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SUMMARY

- A substructuring technique, originally developed for the effi-
cient reanalysis of structures, is incorporated into the methodology
associated with the plastic analysis of structures. An existing
finite-element computer program that accounts for elastic-plastic
material behavior under cyclic loading was modified to account for
changing kinematic constraint conditions = crack growth and inter-
mittent contact of crack surfaces in two dimensional regions. Ap-
plication of the analysis is presented for a problem of a center-
crack panel to demonstrate the efficiency and accuracy of the
technique. '
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1. INTRODUCTION

Fatigue crack propagation, until recently, was generally as-
sumed to be directly related to the linear elastic stress-intensity
factor range during cyclic loading. Implicit in this concept were
the'assumptions ‘that only .the tensile portion of the load cycle was
effective in growing the crack and that crack closure occurs only
at zero load. Elber (Refs. 1 and 2) has shown experimentally that
fatigue cracks close at positive stresses during constant amplitude
stress cycling. He has also indicated that fatigue-crack closure
may be a significant factor in causing the stress-interaction ef-
fects (crack growth delay or acceleration) on crack growth under
general cyclic loading. The crack closure phenomenon, associated
with an extending crack, is believed to be caused by residual
plastic deformations remaining in the wake 'of an advancing crack
tip. A reasonable analytic model for crack closure and for the.
extending crack problem must possess the capability of accounting
for changing boundary conditions (crack growth and intermittent
contact of the crack surfaces) during a specified load history.
These changing boundary conditions must be incorporated into the
equatlons that govern the nonllnear load-deformatlon behav1or

" The present report is concerned w1th the modlflcatlon of an
existing nonlinear finite element program (Ref. 3) to account for
crack extension- and crack closure and the’ appllcatlon of this pro-
. gram to the study of fatlgue-crack closure. "The modification of
the existing finite element program consists of ‘incorporating a.
method for the eff1c1ent reanalysis of structures (Refs. 4 and 5)
that undergo changes in material propertles or restraint condi-
tions. The procedure has the advantage of not requiring the re-
formulation of the stlffness 1nf1uence coeff1c1ents of the orlgl-
nal, unmodlfled structure o :

The’technique to treat plasticity in the FAST (Fracture

Analysis of STructires) program-—is—based-on-the.-initial_strain =
concept’ where an: effective plastic load vector is introduced, in
addition to' the applied mechanical load, to account for the devel-
opment of plastic deformation. Thus, the procedure used for the
reanalysis of structures with variable restraint conditions is
extended to include the effects of p1ast1c1ty and has been incor-
porated into’ the f1na1 program . >



Previous Studies

The problem of an extending crack has been previously treated
within the framework of a nonlinear finite element analysis. The
procedure as described in Refs. 6 and 7 involves establishing an
elastic-plastic state including the nodal forces (reactive forces)
that hold together an element node directly ahead of a crack tip.
An equal and opposite nodal force is then applied in increments to
the crack tip node until this restraining force is completely re-
moved. The node is then assumed to be free and displaces an
amount representing the crack opening displacement. In Ref. 6,
the crack tip is assumed to advance to a new position, correspond-
ing to the adjacent node of the previous location of the crack
tip. After a "step-of-growth," as described in Ref. 7, the finite
- element mesh is shifted to a new position so that the new crack
tip is in the same position as the previous.one. Details asso-
ciated with this shifting procedure, which simulates an infinite
process, are not given. However, the following statement that
appears in Ref. 6 should be noted: "In practice, the cumulative
numerical errors involved in these incremental loadings become
intolerable after a few small increments of crack extension.” For
reasons discussed in Section 2, the procedure used in Refs. 6 and’
7 appears to be 1ncomp1ete and should, consequently, lead to
numerlcal d1ff1cu1t1es. '

‘Another approach (Ref 8),° involves the use of a layer of

varlable-materlal" elements ‘beneath an axis of symmetry along
Whlch a crack can extend. These special elements take on soft,
~"jell-type" stiffness propertles along the open (and extended)

crack 1ength ‘and becomé relatlvely stiff, to simulate a rigid con-
straint, during crack closure. This. model though physically sat-
lsfylng, requires, at best a partial reformulation. of the assem-
bled stlffness matrix, and at worst (if the program lS kL con-
structed) a complete reformulation and reanalySLS

Another approach 1nvolves an iterative solution to the gov-
ernlng equations that are determined for an a priori set of
kinematic boundary conditions. The appeal of this approach is
that the stiffness influence coefficient matrix remains unchanged.
Thus, a solution technique such as the Cholesky triangularization
of a positive definite, symmetric matrix need be performed only
once, leading to a potentially rapid iterative process. However,
application of- this technique to simple yet representative crack
extension problems reveals this procedure to be nonconvergent. It
is our opinion that the process. may be made convergent by the in-
troductlon of a relaxatlon factor in the 1terat1ve process.»'Slnce
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the form of this factor is arbitrary and will, in general, vary
with each problem, and within a problem for various combinations
of separation and contact, the iterative approach was abandoned.
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2. METHOD OF ANALYSIS

The approach selected for the plastic analysis of structures,
as available in the FAST program, incorporates the initial strain
concept within the framework of the finite element method. In
this technique the load-deflection relations are written to in-
clude the effects of initial (or thermal) strains. These initial
strains are then interpreted as plastic strains and the problem is
solved by using the load-deflection-initial strain relations with
subsidiary constitutive relations for an elastic-plastic engineer-
ing material. An extensive presentation of the governing matrix
equations and of the nonlinear constitutive relations is presented
in Refs. 3, 9, and 10 and is only briefly reviewed here in the
context of the modlflcatlons required to treat intermittent con-
tact and separatlon _ -

" Governing Equations

The matrix equation governing the response of a structure to

some arbitrary history of-lOading-can be written (as in Ref. 10);

e,[K]{u}‘/ {P} JQ} + {R} ;~  %. - :15?3(1)

Qhere
- 'J'[K] = the conventional elastic stltfness influence:
- 4,coeff1c1ents :
'[u} =:genera11zed nodai displacements
'tP} ;-generalized nodal forces
"[Q}'=‘ effective plastic load that accounts for

. the presence and development of plastlc
stralns N

an equilibrium imbalance that may exist as
.a result of the nature of the solution pro-
cedure (Ref 10)

R

If we decompose the total strains, (e}, into elastic (ee}
and plastic components f{eP} as o ,



Bedel e

then for small deformations (no geometric nonlinearities), the

“stiffness matrix [K] in Eq. (1) is the assemblage of the ele-
ment stiffness matrices (see Ref. 10), and the effectlve plastic

load vector (Q} is :

ST C I

s

where N 1is the number of finite elements in the plastic range,
and [k] 1is the initial strain matrix of the individual ele-
ments. Note that in the FAST program the plastlc strains are
assumed to be constant quantities (at centroids of elements).

If a distribution of plastic strain within an element is de-
sired, its assumed functlonal form must be conSLdered in deter-
mining [k] - :

SolutioniProcedure'for Uhmddified Structure =

The algorithm for the incremental procedure used to solve
for stresses, stralns, and dlsplacements for a typical load
history follows: :

1) Determine the generalized displacements, ({u]
from the solution of Eq. (1) '

2) Use the solution from step 1 and appropriate
- strain-~displacements relations ‘to determine
 the total strains, {e}, and the increment
of total strain f{Ae} for the incrément of
load, (Ap} ' '

3) Compute the increments of stress {Ad]_ and
the increment of plastic strain {AeP} from
the total strain increment {Ae)

" 4) Determine an updated plastic load vector {Q}
from Eq (3) and mechanical load ({p}k

(p)k- + {ap])

5) Rgpe4t>steps_lfthrough;4



From the above it is apparent that at load step k the
plastic strains and hence the effective plastic load vector
cannot be determined without an a priori knowledge of the
displacement. In the method chosen for use, the effective
plastic load is taken to be equal to that computed in the pre-
ceding load increment and is thus taken as a known quantity in
the equation.

.The final form'of_Eqﬂl(l) is

e

“"'where k and k-1 are the current and preceding load steps,
respectively. The magnitude of the vector, of equilibrium im-
balance loads, {R} 1is a result of the anremental lineariza-
tion of the nonlinear problem and the error associated with
using an estimated value of {Q}. The effect of the lineariza-
tion error is reduced by u31ng sufficiently small load steps,
Whereas the latter error is accounted for by settlng

where (Ae } 1is the 1ncrement of plastlc strain determlned in
the preceding step. '

Solutlon Procedure for Variable Restralnt Condltlons

It 1s desired to determlne a set of- modlfled dlsplacements
{u 3} = {u + 5u) due to a change in stiffness from [K] to
K + 6K] This modification may result from the separation
(crack extension) or coalescing of two nodes to 51mulate con-
tact Equatlon (4) now becomes
(K + aK]{u*} - {F} | (5)

where

Beflfieg o



The modified displacement vector '[u*) can, of course, be
found by a complete reanalysis (including reassembly) using the
modified stiffness influence coefficients. For localized
changes (under consideration here) this would be most uneconomi-
cal :

The procedure chosen for 1mplementat10n orlglnally appeared
in Refs. 4 and 5 and resembles the substructuring approach pre-
sented in Ref. 11. This technique, modified to treat the intro-
duction of additional degrees of freedom, is incorporated into
the FAST program, and is briefly described as follows: '

Consider Eq. (5) to be partitioned into

(K., 'K, ] (u, F,

' ll: 1e l_ 1 . .
I P S R - S

K. K u F

Tei]

‘ee e . e

where using the notation of Ref. 5, the subscripts i refer to
the unmodified degrees of freedom and e to those that are to
be modified; i.e.,. originally restrained against motion and now
allowed to dlsplace - Equation (7) may be expandedzlhto the two
eQuatlons ' D - a - . : '

W) f) e

i

‘ If we ihitially,consider [ue] = 0, then we can, from
Eq. (8a), solve for a quantity (Tj}, as

71 < k. 17L) o |
)u. ﬁKii F f ; ) . ,n.(9)
By means of the Cholesky trlangularlzatlon (see Appendlx C) of

a positive definite, symmetric matrix the stiffness matrix [K;;)
can be written as the product

[K ]J }+[K ju*} JF } : . | (.8b)‘



(K1 = (1L’ | - (10a)

where L  is a lower triangular array. Therefore, we can write

17t =

[K. L) TL)

i1 © (10b)

From Eqs. (8a) and (9), we can express the displacement in
the modified structure at the ith degree of freedom as

R 2 A28 A

where the change in displacements {Gui} is written as
) T f % . -
, ]6ui =-[L] [Te]]ge o _ (12)

and [T,] = [L]-lfKié]. The displacement at the th degrees
of freedom are obtained by solving Eq. (8b) and us1ng substltu-
tions from Eqs._(ll) and (12), i.e.,

e - ) - ) - Tfa.} oy

ee ee’] e 1l e 11

Solving for [uz}' from Eq. (13), we can determine the
changes in the remainder of the structure by using Eq. (12).

The above procedure has the advantage of not having to re-
formulate the stiffness influence coefficient matrix [K]. It
does involve determining the value of [Tg], from Eq. (12) (a
forward solution of the triangularized array); a solution for
{ug) (solving a system of n simultaneous linear equations,
where n 1is the number of modified degrees of freedom); and
determining {uj)} from Eq. (12) (a backward solution of the .
triangularized system). The number of computational operatlons

.required for this technique, as determined in Ref. 5, is



M= (=5 + )+ F . s

-where M = the operation count, n = the total number of degrees
of freedgm of the modified structure,. n, = degrees of freedom
to be modified, and b = semibandwidth of stiffness matrix. The
break-even point of this technique versus a complete reformula-
tion occurs when n, = 0.75b. :

In Refs. 4 and 5 the condition that (Fg} = 0 is imposed
-as the requirement that the - "e" degrees of freedom are free to
dlsplace . This condition, although necessary, is not sufficient
to determine the actual displacements associated with the modi-
fied degrees of freedom and their influence on the remalnder of
the structure. E -

-~ The algorithm for the incremental. procedure to treat the
intermittent contact -and separation remains the same as that
previously presented for the unmodified structure with the ex-
ception that the flow of operations is 1nterrupted between
steps 1 and 2. Nodal. displacements at nodes, chosen a prlorl,
are monitored to. determine whether they are to be released
(representlng crack extension), remain open’ (crack opening)., or
remain fixed (crack closure). The displacements associated with
these decisions are then computed and their effect on the dis-
placement vector {u}, computed in step 1, is flnally deter-
mined. : _



3. NUMERICAL RESULTS

A uniformly loaded rectangular center-crack panel, shown in

. Fig. 1, is chosen to demonstrate the previously described method of
substructuring to treat crack extension and intermittent contact of
crack surfaces. The finite-element idealization of a quadrant of
the panel, shown in Fig. 2, consists of 396 elements having 249
nodes resulting in 474 degrees of freedom when symmetry boundary
conditions are applied.

The crack displacement profile, assuming elastic behavior, is
illustrated in Fig. 3 for two crack lengths. The solid curve cor-
responds to the displacement profile for the initial crack length
2a; the dashed curve is associated with crack length 2a’, where
a'/a = 1.1. These results were obtained without utilizing the sub-
structuring technique. The circles correspond to the displacement
profile for crack length 2a’, determined by means of the sub-
.structuring technique — i.e., nodes AB C and D were "broken,"
extending the crack length from 2a to 2a’. As can be seen from
the figure the results from this technique are 1dent1ca1 to those
obtalned by assumlng an 1n1t1a1 crack length of 2a .

The. crack displacement profile for elastlc-plastlc behavior
is shown in Fig. 4. The results are for an elastic-ideally plastic
material and for a loading (Spax) corresponding to 31 percent of
' the yield load (Syleld) of the uncracked specimen. At Sp,. the
crack is extended from a, to a’ (node B. to C in Fig. 2)
where a’/a, = 1.024. The results indicate a chisel-shaped profile
for the displacements in the vicinity of the extended crack-tip. A
similar discontinuity for the profile of an extended crack is. pre-
sented in Ref. 11. Details of the dlsplacement profile in the
near-tip region is presented in Fig. 5. ~The results for ‘the ex~- .
tended. crack are: compared to corresponding results' for the crack
of initial length 2a’. The results from the latter case do not,
of course, indicate the discontinuous-chisel-~ shape proflle corre-
spondlng ‘to the -extended crack : :




4. CONCLUDING REMARKS

_Application of a substructuring technique to the problem of
crack extension and closure has been outlined and implemented into
an existing nonlinear finite element analysis program for two
dimensional membrane. stressed structures. The method, readily im-
plemented without a significant degree of disruption of the flow
of the original program, appears to be particularly well suited
for adaptation within the framework of the initial strain approach
for the treatment of nonlinear material behavior. . The advantage
is associated with the fact that the original stiffness influence
coefficient matrix for the unmodified structure need not be al-
tered at any point in the analysis.

Results, demonstrating the technique to the problem of elas-
tic and elastic-plastic crack extension, are presented for a uni- -
formly loaded center-c¢rack panel. A more comprehensive application
of the technique to crack extension and closure is presented in
Ref. 12. ' ' ‘ ’

11



APPENDIX A

DESCRIPTION OF FAST

FAST is an acronym for Fracture Analysis of STructures.

The analytic foundation of the program is the displacement

method of finite element techniques for structural analysis.
The program represents a spin-off of a previous program labeled
 PLANE (Ref. 3) developed for the nonlinear analysis of struc-
tures subjected to plane stress conditions. The additional
" capability of FAST, and one that distinguishes it from PLANE,
is the ability to treat variable restraint conditions so that
consideration can be given to the problem of 'an extending crack
or to determining the effects of crack closure.

The program is capable of treating the elastic and the
elastic-ideally plastic response of orthotropic materials. 1In
addition, consideration is given to isotropic materials exhibit-
ing elastic- -ideally plastic, linear strain hardening, or nonlin--
ear strain hardening behavior. Further, the kinematic harden-
ing theory of plasticity is used (Refs. 13 and 14) so that pro-
vision for cyclic loading condltlons 1nvolv1ng reversed p1ast1c
_deformatlon is- 1nc1uded

The flnlte element 11brary and a descrlptlon of each ele-=
: ment follows :

Constant Straln Triangle

Constant Strain Triangle (CST), a well- known plane stress
membrane element, was used successfully for the idealization of
structures presented in Ref. 9. 1Its derivation is based upon
the assumption of a linear distribution for the 1n-p1ane dis-
placements u and v, and consequently, leads to a constant
Strain state within the element (Fig. A-1). Each vertex is al-
1owed two degrees of freedom (the in-plane displacements u
and v) ‘for 'a total of six degrees of freedom for the elément.
Con31stent with the total strain dlstrlbutlon, the initial
strains (plastlc stralns) are assumed to be constant within ‘
éach element.’ Stiffness and initial strain matrices have been
developed and soocessfullyAnsed in Refs. 9 and 10. |



Linear Strain Triangle

In regions of high strain gradient, the CST triangle is not
sufficiently accurate to be used in a plasticity analysis unless
a very fine grid is employed. The linear strain triangle (LST) .
remedies this shortcoming of the CST element. The assumption of
a quadratic distribution for the in-plane displacements allows
for a linear strain variation within the triangle. Two degrees
of freedom at each node (u,v) for each of the six nodes (three
vertex and three midside nodes) give this element a total of 12
degrees of freedom. The initial strains are assumed to be con-
stant within each element and are evaluated at the centroid.
Both stiffness and initial strain matrices have been developed
and successfully used in Ref 10.

Hybrld Trlangles

. In tran31t10n reglons — those regions in which stresses
and stralns change from rapidly varying to slowly varying — it
becomes convenient and efficient to switch from 11near strain..
trlangles to constant strain triangles (Flg A-3). This is ac-
complished by using four and five node triangles to maintain
compatibility with both the CST and LST elements. These ele- *
ments .together with the CST and LST elements were originally
used in Ref. 15, and are referred to as the TRIM 3 through
TRIM 6 family. For these mixed formulation hybrid elements,
the dlsplacements along edges may vary quadratically or lin-
early, dependlng upon whether an LST or CST triangle is contig-
uous to the respective sides. Again, the plastic strain dis-
tribution is assumed constant within each element.

Stringers

. For many aircraft structures — fuselages, wings, etc. —
local stlffenlng is required to provide adequate stability in
compression (Fig. A-4). Special one dimensional finite-elements
are. required” to’ represent the stringers used for this purpose.
Uniform” cross section strlnger elements have been developed
using both constant and linearly varying strain assumptions, so
that compatibility with both the CST and LST elements can be
maintained. For the constant strain stringer, a linear axial
displacement and a constant initial (plastic) strain distribu-
tion within the element are assumed. The linear strain stringer
stiffness matrix is based upon a quadratic displacement assump-
tion and the 1n1t1a1 (plastlc) stralns are constant w1th1n the
element ' :

13



APPENDIX B

USERS MANUAL

The input to the program can be categorized in sections. A
description of the sections follows.

1. Problem Title (20A4)
| -Any 80-character title describing the problem;

2.. .NPNIC NPRNT (215)

0 < NPNTIC < 63:

NPNTC is the sum of the following codes according to the
options desired. A zero value of NPNTC indicates that none of
the 1ntermed1ate output will be prlnted

1 Print the load vector.

2 Prlnt element stiffness matrix w1thout strlnger '
contrlbutlon for elements with strlngers

'tf~4':Pr1nt'element'stlffness matrix before condensa-~7"
‘tion to 8 x 8 or 10 x 10 for 4-v and 5-node
'elements, respectively. e ‘

J 81’Pr1nt ‘each element stiffness matrix in its flnal
,form :

16 Print ‘each element stiffness matrix entry to be
stacked with its stacking index.

'32"Pr1nt the master assembled stiffness matrlx for
the structure to be analyzed.

NPRNT -
If < 0, uerform elastic analysis only. '

| If A§ 0, perform plastic analysis, pr1nt1ng output
every NPRNT 1ncrement of load. :

14 -



3. Nodes Within Partitions (1615)

A partition is defined as a set of degrees of freedom of
a subregion of the structure that can interact only with its
neighboring subregions The resultlng‘stiffness influence co-
efficient matrix is blocked by partitions into a tridiagonal
form as shown in Eq. (C-1) of Appendix C, where those parti-
tions not in the tridiagonal region are null arrays.

Specify the nodes of each partition by listing them in con-
secutive fields. Node numbers must be positive and not exceed
32,768. One blank field must separate the listings of each pair
of adjacent partitions. Two consecutive blank fields (with one
or both on a final blank card if and only if necessary) denote
the end of the section. Two shorthands are allowed. Specifying
m and -n consecutively is the equivalent of m, mt+l, mt2,
ee., D, and spec1fy1ng m, -n, and =-p consecutively is the
‘equivalent of m, mn, m2n, ...; mtkn, where mtkn is the
highest 1nteger of this form less than or equal to P '

. The maximum number of partitions has, arbltrarlly, been set
to 20 and a minimum of 2 partltlons is .necessary for a success-
ful solutlon Consecutive numberlng of nodes within any parti-
tion is not requlred It should be noted that the nodes of any
- element must be in either one partition, or at most, two con-
tiguous partitions. The total maximum number of nodes for any
structure is set at 900. The total number of degrees of free-
dom (= 2 x number of nodes) within any partition is determined
by the value of NCORP defined in a data statement .in subroutine
MAIN. A typlcal value of NCORP = 10,000 words results in a
maximum of =~ 80 degrees of freedom in any of two contiguous
partltlons A more detailed discussion of the storage alloca-~-
tlon is presented in Appendix- C.

4. Modified Nodes and Degrees of'Freedom for Elastic
Analysis Only' (3(215J 15 x)) MNOD, MODOF

The flrst IS f1e1d is assoc1ated with the’ node to be re- _
leased (MNOD) from a fixed boundary condition; the second. rep-
resents the degree of freedom, ‘u (in the global x~-direction
and/or V (in the global 'y-direction). If ‘

15



MDOF = 10, u 1is released

1, V 1is released

=11, u and V are released

Two separate elastic solutions for displacement strains
and stresses will be printed. The first solution is associated
- with the case where the modified nodes are assumed to be fixed.
The second solution represents the corresponding results when -
the modified nodes are released. A blank first I5 field ends
‘this section. A blank card is required when there are no modi-
fied nodes. ' '

5. Nodes and Stringers for Members 2(7I5,2 x,31I1)

The first I5 field gives the member number, which must be
positive and no greater than 32,768. The next six I5 fields
give the nodes, beginning with a major node and continuing
around the perimeter of the member alternately major and minor.
The absence of a minor node must be indicated by a zero or blank
field in the proper position. The 3I1 digits indicate, respec-
tively, the presence or absence of a stringer connected to sides
4, 5, and 6, where side 4 is the side opposite the first: maJor'
node given in the six IS5 f1e1ds, side 5 is opposite the. second
and side 6 1is opposite the third (see Fig. B-1). "It is sug--
gested that the dlglts 4, 5, and 6 thus be used in the appro-
priate positions to denote the presence of . a stringer on the
correspondlng side, although any nonzero digit will sufflce A
zero in an Il field denotes the absence of a stringer from the
corresponding side. Two members may be specified per card
(columns 1-40). A zero or blank first card field ends the sec-
tion. The program will accept a maximum number of 600 elements.
" It should be noted that the program will accept the case of
specifying a minor node in only one of two adjacent elements
sharing a common side. The displacement field along this side
of the elements will be compatible only at the two maJor end -
nodes and not along the 1ength of the s1de :

f6". »' X- Coordlnates of Nodes (E15 7, 1315)

_ The X-coordinates of the nodes appearlng in the 15 flelds,
are set to the value in the E15.7 field. Any number of continu-
‘ation cards may be used; their first fifteen colummns are ig-

nored. . A zero or blank I5 field terminates the node list for a



given X-coordinate. A zero or blank first I5 field (columms
16-20) where a new :X-coordinate can .be specified end the sec-
‘tion. Both shorthand representations of Section 3 are allowed.
Coordinates - for maJor nodes only are- errors, but will be ig-
nored.

7. Y-Coordinates of the Nodes (Same as Séctionfé)

8. Stringer Information (5E15.7, /' (1615))

- To be prov1ded only if there are stringers. ‘The first card
glves, in order, : :

E Young's modulus
A Cross-sectional area
PN _ If SIGZS#0, FN=n, the shape pafaméter used

" in Ramberg-Osgood representatlon of stress-
strain behav1or,.<; : :

- If SIGzS=0, FN=a, the sldpe of.the'linear
' stralnfhardenlng stress-strain representa-
tion, i.e., a = Ep/E where -Eyp- is the

tangent modulus. ' :

SIGO  Yield stress
SIGZS 1If ;5/0; SIGZS = Ramberg-dégood parameter
9.7

Note: If FN=0 and SIGZS=0 the material for
the stringer element(s) is assumed to be
elastic-ideally‘plastic.

The follow1ng cards glve the end p01nts of strlngers to Whlch

- the above values are to be assigned. Every pair of nonzero in-
tegers appearing in this input 'is treated as a stringer end
point pair. Blank fields' are -ignored, except that a fully
blank card ends the-end point pair input. -A zero E ends the
section. If an odd number of end points are spec1f1ed problem
execution- is’ termlnated
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; 95'-Boundary Conditions (I4,Il,5x,1415)

The first two fields give a boundary conditien specifica-~
tion, in the order. Uy, Uy,
Zero denotes a fixed degree of freedom.
One denotes a free degree of freedom.
Two will result in the appllcatlon of a unit

. dlsplacement

The 1415 flelds glve applicable nodes, with both shorthands of
‘Section 3 permitted. Any number of continuation cards may be
used ‘for a given specification. A zero or blank I5 field ends

each node listing. A zero or blank first I5 field (columns 11-

15), where a new specification is expected, ends the section.
If a node's boundary conditions are not specified in this sec-
‘tion,. both degrees .of freedom are assumed to be free

10. ,Materlal‘Prqpertles (5E15.7,/,4E15.7,/,5E15.7,/,(1615))~

lows.

“Card 1: EONE Young's modulus in pr1nc1pal property axis (1)

"ETWO = Young's modulus in principal property axis (2)
. BETA = Angle measured from global x-axis and
- principal property axis: (1) : S
GONTO '= Shear modulus in (1)=(2) pr1nc1pa1 property
..~ axes.
VONTO ?_P01sson's ratio, V12
NN By
Note (1):,‘y12 = EI Va1

card 2: SIGOX = Yield stress in global x-axis

SIGOY = Yield stress in global y-axis
SIGOZ = Yield stress in global ~z-axis’ :
SIGXY = Shear yield stress in global x-y plane ‘

If SIGZS#0; RMOSN=n, ‘the shape parameter
used in Ramberg-Osgood representatlon of
lstress-straln behav1or

Card 3: _RMbSN

The first three cards specify material properties, as fol- .




If SIGZS=0; RMOSN=c . the. slope of the linear
straln-hardenlng stress=~-strain representa-
tion, i.e., a = ET/E where Ep is the
.+ -+ .- tangent modulus. : '
- SIGZS = : If #0; SIGZS Ramberg-Osgood parameters
0.7 ‘ |

Note (2): 1If RMOSN=0 and SIGZS=0 the material for the
~ element(s) is assumed to be elastlc 1dea11y

A plastic.
RMOSE

= Ramberg-Osgood parameter E (Young's modulus)
YLDST = Yield stress in tension
YLDSC =  Yield stress in compression

Note (3): Only initially isotropic materials can be
‘ ‘ treated when considering’ llnear or nonllnear
straln hardenlng : :

Succeedlng cards glve appllcable members “both shorthands of Sec--
- tion 3 are permitted.. Any number of continuation cards may be
used for a given spec1f1cat10n A zero or-blank-I5 field ends
'-each member 1lst1ng A zero or blank EONE ends the section.

11. Member Thlcknesses (E15. 7 / (1615))

The first card spec1f1es the member thlckness, the 1615
cards give appllcable members, as 1n 10 A zero\or,blank‘thlck-
ness ends the sectlon B S

12. Applled Load Components (315 4E15. 7)

Each card glves the load components applled at a member
side, as follows: _ :

First I5 field: number of node (m)

Second I5 field: - number of minor node on the side; or
Fe. 0 5 Y7 zero or blank if there.is no minor node -
Third 15 field: . ‘number of other end point node (n) - ’

First E15.7 field: x 1load component at node
Second E15.7,fie1d y load component at node
Third E15.7 field: - x 1load component. at node’
Fourth E15. 7 field y 1oad component at node .

':s':_s‘a”s

As many load- components as desired may be specified. A zero or
‘blank first I5 fleld ends the section. : -
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13. Members to Be Printed - Elastic Solution (1615)

Specify the members whose strains and stresses are to be
printed in the elastic analysis in the order in which they are
desired. Blank fields are ignored, provided one nonblank field
appears on a card. Both shorthands of Section 3 are allowed.
Should three consecutive negative integers appear, a "1" 1is
inserted before the third. A maximum of 600 members may be
specified. Members in excess of 600 and undefined member num-
bers are ignored. A blank card or card with only zero entries
end the section. ‘

| 14. Nodes to Be_ Prlnted - Elastlc Solutlon (1615)

Up to 900 nodes whose dlsplacements are to be printed for
the elastic analysis), as per Section 13. = -

15. Members to Be Printed - Plastic Solution (As per Section 13)

16.‘;Nodes to Be Printed - Plastic Solution (As per Section 13)

17,3 Odlfled Nodes and Degrees of E;egdgm for Elast;gv
o :Ana1y81s.0n1y. (3(215,15x)) MNOD, MDOF (As per Section 4)

A blank card is required when. there arevno“mOdified nodes.

| 18,1 Plastié'Pafametefs (3E15.7)

In order, L
» PPCT Load 1ncrement as a percentage of y1e1d load.
. PMAX Maximum load to be applied.’
YEPS '< 1.0; the amount by which YEPS is less than
1.0 represents the tolerance requirements-
-~ in determlnlng whether a particular stress
state satisfies the yleld condltlon

19.:-Load Range for Problems Involving Mbdlfled Nodes
~ Only: (AA 1x,E15.7) TEMP(1), PMAX '

PMAX represents the maximum or minimum value of the ap-
plied loading for any half-cycle of load. Any number of half-
-cycle loadings may be applied.. The field for TEMP(l) must be
blank for any specified value of PMAX and must read

20



"END' " where b denotes a blank for the lost 1nput card
If there are no modified nodes thlS section is 1gnored (no
blank card is requlred) :

-20.' For Succeedlng Load " Cycles, One Card (15, 2E15 7)
Giving New NPRNT, PMAX, and PPCT ‘

Zero NPRNT s1gn1f1es no new load cycle To change proper-
t1es of any group of members, as given in Section 9, there may
follow any number of cards (I5,5E15.7) giving I any member of
.the group whose properties are to be.changed.

RMOSN
RMOSS
RMOSE '

~ YLDST
YLDSC -

e——New Ramberg-0sgood parameters

I =:O “indicates ‘that the Changes'are complete.
ThlS sectlon is 1gnored 1f the problem lnvolves mod1f1ed nodes.

21, Each Problem's Input Must Be Ended with a Card
Reading - "ENDb ! where b Denotes a Blank, in Columns 1-4

- An addltlonal "ENDb"'ls not requ1red for those problems a
1nvolv1ng modlfled nodes .
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APPENDIX C

SOLUTION ALGORITHM

- The algorithm chosen for the solution of symmetric, posi-
tive definite matrix equations in block tridiagonal form is the -
Cholesky method (referred to as Danilevskii method in Ref. 16).
This algorithm factors the total stiffness matrix into the
product of a lower triangular array and its transpose and then
solves a pair of triangular sets of equations. This factoriza-
‘tion is possible only for positive definite matrices. '

Problem
Solve AX = Y, 1where
14 B3 B 1
g
B A B | o o
L X _— T . S e
By 8y By
L B3 All' 'J

fls the block’ trldlagonal, positive deflnlte, symmetrlc stiff-
ness matrix and X and Y (representing the generalized nodal
_ dlsplacements and loads, respectlvely) are, partltloned corre~
spondlngly as ' .

%) v,
L 1_ N ; 3? | ,; "j;' Yl | _" | | "  N
) )

'gjfa,




Triangularization

Assume A = LLT

I
[

and A partitioned as already indicated.

These equatlons are used in turn to determlne

with

so

SO

SO

SO

that

that

that

that

etc.

K Then

Ay - M

) L_T

272

Ay - M,

(C-3)

L1, M3, Lo,

My, etc., obtaining each diagonal block by the Cholesky algo- -
rithm and each off- dlagonal block by solv1ng trlangular equa-

tions.
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Flow of Subfoutines

PIRATE
|

ATTACK | | MORGAN

GIRL BOY FUTILE |SKULL| [(TRIEQ

TRIEQ

PIRATE is the user' interface and supervisory routine. It
~uses the Cholesky algorithm, which factors the total stiffness
matrix into LET (where L 1is a lower triangular matrix) and
then solves a pair of triangular sets of equatlons - It is well
_known that thlS factorlzatlon is p0331b1e lf A is positive
definite. = ' :

The factorlzatlon is carrled out by subroutlne ATTACK as
follows

'“A Subroutine FUTILE performs Cholesky factoriza-
' tions to construct the diagonal (tri-
angular) blocks Ly, Lo,

" Subroutine BOY forms the products kMﬁ

.;ngubroutlne GIRL solves equatlons LkME = Bk’.'

e GIRL calls TRIEQ for. each column of -

N BE to get the correspondlng column -
Cl of ME :

IRV



i PIRATE uses a large storage array, at a typlcal moment ,
the array holds one dlagonal block of A or L _and one off-
- diagonal block B or M. Diagonal blocks are placed in the

beginning of the large array, with off-diagonal blocks posi-
tioned at the end. This arrangement prevents storage con-
flicts,. provided that the array is large enough to hold any
diagonal block along with either (not both) of the adjoining
-off-diagonal blocks. The symmetry of A makes it possible
to store only about half of the diagonal blocks.

Solutlon

After factorlzatlon, the problem can be posed in the form
LLTx = Y; PIRATE uses subroutine MORGAN to solve LZ =Y for
Z, and then LTX<= Z for X; X Iis then the required solu-

- tion because LTX z 1mp11es L(LTX) s, l.e,, AX=1Y.

’_h The“nforward" solutlon LZ Y .can- be_exbressed’as

Tw A
M i‘z | z, | Q'YZ' :
K ?_=_<, S - (c-
M L, 2, || 1, o
.'M3 Ly U0 LY )
which lead to
| L2 = Y
hﬁLzéZ‘feféj- Mlzi
: L4323'. =Y "-'Mzzz

etc.

MORGAN calls SKULL to form the products MyZk and TRIEQ to
solve the triangular equations for the Zj. -

&)

(C-5)
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‘The "back" solution is so called because it obtains the
solution elements in reverse order; in partltloned form the
process 1is

T T 4 N
LM X, F2, 3
T T
L, ™ X 2y
LIy = | ﬁ ) = { f (C-6)
- T T ' ‘
Ly M3 )1 Xy Z3
T
L, [\x, ) %)
i.e.,
T, _
LX, = 2,
T, _ ., _ T, - | i
L3Xy = Z3 - M3X, - (C-7)
T, _ R
LyXy = 2y = MyX,
_etce.

- Once again, SKULL generates the products fMEXk+i. and TRIEQ
provides the solutions Xy. Since the Xj are obtained in re-

verse order, it is necessary for MORGAN to read them backwards
- in order to produce the solution in normal order in core.

Data Set Usage

- PIRATE uses 5 data sets, referred to here as'le, cers Tg
T1 must contain the A matrix and Ty the Y matrix when
PIRATE is entered. The L matrix is written on T3 and Z on
T4, with the solution .X returned on Tg in reverse order.

It is possible to overlap the usage somewhat, but the following
restrictions must be complied with:. -
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|- must be different from T,

‘f;.mﬁSt:bé_differént from i3

| mist be different from T,

"::agd ;TS.

must be different.

and T o

cand T.

cand T,
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