PARACHUTE DYNAMICS AND STABILIIY ANALYSIS

by
S．K．Ibrahim
R．A．Engdahl

February 1974
からいた
コつつ
－置
路 \rightarrow

N－No

 $20 / 89$

for
NA TIONAL AERONAUTICS AND SPACE ADMINISTRATION
George C．Marshall Space Flight Center
Marshall Space Flight Center，Alabama 35212

PARACHUTE DYNAMICS AND STABILITY ANALYSIS

by
S. K. Ibrahim
R. A. Engdahl

February 1974
$8-28607$
Prepared under Contract No. NAS -82807 by
HONEYWELL INC.
Systems and Research Center
Minneapolis, Minnesota 55413
for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

FOREWORD

This is the final report describing a study conducted for the National Aeronaūtics and Space Administration, George C. Marshall Space Flight Center under Contract Number NAS 8-28607. This study was a 'Parachute Dynamics and Stability Analysis" as applied to the Solid Rocket Booster recovery system of the Space Shuttle. This report covers the period from 1 February 1973 through 1 February 1974. The Contract Technical Monitor is Mr. Gaines L. Watts

The authors wish to express their gratitude to Mr. M. Bazakos for his assistance with the computer simulation programs that were developed and to Dr. R. E. Rose, Program Manager, for his guidance and supervision.

CONTENTS

Page
FOREWORD iii
SUMMARY 1
INTRODUCTION 1
LIST OF SYMBOLS 2
SUBSCRIPTS 4
RECOVERY SYSTEM ANALYSIS 5
The Approach to the Problem 5
General Recovery Sequence 6
Simplifying Assumptions 6
SYSTEM MODELING 10
Development of a Nonlinear Dynamical Model of the Parachute／ Riser／Payload System 10
DEVELOPMENT OF AN AERODYNAMIC FORCE AND 39 MOMENT SYSTEM IN AN UNSTEADY AIRMASS
ANALYSIS OF THE SOLID ROCKET BOOSTER 56
RECOVERY SYSTEM
CONCLUSIONS 96
RECOMMEND』TIONS 96
REFERENCES 97
APPENDIX A－DOCUMENTATION OF THE PARACHUTE DYNAMICS AND STABILITY ANALYSIS PROGRAMMING SYSTEM

LIST OF ILLUSTRATIONS

Figure Page
1 Nominal SRB Recovery Sequence 7
2 SRB/Drogue Baseline Configuration 8
3 SRB/Main Baseline Configuration 9
4 Reference Frame Definition and Orientation for a 123-Body Parachute Riser Payload System
5 Euler Angle Kotations 13
6
Fully Inflated Conical Ribbon Canopy Shape as 29 Calculated by Program CANOParachute and Riser Geometry30
Suspension Line Geometry 33
Parachute Force and Moment System 40
Polynomial Curve Fit to Normal Force Coefficients 41 for a 20^{\prime} Conical Ribbon Parachute
11
121315 Polynomial Curve Fit to the Tangent Force Coefficients46
for the SRB
Polynomial Curve Fit to the Moment Coefficients of 47
16 the SRBMean Wind Profile and Gust Envelope49

(LIST OF ILLUST?RATIONS (CONTINUED)

Figure Page
18 Main Parachute SRB Response to a 20° Pendulum 60Disturbance
19 Main Parachute SRB Angle of Attack Response to a 61$20^{\circ}$ Pendulum Disturbance
20 Recovery System Trajectory, Pendulum Initial 62Conditions
21
Main Parachute - SRB Response to a Scissors 63
Displacement ($\theta_{1}=-20 \mathrm{deg}, \theta_{3}=+20 \mathrm{deg}$ Initially)
22Main Parachute - SRB Angle of Attack Response to64Scissors Displacement $\left(\theta_{1}=-20 \mathrm{deg}, \theta_{3}=+20 \mathrm{deg}\right.$Initially)
Recovery System Trajectory, Scissors Initial Conditions 65
23
Initial Depioyment Conditions for SRB/Drogue 66
24
Combination
SRB Coning Angle as Reduced by the A iion of the 68Drogue Parachute
Drogue Parachute/SRB Angle of Attack Response to 69Initial Conditions Illustrated in Figure 24
Airmass Velocity Profile 70 27
Main Parachute SRB Response to a Non Steady Air Mass; 71 28Vertica? Descent Initial Conditions29Main Parachute SRB Angle of Attack Response to a Non72Steady Air Mass
Main Parachute SRB Response to a Downwind Pendulum 73 Initial Condition in a Non Steady Air Mass
31 Main Parachute SRB Angle of Attack Response to a 74
Downwind Pendulum Initial Condition in a Non SteadyAir MassRecovery System Trajectory in a Non Steady Air Mass75

LIST OF ILLUSTRATIONS (CONTINUED)

Figure		Page
33	Main Parachute SRB Response to an Upwind Pendulum Initial Condition in a Non Steady Air Mass	76
34	Main Parachute SRB Angle of Attack Response to an Upwind Pendulum Initial Condition in a Non Steady Air Mass	77
35	Main Parachute SRB Response to Scissors Initial Conditions in a Non Steady Air Mass	79
36	Main Parachute SRB Angle of Attack Response to Scissors Initial Conditions in a Non Steady Air Mass	80
37	Main Parachute SRB Response to a 20° Pendulum Initial Condition, Elastic Suspension System	81
38	Main Parachute SRB Angle of Attack Response to a 20 Pendulum Initial Condition, Elastic Suspension System	82
39	Main Parachute - SRB Response to Scissors Initial Conditions, Elastic Suspension System ($\theta_{1} \quad$ - 20 deg, $\theta_{3}=+20 \mathrm{deg}$ Initially)	83
40	Main Parachute - SRB Angle of Attack Response to Scissors Initial Conditions, Elastic Suspension System $\left(\theta_{1}=-20 \mathrm{deg}, \theta_{3}=+20 \mathrm{deg}\right.$ Initially)	84
41	Short Period Eigenvalue Time Histories for the SRB/Main Parachute Configuration, Pendulum Initial Conditions, $\left(\theta_{1}=+20 \mathrm{deg}, \theta_{3}=+20 \mathrm{deg}\right)$	86
42	Long Period Eigenvalue Time-History for the SRB/Main Parachute Configuration, Pendulum Initial Conditions $\left(\theta_{1}=20 \mathrm{deg}, \theta_{3}=20 \mathrm{deg}\right)$	87
43	Short Period Eigenvalue, Time-Histories for the SRB/ Main Parachute Configuration, Scissors Initial Conditions ($\theta_{1}=-20 \mathrm{deg}, \theta_{3}=+20 \mathrm{deg}$)	88
44	Long Period Eigenvalue Time History for the SRB/Main Parachute Configuration, Scissors Initial Conditions $\left(\theta_{1}=-20 \mathrm{deg}, \theta_{3}=+20 \mathrm{deg}\right)$	89

LIST OF ILLUSTRATIONS (CONCLUDED)

Figure45 Short Period Eigenvalue Time Histories fo. the SRB/90Main Parachute Configuration, Vertical Descent InitialConditions, Non Steady Air Mass
46 Long Period Eigenvalue Time History for the SRB/Main 91Parachute Configuration, Vertical Descent InitialConditions, Non Steady Air Mass
Short Period Eigenvalue Time Histories for the SRB/ 92Main Parachute Configuration, Pendulum InitialConditions, Non Steady Air Mass ($\theta_{1}=20 \mathrm{deg}, \theta_{3}=20 \mathrm{deg}$)Long Period Eigenvalue Time History for the SRB/Main 93Parachute Configuration, Pendulum Initial ConditionsNon Steady Air Mass ($\theta_{1}=+20 \mathrm{deg}, \theta_{3}=+20 \mathrm{deg}$)
Short Period Eigenvalue Time Histories for the SRB/ 94Main Parachute Combination, Pendulum Initial Conditions,Elastic Suspension System ($\theta_{1}=\theta_{3}=+20$ deg Initially)
50 Long Period Eigenvalue Time History for the SRB/Main 95Combination, Pendulum Initial Conditions, ElasticSuspension System $\left(\theta_{1}=\theta_{3}=+20\right.$ deg Initially $)$

PARACHUTE DYNAMICS AND STABILITY ANALYSIS

By: S. K. Ibrahim and R. A. Engdahl

SUMMARY

The nonlinear differential equations of motion for a ceneral parachute-riserpayload system are developed. The resulting math model is then applied for analyzing the descent dynamics and stability characteristics of both the drogue stabilization phase and the main descent phase of the Space Shuttle Solid Rocket Booster (SRB) recovery system.

The formulation of the problem is characterized by a minimum number of simplifying assumptions and fus application of state-of-the-art parachute technology. The parachute suspension lines and the parachute risers can be modeled as elastic elements, and the whole system may be subjected to specified wind and gust profiles in order to assess their effects on the stability of the recovery system.

A numerical linearization technique is provided as an optional subroutine. It permits the linearization of the system's equations of motion at selected points of the descent trajectory and the calculation of the Eigenvalues describing the principal motions. Root locus plots may be obtained to study the variation in stability characteristics as a function of time. Computer simulations with the nonlinear system of equations were run for a wide range of initial conditions both with and without the elastic suspension system effects and the wind and gust models. For selected runs, the linearization procedure was applied at predetermined points, the Eigenvalues were calculated, and the stability characteristics were examined. It was determined that, for the range of anticipated initial conditions, the projected drogue configuration quickly stabilizes the SRB motions, the SRB/Main descent configuration is stable, and the motions of the system, with the sperified wind and gust profiles, remain within acceptable limits at water impact.

INTRODUCTION

This is the final report of a one-year program of analytical and computational work. The program's primary objective was to formulate a realistic mathemetical model for the descent dynamics of a parachute/vehicle system and to use that model as the basis for a computer simulation, stability analysis, and parametric optimization of the Space Shuttle Solid Rocket Booster (SRB) recovery system.

The recoverable weight of the SRB is at least three times that of any previously recovered payload. Full scale testing may not be feasible and large scale drop tests are very costly; hence, the need for realistic simulation models to permit detailed studies of optimum system parameters and stability characteristics and to minimize the number of drop tests.

The math model described in this report is more general than previously pubiished models. Among other things, it permits 6 degrees-of-freedom motion for both the parachtue and the vehicle, it includes elastic representation for the risers and suspension line, the effect of deterministic winds and gusts on the system's performance and a more general representation of apparent mass effects. A separate computor program, using the elastic element approach, permits the calculation of more realistic canopy profile shapes.

IIST OF SYMBOLS

ALCM	Length from confluence point to plane of skirt
$B_{i k}^{J}$	Direction cosines matrix element, body j, row i, column $\mathrm{k}(\mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3$)
$\mathrm{B}_{\mathrm{S} 1}-\mathrm{B}_{\mathrm{S} 3}$	Direction cosine scalar products, Parachute
$\mathrm{B}_{\mathrm{S} 4}-\mathrm{B}_{\mathrm{S} 6}$	Direction cosine scalar products, SRI3
\vec{C}_{i}	Velocity vector of body $i, i=1,2,3$
C_{Ni}	Normal force coefficient, body i, $\mathfrak{i}:=1,3$
CM	Center of mass
$\mathrm{C}_{\mathrm{M}_{\mathrm{I}}}$	Moment Coefficient, body i, $\mathfrak{i}=1,3$
C_{T}	Tangent force coefficient, body $i, i=1,3$
CP	Center of pressure
$\mathrm{F}_{1 i}$	Aerodynamic forces on body 1 in direction $\mathrm{i}(\mathrm{i}=\mathrm{X}, \mathrm{Y}, \mathrm{Z}), \mathrm{lb}$
$\mathrm{F}_{3 \mathrm{i}}$	Aerodynamic forces on body 3 in direction $\mathrm{i}(\mathrm{i}=\mathrm{X}, \mathrm{Y}, \mathrm{Z}), \mathrm{lb}$
F_{2}	Riser force, lb
g	Gravitational acceleration, $\mathrm{t} / \mathrm{sec}{ }^{2}$
I_{i}	Principal moments of inertia matrix, body i, slug ft ${ }^{2}$

${ }^{\text {A } 1}$	Principal apparent moments of inertia matrix, slug ft ${ }^{2}$ body 1
K_{LS}	Suspension line spring constant, $\mathrm{lb} / \mathrm{ft}$
K_{R}	Riser spring constant, lb/ft
L	Length
L_{1}	Length from confluence point to parachute CP
L_{2}, L_{R}	Length of riser
L_{3}	Length from SRB attach point to SRB CM
$L_{3 T}$	Length of SRB
L_{4}	ength from SRB CM to SRB CP, positive towards engine
L_{CM}	Length from confluence point to parachute CM
L_{S}	Length of suspension lines
m_{i}	Mass of body i
m_{I}	Included mass of the parachute
$\mathrm{m}_{1 \mathrm{~A}}$	Apparent mass tensor of parachute
m_{C}	Canopy mass
m_{L}	Suspension line mass
$M_{1 i}$	Moments about axis i of body $1 \mathrm{i}=\mathrm{X} \mathrm{Y}, \mathrm{Z}$
$\mathrm{M}_{3 i}$	Moments about axis i of body $3 \mathrm{i}=\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
N	Number of suspension lines, Normal force
P_{i}	Angular Velocity about X -axis, body i
Q_{i}	Angular Velocity along Y-axis, body i
R_{i}	Angular Velocity about Z-axis, body i
R_{0}	Skirt Radius
q_{i}	Dynamic pressure at CP of body $\mathrm{i}, \mathrm{lb} / \mathrm{fi}^{2}$

Nominal area, body $\mathrm{i}, \mathrm{ft}^{2}$
$\mathrm{U}_{\mathrm{i}} \quad$ Linear velocity in X -direction, body $\mathrm{i}, \mathrm{ft} / \mathrm{sec}$
$\mathrm{V}_{\mathrm{i}} \quad$ Linear velocity ir Y -direction, body $\mathrm{i}, \mathrm{ft} / \mathrm{sec}$
$\mathrm{W}_{\mathrm{i}} \quad$ Linear velocity in Z -direction, body $\mathrm{i}, \mathrm{ft} / \mathrm{sec}$
$X_{i}, Y_{i}, Z_{i} \quad$ Right-handed orthogonal axes of body fix d reference frame i
$\mathrm{X}_{\mathrm{Ei}}, \mathrm{Y}_{\mathrm{Ei}}, \mathrm{Z}_{\mathrm{Ei}}$ Farth fixed coordinates for body i, ft
α_{i}
β_{i}
$\psi_{i}, \theta_{i}, \phi_{i}$
$\stackrel{\rightharpoonup}{\omega}$
(')
c
ρ
Angle of attack, body i
$\operatorname{Tan}^{-1} \frac{V_{i}}{U_{i}}$, body i
Euler angles, body i
Angular velocity vector
Dot notation for time derivative, $\frac{d()}{d t}$
Damping coefficient, $\mathrm{lb} \sec / \mathrm{ft}$
Air density, slug/ft ${ }^{3}$

SUBSCRIPTS

1
Parachute
2 Riser
3 Payload (SRB)
o Nominal conditions

RECOVERY SYSTEM ANALYSIS

THE APPROACH TO THE PROBLEM

The technical approach is structured to assess the descent dynam. cs and stability characteristics of a general parachute-riser payload combination. The advantage to a gene $\cdot 1$ case study is the ability to study a wider range of possible configurations with a minimum number of simplifying assumptions. Three primary tasks describe the approach taken in the analysis of the problem.

- The parachute riser-payload configuration was arranged and then said to be nominal according to specifications provided by the contracting agency and particular requirements of the descent conditions. A mathematical model incorporating elastic risers and suspension lines, three bodies each with six degrees of freedom, and a non steady air mass was developed. A complete softwaro package was written to perform the nonlinear simulation.
- Using the nonlinear software package, simulations of the nonlinear dynamics of the parachute-riser-payload were made for a variety of initial conditions both with and without the influence of the nonsteady air mass and the elasticity of the suspension lines and riser. Particular attention was paid to equilibrium trajectories and to ti e occurrence of limit cycle responses.
- Using numerical techniques, linearization of the state equations of motion was accomplished. The stability of the system to disturbances was then assessed using the Root Locus technique. Using the same linearization technique, stability analysis as a function of certain parameters can be assessed.

While the state of the art of parachute recovery of $\boldsymbol{l}_{\mathrm{a}}^{\mathrm{i}}$, e paylcads extrapolates to a successful recovery of the space shuttle solid rocket booster (SRB), the magnitude of the SRB recovery problem is at least three times the size of any previous successful recovery. The large suspended load (approximately $150,000 \mathrm{lb}$), the size of the parachutes ($3-130 \mathrm{ft}$ Conical Ribbon) and the overall length of the system (about 400 ft) demand highly sophistocated math modeling and simulation if accurate stability conclusions are to be rightfully drawn. The t. inical objective of 'his study then is to, as accurately as possihle, analyze the descent dynamics, predict stability characteristics, and reduce the cost of the recovery by providing a better starting point for full scale testing and evaluation.

GENERAL RECOVERY SEQUENCE

A schematic representation of the space shuttle SRB recovery is shown as Figure 1. The recovery process begins with the disengagement of the space shuttle main body and the SRB by explosive charges. The SRB then continues on a ballistic trajectory modified by its own aerodynamics through the apogee of nearly $200,000 \mathrm{ft}$, descending to approximately $20,000 \mathrm{ft}$, at which point the drogue parachute (48 ft Conical Ribbon) is deployed. Stabilization through the next 6000 ft of the descent provides sufficient conditions for the deployment in reefed stages of a three-parachute cluster. The cluster of $130-\mathrm{ft}$ conical ribbon parachutes is fully deployed and fully inflated at an altitude of approximately 6000 ft . A steady descent concludes with water impact.

The analysis of the descent dynamics is made during the final 6000 ft , during which the motion of the system is effected by a potentially non-steady air mass perturbed by gusts. The analysis begins at full inflation of the cluster and ends at water impact.

The recovery system components, the drogue parachute, the main parachutes, and the SRB were chosen to meet the requirements established by the contracting agency. The drogue was chosen as a 48-ft, 20-cieg conical ribbon parachute (Ref. 1). A cluster of $3-130 \mathrm{ft}, 20-\mathrm{deg}$ conical ribbon parachutes provides the required 80 fps descent rate during the final 4000 ft (Ref. 2). The dimensions and mass of the SRB have continually changed during this study. The dimensions and mass used, however, are representative and provide an adequate model of the final configuration. The SRB/ Drogue combination is shown in Figure 2, and the SRB/Main is shown in Figure 3.

SIMPLIFYING ASSUMPTIONS

Several simplifying assumptions are employed which reduce the computational magnitude without compromising the general nature of the problem. Others are made to improve the math models to the extent thit the state of the art allows.

- The Parachute is assumed to be axisymmetric and to have a fixed-shape canopy with elastic suspension lines.
- The riser connecting the parachute and payload is elastic and transmits only axial forces to the attach points on the SRB and parachute axes of symmetry.
- The SRB is a rigid, axisymmetric body.

Figure 1. Nominal SRB Recovery Sequence

Drogue
$\mathrm{D}_{0}=48 \mathrm{ft}$
$D_{1}=0.77 D_{0}=37 \mathrm{ft}$
$1_{\mathrm{s}}=2.0 \mathrm{D}_{0}=96 \mathrm{ft}$
$L_{1}=103 \mathrm{ft}$
$\mathrm{L}_{\mathrm{CM}}=102 \mathrm{ft}$
$L_{C P}=0.163 D_{0}$
$L_{S}-96 \mathrm{ft}$

SRB

$$
\begin{aligned}
& \mathrm{D}_{3}=11.8 \mathrm{ft} \\
& \mathrm{~L}_{3}=81 \mathrm{ft} \\
& \mathrm{~L}_{3 \mathrm{~T}}=157 \mathrm{ft} \\
& \mathrm{~L}_{4}=0.0 \mathrm{ft}
\end{aligned}
$$

System

$$
\begin{array}{ll}
L_{2} & =D_{0}=48 \mathrm{ft} \\
L & =231 \mathrm{ft}
\end{array}
$$

Figure 2. SRB/Drogue Baseline Configuration

Main
$\mathrm{D}_{0}=130 \mathrm{ft}$
$L_{1}=292 \mathrm{ft}$
$L_{C P}=0.163 \mathrm{D}_{0}$
$L_{\mathrm{CM}}=290 \mathrm{ft}$
$\mathrm{D}_{1}=0.75 \mathrm{D}_{0}=94 \mathrm{ft}$

SRB
$\mathrm{D}_{3}=11.8 \mathrm{f}$
$L_{3 T}=145 \mathrm{ft}$
$L_{3}=75 \mathrm{t}$
$\mathrm{L}_{4}=0 \mathrm{ft}$

System:
$L_{2}=67 \mathrm{ft}$

Figure 3. SRB/Main Baseline Configuration

- The aerodynamic centers of pressure are constrained to remain on the axes of symmetry of the SRB and the parachute but do not necessarily coincide with the centers of mass of those bodies.
- The energy modification of the air mass caused by the movement of the parachute through it is represented by tensors of apparent mass and apparent moments of inertia and not considered for the SRB motion.
- The separation distance between the SRB and the main parachutes is large enough to neglect forebody wake effects.
- The non steady air mass is represented by a wind velocity field and a gust velocity field perturbation.
- A flat earth is used for trajectory calculations.

SYSTEM MODELING

The mathematical modeling of the primary subsystems, the parachute, the riser, and the solid rocket booster is described in this section as used in the development of an analytical nonlinear simulation programming system. Modeling of the elastic elements and the non steady air mass is also described.

The equations of motion of the three body system are written relative to a that earth. The forces and moments on the parachute and SRB result from aerodynamics and gravity. The application of the aerodynamics into the equations of motion is discussed.

Finaliy, in this section the techniques used to linearize the nonlinear motion and to perform a stability analysis are outlined.

DEVELOPMENT OF A NONLINEAR DYNAMICAL MODEL OF THE PARACHUTE/RISER/PAYLOAD SYSTEM

The parachute/riser/payload system is modeled as a three-body, six-degree-of-freedom-each problem. Since the parachute and SRB are connected by the riser, the constrained system finally reduces to a 15-degree-of-freedom problem.

The differential equations of motion. -- The equations of motion are developed in general terms first with no elasticity and a steady air mass. The effects of the inclusion of the elastic suspension lines is then included. The basic math model is adapted from Reference 3.

Reference frames: The reference frames and their initial orientation are shown in Figure 4.

Four right handed orthogonal reference frames are needed to specify the motions of the parachute (System 1), the riser (System 2), and the payload (System 3).

Earth fixed frame: Origin O_{E} is fixed on an assumed flat earth directly below the initial position of the SRB Center of Mass. Z_{e} is directdownward, X_{E} is horizontal on the flat earth aligned in the vertical earth plane containing the initial SRB Center of Mass velocity vector, and Y_{E} is cross range to the right.

Body-fixed, moving frames 1, 2, and 3: The origins of the parachute and payload (SRB), body-fixed reference frames are at the respective centers of mass, O_{1} and $\mathrm{O}_{3} . \quad \mathrm{Z}_{\mathrm{i}}$ axes are aligned with the axes of symmetry with Z_{1} directed toward the parachute confluence point, Z_{2} directed from the parachute confluence point to the SRB attach point, and Z_{3} directed toward the engine end of the SRB. X_{i} axes are aligned initially parallel to the vertical earth plane containing the payload center of mass initial velocity vector.

Euler angles: The Euler angles ϕ_{i}, θ_{i}, ${ }_{i}$ describe the orientation of the body-fixed reference frames with respect to the earth fixed inertial frame. The ordered rotations are ψ_{i} about Z_{i} followed by θ_{i} about Y_{i} and then ϕ_{i} about X_{i} as illustrated in Figure 5.
The direction cosine matrix [B^{j}] transforms a vector in earth fixed reference frame to the jth body fixed reference frame in the following manner:

$$
\begin{equation*}
\vec{V}_{j}=\left[B^{j}\right] \vec{V}_{E} \tag{1A}
\end{equation*}
$$

Conversely, by premultiplying by $\left[B^{j}\right]^{-1}$

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\mathrm{E}}=\left[B^{j}\right]^{-1} \vec{V}_{j} \tag{1B}
\end{equation*}
$$

Figure 4. Reference Frame Definition and Orientation for a 3-Body Parachute Riser Payload System

Figure 5. Euler Angle Rotations

The direction cosine matrix $\left[B^{j}\right]$ is such that its transpose is the same as its inverse; i.e.,

$$
\left[B^{j}\right]^{T}=\left[B^{j}\right]^{-1}
$$

Hence, Equation (1B) can also be written

$$
\begin{equation*}
\vec{V}_{E}=\left[B^{j}\right]^{T} \vec{V}_{j} \tag{1C}
\end{equation*}
$$

In terms of the Euler angles and the sequence $\psi, \theta, \phi,\left[B^{j}\right]$ is as follows:

$$
\left[B^{j}\right]=\left[\begin{array}{lll}
\cos \theta_{j} \cos \psi_{j} & \cos \theta_{j} \sin \psi_{j} & -\sin \theta_{j} \\
\sin \theta_{j} \cos \psi_{j} \sin \phi_{j} & \sin \phi_{j} \sin \theta_{j} \sin \psi_{j} & \sin \phi_{j} \cos \theta_{j} \\
-\cos \phi_{j} \sin \psi_{j} & +\cos \phi_{j} \cos \psi_{j} & \\
\cos \phi_{j} \sin \theta_{j} \cos \psi_{j} & \cos \phi_{j} \sin \theta_{j} \sin \psi_{j} & \cos \phi_{j} \cos \theta_{j} \\
+\sin \phi_{j} \sin \psi_{j} & -\sin \dot{-}_{j} \cos \psi_{j} &
\end{array}\right]
$$

Its elements are written $B_{i k}^{j}$ where i is the row number and k is the column number.

The Euler angle rates are given by

$$
\begin{align*}
& \dot{\psi}_{j}=\left(Q_{j} \sin \phi_{j}+R_{j} \cos \phi_{j}\right) \sec \theta_{j} \\
& \dot{\theta}_{j}=Q_{j} \cos \theta_{j}-R_{j} \sin \phi_{j} \tag{3}\\
& \dot{\phi}_{j}=P_{j}+\left(Q_{j} \sin \phi_{j}+R_{j} \cos \phi_{j}\right) \tan \theta_{j}
\end{align*}
$$

The indices $j=1,2,3$ correspond to the parachute, riser, and payload, respectively.

The dynamics of motion: force and moment equations. --
The parachute: The equations of motion for the parachute are divided into force and moment equations about the center of mass.

The force equations are written

$$
\begin{gathered}
\vec{F}_{1}+m_{1}\left[B^{1}\right] \vec{g}+\left[B^{1}\right]\left[B^{2}\right]^{T} \vec{F}_{2}=m_{1}\left(\vec{C}_{1}+\vec{\omega}_{1} \times \vec{C}_{1}\right) \\
+\left[m_{1 A}\right]\left(\vec{C}_{1}+\vec{\omega}_{1} \times \vec{C}_{1}\right) \\
\text { where } \vec{F}_{2} \text { is the riser force, } \vec{F}_{2}=\left[\begin{array}{l}
0 \\
0 \\
F_{2}
\end{array}\right]
\end{gathered}
$$

m_{1} is the parachute mass (canopy + suspension lines)
and

$$
m_{1 A}=\left[\begin{array}{lll}
m_{1 A X} & 0 & 0 \\
0 & m_{1 A Y} & 0 \\
0 & 0 & m_{1 A Z}
\end{array}\right]
$$

is the apparent mass tensor resulting from the air mass accelerations produced by the parachute motion.

$$
\begin{array}{ll}
\mathrm{F}_{1}=\left[\begin{array}{l}
\mathrm{F}_{1 \mathrm{X}} \\
\mathrm{~F}_{1 \mathrm{Y}} \\
\mathrm{~F}_{1 Z}
\end{array}\right], & \vec{g}=\left[\begin{array}{l}
0 \\
0 \\
\mathrm{~g}
\end{array}\right] \\
\overrightarrow{\mathrm{C}}_{1}=\left[\begin{array}{l}
\mathrm{U}_{1} \\
\mathrm{~V}_{1} \\
\mathrm{~W}_{1}
\end{array}\right], & \vec{\omega}_{1}=\left[\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{Q}_{1} \\
R_{1}
\end{array}\right]
\end{array}
$$

Equation (4), when written in matrix form, becomes

$$
\begin{aligned}
& {\left[\begin{array}{l}
F_{1 X} \\
F_{1 Y} \\
F_{1 Z}
\end{array}\right]+m_{1}\left[\begin{array}{ccc}
B_{11}^{1} & B_{12}^{1} & B_{13}^{1} \\
B_{21}^{1} & B_{22}^{1} & B_{23}^{1} \\
B_{31}^{1} & B_{32}^{1} & B_{33}^{1}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
g
\end{array}\right]+\left[\begin{array}{ccc}
B_{11}^{1} & B_{12}^{1} & B_{13}^{1} \\
B_{21}^{1} & B_{22}^{1} & B_{23}^{1} \\
B_{31}^{1} & B_{32}^{1} & B_{33}^{1}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
\mathrm{B}_{11}^{2} & \mathrm{~B}_{21}^{2} & \mathrm{~B}_{31}^{2} \\
\mathrm{~B}_{12}^{2} & \mathrm{~B}_{22}^{2} & \mathrm{~B}_{31}^{2} \\
\mathrm{~B}_{13}^{2} & \mathrm{~B}_{23}^{2} & \mathrm{~B}_{33}^{2}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
\mathrm{~F}_{2}
\end{array}\right]} \\
& =\left\{m_{1}+\left[\begin{array}{lll}
m_{1 A X} & 0 & 0 \\
0 & m_{1 A Y} & 0 \\
0 & 0 & m_{1 A Z}
\end{array}\right]\right\}\left\{\left[\begin{array}{l}
\dot{U}_{1} \\
\dot{\mathrm{~V}}_{1} \\
\dot{W}_{1}
\end{array}\right]+\left[\begin{array}{lll}
0 & -R_{1} & Q_{1} \\
R_{1} & 0 & -P_{1} \\
-Q_{1} & P_{1} & 0
\end{array}\right]\left[\begin{array}{c}
U_{1} \\
\mathrm{~V}_{1} \\
W_{1}
\end{array}\right]\right\}(4 \mathrm{~B})
\end{aligned}
$$

Equation (4), in scalar form, is

$$
\begin{aligned}
& F_{1 X}+m_{1} B_{13}^{1} g+B_{S 1} F_{2}=\left(m_{1}+m_{1 A X}\right)\left(\dot{U}_{1}+W_{1} Q_{1}-V_{1} R_{1}\right) \\
& F_{1 Y}+m_{1} B_{23}^{1} g+B_{S 2} F_{2}=\left(m_{1}+m_{1 A Y}\right)\left(\dot{V}_{1}+U_{1} R_{1}-W_{1} P_{1}\right) \\
& F_{1 Z}+m_{1} B_{33}^{1} E+B_{S 3} F_{2}=\left(m_{1}+m_{1 A Z}\right)\left(\dot{W}_{1}+V_{1} P_{1}-U_{1} Q_{1}\right)
\end{aligned}
$$

where $\left\{\begin{array}{l}B_{S 1} \\ B_{S 2} \\ B_{S 3}\end{array}\right\}$ are the elements of the third column of the matrix $\left[B^{1}\right]\left[B^{2}\right]^{T}$

The aerodynamic forces are given by

$$
\begin{aligned}
& F_{1 X}=C_{N 1}\left(q_{1} S_{o 1}\right) \cos \beta_{1} \\
& F_{1 Y}=C_{N 1}\left(q_{1} S_{o 1}\right) \sin \beta_{1} \\
& F_{1 Z}=-C_{T 1}\left(q_{1} S_{o 1}\right)
\end{aligned}
$$

where $\beta_{1}=\tan ^{-1}\left(\frac{\mathrm{~V}_{1}}{\mathrm{U}_{1}}\right)$.
The moment equations about the parachute body axes fixed at the Center of Mass may be written

$$
\begin{equation*}
\overrightarrow{\mathrm{A}}_{1}=\dot{\vec{h}}_{1}+\vec{\omega}_{1} \times \overrightarrow{\mathrm{h}}_{1} \tag{5A}
\end{equation*}
$$

where $\vec{\omega}_{1}=\left[\begin{array}{l}P_{1} \\ Q_{1} \\ R_{1}\end{array}\right]$, the total angular velocity vector of body 1 and \vec{h}_{1} is the angular momentum vector of body 1 which can be written

$$
\vec{h}_{1}=[\mathrm{I}] \vec{\omega}_{1}=\left[\begin{array}{lll}
\mathrm{I}_{\mathrm{XX} 1} & 0 & 0 \\
0 & \mathrm{I}_{\mathrm{YY} 1} & 0 \\
0 & 0 & \mathrm{I}_{\mathrm{ZZ} 1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{Q}_{1} \\
\mathrm{R}_{1}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{P}_{1} & \mathrm{I}_{\mathrm{XX} 1} \\
\mathrm{Q}_{1} & \mathrm{I}_{\mathrm{YY} 1} \\
\mathrm{R}_{1} & \mathrm{I}_{\mathrm{ZZ} 1}
\end{array}\right]
$$

The apparent moments of inertia resulting from the air mass accelerations generated by the parachute rotational motions may be written assuming principal axes

$$
\left[\mathrm{I}_{\mathrm{A}}\right]=\left[\begin{array}{lll}
\mathrm{I}_{\mathrm{XXA} 1} & 0 & 0 \\
0 & \mathrm{I}_{\mathrm{YYA} 1} & 0 \\
0 & 0 & \mathrm{I}_{\mathrm{ZZA1}}
\end{array}\right]
$$

A combined moment of inertia matrix may be calculated, using the parallel axis theorem, and is written

$$
[\mathrm{I} \%]=\left[\begin{array}{lll}
\mathrm{I}_{\mathrm{XX} 1}^{*} & 0 & 0 \\
0 & \mathrm{I}_{\mathrm{YY} 1}^{*} & 0 \\
0 & 0 & \mathrm{I}_{\mathrm{ZZ} 1}^{*}
\end{array}\right]
$$

Hence, the moment equation may be writter

$$
\begin{align*}
& \left.\left[\begin{array}{l}
\mathrm{M}_{1 \mathrm{X}} \\
\mathrm{M}_{1 \mathrm{Y}} \\
\mathrm{M}_{1 \mathrm{Z}}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{I}_{\mathrm{XX} 1}^{*} & 0 & 0 \\
0 & \mathrm{I}_{\mathrm{YY} 1}^{*} & 0 \\
0 & 0 & \mathrm{I}_{\mathrm{ZZ} 1}^{*}
\end{array}\right]\left[\begin{array}{c}
\dot{\mathrm{P}}_{1} \\
\dot{\mathrm{Q}}_{1} \\
\dot{\mathrm{R}}_{1}
\end{array}\right] \quad \begin{array}{ccc}
0 & -\mathrm{R}_{1} & \mathrm{Q}_{1} \\
\mathrm{M}_{1} & 0 & -\mathrm{P}_{1} \\
-\mathrm{Q}_{1} & \mathrm{P}_{1} & 0
\end{array}\right] \\
& {\left[\begin{array}{lll}
\mathrm{I}_{\mathrm{XX} 1} & 0 & 0 \\
0 & \mathrm{I}_{\mathrm{YY} 1} & 0 \\
0 & 0 & \mathrm{I}_{\mathrm{ZZ} 1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{Q}_{1} \\
\mathrm{R}_{1}
\end{array}\right]} \tag{5B}
\end{align*}
$$

In scalar form, Equation (5B) becomes

$$
\begin{array}{ll}
M_{1 X}=I_{X X 1}^{*} & \dot{P}_{1}+\left(I_{Z Z 1}^{*}-I_{Y Y 1}\right) Q_{1} R_{1} \\
M_{1 Y}=I_{Y Y 1}^{*} & \dot{Q}_{1}+\left(I_{X X 1}^{*}-I_{Z Z 1}\right) R_{1} P_{1} \tag{5C}\\
M_{1 Z}=I_{Z Z 1}^{*} & \dot{R}_{1}+\left(I_{Y Y 1}^{*}-I_{X X 1}\right) P_{1} Q_{1}
\end{array}
$$

The moments acting about the CM location due to the external forces are in vector notation:

$$
\begin{equation*}
\vec{M}_{1}=\vec{F}_{1} \times \vec{L}^{2}+\left\{\left[B^{1}\right]\left[B^{2}\right]^{T} \vec{F}_{2}\right\} \times \vec{L}_{C_{M}} \tag{6A}
\end{equation*}
$$

where

$$
\overrightarrow{\mathrm{L}}=\left[\begin{array}{c}
0 \\
0 \\
\mathrm{~L}_{1}-\mathrm{L}_{\mathrm{C}_{\mathrm{M}}}
\end{array}\right] \quad, \quad \overrightarrow{\mathrm{L}}_{\mathrm{C}_{\mathrm{M}}}=\left[\begin{array}{c}
0 \\
0 \\
\mathrm{~L}_{\mathrm{C}_{\mathrm{M}}}
\end{array}\right]
$$

In matrix form

$$
\left[\begin{array}{l}
M_{1 X} \tag{6B}\\
M_{1 Y} \\
M_{1 Z}
\end{array}\right]=\left[\begin{array}{l}
F_{1 X} \\
F_{i Y} \\
F_{1 Z}
\end{array}\right] \times\left[\begin{array}{l}
0 \\
0 \\
L_{1}-L_{C_{M}}
\end{array}\right]-\left[\begin{array}{l}
F_{2} B_{S 1} \\
F_{2} B_{S 2} \\
F_{2} B_{S 3}
\end{array}\right] \times\left[\begin{array}{l}
0 \\
0 \\
L_{C_{M}}
\end{array}\right]
$$

or

$$
\begin{gathered}
{\left[\begin{array}{c}
M_{1 X} \\
M_{1 Y} \\
M_{1 Z}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -F_{1 Z} & F_{1 Y} \\
F_{1 Z} & 0 & -F_{1 X} \\
-F_{1 Y} & F_{1 X} & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
L_{1}-L_{C_{M}}
\end{array}\right]-} \\
{\left[\begin{array}{ccc}
0 & -F_{2} B_{S 3} & F_{2} B_{S 2} \\
F_{2} B_{S 3} & 0 & -F_{2} B_{S 1} \\
-F_{2} B_{S 2} & F_{2} B_{S 1} & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
L_{C_{M}}
\end{array}\right]}
\end{gathered}
$$

In scalar form, Equation (6, becomes:

$$
\begin{align*}
& M_{1 X}=F_{1 Y}\left(L_{1}-L_{C_{M}}\right)-F_{2} B_{S 2} L_{C_{M}} \\
& M_{1 Y}=-F_{1 X}\left(L_{1}-L_{C_{M}}\right)+F_{2} B_{S 1} L_{C_{M}} \tag{6C}\\
& M_{1 Z}=0
\end{align*}
$$

There are no external forces acting off the axis of symmetry, hence $M_{1 Z}=0$.

The moment equations can be written using moment coefficients for the contribution to the total external moment due to aerodynamic forces as in Equation (74).

The Payload (SRB) -- The equations of motion for the payload are written along the same lines as those for the parachute, with the exception that the apparent mass and moment of inertia effects are not included.

The force equations are written

$$
\begin{equation*}
\vec{F}_{3}+m_{g}\left[B^{3}\right] \vec{g}-\left[B^{3}\right]\left[B^{2}\right] \vec{F}_{2}=m_{3}\left(\vec{C}_{3}+\vec{\omega}_{3} \vec{x} C_{3}\right) \tag{7A}
\end{equation*}
$$

where

$$
\vec{C}_{3}=\left[\begin{array}{c}
U_{3} \\
V_{3} \\
W_{3}
\end{array}\right] \quad \text { and } \quad \vec{\omega}_{3}=\left[\begin{array}{c}
P_{3} \\
Q_{3} \\
R_{3}
\end{array}\right]
$$

Equation (7), in scalar form, becomes

$$
\begin{align*}
& F_{3 X}+m_{3} B_{13}^{3} g-B_{S 4} F_{2}=m_{3}\left(\dot{U}_{3}+W_{3} Q_{3}-V_{3} R_{3}\right) \\
& F_{3 Y}+m_{3} B_{23}^{3} g-B_{S 5} F_{2}=m_{3}\left(\dot{V}_{3}+U_{3} R_{3}-W_{3} P_{3}\right) \tag{7B}\\
& F_{3 Z}+m_{3} B_{33}^{3} g-B_{S 6} F_{2}=m_{3}\left(\dot{W}_{3}+V_{3} P_{3}-U_{3} Q_{3}\right)
\end{align*}
$$

where $\left\{\begin{array}{l}\mathrm{B}_{\mathrm{S} 4} \\ \mathrm{~B}_{\mathrm{S} 5} \\ \mathrm{~B}_{\mathrm{S} 6}\end{array}\right\} \begin{aligned} & \text { are the elements of the third column of the matrix } \\ & \text { operation }\left[\mathrm{B}^{3}\right]\left[\mathrm{B}^{2}\right]^{\mathrm{T}}\end{aligned}$

The aerodynamic sorces are given by

$$
\begin{aligned}
& r_{3 X}=C_{N 3} q_{3} S_{o 3} \cos \beta_{3} \\
& F_{3 Y}=C_{N 3} q_{3} S_{o 3} \sin \beta_{3} \\
& F_{3 Z}=-C_{T 3} q_{3} S_{o 3}
\end{aligned}
$$

where

$$
\beta_{3}=\tan ^{-1}\left(\frac{\mathrm{~V}_{3}}{\mathrm{U}_{3}}\right)
$$

The moment equations for the SRB are written

$$
\begin{align*}
& M_{3 X}=I_{X X 3} \dot{P}_{3}+\left(\mathrm{I}_{\mathrm{ZZ} 3}-\mathrm{I}_{\mathrm{YY} 3}\right) \mathrm{Q}_{3} \mathrm{R}_{3} \\
& \mathrm{M}_{3 \mathrm{Y}}=\mathrm{I}_{\mathrm{YY} 3} \dot{Q}_{3}+\left(\mathrm{I}_{\mathrm{XX} 3}-\mathrm{I}_{Z Z 3}\right) R_{3} \mathrm{P}_{3} \tag{8A}\\
& \mathrm{M}_{3 Z}=\mathrm{I}_{Z Z 3} \dot{R}_{3}+\left(\mathrm{I}_{\mathrm{YY} 3}-\mathrm{I}_{X X 3} 0 \mathrm{P}_{3} Q_{3}\right.
\end{align*}
$$

The moments acting about the CM location due to the external forces are

$$
\begin{aligned}
M_{3 X} & =-F_{3 Y} L_{4}-F_{2} B_{S 5} L_{3} \\
M_{3 Y} & =F_{3 X} L_{4}+F_{2} B_{S 4} L_{3} \\
M_{3 Z} & =0
\end{aligned}
$$

where L_{3} is the length from the SRB's attach point to its center of mass and L_{4} is the length from the center of mass to the center of pressure of the SRB. L4 is positive when measured from the center of mass in the direction of $+Z_{3}$.

The moment equations can be written using moment coefficients for the contribution to the total external momert due to aerodynamic forces as in Equation (75).

The Kinematics of Motion: The Riser Constraint
The riser, assumed for the time being to be of fixed length, provides a convenient method of interconnecting the equations of motion of the parachute and the payload. Consider the linear velocities at each end of the riser.

At the confluence point of the parachute suspension lines:

$$
\left[\mathrm{B}^{2}\right]^{\mathrm{T}}\left[\begin{array}{c}
\mathrm{U}_{2} \tag{9}\\
\mathrm{v}_{2} \\
\mathrm{w}_{2}
\end{array}\right]=\left[\mathrm{B}^{1} 7^{\mathrm{T}}\left\{\left[\begin{array}{c}
\mathrm{U}_{1} \\
\mathrm{v}_{1} \\
\mathrm{w}_{1}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{Q}_{1} \mathrm{~L}_{C_{M}} \\
-\mathrm{P}_{1} \mathrm{~L}_{\mathrm{C}} \\
0
\end{array}\right]\right\}\right.
$$

At the attach point on the payload:

$$
\left[\mathrm{B}^{2}\right\}^{T}\left\{\left[\begin{array}{l}
\mathrm{U}_{2} \tag{10}\\
\mathrm{v}_{2} \\
\mathrm{w}_{2}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{Q}_{2} \mathrm{~L}_{2} \\
-\mathrm{P}_{2} \mathrm{~L}_{2} \\
0
\end{array}\right]\right\}=\left[\mathrm{B}^{3}\right]^{\mathrm{T}}\left\{\left[\begin{array}{l}
\mathrm{U}_{3} \\
\mathrm{v}_{3} \\
\mathrm{w}_{3}
\end{array}\right]+\left[\begin{array}{c}
-\mathrm{Q}_{3} \mathrm{~L}_{3} \\
\mathrm{P}_{3} \mathrm{~L}_{3} \\
0
\end{array}\right]\right\}
$$

Subtracting Equation (9) from Equation (10), the linear velocities in the riser coordinate systems are eliminated:

$$
\begin{gather*}
{\left[\mathrm{B}^{2}\right]^{\mathrm{T}}\left[\begin{array}{l}
\mathrm{Q}_{2} \mathrm{~L}_{2} \\
-\mathrm{P}_{2} \mathrm{~L}_{2} \\
0
\end{array}\right]=\left[\mathrm{B}^{3}\right]^{\mathrm{T}}\left\{\left[\begin{array}{l}
\mathrm{U}_{3} \\
\mathrm{~V}_{3} \\
\mathrm{~W}_{3}
\end{array}\right]+\left[\begin{array}{c}
-\mathrm{Q}_{3} \mathrm{~L}_{3} \\
\mathrm{P}_{3} \mathrm{~L}_{3} \\
0
\end{array}\right]\right\}} \\
-\left[\mathrm{B}^{1}\right]^{\mathrm{T}}\left\{\left[\begin{array}{l}
\mathrm{U}_{1} \\
\mathrm{~V}_{1} \\
\mathrm{~W}_{1}
\end{array}\right]+\left[\begin{array}{l}
\mathrm{Q}_{1} \mathrm{~L}_{\mathrm{C}_{M}} \\
-\mathrm{P}_{1} \mathrm{~L}_{\mathrm{C}} \\
0
\end{array}\right]\right\} \tag{11}
\end{gather*}
$$

Differentiation of Equation (11) yields equations for \dot{Q}_{2}, \dot{P}_{2} and \dot{W}_{1} :

$$
\begin{array}{r}
\frac{d}{d t}\left[B^{2} \eta^{T}\left[\begin{array}{l}
Q_{2} L_{2} \\
-P_{2} L_{2} \\
0
\end{array}\right]+\left[B^{2} \eta^{T}\left[\begin{array}{l}
\dot{Q}_{2} L_{2} \\
-\dot{P}_{2} L_{2} \\
0
\end{array}\right]\right.\right. \\
=\frac{d}{d t}\left[B^{3}\right]^{T}\left\{\left[\begin{array}{l}
\mathrm{U}_{3} \\
\mathrm{~V}_{3} \\
\mathrm{~W}_{3}
\end{array}\right]+\left[\begin{array}{l}
-Q_{3} L_{3} \\
\mathrm{P}_{3} L_{3} \\
0
\end{array}\right]\right\}+\left[B^{3}\right]^{T}\left\{\left[\begin{array}{l}
\dot{U}_{3} \\
\dot{V}_{3} \\
\dot{W}_{3}
\end{array}\right]+\left[\begin{array}{l}
-\dot{L}_{3} L_{3} \\
\dot{P}_{3} L_{3} \\
0
\end{array}\right]\right\}
\end{array}
$$

$$
-\frac{d}{d t}\left[B_{1}\right]{ }^{T}\left\{\left[\begin{array}{l}
U_{1} \tag{12}\\
V_{1} \\
W_{1}
\end{array}\right]+\left[\begin{array}{l}
Q_{1} L_{C} C_{M} \\
-P_{1} L_{M} C_{M} \\
0
\end{array}\right]\right\}-\left[B^{1}\right]^{T}\left\{\left[\begin{array}{l}
\dot{U}_{1} \\
\dot{V}_{1} \\
\dot{W}_{1}
\end{array}\right]+\left[\begin{array}{l}
\dot{Q}_{1} L_{C} C_{M} \\
-\dot{P}_{1} L_{M} C_{M} \\
0
\end{array}\right]\right\}
$$

The third scalar equation of Equation (12) gives an expression fo' \dot{W}_{1} as follows:

$$
\begin{align*}
\dot{W}_{1} & =\frac{1}{B_{33}^{1}}-\left[\dot{B}_{13}^{2} Q_{2} L_{2}+\dot{B}_{23}^{2} P_{2} L_{2}-B_{13}^{2} \dot{Q}_{2} L_{2}+B_{23}^{2} \dot{P}_{2} I_{2}\right. \\
& +\dot{B}_{13}^{3}\left(U_{3}-Q_{3} L_{3}\right)+\dot{B}_{23}^{3}\left(V_{3}+P_{3} L_{3}\right)+\dot{B}_{33}^{3} W_{3} \\
& +B_{13}^{3}\left(\dot{U}_{3}-\dot{Q}_{3} L_{3}\right)+B_{23}^{3}\left(\dot{V}_{3}+\dot{P}_{3} L_{3}\right)+B_{33}^{3} \dot{W}_{3} \tag{13}\\
& -\dot{B}_{13}^{1}\left(U_{1}+Q_{1} L_{C_{M}}\right)-\dot{B}_{23}^{1}\left(V_{1}-P_{1} L_{C_{M}}\right)-\dot{B}_{33}^{1} W_{1} \\
& \left.-B_{13}^{1}\left(\dot{U}_{1}+\dot{Q}_{1} L_{C_{M}}\right)-B_{23}^{1}\left(\dot{V}_{1}-\dot{P}_{1} L_{C_{M}}\right)\right]
\end{align*}
$$

Expressions for $\dot{B}_{{ }^{\mathrm{j}}}^{\mathrm{j}}{ }_{3}, \dot{\mathrm{~B}}_{23}^{\mathrm{j}}$, and $\dot{\mathrm{B}}_{33}^{\mathrm{j}}$ from Equations (2), (3), and their deri-

$$
\begin{align*}
& \dot{B}_{13}^{j}=-Q_{j} B_{33}^{j}+R_{j} B_{23}^{j} \\
& \dot{B}_{23}^{j}=P_{j} B_{33}^{j}-R_{j} B_{13}^{j} \tag{14}\\
& \dot{B}_{33}^{j}=-P_{j} B_{23}^{j}+Q_{j} B_{13}^{j}
\end{align*}
$$

Substitution from Equation (14) into Equation (13) yields expressions for \dot{W}_{1} free of derivatives of $\dot{B}_{i k}^{j}$.
Similarly, we can obtain equations for \dot{Q}_{2} and $\dot{\mathrm{P}}_{2}$ from the first and second scalar equations of Equation (12).

The riser force F_{2} can be obtained from the third equation of Equation (4C) in terms of \dot{W}_{1} as given by Equation (13).

$$
\begin{equation*}
F_{2}=\frac{1}{\bar{B}_{S 3}-}\left\{\left(m_{1}+m_{1}\right)\left[\dot{W}_{1}+V_{1} P_{1}-U_{1} Q_{1}\right\rceil-F_{12}-m_{1} B_{33}^{1} g\right\} \tag{15}
\end{equation*}
$$

The riser force, of course, is directed along the Z axis of the riser reference frame.

System State Differential Equations for the Non-Elastic,
 Steady Airmass Case

Equations (3) to (8), (12), and (13) can be written in the following form:

$$
\begin{align*}
\dot{U}_{1}= & \frac{1}{m_{1}+m_{1} A X}\left\{F_{1 X}+m_{1} B_{13}^{1} g+F_{2} B_{S 1}\right\}-W_{1} Q_{1}+V_{1} R_{1} \tag{16}\\
\dot{V}_{1}= & \frac{1}{m_{1}+m_{1} A Y}\left\{F_{1 Y}+m_{1} B_{23}^{1} g+F_{2} B_{S 2}\right\}-U_{1} R_{1}+W_{1} P_{1} \tag{17}\\
\dot{W}_{1}= & \frac{1}{B_{33}^{1}}\left\{L _ { 2 } \left[Q_{2}\left(Q_{2} B_{33}^{2}-R_{2} B_{23}^{2}\right)+P_{2}\left(P_{2} B_{33}^{2} \cdot R_{2} B_{13}^{2}\right)\right.\right. \\
& \left.\left.-B_{13}^{2} \dot{Q}_{2}+B_{23}^{2} \dot{P}_{2}\right)\right]+\left(R_{3} B_{23}^{3}-Q_{3} B_{33}^{3}\right)\left(U_{3}-Q_{3} L_{3}\right) \\
& +B_{13}^{3}\left(\dot{U}_{3}-\dot{Q}_{3} L_{3}\right)+\left(P_{3} B_{33}^{3}-R_{3} B_{13}^{3}\right)\left(V_{3}+P_{3} L_{3}\right) \\
& +B_{23}^{3}\left(\dot{V}_{3}+\dot{P}_{3} L_{3}\right)+\left(Q_{3} B_{13}^{3}-P_{3} B_{23}^{3}\right)\left(W_{3}\right)+B_{33}^{3}\left(\dot{W}_{3}\right) \\
& -\left(R_{1} B_{23}^{1}-Q_{1} B_{33}^{1}\right)\left(U_{1}+Q_{1} L_{C_{M}}\right)-B_{13}^{1}\left(\dot{U}_{1}+\dot{Q}_{1} L_{C_{M}}\right) \tag{18}\\
& -\left(P_{1} B_{33}^{1}-R_{1} B_{13}^{1}\right)\left(V_{1}-P_{1} L_{C_{M}}\right)-B_{23}^{1}\left(\dot{V}_{1}-\dot{P}_{1} L_{C_{M}}\right) \\
& \left.-\left(Q_{1} B_{13}^{1}-P_{1} B_{23}^{1}\right)\left(W_{1}\right)\right\}
\end{align*}
$$

$$
\begin{align*}
& {\dot{\dot{v}_{3}}}=\frac{1}{m_{3}}\left\{F_{3 X}+m_{3} B_{13}^{3} g-F_{2} B_{S 4}\right\}-W_{3} Q_{3}+V_{3} R_{3} \tag{19}\\
& \dot{V}_{3}=\frac{1}{m_{3}}\left\{F_{3 Y}+m_{3} B_{23}^{3} g-F_{2} B_{S 5}\right\}-U_{3} R_{3}+W_{3} F_{3} \tag{20}\\
& \dot{w}_{3}=\frac{1}{m_{3}}\left\{F_{3 Z}+m_{3} B_{33}^{3} g-F_{2} B_{S 6}\right\}-V_{3} P_{3}+U_{3} Q_{3} \tag{21}\\
& \dot{P}_{1}=\frac{1}{I_{X X 1}^{*}}\left\{M_{1 \mathrm{X}}-\left(\stackrel{T}{Z Z 1}_{*}^{*}-\mathrm{I}_{\mathrm{Y} Y 1}^{*}\right) \mathrm{Q}_{1} \mathrm{R}_{1}\right\} \tag{22}\\
& \dot{Q}_{1}=\frac{1}{\Gamma_{Y Y 1}^{*}}\left\{M_{1 Y}-\left(\mathrm{I}_{X X 1}^{*}-I_{Z Z 1}^{*}\right) R_{1} P_{1}\right\} \tag{23}\\
& \dot{R}_{1}=\frac{1}{\mathrm{I}_{Z Z 1}^{*}}\left\{\mathrm{MI}_{1 Z}-\left(\mathrm{I}_{\mathrm{Y} Y \mathrm{Y} 1}^{*}-\mathrm{I}_{\mathrm{XX} 1}^{*}\right) \mathrm{P}_{1} \mathrm{Q}_{1}\right\} \tag{24}\\
& \dot{P}_{3}=\frac{1}{\mathrm{I}_{\mathrm{XX}} 3}\left\{\mathrm{M}_{3 \mathrm{X}}-\left(\mathrm{I}_{\mathrm{ZZ} 3}-\mathrm{I}_{\mathrm{YY} 3}\right) \mathrm{Q}_{3} \mathrm{R}_{3}\right\} \tag{25}\\
& \dot{Q}_{3}=\frac{1}{I_{Y Y 3}}\left\{M_{3 Y}-\left(I_{X X 3}-I_{Z Z 3}\right) R_{3} P_{3}\right\} \tag{26}\\
& \dot{R}_{3}=\frac{1}{\mathrm{I}_{Z Z 3}}\left\{\mathrm{M}_{3 Z}-\left(\mathrm{I}_{\mathrm{YY} 3}-\mathrm{I}_{\mathrm{XX} 3}\right) \mathrm{P}_{3} \mathrm{Q}_{3}\right\} \tag{27}\\
& \dot{\psi}_{j}=\left(Q_{j} \sin \phi_{j}+R_{j} \cos \phi_{j}\right) \sec \theta_{j}, j=1,2,3 \tag{28}\\
& \dot{\theta}_{j}=Q_{j} \cos \phi_{j}-R_{j} \sin \phi_{j}, j=1,2,3 \tag{31}\\
& \dot{\phi}_{j}=P_{j}+\left(Q_{j} \sin \phi_{j}+R_{j} \cos \phi_{j}\right) \tan \theta_{j}, j=1,2,3 \tag{34}\\
& \dot{P}_{2}=-\frac{1}{B_{22}^{2}}\left\{Q_{2}\left(Q_{2} B_{32}^{2}-R_{2} B_{22}^{2}\right)+P_{2}\left(P_{2} B_{32}^{2}-R_{2} B_{12}^{2}\right)-\dot{Q}_{2} B_{12}^{2}\right. \\
& +\frac{1}{L_{2}}\left[\left(R_{3} B_{22}^{3}-Q_{3} B_{32}^{3}\right)\left(U_{3}-Q_{3} L_{3}\right)+B_{12}^{3}\left(\dot{U}_{3}-\dot{Q}_{3} L_{3}\right)\right.
\end{align*}
$$

$$
\begin{align*}
& +\left(P_{3} B_{32}^{3}-R_{3} B_{12}^{3}\right)\left(V_{3}+P_{3} L_{3}\right)+B_{22}^{3}\left(\dot{V}_{3}+\dot{P}_{3} L_{3}\right) \\
& +\left(Q_{3} B_{12}^{3}-P_{3} B_{22}^{3}\right) W_{3}+B_{32}^{3}\left(\dot{W}_{3}\right) \tag{37}\\
& -\left(R_{1} B_{22}^{1}-Q_{1} B_{32}^{1}\right)\left(U_{1}+Q_{1} L_{C_{M}}\right)-B_{12}^{1}\left(\dot{U}_{1}+\dot{Q}_{1} L_{C_{M}}\right) \\
& -\left(P_{1} B_{32}^{1}-R_{1} B_{12}^{1}\right)\left(V_{1}-P_{1} L_{C_{M}}\right)-B_{22}^{1}\left(\dot{V}_{1}-\dot{P}_{1} L_{C_{M}}\right) \\
& \left.\left.-\left(Q_{1} B_{12}^{1}-P_{1} B_{22}^{1}\right) W_{1}-B_{32}^{1}\left(\dot{W}_{1}\right)\right]\right\} \\
\dot{Q}_{2}= & +\frac{1}{B_{11}^{2}}\left\{Q_{2}\left(Q_{2} B_{31}^{2}-R_{2} B_{21}^{2}\right)+P_{2}\left(P_{2} B_{31}^{2}-R_{2} B_{11}^{2}\right)+\dot{P}_{2} B_{21}^{2}\right. \\
& +\frac{1}{L_{2}}\left[\left(R_{3} B_{21}^{3}-Q_{3} B_{31}^{3}\right)\left(U_{3}-Q_{3} L_{3}\right)+B_{11}^{3}\left(\dot{U}_{3}-\dot{Q}_{3} L_{3}\right)\right. \\
& +\left(P_{3} B_{31}^{3}-R_{3} B_{11}^{3}\right)\left(V_{3}+P_{3} L_{3}\right)+B_{21}^{3}\left(\dot{V}_{3}+\dot{P}_{3} L_{3}\right) \\
& +\left(Q_{3} B_{11}^{3}-P_{3} B_{21}^{3}\right) W_{3}+B_{31}^{3}\left(\dot{W}_{3}\right) \tag{38}\\
& -\left(R_{1} B_{21}^{1}-Q_{4} B_{31}^{1}\right)\left(U_{1}+Q_{1} L_{C_{M}}\right)-B_{11}^{1}\left(\dot{U}_{1}+\dot{Q}_{1} L_{C_{M}}\right) \\
& -\left(P_{1} B_{31}^{1}-R_{1} B_{11}^{1}\right)\left(V_{1}-P_{1} L_{C_{M}}\right)-B_{21}^{1}\left(\dot{V}_{1}-\dot{P}_{1} L_{C_{M}}\right) \\
R_{2}= & 0 \\
& \left.\left.-\left(Q_{1} B_{11}^{1}-P_{1} B_{21}^{1}\right) W_{1}-B_{31}^{1}\left(\dot{W}_{1}\right)\right]\right\} \tag{39}\\
&
\end{align*}
$$

In the set of Equations (16) through (39), there are no terms involving the riser linear velocity components $\mathrm{U}_{2}, \mathrm{~V}_{2}, \mathrm{~W}_{2}$ or their derivatives.
The velocity of the SRB Center of Mass relative to the earth can be determined from Equations (19), (20), (21), the direction cosine matrix [B^{3}] given by Equation (2), and Equation (1C).

By integrating Equations (19), (20), and (21) and applying Equation (1C), the linear velocity components of the SRB Center of Mass in the Earth fixed reference frame will be:

$$
\begin{align*}
& \dot{X}_{E 3}=U_{3} B_{11}^{3}+V_{3} B_{21}^{3}+W_{3} B_{31}^{3} \tag{40}\\
& \dot{Y}_{E 3}=U_{3} B_{12}^{3}+V_{3} B_{22}^{3}+W_{3} B_{32}^{3} \tag{41}\\
& \dot{Z}_{E 3}=U_{3} B_{13}^{3}+V_{3} B_{23}^{3}+W_{3} B_{33}^{3} \tag{42}
\end{align*}
$$

Elastic Models

The entire parachute is made of elastic material and is subject to deformation under load. The riser too elongates when loaded. To account for any additional dynamics caused by the continuous dynamic flexing of the para-chute-riser system, two elastic models are employed.

The first is a canopy shape model which depends on the suspended load, the canory pressure distribution, the inflation condition, and the construction of the canopy (Ref. 4). Its use is independent of the simulation program but its result is an input to the simulation program.

The second is a damped spring mass model of the suspension lines and riser. The application of this model is dynamic in the simulation program.

Program CANO -- An elastic canopy shape analysis is done by Program CANO (Ref. 4).

For an assumed pressure distribution and an initial gore geometry specification (which assumes the canopy to be made up of discrete horizontal and radial elements) and a specified suspension line length and riser load the program solves for the equilibrium shape and loads of the discrete members.

The method assumes an elastic deformable frame (the canopy) under a specific load (the pressure distribution) to determine the loaded (equilibrium) shape. The pressure distribution is nondimensionalized by the length along the canopy surface. The load elongation curves are set for types of materials and are generalized as percentage of breaking strength and unit strain. Thus, only the type of materials and geometry of the gore need be specified.

For specific loading conditions such as reefed, fully open. overinflation lines, etc., the program iterates across the canopy surface, adjusting the
breaking strength of each member to equal the calculated load. This in turn adjusts the weight and then the equilibrium shape of the canopy. For the new breaking strengths of the members, a new equilibrium shape for the canopy and new loads for each element are calculated. The loads are compared to the most currently defined breaking strength, and when ail elements have breaking strengths within a range of zero to five percent more than the calculated load, the parachute is said to be optimized.

Using the assumption that for a particular material type (e.g., web, tape, or cord) the weight of a material is proportional to its breaking strength, the optimized weight of the radial and horizontal members and the suspension lines are calculated, and thus the weight of the total canopy is determined. From an input table of available materials characterized by breaking strength and type, which implies a load-strain characteristic and a parametric weight, materials are chosen that are the lightest available which meet the strength requirements for the calculated loads in individual elements. The "buildable" parachute weights are calculated and compared as non-optimum factors to the optimized parachute weights.

The program CANO can be applied to consecutive steps in the process of deployment. It can be used to calculate the optimum parachute to meet up to 21 loading conditions which are combinations of partial inflation, reefed skirt, overinflation lines, and fully open. Thus, an accurate estimate of canopy weight can be made for a particular set of loading and inflation conditions.

The canopy profile generated by CANO for a fully inflated 130 ft conical ribbon parachute with a $200,000 \mathrm{lb}$ suspended weight is shown in Figure 6.

Elastic Suspension Lines and Risers -- The suspension lines and risers generally used in parachute construction are quite elastic. The additional dynamics introduced by their elastic characteristics are to be included in the general equations of metion describing the parachute/riser/payload descent.

The geometry of the parachute and riser is shown in Figure 7. The elastic elements are the suspension lines (length L_{s}) and the riser (length L_{2}). Elongation of the suspension lines results in a change in che suspension line angle and hence the suspension line moments of inertia. There is also a change in the location of the center of mass of the parachute and a resulting change in the total moments of inertia of the parachute.

Two key assumptions are made:

- The canopy is fixed in shape and thus the skirt radius R_{o} is constant.
- The angle ietween the parachute axis of symmetry and the riser is always small. The riser force then is transmitted to the confluence point along the parachute axis of symmetry and thus the parachute remains axially symmetric. That is, the confluence point remains on the axis of symmetry and the suspension line cone remains right circular with variations in height only.

Figure 6. Fully Inflated Conical Ribbon Canopy Shape as Calculated by Program CANO (Ref. 4)

Figure 7. Parachute and Riser Geometry

The elastic elements are modeled as damped linearly elastic springs. The damping coefficient is taken as a representative value for dacron material (Ref. 5). Thus,

$$
\begin{equation*}
\zeta=0.05 \mathrm{lb} \mathrm{sec} / \mathrm{ft} \tag{43}
\end{equation*}
$$

The spring constants are determined as functions of the unstretched length, the elongation at break, the suspended load, and a safety factor of 3. Thus, for the riser,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{R}}=\frac{3 \mathrm{M}_{3} \mathrm{~g}}{1.2 \mathrm{~L}_{\mathrm{R}}} \quad 1 \mathrm{~b} / \mathrm{ft} \tag{44}
\end{equation*}
$$

where $\mathrm{M}_{3} \mathrm{~g}$ is the suspended weight
$L_{R_{0}}$ is the unstretched riser length

1. 2 represents 20% elongation at break
and 3 is a safety factor
For the suspension lines the suspended load is the load carried by each line so that

$$
\begin{equation*}
\mathrm{K}_{\mathrm{LS}}=\frac{3 \mathrm{M}_{3} \mathrm{~g}}{1.2 \mathrm{~L}_{\mathrm{So}^{\mathrm{NV}}}} \mathrm{lb} / \mathrm{ft} \tag{45}
\end{equation*}
$$

where L_{So} is the unstretched suspension line length and N is the number of suspension lines.

We can now model the dynamic length of the elastic elements for the suspension lines

$$
\begin{equation*}
\mathrm{L}_{\mathrm{S}}=\mathrm{L}_{\mathrm{So}} \cdot \frac{\left(\mathrm{~F}_{2}-\zeta \dot{\mathrm{L}}_{\mathrm{CM}}\right)}{\mathrm{NK}_{\mathrm{L}_{\mathrm{S}}} \cos \gamma}, \gamma=\tan ^{-1}\left(\frac{\mathrm{Ro}_{0}}{\mathrm{~L}_{\mathrm{S}}}\right) \tag{46}
\end{equation*}
$$

for the riser

$$
\begin{equation*}
L_{R}=L_{R o}+\frac{\left(F_{2}-\zeta \dot{L}_{2}\right)}{K_{R}} \tag{47}
\end{equation*}
$$

In Equation (46) L_{CM} is used in place of L_{S}. Differentiation of Equation (53) (yet to come) with respect to time validates this substitution provided that the suspension line angle is small and the included mass much greater than the canopy or suspension line mass.

The rate of change of lengths of the center of mass location and the riser are calculated using the central difference in average length divided by the change in time. Thus,

$$
\begin{aligned}
& \left.\frac{\mathrm{dL}_{2}}{\mathrm{dt}}\right|_{t-\Delta t}=\frac{\left.\overline{\mathrm{L}_{2}}\right|_{t-\Delta t \rightarrow t}-\overline{\mathrm{L}_{2}} \mid \mathrm{t}-2 \Delta t \rightarrow t-\Lambda t}{2 \Delta t} \\
& \left.\frac{\mathrm{dL}_{C_{M}}}{d t}\right|_{t-\Delta t}=\frac{\left.\overline{L_{C_{M 1}}}\right|_{t-\Delta t \rightarrow t}-\left.\left.\overline{L_{C}}\right|_{\mathrm{M}}\right|_{t-2 \Delta t \rightarrow t-\Delta t}}{2 \Delta t}
\end{aligned}
$$

where for example $\left.\overline{L_{2}}\right|_{t-\Delta t \rightarrow t}$ is the averaged riser length during the interval $t-\Delta t$ to t and $\left.\frac{d L_{2}}{d t}\right|_{t}$ is the time derivative of L_{2} at time t

$$
\left.\frac{d^{2} L_{2}}{d t^{2}}\right|_{t-\Delta t}=\frac{\left.\frac{d L_{2}}{d t}\right|_{t-\Delta t}-\left.\frac{d L_{2}}{d t}\right|_{t-2 \Delta t}}{\Delta t}
$$

$$
\begin{equation*}
\left.\frac{d^{2} L_{C_{M}}}{d t^{2}}\right|_{t-\Delta t}=\frac{\left.\frac{d L_{M}}{d t}\right|_{t-\Delta t}-\left.\frac{d L_{2}}{d t}\right|_{t-2 \Delta t}}{\Delta t} \tag{48}
\end{equation*}
$$

Parachute Center of Nlass Location -- The canopy is modeled as a semioblate spheroid whose height is 32.5% of the nominal diameter, D_{O} and whose radius is 36% of the nominal diameter.

The canopy volume is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{c}}=\frac{2}{3} \pi\left(0.325 \mathrm{D}_{\mathrm{o}}\right)\left(0.36 \mathrm{D}_{\mathrm{o}}\right)^{2} \tag{49}
\end{equation*}
$$

The included air mass is given by

$$
\begin{equation*}
m_{I}=v_{c} \rho \tag{50}
\end{equation*}
$$

where ρ is the air density.

The center of pressure and the center of mass of the canopy are both assumed to be located at the centroid of the canopy volume.

The suspension lines are modeled as thin rods laving uniform mass distribution as shown in Figure 8.

Figure 8. Suspe •. . .e Geometry
The suspension line angle is given $b y$

$$
\begin{equation*}
\gamma=\tan ^{-1}\left|\frac{R_{0}}{L_{S}}\right\rangle \tag{51}
\end{equation*}
$$

The center of mass of all the suspension lines is

$$
\begin{equation*}
\frac{A L C M}{2}=\frac{L_{S}}{2} \cos \gamma \tag{52}
\end{equation*}
$$

The center of mass location for the entire canopy then is given by the following relation

$$
\begin{equation*}
L_{C_{M}}=\frac{\frac{A L C M \times m_{c}}{2}+L_{1} \times m_{c}+L_{1} \times m_{I}}{m_{1}+m_{c}+m_{1}} \tag{53}
\end{equation*}
$$

Parachute moments of intrtia: Canopy moments of inertia written about the point " o " in Figure 6 in the plane of the skirt are

$$
\begin{align*}
& I_{Z Z}=\frac{2}{3} M_{c}\left(0.36 D_{o}\right)^{2} \\
& I_{X X}=I_{Y Y}=\frac{1}{3} M_{c}\left[\left(0.325 D_{o}\right)^{2}+\left(0.36 D_{o}\right)^{2}\right] \tag{54}
\end{align*}
$$

Suspension line momer.ts of inertia about the suspension linc sone center of mass location are

$$
\begin{align*}
\mathrm{I}_{Z Z} & =\frac{\mathrm{M}_{\ell} \mathrm{L}_{\mathrm{S}}^{2}}{12} \sin ^{2} \gamma \\
\mathrm{I}_{\mathrm{XX}} & =\mathrm{I}_{\mathrm{YY}}=\frac{\mathrm{M}_{\ell} \mathrm{L}_{S}^{2}}{12} \cos ^{2} \gamma \tag{55}
\end{align*}
$$

The apparent moments of inertia of the canopy written about the total parachute center of mass location are according to Reference 6:

$$
\begin{align*}
& \mathrm{I}_{\mathrm{ZZ}_{A_{1}}}=0.063 \rho\left(\mathrm{R}_{\mathrm{o}}\right)^{5} \\
& \mathrm{I}_{\mathrm{XX}_{\mathrm{A}_{1}}}=\mathrm{I}_{\mathrm{YY}_{\mathrm{A}_{1}}}=0.042 \rho\left(R_{o}\right)^{5}+\mathrm{M}_{1 \mathrm{~A}}\left(\mathrm{~L}_{1}-L_{C_{M}}\right)^{2} \tag{56}
\end{align*}
$$

The total Parachute moments of inertia about the total parachute center of mass location then are given by

$$
\begin{align*}
& I_{X X_{1}}^{*}=I_{Y Y_{1}}^{*}=\frac{M_{\ell} L_{S}^{2}}{12} \cos ^{2} \gamma+M_{c}\left(L_{C_{M}}-\frac{A L C M}{2}\right)^{2} \\
& +\frac{\mathrm{M}_{c}}{3}\left[\left(0.325^{2}+0.36^{2}\right) D_{o}^{2}\right] \\
& +M_{c}\left(A L C N-L_{C_{M}}\right)^{2}+0.042 \rho\left(R_{0}\right)^{5} \tag{57}\\
& +M_{1 A}\left(L_{1}-L_{C_{M}}\right)^{2} \\
& I_{Z Z_{1}}{ }^{*}=\frac{M_{\ell} L_{S}^{2}}{12} \sin ^{2} \gamma+\frac{2}{3} M_{c}\left(0.36 D_{o}\right)^{2} \\
& +0.063 \rho\left(R_{o}\right)^{5}
\end{align*}
$$

Additions to the nonlinear differential equations of motion. -- The inclusion of elasticity adds several terms to the differential equations of motion.

When writing the constraint equations which allow coupling of the motions of the parachute and SRB, the velocity of the confluence point relative to the center of mass location is amended to read

$$
\left\{\left[\begin{array}{ll}
\mathrm{U}_{1} & \tag{58}\\
\mathrm{~V}_{1} & \\
\mathrm{~W}_{1}+{\dot{L_{C}}}_{M}
\end{array}\right]+\left[\begin{array}{cc}
\mathrm{Q}_{1} & \mathrm{~L}_{C_{M}} \\
-\mathrm{P}_{1} & \mathrm{~L}_{C_{M}} \\
0
\end{array}\right]\right\}
$$

The velocity of the end of the riser at the payload attach point is rewritten

$$
\left\{\left[\begin{array}{l}
\mathrm{U}_{2} \tag{59}\\
\mathrm{v}_{2} \\
\mathrm{w}_{2}+\mathrm{L}_{2}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{Q}_{2} \mathrm{~L}_{2} \\
-\mathrm{P}_{2} \mathrm{~L}_{2} \\
0
\end{array}\right]\right\}
$$

Thus, with the addition of elasticity, the final constraint equation, corresponding to Equation (11) is:

Differentiating the constraint equation above results in

$$
\begin{align*}
& \frac{d}{d t}\left[\mathrm{~B}^{2}\right]^{\mathrm{T}}\left[\begin{array}{c}
\mathrm{Q}_{2} \mathrm{~L}_{2} \\
-\mathrm{P}_{2} \mathrm{~L}_{2} \\
\dot{L}_{2}
\end{array}\right]+\left[\mathrm{B}^{2}\right]^{\mathrm{T}}\left\{\left[\begin{array}{c}
\dot{Q}_{2} \mathrm{~L}_{2}+\dot{\mathrm{L}}_{2} \mathrm{Q}_{2} \\
-\dot{\mathrm{P}}_{2} \mathrm{~L}_{2}-\dot{\mathrm{L}}_{2} \mathrm{P}_{2} \\
\ddot{\mathrm{~L}}_{2}
\end{array}\right]\right\} \\
& =\frac{d}{d t}\left[B^{3}\right]^{T}\left\{\left[\begin{array}{l}
U_{3} \\
v_{3} \\
w_{3}
\end{array}\right]+\left[\begin{array}{c}
-Q_{3} L_{3} \\
\mathrm{P}_{3} L_{3} \\
0
\end{array}\right]\right\} \\
& +\left[\mathrm{B}^{3}\right]^{\mathrm{T}}\left\{\left[\begin{array}{c}
\dot{\mathrm{U}}_{3} \\
\dot{\mathrm{~V}}_{3} \\
\dot{\mathrm{~W}}_{3}
\end{array}\right]+\left[\begin{array}{c}
\dot{Q}_{3} \mathrm{~L}_{3} \\
\dot{\mathrm{P}}_{3} \mathrm{~L}_{3} \\
0
\end{array}\right]\right\} \tag{61}\\
& -\frac{d}{d t}\left[B^{1}\right]^{T}\left\{\left[\begin{array}{l}
U_{1} \\
\mathrm{~V}_{1} \\
\mathrm{w}_{1}+\mathrm{L}_{\mathrm{M}}
\end{array}\right]+\left[\begin{array}{c}
\mathrm{Q}_{1} \mathrm{~L}_{\mathrm{C}} \mathrm{C}_{M} \\
-\mathrm{P}_{1} \mathrm{~L}_{\mathrm{M}} \\
0
\end{array}\right]\right\}
\end{align*}
$$

From Equation (61) we can obtain expressions for $\dot{W}_{1}, \dot{\mathrm{P}}_{2}, \dot{\mathrm{Q}}_{2}$.
Equations (16) to (39) describe the nonelastic differential equations of motion. Equations for \dot{W}_{1}, \dot{P}_{2}, and $\dot{Q}_{2}[(18),(37)$, and (38)] are rewritten here to incorporate the changes due to the inclusion of elasticity.

$$
\begin{align*}
\dot{W}_{1} & =\frac{1}{B_{33}^{1}}\left\{L _ { 2 } \left[Q_{2}\left(Q_{2} B_{33}^{2}-R_{2} B_{23}^{2}\right)+P_{2}\left(P_{2} B_{33}^{2}-R_{2} B_{13}^{2}\right)\right.\right. \\
& \left.-B_{13}^{2} \dot{Q}_{2}+B_{23}^{2} \dot{P}_{2}\right]+\dot{L}_{2}\left[2\left(P_{2} B_{23}^{2}-Q_{2} B_{13}^{2}\right)\right]+\ddot{L}_{2} B_{33}^{2} \\
& +\left(R_{3} B_{23}^{3}-Q_{3} B_{33}^{3}\right)\left(U_{3}-Q_{3} L_{3}\right)+B_{13}^{3}\left(\dot{U}_{3}-\dot{Q}_{3} L_{3}\right) \\
& +\left(P_{3} B_{33}^{3}-R_{3} B_{13}^{3}\right)\left(V_{3}+P_{3} L_{3}\right)+B_{23}^{3}\left(\dot{V}_{3}+\dot{P}_{3} L_{3}\right) \tag{62}\\
& +\left(Q_{3} B_{13}^{3}-P_{3} B_{23}^{3}\right)\left(W_{3}\right)+B_{33}^{3}\left(\dot{W}_{3}\right) \\
& -\left(R_{1} B_{23}^{1}-Q_{1} B_{33}^{1}\right)\left(U_{1}+Q_{1} L_{C} C_{M}\right)-B_{13}^{1}\left(\dot{U}_{1}+\dot{Q}_{1} L_{C} C_{M}+Q_{1} \dot{L}_{C_{M}}\right) \\
& -\left(P_{1} B_{33}^{1}-R_{1} B_{13}^{1}\right)\left(V_{1}-P_{1} L_{C} C_{M}\right)-B_{23}^{1}\left(\dot{V}_{1}-\dot{P}_{1} L\right. \\
& \left.\left.\left.-\left(Q_{1} B_{13}^{1}-P_{1} B_{23}^{1}\right)\left(W_{1}\right)+\ddot{L}_{M}\right)\right\}-\ddot{L}_{C_{M}}\right)
\end{align*}
$$

$$
\begin{align*}
& \dot{P}_{2}=-\frac{1}{\mathrm{~B}_{22}^{2}}\left\{\mathrm{Q}_{2}\left(\mathrm{Q}_{2} \mathrm{~B}_{32}^{2}-\mathrm{R}_{2} \mathrm{~B}_{22}^{2}\right)+\mathrm{P}_{2}\left(\mathrm{P}_{2} \mathrm{~B}_{32}^{2}-\mathrm{R}_{2} \mathrm{~B}_{12}^{2}\right)\right. \\
& -\dot{Q}_{2} \mathrm{~B}_{12}^{2}+\frac{1}{\mathrm{~L}_{2}}\left[\dot{L}_{2}\left(2\left(\mathrm{P}_{2} \mathrm{~B}_{22}^{2}-\mathrm{Q}_{2} \mathrm{~B}_{12}^{2}\right)\right)-\mathrm{B}_{32}^{2} \ddot{\mathrm{~L}}_{2}\right. \\
& +\left(R_{3} B_{22}^{3}-Q_{3} B_{32}^{3}\right)\left(U_{3}-Q_{3} L_{3}\right)+B_{12}^{3}\left(\dot{U}_{3}-\dot{Q}_{3} L_{3}\right) \\
& +\left(P_{3} B_{32}^{3}-R_{3} B_{12}^{3}\right)\left(V_{3}+P_{3} L_{3}\right)+B_{22}^{3}\left(\dot{\mathrm{~V}}_{3}+\dot{P}_{3} L_{3}\right) \\
& +\left(\mathrm{Q}_{3} \mathrm{~B}_{12}^{3}-\mathrm{P}_{3} \mathrm{~B}_{22}^{3}\right)\left(\mathrm{W}_{3}\right)+\mathrm{B}_{32}^{3}\left(\dot{\mathrm{~W}}_{3}\right) \tag{63}\\
& -\left(R_{1} B_{22}^{1}-Q_{1} B_{32}^{1}\right)\left(U_{1}+Q_{1} L_{C_{M}}\right)-B_{12}^{1}\left(\dot{U}_{1}+\dot{Q}_{1} L_{C_{M}}+Q_{1} \dot{L}_{C_{M}}\right) \\
& -\left(P_{1} B_{32}^{1}-R_{1} B_{12}^{1}\right)\left(V_{1}-P_{1} L_{C}\right)-B_{22}^{1}\left(\dot{V}_{1}-\dot{P}_{1} L_{C_{M}}-P_{1} \dot{L}_{C}\right) \\
& \left.-\left(Q_{1} B_{12}^{1}-P_{1} B_{22}^{1}\right)\left(W_{1}+\dot{L}_{C}\right)-B_{32}^{1}\left(\dot{W}_{1}+\ddot{L}_{C_{M}}\right)\right\} \\
& \dot{Q}_{2}=\frac{1}{\mathrm{~B}_{11}^{2}}\left\{\mathrm{Q}_{2}\left(\mathrm{Q}_{2} \mathrm{~B}_{31}^{2}-\mathrm{R}_{2} \mathrm{~B}_{21}^{2}\right)+\mathrm{P}_{2}\left(\mathrm{P}_{2} \mathrm{~B}_{31}^{2}-\mathrm{R}_{2} \mathrm{~B}_{11}^{2}\right)+\dot{\mathrm{P}}_{2} \mathrm{~B}_{21}^{2}\right. \\
& +\frac{1}{\mathrm{~L}_{2}}\left[\dot{\mathrm{~L}}_{2}\left(2\left(\mathrm{P}_{2} \mathrm{~B}_{21}^{2}-\mathrm{Q}_{2} \mathrm{~B}_{21}^{2}\right)\right)-\mathrm{B}_{31}^{2} \ddot{\mathrm{~L}}_{2}\right. \\
& +\left(R_{3} B_{21}^{3}-Q_{3} B_{31}^{3}\right)\left(U_{3}-Q_{3} L_{3}\right)+B_{11}^{3}\left(\dot{U}_{3}-\dot{Q}_{3} L_{3}\right) \\
& +\left(P_{3} B_{31}^{3}-R_{3} B_{11}^{3}\right)\left(V_{3}+P_{3} L_{3}\right)+B_{21}^{3}\left(\dot{V}_{3}+\dot{P}_{3} L_{3}\right) \\
& +\left(Q_{3} B_{11}^{3}-P_{3} B_{21}^{3}\right)\left(W_{3}\right)+B_{31}^{3}\left(\dot{W}_{3}\right) \\
& -\left(R_{1} B_{21}^{1}-Q_{1} B_{31}^{1}\right)\left(U_{1}+Q_{1} L_{C_{M}}\right)-B_{11}^{1}\left(\dot{U}_{1}+\dot{Q}_{1} L_{C_{M}}+Q_{1} \dot{L}_{C_{M}}\right) \\
& -\left(P_{1} B_{31}^{1}-R_{1} B_{11}^{1}\right)\left(V_{1}-P_{1} L_{C}\right)-B_{21}^{1}\left(\dot{V}_{1}-\dot{P}_{1} L_{C_{M}}-P_{1} \dot{L}_{C_{M}}\right) \\
& -\left(Q_{1} B_{11}^{1}-P_{1} B_{21}^{1}\right)\left(W_{1}+\dot{L}_{C_{M}}\right)-B_{31}^{1}\left(\dot{W}_{1}+\ddot{L}_{C_{M}}\right)
\end{align*}
$$

DEVELOPMENT OF AN AERODYNAMIC FORCE AND MOMENT SYSTEM IN AN UNSTEADY AIRMASS

The application of aerodynamic forces and moments in the simulation program is described in this section along with the models describing the nonsteady air mass and their effect on the aerodynamic forces and moments.

Least squares polynomial curve fits to the aerodynamic coefficients data as given in References 9 and 10 provide a convenient method of representation of the normal, tangential, and moment coefficients as functions of the angle of attack for the parachute and SRB. The parachute force and moment system is shown in Figure 9 followed by the normal and tangent force and moment coefficients curve fits in Figures 10, 11, and 12, respectively.

The SRB force and moment system is illustrated in Figure 13 and the SRB normal and tangent force and moment coefficients curve fits in Figures 14, 15 , and 16 , respectively.

Wind and gust models. -- To deiermine water entry characteristics of the SRB, the effects of winds and gusts near the surface of the earth on the attitude of the descending SRB must be accounted for.

Wind and gust models to provide inputs to the recovery simulation as required by the contracting agency are described as adapted from Reference 7 and Reference 8, respectively.

Wind model: The recovery analy - - of the space shuttle Solid Rocket Booster (SRB) requires steady-state winds to be defined in the layer of air between sea level and 3281 ft (1 KM). The following is the recommended 5% risk steady-state wind profile of Reference 7.

$$
\begin{align*}
& V_{\text {wind }(\mathrm{h})}=\mathrm{V}_{\text {wind }\left(\mathrm{h}_{\mathrm{o}}\right)} \frac{\mathrm{h}^{\mathrm{p}}}{582} 0 \leq \mathrm{h} \leq 582 \mathrm{ft} \\
& \mathrm{~V}_{\text {wind }(\mathrm{h})}=\mathrm{V}_{\text {wind }\left(\mathrm{h}_{\mathrm{o}}\right)} 582 \leq \mathrm{h} \leq 3281 \mathrm{ft} \\
& V_{\text {wind }\left(\mathrm{h}_{\mathrm{o}}\right)}=69 \mathrm{fps} \tag{65}\\
& \mathrm{~h}_{\mathrm{o}}=3281 \mathrm{ft} \\
& \mathrm{P}=0.21
\end{align*}
$$

The steady-state wind profile is shown in Figure 15.

Figure 9. Parachute Force and Moment System

.25 .50 .75

Figure 10. Polynomial Curve Fit to Normal Force Coeffi-
cients for a 20° Conical Ribbon Parachute
$\stackrel{5}{5}$
$\begin{array}{ll}l \\ \text { Coefficients } \\ \text { X0 } & .2172 \mathrm{E}-11 \\ \text { X1 } & .3795 \\ \text { X2 } & -.9339 \mathrm{E}-11 \\ \text { X3 } & .3631 \\ \text { RMS Error }=.1061-01\end{array}$

Figure 11. Polynomial Curve Fit to Tangential Force Coefficients for a 20° Conical Ribbon Parachute
Coeffieients

${ }^{C_{T}}$

—Curve Fit

Experimental Data
Curve Fit

.40 .60

$$
\begin{array}{rlll}
-.60 & -.40 & -.20 & 0 \\
& & a_{1}(\mathrm{rad})
\end{array}
$$

- Curve Fit
Figure 12. Polynomial Curve Fit to Moment Coefficients for a 70°
$C_{M_{1}}$

- Curver
A as.nnว โe!

T Conical Ribbon Parachute

Figure 13. SRB Force and Moment System

Figure 14. Polynomial Curve Fit to Normal Force Coefficients

Figure 15. $\begin{aligned} & \text { Polynomial Curve Fit to the Tangent Force Coefficients } \\ & \text { for the SRB }\end{aligned}$
t^{m}

Coefficients	
X0	.6989
X1	$.1915 E-08$
X2	12.56
X3	$-.1682 \mathrm{E}-07$
$\mathrm{X4}$	-35.39
$\mathrm{X5}$	$2803 \mathrm{E}-07$
$\mathrm{X6}$	31.88

 $a_{3}(\mathrm{rad})$
Figure 16. Polynomial Curve Fit to the Mom. it Coefficients of the

x Experimental Data
_Curve Fit
0^{m}

Gust model: Associated with the steady-state wind profile (air mass velocity field) is a discrete gust environment. The gust amplitude represents a step velocity change in the air mass velocity field. The maximum gust amplitude envelope associated with the 5% risk steady-state wind profile as recommended by Reference 8 is as follows:

$$
\begin{align*}
V_{\text {gust }} & =19.7 \mathrm{fps} 0 \leq \mathrm{h} \leq 980 \mathrm{ft} \\
\mathrm{~V}_{\text {gust }} & =\frac{9.8}{2301}(\mathrm{~h}-980)+19.7980 \leq \mathrm{h} \leq 3281 \mathrm{ft}(66 \tag{66}\\
V_{\text {© } 1 \mathrm{st}} & =29.7 \mathrm{fps} \mathrm{~h}>3281 \mathrm{ft}
\end{align*}
$$

The gust envelope is superimposed on the steady-state wind profile in Figure 17.

Relative velocity vector: The aerodynamic forces and moments are functions of the angle of attack, the altitude, the nominal area, a reference length for the moments, and the velocity vector of the center of mass with respect to the wind.

The velocity field of the moving air mass can be written

$$
\overrightarrow{\mathrm{V}}_{\text {wg }}=\overrightarrow{\mathrm{V}}_{\text {wind }}+\overrightarrow{\mathrm{V}}_{\text {gust }}
$$

where
$\vec{V}_{w g}$ is the velocity field vector
$\vec{V}_{\text {wind }}$ is the mean wind velocity field vector
$\vec{V}_{\text {gust }}$ is the gust velocity field vector
and all are, in general, altitude dependent.
The influence of the motion of the air on the body aerodynamics is accounted for by determining the velocity of the body with respect to the air to be used in developing the aerodynamic forces and mon..nts. The relative motion of the center of pressure appears then as

$$
\begin{equation*}
\overrightarrow{\mathrm{V}}_{\mathrm{a}}=\overrightarrow{\mathrm{C}}+\vec{\omega} \times \stackrel{\rightharpoonup}{\mathrm{L}}-\left[\mathrm{B}^{\mathrm{i}}\right] \overrightarrow{\mathrm{V}}_{\mathrm{wg}} \tag{67}
\end{equation*}
$$

Figure 17. Mean Wind Profile and Gust Envelope (Refs, 7 and 8)
where
\vec{C} is the velocity of the center of mass with respect to the earth in body coordinate directions
$\vec{\omega}$ is the angular velocity of the body
$\overrightarrow{\mathrm{I}}$. is the vector from the body CM to the body CP
Written in matrix form, for body i

Tiese are the velocity components used to determine the aerodynamic forces and moments.

Elsewhere in the dynamical equations, inertial velocities are used.
The angle of attack is given by

The side slip angle is defined as

$$
\begin{equation*}
\beta_{i}=\operatorname{Tan}^{-1}\left[\frac{{ }^{v_{a_{Y}}}}{} \frac{{ }^{v_{a_{X}}}}{}\right] \tag{70}
\end{equation*}
$$

Aerodynamic Forces and Moments
The aerodynamic forces acting on the parachute can be written in the body fixed axes directions.

$$
\left[\begin{array}{c}
{ }_{F_{1}} \tag{71}\\
{ }^{F_{1}}{ }_{Y} \\
{ }^{F_{1}}{ }_{Z}
\end{array}\right]=\left[\begin{array}{cc}
C_{N_{1}} & \operatorname{Cos} \beta_{1} \\
C_{N_{1}} & \operatorname{Sin} \beta_{1} \\
{ }^{C_{T_{1}}}
\end{array}\right]\left[\begin{array}{ccc}
q_{1} S_{o_{1}} & 0 & 0 \\
0 & q_{1} S_{o_{1}} & 0 \\
0 & 0 & -q_{1} S_{o_{1}}
\end{array}\right]
$$

Similarly for the SRB the aerodynamic force in the body fixed directions are

$$
\left[\begin{array}{c}
\mathrm{F}_{3} \tag{72}\\
\mathrm{~F}_{3_{Y}} \\
\mathrm{~F}_{3_{\mathrm{Z}}}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{C}_{\mathrm{N}_{3}} & \operatorname{Cos} \beta_{3} \\
\mathrm{C}_{\mathrm{N}_{3}} & \operatorname{Sin} \beta_{3} \\
\mathrm{C}_{\mathrm{T}_{3}}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{q}_{3} \mathrm{~S}_{\mathrm{o}_{3}} & 0 & 0 \\
0 & \mathrm{q}_{3} \mathrm{~S}_{o_{3}} & 0 \\
0 & 0 & -\mathrm{q}_{3} \mathrm{~S}_{\mathrm{o}_{3}}
\end{array}\right]
$$

In general aerodynamic moments are written in terms of a moment coefficient (C_{M}) and a reference length (MRP). The aerodynamic moments then about the X and Y body fixed axes whose origin is located at the MRP can be written.

$$
\begin{gather*}
{\left[\begin{array}{l}
M_{1_{X}} \\
M_{1_{Y}}
\end{array}\right]=\left[\begin{array}{cc}
C_{M} & \operatorname{Sin} \beta_{1} \\
C_{M} & \operatorname{Cos} \beta_{1}
\end{array}\right]\left[\begin{array}{ccc}
-q_{1} S_{o_{1}} & M R P & 0 \\
& 0 & \\
& q_{1} S_{o_{1}} & M R P
\end{array}\right]} \tag{73}\\
q_{i}=\frac{1}{2} \rho_{\mathrm{a}_{i}}
\end{gather*}
$$

The monient reference point length (MRP) for parachutes is generally one nominal diameter aroad of the skirt plane.

To write the aerodynamic moments about the body fixed axes system located at the body center of mass, new MRP lengths must be defined.

The normal force is experimentally measured at the vent of the parachute. The height of the canopy plus the moment reference length is given by

$$
0.325 \mathrm{D}_{0}+\mathrm{D}_{0}=1.325 \mathrm{D}_{0}
$$

The moment then is

$$
N\left(1.325 D_{0}\right) \text {, where } N \text { is the normal force }
$$

The distance from the vent to the center of mass of the parachute is given by

$$
0.325 \mathrm{D}_{\mathrm{o}}+\mathrm{ALCM}-\mathrm{LCM}
$$

The functional form then of the aerodynamic moments acting on the parachute written about the body fixed axes located at the parachute center of mass is

$$
\begin{aligned}
& {\left[\begin{array}{l}
M_{1_{1}} \\
{ }^{M_{1}} \\
1_{Y}
\end{array}\right]=\left[\begin{array}{ll}
C_{M_{1}} & \operatorname{Sin} \beta_{1} \\
C_{M_{1}} & \operatorname{Cos} \beta_{1}
\end{array}\right] .} \\
& {\left[\begin{array}{ccc}
-q_{1} S_{o_{1}} \frac{D_{0}\left(0.325 D_{0}+A L C M-L C M\right)}{1.325 D_{0}} & 0 \\
0 & q_{1} S_{o_{1}} & \frac{D_{0}\left(0.325 D_{o}+A L C M-L C M\right)}{1.325 D_{0}}
\end{array}\right]}
\end{aligned}
$$

The SRB aerodynamic moment coefficients are defined by

$$
C_{M_{3}}=\frac{N\left(L_{3}+L_{4}\right)}{\frac{1}{2} \circ V_{a_{3}}^{2} S_{3} D_{3}} \text {, where } N \text { is the normal force }
$$

The functional form of the aerodynamic moments acting on the SRB written about the body fixed axes located at the SRB center of mass due to aerodynamic normal forses acting at the center of pressure is

$$
\left[\begin{array}{l}
M_{3_{x}} \tag{75}\\
M_{3}
\end{array}\right]=\left[\begin{array}{ll}
C_{M_{3}} & \operatorname{Sin} \beta_{3} \\
C_{M_{3}} & \operatorname{Cos} \beta_{3}
\end{array}\right]\left[\begin{array}{cc}
q_{3} S_{o_{3}}\left(\frac{D_{3} L_{4}}{L_{3}+L_{4}}\right) & 0 \\
0 & q_{3} S_{o_{3}} \frac{D_{3} L_{4}}{\left(L_{3}+L_{4}\right)}
\end{array}\right]
$$

LINEARIZATION OF THE EQUATIONS OF MOTION

Application of the root locus stability analysis techniques to the solution of the SRB recovery problem requires a linearized system of equations of mution. One method of linearization is to choose a reference state, say vertical descent, and define small disturbances about this state. After linearizing the aerodynamic coefficients with respect to small changes in angle of attack and making appropriate substitutions, the linearized state is obtained by neglecting terms of order 2 and higher. This is a cumbersome task and the result is applicable only to the particular reference state originally chosen.

A more general linearization method results from numerical techniques developed in Reference 11.

Linearization Technique

For a nonlinear system of equations implicit in time, the state can be represented as

$$
\begin{equation*}
\dot{\vec{x}}=f(\bar{x}, \dot{\bar{x}}) \tag{76}
\end{equation*}
$$

where

$$
\begin{gathered}
\overline{\mathbf{x}}=\overline{\mathbf{x}}(t) \\
\dot{\bar{x}}=\frac{d}{d t}(\bar{x}(t)) \\
t=\text { time }
\end{gathered}
$$

We want to linearize the vector nonlinear differential equations represented by Equation (76) at a particular point in time t_{0}.

The methodology is to calculate the nonlinear solution of $\dot{\bar{x}}$ until $t=t_{0}$ and then use the nonlinear solution at t_{0} as the reference state about which the equations of motion are linearized.

Let \vec{x} be the nonlinear solution of Equation (76) at time t_{o} and \tilde{x} be the linearized solution at t_{0} :
$\overline{\mathrm{x}}$ is known
\tilde{x} is to be numerically derived
more explicitly

$$
F_{\bar{x}}(\bar{x}, \bar{x})=\left[\begin{array}{ccc}
\frac{\partial}{\partial x_{1}} f_{1}(\bar{x}, \bar{x}), \ldots, \frac{\partial}{\partial x_{n}} & f_{1}(\bar{x}, \dot{\bar{x}}) \tag{77}\\
\vdots & \vdots \\
\frac{\partial}{\partial x_{1}} f_{n}(\bar{x}, \dot{\bar{x}}), \ldots, \frac{\partial}{\partial x_{n}} f_{n}(\bar{x}, \bar{x})
\end{array}\right]
$$

Here

$$
f=\left[\begin{array}{c}
\\
{ }^{1} 1 \\
f_{2} \\
f_{3} \\
\vdots \\
f_{n}
\end{array}\right] \quad \bar{x}=\left[\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2} \\
\cdot \\
\cdot \\
\cdot \\
\bar{x}_{n}
\end{array}\right]
$$

for a system of n equations.
The matrix $F_{x}(x, x)$ represents the first partial derivatives of each state equation with respect to each state variable. The elements of $F_{x}(\bar{x}, \bar{x})$ are determined by the central differsnce quotient

$$
\frac{\partial f_{i}}{\partial \bar{x}_{j}}=\frac{f_{i}\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{j}+\Delta \bar{x}_{j}, \ldots, \bar{x}_{n}\right)-f_{i}\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{j}-\Delta \bar{x}_{j}, \ldots, \bar{x}_{n}\right)}{2 \Delta \bar{x}_{j}}
$$

where Δx_{j} is taken to be 1 percent of X_{j}.

Further, let $\overrightarrow{\boldsymbol{\xi}}=\tilde{\mathbf{x}}-\overline{\mathbf{x}}$ be the disturbance vector about $\overline{\mathbf{x}}$. Differentiation yields

$$
\begin{equation*}
\dot{\vec{\xi}}=\dot{\tilde{x}}-\dot{\bar{x}}=\mathrm{f}(\tilde{x}, \dot{\vec{x}})-\mathrm{f}(\overline{\mathrm{x}}, \dot{\bar{x}}) \tag{79}
\end{equation*}
$$

Rearranging terms

$$
\begin{gathered}
\dot{\vec{x}}=\dot{\vec{x}}-\dot{\vec{\xi}} \\
\dot{\vec{\xi}}=f(\bar{x}+\bar{\varepsilon}, \dot{\bar{x}}+\dot{\vec{\xi}})-f(\bar{x}, \dot{\bar{x}}) .
\end{gathered}
$$

The mean value theorem of differential calculus allows

$$
\begin{equation*}
\dot{\bar{\xi}}=f(\bar{x}+\bar{\xi}, \dot{\bar{x}}+\dot{\bar{\xi}}) \simeq F_{\bar{x}}(\bar{x}, \bar{x}) \bar{\xi} \tag{80}
\end{equation*}
$$

where

$$
F_{\overline{\bar{x}}}(\bar{x}, \dot{\bar{x}})=\frac{\partial \mathrm{f}(\overline{\mathrm{x}}, \dot{\bar{x}})}{\partial \overline{\mathrm{x}}}
$$

and $\Delta \bar{x}_{j}$ is the disturbance of the element, \bar{x}_{j}, of \bar{x}.
Equation (80) can be solved using the matrix of partial derivatives (77). The solution, call it \bar{y}, is linear and the desired linearized state is found

$$
\begin{equation*}
\tilde{\mathbf{x}}=\overline{\mathbf{x}}+\overline{\mathbf{y}} . \tag{81}
\end{equation*}
$$

Eigenvalues

Manipulation of the coefficients matrix of Equation (80) results in an $n^{\text {th }}$ degree characteristic polynomial whose n roots are the eigenvalues.

Actually the solution to Equation (80) is not found because only the eigenvalues are required. The matrix of system (80) is transformed to Upper Hessenberg form. Using a Q-R procedure with double iterations and a convergence check, the eigenvalues to Equation (80) are approximated.

The eigenvalues are of the form
$\sigma \pm j \omega$
where σ is the real part
ω is the damped frequency
j is $\sqrt{-1}$

STABILITY ANALYSIS TECHNIQUE

The Root locus technique plots the eigenvalues on a complex plane. The relative stability and transient performance of the system are directly related to the position of the eigenvalues. The root locus plot provides a tool for investigating the effect of parametric variations on system response and stability. The sensitivity to adjustments of a particular parameter can be examined and a systematic procedure can be followed to move the root locus to a desirell position on the complex plane corresponding to required stability and response characteristics.

ANALYSIS OF THE SOLID ROCKET BOOSTER RECOVERY SYSTEM

To determine an entry envelope of orientations of the SRB as functions of initial conditions, elasticity dynamics, and nonsteady air mass conditions, a wide variety of simulations were made on the nominal descent configurations from an altitude of 6000 ft to water impact after approximately $\mathbf{7 4}$ seconds.

NOMINAL BASELINE CONFIGURATIONS

The arogue and main parachutes in combination with the SRB were illustrated in Figures 2 and 3, respectively. Their specific dimensions are listed in Table 1.

SINGLE PARACHUTE EQUIVALENCE TO THE CLUS'IER

The cluster of parachutes is modeled by a single parachute having the physical dimensions of one the parachutes in the cluster but the mass, inertia, and drag area characteristics of the entire cluster.

In program CHUTER, described in Appendix A, all of the parachuterelated input data are for a single element of the cluster. The number of chutes in the cluster is also a data input. The conversion to the equivalent parachute is handled within the program.

NOMINAL SYSTEMS RESPONSE TO DISTURBANCES

Two principal modes of disturbance or initial conditions were used in examining the nominal systems response to initial conditions. For analytical purposes, the disturbances are induced in only one plane and thus the motions are in one plane only. A "pendulum" disturbance in which the parachute,

TABLE 1 - RECOVERY SYSTEM PARAMETERS

	$\begin{aligned} & \text { Drogue/ } \\ & \text { SRB } \\ & \hline \end{aligned}$	Main/SRB (Equivalent)
$\begin{gathered} \text { Parachute } \\ D_{o_{1}} \\ S_{O_{1}} \\ L_{s} \\ L_{1} \\ M_{c} \\ M_{L} \end{gathered}$	48 ft $1810 \mathrm{ft}^{2}$ 96 ft 100 ft 11 slugs 9 slugs	130 ft $39900 \mathrm{ft}^{2}$ 275 ft 310 ft 69.9 slugs 81.6 slugs
Riser L_{2}	48 ft	67 ft
SRB $\mathrm{D}_{\mathrm{O}_{3}}$ S_{o} L_{3} ${ }^{L_{3}}{ }_{T}$ M_{3} ${ }^{\mathrm{I}} \mathrm{XX}_{3}$ ${ }^{\mathrm{I}} \mathrm{YY}_{3}$ ${ }^{\mathrm{I}} \mathrm{ZZ}_{3}$	11.8 ft $110.0 \mathrm{ft}^{2}$ 81 ft 157 ft 5000 slugs 8.36×10^{6} 8. 36×10^{6} 1. 96×10^{6}	11.8 ft $110.0 \mathrm{ft}^{2}$ 75 ft 145 ft 4750.0 slugs 7.36×10^{6} 7.36×10^{6} 1.72×10^{6}

riser, and payload remain generally aligned while being tipped to some initial angle results in smaller angular excursions of the SRB with less damping in the transient phase of the response.

A "scissors" disturbance is one where the parachute and riser are markedly misaligned with the SRB. Response to this initial condition results in larger SRB angular excursions but with higher damping in the transient phase.

Several sets of each type of initial conditions were imposed on the SKB/ Main parachute combination. To see the added effects of elasticity and wind, each set was first run without the elastic or nonsteady air mase options. The same cases were then run with the addition of elastisity only and rerun again with the nonsteady air mass option only.

For reference, a case with no initial disturbance was run without elasticity or wind, with wind only, and with elasticity only.

The cases specifically illustrated are listed in Table 2.
TABLE 2 - ILLUSTRATED NONLINEAR SIMULATION CASES

Configuration	Initial Displacement Type	$\begin{gathered} \theta 1 \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \theta 3 \\ (\mathrm{deg}) \end{gathered}$	Elastic	Winds and Gust	Nonlinear Response Figures	Root Locus Figures
SRB/Main	Pendulum	+20	+20	No	No	18, 19	41, 42
SRB/Main	Scissors	-20	$+20$	No	No	21, 22	43, 44
SRB/Drogue	See Fig. No. 24	---	---	No	No	25, 26	---
SRB/Main	Vertical	0	0	No	Yes	23, 29	45, 46
SRB/Main	Pendulum	-20	-20	No	Yes	30, 31	---
SRE/Main	Pendulum	+20	$+20$	No	Yes	33, 34	47, 48
SRB/Main	Scissors	+20	-20	No	Yes	35, 36	---
SRB/Main	Pendulum	+20	$\therefore 20$	Yes	No	37, 38	49, 50
SRB/Main	Scissors	-20	+20	Yes	No	39, 40	---

SRB/Main Parachute Response to Pendulum-Type Initial Displacements

Pendulum-type initial disturbances of up to 30 degrees were imposed on the SRB/Main parachute descent configuration. The responses were similar in nature so that only the angular response for a +20 deg pendulum-type
disturbance is shown as Figure 18. In all pendulum-type initial disturbances with a steady air mass the parachute angular orientation over shoots by approximately 45% and the SRB angular orientation over shoots by approximately 55%. The response is typified iy the shorter period oscillations of the SRB as it follows the orientation of the parachute. The relative motions of the parachute and SRB quickly become 180 deg out of phase, and the SRB motion induces perturbations on the long period parachute response. The angle of attack time history is depicted in Figure 19 and the trajectory is shown in Figure 20.

SRB/Main Parachute Response to Scissors-Type Initial Conditions

Scissors-type initial conditions of up to 60 deg misalignment were imposed on the SRB/Main parachute descent configurations. The responses for a scissors-type displacement with no wind or elasti ty were similar so that the angular response for only one parachute initial angular displacement of -20 deg and a SRB initial angular disturbance of +20 deg is shown in (Figure 21). Scissors-type initial conditions produced responses typified by 180 deg out of phase oscillations of the parachute and SRB, with the parachute motion, again long period, driving the general motion of the SRIs and the SRB inducing small perturbations on the otherwise smooth parachute response. As in the cases with pendulum displacements the parachute over shoots to approximately 55%. The greatly increased moments on the SRB cause overshoots of approximately 170%. The long-term result of a scissors displacement is larger SRB angular excursions through the entire descent. The angle of attack time history is shown in ligure 22 and the trajectory is shown as Figure 23.

SRB/Drogue Response to an Assumed Deployment Condition

The SRB, after leaving the space shuttle, is assumed to move along a trajectory with a large angle of attack near 90 deg. Additionally, the SRB may be spinning about an axis approximately parallel to the trajectory. The object of the drogue parachute is to stabilize the SRB; that is, reduce its angle of attack to sufficient conditions required for deployment of the main parachutes. If the SRB is spinning, the drogue parachute will also reduce the total angular velocity of the SRB.

The SRB/Drogue combination is simulated at an aititude of 20000 ft descending vertically at a rate of 580 fps . Its initial angle of attack is taken to be 80 deg and the SRB is assumed to be rotating at $40 \mathrm{deg} / \mathrm{sec}$ about the earth fixed Z axis. The drogue parachute, assumed to be previously deployed, is initially positioned at a 10 deg yaw angle. The initial conditions are illustrated in Figure 24.

Figure 23. Recovery Syatem Trajectory, Scissors

Figure 24. Initial Deployment Conditions for SRB/Drogue Combination

The coning angle is a combination of the Euler angles θ and

$$
\text { cone angle }=\cos ^{-1}(\cos \theta \cos \phi)
$$

It is the angle between the vertical descent line and the axis of symmetry of the body. The reduction of the SRB cone angle by the action of the drogue parachute is shown in Figure 25. The angle of attack time histories of the parachute and SRB are shown in Figure 26.

Additional Effects Due to a Steady Wind and Gusts

The application of an air mass velocity profile (mean wind plus gusts) as shown in Figure 27 to the descending SRB/Main parachute configuration, which is previously undisturbed, causes a rapid increase in the downrange velocity of the entire system. Figure 28 shows the Euler angle, theta, time history of the parachute, and SRB whose initial conditions were vertical descent. For the same case Figure 29 shows the angle of attack time history. The initial large positive angle of attack produces large normal aerodynamic forces on the parachute. The parachute swings to a large negative orientation angle. The SRB, with a shorter period, being driven by the motion of the parachute, again follows. The parachute angle of attack quickly reduces to small angles while the SRB with far less aerodynamic pitch damping requires more time to stabilize and damp its angle of attack.

Pendulum Initial Conditions -- Since the parachute is the driving force in the motion of the recovery system, its orientation initially with respect to a nonsteady air mass dictates the system response. Figure 30 depicts the Euler angle theta, time history for the SRR/Main parachute recovery system tipped down wind at -20 deg. The SRB and parachute orientation angles respond quickly to gusts at 15 sec and 45 sec . The overall response in the nonsteady air mass is stable. The angle of attack time history for the down wind pendulum case is shown as Figure 31. The gust can easily be seen as large sudden changes in the angle of attack. The SRB angle of attack decreases near the ground as the air mass velocity field slows down in the boundary layer effect.

A trajzctory typical of all cases run with nonsteady air mass is shown in Figure 32.

If the parachute and SRB in a pendulum displacement mode are tipped into the wind, the response, although similar to the pendulum displacement downwind, is more dramatic. The increased angular excursions for a case tipped +20 deg is seen in Figure 33. Similarly, while the characteristic shape of the angle of attack time history for pendulum initial conditions is evident, the increased amplitudes for the system tipped into the wind initially are evident in Figure 34.

Figure 27. Airmass Velocity Profile

Figure 28. Main Parachute - SRB Response to Non Steady Air Mass; Vertical Descent Initial Conditione (X-SRB, 2-sec Intervals)

Figure 32. Recovery System Trajectory in a Non Steady

Scissors Initial Conditions -- As seen in Figure 21 the scissor mode initial conditions result in larger amplitude SRB oscillation. The application of an altitude-air mass velocity profile as in Figure 27 to scissors mode initial conditions of the SRB/Min parachute primarily causes a down wind drift approximately equal to the wind speed. During the initial transient period when the recovery system is accelerating down wind, large angular excursions of both the parachute and SRB are seen (Figure 35). The SRB ang'e of attack becomes quite large as seen in Figure 36. The stability of th. system is eviuent at 15 and 45 sec as seen in the angular response (Figure 35) to gust inputs.

Additional Effects Due to Elasticity

The inclusion of the elastic suspension line model in the nonlinear simulation allows the geometry of the system to be dynamically variable. The change in suspension line lengths in particular changes the mass distribution of the parachute slightly; thus, through the change in moments of inertia a slight decrease in the period of thr parachute is seen.

In the differentiated constraint [Equation (61)] which includes the elastic suspension system, the velocities and accelerations betweer the and points of the riser and the confluence point and center of mass location are required. The elastic elements flex at several frequencies depending on the frequencies of the parachute, riser, and SRB oscillations. To calculate the velocities and accelerations required, a nume rical method was used to average the lengths over the high-frequency oscillations and then calculate the rates based 0:1 a frequency approximately one-half of the SRB natural frequency. This irequency was chosen since the riser force peaks at each local maximum misalignment of the parachute and SRB or at a frequency of one-half the SRB natural frequency.

No significant alteration of the non-elastic response characteristics of the SRB/Parachute combination was seen when the elastic model was employed. This is not unexpected since the variations in the suspension lines and riser lengths are quite small compared to their steady state lengths.

The Euler angle and angle of attack responses of the SRB/Main Parachute conbination for pendulum and scissors initial conditions are shown in Figures 37-40.

LINEARIZATION OF THE NOMINAL DESCENT PHASE

The linearization techniques described in Section II were applied to a variety of cases to obtain Root Locus Flots. Using the frozen point spectrum analyrir technique as described in Heference 11, the eigenvalue time histories fo: both perdulum and scissors type initial conditions are shown in Figures

41 to 44. As expected, the eigenvalues describing the fundamental oscillatory modes cover a wider range for scissors initial conditions before settling to near the eigenvalue resulting from a vertical steady descent. The long period modes (parachute) are stable in all cases. The short period mode describing the riser is stable with very siight damping. The SRB short period mode, while unstable in the initial transient response to large scissors initial conditions, is after a short time stable and damped.

In viewing the eigenvalue time histories, it is important to : ecall some important features of the linearization technique used.

- The exact nonlinear state of the entire system is the reference state about which the lineari intion routine works.
- The roots to the characteristic polynomial (the eigenvalues) are determined from manipulation of the matrix of first partial derivatives which is found by applying small disturbances to each of the nonlinear state variables about the reference state.
- The resulting eigenvalues can each be related to a fundamental oscillatory mode of one of the state variables.
- The location of a single eigenvalue in the complex plane represents the local stability characteristics of the state variable it is associated with with respect to the exact nonlinear condition of that state variable from which the eigenvalue was calculated.
- The overall stability of the entire system is a function of the interaction of all the nonlinear motions.

Stability with Respect to Non-Steady Air Mass

Figures 45 to 48 show eigenvalue time histories for the SRB/Main configuration with no initial disturbance and a +20 deg pendulum disturbance. In a non steady air mass the stability of the response indicated by the eigenvalues is demonstrated through the transient reaponse and the first gust at 15 sec .

Stability with Respect to Elasticity

The eigenvalue time histories for the principal oscillatory modes of the SRB/Main Parachute combination with elastic suspension system when a penculum initial disturbance is applied are shown in Figures 49 and 50.

(30s) pollod

When compared with Figures 41 and 42, no degradation of stability because of elasticity is seen.

LIMIT CYCLE RESPONSES

Throughout the investigations of this particular recovery system, special attention was paid to the possible occurrence of limit cycles. In no case treated has a limit cycle been observed or eigenvalues calculated which would indicate long-term undamped oscillatory motion of any component of the system.

CONCLUS:ONS

In all cases tested on the nonlinear computer simulation program, the recovery configurations were stable. The cases tested represent the full range of expected disturbances. From the $\mathbf{6 0 0 0} \mathbf{- f t}$ altitude at which the main parachutes are deployed, the recovery system would reach a vertical descent attitude if it were not for the wind. The response to the wind causes gliding down wind. The trajectory is determined by the vertical descent rate and the wind speed.

Although additional dynamics are induced by the elasticity of the suspension system, the overall response is not adversely affected. Large spring constants should be used to avoid sling-shot effects during transient periods of response.

RECOMMENDATIONS

The development of the present math model and computer simulation paves the way for useful extensions and generalizations of the analysis to provide a more complete and realistic representation of the entire recovery process including the Opening Dynamics phase.

INCORPORATION OF PARACHUTE OPENING DYNAMICS IN THE MATH MODEL

An important consideration in the overall dynamics of the parachute recovery process is the deployment and inflation of the parachute, the process referred to in the literature as Opening Dynamics.

An opening dynamics analysis would establish the most realistic initial conditions possible by including the inflation process of the deceleration
system. The period in the descent phase between drogue stabilization of the SRB and fully inflated main parachutes sees the speed of the SRB drop dramatically. The dynamics of this period as described by an opening dynamics model would furnish more accurate initial conditions for the final descent and water impact. There are several Opening Dynamics theories which employ such concepts as dimension less parachute filling time, canopy volume as a function of filling time, drag areas and drag coefficient as functions of filling time, etc. Factors affecting the dynamics of the opening parachute are the canopy mass, suspension line mass, included and apparent masses, and moments of inertia both real and apparent of the inflating canopy. Experimental data have been collected and empirical models have been developed.
It appears, therefore, very desirable to add the parachute Opening Dynamics to the computer simulation model based on state of the art models and including snatch force and opening shock calculations for the inflating parachute through reefed stages to steady state.

RELAXATION OF GEOMETRIC CONSTRAINTS

By relaxing geometric axial symmetry constraints of the present math model, greater realism and additional flexibility would be obtained for use in stability and design analysis.

If one allows off-axis of symmetry attach points on the SRB and the confluence point, then individual suspension line stretch and stretch rates must be accounted for.

Another possible generalization would consider the parachute and/or the SRB to have a plane of symmetry instead of an axis of symmetry. Such a generalization increases the complexity of the analysis and permits the consideration of "gliding" decelerators and/or finned SRBs.

REFERENCES

1. Memo to S. K. Ibrahim from G. L. Watte received 10 September 1973.
2. Winder, Steve, "Parachute/SRB Low Altitude Wind Response," S\&E-AERO-DD-4-73, August 8, 1973.
. Wolf, Dean F. . "The Dynamic Stability of a Nonrigid Parachute and Payload System, " PhD Thesis, University of Rhode Island, 1968.
3. Reynolds, Donald T., "Optimization of Parachutes," MS Thesis, California State University at Northridge, 1973.
4. Poole, Lamont R., "Viscous Damping Characteristics of Dacron Parachute Suspension-Line Cord, "Journal of Spacecraft, Vol. 10, No. 11, pp. 751-752, November 1973.
5. Chernowitz, G., ed., "Performance and Design Criteria for Deployable Aerodynamic Decelerators," ASD-TR-61-579, AF Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio, December 1963.
6. Fichtl, George H. , "Integrated Wind Profile for Shuttle SRB Water Entry Studies," S\&E-AERO-YA-9-9-73, March 3, 1973.
7. Fichtl, George H. , "Gust Environments for Space Shuttle SRB Water Entry Studies," S\&E-AERO-YA-9-9-73, March 3, 1973.
8. Beeman, E. R., "SRM Entry Aerodynamics," Northrup Services, Inc., M9241-72-80, June 17, 1972
9. Bacchus, D., "Preliminary Parachute Characteristics for Use in SRB Recovery Studies, "S\&E-AERO-AA-72-83, NASA Marshall SFC, December 4, 1972.
10. Konar, A. F., "Development of Weapon Delivery Models and Analysis Programs," AFFDL-TR-71-123, Vol. 1, April, 1972.
11. D. McCracken and W. Dorn, Numerical Methods and Fortran Programming, John Wiley and Sons, New York, 1964.

APPENDIX A
DOCUMENTATION OF THE PARACHUTE
DYNAMICS AND STABILITY ANALYSIS PROGRAMMING SYSTEM

Computer programs describing the descent dynamics and stability analysis of a parachute payload system are described.

The overall program is called CHUTER. Thi programs are developed in FORTRAN IV programming language. There are several running mode options. The basic running mode (no supplementary options employed) is simply a nonlinear dynamic simulation. Three supplementary options can be attached to the basic running mode.

- Elasticity. The use of the elastic option causes the riser and suspension lines to become dynamically elastic and the nonlinear simulation to reflect the influence of the additional dynamics.
- Non Steady Air Mass. The use of the non steady air mass option enables the subroutines describing wind and gust conditions to be imposed on the descending recovery sys$t \in m$. The aerodynamic effects of the imposed non steady air mass are then accounted for.
- A third supplementary option enables the linearization subroutines to be incor porated in the analysis. Their use causes the nonlinear equations of motion to be linearized at intervals in time using as a reference state the exact nonlinear state at the particular time. Eigenvalues for the linearized equations of motion are determined.

OVERALL PROGRAM ORGANIZA TION

The overall organization finds the main program directing and controlling the subsequent operation of the several subroutines as well as data input functions. The overall organization is diagrammed in Figure A1 showing the subroutines and available analysis options.

The principal variables describing the state of the system are contained in the "Y-array" and are passed through the various subroutines in the common block:

Figure A1. Overall Structure of Program CHUTER

The time rates of change of the state variables are contained in the "D-array" element having the same index and are passed through the various subroutines in the common block:

COMMON/AAC/D(30)
The principal variables are listed in Table A1. Nearly all other parameters and variables and constants which are required by more than one subroutine are passed through a series of common blocks containing related arguments.

CHUTER INPUT/OUTPUT

Input Description

An input card deck of 14 cards provides the required information for initialization and control. The input data deck is described in Table A2.

Output Description

There are two forms of information output from CHUTER. The line printer output provides detailed information on the nonlinear simulation at chosen time points along the trajectory, the interval being DTP. When the linearization option is employed, the eigenvalues of the linearized systen are printed for the points along the trajectory at which the nonlinear ... m is linearized.

A plotting subroutine is included which charts information gencrated by the nonlinear simulation subroutines. Additional charts are drawn if the elastic or non steady air mass option is employed.

The line printer output during nonlinear simulation consists of groups of four lines each corresponding to the time printed at the left of the page. Each page is headed by column labels.

When the linearization routines are employed, the eigenvalues at the selected linearization points are stored untll a single page can be printed with the eigenvalues for the previous five linearized points.

For each new run a run title page is printed listing the supplementary options employed, and a data deck reproduction is made for reference. An illustration is drawn on which the principal system initial geometric parameters are noted.

The line printer output continues through the maximum simulation time or water impact. The exact state at that point is printed.
TABLE A1 - DEFINITION OF PRINCIPAL VARIABLES

table a2 - typical data card input deck

TABLE A1 - TYPICAL DATA CARD INPUT DECK (CONTINUED)

Data Description (All Data is Floating Point)		
Card 1. Fo		
Variable	Units	Definition
Y (30)	ft	Initial altitude
HDOT	fps	Rate of Descent
Card 2 Format (6F 8.0)		
Variable	Units	Definition
D3	ft	SRB Diameter
L3	ft	SRB CM Location
L3T	ft	SRB Total length
LA	ft	SRB CP Location
M3	Slugs	SRB Mass
S3	ft^{2}	SRB Cross Section Area
Card 3 Format (3E 10.3)		
Variable	Units	Definition
EXX 3	slug ft^{2}	SRB Inertia about its X axis
IYY 3	slug ft^{2}	SRB Inertia about its Y axis
IZZ 3	slug ft ${ }^{2}$	SRB Inertic about its Z axis
Card 4 Format (8F 8, 0)		
Variable	Units	Definition
BCiv (Array)	---	Constants in the polynomial describing the normal force coefficient of the SRB
Card 5 Format (9F 8.0)		
Variable	Units	Definition
BCT (Array)	---	Constants in the polynomial describing the tangent force coefficient of the SRB

TABLE A1 - TYPICAL DATA CARD INPUT DECK (CONTINUED)

Data Description		
Card 6 For		
Variable	Units	Definition
BCM (Array)	---	Constants in the polynomial describing the moment coefficient of the SRB
Card 7 Format (9F8.0)		
Variable	Units	Description
DO	ft	Parachute nominal diameter
L. 1	ft	Length from confluence point tc parachute CP
LSO	ft	Initial value of suspension line length
M	---	Number of suspension lines
MC	slugs	Mass of canopy
ML	slugs	Mass of lines
LCM	ft	Initial guess at parachute CM distance from confluence point
S1	ft^{2}	Nominal parachute area
Clust	---	Number of chutes in cluster
Card 8 Format (9F8.0)		
Variable	Units	Description
ACN (Array)	---	Constants in the polynomial describing the parachute normal force coefficient
ACT (Array)	---	Constants in the polynomial describing the parachute tangent force coefficient
Card 9 Format (9F8.0)		
Variable	Units	Description
ACM (Array)	---	Constants in the polynomial describing the parachute moment coefficient

TABLE A1 - TYPICAL DATA CARD INPUT DECK (CONCLUDED)

Data Description			
Card 10	(Format (1F8.0)		
Vàriable		Units	Description
L. 20		ft	Nominal riser length
Card 11	Format (6F 8.0)		
Variables		Units	Description
Y (4)		deg/sec	Initial P1
Y (5)		deg/sec	Initial Q1
Y (6)		deg/sec	Initial R1
Y (7)		deg	Initial 01
\mathbf{Y} (8)		deg	Initial $\boldsymbol{\theta} 1$
Y (9)		deg	Initial ${ }^{\text {1 }}$
Card 12 Format (6F 8.0)			
Variables		Units	Description
Y (13)		deg/sec	Initial P3
Y (14)		deg/sec	Initial Q3
Y (15)		deg/sec	Initial R3
Y (16)		deg	Initial ${ }^{\text {a }}$
Y (17)		deg	Initial 83
Y (18)		deg	Initial *3
Card 13 Format (1F8.0)			
Variable		Unit	Description
TMAX		Sec	Maximum time
Card 14 Format (3F 8.0)			
Variable		Units	Description
YWIND		---	Wind option, 1-yes, 0-no
YELAST		---	Elastic option, 1-yes, 0-no
YLIN		---	Linearization option, 1-yes, 0-no

A typical page showing information on the nonlinear simulation is shown in Figure A2, and a page showing the eigenvalues at selected points is shown as Figure A3.

PROGRAM DESCRIPTION

Main Program

CHUTER is a series of subroutines whose operation is controlled by the MAIN program to provide nonlinear and linear analysis. The MAIN program is diagrammed in Figure A4 and a source listing is presented in Figure A5.

The MAIN program is broken down into three parts. The first is input and establishes constants and control variables. The second segment initializes the elastic variables, sets angles and angular rates to units of radians, sets the initial velocities in the body fixed coordinates, and establishes the directic cosines matrix corresponding to the initial conditions. Finally, the third segment is a high-frequency loop which runs the nonlinear simulation.

The high-frequency loop is initially entered with mode and time $=0$, which causes the initial conditions to be output by subroutine PRINT. Successive passes through the loop increase the MODE to its nominal value of 4 or 5 depending on whether subroutine PRECOR is about to predict or about to correct.

Elasticity initial conditions (i. e. . riser and parachute center of mass lengths) are updated through time $=0.25$, at which point the numerical detesmination of elastic rates begins.

Time $=0.25$ is an arbitrary but convenient time greater than time $=0$ since at time $=0$ the elastic elements are unstressed.

These are four normal exits from the high-frequency loop. After the print ti.ne interval DTP the loop is exited by a call to subroutine PRINT. The iccond normal exit occurs when a water impact occurs. This is sensed by comparing the altitude with length from the SRB center of mass to the engine end. The third normal exit occurs when the simulation time exceeds TMAX. "he fourth normal exit occiars when a point in time is reached about which a linearized solution is to be found.

The subroutines used with CHUTER are listed in Table A3.

Output Page

Figure A4. CHUTER Main Program Flow Diagram

Figure A4. CHUTER Main Program Flow Diagram (Continued)

Figure A4. CHUTER Main Program Flow Diagram (Continued)

Figure A4. CHUTER Main Program Flow Diagram (Concluded)

PROGRAM CHUTERIINPUT, OUTPUT, TAPF5=INPUT,TAPF6=OUTITUT,TAPF2)

Figure A5. Main Program Source Listing

```
    1.RNC(402),FOR(40)),RL(4n):,CL(40)),W(1402)
    COMMON/XOROS/SUMNAI,SUMMA?, TOTAL,AVERAI,AVFRA2,OVERA1,OVERAR,DT
    RFAL [XXAL,IXXAZ,TXXI,IXXIO,IXX3,IXC1,IXZ3
    RFAL IYYAI,IYYA3,IYYI&IYYIO,IYY3,IYXI,IYX3
    RFAL I22A1,122A3.1221,12710.1223,I2Y1,12Y3
    REAL KLS,KR,LCM,LCMDOT,LCMDDT,LCMO,LCP,LS&LSO,L.1,L2,L2DOT,L2DDOT
    REAL L20,L3,L3T,L4,MC,ML,MI,M1A,M1\lambda,M1Y,M1Z,M3X,M3Y,M3Z,MP,M3,M
    nT=1.n
    NTフ=?.0*nT
    l mOTO =
    5 .,91T= (6,45n)
    nO 7 1=NORS.400
    TMFIII)= THFI(NORS)
    THF{(I) = THF\(NORS)
    AD| |I| = AD| (NORC)
    ADA (I) = ADA (NONC)
    RNME (Il = PAIC (MORRE)
    ALT III = ALT (NORS)
    FOQ (I) = FOR (NOAS)
    RL (I) = RL (NOQS)
    CL (I)= CL (NORS)
    7 wr. (ll) = 've (NORS)
    CALL PICTIR (YWINN,YELACT)
    3 RONTINUF.
    C|MMAI= SIMMNAP= TOTAL= nen
r JRRO Y ANA O ARRAVE
    nc in l=1gan
    n(1)= הon
    10 %(1)= =0
C RFAD INITIAL ALTITUDE AND RATE OF DESCENT -- RFCALL THAT THE + 2 AXIS OF
C THF FARTH IS DIRECTED, DOWNWARD SO THAT IHE INITIAL ALTITUDE IS NEGATIVF
    DFAN (5,41n) Y(30),HNOT
C DRAN eQN DHYEITAL DIMEAIETONE
    Desn (5,41n) n3,L`,L3T,L4,M3,93
C RFAN CON INERTIAL CHARACTFRIGTICS
    RFAN (5.4?n) [XX3,IYYQ:IZ73
C PFAN GRN AERONYNANIC CHARACTERIST*ES
    REAN (5,410) (ACN(I):IEl*R)
    DEAN (2,410) (DCT(I):IE1,0)
    DEAN(a,4in)(DCM(!):1=9,0)
r mfan oaparhute physteal m|MENetons
C CLUST IS THF NUMBFR OF PHIIFSS IN THF CLUSTER
    RFAN (5,410) NO,LIOLSO,MOMC,ML LCMO.SI CLUST
C READ PARACHUTE AFRODYNAMIC CHARACTERISTIC EQUATIONS COEFFICIFNTS
    RFAR (5,410) (ACN(I),I=1,2),IACT(I),I=1,6)
    DEAN (5.410) (arm(l) , i=107)
P REAN GYETEM CHAPAPTERYSTICE
    RFAN (5.410) L2O
C RFAN INITIAL CONOITIONS
    QFAN (50410) (Y(l),I=409)
```



```
- QFAN THE TINF AT WHTPH THF ANALYSIS MIIST STOD
    mean (5,41n) twax
C READ WINN, FLASTICITY. ANN LINFARIZATION OPTION CONTROLS -- O FOR NO AN!N I FOR
```

Figure A5. Maial Program Source Listing (Continued)

```
    C YFS
    READ (5,410) YWIND,YELAST,YLIN
    C dATA carN list
        WRITF (6.550)
        WRITF (6:,55)
        IF (YWINN.NE.O.OIWRITE (6,556)
        TFIYFLAST,NF,OOOIWRITF (6,557)
        IFIMLIN .NF.D.NIWRITE (6.55RI
        IFIYIIN.FO.D.N.ANN,YFLAST,FO.N.O.AND,YMIND,FO.N.O) WRITF (6.550)
        WRTTF (6.560)
        WRTTF (6.430) Y(3n),HDNT
        WRITE (6,430) D3,L3,1 3T,L4,M3,53
        WRITF (6,440) {x\times3.IYY3.1273
        WRITF (6.430) (RCN(1),I=1.8)
        WRITF (6,470) (RCT(I),I=1,9)
        NPITF(G.AaO)InCM(I),I=1,9)
        WRITF (6,430) DO,L.1,LSN,".MC,ML,LCMO.S1,CLHIST
        R1TF (6:430) (ACN(1),1=1,3),(ACT(1),I=1,6)
        WRITF (6,430) (ACM(1) ,1=1,9)
        WPITE (6.43n) LTO
        NOTTE (A,ABON) (Y(T),I=4,0)
        WP|TE (5,43n) (Y(I),I=13.18)
        woptF (6043n) TMAX
        WRITE (6,43n) YHIND,YELAST,YLIN
C rOnstants
    #TS = 0.>5
    ETINE=0.75
    r. = 2?.17
    J =0
    LCM = temn
    LTP =0.163m*0
    Ls}=\textrm{LSO
    l?. = L?n
    MODF = 0
    wr = me*rlusp
    ML =MLFCLUST
    Ml =MC+ML
    N = 30
    OLNTIMF=0.75
    Pan = 57.20578
    RC = 1.0
    RN = 0.36mDn
    e1 = sieclust
    TIMF = 0.0
    vupman = vani<T = non
    winil = non
C ALITAN PISER WITH THF DARRCHUITF AXIS OF SYmmFPRY
    mn 15 1= P>.?7
    15 Y(1) = Y(I-10)
C flasticity initial conditions
lemant: n.0
    LCMMnT = 0.0
    Lmot= n.n
Lenmot n.0
```

Figure A5. Main Program Source Liating (Continued)

```
    ALT = L`
    ALP = L2NOT
    AL3 = Lrm
    ML4 = Lrmnnt
C FLASTIC POFFFITITMTS
    IF (velact,CT,O.O) rnTM IT
    KR = 1.OFTO
    <LS = 1.0E70
    GNTn la
    13 COWTIMMF
        RR = va*r*15./L?*
```



```
    16 COMTIVUS
        ralL TORAN
        PALL SRA!M
        CALL IMVELA (UNNT)
        ROTN 71
    20 CALL NIPrOS
    31 COMTIMIIF
C TPOATF L`.LC*
```



```
    33 ALI = L`
    Al3 = Ler.
    3) CONTIMIF
C MIMN CALLS
            IF IYWINN.FO.N.OI fonto 17
            CALL !TMN
            IF ITIMF EO. O.NI RATN 1A
C RIST CALLS -- peRION = 15 cer
            IF(TIMF-HTTMF-15.0) 17,16.16
    16 CALL TUST
    HTTUF = TIMF
    17 -ONTIMIJF
            WICII = VWINN + vGIST
            CALL CMITE (CLUCT)
            CALL COFETS (PC)
            RALL FORCFS
            CALL MOMFNTS (RHOI
            CALL NIFFOM
            IF ITIMF,NE.N.OI r.NTM ma
C ILLIISTRATION
```



```
            1*7
            GOTO 120
        R9 RALL PRFCOR (N:NOH)
C U2:V7:W?
            nO 1>5 1= :%2
```



```
        1 +8(1,3,1)*R(7,3,1) +1Y(7)-Y(4)MLCM)*(B(1,1,1)*B(7,7,1)
```



```
            IF (Y(30) GFF-75,n) roin 17n
    110 IF ITIMF-TPRINT-NTPIMN gl>ngI?N
    120 CALL PRINT
```

Figure A5. Main Program Source Listing (Continued)

```
        TORTNT = TINGE
        IF (YLIN*FO.Nen! GOTn lan
        PNLISEITQIKK=TIMAF
        IFI(POLIS.EO.TIMEI,AHD.ITIVE.NF&N.FIISALL NFRIVFIPNLIS,RR,RHO.RLIIS
    17)
130 CONTINUF
    IFIY(2O).GF.-75.OI GOTO 5
    IF (TIMF OFF. TMAX) COTO 5
    IF (TIMFI BO,R9,2n
410 EORMAT (10FG.n)
470 FORNAT(751星3)
430 FORMAT (10F9.3)
44O FORWAT (3F12.3)
450 FORNAT (?OX,31HWATFR IMPACT OR MAX TIMF -- ENN)
550 FORMAT (1M1)
555 FORMATIIOX,41HPARACHITF DYNANICS ANI: GTARILITY ANALYSIS,//PITX.
    ITGमNOM LINFAR SIMILATION WITH./I
556 FORMAT (17X,IOHNON STFANY AIR MACS./)
557 FOR4AT TI2X,3GHFLASTIC RISER AND SIISPFNCIOMI LINFS*/I
558 FORMAT 112X,42HNUMFPICAL LINFARIZATION AT EFLFCTFN POINTS./I
550 EORWATIIDX,I OHNN OPTIONIS.///
560 FORMAT IOX, IAHDATA CARIS AS RFANO//I
1000 FORMATIIHI,37X,F), N,14H CH!ITF CLUSTFP,7X,?HCCOCCCC.11X,4HN1 =,F7.1
    1,3H FT,/,57X,1HC,13X,1HC,7X,4HS1=,F7,1,8H &G FT,/,55X,1HC.17X,
    21HC./.54X,1HC,19X,1HC,4X,4MMC =,F7.1,6H SLl'GS./,53X,1HC.21X,1HC./.
    352X.1HC.7X.5HCP O.11X.7HC LCP =,F7.1,3H FT ./.G1X,1HC.25X.1HC./.,
```



```
    858X,1HL,11X,1HL,//,59X,1HL, 9X,1HL,//,6UX,1HL,7X,1HL,//,G1X,?HL,
```



```
    358x,9HCP & O N,7X,4HL4=,F7,1,3H FI,/,67X,5HF R./,5AX,
    49HCM B O R,7X,4HL3 =,FT,I,3HFT,/,67X,5HO R,/,G?X,5HR R,7X,
    54HM3 =,F7.1.6H SLUGr,*,F1B7X,EHD R, 1.62X,5HPROQR,/1
    FNN
```

Figure A5. Main Program Source Listing (Concluded)
TABLE A3 - basic subroutines used in program Chuter

Subroutine	Description	Diagram Ftgure No.	Linting Figure No.	$\begin{aligned} & \text { Syrnbols } \\ & \text { Table NO. } \end{aligned}$
DIFEQN	Differential Equations of Motion	A6	A7	A4
CHUTE	Parachute Geometry, Inertia	A8	A9	A5
COEFTS	Parachute and Payload Aerodynamic Coefficients	A10	A11	A6
FORCES	Aerodynamic Forces	A12	A13	A7
MOMENTS	External Moments	A14	A15	A8
DIRCOS	Direction Cosines	A10	A17	A8
DBDT	Direction Cosines Rates	A 18	Aİ	A10
PRECOR	Predictor-Corrector Integrator	A20	A29	A11
WIND	Mean Wind Profile	A22	A23	A12
GUST	Gust Envelope	A24	A25	A13
ELASTIC	Elastic Rates	A26	A27	A14
PRINT	Output	A28	A29	A 15
CONST	Constants	A 30	A30	*-
INVELO	Initialize Velocities	A 32	A33	--

Basic Subroutines

The basic subroutines are those which describe the aerodynamics, the cynamics, or the kinematics of the nonlinear simulation, the nonsteady : : mass models, and techniques used in the linearization of the equatiots of motion. All the other aubroutines are manipulatory in nature ald hence are termed auxiliary subroutines.

Subroutine DIFEON -- Subroutine DIFEQN implements the system of differential equations [Equations (16) to (39), (52) to (69)]. The time derivatives of each of the state variables and the riser force are calculated. Moments about the body fixed axes for the parachute and SRB are updated due to the change in riser force. During the Runge-Kutta initialization steps and the predictor step of subroutine PRECOR, the section of DIFEQN containing the equations coupled by the riser constraint is looped through four times to ensure that the influence of the coupled terms is uniform. Subroutine DIFEQN is diagramed in Figure A6 and a source listing is presented in Figure A7. Table A4 presents a list of symbols for DIFEQN.

Subroutine CHUTE -- Subroutine CHUTE computes the geometric and initial characteristics of the parachute as a function of time. Also calculated is the air density as a function of altitude.

The parameter CLUST, passed in calls to CHU'IE, represents the number of chutes in the cluster. As all the input data were for a single chute, the mass and inertia are multiplied by CLUST to form the mass and inertial characteristics of the single chute equivalence to the cluster.

The parachute center of mass location is calculated as a function of the canopy mass, the suspension line mass, and the mass of the air included in the canopy.

Finally, when the elasticity option is employed, the ELASTIC subroutine is called to compute the rates of change of the lengths of the elastic elements.

Subroutine CHU TE is diagramed in Figure A8 and principal variables are defined in Table A5. A listing of CHUTE is given in Figure A9.

Subroutine COEFTS -- Aerodynamic coefficients are calculated for the normal and tangential forces and the moments oi، the parachute and payload.

The coefficients for normal force and moments are calculated as a function of the angle of attack, α, using the polynomial form.

$$
C_{1} \alpha+C_{2} \alpha^{2}+C_{3} \alpha^{3}+\ldots \ldots+C_{8} \alpha^{8}+C_{9} \alpha^{9}
$$

Figure A6. Subroutine DIFEQN Flow Diagram

SUPRMITINE DIPEOM
C SUBROUTIME DIFEON CONTAINS THE SYSTEM OF MONLINEAR DIFFERENTIAL EOUATIONS
C IT RETURNS THF SLOPES OF THF FUMCTIONS FOR THF TIMF AT WHICH IT IS RALLED C COMMON/AAR/Y(33)
COMMON/AAC/D 301
COMMON/AAD/9 (3,3,3) DRS(6), T(3,6)
COMMON/AAE A A (9) ©AR(9) AC(9)
COMMON/AAGAL 2 , $2 D 0 T$ - L200OT LCMPLCMDOT \& LEMDDF
COMMON/AAH/C1,C3,F2•L3,RANっL1,L4,CF1,CF3,51,S3
COMMON/AAJ/MONF
COMMON/AAL/FIX\&F1Y,F1ZっF3X,F3Y,F32

COMMOM/AAN/A6,A7,AB,A9,A10,A11,A12,A13,A14,A15,A16,A17,A18,A19,A20
COMMON/AAMM/A21
COMMON/AAO/TXX1,IYYI-1221,IXX3,1YY3,1223
COMmON/AACO/IX21, IYX1, I2Y1,IX23, IY×3, $12 Y 3$

COMMON/AARR/LSOLCP
REAL IXXI-IYYI-1221.IXX3.1YY3-1223
REAL IX21.1YX1-12Y1.1X23-1YX3.12Y3
REAL M1,M3,MP,L3*KLS*KR•MC,ML,M1A,L2DOT-L2DDOT \& LCM,LCMDOT•LCMDNT
REAL LIOL3TOL4OLPOOLCMOOLSO
RFAL LZeLCP;LS
REAL MIXomiY,M12,M3XomaY ©M3Zom
C CONSTAMTS IN THE DIFFFRFNTIAL FOUATIONS
$G \quad=32.17$
$A 1=Y(10)-Y(14)$ WL3
A) $=Y(11)+Y(13)$ है

A3 $=Y(1)+Y(5)$ \#LCM
$A 4 \quad=Y(2)-Y(4)$ LLCM
AS $=Y$ Y 3 if LCMDOT
CALL CONST
CALL DAnt
MIKF=1
TFIMONF•LF.4) MIKFEA
DO An KK=I, MIKE
C NWIMT

2 OOT +AA(6)*A1+A6+AR(6)*A2+A7+AC(6)*Y(12)+A10-AA(9)*A3-A
C RISFR FORCE
F2 $=(M P=(D(3)+Y(2) * Y(4)-Y(1) * Y(5))-F 1 Z-M 1 * B(1+3.3) * G) / A S(3)$
CALL MONENTS (RHO)
C undot

C vinot

C Pinot
$D(4)$ (M1X-12Y1*Y(5)wY(6))/1XX1
C OlnOT
D(5) = (MIY-IXZ1*Y(6)*Y(4))/IYYI
C R100T
D(6) = (M1Z-IYXI*Y(4)*Y(5))/12Z1

Figure A7. Subroutine DIFEQN Source Listing
c usnot
D（10）＝（F3X＋M3＊R（A，1．3）＊G－F2＊RS（4））／M3－Y（12）＊Y（14）＋Y（11）＊Y（1R）
C V3DOt

C W3DOT

C P3nOT
D（13）$=($ M3X－12Ya＊Y（14）＊Y（15））／fXX3
C A3mot
D（14）$=($ M3Y－1 $\times 23 * Y(15) * Y(17)) /$ IYYa 2
C R3DOT
$D(15)=(M 32-1 Y X 7 * Y(12) * Y(14) / 11223$ CALL CONST
C DW1／DT

1
2
C DPRINT

 R－AP（9）A A－A9－AC（0）＊A5）－LCMNAT

 15－AC（R）＊A5－A）？\＃R（1，3，？）$\|$
C DO2Int
 ＋11・ノL？
 4ム－A） 0 －AC（7）＊A5－A＞1＊P（1，2，1））
AO CONTINIF
C PHIIDOT

C PHI3DOT
D（16）$=Y(13)+(Y(14) * \subset(N(V(16))+Y(15) * C O G(Y(16))) * T A N(Y(17))$
C PHI2DOT
D 175 ）
C ThFtaldot
D（8）
C theta3not n117）
$=Y(14) * \operatorname{COS}(Y(1 A))-Y(15) * \operatorname{SiN}(Y(16))$
C thatajnot
$D(26)=Y(73) * C O<(Y(35))-Y(34) * \subset I N(Y(75))$
C Psilnot
D（9）$=(Y(5)$＊SIN（Y（7））＋Y（6）＊COS（Y（7）1）＊SFC（Y（B））
C PSIBNOT
D（18）＝（Y（14）＊S（N（Y（16））＋Y（15）＊（OS（Y（16）））＊\＆F（Y（17））
C PSITDOT
D（27）＝（Y（72）＊SIN（Y（25）$)+Y(24) *$（OS（Y（75）））＊SER（Y（76））
C U2DOT IS D（19），V2DOT IS D（2n）．AND WクDOT IS MIP1）aLL IN：ICEN
$D(19)=0.0$
$D(20)=0.0$
n（？1）$=0 . n$
C RPDOT
$n(74)=0 . n$
C．X2FDOT
$\left.D(2 A)=+(Y(10) * P(2,1,1)+Y(11) * A(3,7,1)+Y(1))^{*}(3,3,1)\right)$
C Y3EDOT
$D(29)=+(Y(10) * P(3,1,7)+Y(11) * D(3,2,7)+Y(1)) * O(3,2,2))$
C 23EDOT
D（30）$=+(Y(10) * Q(3 \cdot 1.3)+Y(11)$＊R（7．2．2）＋Y（17）＊P（3．2．3）） RFTURN
END

Figure A7．Subroutine DIFEQN Suurce Listing（Concluded）

TABLE A4 -LIST OF SYMBOLS FOR SUBROUTINE DIFEQN

Quantity	Mnemonic	Units	Description
\dot{U}_{1}	D(1)	$\mathrm{ft} / \mathrm{sec}^{2}$	Parachute CM linear accelerations in XYZ body fixed axes directions
\dot{v}_{1}	D(2)	$\mathrm{ft} / \mathrm{sec}^{2}$.
\dot{w}_{1}	D(3)	$\mathrm{ft} / \mathrm{sec}^{2}$	
\dot{P}_{1}	D(4)	$\mathrm{rad} / \mathrm{sec}^{2}$	Parachute angular accelerations around XYZ body fixed axes
\dot{Q}_{1}	D(5)	$\mathrm{rad} / \mathrm{sec}^{2}$	
$\dot{\mathbf{R}}_{1}$	D(6)	$\mathrm{rad} / \mathrm{sec}^{2}$	
$\dot{\Phi}_{1}$	D(7)	rad/sec	Parachute reference frame Euler angular rates
$\dot{\theta}_{1}$	D(8)	rad/sec	
$\dot{\psi}_{1}$	D(9)	$\mathrm{rad} / \mathrm{sec}$	
$\dot{\mathrm{U}}_{3}$	D(10)	$\mathrm{ft} / \mathrm{sec}^{2}$	SRB CM linear acceleration in XYZ body f'red axes
$\dot{\mathrm{v}}_{3}$	D(11)	$\mathrm{ft} / \mathrm{sec}^{2}$	
$\dot{\mathrm{w}}_{3}$	D(12)	$\mathrm{ft} / \mathrm{sec}^{2}$	
\dot{P}_{3}	D(13)	$\mathrm{rad} / \mathrm{sec}^{2}$	SKB angular accelerations around XYZ body fixed axes
\dot{Q}_{3}	D(14)	$\mathrm{rad} / \mathrm{sec}^{2}$	
\dot{R}_{3}	D(15)	$\mathrm{rad} / \mathrm{sec}^{2}$	
ϕ_{3}	D(16)	rad/sec	SRB reference frame Euler angle rates
$\dot{\theta}_{3}$	D(17)	rad/sec	
$\stackrel{\psi}{*}_{3}$	D(18)	rud/sec	
\dot{P}_{2}	D(22)	rad/sec ${ }^{2}$	Riser angular accelerations about XY body fixed axes
\dot{Q}_{2}	D(23)	$\mathrm{rad} / \mathrm{sec}^{2}$	

TABLE A4 - LIST OF SYMBOLS FOR SUBROUTINE DIFEQN (CONCLUDED)

Quantity	Mnemonic	Units	Description
Φ_{2}	$\mathrm{D}(25)$	$\mathrm{rad} / \mathrm{sec}$	Riser reference frame Euler angle rates
$\dot{\theta}_{2}$	$\mathrm{D}(26)$	$\mathrm{rad} / \mathrm{sec}$	
$\dot{\Psi}_{2}$	$\mathrm{D}(27)$	$\mathrm{rad} / \mathrm{sec}$	
$\dot{\mathbf{X}}_{\mathrm{E}_{3}}$	$\mathrm{D}(28)$	$\mathrm{ft} / \mathrm{sec}$	Down range, cross range, and altitude rates of change of the SRB center of mass
$\dot{\mathrm{Y}}_{\mathrm{E}_{3}}$	$\mathrm{D}(29)$	$\mathrm{ft} / \mathrm{sec}$	
$\dot{\mathrm{Z}}_{\mathrm{E}_{3}}$	$\mathrm{D}(30)$	$\mathrm{ft} / \mathrm{sec}$	
F_{2}	F 2	lbs	Riser force

Figure A8. Subroutine CHUTE Flow Diagram


```
    COmmON/AAT/TIUF
```



```
    CNMON%/AAD, Y:90!
```



```
    rommnm/AAO
```



```
    MFAL LPOLLTOLRT,LA,WC+ML,M1 OWIA,W,MP,MY
```



```
    Mumwnt: nern**a
```



```
    M1A M, m|ort;sy
```



```
ALPM = SOKTILEOLE-RNEPNY
r ivrlimen pannpy tuse
C matrapmas E nanmaigann*en
    Lem
```



```
- slepevapmagorluct+Nrtmi
```



```
raceréleme,it
```



```
C ELAF|
```



```
    feitTine mit (alr,laten at omf efcoma integvale
```



```
    lFiflowirfintr: an TA in
    LCWo Ovegaze summaz/TOFAL
    00 to }3
    AvFro 30
    AvFRare summas/total
    CMLL FLAStIC
    * Eypmale sumaze rorate 0.0
    compte IIme
    cowitav
    mmman" summap+LCM
ciorac oTofal+ifn
c amamemermeml+mla
```



```
    xxal imxajeclus
    Irval :ixkat
    zei - O.ns3mamoeinesemolees
124a, iz2a1*clu
    LuemCP motw
```



```
Z&
```



```
    ivy10:imyio
```



```
    ImR: im|1001xxal
    fvyi :ivn10*ixxal
IVYi :IVYio&ivval
```



```
    IRv:
    IVM: iryi=122j
    GE fimW
```

TABLE A5 - LIST OF SYMBOLS FOR SUBROUTINE CHUTE

Quantity	Mnemonic	Units	Description
ALCM	A LCM	ft	Length, confluence point to plane of skirt
MI	CA PMAS	slugs	Included mass
γ	GAMMA	rad	Suspension line angle
$\mathrm{IXX}_{\mathrm{A} 1}$	[X>iA1		Apparent mass tensor
$\mathrm{IYY}_{\mathrm{Al}}$	IYYA 1		$\}$ Diagonal Elements
$12 Z_{\text {A } 1}$	IZZA1		
IXX*	IXX10		Total parachute
IYY*	IYY10		$\}$ Inertia Matrix
IZZ*	1ZZ10		\int Diagonal Elements
${ }^{L} C_{M}$	LCM	ft	Length, confluence point to plane of skirt
${ }^{L_{C}}{ }_{P}$	LCP	ft	Length, plane of skirt to center of pressure
${ }^{\text {L }}$	LS	ft	Suspension line length
L1	L1	ft	LCM + LCP
L2	L2	ft	Riser length
L3	L3	ft	SRB Center of Mass Location from nose
L4	LA	ft	SRB Center of pressure location from center of mass
N	M	-	Number of suspension lines
m_{C}	MC	slugs	Canopy mass
${ }^{m} \mathrm{~L}$	ML	slugs	Suspension lines mass
m_{P}	MP	slugs	$m_{1}+m_{1 a}$
m_{1}	M1	slugs	$m_{c}+m_{L}$
$\mathrm{m}_{1 a}$	M1A	slugs	Apparent mass
m_{3}	M3	slugs	SRB mass

TABLE A5 - LIST OF SYMBOLS FOR SUBRGUTINE CHUTE (CONCLUDED)

Coefficients for the tangent force are calculated as function of the angle of attack, α, using the p iynomial form

$$
C_{1} \alpha+C_{2} \alpha^{2}+C 3 \alpha^{3}+\ldots \ldots+C_{8} \alpha^{8}+C_{9} \alpha^{9}
$$

Specifically for the parachute the normal force coefficient polynomial is of order three, the tangent force coefficient polynomial is of order five, and the moment coefficient polynomial is of order eight.

The SRB normal force coefficient polynomial is of order eight, the tangent force coefficient polynomial is of order five, and the moment coefficient polynomial is of order nine.

Angle of isttack -- The angle of attack is defined as the angle between the body axis of symmetry and the relative velocity vector.

$$
\alpha_{i}=\operatorname{Tan}^{-1} \sqrt{\frac{V a_{X i}{ }^{2}+V a_{Y i}^{2}}{V a_{Z i}}}
$$

Sideslip Anfle -- The side slip angle is defined for this problem to be the angle between the body fixed X axis and the projection of the relative velocity vector on the body fixed X-Y plane. Thus,

$$
\beta_{i}=\operatorname{Tan}^{-1} \frac{\mathrm{Va}_{\mathrm{Yi}}}{\mathrm{Va}_{\mathrm{Xi}}}
$$

Subroutine COEFTS is diagrammed in Figure A10 and listed in Figure A11. Frincipal variables are listed in Table A6.

Subroutine FORCES, Subroutine MOMENTS -- The subroutines FORCES and MOMENTS calculate the aerodynamic forces and total extcinal (ae-odynamic and constraint) moments on the parachute and the payloa- The dynamic pressure at the center of pressure of each body is calculated.

Subroutine FORCES is diagrammed in Figure A12 and listed in Figure A13, and its principal variables are listed in Table A7.

Subroutine MOMENTS is diagrammed in Figure AI4 and listed in Figure A15, and its principal variables listed in Table A8.

Subroutine DIRCOS, Subroutine DBDT -- Subroutines DIRCOS ard Subroutine DBDT calculate and manipulate the matrices of direction cosines describing the orientations of the reference frame, parachute, riser, and payioad with respect to the earth. DIRCOS calcuiates the immediate direction cosines matrices as functions of the Euler angles at sach integration step.

For resolution of the riser force (the constraint force) into the parachute and payload reference frames rirectionc, $c^{\cdots} \cdots$ tion cosines matr s are formed describing the orientations of $\because, 0$ fixed axis system., th respect to the parachute and the payloaci budy al:ed ases systems.

Subroutine DIRCOS is diagrammed in Figure A16 and listed in Figure A17, and tts principal variables defined in Table A9.

Subroutines DBDT is diagrammed in Figure A1s and listed in Figure A19, and its principal variables defined in Table A10.

Subroutine PRECOR -- Subroutine PRECOR integrates the equations of motion using a Runge Kutta initialization and a predictor-corrector integration algorithm (Ref. 12).

The Runge Kutta muthod establishes values for the state vector at time zero and at time equal to one integration step size. Using tisese two initial points the state vector is updated in the predictor mode (mode $=5$) and time is increased one integration step size. The corrector mode (mode $=$ 6) refines the prediction made when mode $=5$. Completion of the corrections returns control to the main program for calculation of everything associated with the newly calculated state vector.


```
        SUAROUTIME COFFTS IRC,
C SURROUTINE COFFTS CALCIMATES THF AEROOYMAMIC COEFFICIFNTS OF TMF PARA-
```



```
    COWMON/AAA/ACT(9),ACN(9),ACM(9), &CT(9), RCN(0), ACM(0)
    COMMON/AAR/ Y(33)
    COmmON/AAD/A(3.3.3),RS(6),T(3.6)
```



```
    COMMOM/AAFF/CM1.CM3.ALCM
    COMMON/AAG/L2.L2DOT,L2NDOT,LCM,LCMDOT,LCMDNT
    COMMON/AAH/CI,C3,F2,L3.RACDLI,L4,CF1,CF3,SI.C*
    COMMON/AAP/YWIND.VWINNOVGICT,WIGI
    REAL LloL3oL4
    REAL L2-L 2DOT,LPOOOT,LCMOLCMOOT &LCMDDT
C vELOCITIFS SOUARFN OF THF CGS OF DODIFS I ANN *
C INERTIAL vELOCITIFS SOMIARFN OF TMF CMIS OF RONIFS 1 ANN 3
    El =Y(1)#Y(1)+Y(?)|Y(T)+Y({)|Y({)
    C; = Y(10)er(10)+Y(11)*Y(11)+Y(17)*Y(1>)
C vELOCITIES SQUAREO AT THE CPIS OF BOOIES 1 AND 3 WRT THF A:R mass
    CF1 = (Y(1)-Y(5)#(LI-LCM)-WIGU*B(1,1,1))**?+(Y(2)+Y(4)*(LI-LCM)
```



```
C NORMAL COMPONFNTS CE VELOCITY AT THE CP OF RODIFS I ANO 3
C WITH RFSPFCT TO THF AIR MASS
    CNORF1 = SORT(ARS(CFI-(Y(3)-WIGUMRP1,T,1)I##7))
```



```
C ANTALFS OF ATtACK
    ALPMA1 = ATAN(CNORFI/IY(3)-WIGI#R(1,3,1)+1.नR-14)|
    IF (Y(1)-Y(5)=(LI-LCM )-WICUER(1,1,11.GT. O.~) ALPHAI = -ALDHA)
    ALPHA3 = ATANICMORF3/IY(12)-WIGUMR{3,3,1I+10CF-141)
    If (Y(10)+Y(14)*L4-WIGI#R(3.1&1).GT.O.O) ALPHA3 = -ALPHA3
C angle metmeen the x axIs and the projection of C ON the x-y planf.
C RODIFS 1 AMN ?
    AETA! = ATAN(IY(7)AY(A)*(LI-LCM)-WIGU#R(1,P目)/IY(1)-Y(5)*(LT-LC
    1M1-W!\mp@code{UMa{1,1,1!+1.nF-14!)}
```



```
    {A(3,1,1)+1,0F-1&|!
C PARACHIITE NORMAL FORCF COFFFICIENT
    *N1 = AC*(1)*ALPHAI*ACN(7)*ALPHA1**)+ACN(7)*ALPHA!***
    COO NODNAL EOBCF PNFFFICIFNT
    CN3 = वCN(I)*ALPHA3+OCN(2)*ALPHAR##?+DCN(2)*ALPHA3***
    1 +RCN(4)*ALPHA3**4+RCNIS)*ALPHA3**5+RCN(6)*ALPHA3**6
    2 +RCN(7)*ALPHA3*#7+RCN(8)*ALPHA***A
C PARACHUTF TANGFNT FORCF COFFFICIFMT
    CT1 = ACT(1)*ACT(2)*ALPHA1*ACT(3)*ALPHAI**)*ACT(4)*ALPHA1***
    1 +ACT(5)*ALPHA!*#4+ACT(6)*ALPHA1**G
- ERN TMMETNT EORIE COFFF:PIENT
    CT3 = ACT(1)&RCT(`)*ALPHA3+RCT(3)*ALPHAa**)*RCT(4)*ALPHA3***
    l AACT(5)*ALPHA3**4+RCT(6)*ALPHA3**5
    7 +RCT(7)*ALPHA3**6+RCT(8)*ALPMA3**7+RCT(9)*ALPHA3**A
    rv! = AC*(I)#ALPHAl
        CMZ = OCM(1)FALPHAT
```



```
C PARACHUTF MOMFNT COFFFITIENT
CMMI = CM1+ACM(I)*ALPHA1*EI
    Payloan mOMFNT COEFFICIFNT
    in CMA = CM2+OCMII)*ALPHAx**I
        DETION
        ENO
```

Figure A11. Subroutine COEFTS Source Listing

TABLE A6 - LIST OF SYMBOLS FOR SUBROUTINE COEFTS

Quantity	Mnemonic	Units	Description	
$\begin{aligned} & { }^{\alpha_{1}} \\ & \alpha_{3} \end{aligned}$	ACM	---	Constants in polynomials for parachute aerodynamic coefficient	
	ACN	---		
	ACT	---		
	ALPHA 1	rad	Parachute angle of attack	
	ALPHA 3	rad	SRB angle of attack	
	BCM	---	Constants in polynomials for SRB aerodynamic coefficients	
	BCN	---		
	BCT	---		
β_{1}	BETA 1	rad	Parachute sideslip angle	
β_{3}	BETA 3	rad	SRB sideslip angle	
$\mathrm{Va}_{1}{ }^{2}$	CF1	(ft/sec ${ }^{2}$)	Velocities squared of the CP's WRT	parachute
$\mathrm{Va}_{3}{ }^{2}$	CF3	$\left(\mathrm{ft} / \mathrm{sec}^{2}\right.$)	the moving air mass	SRB
$\mathrm{C}_{\mathrm{M}_{1}}$	CM1	---	Moment coefficients	\{parachute
$\mathrm{C}_{\mathrm{M}_{3}}$	CM3	---		
$\mathrm{C}_{\mathrm{N}_{1}}$	CN1	---	Normal force coefficients	parachute
$\mathrm{C}_{\mathrm{N}_{3}}$	CN3	---		
$\mathrm{C}_{\mathrm{T}}^{1}$	CT1	---	Tangent force coefficients	parachute
$\mathrm{C}_{\mathrm{T}}{ }_{3}$	CT3	--	\dagger Tangent force coefficiento	
C_{1}	C1	$(\mathrm{ft} / \mathrm{sec})^{2}$	Inertial velocities	parachute
C_{3}	C3	$(\mathrm{ft} / \mathrm{sec})^{2}$	Squared	SRB

Figure A12. Subroutine FORCES Flow Diagram

```
    SURROUITINF FORCFS
C SUBROUTINE FORCES CALCULATES TME AERODYNAMIC FORCES OM THE PARACMUTE AMD SRG C
C AS FUNCTIONS OF THE VFLOCIIY OF THF CP RFLATIVF TO THE AIR AND TME ANGLF OF C
C ATtARK
    COMMON/AAF/CN1,CTL,CN3,CT3,ALPHA1,ALPHA3,RFTA1, RETA3,GAMMA
    COMMON/AAM/C1,C3,F2,L3.RAD,L1OL4.CF1.CF3,S1,S3
    COMMON/AAL/FIX,FIY,FIZ,F3XOF3Y,F32
    COMHON/AAR/KLS&KR,MC,ML,M1,MIA,MP&DO&RO,RHO&L 2O,LCMO.LSO&M&M3
    RFAL LlOL3OL4
    REAL KLS,KR,MC,ML,MI,MIA,MP,L2O,LCMO,LSO,M,M3
C NYNAMIC PRFSSURF, NONIES I ANO 3
    0&1 - 0.5#CFI*SI*RHN
    OS3 = O.5*CF3*S3*RHO
C AERODYMAMIC FORCES IN XO Y. GNO Z BONY FIXED AYIS DIRECTIONS QOOIFS I AND S
    FIX = +CNI*OSI*ROS\OFTA!!
    FIY = +CNI#OCI#CINIRFTAII
    FIV = -CT1*OC1
    F3x : +CM%=053*COS(AFTA3)
    F3Y = +CN3*OS3*SIM(DFTA3)
    F37 = -CT3*OS3
    RFTIURN
    FNO
```

Figure A13. Subroutine FORCES Source Listing

TABLE A7 - LIST OF SYMBOLS FOR SUBROUTINE FORCES

Quantity	Mnemonic	Units	Description
$F_{1 X}$	F1X	1b) parachute aerodynamic
$\mathrm{F}_{1 Y}$	F1Y	lb	\} forces in XYZ
F_{12}	F12	1b	\int body fixed axes directions
$F_{3 X}$	F3X	lb	SRB aerodynamic forcts
$\mathrm{F}_{3 Y}$	F3Y	lb	\} in XYZ body fixed
$\mathrm{F}_{3 \mathrm{Z}}$	F3Z	lb	\int directions
$\mathrm{q}_{1} \mathrm{SO}_{1}$	QS1	$\mathrm{lb} / \mathrm{ft}^{2}$	$\frac{1}{2} \circ V_{\mathrm{al}}^{2} \mathrm{~S}_{\mathrm{O}_{1}}$
$\mathrm{q}_{3} \mathrm{~S}_{\mathrm{O}_{3}}$	QS3	$\mathrm{lb} / \mathrm{ft}^{2}$	$\frac{1}{2} \rho V^{2}{ }_{3}^{2} S_{\mathrm{O}_{3}}$

Figure A14. Subroutine Moments Flow Diagram

```
    GHEONHITIMF MONEMTS (ROWI
```



```
C GIRROITTVE MOWEP:TE CALGILATES THF MOMFNIG ALOITT THF CW OF THF PARACHITG AND SOO
```



```
    gun = mo.,
```



```
    TETancitimy...
```



```
    9017 =r.
```



```
    "7. = n."
    つ〒т!n."
    ra.n
```

Figure A15. Subroutine Moments Source Listing
TABLE A8 - LIST OF SYMBOLS FOR SUBROUTINE MOMENTS

Quantity	Mnemonic	Units	Description
$\mathrm{M}_{1 \mathbf{X}}$	M1X	ft-lb	total external moments
$\mathrm{M}_{1 \mathrm{Y}}$	M1Y	ft-lb	about XYZ parachute
$\mathrm{M}_{1 Z}$	M1Z	$\mathrm{ft}-\mathrm{lb}$	body fixed axes
$\mathrm{M}_{3 \mathbf{X}}$	M3X	ft-lb	total external moments
$\mathrm{M}_{3 \mathbf{Y}}$	M3Y	ft-lb	about XYZ SRB
$\mathrm{M}_{3 \mathrm{Z}}$	M3Z	ft-lb	body fixed axes

Figure A16. Subroutine DIRCOS Flow Diagram

Figure A17. Subroutine DIRCOS Source Listing

TABLE A9 - LIST OF SYMBOIS FOR SUBROUTINE DIRCOS

Quantity	Mnemonic	Units	Description
$B_{i k}^{j}$	B(J, I, K)	---	Direction cosine matrix elements $i, k=1,2,3$ $\begin{aligned} & j=1 \text { parachute } \\ & j=2 \text { riser } \\ & j=3 \text { SRB } \end{aligned}$ used for rotating a vector in Earth coordinates to one in j coordinate system
${ }^{\text {B }}$ S1	BS(1)	---	proportion of F_{2} projected
${ }^{\text {B }}$ S2	BS(2)	---	on $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ parachute
${ }^{\text {B }}$ S	BS(3)	--) body-fixed axes
${ }^{\text {B }}$ S4	BS(4)	---	$\hat{\text { proportion of } \mathrm{F}_{2} \text { projected }}$
${ }^{\text {B }}$ S5	BS(5)	-	$\}$ on X, Y, Z SRB body
$\mathrm{B}_{\text {S6 }}$	BS(6)	---	f fixed axes

Figure Ai8. Subroutine DBDT Flow Diagram

REFRODUCIRIIIY Ot 1

```
    SIINONITIMF nant
C GIPROHTINF DODT CNLCULATFG THF TIMF RATE OF CHANGF OF THE DIRECTION COSINES C
C UATPIX ECR UGF IA TUF OIFFROFNTIAL EO'IATIONS OF MOTION
    -пMMпN/AAE/ Y(32)
    OM~ONN/AAR/R(2,3,2),DC(G),T(2,6)
    COMMON/A\DeltaF/ A\Delta(O):An(9):AC(9)
C POMETANTS IAL THE DIFFFRENTIAL FOUATIONS
    On 4n Iz 1,2
    AA(9)= = (?))*R(?,2,I)-Y(34)*P(?,),1)
    AA(l+2)= Y(lal#口(2,9,I)-Y({4)*E(2,2,I)
```



```
    AR(P+2)= Y(17)*口(7,7,1)=Y(15)*P(2,1),1)
    AD(1+K)= Y(4) #n(1,2,I)-Y(A) *口(1,1,I)
```



```
    Ar(1+2)= Y(14)##(2,1,1)-Y(!2)##(2,7,I)
    4n AC(1+f)= Y(5) *?(1,9,1)-V 4) *=(1,9,1)
    DFT!10A
    ran
```

Figure A19．Subroutine DBDT Source Listing

TABLE A10－LIST OF SYMBOLS FOR SUBROUTINE DBDT

Quantity	Mnemonic	Units	Description
--	AA（array）	--	Array containing elements of the first columns of the time derivatives matrices of bodies 1，2，and 3
$\ldots-$	AB（array）	--	Second column elements
$\ldots-$	AC（array）	--	Third column elements

Subroutine PRECOR is diagrammed in Figure A20 and listed in Figure A21, and its principal variables are listed in Table A11.

Subroutine WIND -- Subroutine WIND calculates at each integration step the value of the 5% risk wind speed profile as a function of the altitude. The winc velocity vector is assumed to be aligned with the earth-fixed reference frame X axis.

Subroutine WIND is diagrammed in Figure A22 and listed in Figure A23, and its principal variables are listed in Table A12.

Subroutine GUST -- Subroutine GUST computes a step change in the air mass velocity vector according to a 5% risk gust envelope related to tir 5% risk wind profile. The step changes are calculated at a frequency of four per minute of simulation time and are both sign and magnitude modified by a random function.

Subroutine GUST is diaE ammed in Figure A24 and listed in Figure A25, and its principal variables are listed in Table A13.

Subroutine ELASTIC -- When the elasticity option is employed, subroutine ELASTIC is called at two-second intervals to determine the first and second time derivatives of the lengths of the elastic elements, the riser, and the suspension lines. The method employs a central difference method on an averaged length.

Subroutine ELASTIC is diasrammed in Figure A26 and listed in Figure A27, and its principal variables are listed in Table A16.

Subroutine PRINT -- Subroutine PRINT controls the line printer operation and loads plotting storage arrays. Ten groups of data are printed on each page. This is adjusted by changing the line output counter (LOC). When the number of groups printed equals LOC, a heading is printed at the top of the next page and the LOC is set to zero.

Corresponding to each output group, the values for altitude, range, angles of attack, pitch angles (θi), riser force, riser length, center of parachute mass, and the air mass velocity are loaded into arrays for use in plotting.

Subroutine PRINT is diagrammed in Figure A28 and listed in Figure A29. Its principal variables are listed in Table A15.

Subroutine CONST --S ubroutine CONST calculates a group of variable combinations used in the differential equations subroutine DIFEQN that result from the method of coupling of the parachute and payload. Generally, these are the accelerations of the confluence point and attach point in components parallel to the earth fixed axis system.

Subroutine CONST is diagrammed in Figure A30 and listed in Figure A31.

Figure A20. Subroutine PRECOR Source Listing

```
CIMROITINF PRFCOR INOF.N C붑붕
C CIMROITINF PREROR IPRENICTOR - CORRFCTORI INTERRATFS THF SYSTFM OF
C OIFFFRFMTIAL FCUATIOME. ITS FFATIRFG IMCLUNF A RIMGAOKUTTA INITIALITATIOM, C
C
```



```
        COMMDN/AAR/ Y(33)
        COMMONISNIf*OONF
        COMMON/AAT/TINF
```



```
        WOnF = monf +1
        If imNEF ort. t1 mONF =6
    O COMTINM,
        4 = 01R67*
```



```
        motn 1304.0.0.1A-191. mobe
    | TIMFS = TIMF
        not = 10N
        eit! = vil!
        Ot| = O.n
        An(t) = Yil!
        OfI! = FI||#N
```



```
        TIMF = TI*FS & N.5*H
        -nTn 1*
    4 mn mntmelon
        V(I) = ciri+n.5*HकF(I)
        n(!) = M!l!+?.n=4*E(!)
    an nit! = EItl
        mnta 13
        A nn an l=lyN
```



```
            TIMF = TI*FS + H
            CNTM13
        4nO 7n IEItN
```



```
    1% r
    METIDA
    16 m 1T I= loN
r PEFNITTMP EOILATION
            DY(I) =MD(1;42.0䒤H*F(I)
            n(I| = FII!
            AF||| = YII
    17 Yit| = PYCI
            TIUF = TYMF&M
            J
            RFTijpN
    19 J m, m = J+1
* CORRFCTOR FOIIATION
            CY(il AFII)+0.5*H*(n{I)+F(I)
    20 Yiti - CY(I)
        IF (J.FO.>) GOTO 37
        RFTIMN
    32 DO 100 I =19N
    ABItl = AFIt
    100 siI! = Yili
        TIMFS - TIMF
        monf *
        REPIMPM
        FNM
```

Figure A21. Subroutine PRECOR Source Listing

TABLE A11 - LIST OF SYMBOLS FOR SUBROUTINE PRECOR

Quantity	Mnemonic	Units	Description
---	AD(I)	---	$\mathrm{Y}(\mathrm{J}) \mathbf{\| t - H}^{\text {t }}$
---	AE(I)	---	$\mathrm{Y}(\mathrm{I}) \mid \mathbf{t}$
---	CY(I)	---	corrected value $\left.\mathrm{Y}(\mathrm{I})\right\|_{\mathrm{t}+\mathrm{H}}$
---	D(I)	---	$\left.\frac{d}{d t} Y(J)\right\|_{t}$
---	F(I)	---	$\left.\frac{d}{d t} Y^{(I)} \right\rvert\, t+H$
Δt	H	sec	stepsize
---	MODE	---	MODE $=4$, Runge Kutta initialization MODE $=5$, Predict $\mathrm{MODE}=6$ correct
---	N	---	number of equations
---	$\mathbf{P Y (\Sigma)}$	---	predicted value $\left.\mathrm{Y}(\mathrm{I})\right\|_{\mathbf{t + H}}$
t	TIME	sec	time
---	Y(I)	---	state vector

Figure A22. Subroutine WIND Flow Diagram

```
        SUAROUTIMF WIMD
C SURROUTINE WIND CALCULATES A WIMD IMPUT TO THE VELOCITY OF TME AIR mASS C
    COMMON/AMB/ Y(33)
    COMMON/AAP/YWIND,VWIND,VGUST,WIGU
    IF (Y(30)ALT.-495.0) GOTO 10
    VWIND = 69.0#(-Y(30)/495.01%*0.21
    GOTO }2
    10 VW:M = 69.0
    20 CONTINUE
        RFTURN
    FND
```

Figure A23. Subroutine WIND Source Listing

TABLE A12-LIST OF SYMBOLS FOR SUBROUTINE WIND

Quantity	Mnemonic	Units	Description
$\mathrm{V}_{\text {wind }}$	VWIND	$\mathrm{ft} / \mathrm{sec}$	mean wind speed

Figure A24. Subroutine GUST Flow Diagram

SUBROUTINE GUST
 C mass as a function of altitude and a random magnitude modifier COMMON/AAR/ Y(33)
COMMON/AAP/YWIND.VWIND.VGUST OWIGU
20 IFPY(30).LT.-990.0) GOTO 30 VGUST $=19.8$ GOTO 50
30 IF(Y) 30). LTe-3280.0)GOTO 40 VGUST $=10.8 / 2290 . n \#(-Y(30)-990.0)+18.9$ goto 50
40 VGUST 29.7
50 IFIKK.EQ.0) SFED $=7.0$ KK
.
CALL RAMSU (YFL, SFFEN)
C YFL is in thf rante -1.0 TO +1.0 VGUST = YFL"VGUST RETURN
ENO
Figure A25. Subroutine GUST Source Listing

TABLE A13 - LIST OF SYMBOLS FOR SUBROUTINE GUST

Quantity	Mnemonic	Units	Description
V GUST $^{---}$	VGUST	ft/sec	gust velocity
	YFL	---	random modifier in range -1 \leq YFL ≤ 1

Figure A26. Subroutine ELASTIC Flow Diagram

SUBROUTIME ELASTIC
C SUBROUTIME ELASTIC CALCHLATES THE TIME RATE OF CHANGE OF THE LEMGTH OF TH
C ELASTIC RISERS AMD SUSPENSION LINES AS WELL AS THE TIME RATE OF CHANGE OF
c the relative velocities of each end of the elastic elements
COMMOM /AAGRL 2 \& $2 D O T, L 20 D O T$,LCM. LCMDOT, LCMDOT

COMmom/AAK PAL 1 OAL 2 OML 3 IAL4

COMNOM/AMO OCLDTIME YELAST DETIME

COMmON/AATTTIME

REAL L2•L200T, L2000T PLCM•LCMDOT \& LCMDDT
C flasticity calculations
L.200TE (AVERAI-ONERA1IIOT

LCMOOT= IAVERA2-OVERAZI IOT
L2000T= (ALL2-L2DOT) CDT
LCMDDOT = ALALACCMDOT | $/$ DT
AL1 $=L 2$
ALZ $=$ L200T
ALS $=$ LCM
al4 - LCmDOT
OVERAI = AVERAI
OVERA? $=$ aVERA?
RETURN
ENO

Figure A27. Subroutine ELASTIC Source Listing

TABLE A14-LIST OF SYMBOLS FOR SUBROUTINE ELASTIC

Quantity	Mnemonic	Units	Description
---	AL1	ft	Last calculated value L_{2}
---	AL2	$\mathrm{ft} / \mathrm{sec}$	Last calculated value $\dot{\mathrm{L}}_{2}$
---	AL3	ft	Last calculated value ${ }^{L_{C}}{ }_{M}$
---	ALA	$\mathrm{ft} / \mathrm{sec}$	Last calculated value $\dot{L}_{C_{M}}$
---	AVERA 1	ft	Average value of L_{2} during interval from t - DT to t - DT/ 2
---	AVERA2	ft	Average value of $\mathrm{L}_{\mathrm{C}_{M}}$ during interval from $t-D T / 2$ to t
$2 \Delta t$	DT	sec	Averaging interval
${ }^{\mathrm{L}_{\mathrm{C}}}$	LCM	ft	Length from confluence point to parachute center of mass
$\dot{L}_{C_{M}}$	LCMDOT	$\mathrm{ft} / \mathrm{sec}$	$\frac{d}{d t} L_{C_{M}} \text { at } t-D T / 2$
L_{2}	L2	ft	Lengts of riser
\dot{L}_{2}	L2DOT	$\mathrm{ft} / \mathrm{sec}$	$\frac{d}{d t} L_{C_{M}} \text { at } t-D T / 2$
---	OVERA 1	ft	Average value of L_{2} during the interval from t-DT to ${ }^{2}$ D/2
---	OVERA2	ft	Average value of $\mathrm{L}_{\mathrm{C}_{\mathrm{M}}}$ during the interval from t - DT to $t-D T / 2$
t	TIME	sec	time

Figure A28. Subroutine PRINT Flow Diagram

SUBROUTIME PRIMT

C subroutime print hamoles all the print output functims of the mrogram COMMON/AAR/ Y(33)
COMMON/AAC/D(30)
COMMON/AAD/R (9,3.3),AS(6),T(3.6
COMMON/AAF/CN1, CT1,CN3,CT3,ALPHA1, ALPHA3, BETA1, BETA3.GAMMA
COMMOW/AAG/L2.L2DOT LL2DDOT:LCM, LCMDOT. LCMDDT
COMOW $/ A A H / C 1, C 3, F 20 L 3, R A D, L I O L A, C F 1, C F 3,51,53$
COMMON/AAP/YWINR,VWIND.VGUST.WIGU
COMMON/AAT/TIME
COMMON/AAW/MORS

1,RNG(402),FOR(402),RL(402),CL(402),WG(402)
REAL L2.LCMOL3*L1.L4
RFAL L2DOT \angle L INDOT - LCMDOT ILCMDNT
IF (TIMF.FO.D.0) LOR $=10$

$Y(33)=-A(1,3,3) \pi L C M-R(2,3,3)=L 2-B(3,3,3) * L 34 Y(30)$

call todeg
E1 $=$ SARTIC1)
F3 = SORTIC3)
ALP1 = ALPhal*RAD
alpha3 = alpha3mRad
IF ILOC. FT. 101 GOTO 300
goto 330
300 loc $=0$
IF (TIME.FO.0.0) LOR $=10$
WRITE $(6,550)$
550 format (1H1)
320 WRITF $(6,5001$
xX(NORS) $=$ TIME
THFI(NORS) = Y(R)
THF3(NORS) $=$ Y(17)
$\triangle P_{1}$ (NORS) $=\mathrm{ALPI}$
AP3 (NOBS) $=$ ALPHAS
ALT (NORS) $=-Y(30)$
RMG (MORS) $=Y(28)$
FOR (NORS) =F?
RL (NOAS) $=L ?$
HG (MORS = LCM
135 CONTINUF
CALL TORAD
$A L P 1=A L P 1 / R A B$
ALPHA3 $=$ aLPHA3/RAD

$16 \mathrm{X}, 2 \mathrm{HU1}, 7 \mathrm{X}, 2 \mathrm{HP1}, 7 \mathrm{X}, 3 \mathrm{HXE}, 6 \mathrm{X}, 2 \mathrm{HC} 1,7 \mathrm{X}, 4 \mathrm{HPS} \mathrm{I}, 5 \mathrm{SX}, 2 \mathrm{HU}, 7 \mathrm{X}, 2 \mathrm{HP}, 3$
$2,7 \mathrm{X}, 3 \mathrm{HXE} 3,5 \mathrm{X}, 6 \mathrm{HXE} 3 \mathrm{DOT}, 4 \mathrm{X}, 2 \mathrm{HC} 3,7 \mathrm{X}, 3 \mathrm{HLCM}, 6 \mathrm{X}, 2 \mathrm{HF} 2 / 9 \mathrm{X}, 6 \mathrm{HTMETAL}$
3,5X, 2 HV1, $7 \mathrm{X}, 2 \mathrm{HO}, 7 \mathrm{X}, 3 \mathrm{HYE} 1,14 \mathrm{X}, 6 \mathrm{HTHE} \mathrm{YA}, 4 \mathrm{X}, 2 \mathrm{HV}, 7 \mathrm{~T}, 2 \mathrm{HO}, 7 \mathrm{X}$,

 63X,6HALPHA3. $/ 1$
510 FORMATIF7.2.12F9.3.F12.3/7X.4F9.3.9X.5F9.3.9x.F9.3/7X.11F9.31
RETURM
FNB
330 WRITE (6.510) TIME,Y(9),Y(1),Y(4),Y(31). E1,Y(18),Y(120),Y(13). 1Y(28),D(28),E3DLCMOF?,Y(8),Y(E),Y(5),Y(321, Y(17),Y(11)OY(16),

3Y1 301 :01301: 1 al mas
WRITE (6.400) WIND.VGUST
LOC $=$ LOC +1
e loman plat arbays
C UP TO 400 POINTS PFR CURVF
IFIMOAS.GE,400) GOTO 139
wons $=$ NOAS +1

Figure A29. Subroutine PRINT Source Listing

TABLEA15 - LIST OF SYMBOLS FOR SUBROUTINE PRINT

Quantity	Mnemonic	Units	Description
α_{1}	ALP1	deg	parachute angle of attack
h	ALT	ft	plotting storage array, altitude
${ }^{\alpha} 1$	AP1	deg	plotting storage array parachute angle of attack
α_{3}	AP3	deg	plotting storage array SRB angle of attack
${ }^{L} C_{M}$	CL	ft	plotting store .e array, $\mathrm{L}_{\mathrm{C}_{\mathrm{M}}}$
$\sqrt{C_{1}}$	E1	$\mathrm{ft} / \mathrm{sec}$	speed, parachute center of mass
$\sqrt{C_{3}}$	E3	$\mathrm{ft} / \mathrm{sec}$	speed, SRB center of mass
F_{2}	FOR	lb	plotting storage array, riser force
---	LOC	--	line output count
---	NOBS	---	number of points in each curve
L_{2}	RL	ft	plotting storage array, riser length
XE_{3}	RNG	ft	plotting storage array, range
θ_{1}	THE1	deg	plotting storage array, $\boldsymbol{\theta}_{1}$
θ_{3}	THE3	deg	plotting storage array, θ_{3}
---	WG $=$ VIGU	$\mathrm{ft} / \mathrm{sec}$	air mass velocity vector
t	XX	sec	plotting storage array, time

Figur : A30. Subroutine CONST rlow Diagram
suproutinf const
C SUbroutinf const calculatfs constants usfn in thf difffrfntial eninations

COMMON/AAH/C1,C3,F7,L3,RACDLI,L4,CF1,CF3,S1,C3
COMMON/AAR/Y(33)
COMMON/AAC/D(30)
COMMON/AAD/B(3,3,3),RS(6), T(3,6)
COMMON/AAN/AG,A7,AB,A9,A10,A11,A17,A13,A14, A15,A16,A17,A:R,A10,A2n
COMMON/AANN/AZ1
real l2ol2notil2ndGT,LIel4
RFAL L3oLCM.LCMDOT OLCMONT
A6 $\quad=(D(10)-1(14) * L 3) *(A(3,1,3))$
$A_{7}=(D(11)+D(12)+(3) *-(3,7,3)$

$A 9=(\cap 1 ? 1-D(4) * L(M-Y(4) * L(M \cap \cap T) * D(1), ?, 2)$
$A 10=(n(17) * R(2.3,7))$
A11 $=(n(10)-\cap(14) * L 3) *(3,1,7)$
A12 $=(0(11)+0(13) * L 3) * a(3.9,2)$
A13 $=D(12) * 8(3,3,2)$
$A 14=(D(1)+D(5) * L C M+Y(5) * L C:$ MOT $) * R(1,1,2)$
A15 $=(D(2)-D(4) * L(C M-Y(4) *$ LCMNOT $) * a(1,2,7)$

A17 $=(\operatorname{D}(11)+D(12) *(3) * D(2 \theta ?, 1)$
A18 = D(12)*H(3i3.1)
$A_{1} 9=(D(1)+\Gamma)(5) * 1,(M+Y(5) * L(M \cap C T) * R(1,1,1)$
$. A 20=(D(2)-D(4) * L(C N-Y(4) * L(M D O T) * R(1, ?, 1)$
$\Delta 71=n(x)+L C M \cap T T$
rfturn
END

Figure A31. Subroutine CONST Source Listing

Subroutine INVELO - - Subroutine INVELO initializes the inertial components of velocity in the body fixed axis systems at time zero for the initial orientations and vertical rate of descent as read in the input data deck.

Subroutine INVELO is diagrammed in Figure A32 and listed in Figure A33.

Auxiliary Subroutines

Auxiliary trigonometric functions SEC provided. SEC is listed as Figure A34.

Subroutine SRBIN calculates the SRB inertial differences as used in Equation (8A). Subroutine SRBIN is listed as Figure A35.

Subroutine TORAD converts angles and angular velocities to radians and radians per second. Subroutine TORAD is listed as Figure A36.

Subroutine TODEG converts angles and angular velocities to degrees and degrees per second. Subroutine TODEG is listed as Figure A37.

Subroutine RANDU calculates a random number in the range -1 to +1 . Subroutine RANDU is listed as Figure A38.

Linearization Subroutines

F ve subroutines make up the package to linearize and find the eigenvalues for a set of nonlinear differential equations.

Subroutine DERIVE calculates the first partial derivative matrix. Subroutine DERIVE is listed as Figure A39.

Subroutine EIGEN is called from subroutine DERIVE and performs the control, storage, and output functions for the eigenvalue calculation process. Subroutine EIGEN is listed in Figure A40.

Subroutine HESSEN is called from subroutine EIGEN and manipulates the matrix of first partial derivatives into the upper Hessenberg form. Subroutine HESSEN is listed in Figure A41.

Subroutine QRCALL is called from subrcutine EIGEN and hence calls subroutine QR. QRCALL is a double iterative eigenvalue approximation method using a quotient reduction sche 'e provided by QR. Subroutine QRCALL is listed • Figure A42, and subroutine QR is listed as Figure A43.

Calculate initial velocities

$$
\begin{array}{ll}
Y(1) & =\text { HDOT } * B(1,1,3) \\
Y(2) & =\text { HDOT } * B(1,2,3) \\
Y(3) & =\text { HDOT } * B(1,3,3) \\
Y(10) & =H D O T * B(3,1,3) \\
Y(11) & =\text { HDOT } * B(3,2,3) \\
Y(12) & =\text { HDOT } * B(3,3,3)
\end{array}
$$

Figure A32. Subroutine INVELO Flow Diagram

```
    SURROUTIME INVELO (MDOT)
C SUBROUTIME INVELO CALCULATES THE INITIAL VFLOCITIFS OF THE CHUTF AND SRA
    COMMON/AAR/ Y(33)
        COMMON/AAD/R(3.3.3),DS(6),T(9,6)
        CALL NIRCOS
C INITIAL INERTIAL VELOCITIES
CU1 = Y(1) V1 = Y(2) Wl=Y(3)
CU3 = Y(10) V3 = Y(11) W3 = Y(12)
D0 30 I = 1.3
    Y(1) = HOOT#R(1,!,3)
    Y(I+9) = HDOT*R(3,I,3)
    30 CONTINUE
    RETIRN
    END
```

Figure A33. Subroutine INVELO Source Listing

REAL FUNCTION SEC (x)
SEC $=1.0 /(\operatorname{COS}(X)+1.0 E-14)$
RFTURN
FND

Figure A34. Function SEC Source Listing

GIIDDNITINE SRRIM
C. SIRROITINE SRRIM CALCILATFG THF INFRTIAL CHARACTFRISTICS OF THF SRE

QEAL IXXI.IYYI.177.1XX3.1YY3.1279

C IMFRTIAL CHARACTFRISTICE, SRR
17YZ $=$ 1223-1YY3
IYXT $=1 Y Y$ IY-IXX3

QETIJPA
FND

Figure A35. Subroutine SRBIN Source Listing

SUAROITINF TORAN
C SURROUTINE TORAD CONVERTS ANGLES AND ANGULAR VFLOCITIES TO RADIANS COMMON/AAR/Y(33)
COMMON/AAH/C1,C3,F2•L3,RAN,L1,L4,CF1,CF3,S1•S3
REAL LIOL3gL4
DO 20 I= 7.9
C EULER ANCLES IN RADIANS
$Y(I)=Y(I) / R A D$
$Y(1+9)=Y(I+0) /$ RAN
$Y(I+18)=Y(I+18 i / R A n$
C ANGULAR VFLOCITIFE IN RANIANS PER SEC
$\mathrm{L}=1-3$
Y(L) $=Y(L) / R A D$
$Y(L+9)=Y(L+Q) / R A n$
70 Y(L+1R) $=Y(L+18) / R A n$
RFTIJRN
FND

Figure A36. Subroutine TORAD Source Listing

```
    SIGAROUTINE TONEG
C SUBROUTIINF TODEG CONVERTS ANGLES AND ANGULAR VFLOCITIES TO DEGREES
COMMON/AAR/Y(33)
    COMMON/AAH/CI,C3,F2,L3,RAD,L1,L4,CF1,CF3,S1,S3
    REAL Ll:L3OL4
C FULFR ANGLFS IN DFGRFFS
    nO 200 1 = 7.0
    Y(I) = Y(I)#RAN
    Y(I*O)=Y(I+QI#RAN
    Y(I+1R)= Y(1+18)*RAn
C ANGILIAR VFLOCITIFS IN NFCREFS PFR SEC
    L = I-3
    Y(L) = Y(LImRAN
    Y(L*O)=Y(L+0)*RAN
    200 Y(L+1R)= Y(L+1R)*RAN
    RFTIJPN
    FNn
```

Figure A37. Subroutine TODEG Source Listing

```
SUBROUTINE RANDUYYFL,SFEDI
SEED=AMOD(131075.*SFED,34359738368.)
YFL=SEED*.291038304567F-10
RETURN
END
```

Figure A38. Subroutine RANDU Source Listing

```
    GIFPMITINF NFDIVF (POLIS,RC,PHNDCLIST
    COMNON/AAR/Y1331
    rn**ennu/IAC/n|za!
    FOnvenk:/A\DeltaJ/a"nnE
```



```
    ICAVF=VORE
    -F=9n
    nn 9n i=1%NC
    vN!nf!l=Y(Tl
    nntn(T)=n(!)
```



```
    nY(I)=0禺䐆)
    On T@ 15
1n Mvit!=0n!
T5 POnTTM!J
on -naitian解
    mane = 4
    C!「A! = 1.
    n@ 7n j=1, NE
```



```
    DEDT = <!r.* * ny(|
    VIJI = YIJ: + DEOT
    rALL nIDrne
    CALL PUIJTE IFLIST\
    rall rOFETGIOR)
    CALI EORRES
    CALL. *CNENTC (PHN!
    OMLL N!EEOA
    Y(I) = Y(J) - PFOT
    PFICITNEFO.l-Y r.N TO 4E
    nN a& IEI*NF
    n!1! = ni!!
2& niti=nnluifi
    *n Tn 2F
45 刀0 Gn I = 1,NE
    nIFFO= niti - NI\I!
    IF|T|FFR,NE,N,N| ro TO 5n
    E(10,J = ..n
    ra TO 5a
```



```
ce PONTINMIF
AO MONTTM|F
    ONGST= IDNF
& n(\) = Mnीn||i
70 rONTIM|IF
    RALI ETOFAI=,NH,DOLIC!
    #n 7E = = 10NF
    n(II=MOLN(1)
75 Y(I) = YOLD(I)
    unNE=|GAVE
    RFTIIPN
    FNn
```

Figure A39．Subroutine DERIVE Source L．sting

```
    SUAROITINF FIRFMIA,N&CHRONOS:
    OTMFNSION A(30,30), (80),STORF(240),TTMF(5),MM(5)
    nIMFNCION IVAB(IN)
    1LOK=\beta事LIMIT
    LINTTELIVIT+I
    TIMF(LIMITI=CHRONOS
    CALL HFSSFN(N,A,N)
    CALL ORCAL! (N,A,O,N,N)
    vN(LIMITI=*
    N=M+N
    FFILNIT,FO, Ey rn TN 1s
    no in k=1.m
10 <TOPF(IL\capK+K)=R(K)
    OFTIMN
5 uTOP=?
    n@ >0 t=l:5
    fF(NM(T).CT.NTOO) MTONP=WN(I)
2O CONTIMHIF
    WRITF(6.10n)
    WRITF(6.105)ITIMFIII*I=1.5)
    WRITEI6.IIn!
```



```
    Tv\0(*O)={nL, 2x,F1\cap,4)
    n@ 1! I=?,0
11 IVAQ(1)=10H93x,F10.4
    AO zn K=1.MTOD
    II= 年K
    I=T I-1
    JJ=60+II
    J=JJ-1
    LL=1>n+II
    I.=LL-1
    NN=19n+II
    NI =NNL
    IFIN.LF, NMITIIr.n TO 25
    STORF(IIxSTORFITI|:IOH
    IVAR(II=1OH(/* 3x/A1n
    IVAP\\1=10H* 7X,A1\cap
```



```
    CTORF(J)=GTORF(JJ)= \QH
    IVAP(2)=IVAR(4)=1NH, 3X, 1) \
40 IFIK.LE MM(3)IGO TO 45
    STORE(LI=STORE(LLIEINH
    IVAR(5)=TVAR(G)=10H*3X&A1O
45 IF|N.LF.NM(4)ICN TO 50
    eTAOE(Ni)=CTORF(NUN) = \⿴N
    TVAD(7)=IVAR(Q)=1\cap山, \X,A1\cap
50 IFPr.LF.MMIF)ITONTO 5%
    R(|)=R(ITI=1 \capH
    IVAR(9)=10H*3X,A10
    IVAQ{10I=1OH **X,A\O!
55 CONTTAMF
30 PRINT IVAR,STORF(II, RTORFIII),STORF(J),STORE(JJ),STORFILI*
    I STORF(LL),STORF(NI),STORE(NN),R(IIIRIII\
```

Figure A40．Subroutine EIGEN Source Listing

```
    LIMIT=0
    RETURN
10n FORNAT(1H1,59X.11HF[TGFAVALIIFC)
105 FORMAT(//f,RX, &(AHTINF =,FF.2,13X))
110 FORNATI/,9X,5(4HRFAL,9Y,OHIMAGINARY,4X))
FND
```

Figure A40. Subroutine EIGEN Source Listing (Concluded)

```
    StIQROITINF HFSSEN(N,A,n)
    O!MENCION A(1)
    HNTECER P,ON,DX,n
    |F(M.lE.?) PETIQN
    |n=n+!
    NN=(N-1)*In+1
    FX=NN!-1n-1n+1
    PX=N
    PM=1
    mn 7! v = ?&KX,in
    NK=PX
    DN=D*4+n
    Ox=Or+n
    JP=pm
    n=n.
    .I=v
    jr=,j
    JM=.J
30 T=Anく(A(J)!
    IF(T.l.F.n) in rn as
    J=,jo
    JEJ
    n=T
2E !FEJORF.NKI fon Tn 27
    \therefore=j+1
    .10=.10+n
    an in an
27 ref.jernoki ren Tn 4&
    j=jr
    nn 2R P=PM,OX
    T=A(0)
    A(P)=A(J)
    A(J)=T
    j=j+1
    D=.jr
    nn 20 J=%,N\#,n
    T=A(.)
    A(J)=A(D)
    * (D)=T
on }D=D+
42 IE(A(r)&Fn.n.) r.nT\Tn
    JC= DM+n
    J<=v+!
    T=1./A(K)
4F. D=A(JV)
    |Fir.enonol r.n Tn 65
    n=ロ#T
    <M=K+n
    Jrn= JK+n
    OnGn JM=JKN,N\N,D
    A, JM=A(JM!-0*A (VM)
```



```
    *(JN)=AjJN
    <MEvan+?
```

HFSS10N1 MFSSIAN2 HF5S19n3 MFSSIAn4 HFSSinns HFSSIInC HFSSIONT HESSIOns HFSSInng

HFSSInl1
MFSSIC17
HFSSInI3
HFSSIn14
HESSIN15
HFSG1N16
HFSSInl7
HFSSInIR
HFSS1019
HESSIn？n
HFSSIOT1
HFSSIn27
HESく1n？3
HESS1024
HESSIn75
HFSS2026
HFSSIn77
HFSC\}のクR
HFSS1079
HFSSIO30
HFSSI031
HFSS 1032
HFSSIN33
HFSSIN34
MFSSIn95
HFSS1036
HFSSIn77
MFSSIn38
4FSS1n30
HFSSINAC
HFSSIn41
MFSSIO4？
MFSSIn43
HFSS1044
HFSSIN45
HESSIn46
HFSS1047
HESS 1048
4FSS1n49
4FSSInso
HFSCIng
MFSSIME？
4FCS1n53
MFSSIns4

Figure A41．Subroutine HESSEN Source Listing

```
        J=JO6n P=PM&PX HFSS1055
        MO 6n D=PM&PX 
MFSS!OS6
        IF(ADS(AP).LF.(.1F-9#Anc(A(P)))) AP=0.
        A(P)=AD
6n J=J+1
G9 JK=, KK+1
    Jr= Jr+R
    IF(JK.LF,NK) r.O TO 4G
70 COMTINIJE
    71 cONTTMUJE
    RFTIIRM
    FND
4FSC1NST
HFSSICMA
HFSSjC50
HFSSI96n
HFSSl96n
HESSING?
HESSIn67
HESCIn64
HFSSI\cap65
HESS1n66
```

Figure A41. Subroutine HESSEN Source Listing (Concluded)

```
    C!IDPOITIMF ORCALL(N,A,R&"•NIN!) ORCA1002
    O!MEAC!ON A(1),O(1) ORCAINC?
    mNTEPEnM
    A1 = a19M1
    AVAN = 1.
    ACT = |FET
    ARE=.1F-1n
    |TEn= n
    "=n
    nm}=n+
    N*) = n!+(n+-1)*n
    APA =NA!-N!n
    M = vn-NM
```



```
    IF(*elr.") ortima
```



```
    AROF = ARC(A(NNHT)) ORCAIN1O
    IE!"rr.Fn.n.l r.e TN ia
```



```
1a * = "+>
    v= (NAN)
    !F(Ane(x)|LF...r-5) x=n.
    O!"-:\=x
    ~|"! = .
```



```
    fefo(".), en.n.j ran in le
```



```
    v = - P ( " - 1 ) / v ~
```



```
    10
    -cntigic
    MFE= n
    ADT = ! ! F-7
    * = N'-1
    *al = N"4
    ** = NL
    * = :1.-s.n
    iE|M.rTg.jl ror Tn te
    TE!M.rn.D) en Tn gE
```



```
    *=*ノつ
    D-T!ina
```



```
Cqat = AlNC(A(NN)I+ANC(A(NEM))
    'F(NAMELF.ACT#G&N) OANEN.
    NAMEMAN!准A#. }7
```



```
    T=nam+r
```



```
    e = endt(anc(T))
ORCAION3
OP(Alinns
OPCA1O^5
mgCA!ang
OQCA!Ang
ORCAIOMA
\mathrm{ DCAlOna}
ORCAINAO
ODCAlMl!
@DCAMAl!
SRCAIM!?
ARCA1n14
geralnga
gRCAl^16
```



```
    nPCAln>2
    ORCA1N24
    ORCAIM>5
    ORCAln>6
    nd(Aln>7
    nRC^!nフQ
    ngraingn
oncalngn
OPCA1\cap\!
?
ORCAIARP
ORCAIO3O
ORCAInAR
OPCAIn41
noCaln4?
OOCA1\cap4?
OPCA1n44
ORCA1,N45
ODCAIALG
ORCA1\cap47
ORCAIN4P
ORCA1O4O
ORCA1nEn
GRCA1OAS
ORCA1OS2
gRCAIAS3
ORCA1AR3
ORCAIARG
nRCAjAE&
GRCAIARG
grcalAMR
```

Figure A42．Subroutine QRCALL Source Listing

	IFPA．MF．刀）rotinan	ORCAIOS ${ }^{\text {d }}$
$9 A$	PFit．rifonel ratoma	ORCAIABO
	＂$=*+$＋	ARCAINB1
	$0(m-1)=0$	ORCAInct
	$D(N)=r$	ORCAIN63
37	A $=\mathrm{N}-1$	ORCA1064
	$N \mathrm{NL}=$ Nan	ORCAICAS
	N1N $=\sim^{\prime} L$	SRCAINRA
	$\cdots \mathrm{L}=\mathrm{NL}$－ain	DOCAInG7
	on Tn 17	neralnkr
$2 n$	$\cdots=\cdots+7$	ORCAINEO
	D $(44-1)=0+C$	ORCAIN7M
	$D(N)=n$ ．	ODCA1娍1
	$v=\cdots 1 A^{\prime \prime}-A^{\prime}+1$	n9（A1n7）
	$\cdots=\cdots+$ ？	9RCA！へ74
	ロ（\％ーツ）＝п＿r	
	$n(\infty)=0$.	刀QCA1076
	（．）T0 27	ORCA1077
90		
	$n\left(x^{n}+E\right)=n$	SOCAIN7o
	$-(\cdots+\alpha)=r$	npraman
	$0(n+7)=5$	nbrainay
	$n(n+0)=-r$	nd（ATAQ）
	¢n tn $7 n$	neralnat
an	$x=0+C$	GPRAIMR4
	$y=n-r$	noralnes
	$?(n+a)=n_{0}$	nocalngh
	$\cdots(N+\theta)=n_{0}$	PRCAIn97
	$2(x+5)=x$	ORCAICRA
	$\mathrm{Q}(\mathrm{n}+7)=\mathrm{V}$	－CAlnag
		．JRCAlnor
	$P(N+E)=Y$	ORCAJ＾al
	$3(a n+7)=Y$	grialnas
71		gRCAInna nRCATAOL
		SRCAInAS
	ifinererit．iol $\quad x=x / a C r$	ORCAINOR
	$Y=A n S(R(M+7)-D(M+2))+A R C(R)(M+R)-R(2,14))$	orcajno
		DRCAIMOR
	PF（arcoritele）Y＝Y／ACr	ARCAIn90
	Are $=$ AnciA（VL＋？）	SRCA1ITC
	CELTA＝AMAXIITFLTA，（ACT＊ARSSA（NM）U）！	ORCA1101
	IFPACROCT，DELTAI ro TC an	SRCAIIN
		ORCAIIN3
		nPCAITM4
Qn		noralink
		nocating
		ORCAIIC角
	iF（x．r．t．．g ）en TO iln RWO $=R(v+K) \quad R(N+7)-R(\cdots+K) * F(\cdots+Q)$	nPCATIA9 nRCAIM1n
		opralll
100	ennitalif	SPCA1917
	ANA $=$ A（NN）	ORCA1113

Figure A42．Subroutine QRCALL Source Lieting （Continued）

```
    TF{ITER.LF.15) RO TO 1n? ORCA1114
    IF(QUNOMFADO) r.n in In?
                                    nQCAl115
    IF(G|rMA,N=.n.) r.n tn jn?
    ว4% = 0nก1
    GTG**A=0n)
10? CALL OR(N,A,RHO,SIGMA,R,ORITAI
    n = ADG(A(NN))
    ANN = ARS(ANN-A(NN))
    IFIO.RTGACTI ANN = ANN/O
    ITFO= ITFR+1
    PFIITCR.FO.?5) ArT=.lE=E
    no 17a i=1,4
    k=u+1
105 R(x)=R(K+4)
    Rn in 15
ln}x=04+
1?0 04त = P(r)*R(V)
    CITMMA = R(x)+D(Y)
    GO TN InO
13n RHN =.n.
    CITMA = O.
    0n TA InO
onn enavpnulf
    WRITF(6.7In) NiN
71O EORMATI/LH ALI. II`, \4H FIGFNVALIFS NOT FOHNO! NPCA1I3R
    DETlION.
fain
DRCAIITO
4=0
nOCAl14"
ADCAITAT
```

Figure A42. Subroutine QRCALL Source Listing (Concluded)


```
    7|MEA&IOA! A(1)
    DEAI YCDOA
    INTEPEQ D,N,n
    rnitvalemice (0,0)
    in}=m+
    **n= 1n*(N-1)+1
    "9 = "n-1n
Na = N1-im
n? = nl-1n
    TFP".0.T.2: On TN =
    |F(M||F.つ) OFTILNM
n=1
m% Tn 25
5 T = "12+1
7 PE(AOC(A)T||&E.rMLTA) r!? TO, in
    TEIt|LE,N, PNTM?
I= 1-1n
ra in 7
i, n= i+n
    A(1)=n.
    1 - D
    in=n
    1n=1-n
    in=1-n
    17=11+n
    C.7=A(!)*(P(!)-C!C,MA)+A(19)*A(I+1)+R⿱N
```



```
    C= =(P+1)*A({1+?)
    A(I+')}=0
    m@ in 45
    (1) Al|nl
    r.)=A(1n+1)
    ma=n.
    in=in+n
```



```
    IF(r.|.LT.N.) KAPPA = - MAPDA
    fF(rADON*NE.n.) in Tn 47
    ALPNA=?.
    D9 E.
    p) = n.
    ra) in &A
ALPLA = 1.+CY/KAPPA
D1 : 1./(r.9+VAPPA)
D9 = DI#^ス
r! = DI*#?
IFPT.FN.OI an In 40
A(In)= -A(In)
IF(IONF,P) A(PO)= KAPPA
J=i-n
J. J+贝
IF(J.SE.NO) rn TR 5!
ETA=A(J)+FI*A(J+1)
ln^1
    1^n`
    10ヶ%
1\capn4
1\capの&
1^n6
l^ng
!日^7
!\cap\capa
in\capa
l^no
1^!の
1^99
1^9?
1^1*
1014
ln14
1015
1^15
1917
1^17
1^19
1^90
1^ッ^
1^99
1nフ1
197?
1M>2
1ヘフa
1の>&
1^76
ln76
1\cap>7
1n>a
ingo
1^3^
10%1
1の2:
1のタ!
1^24
192&
1^2&
1n\&
1^37
1のタョ
lna=
1n4n
1n4"
1047
1\cap42
*al
1044
1P,GR
1AGA
1^G7
In4A
1n49
1n&!
1^#!
iAB!
1^G%
1057
1^#*
1AS4
```

Figure A43．Subrou－QR Source Lieting

```
    IFI:GLFOW2)FTA=ETA+PDEA(J+7I
    ETA E ALDMA*ETA
    A(J)=A(J)-FTA
    A(J+!: = A(J+1)-0%*ETA
F(||(F&NO) A(J+?)=A(J+O)-P?EETA
m@ Tr.50
4! J = In-1
```



```
I= I+1
* = j+n
ETA = A(J)*P:*A(*)
L=*+n
```



```
ETA = ETA*ALDHA
A!|)= (\J,-ETA
*(%)=APM|-01##T:
IFIT N准 NIL= =\LI-DO#ETA
IF(:. *(x) en Tn mon
```



```
n (|+2)= -FTA
A!||+Z|=-D|*=rA
A(|)+2)=A(T)+2)-P莫二T.
```



```
``=! +1
I= 11+1
V1= 1?+1
19=13+1n
-n in 4n
Man
1ng7
10ER
ln=R
INGN
INGO
1061
1062
1063
1\cap64
OQ InG5
OR 1066
OR 1066
R 1n6%
1074
O 1nK9
\ellリ=\ぶにな品
P 107r
n7%
1n71
1073
1074
1076
1077
NQ
的
= 1+1
107R
1079
inan
|n^1
lnAl
1暗
1r8?
1084
```

Figure A43．Subroutine QR Source Listing （Concluded）

