bending stiffness properties of the stiffners. In order to

assess the effects of modifying the equations of Ref. 2 and of the assumptions
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made in calculation of the stiffness properties, the following three check

cases were used:

1. Unstiffened cylinder using BUCLAP 2 (Ref. 6)

2. Stiffened cylinder using BUCLAP 2

3. Stiffened cylinder using BUCLASP 2 (Ref. 7)

These cases are briefly discussed next.

The first two check cases are used primarily to check the effect of

modifying the equations of Ref. 2. BUCLAP 2 can be used for computing

buckling loads of a sitffened cylindrical shell by adjusting the stiffness

matrices to account for the effect of eccentricity and stiffners. These

modified stiffness matrices, which were computed in a related panel buck-

ling study, are given in appendix B. Buckling loads for both stiffened

and unstiffened cylinder were found to be in good agreement.

The third case is used to check the effect of the use of smeared

stiffners instead of discrete sitffners, and also to check the assumptions

employed in the calculation of the stiffness properties of the stiffners.

It was disappointing to find that discrete theory using BUCLASP 2

gave a buckling load 30% lower than that prbdicted by smeared theory. The

reason for this difference is probably in the computation of the torsional

stiffness of the stiffner assumed for smeared theory. This contention is

supported by the fact that, when the cylinder was forced to buckle in

axisymmetric mode the buckling loads given by smeared and discrete theory

were almost the same. An investigation is presently under way to resolve

this problem. The optimization results for stiffened cylinders will then

follow. However optimization studies for unstiffened composite cylinder have

been successful. The results of these studies are given next.
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5.3 RESULTS FOR UNSTIFFENED CYLINDERS

Some preliminary results for unstiffened composite cylinder are pre-

sented in Figs. 6 and 7.

Figure 6 shows the weight strength plot for unstiffened cylindrical

shells under uniform axial compression. There is clearly a weight saving

of about 40% using Graphite/Epoxy over aluminum. Furthermore, a similar

or even better weight savings can be expected for stiffened cylinder, be-

cause Graphite/Epoxy stiffners can carry the load more effectively than

aluminum stiffners.

Figure 7 shows results for unstiffened cylinders with the material

properties used by Dow and Rosen (Ref. 8). They showed an "isotropic"

arrangement of fibers was most optimum. But the present results show that

a more optimum fiber orientation can be obtained using a general fiber orien-

tations. Dow and Rosen also showed that isotropic configuration was better

than ±150 configuration, but this was not found to be so in the present

computations. Both ±150 and isotropic configuration gave the same value

of weight parameter as indicated in Fig. 7.
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APPENDIX A

LISTING OF COMPUTER PROGRAM



SUB UTIN E_CYL OPT 1.8000 001_

REAL ALPHA(20- Q) 1800002. _

REAL FUNCTNCL0Q) 1800003

E_QUALEN ECEAAQDALA i4ALALAL ) 800004

E QU IVAL ENCE (A DAT_A_(2736,J JJ) 1800005___

EQU I VALENCE (ADATAI 2948)_.,MA.XJJJ) 1800006

EQU IVALENCE(A DA TA(25 52) ,FUNCTN) _ 1800007"

COMMON /AESOPD/_ ADATA(5000) 1800008

C OMMON/SUB/ FT OL125)I 2 IWT5_25),TIOL(_25,1, SAR(5 1800 009__ _

1 WTDOWN(2.5) WTUP(25jNPSI (25) .1800Q0 Q

C_ OMMON .__/ARE A/ _TS_,ASS ASR 1800011

SDIMEN S I ON Q Rk( 4i, Q1 5t_4 LA _A1__LEAS_3 A_R..3_PX_ LPR3,UC L .1_ N .1800012

1 CR(3), MCR(3),NCOUNT(3),_EPSL1(5),EPSL2(5) 1 800013

COMMON /DATA/_ B UCK_L , EAS tEAAR, B2_, B2R _1800014

C COMMON / Q/ _QL_,_ _ -__ _- _-1800015

COMMON /MAT/ EX,EYENUXYtGXYRO 1800016

COMMON/ SAVE/A_ tGJDLE I SD ECECK1 EALtAE RLEC E CK2t I STOP I STOP 2 800017

COMMON /RATIO/ ANYR ___ 1800018

O MEN SI ON D I SS_41_.t GA MA12[5_), A LOAD 9 _ ___ 1800 01 9

NAME LIST/CYLDATA/ STOP STOP__2_ CARGE1C AR GE2,A NXANYR ,EL. rA,__ ___ 18 0 0 0 2 0

1 EX,EY,GxGXYeNUXY., RO 
1800021

COMMUN/LIST/ CARGEItCARGE2 .1800022-

PI = 3. 14159265 1800023

2 FORMAT (8E 15.6) 1800024

IF(JJJ.NE.1) GO TO 1111 1800025

READ(5,CYLDATA) _ 1800026

l1___CoN T. NUE 1800027

ANY=ANYR*ANX 1800028

ENUYX=E Y*ENUXY/EX 1800029

ENT=1 .- ENUXY*ENUYX 
1800030

_QR 1 )=EX/.ENT 1800031

SQR_( 2_)-=EY/E NT 1800032

QR( 3) =ENUyXEX/ENT 1800033

QR(4)=GXY 1.800034

CALL QLAMNA(QR _.,QL4) 4 11800035

CALL QLAMNA(QR45.tQL_51 1800036

CALL ASEMBL(D.,QR,A,EAS__EAR, 82S,82R, CARGE1 ,CARGE2) 1 80003 7

C CALCULATION OF STRAIN 1800038

A(1)=A(1)+EAO 1800039

A(2 )=A(2) +EAL 1800040

OELTA=A(l)*A(2)-A(3)**2 1800041

AAL=A(2)/ELTA 1800042



AA2=A( 1)/ DE LTA __ 1 800 0 4 3_

AA? -A(3)/DELTA 1800044

AA4- ../A(4) 1800045

E PSLX=AAI*ANX+AA3*ANY 1800046

EPSLY=AA3*ANX+AA2*ANY 1800047_

C ******* CALCULATION OF STRAIN IN EACH LAYER 1800048

00 2000 1=1,3 _ _180049

CALL STRAIN(ALPHA(I.tEPSLXPEPSLYEPSL1(Ii),EPSL2(I,_GAMPAIl2(I .) 1800050

2000 CONTINUE 1800051
E PS L 1_ (4)= EPSL X 1800052
EPSL2 (4)=EPSLY 18000.53

GAMA12(4)_=0. 1800054

CALL STRAIN(45._EPSLX, EPSLYEPSLI(5),EPSL25I,_GAMA125J . 1800055

C TO FIND LOAD CARRIED BY EACH MEMBER*************** -1800056
0o 10_ I=1,3 8__1800057
PXS(I)=EPSLX*EEAS(I) 1800058

10 PXR ( I)=EPSLY*EAR() -1800059

A( 1)=A(1)-EAD 1800060

A(2)=A(2)-EAL 1800061
PXSK=A( 1 )*EPSLX + A(3)*EPSLY. 1800062

PYSK=A( 3) EPSLX-A( 2)* EPSLY 1800063

IF(JJJ. EQ.MAXJJJ) PRINT 2rEAD,GJD,EISD, ECECK1,EALGJREIRLECECK2 1800064

C ****** TO FIND BUCKLING LOADS************** 1800065
DO 1000 i=1,'0 1800066

1000 DISS(I)=D(I,I) 1800067

CALL ITRATE(I,30,0,2,NCOUNT(1),BUCKL(1),NCR(1I,MCR(ltA, 1800068

1 D!SS, EL,R)_ 1800069

PI [ =2.*PI*PI * 1800070

IF(ISTOP2.EQ.1) BUCKL(21=8UCKL( 1) 1800071

IF.(ISTOP2.EQ.1) GO TO 8000 1800072

EAL=0. 1800073

GJR=0. 1800074

ECECK2=O. 1800075

EIRL=O. 1800076

CALL ITRATE(l15,0,2,NCOUNT(2),BUCKL(2)tNCR(2) MCR({2iADISS,. 1800077

I ALPHA(8),R) 1800078

8000 CONTINUE 180007.9

IF( ISTOP1.EQ. 1) BUCKL(3)=BUCKL(2) 1800080

IF(ISTOPI.EQ.1) GO TO 7000 1800081

EAD=0. 1800082

GJD=0. 1800083
ECECKI=0. 1800084

EISD=O. 1800085



NNNN= INT(PI*R/ALPHAl( 7I) I Vu u___

BUC ( 3)=10.E20 1800087_

IF....NN.EQ..OR.NNNN.E.G__E __I O TO 88 1800088

DO 100 J=1-10 18000890

NNX=NNNN*J 1800090

DO 100 I=1 30 1800091

C A LL b UCK LG i _.N Xj At.I S SA.NXX,A_LPH.A_(8),3R 1800092

I F ( ANXX.LT.BUCK L.( 3 )_) MCR(3)=I 1800093_

IF( ANXX.LT.BUKL_(_ NCRl1)= J 1800094

_____IF ( ANXX LTBUCKLA 311._ 8UCKL1 3)ANX . _______ __1800095
100 CONTINUE 1800096

8888 IF( NNNN.EQ.0.0R.NNN.EQ.1 )CALL .ITRATE. (-(3 30 L O2N3S_.NCOUNT A3 UCKL( 3), 18000 97
._ N C R 3 ) M CR rA, SS_,ALPHAR( LP__.__ __ _R 1800098 -_

7000 CONTINUE 1800099

IF ISTOP1.EQ.1)GO TO 5000 1800100
B UC KL (4) = P I I * (S QR (D 1,2) . (1,3)+DI) l . 2.AL 2 , PHA( 2) __ HA( M- 1800 1 01

BUCKL(5)=PI*(SQRT(D( 2 ,1)D(2,2) )+D(2,3)+2.*D(2,4))/2BS 1800102

BUCKL(6)=P I4*(SQRTDI3,1 ) D(3,2))+0(3,3)+2.*D(34),I)/(.8*ALPHA(12).). 1800103

5000_ CONTINUE 1.800104
IF (ISTOP2.EQ.1) G3 TO 5001 1800105

BUCKL(7)=P I (SQRT(Dl D1I (,2 )1 D( I 3)+2 .*D P, 41/ALP HA17 ) 1800106

BUC KL 8) PII 1( SQRT _( _1 4 D 4,2)+D(4, 3)+ 2 .*D(, 4  IB 2R 1800107

BUCKL(9)=PIl*(SQRT(0(5,1 )D( 5 2 )1+D(5,3) +2.*D( 5, 4 ))/ .8*ALPHA(17) ) 18.00108

5001 CONTINUE 1800109

ALOAD(I)=ANX 1800110

ALO AD 2 ):=ANX_ 1800 1

ALOAD(3)=PXSK 1800112

ALO AD(4).PXSK 1800113

ALOAO(5)=PXS(2) 1800114

ALJAD(6)=PXS(3) 1800115

ALOAD 7) =PYSK - 1800116

ALO AD 8)-PXR( 2 1800117

ALOAD(9 )=PX =_OpXR (3) 1800118

C MATERIAL PROPERTIES USED ARE FOR THORNELL 300 NARMCO 5208 1800119

C 1800120

C Eli 2.12E7, E22 2.39E6 , G12 6.5E5, NUE12 .31 1800121

C_ 1800122

00 3300 1=1,9 1800123

FUNCTN(I)=SIBAR(I1) 1800124

IF(ALOAD(I).LT.0.)GD TO 3300 1800125

IF( ALOAD(1).GT.BUCKL( 13)FUNCTN( I)=(ALO.AD(1)-BUCKL(I))/ALOAD(I) 18001.26

3300 CONTINUE 1800127

DO 3400 1=10i14 1800128



FUNCTN(I)=SIBAR(I) 1800129
FU 'N(I-5)=SI BAR(I +5 1800130
FUN.,NI4-10)=SIBAR(1+10). 1800131
IF(EPSL1(I-9).LT.0.)GO TO 3420 1800132
IF(ABStEPSL1(I-9)).GT..012) FUNCTN(I)=EPSL1(I-9.)-.012)/EPSL1(I-9) 1800133
IF(ABS(EPSL2(I-9)).GT..02)FUNCTN(I+5)=(EPSL2( -9)-.02)/EPSL2,(I-9) 1800134
IF(ABS(GAMA2(1I-9)).GT..015)FUNCTN(IUO)=(GAMAL2.(I-9)-.015)/GAMAL2 1800135

1(1-9) 1800136
GO TO 3400 1800137

_3420 IF(ABS(EPSL1(1-9)).GT. .01)FUNCTN(I)=(EPSL1(1-9).-.Dl_1/EPSL1(I -9) 1800138
IF(ABS(EPSL2(1-9)).GT..0045)FUNCTN(I.s 5)=t EPSL2(1-9)-.0045)/EPSL2 ( I 1800139

1-9) 1800140
IF(ABS(GAMA1211-9)).GT..015)FUNCTN(I.+10)=('AMA12(I-9)-.015)/GAMA12 1800141

1(1-9) 1800142
3400 CONTINUE 1800143,

FUNCTNi25)=2.*PI*R*EL*(TS+ASS/ALPHA(7)+ASR/ALPHA(8)I 1800144
--IF(JJJ.NE.MAXJJJ) GO TO 1113 1800145

8 FORMAT(//********* SOME RESULTS *******///) 1800146
PRINT 8 1800147

3 FORMAT(* NX NY/NX EL RP) 1800148
PRINT 3 1800149
PRINT 2,ANX,ANYR,ELR 1800150

4 FORMAT(/* EX EY GXY ENUXY*) 1800151
PRINT 4 1800152
PRINT 2, EX,EY,GXYENUXY 1800153

5 FORMAT(//* .ALPHA1 ALPHA2 ALPHA3 TI 1800 154
1 T2 T3 ELS ' ELR*) .1800155
PRINT 5 1800156
PRINT 2, (ALPHA(I),I=1,8) 1800157

6 FORMAT(/* TIS T2S T3S BS 1800158
1 HS*) 1800159
PRINT 6 1800160
PRINT 2,(ALPHA(1),1=9,13) 1800161

7 FORMAT(/* TR T2R T3R BR 1800162
1 HR*) 1800163
PRINT 7 1800164
PRINT 2,(ALPHA(I),I=14,18) 1800165

2001 FORMAT(//* STRAININ THE FIBER DIRECTION *), 1800166
PRINT 2001 1800167

2003 FORMAT(* ALPHA EPSLI EPSL2 GAMAl2 ) . 1800168
PRINT 2003 1800169

2002 FORMAT(F7.3t 4X,3E15.6/1 1800170
ZE=O 1800171



LEE=45. 180017 -.2

PRI _2002t((ALPHA(I),_EPSLI(iEPSL2I),GAMA1 I) ),jl=13) 1800173

P RI.,I. 2002,ZE ,E PSL1t 4),EPSL2 (14 ,GAMAl 2 4) 1800174

PRINT 2O02,ZEEEPSL1(5)EL(5tGAMA12(5) 1800175

1123 FORMAT(* STIFFNER PROPERTIES//*EAD=*,E14.7,*GJD=*E14.7, EISD=* 1800176

1 ,E14.7,*ECECKl=*,E14.7) 
1800177

PRINT 1123,EAD,GJD,EISD,ECECKI 1800178

9 FORMAT(/* AXIAL STRAIN TRANSVERSE STRAIN*) 1800179

PRI NT _9 1800180

PRINT 2 ,EPSLX,EPSLY ___ _____1800181

20 FORMATI***LOAD CARRIED BY EACH MEMBER*) 1800182

PRINT 20 1800183

11 FORMAT( .PXSPXR PXSK PX PYSKi~ 1800184_

PRI NT- 1 - 1800185

PRINT 2t(PXS(I)_ =3) 1800186-

PR I NT_2,(PXR(I),13) 1800187

PR I NT 2,PXS K PYSK 1800188

12 FORMAT(//.** *t BUCKLING LOADS*) 1800189

PRINT 12 1800190
-------- ~-- ) 1800191

13 FORMAT(/*GROSS BUCKLING PANEL BUCKLING SKIN BUCKLING*) 1800191

SPRINT 13 1800192

P PRINT 2, _(BUCKL(I),I1,3) -- 1800193

14 FORMAT(I LOCAL BUCKLING STIFFNER*) 1800194
PRINT 1 1800195

PRINT 14 
---

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1800195 __--

PRINT 2_,(UCKL(I),I=4,6) 1800196

15 FORMAT(/* LOCAL BUCKLING RING*) 
1800197

PRINT 15 
1800198

PRINT 2,(BUCKL(I),I=7,9) 
1800199

16 FORMAT(/*** MCR(I),NCR() INCOUNTlI)*) 
1800200

PRINT 16 1800201

21 FORMAT(318) 1800202

PRINT 21, ((MCR(I),NCR(I),NCOUNT(I)), I=1,3) 1800203

CALL OUTPUT(FUNCTN,A LPHA I STOPl STOP2,ELR, RO,ANX) 1800204
1800205

1113 CONTINUE 1800205
1800206

RETURN 1800207

_END 
1800207



SUB" 'UTINE ASEMBL(D,QRtAtEASEARB2SB2RCARG ,CA GE -2-__ 1800208 9
COM..JN /AREA/ TS,ASS,ASR 1800209

-_DIMENSION QR( 4),THICKl6),KP(6), DS(4 ,(5,4) ,DSS(2,4) ,EAS(3),EARl3) 
1800210
1800211

1 ,A4) 
1800212

COMMON /Q/ QL(4,5) 180021
COMMON/SAVE/EAD_,GJD,EISD , ECECK1 ,EAL, GJR,EIRL,ECECK2, ISTOP , ISTOP2 _ _ 1800213

1800214________
COMMON /AESOPD/ _AODATA5000) 1800215

REAL ALPHA(20) _ _ 1800216

E QU[VALENCE(ADATA(742), ALPHA) 1800217

DO 1 =1,3 1800218

CALL QLAMNA(QR,ALPHA(i),QL,1) _i80021 9_

KP_()-l 
18002221

KP( I-3)-=4-.-I 1800222__

1. CONTINUE 
1 800224

DI[ST=ALPHA() +ALPHA() ALPHA(60022

CALL STIFF(-[A, KP, DSTdH ICK, DLST, 
6  1 800225

DO 2 1=1,4 
1800226. . 1tI T1800227

2 (1, I)=DS(I) 
1800227

K 3)=- 1 _------------- - ---- -- aoo2

T S= 2.*D I ST_ 
.1800229

GXY SK=A(4)/TS 
.18002290

[F(ISTOP1.EQ.IGO TO 5000 
.1800230

CaL -LSTi F PR ( 4L PHA (9,) ALPHA( 10), ALPHA( 11) ALPHA( 121 ,ALPHA( 13) ,TS, 1800231
EADGJDECECK1,EISDDSSIALPHAT) EASB2SCARGEASSGXYSKGXYBST) 180023

S3 =1,4 1800233

120(2, I )= DSSI 1, ) 
180023 5

3 D (3 ,-=OSS- 2,I) 
1800236

A44 )=A(4)+ 1.8*ALHA( 12)*GXY3ST/ALPHA(7) 
- -1800236

5000 GCONTINUE 
1800237

IF( ISTOP2.EQ.1) GO TO 5001 __ 1800238

CALL STIFPR(_ALPHA(_),ALPHA(15),ALPHA116,ALPHA(1),ALPHA(18)1, 
_1800239

I TSEIALGJR,ECECK2,EIRL,DSS,ALPHA8 ,EAR,B2R,CARGE2,ASR,GXYSKGXY 
T 1800240

2 BRN) 
1800242

DO 4 I=1,4 
1800243

D_ D(4,11 )SS ( ,I) 
18002443

.4 015I,)=DSS(2,)) _ _ _ _ _ _ _ _ _-i 800244

A( 4 )=A(4) +.3 ALPHA( 17)fGXY RN ALPHA( 8 ) 1800245

5001 CONTINUE 
1800246

RETURN 
i800247

END 
180024500 COTNE 804

RETUR 1800248- ----- ---------



BLC ' DATA 1800249

DI_,1.,-ASION BUCKL(9)tEAS(3),EAR(3) -1800250

COMMON /DATA/ BUCKLEAS,EAR,82St82R 1800251
COMMON/SAVE1/EADGJD,EISD, ECECK1EAL,GJREIRL ECECK2, ISTOP1 ISTOP2 1800252

COMMON /AREA/ TSASStASR 1800253

COMMON /MAT/ EX,EYENUXYGXY,RO 1800254

COMMON/LIST/ CARGE ,CARGE2 1800255
DATA ISTOPl,ISTOP2/2*0/tCARGE1,CARGE2/2*1./,EX/10.E6/,EY/10O.E6/ 1800256

1 GXY/3.75E6/,ENUXY/.3333333/,RO/.1/ 1800257

DATA TSASSASR/3*0./ 1800258

DATA BUCKL /9*1.E30,/rEAS/3*0./,EAR/30./,8B2S,82R,EADGJD,EISD,ECEC _ 1800259

KIEALGJREIRLECECK2 /10*0./ 1800260

END 1800261



SUB"UTINE BUCKLG(M,N,A,D,ANXEL,R) 1800262
COM..JN/SAVE1/EADGJDEISDECECK1,EALGJR,EIRLtcCECK2,ISTOPI,1ISTOP2 1800263
COMMON /RATIO/ ANYR 1800264
DIMENSION A(l'),D(4) 1800265
PI=3.1415927 1800266
PI M=FLOAT (M) PI'-/EJL 1800267
RN=FLOAT(N)/R 1800268

5 Al1=(A(1I+EAD) *PIM** 2+ A(4)RN*2 * 1800269
A12=(AL3)-A(4))*PIM*RN 1800270
Al3=A(3) *PI M/R+ECECKI*PIM**3 1800271
A22=A(4)*PIM**2+(A(21+EAL)*RN**2 1800272
A23=(A(2j)+EAL)*RN/R+ECECK2 RN**3 1800273
A33=(01 ) +EISO)*PIM**4+(2.*(D(3)+2.*D( 4 ) GJD+GJR) *PIM**2*RN**2 1800274

1+(2) EI RL-)*RN**4+(A(2 )+EAL)/R**2+2.*ECECK2*RN**2/R 1800275
APP=AL1*A22-A12*AIZ 1800276
APX=A33+(Ai2*A23-AI34A22)*Al3/APP+ (A12*A13-Ai1*A23)*A23/APP 1800277
ANX=APX/(PIM**2+ANYR*RN**2) 1800278
RETURN 1800279
END 1800280



SSUB" 'UTINE ITRATE( MIMFNI NDELNCOUNTCM IN N' ,MCRA,D,ELR 18002 _ 81__
1 800282 -DIM,..45[ON A(4) ,D(4) -1800282

FORMAT(1HO,* WARNING VALUE OF N WENT BEYOND 100 */) 1800283

NCUUNT=0 1800284
NN=NI 1800285

NDELTA=NDEL 1 800286

DO 100 I=MI,MF 1800287

IF(L.NE.1) NN=NC1 1800288

IF(I.NE.1) NDELTA=1 1800289

INN=I 1800290

NCHECK=O 1800291

50 IFINN.GT.100)PRINT 1 1800292

IF(NN.GT.100) GO T3 .100 1800293

CALL BUCKLG(I,NN,A,D,FUNCTN,ELRJ 1800294

NCOUNT=NCUUNT+I 1800295

IF( LNN.EQ.1IGO TO 30 1800296

rF (FUNCTN.LT.CFUNTN) GO TO 30 1800297

20 NC H ECK= NCHECK+- 1 1800298

NUELTA=-1 1800299

30 NN=NN NUELTA 1800300
i _ NN=2. 1800301

IF( NCHECK. EQ.2) NCI=NN+2 1800302

IF(NCHECK.EQ.2)GO T3 10 1800303

C F N FN=-F NCTN 1800304
_GOT -TO 50 1800305

10 IF(1.NE.MI) GO TO 200 1800306

MCR=MI 1800307

NCR=NCI 1800308

IF(I.EQ.MI) GO TO 70 1800309

200 IF(CMIN.LT.CFUNTN) CFUNTN=CMIN 1800310

40b IFCFUNTN.LT.CMIN) MCR=I 1800311

IF(CFUNTN.LT.CMIN) NCR=NCI 1800312

70 CM[N=CFUNTN _1800313

100 CONTINUE 1800314
RETURN 1800315

END -1800316



SUB- UTINE QLAMNA(ATHETAtB,K) 1800317
DIM-. SION A(4),8(4,5) 1800318
THETE=THETA*3.14159265/180. 1800319

S=S IN(THETE) 1800320

C=COS(THETE) 1800321

C 4=C*+4 .1800322

S4= S**4 1800323

CS2 2=C*GC*S*S 1800324
CS3=C*S**3 1800325

SC3 =S*C**3 1800326

Al=2.*(A 3 4-2.*A(4) )*CS22 1800327

A2= A(1)-A(3)-2.*A( 4) 1800328
A3=A2-A(2)-A(3) 1800329

A4= A 3)-A 2) 2.*A(4) 1800330

8(1 ,K)=A(1)*C4-+AI+A(2)*S4 1800331
812,K)=A(1)*S4+AI+A(2)*C4 1800332

B(3,K) = ( A(1)+-A(2)-4.*A(4))*CS22+A(3)*(C4+S4) 1800333
8(4,K)=A3*CS22 +A( 4)*(C4+S4) 1800334
RETURN 1800335

END 1800336



SUB* 'UTINE STIFF(AtKPDtTHIlK,DI.STNL) 1800337
COM.JN IQI QL(4,5) 1800338
DIMENSION A(4),KP(6),D(4) ,THICK(6) 1800339

00 50 [=1,4 -1800340

AUI)=O.O 1800341
D([ i=0.0 1800342

50 CON TINUE 1800343

HK 1-D ST 1800344

00 o100 I=,NL 1800345

KK=KP(I) 1800346
HK2=HKI+THICK( ) _ 81800347
HPA=HK2-HKI_ 1800348

--. HPD=(HK2**3-HK**3) /3. 1800349

00 20 K=1,4 1800350

A(K)=A(K)+QL(KKK)*HPA 1800351

20 D(K)=D(K)+QL(K,KK)*HPD 1800352

HKI =HK2 1800353

100 CONTINNuE 1800354
R ETURN 1800355

END . 1800356



SUB UTINE STIFPR(TITT2tT3,BBH,TS, EAD,GJD,tEC 1,EISDODS, ELD,EA,B 1U800357

1 AB, .tARGE, ASSS,GXYSK, GXYB 1800358

DIMENSION THICK(6),KP(6),A(4),D(4),EX(3),GXY(3),DS(2,4),EAi3),B(3) 1800359

COMMON /Q/ QL(4,5) 1800360

THICK( 1 ) =T2 1800361

KP ( 1)=5 1800362

DIST=T2/2. 1800363 '
CALL STIFF (AKPtDTHICKtDIST,1) 1800364

DO_ 1 =1,4 1800365

1 DS(1 I)=D(I) 1800366

EX(2)=(Ai1)*(2 -A(3 )**2)/ (A2)*T2) 1800367

GXY2 2)=A(4)/T2 1800368
THICK(1)=T2/2. .1800 369

THI CK(2 =T3 1800370

THICK(3)=T2/2. 1800371

Di ST= T3+T2)/2. 1800372

KP( 1)=5 1800373

KPL2)=4 1800374

KP( 3)=5 1800375
CALL STIFF( A,KP,D,THICK,DIST,3) 1800376

00 2- =1,4 180037.7

2 OS( 2,l=D(I) 1800378

EX(3)=(A(1)*A(2)-A(3)**2 / (A(2) *(T2+T3 1800379

GXY(3)=A(4)/(T2+T3) 1800380

EZ=(QL(1,4)*QL(2,4)-QL(3,4)**2)/QL(2,4) 1800381

__ EF=(L,5i )QL-(2, -QL(3,5)**2)/QL(2,5) 1800382

EX L )=(EZ*TI EF*T2)/(TI+T12) 1800383

GXY(1 = (QL 4,4) *T QL 4,5 *T2)/1 1+T2) 1800384

BETA=ATAN(.I*BB1/H) 1800385

TAV G=I TS-T1iT)/2. 2 1800386

B(1)=.4*8B 1800387

B i2)= H-TAVG)/COS( BETA) . 1800388

813 )=.8BB__ 1800389

ASS-S=8(1)*(TI+T2)*2. +2.*B(2)*T2+B(3)*(T2-+T3) 1800390

BAB=8(2) 1800391

EA I)=EX(1)*8(1)*(T1+T2) 1800392

EA(2)=EX(2)*(2~T2 1800393

EA(3)=EX(3)*B(31*(T2+T3) 1800394

EAA=2.* EA -i+(1+E -EA( 2)*t2.+EA( 3) 1800395

ZBAR=12. EA(1)*TAVG4EA(2)*TH+TAVG)*EAi3)*H)/EAA 1800396

ZBAR=ZBAR*CHARGE 1800397

EIC=(EX(I1 *( 1)*(TI T2 )*3)/6. IEXI2)*T2*(B(2)*COS(8ETA))**3 1800398



I )/(6.*CS(BETA))*(EX(3)T*B(3)I(TI+T
3)** 3 )II2 +2.*EAt1)*TA.VG*AZ 1800399

----.-- Uso--umoussswr-** 1800400
2 +2 A2)U((H+TAVG)/2.) 2 + EA,3)*H**2 -18004001_

GJ2=2)/ (T2GXY(2) 1800401
1800 402-

GJ3=B( 3)/( (T2+T3)*GXY 3)_ _-_ 180040

GJ4=B8/ (TS*GXYSK ) 1800404
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SECTION B

EFFECTS OF BOUNDARY CONDITIONS

ON THE BUCKLING OF AXIALLY

COMPRESSED CYLINDRICAL SHELLS*

* This section will form the basis for a paper to be submitted for pub-

lication in the AIAA Journal.



eA
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1. INTRODUCTION

1.1 PRELIMINARY CONSIDERATIONS

The literature is replete with inverstigations devoted to

the buckling of unstiffened, isotropic, complete cylindrical shells

under axial compression. In contrast, relatively little attention

has been focused on the corresponding buckling problem for cylin-

drical panels,. However, unstiffened, isotropic cylindrical panels

are frequently employed in a vast number of structures, such as,

for example, in launch vehicles. Furthermore, knowledge of panel

buckling loads is needed for consideration of the local panel

buckling modes in the analysis and minimum-weight design of stringer

stiffened cylindrical shells. Therefore, the present paper is de-

voted to a study of the buckling behavior of unstiffened, elastic,

isotropic, cylindrical panels. The loading condition of uniform

axial compression is chosen as this condition is often the critical

one, especially in aerospace applications. Buckling loads are

presented for panels with eight sets of boundary conditions along

the straight edges of the panel. Four sets are considered for both

simply supported (w = My= 0) and clamped (w = w, = 0) straight

edges. The eight sets of boundary conditions are designated by

SS1, .., SS4, CC1, .., CC4 and-are defined below. The boundary

conditions for the simply supported straight edges are

SS1 w = M =N = N = 0
y xy y

SS2 w = M = N = v = 0
y xy (1)

(classical)SS3  : w = M =u =N = 0

SS4 : w = M = u = v = 0
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The corresponding boundary 
conditions for the clamped straight

edges are

CC= ww N N 0
CCI : w = xy y

CC2 : w=w =N v =0
,y xy (2)

CC3 : w I= u N =0

CC4 w: w = = u = v = 0

In these equations, u, v, w and 
Ny, Nxy' M are, respectively,

incremental displacements and stress resultants 
that take place

during buckling. Their positve directions are shown 
in Figs. 1 and

2 along with the other stress 
resultants considered herein. 

Different

sets of boundary conditions along 
the curved edges of the panel 

will

not be considered here since it seems 
reasonable to conjecture, as

was done in Ref. 1, that the qualitative 
effects of these boundary

conditions should not differ appreciably 
from those found for complete

cylinders, which have been 
thoroughly documented in the 

literature.

Therefore, only one set of boundary 
conditions for:the curved edges

is considered herein; namely "classical" simple support 
edge con-

ditions defined by

S= M N v 
(3)

1.2 PREVIOUS INVESTIGATIONS

Analyses of the axial buckling 
behavior of cylindrical panels

have been performed in a number 
of references. The references cited

herein pertain to long and narrow panels 
analyzed by Donnell-type

shell theory. In all cases, the effects of prebuckling 
deformations
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are omitted and the only non-zero prebuckling stress resultant is

the axial one, Nxo, which is assumed to be constant. The effects

of initial imperfections are not considered. A brief discussion of

the results of some of the other investigations follows.

Marguerre (Ref. 2) presented solutions for panels with the

following types of edge conditions:. SS2, SS3, SS4, CC2, and CC3.

The solutions are approximate except for the case of classical simple

support conditions, SS3, for which the following closed form solution

was obtained (also presented in Refs. 3-5):

2  (Nx)
Kc 1 yl

Inthis equation, N is the panel buckling load; (N)  + is the
xo xpl

classical uniaxial compressive buckling load for a long flat plate

with simple support conditions on the long unloaded edges, i.e.,

2 3
(Nx) 2 () (5)

pl 3(1-v ) b

where h and b are the plate thickness and width, respectively, E is

Young's modulus, and v is Poisson's ratio; (Nx ) is the classical
cyl

axial compressive buckling load for a long complete cylinder, i.e.,

Nx. ... E h.....(Ny) 2  (a-) (6)
cyl [3(1-v)

3



where a is the radius of the cylinder and h is its thickness; K

is a panel curvature parameter defined by

(Nx) 1/2
x cyl 1 [3 (1-v2 )

pl (7)

2 1/2
1 [3(1-v2 )]1 2

2 o

where (see Fig. 1) a'is the radius of the panel, h is the panel

thickness, o is the central angle of the panel, and b = a'o is the

panel width. With regard to Eq. (4) it is noted that Sullins, Smith,

and Spier (Ref. 6), employed this equation, referred to therein as

the "Schapitz criterion", in conjunction with a "knockdown" factor

(from Ref. 7) for (Nx) and obtained a design curve which provided
cyl

a rather close lower bound to experimental results for unstiffened

isotropic cylindrical panels.

For all sets of boundary conditions, Marguerre's numerical

results show that the panel buckling loads tend to monotonically

approach a lower bound asymptote, which is the complete cylinder

buckling load, as the curvature parameter K is increased. For the

range of K values considered, namely K < 9, the complete cylinder

buckling load was actually reached only for the classical simple

support set of boundary conditions, SS3, for which Nx  (Nx ) for
cyl

K > 2, as shown by Eq. (4).

Rehfield and Hallauer (Ref. 8) presented buckling loads appro-

priate to the eight sets of boundary conditions defined by Eqs. (1)

and (2). Thus, in addition to the panels studied by Marguerre, Ref.

8, considered SS1, CC1 and CC4 panels. With the assumptions of a

5
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linear membrane prebuckling solutij; and sinusoidal axial buckling

modes, the partial differential governing the buckling problem were

reduced to a set of ordinary linear differential equations with

constant coefficients and "exact" results were obtained in a straight

forward manner through an iterative numerical solution of a tran-

scendential eigenvalue equation. The solutions of Ref. 8 are based

on the assumption that Nxo > (N) . This assumption was imposed
cyl

to insure that the roots of a characteristic equation would always

be real or purely imaginary, but never complex. As a consequence

of this assumption, the results of Ref. 8 are somewhat incomplete

for certain cases, as will be discussed in what follows.

The results presented by Rehfield and Hallauer are replotted

in Fig. 3 using a different ordinate, namely the non-dimensional load

parameter

(N )
cyl

Note that buckling loads for the cases SS2 and CC2 are not shown since,

to the scale of Fig. 3, they are always close to the buckling loads

for SS4 and CC4 panels, respectively. For SS2, SS4, CC2, CC3 panels,

Marquerre's (Ref. 2) approximate results are in close agreement with

the exact results obtained by Rehfield and Hallauer. For SS3 panels the

results of Refs. 2 and 8 are identical.

*• Ref. 8 plots Nxo/(N pl against K and shows complete curves for

the range of K from K = 0 to K = 5.
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For SS3 panels, it is seen from Fig. 3 that the complete

cylinder buckling load is achieved for a relatively small value

of the curvature parameter, namely K = 2 (see also Eq. (4)), at

which the slope of the p - K curve is horizontal. This is hardly

surprising since the SS3 boundary conditions (w = M = N = u = 0)

are precisely the conditions satisfied on axial nodal lines 
of the

nonsymmetric buckle pattern.of the complete cylinder. Thus, for

K > 2, the panel is sufficiently wide to permit the formulation

of one of the (infinite number of) buckle patterns that are possi-

ble for the complete cylinder at the classical cylinder load (Eq.

(6)). It is also interesting to note that it can be shown that

K = 2 corresponds to a panel width b equal to a full wave length

appropriate to the axi-symmetric buckling mode of the complete

cylinder at ( ) (see Ref. 3). For CCl panels, p = 1 was
cyl

reached within the small range of K values considered in Ref. 8.

Hallauer (Ref. 5) give the following closed form solution for CCl

panels:

BB 4 'K K < 2B (9)
P K 4B C-

where

B = 1.7428 (10)

is the uniaxial buckling coefficient for infinitely long flat plates

with clamped unloaded long edges (Ref. 3). For K > 2B., Hallauer;

7



on the one hand states that p = 1, and, on the other hand, points

out that in view of some low buckling loads obtained for SSI panels

(see Pope's results in Fig. 3), that there is a possibility that

the CC1 panels have solutions p < 1 for K > 2B . However, Eq.

(9) shows that the pCC1 - K curve (see also Fig. 3) has a horizontal

tangent at K = 2B which strongly suggest that PCC1 = 1 for all

K > 2B (as will be demonstrated in the present paper). For all

other cases (with the exception of SS1), the curves in Fig. 3 tend

to suggest that p + 1 asymptotically with increasing K. Now on"

would expect intuitively, perhaps, that the buckling load for a

sufficiently wide panel (o  27~), with appropriate support con-

ditions along the straight edges, should not differ appreciably

from the buckling load of the corresponding complete cylinder. The

results of Ref. 8, since they are limited to rather narrow panels.

(K < 5) cannot predict in all cases the value of o above which

the panel and cylinder buckling loads coincide. The behavior of

p with increasing and arbitrary K will be studied in the present

work.

Figure 3 also shows the results obtained by Rehfield and

Hallauer for SS1 panels. As may be seen from the figure, their

SSl results are restricted to the very narrow curvature range

K < 1.2 for which p ' 1, in accordance with their analysis assumption

mentioned. -The non-zero slope of the PSSI - K curve in the neighborhood

For, say, a/h = 600, K = 5 corresponds to panel central angle

o 140.
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of p = 1 and K = 1.2 suggests that SS< 1 for larger values

of K. That this is the case is confirmed by the unconnected points

shown in Fig. 3. These points are bifurcation bucling points

that were taken from Pope's (Ref. 9) postbuckling curves for long

and narid' SSl panels. Rehfield and Hallauer used these points to

extrapolate their SSI results (see Ref. 8, Fig. 2).into the larger

K region for which PSS1 < 1. Thus, Pope's limited number of SSI

results, show, perhaps somewhat surprisingly that the panel buckling

loads except for the relativy extremely I narrow panels (K < 1.2).

The smallest value of the non-dimensional load parameter obtained

from Pope's SS1 results, is p -. .6 for K - 2.8.. However, the trend

of Pope's results with increasing K suggests that an even lower

value of p will be realized for a larger value of K. The existence

of such low panel buckling loads is somewhat analogous to the well

known low buckling loads for simply supported complete cylinders
0

with no circumferential constraint (v / 0, Nxy = 0, "weak in shear"

boundary condition) on the curved edges. For that case, the cylinder

buckling load is approximately one-half (Refs. 10-12) of the

classical cylinder buckling load (for which w = Mx = Nx  v = 0).

However, for the complete cylinder, the "weak in shear" boundary

condition rarely occur in practice (Ref. 13), whereas, in contrast,

the SS1 panel is of some practical interest since free "in-plane"

movement of the straight edges can be simulated/experimentally.

Also of interest for the SSI panels is whether the SS1 panel load

ever reaches the full cylinder buckling load for sufficiently large

K with 0 < 2n. This will also be investigated herein.

9



1.3 SCOPE OR PRESENT INVESTrGATION

In view of the above discussion, it seems desirable to per-

form a comphrensive analysis that covers the complete range of

panel widths (0 < 0 < 2r)'. This is the aim of the present paper.

Buckling loads and mode shapes will be presented for panels with

the eight sets of boundary conditions defined in Eqs. (1) and (2).

The panels will not necessarily be assumed to be long; buckling

loads will be generated for different L/a values. The results will

be based on both Donnell-type linear shell theory and a more complete

shell theory. As was also employed in the previously cited re-

ferences, a linear membrane analysis is used for the prebuckling

solution and the effects of initial inferfections are not considered.

The "exact" results presented herein were obtained from the BUCLASP

2 computer program (see Appendix A).
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2. NUMERICAL RESULTS AND PARAMETRIC STUDIES

The present investigation is aimed at locating the criti-

cal angle, 4cr' where 4cr is the smallest value of q for which

the panel axial buckling load is identical with that of the

complete cylinder. Studying of the influence of the different

combinations of in-plane boundary conditions along the straight

edges of the panel, namely SS1 to SS4 and CCl to CC4 (Equations

(1) & (2)) on the location of 4cr and the panel critical axial

loads. Parametric studies on the effect of panel geometry,

(L/a) and (a/h) on the critical load and verification of the

existance of a panel geometry parameter K = (1/2) [3(1-v )] (b /ah) =

2 2 1/2 2
(1/r ) [3(1-v ) (a/h) , analog to the Batdorf shell curvature

parameter saas= Z = "71- 2 (L2/Rh), which has been defined in

References 5 and 8.

A main shell geometry, the so called "MARSHALL unstiffened

Cylinder", has been chosen for the present thorough investigations.

The dimensions and properties of this shell are as follows:

L = 94"; a = 60"; h = .1"; E = 107p.s.i. and >7= 1/3(L/a = 1.567;

a/h = 600)

For the parametric studies L/a has been changed to .1 and 5.0 and

a/h to 100 and 2000, thus allowing studies with short and long

panels as well as thick and thin ones.



In Figures 4A and 4B, the ratio of panel buckling load over

the complete cylinder buckling load, p = Nxo/ (N)cyl (obtained by

BUCLASP for Donnell type analysis), versus the panel angle, ,

is shown for the "MARSHALL" type panel. Figure 4A shows the in-

fluence of the SS type boundary conditions and Figure 4B that of

the CC type boundary conditions. It is seen from these figures

that the most effective in-plane restraint is A=O along the

straight edges of the panel resulting in higher and almost identi-

cal loads for the SS2 and SS4 as well as CC2 and CC4 boundary

conditions. However, Figure 4B reveals that the CC curves are

closer together than the SS curves in Figure 4A which indicates

that the in-plane boundary conditions are more influential for

the SS type boundary conditions. Also, the prevention of out

of plane edge rotation dominates and hence is more important than

the condition/-=0.

It can also be observed in Figure 4B that for narrow panels,

clamping of the straight edges results in higher critical loads

than for simply supported edges.

It is observed in Figure- 4B that in the case of CC boundary

conditions, all of the curves approach p=l, the complete cylinder

buckling load from above and the smallest value of cr is observed

for the CCI boundary conditions with 4cr '4 100. It is seen from

this figure, that Qcr varies in the range, 10 --cr 20 for all

of the sets of in-plane boundary conditions. In contrast,

Figure 4A shows that in the case of SS boundary conditions only

SS2 to SS4 approach the complete cylinder critical load from



above whereas the SSI boundary conditions are poorly behaved;

cut the line p=l at about 426.5, decrease to a minimum of

p-.465 for 425.0 and then increase to approach an ax1mptotic

value of p;.81 9 rather than p=l. This behavior is qualitatively

similar to that experienced for "lightly" stringer-stiffened

shells (Reference 14) with weak in-shear in-plane boundary con-

ditions. Conclusively, the poorly behaved set SSI boundary

conditions makes the CCI set much more prefferable to the ex-

perimentalist, but of course he would have to guarantee the pre-

vailing of the CC1 boundary conditions. This also calls for the

analysis of the combined effect of out of plane rotational springs

together with the different sets of in-plane boundary conditions

on the panel critical load.

The critical loads were calculated with the aid of BUCLASP

both for Donnell and Flugge type stability equations and the re-

sults are presented in Table 1 of Appendix B. It can be ob-

served in this Table that the results obtained by Flugge type

equations are close to the ones discussed above, with the follow-

ing exceptions: the CCI boundary conditions also reveal a ten-

dency to approach the critical value from below, but with a value

of p very close to p = 1, only the SS3 boundary conditions ap-

proach the value p=l from above whereas SS2, SS4 and CC2 to CC4

approach a value of p slightly above p=l and hence there is

actually no existance of cr for these sets of boundary conditions.
Q

It is also seen that for a panel with 4=360, Donnell type afa-

lysis predicts an axially multiwave buckling mode (excluding SS1)

whereas Flugge type analysis predicts half a single wave mode.



In Tabels 2 to 5 of Appendix B, the calculated results for

a/h 100; a/h = 2000, L/a = .1 and L/a = 5.0 are presented

respectively.

Plotting of the results for the "thick" panel (a/h) = 100

in a similar manner to Figures 4A and 4B show that the in-plane

boundary conditions are less effective for this type of panels -

almost no effect for the clamped boundary conditions and less

influence of the SS3 boundary conditions when compared with the

SS2 and SS4 boundary conditions. The SS1 boundary conditions

behave similary to the "MARSHALL" type panels. The discussion on

the correlation of the Donnell and Flugge buckling loads applies

also for this type of panels, except for the very narrow panels

with SS1 and CC1 boundary conditions. It is found that the

Flugge type analysis results in an in-plane Euler buckling load

not included in Donnell type analysis. -Hence the Flugge criti-

cal loads are much lower.than the Donnell ones and it can be

shown that when this mode becomes critical for a "thick" panel,

the second Flugge buckling load corresponds to the Donnell

critical load for the same panel. In the CCl case there are

no "pure" Euler modes because clamping along the straight edges

imposes the condition v=-w,,.

The results for the thin panels, a/h = 2000 - Table '3 of

Appendix B-reveal that these panels behave very similar to the

"Marshall" type panels, abrupt curves obtained for this except

for the SSI boundary conditions where an abrupt change in the

value of p is noticed for p=360. This value of p=.977 contra-

dicts the value of p=.805 obtained by the Flugge type analysis.



It is also found that for this type of panels, the SSI, SS3,

CCl and CC4 boundary conditions all approach p=l from below

with a value of p very close to unity.

Plotting the results for the short panels, L/a 
= .1

(See Table 4 of Appendix B) results in conclusions similar to

those obtained for the "MARSHALL" type panels, except for the

SS1 boundary conditions where p>l for 4=3600 and p does not

reach the minimum values obtained for the cases discuissed above.

Also, results obtained by Flugge type analysis are in better

agreement with the Donnell type results for this panel configu-

rations.

From Table 5 of Appendix B it is found that.. for long

panels, L/a = 5.0 the behavior of the panels is also similar

to that of the "MARSHALL" type panels. No correlation between

Fiugge and Donnell buckling loads has been obtained for the 50

panel and SSl boundary conditions. Calculations show that the

Flugge critical load corresponds to an in-plane Euler buckling

load, which Donnell's analysis excludes. It is also found that

the CCI curve approaches p=l from below,

It should also be noted in Tables 1 to 5 that the results

obtained with aid of BUCLASP for SS3 and CC1 boundary conditions

are in excellent agreement with those obtained by the close form

solution, Equations (4) and (9).

As stated previously the present paper is aimed at veri-

fying the existance of the panel geometry parameter K of

Equation (7). In Figures 5, p has been plotted versus K for

SS boundary conditions and in Figures 6 for the CC boundary con-



ditions. All of these figures except 5A, for the SSI boundary

conditions, indeed verify the existance of K independent of

(a/h) and the panel angle, 4. For each set of boundary conditions

a single curve is obtained. Note that the results for SS4 and

CC4 boundary conditions are not included as they coincide with

those for SS2 and SS4 boundary conditions respectively.

A similar study has been performed on the length effect and

is presented in Figures 7 and 8. These figures reveal that only

for short panels, L/a = .1, such an effect exists.

The representation of Figure 5A has not verified the exis-

tance of the unique parameter K for the SSI boundary conditions.

Hence, instead of presenting the results for this type of bound-

ary conditions as p vs. K like in Figure 5A, an attempt has been

xo
made to present the results in the form X = - vs. K on a log

pl
representation., This is shown in Figure 9 and it is observed

that by this kind of representation K does also become a single-

parameter for the SS1 boundary conditions.



REFERENCES

1. Singer, J., Meer, A., and Baruch, M., "Buckling of Cylindrical

Panels Under Lateral Pressure," The Aeronautical Journal of the

Royal Aeronautical Society, V. 73, Feb. 1969, p. 169-172.

2. Marguerre, K., "Uber Den Einfluss Der Lagerungsverhaltnisse Auf

Die Stabilitat Gedrockter Krummer Platten," Lilienthal Gesell-

shfaft Fur Luftfahrtforschung, Bericht 119, July 1939.

3. Timoshenko, S.P., and Gere, J.M., "Theory of Elastic Stability,"
Second Edition, McGraw-Hill, 1961.

4. Schapitz, E., "Festigkeitslehre Fur Den Leichtbau," 2 Aufl.,
VDI GMBH, Dusseldorf, 1963, pp. 206-221.

5. Hallauer, W.L., Jr., "Influence of Edge Conditions on the

Buckling of Axially Compressed Cylindrical Panels," M.S. Thesis,
Massachusetts Institue of Technology, 1966.

6. Sullins, R.T., Smith, G.W., and Spier, E.E., "Manual for Structural

Stability Analysis of Sandwich Plates and Shells," NASA CR-1457,
Dec. 1969.

7. Seide, P., and Weingarten, V., "Buckling of Thin-Walled Circular

Cylinders," NASA SP-8007, 1966.

8. Rehfield, L.W., and Hallauer, W.L., "Edge Restraint Effect on

Buckling of Compressed Curved Panels," AIAA Journal, Vol. 6,
No. 1, pp. 187-189, Jan., 1968.

9. Pope, G.G., "On the Axial Compression of Long, Slightly Curved

Panels," British A.R.C., R.&M., No. 3392, 1963.

10. Hoff, N.J., "The Effect of Edge Conditions on the Buckling of
Thin-Walled Circular Cylindrical Shells in Axial Compression,"
Proceedings of the Eleventh International Congressor Applied
Mechanics, Munchen, 1964, Springer Verlag 1966, pp. 326-321.

11. Hoff, N.J., and Rehfield, L.W., "Buckling of Axially Compressed

Circular Cylindrical Shells at Stresses Smaller than the Classical

Critical Value," Trans. ASME; J. Appl. Mech., Vol. 32, Series E,

No. 3, pp. 542-546, Sept. 1965.

12. Almroth, B.O., "Influence of Edge Conditions on the Stability of
Axially Compressed Cylindrical Shells," AIAA Journal, Vol. 4,
No. 1, pp. 134-140, Jan. 1966, also NASA CR-161, Feb. 1965.

13. Singer, J., "Buckling of Integrally Stiffened Cylindrical Shells,

A Review of.Experiment and Theory," Contributions to the Theory

of Aircraft Structures, Delft University Press, pp. 325-358, 1972.

14



14. Weller, T., "Further Studies on the Effect of In-plane Boundary

Conditions on the Buckling of Stiffened Cylindrical Shells",

TAF Report No. 120, Technion Research and Development Foundation,

Haifa, Israel, January 1971.



----

Wlo

r2 i- F2b T rPrHMT SJ- N A -



mx

Q)e

7



(" 'I 7 :I'( " 1 " .."

•
4 
". " :; 7"(4 ,i lr. .?11I~I

; g.. I, .... .3 ..

, :., !- -.-..
0..""

: , ; ! .r. ; ' :
, : , .: ..

j01'

'4. -.

" -, '. .." .. T/ " ' i " , :.. .' .l

4 .. .. .. ". " ' / , ' ...I .... .' .

,...

1I I-

, ... .i , ::, : ; : I
:. .. .• .~. :: .:,. , , "

• : : : , iil :!;: : :;if * ~. ; o'  .

,, , ... ..1 ,. .. .Q \\

, '' , : ;i .. ." " " ' ' " -, ' " • ' " , , ' ' -' '

'.i ' I ' ; -i '. ..., •. ..: .• .: , ..' ., ., ..'

: .( .. s •dd' ...r, .-: .. .. ......: .... .. ... ..........: : .
' . .... i. ' .;. .. , .' ...' : .l : "; "" i ~ .. .. ! : .'- " 1 ..: .' " ., ' ' -"



P SEMI-LOGARITHMIC- 3 CYCLES X 70 DIVISIONS
KEUFFEL & .ESSER CO. 1S.,. 46 5490

iii il

iii i ii ri i i ii l _2.0 IT

I-I-H+

1.75 ' "

1HH
iii

5O N I Hr-5011 4 t

I

iii il

lftll

I i h

ItH

1.;

ill,'' i I it ili li ill

11 t 1 d~z, I,,
j/j 'i- -1 4i i:i !

ilij

ii Ml l -H llii

!Ili illi it T i t ii

TI

aii Ii
it

I'/ h) - D (D L/(j 1,5--7 0 oo I3 O0



SEM- SM LOGARITHMIC. 3 CYCLES X 7U DIVISIONS
KCUFFEL & CSSER CO. ADL .. A S 46 5490

N3 w, J- c~" ia 4 j00 O

Sl 
I I I I I 

I I

II 
__ _ ~"jt I " -~ -.P 

I
T

I 
II

illil iii! !

tIt l iI
h:

Ii T

2.5 I[IItI[ P7r-

llli t 
I Ai

...... 11;
!Iii i1!I

F i it i!

2.9 0 ...... : 
iii iil

.... ... 1 1,! 1

600 1- 1 r .L 010360

1 ht ....

i ii ii i 'lll 
ii j I i I

'! i' i ,Il!,, tij i "'
...... ili!

t li! 
I Iii

....... !!!!

tii i ! iit i111ii

2. /h =j 6-0 L~I IFII i0 I:ii O0 iG "Iii II: i "ii

ii i! ii ii I !i~ l'i 

Ii

il/i II. ii. i. 4



SS-M.I-L.OGAR lmtiC 48 6210
SCYCL '' . 7 1)1 VI CiNS * cAI& U.S.A.

KFUFFCL & £ i R Co.

D - -. . .. N ., 5V

to W.i L 'O4 J L i(& 
.

r~~ Gr 
ii 

n (l
!?~

m ~~ ~~l l ; ,. ,: ljil,'".:i",...  /I lj .... j/ '!I: .. .. r l /j,, , : j : , :
... ....rC, iiiiO,' , .. . 7.0 " "i S ,I i 1ii: t1 1 iii .t1 :1: ,r t , : !:. .

li .. iiliii"I ii ' "ii ' , , ,', ; " 'I

w f ;< ' i t w
1T 11i

,I 
. iI i! / I iI : 'i!

I-i, i .ij..j.ij : "" j l i-n I iN b iI . Hil t . i i;ii t'; H ' I  , '

' . 7 5ii i i ; ii i i ' "'1 {i - : ,,i i: i i ITI ,7 ' { i'II I j j;; i i: l i iV i i [l l !! :,; .',' ji, : ! mj', i i ii ,,I , i" I i: i il
1 .75 ~ I ii 

L!tili 
i

I ' ' : , i IliI ! i ! ,'l tIi . ..

jH1  1 ! . 1li itiii, iiI : !1 ,,,r, .

I: .'t:

t i'f IV.4l; ",j I" '1 i b

Hi_:

iT I I'; .. ... ... I I ' i i:i.- I-.

it ii i R "

'F ji III ' I II~ ti;l Ii Ill; iiI' i-Iiij ! / ! ;

u N,: l ! l ': ' i +iH

1.50 i /I1j/i ii ll :

''lilt' I 1 1 lilt 1 11. *ti .Ii :. K I' iii

10 100 10 KdI,~ ~ ~ ~ ~ ~ ~~ii '.i' : iliitl] ''  ';', ,'.: ... -
I. --;- : i i r+ -,i ii '' r :!: i'i,~ .i E { iil; i .I! tmi :, ::~ t- H 1 i it ., 1 ' i ; l 1 i ,! i i , ., '

..~il . , ..li!lli !~ : . .. ' '' . . "T " ''nj i ": "!jjj

, ' " ' i i ... .. i~iiii .. iiiil i  ',  ' i' 'ili ' iI
i l; ; t: ::; :i i;ti' il i, ii ,,,l !lti117 1'' 

i '

., ,. ' i iiirir i if [ - : i il i, hi !','i i ! ;1H ' i  
ii:*,:. t ' I ~' l -

1.25 i il , tm i i

i ii:. i ? t!: 'F ,~ ::l 'ii ;!l ; i' rii ii, ,, ,,,,ir.

'itii

i ,.i '. ,, ..i i:ii ! .... ij ] ! l':"-'+l J'-

i I i , : , IIII'. I: I! Ei~niiii~i i i i 
! i i i i: ! i! ', i *

: ~ ~ ~ ~ ~ ~i ;'-!H--I'it il :! Nr ,-71 rfl: i :,

!l t l lii.% ;..l i"'i/i!,l .. .' : i i ,... .li:.' iii l !!i',, i.. . ... ., , . i ! I , i ,".:

<!,:: ;- i i,: ::'. ,l;r. :' ,,: iril
i;I'  ,i i i!, i :'in .. . i ii. I/- i. 1, .- .,, , ! ,, '1

ii I / I jliii : ; " i

1;1 '11: 
:

i v: :Tii :

it

.... /l ',,. :I:H i i! Ii[,%
... .i I i ,, ,i!mi ', !

If il i

iiii IT H

i~i~i 'I~' ii " '' "il TIi I;:

it III; li; ; r 
, iij ;iI 

I T

10 rcc 100 i 1000.~jiIlf:



SEMI-L.OGARITHMiC 46 6210

!I I. i~u .Jct i y i
l.A ~ ~ ~ ~ i C.(A0 t Q i

J!! T ,L i
:,H ,, I I':' ITT

;II 2il i

_________~I 'I!' jiT10i lpf i
10i00



SEMI L-OGARITHMIC 46 62.10 /
5 CYCLES X 0 VIVISIONU n I .U A

KLUFfEL & VStfR CO.

SN uS u. US. " 4555"5

II
-I '' 2 ~~~tT: it ~~: II- .i

2-50I~ If: H i ll
fi2.50

2.25

2.00 '

*~~~i .I .~I~

1.75

1.5o

1.25

1 1--_ i0O0
. s f

1 10 100 '1000 K



It- SMI-LOGARITHMIC 2. 1'I
Xrr'L:L & ESSR CO.

L /,a.J W

77 -F 7 O tI II ''i
I I II ___II THLI'C dO~~~'L 11;j;. i~N ~ N *

*1'1 'I' II ii' ~ rr,1  P H

Ii ~~~~~;!d ' I ;' jlij ' 'jll'

J~j $i ~-i ~' ~~*;v ~ ,, ~ :K ~K T~1 2~~': ~~: ~ 'I K I
'I 'U t~iI ~ ~ ; ~j~HI 7I~~. mn iji~im ~ it2 ~ ~ i

it~

215 10 00100



Gt EM I-LOGAR ITH MIC 46,6210
UV C. C(Lka X 70 01VISI0O j 4~li .. S

KCUFFEL & LSDIR CO.

-0 01 01r11fj i d 7•;~ .11 
I - i , .I o €

E~~~ ll; it'1 
1 lL:IlI IIIlii , iI i '

Hill ji .II1 llII j

2.50

2.25 i

III 1ii Iiu17 ITl j.
2.00 P it Ii l

1.75 I

1.50 I ii~111 I~'I ~ ~ I .. I

-t,777 .... l

"-il ill :t;tl T '

1I,2 ; . 1, :

oo -ooo I

107 100 1000 
IKt



SE --LOCAR TH MIC 4 . 6.210
5 CyY LE S X 7o tIl15 SON S DInV iI u .IONS

KturrL c £SSR CO.
. C 3 " Li = 16-7 , Oc(J_L - N ... ' ....U)r~~~ FFC " P~

S I 1 l i;I : : j 
,i

'" lii- i l I ! l 'lii'i'H I'If

i j I I ii IlTi Wilt. "

I- j"! 
J i'

,.ti. !iii; ii i.jj i!iI i ,' ,, -!; i
2 5 ........

.... 
iT TI

.i.i .t
,T' do i fl:'T

/i/i iliII i iil iii i ! iilii;i: I i.:l i :

is , 1. -- . Mr- -

[;L i ' i! j li ji j/i i

if!i

IHN iii ii 
!i irli ir i:

f:it

A~l ;1 fl

Si B i! i j / I t i, ' I l i j j

:i

T l

L-50 i P

T I T it"lFli I

NI:;j il i ..l I lll ll jiIi i I 'lii i: :I i'

P;I Ii

:ji ni i"i' il 'iiiI;

Vii;i: i!;l iiil7

rill , -Ilili i li
iiif

ii! Itll

t1~ili i " 11 I!11j':~::i

: o l iiooi iiooo <p

10 1001000



S SEMI-LOGARITHMlIC* 3 CYCLFG X ?0 )VISIONF46 5490
sCU FLL E RsLc u 46 5490

$5I ./In = ,'oO > b)o M LL... c.a a a.

! II , , !
S01 03 .... o,

''! ! ; IH ~ ~ ~ f~i Ik I ... -I,,I i, ...... '

1-t 1 1t1,. I iiI '.jl 1  t1:-H-tl-ti i-14,KI I. r i,, T7' i, 1: 'I

S . .T i t :  1

Hitl ,; ~
1 .5 i i t ! I l ,

t-t i ''., I ,iI

'_!T T;.i , F'1 I T ' "!
J !11 il j!l i~ . . . . ..

1.5

litii , l , Ii ! ! 1 11 !, i ' ' '
0. .

1 . 0 - 11 0 %IT . : : .. .. _ . . .. .. ! " "- ' : -

' , . .. ": . . ... . . . . .. . . " ! l l l i ', l,!' ! ',, l ', , t"- ,. ,., .,.! : l.l. t. ,_.1 7 it I !!- tl i~ ~l i~ '., '17 1
" -i Ilk, 11t , , !!

0 75 7 1- i. -

'°!~~~~1 i -1ii '
0 .5 0 ,,A.,, ... ...- lH

Il i i it l i :q ! ! ! f Il
10 _7Z100 36o



D* I ,:FI.. L 3E' I Co AV? I i .1C *I .Yi2 ,1- X 0I'l ltid IS 6 5 190

alt 0 0 b0 W T 
01 

i. 

IY0 IS 

ILI

_7 7 7I 
Fl 7 - I~ t. !

7 L

27117111

wii jj~ Iti 
I~ ~ fI

lii ~ ijI~I I ; Ii i~t~_L1121 IHIIB Tl

tiII j~ 
IIA !l iiP N4..

.50 11 Ith

'0i Ii

1..0003 0 JEC



!,75

SM .GA ITMC3CYCLIb X In OIV;SIONS 
4
~59

SS3, a ll 600 O, Q 1J FL L . i- w il n7,-" -

I ,L1~i7]~iI IL Th I
7

?
7

Iu I~~ IIiiI J il H1 II KIQj Il 
1 ;

itI

1.75 O0 W

I l*~.'f I~ r 1 V i f~IH ILTiF it 1 :1 l I .,

1 T ill~ I I I T~ It 1 iI

1.50T
1.00I 1 f11IJ j~ l

T it.

T I 1~ iL~flLILi.4I. I jWi 1  I~H I
0.75 - I If I- Iff ff'fi 2I .1 1 f1I II'LI

f~ IITI ff ff~~i
I~~~i If 4v I~&~ {h TfH fi

0.50 -r T1F KFT 'TI1"i

10 -0100 360bE



Sr., -LOG A.'TH TI C 3 CYCLrU X 70 DIVIO S46 5 9
i *,v KUFFEL U ESCER CO. MD IN U SA.4659

0 0 D O Ml4 JEL L 
4. U ? mt -r U;~

171- 7

2!~~ ~L. 1 -5 14 
I-1 -J- '1V1f T I F

2.2 --- 1 :1 1 K 7

1j ,I~ 71 ; II [I ' II iiII ' 
;t;;:; 

I ;i.! - L

I'~~ Ill :i; K< \IIII 1L-- I II III

2.00\'i.

1 I ~14T
tI~I~ttt~j~:tIIi~iiI i~~IiIIII7TF

IIIIL5.'IIIHIIIFLILIIIII ill"

105 4i 36I ~



i, t -- LOGAR!TIIMIC * 3 CNCLE3 X [F'.0 t r;S 1.F-
u, E :_ C, co.. .IN 46 5490

cciT ---o ON ,MEL cg...... .
-N ''- " c. U C' t' -4 I . .

r
i

'1-7---17:7 , 75 71 - ' - -11

'k'IF

I i i ; )1 F ; i " -F.. . . . I ; / l I '. : i ' ' I ''''-, 1 . , .

F,; '! i . i F i -"r "I.," ' . 1 1 '- .... !-"]TI{ 'I;' l!i; !I i . ...,.i FF, F' F; F~l  .'Ii" .I FlliP ! .!L l-. ; ' F i: " i" ,,,i. ".,, .: : "

2.50 ' ' F FIF!~,!'. I 'i'

i11E ii! Li [ , , '.
FF _ Hii",FT,,., ,'FU :'~i} F ill 11 Ji i'IF 'i ' : ' 't ' I''

F1! H i ' iF .I iIf W kF FIF

-- F *,,, ,'I',F- i . ... ii '!il *' ,' ill IF I F-F
V} L F i LiI : IF" F I r T[IIJF... FF I oF '' F ;' i'iil] ' 'Ii 2 ,4 11i' i  i i l': :

2.00 "ittf"~ r Tl KT ~~~ FLFi'

-i 1  F" I H , Il'l I F iF , I1 0 Ij I*11~ ! J -!-ke1N!l 1F7 't'i-' .1 F iF
i"f. Ti r , , . l , i : t

I. 0i L ], !,;h ,ll , ! I I I I I fi it! I FFF/ 1FFP I i / t '~t ' !I:', F ' I !. ..

1.! * F, ! Jil ll-I- ' " " "F"

1.25 FFJLj' ifli'.iV L".' I II I 1F l ii,1 I I ,,,1 I 'I
IN 'F' ''tli-"-t- ',FF.iFFFIIrJ,"FF i . F . ...

! J I, iiK ,t i/ !I Iii 1 -iIF

TiiiF, ol 1 F d!F

! , II I j'F!! I" i 4FfFFFF-iI~

io100 360oV C\-

I~~( Iir/!i hr//.



- ~ # ScMi-LOGARITH10IC. 3 CYCLES X 70 D:VISIONS 659

C" -0I oU : O -1i 0I1F ' I1

2.50 ~ I I iI

IV I'I 111 .II'II I
F + 'I~' I'F1 F,, FI Il III !I; I ~ I

Fi I F'FH.11

AI IIFt1 1
2.0 ~rj:'~ IIdF K 1 I i 11 Ii W T

I' ~ ~ ~ ~ ~ ~ ~ ~ ~~i J, F ~I I 1  ii i IIII F I
1.75 

' FF I FIIII~IIi
IIH~HIII ,II.'.'I~j~.PIF....j~ F Ii~~i' 1y11;i II I I F~iII~i~fI'.{ IIItI

1.75 K'~'7 ~ FI~i j~i iQI Ij~ If III~F1~fl Ij I 'I YJ' l'' F

II NITH ' f II F11 fW~

1.50~'i i~' IK1~i : II F I F

1.5 J 1VF I Y' i'J ; ;Fl '' I II F I K I Fjp::

i f I'II -+ + ± h
;MIIII FIIII F 2 ~ j' V1.25iIFFII _____<I K ~I

IlIFIIF 47.1F FI I II ii I

62(1 . C~T



L/ - r."7 DOWNFLL

0 20• 3 4 5 '7 S91 2 3 4 5 6 7 891 2 3 5 6 789 t 3 4 5 6 7 91 3 567891
0 1 -- -- - '[ --, I:. -: -- -= - -j - 37

if I 
-7.. 

-" "7

mo }r -- .--- ,i:.

fo O i *r:7I~ I ' 1l:;i:KlI T ~ 4 ' 1 f
'1 jiL I ii $ . f r

iL '1~ * l i J:4 1 I i' :.. I nl -

. :ii,3-i- :i-- !-: T -: .... !."'" :-jlS.... .. 
_______._ 

i 7 i i

100 'I I IKO
1f i hi io HL Iifii: *1 1 1W~

7 1 7 F I 17-II'': III 'i ii

I ;I, ,. 
,, 

.
1.,1'1

: - i....i I I: t, 7-7 - -

1 T

10 n: Ijjj ~ I-

T - t -* -T I T

* I -'-I 17, V h

I~j j

7--
7

ii; :i

-r7 F 1  7 7 7 'I I ' IJ

'l I I I 2 uo Ko 
, Oi' j

. 7

I . i
a ij .i IT

I i .1 ~ I i:, till j:;i'.;!

100 00

:'::''.' 9



APPENDIX A

A.1 BUCLASP 2

The numerical results presented in this investigation were

obtained from the BUCLASP 2 .(Buckling of Laminated Stiffened Plates)

computer program . BUCLASP 2 is applicable to stiffened prismatic

structures composed of composite flat plate, cylindrical panel,

and beam "elements". Classical simple support boundary conditions

(Eq. (3)) are assumed for the curved edges, and a linear membrane

prebuckling analysis is employed. As a consequence, the axial

buckling modes are sinusoidal and a truly one-dimensional analysis

is effected through the use of Fourier series representations for

the axial variations of the buckling displacement components, u, v,

w. Now since the structure is assumed to be prismatic, the equations

governing the buckling behavior of each plate, panel, or beam com-

ponent of the structure possess constant coefficients, and thus

"exact" stiffness equations are readily obtained for each element.

These elements are then assembled together through the use of the

direct stiffness method to yield the "exact" stiffness equation for

the entire structure. The elements referred to herein are the

structural components that occur naturally in the stiffened structure,

such as plates, panels, and beams, and they are not obtained through

a spatial discretization as is done in the finite element approach.

Buckling loads are then obtained upon specification of the boundary

conditions along the straight edges of the structure.

"Elastic Buckling Analysis for Composite Stiffened Panels and
other Structures Subjected to Biaxial Inplane Loads", by A. V.
Viswanathan, M. Tamekuni, NASA CR-2216, March 1973.
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A.2 GOVERNING EQUATIONS

Specialization of the more general equations presented in

BUCLASP 2 to the case of the unstiffened, isotropic, cylindrical

panel structure considered herein results in the following con-

ventional Donnell shell equations (see Figs. 1 and 2 for sign

conventions):

EQUILIBRIUM

N +N = 0
x,x xy,y

N +N = 0
xy,x y,y

M + 2M + M + -Y- N wx,xx xy,xy y,yy a xo ,xx

CONSTITUITIVE

Eh Eh 3

x 2 (Ex y Mx 12(- T2  (x K+ y1-v 12(l-v2 )

3
Eh . Eh 3

N Y x Y 12(i-v 2 ) (K y x

Gh3

N =xy Ghy Mxy ' xy
xy xx 12(1-v2  xy

12



Ex U, x K -x

w
c -- K -W
y ,Y a y . y

( U +v K -2wiXy xJ ,xv

Results are also presented herein b a s c-.O-C- a =r m=P1ete shell

theory that is presented in the SUCLASz- 2 c- .t± .
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Banarsi L. Agarwal
University of Cincinnati

Cincinnati, Ohio

ABSTRACT

Boron infiltration of extruded aluminum stiffeners is a selective
reinforcement concept being studied at the Langley Research Center for
specialized aerospace applications including an intertank skirt and a wing
box panel. One critical design problem associated with this concept is the
transfer of loads from end attachments, joints, or splices into the boron
reinforced stiffener. The abrupt increase in stiffness in end regions causes
high shear stresses to develop: (1) in the metallic web member connecting
the end attachment and the boron reinforcement, and (2) in the adhesive bond
between the infiltrated boron and aluminum stiffener. High shear stresses in
the end region, for example, contributed to premature failure of one previ-
ously tested boron infiltrated panel.

To reduce critically high web shear stresses, tapering is proposed so
that the axial stiffness of the boron reinforced rod is gradually increased
from zero stiffness at the free end. This is physically accomplished in a
post-infiltration machining or grinding operation. Critically high epoxy
bond shear stresses can be reduced bya grooving operation which removes boron
material but retains most of the bond surface area. A linear taper used to
reduce web shear stresses, unfortunately, increases the amplitude of bond
shear stresses, and a combination of tapering plus grooving may be necessary
to satisfy both web and bond allowable shear stress constraints,

This paper presents results of analytical and experimental studies con-
ducted to evaluate the effectiveness of end tapering, grooving, and end
fixture sculpturing to reduce critical shear stresses in boron infiltrated
extruded structures. The two configurations studied were a bi-element tension
specimen and a wing box compression panel.
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INTRODUCTION

NASA has studied, through contract (Ref. 1) and in-house efforts, the
selective reinforcement concept in which collimated boron and epoxy resin are
infiltrated into cylindrical voids in extruded aluminum alloy stiffeners (see
typical stiffener cross sections in Fig. 1). The primary advantage of infil-
tration compared with bonding high modulus plies directly onto the surface of
a metallic stiffener is the protection provided the boron/epoxy by the alumi-
num annulus. To evaluate the infiltrated stiffener concept numerous strength
and crippling specimens have been tested (Ref. 1) and several large compo-
nents are in various stages of being built and tested. Aluminum stiffeners
have been successfully extruded in 6005 and 7075 series alloys. Cross-
sectional configutations have included hats, channels, and "T" and "Y"
sections.

It is necessary for most practical structural applications of the boron/
epoxy infiltrated stiffener concept to incorporate a metallic load introduc-
tion end fixture. Loads are carried totally by metal at the end of the.
stiffener and are transferred into the boron through shear in the metallic
web of the fixture and stiffener. The maximum length which boron/epoxy may
be infiltrated into the annulus of a stiffener has not been established; how-
ever, some applications may employ splice joints which also require loads to
be transferred into the boron from an all-metal section. Since the boron
typically carries 50 percent or more of the total load, attention must be
given the design of the load introduction fixture to prevent premature fail..
ure and to minimize the fixture weight.

The present paper summarizes a study of the load transfer problem. The
study was prompted by evidence in early test specimens of premature failure
in the load introduction region. Recent analytical studies reveal unaccept-
ably high shear strsses in the load introduction region of a proposed wing
box panel application. One way found to reduce high shear stresses is to
reduce the axial stiffness of the boron/epoxy infiltrated aluminum annulus
near the stiffener free end. Boron/epoxy and aluminum material are removed
from the stiffener either in a tapered grinding or a grooving operation.

This paper reviews the performance of infiltrated components, presents
the philosophy for tapering and grooving to reduce end region shear stresses,

L-9438



describes an analytical and experimental investigation of a double annulus.
tension specimen'to assess the merits of tapering, and finally describes how
tapering reduces the shear stresses to acceptable magnitudes in the wing box
panel design.

SYMBOLS

L Length

Nx  Axial load per unit width

x Axial dimension

ax Axial stress in boron

ex Maximum axial stress in boron
max

a Aluminum web shear stressxy

a Maximum aluminum web shear stress
XYmax

T Epoxy bond shear stress
xy

T Maximum epoxy bond shear stress
xyma

x

PERFORMANCE OF INFILTRATED COMPONENTS

Photographs of several boron infiltrated stiffened structural components
are presented in Figure 1. The cylindrical interstage tank specimen shown in
Figure l(a) is 1.96 m (77 in.) long and has a diameter of 3.91 m (154 in.).
External longitudinal stiffeners are hat sections with boron infiltrated into
all four corners. Internal ring stiffeners have "H" shaped cross sections
with boron located only in the top half of the stiffener. See inserts in
Figure l(a). The structure is moderately loaded with an axial compressive
load equal to 823 kN/m (4700 lbf/in.). This'shell struictural specimen has
been recently tested successfully in the 3.39-MmN (30-million in.-lb) bending
test fixture in the Structures Laboratory at Langley Research Center. The
DC-10 floor strut (Fig. 9(b)) is being evaluated under a joint AVCO
Corporation/McDonnell-Douglas Corporation program and is reported upon in
another paper in these proceedings.

The two compression panels shown in Figures l(c) and 1(d) are constructed
with boron infiltrated "Y" stiffeners. These panels weigh 1.18 kg/m2

(2.6 lbm/ft2 ) and are designed to carry an axial load of 1.261 MN/m
(7200 lbf/in.). The panels are 1.22 m (48 in.) long and 0.86 m (34 in.) wide
and differ only in the end fixture design. The compression panel shown in
Figure l(c) has massive steel end fixtures bolted to the skin of the panel
and to the web of the "Y" stiffners. Loads are transferred into the



boron/epoxy through shear flow in the metallic 
stiffener web. A knife-edge

end support simulates a simple support end boundary 
condition. The specimen

was tested at Langley Research Center and failed at approximately 
65 percent

of the design ultimate lcad. Premature failure was caused in part by high

shear stresses in the load introduction region 
of the stiffeners.

A closeup view of the shear failure in the end 
region is shown in the

photograph in Figure 2. Two characteristic types of shear failures can be

seen in the photograph. First, the aluminum web of one stiffener has failed

in shear as evidenced by the physical separation 
of the top of the stiffner

from the web (a coin has been slipped between 
the two separated parts). Sec-

ond, the epoxy bond between the boron and the 
aluminum has failed on another

stiffener allowing the boron rod to displace 
relative to the end of the

aluminum extrusion.

The end fixture for the second compression panel 
is designed to per.it

loads to be transferred directly into the boron/epoxy 
(Fig. 1(d)). This flat-

end test condition permits assessment of the 
load-carrying capability of the

panel without the complications imposed 
by the load transfer problem in the

stiffeners. This specimen was also tested at Langley and failed 
in an Euler

mode at 91 percent of the design ultimate load. 
No shear type failures in

stiffeners were observed.

The latest effort in boron infiltrated structures 
is a wing box cover

panel which is currently in the late stages of 
design. The structure is

designed to be heavily loaded (axial loading equal 4.90 MN/m (28,000 lbf/in.),

and has a sculptured load introduction fixture 
representative of that requirei

for a joint in the wing box application. The assembly process for this struc-

ture involves Tungsten Inert Gas (TIG) welding 
a "T" stiffener to the web of

an integrally machined aluminum plank. Shear stresses in the web weld region

are especially important because the weld process 
reduces the allowable

strength of the 2219 aluminum alloy. Initial analytical studies of the wing

box load introduction region indicated shear stress 
magnitudes in the web

did exceed the ultimate shear strength. The end tapering approach for

reducing web shear stresses was applied to this 
configuration and results are

reported in subsequent sections.

END TAPER CONCEPT DESCIIPTION

The shear stress problem associated with the transfer 
of loads into the

concentrated mass of boron/epoxy in an infiltrated stiffener is 
basically a

twofold problem. First, the abrupt increase in stiffness in the end region

causes high shear stresses to develop in the metallic web 
member connecting

the end fixture and the infiltrated boron reinforcement. 
Second, high shear

stresses can develop in the epoxy bond interface between 
the aluminum. and the

boron/epoxy materials.

Drawings in Figure 3 show schematically (with distortions greatly 
exag-

gerated) how boron stiffener end tapering 
reduces the shear stress magnitude

in the connecting metallic web member. When the encapsulated boron is



terminated by a square cut, loads carried by the skin are transferred into

the boron over a .very short length near the end region, thereby causing high

shear stresses to develop in the aluminum web. Straight lines drawn on the

web of the deformed structure represent the displaced position of lines which

on the undeformed structure would originally be parallel and uniformly spaced.

Large rotations of these lines between undeformed and loaded conditions

represent high shear stress regions. The shear stresses are largest near the

free end and decrease to zero at a point along the stiffener axis where the
load redistribution is complete,

In the tapered approach, illustrated at the bottom of Figure 3, the
stiffness of the encapsulated boron/epoxy rod is gradually increased from

zero at the free end to the nominal value at the termination of the taper.

This arrangement results in nearly uniform shear stresses in the web end

region (represented by rotated nearly parallel lines in the deformed struc-

ture), and the magnitude of stress for the tapered structure is less th,.n the

maximum shear stress in the web of the square-cut terminated stiffener. This

gradual buildup of stiffness is physically implemented by machining or grind-
ing a taper in the boron infiltrated rod to remove material for a few centi-

meters near the end. In the present effort a linear taper is employed. A

typical example of a linear taper is shown on the top of the specimen shown

in the photograph in Figure 4. The tapering approach presented here for the

infiltrated boron concept is basically analogous to the approach proposed by

deBruyne (Ref. 2) in 1944 for bonded or glued lap joints. deBruyne found that

tapering the two ends of a lap joint doubles the failure load compared to
nontapered joints.

As previously mentioned, the shear stress in the epoxy bond interface

may also be critical. Critically high bond shear stresses can be reduced by
a grooving operation such as that shown on the bottom of the specimen in the

photograph in Figure 4. Grooving reduces the rate at which load is trans-
ferred into the boron while retaining most of the bond surface area.

A linear taper which is effective in reducing web shear stresses also

(unfortunately) increases the bond shear stress. This increase occurs since
stress is defined as force per unit area and the bond area lost through taper-

ing is reduced by a greater factor than the corresponding rate at which load
is transferred through the bond into the boron. For structural applications
in which both web and bond shear stresses are critically high, one possible
solution is to machine a linear taper followed by a grooving operation which
removes boron but leaves the bond surface area intact.

TENSION SPECIMEN

Specimen and Experiment Description

A tension specimen used to study the load transfer problem is shown in
the photographs of Figure 5. The specimen consisted of a 6005-T5 aluminum



bi-element extrusion which had an overall length of 48.3 cm (19 in.). The
web was removed for 10.2 cm (4 in.) in the center of the specimen resulting

in a load introduction length of 19.1 cm (7.5 in.) at either end. This cut-

out permits loads introduced at the end tabs to be fully transferred into the

boron reinforced stiffener in the specimen center. Each aluminu annulus was

filled with 857, 0.14 mm (5.6 mil) diameter boron filaments and subsequently
infiltrated with a room-temperature curing epoxy resin. Steel load introduc-

tion straps 2.54 mm (0.1 in.) thick were bonded and bolted to the web of the

test specimen in a symmetrical double lap configuration. The cross section

of the two boron infiltrated stiffeners was reduced at one end of the specimen

by grinding a linear taper 9.54 cm (3.75 in.) long. The boron at the other

end of the specimen was terminated by a transverse square cut. This configu-
ration permitted comparison on the same specimen of the load transfer response
for a tapered and nontapered end.

Geometric constraints make it impractical to measure experimentally the
shear strains in the aluminum web and epoxy bond. Instead, axial strains
were measured on the surface of the boron stiffened aluminum annulus using

38 strain gages positioned along the specimen length. Comparison was made

between experimental and analytical results and the analysis was then used

to determine shear stresses in the aluminum web and epoxy bond. Bond shear
stresses were determined by calculating the rate at which loads are trans-

ferred into the boron and dividing by the circumferential bond dimension. It
was assumed that the bond shear stress is uniform around the circumference.
Tests were performed using a 445-kN (100,000-1b) capacity hydraulic testing
machine and strains were recorded using an automatic data acquisition system.

NASTRAN Model

The finite-element computer program NASTRAN (NAsa STRuctural ANalysis)
was used to analyze the shear stress load introduction problem. Loads which
stress the boron. to its ultimate strength may result in stress concentrations
which produce plasticity effects in the aluminum. In the current study, only
a linear analysis was conducted; however, plasticity effects usually reduce
peak stresses so that an elastic analysis is conservative. The study was
restricted to mechanical loads; stresses due to potential thermal expansion
differences between the aluminum and boron (due to curing or temperature
effects) were not considered.

A schematic of the finite-element model used to represent the boron
reinforced bi-element specimen is shown in Figure 6. Rectangular constant
strain elastic membrane plate elements were used to represent the aluminum,
boron, and steel components. Although the full model is shown in Figure 6,
symmetry about three axes was used to reduce the computational model size.
A total of 264 plate elements and 191 grid points were used in the computa-
tional model. No attempt was made to represent details of the aluminum
annular cross-section geometry. The aluminum and boron materials were assumed
to have moduli of elasticity of 68.9 GPa (10 million psi) and 206.8 GPa

(30 million psi), respectively. A uniform tension load was imposed on the
steel straps at the specimen ends.



Analytical and Experimental Results

Comparison of analytical and experimental results for the axial stress

in the boron rod of the bi-element tension specimen is presented in Figure 7.
Results are presented for both tapered and nontapered cases. Experimental

results shown were calculated using strain-gage data by assuming the boron and

aluminum strains are identical. The stress magnitude has been normalized by

the maximum stress amplitude (ax = 800 MPa (116,000 psi)) which occurs at
max

the center of the specimen where the load is completely carried by the infil-

trated boron circular stiffener. Results are presented for the complete

specimen to establish correlation between experiment and theory. Shear stress

studies, however, are focused on the end region (i.e., x/L < 0.5) since this

region is representative of the load introduction problem.

Correlation between experimental and analytical results is reasonably

good. The effect of tapering in the end region is to increase the stress in

the boron over the nontapered result (Fig. 7). This increase, as explained

earlier, occurs since the bond area lost through tapering is reduced by a

greater factor than the corresponding rate at which load is transferred

through the bond into the boron. The total force in the boron and the rate

at which load is transferred into the boron, however, is reduced for the

tapered case. This situation results in a reduction in the maximum shear

stress in the aluminum web for the tapered end of approximately 60 percent

as can be seen in the NASTRAN results presented in Figure 8. When the boron

rod at the center of the test soecimen is stressed to a = 1.38 GPa
x

(200,000 psi), the maximum web shear stress for the nontapered case is

a = 128 MPa (18,500 psi). The ultimate shear stress of 6005 aluminum is
xymax

138 MPa (20,000 psi) (Ref. 3) and the web shear stress, therefore, is not

critical at this load even for the nontapered case.

The preceding example demonstrates the effectiveness of boron stiffener

tapering to reduce high web shear stress in the end region of boron infil-

trated structures. A comparison of the epoxy bond shear stress in the end

region for the tapered and nontapered tension specimen is presented in Fig-

ure 9. As indicated previously, the net effect of tapering is to increase

the maximum bond shear stress. In this example with the boron stressed at

ax = 1.38 GPa (200,000 psi) in the center test section, the tapered erd maxi-

mum bond shear stress is 7 = 19.3 MPa (2800 psi). This value is
max

approximately 100 percent higher than the maximum bond shear stress for the

nontapered end. The recommended allowable shear stress for the epoxy bond

used in these specimens is approximately. 15.2 MPa (2200 psi). Tests conducted

by the AVCO Corporation, however, indicate shear stress concentrations as high

as 41.4 MPa (6000 psi) can be carried by the bond.

The analytical assumption of constant shear stress in the bond is non-

conservative. The maximum bond shear stress near the intersection of the

stiffener with the web is greater than the average bond shear stress and is

reduced in magnitude from that point around the bond circumference. If a



more refined analysis were conducted which included local bond shear stress
gradients, the maximum bond shear stress would increase by a greater amount
for the nontapered than the tapered case and, in effect, would decrease the
relative disadvantage shown for a linear taper.

WING BOX PANEL

Structure Description

The wing box panel structure consists of boron reinforced extruded
stiffeners which are TIG welded to an integrally machined aluminum plank.
The end fixture is also machined integrally with the wing plank and is
sculptured to permit the gradual transfer of loads into the boron reinforced
stiffener. The concept and weld location is shown schematically in Figure 10.
The weld is made by joining two extrusion elements to the web of the inte-
grally machined plank to form a "T" stiffener. The compression panel of the
wing box is designed to carry an ultimate axial compression load of 4.90 MN/m
(28,000 lbf/in.). Constraints imposed by welding, heavy loading, and a
requirement to show a weight savings over an all-metal design combine to make
the load introduction an important design problem. The weld area is critical
since TIG welding reduces the allowable shear stress for the 2219 aluminum
material used in the wing plank from 262 MPa (38,000 psi) to about 138 MPa
(20,000 psi).

Analyses of the wing box panel preliminary design showed the shear stress
in the vertical web weld region to be substantially greater than 138 .Ta
(20,000 psi) for a boron reinforced stiffener terminated by a square cut. End
region tapering was studied to determine the capability of this approach to
solve the problem.

NASTRAN Model

Drawings of the NASTRAN model used to represent the load introduction
region of a typical wing box stiffener are presented in Figure 11. Selected
cross sections show the sculpturing of the load introduction fixture. Sym-
metry about the mJdplane of the "T" stiffener was utilized to reduce the
computational model size. Three-dimensional constant strain solid elements
were used to model the thick end fixture and -skin components. A total of
727 constant strain plate and solid elements were used in the computational
model to represent the vertical and horizontal webs and 36 bar elements having
axial stiffness only were used to represent the boron infiltrated circular
stiffener.

The wing box compression test panel is 2.44 m (96 in. ) long, 0.91 m
(36 in.) wide and has rib supports every 0.61 m (24 in.). Although the load
introduction model studied was only 0.49 m (19.4 in.) long, analyses indicate
that most of the load transfer takes place within this length. In the analy-
sis, loads were assumed to be applied by imposing a uniform displacement to
the end of the load introduction fixture and restraining the axial

01



displacements at the other end of the model. The aluminum and boron were

assumed to have moduli of elasticity of 68.9 GPa (10 million psi) and 241 GPa

(35 million psi), respectively.

NASTRAN Results

The effectiveness of end tapering to reduce the shear stress in the

vertical web weld region for the wing box compression panel loaded with an

axial load of 4.90 MN/m (28,000 lb/in.) is presented in Figure 12. The maxi-

mum shear stress a for the nontapered case of 207 MPa (30,000 psi) was
ma x

used to normalize the ordinate and the analytical model length L of 49.3 cm

(19.4 in.) was used to normalize the abscissa. The shear stress for the non-

tapered case exceeds the 138 MPa (20,000 psi) allowable shear stress by

50 percent. Linear tapers of 0.171 L ((8.41 cm (3.31 in.)) and 0.325 L

(16.0 cm (6.31 in.)) reduce the maximum shear stress in the weld region to

0.9 a (186 MPa (27,000 psi)) and 0.67 (138 MPa (20,000 psi)),
Xymax  max

respectively. The 0.325 L taper permits loads to be transferred into the

boron without exceeding the linear elastic shear stress allowable. The peak

shear stress near the end for the nontapered case has been replaced for the

0.325 L taper by a nearly uniform stress for the first 0.21 L (10.2 cm

(4 in.)) of the stiffener.

The epoxy bond shear stress for the 0.325 L taper and nontapered cases

for the wing box panel loaded with an axial compressive load of 4.90 MN/m
(28,000 lb/in.) is presented in Figure 13. The maximum shear stress for the

0.325 L linearly tapered case is 29.6 MPa (4300 psi) and this value has been

used as 7 The recommended allowable bond shear stress value of

XYma x

15.2 MPa (2200 psi) (0.51 7 ) is not exceeded for the nontapered case.
xymax

The 0.325 L taper increased the bond shear stress compared to the nontapered

result by approximately 53 percent and the value exceeds the recommended

allowable by approximately 50 percent.

The effectiveness of a combination taper and groove to reduce the bond

shear stress was studied analytically by adding a groove to the 0.325 L

taper case. The groove was assumed to be rectangular in cross section and

3.8 mm (0.15 in.) wide. The groove was begun at a distance 0.077 L (3.81 cm

(1.5 in.)) from the stiffener end and continued parallel to the stiffener

over a distance of 0.103 L (5.1 cm (2 in.)). The groove slope from that

point was such that the bottom of the groove intersected the termination point

of the taper. The reduction in bond shear stress which results is presented

in Figure 13. A substantial reduction occurs in the region of the taper.

The groove cross section was insufficient, however, to reduce the bond shear

stress to the 15.2 MPa (2200 psi) recommended allowable. To be fully effec-

tive, the taper should be initiated around 0.036 L (1.8 cm (0.7 in.)) from

the stiffener end near the point where the tapered boron begins and additional

boron should be removed.



The small change in stiffness provided by the groove modifies only

slightly the shear stress distribution in the aluminum web weld region. This

result can be seen in the comparison of tapered and tapered plus grooved web

shear stress distributions plotted in Figure 12.

DESIGN IMPLICATIONS

Most practical structural applications of boron infiltrated stiffener

selective reinforcement concepts require an end fitting in which loads are

transferred through shear from an all-metal joint into a cross section con-

taining boron reinforcement. High web shear stresses can be reduced by taper-

ing the boron infiltrated stiffener cross section and high bond shear stresses

can be reduced by grooving operation which removes boron but retains most of

the bond surface area. A load introduction fixture design-which meets both

web and bond allowable shear stress requirements may require both tapeiing

and grooving. Each structural application has unique design constraints and

determination of a satisfactory load introduction fixture design may require

several iterations. Note, however, that load introduction shear stress prob-

lems can be solved by removing rather than adding material.

The web which connects the skin to the boron reinforced annulus must be

sufficiently thick (1) to carry the shear loads imposed in the load intro-

duction region, and (2) to carry axial loads without crippling locally. For

the wing box panel, the thickness required to meet shear stress requirements

exceeded the crippling requirement. Constraints imposed by TIG welding

restricted thickening the web in the end region and additionally reduced the

allowable shear stress in this critical section. Alternate assembly tech-

niques such as riveting also present design problems, especially for heavily

loaded structural applications. This illustration emphasizes that the com-

bined effect must be considered when making design decisions.

The feasibility of both the taper and groove machining operations has

been successfully demonstrated in the machine shop. Grinding a linear taper

is a simple operation. Cutting a groove in a tapered stiffener requires

greater precision since it is necessary to center the cut in order to retain

the desired quantity of boron and leave the bond interface surfface undamaged.

Accessibility to the boron stiffener free end must be provided whe'n "tight
fit" geometric constraints are imposed such a3 in the wing box panel. load
introduction fixture.

Shear stress problems can also develop in the end region from therral

expansion incompatibility between the boron and aluminum. Typically, the

contributions of mechanical and thermal loads superpose to amplify the prob-

lem. The removal of web material in the vicinity of the free end iE suggested

in Reference 4 as a technique for separating the maximum bond shear stress

amplitudes for these two types of loading. Web removal transfers the maximum

bond shear stresses caused by mechanical loading away from the free end.

Based on bond shear stress calculations (Ref. 4), the maximum diameter

which can be used for a boron infiltrated stiffener subjected to a 222 K

(4000 F) temperature differential has been determined to be 0.71 cm (0.28 in.).



For a room-temperature cured epoxy such as used in the current investigation,
typical thermal excursions would be less than 222 K (4000 F). Only limited
work has been done on thermal cycling for the boron infiltrated stiffener
concept, and more study is needed.

CONCLUSIONS

An analytical and experimental study has been made of the load transfer
mechanics of structures stiffened by boron infiltrated extrusions where loads
must be transferred through shear in an aluminum web from a load introduction
fixture into a boron infiltrated stiffener. It was found that critically
high shear stresses in the aluminum web can develop in the load introduction
region, especially for heavily loaded structures. Removing material to
reduce the axial stiffness of the boron infiltrated aluminum annulus for
several inches near the stiffener end using a linear taper was found effective
in reducing the -aluminum web shear stress. Reductions in the web maximum
shear stress of 60 and 30 percent, respectively, were demonstrated for a ten-
sion test specimen and projected for a wing box panel. Analytical and experi-
mental results for the axial stress in the boron for the tension specimen
showed reasonably good agreement. A 16 .0-cm (6.31-in.) long linear taper was
sufficient to allow critically high shear stresses in the aluminum web weld
region of the wing box panel to be reduced to an acceptable value.

Critically high shear stress in the bond between the boron/epoxy and the
aluminum can be reduced by grooving a cut in the circular stiffener. Grooving
reduces the shear stress in the bond by reducing the magnitude of force which
must be transferred across the bond while maintaining a high percent of
effective bond area. Although a linear taper reduces shear stress concentra-
tions in the aluminum web, it increases the shear stress magnitude in the
epoxy bond joining the boron to the aluminum annulus. The simultaneous
reduction of web and bond shear stress magnitudes can be accomplished by a
combination of tapering and grooving.
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(a) Nontapered.

TAPER LENGTH

(b) Linear taper.

Figure 3. Tapering of boron infiltrated stiffener to reduce critical web shear stresses.



1AOOU. '':' ----:'':: :p-.:: .<. -

33 3 ii:::;::r iii

4JdV :I3 I1 4...

Vx 33 -'( 3- 4..l:: 4343

34

:::-~~~~~ ~~~ ..- e:--Ri rli~ 
Y 

-~-- a:i~:-ii I::i- : l _ _: -



00T N104110Ap4S4TU u.~o

N~fII'7,

33 LI

WO 90
>III wo

WT)L



TAPER
LENGTH

LA B

SECT!ON AA SECTION BB

BORONBORON

ALUMINUM ALUMI NUM

STEEL

Figure 6. NASTRAN model of bi-element tension specimen.
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Figure 7. Comparison of axial stress in boron of bi-element tension specimen for nontapered

and linearly tapered end regions. L = 24.15 cm (9.5 in.). x = 800 MPa (116,000 psi).
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Figure 8. Comparison of calculated shear stress in aluminum web adjacent to stiffener of
bi-element tension specimen for tapered and nontapered end regions. L = 24.13 cm (9.5 in.).
a = 128 M'a (18,500 psi) when arx in boron at specimen center equal 1.58 GPa
ymax

(200,000 psi).
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Figure 9. Comparison of calculated shear stress in epoxy bond of bi-element tension 
specimen

for tapered and nontapered end regions. L = 24.13 cm (9.5 in.). TX = 19.3 MPa (2800 psi)
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(a) Wing box compression panel.

Figure 10. Wing box integrally machined compression panel with TIG welded "T" boron
infiltrated stiffeners.
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(b) Typical stiffener.

Figure 10. Concluded.
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(a) Assembled half model.

Figure 11. NASTRAN model of sculptured load introduction region of wing
box compression panel typical stiffener.
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Figure 11. Concluded.
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Figure 12. Comparison of calculated shear stress in wing box web weld 
region for tapered and

nontapered stiffener end regions. L = 49.3 cm (19.4 in.). Yma = 207 MPa (30,000 psi)

when specimen loaded with axial load of 4.90 MN/m (28,000 lbf/in.).
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Figure 13. Comparison of shear stress in epoxy bond of 
wing box for tapered and nontapered

stiffener end regions. L = 49.3 cm (19.4 in. ). T a 29.6 MPa (4300 psi) when specimen

loaded with axial load of 4.90 MN/m (28,000 lbf/in. ).




