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PERFORMANCE OF FINNED THERMAL CAPACITORS

By

William R. Humphries

SUMMARY

The objective of this study was to investigate the performance of

typical thermal capacitors, both in earth and orbital environments. Techniques

which were used to make predictions of thermal behavior in a one-g earth

environment are outlined. Orbital performance parameters are qualitatively

discussed, and those effects expected to be important under zero-g conditions

are outlined. A summary of thermal capacitor applications are documented,

along with significant problem areas and current configurations. An experi-

mental program was conducted to determine typical one-g performance, and

the physical significance of these data is discussed in detail. Finally, numer-

ical techniques were employed to allow comparison between analytical and

experimental data.

A transparent test specimen was built for the experimental study to

allow visual observation of the phase change front. The test specimen
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consisted of two compartments, a phasechangematerial (PCM) housing and

a finned fluid passage. The PCM housingcontained aluminum fins, which

partitioned the PCM compartment into 1.9-cm (3/4-in.), 1.27-cm (1/2-in.),

and 0.635-cm (1/4-in.) cells.

material was used as the PCM.

During all tests, nonadecanenormal paraffin

By introducing MonsantoCoolanol-15 into the

finned fluid passage, the PCM was either cooled or heated. Heating and

cooling rates were varied by varying the coolanol inlet temperature from

1103.4 J/m2-sec (350 BTU/ft2-hr) to 204.9 j/m2-sec (65 BTU/ft2-hr), and

from 567.5 J/m2-scc ( 180 BTU/ft2-hr) to 126.1 j/m2-sec (40 BTU/ft2-hr),

respectively.

Instrumentation consisted of temperature sensors located in the paraf-

fin, on the fins, in the fluid, and on the plate separating the PCM from the

coolanol compartment. In addition, low speed 16-mm motion pictures were

used to document freezing and melting rates.

Using an explicit forward finite differencing technique, analytical models

of the 1.9-cm (3/4-in.) and 0.635-cm ( 1/4-in. ) cells were developed. Experi-

mental fin and plate temperatures were used as boundary values for analytical

models and these models were used to generate PCM temperature profiles and

interface positions.

The melt model, which utilized a Rayleigh number correlation to

incorporate convection, satisfactorily predicted the melt front position.

xxiii



However, a pure conduction model used to predict the freeze front position,

lagged the expectedpositions. It was postulated that this discrepancy between

the analytical model and the test datawas due to the model using a planar

interface rather than the actually observed irregular interface. The irregular

interface was a result of numerous dendrites which formed at the liquid/solid

boundary.

Zero-g investigations indicated that the most significant difference be-

tween one-g and zero-g thermal performance was the absenceof buoyancy

driven convection at zero-g. However, appreciable convection can be induced

by surface tension forces. The ullage bubble, if present, could inhibit heat

transfer at zero-g. However, this is very unlikely whenparaffin is the PCM,

due to its goodwetting characteristics.
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CHAPTER I

INTRODUCTION

Definition of a Thermal Capacitor

From an electrical analogy, any device which has the capacity to store

quantities of thermal energy can be defined as a thermal capacitor (TC). How-

ever, for the purpose of this study, only a device that absorbs and rejects

energy by using a material which undergoes a phase change will be considered

a thermal capacitor. This definition is further restricted in this study to

include only latent heat effects associated with the melting process and with

solid-state structural changes of phase. Although these devices will be

referred to as thermal capacitors, other names such as thermal flywheel,

phase change device, and fusible mass device have been used to describe the

same equipment concept.

Fundamentally there arc three uses to which the TC has been applied:

(A) Thermal damping of oscillatory outputs, (B) inhibiting thermal excusions,

and (C) maintaining constant temperature. Thermal responses in these situ-

ations are illustrated in Figure 1.

Tyl)ically a TC is a passive device, lmving no moving parts, which is

normally composed of three integral components: an externalhousin_, an
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Figure 1. Responses of a Thermal Capacitor.

2



internally finned filler material, andthe phasechangematerial (PCM}. The

device being thermally controlled is excluded even thoughthe capacitor may be

an inseparable part of this device (Fig. 2}. The PCM is a material which

experiences transition or phasechange in the regime of operating temperatures

of the device (for the purpose of this study, only liquid/solid and solid/solid

transitions were considered}.

,°*.:.o.:

:: ,....::<.:,
• :-" ._-: ':°°o° °-o;

i/Ill/1111/Ill I!11111111
'///li )77°i 7"i777' 71

F EXTERNAL HOUSING

::-::-;.:-:;
:..-..-..-.:__ PCM

m FILLER MATERIAL

Figure 2. A thermal capacitor device.

Statement of Problem

Since the advent of manned space flight, aerospace designers have been

looking for better methods of thermally controlling flight vehicle systems. In

certain applications, thermal capacitors are emerging as strong competitors.

The ability of thermal capacitors for either heating or cooling, or for storing

thermal energy, indicates their thermal flexibility. The fact that they are pas-

sive makes them quite attractive, when compared to less reliable active



systems; such as, gas blowers, sublimators, and liquid pumpedsystems, to

name a few. Furthermore for low and intermediate heat storage applications,

the capacitor can represent a weight savings over other thermal control

techniques. In addition to being an independentthermal control device, thermal

capacitors canbe used to supplement other devices such as, heat pipes and

space radiators. Thermal capacitors have recently beenusedon anearth sat-

ellite, three moon vehicles, andSkylab. Possible future design applications

include using capacitors on a mannedspace station and in future spaceshuttle

flights.

Most designers haveemployed pure conduction models for design anal-

yses, without considering convection during melting, the multidimensional

effects, and the dendrite formations at the interface during freezing. As a re-

sult, significant discrepancies have existed in some cases between analytical

models and one-g test data. When this occurs, the test data repeatedly indi-

cate enhanced thermal performance, and the designer will normally use the

more conservative analytical data as the design criteria. Unfortunately, this

conservatism often leads to an overdesigned capacitor.

Study Approach

The objective of this work has been to investigate typical thermal

capacitor performance in both earth and orbital environments. The motive was

to gain insight into the processes involved in the thermal performance of a

typical space vehicle phase change device. The study was directed toward

accumulating experience which may assist future capacitor designers.

4



A survey of previous PCM studies and sources for both paraffinic and

nonparaffinic materials property data has been included in this study. Tech-

niques for estimating one-g performance are discussed, and quantitive compar-

ison of these techniques, with possible zero-g influences, is presented. To

provide additional insight into the different design techniques, a survey of past,

current, and possible future applications is given. The significant'problems

encountered in these applications, with which the author is familiar, arc out-

lined. In addition, physical desciptions of capacitors used in space vehicle

applications are profiled.

An experimental program was conducted to study the phase change

processes occurring in a typical capacitor. The test item was fabricated from

transparent material to allow visual studies of the internal processes that were

occurring within the PCM housing. [!sing thin aluminum fins, the internal

PCM housing was divided into 0.635-cm (1/4-in.), 1.27-cm (1/2-in.) and 1.9-

cm (3/4-in.) cells. Test data included thermocouple temperature gage out-

puts and motion picture film data. Temperature data of the fin and lower heat

transfer surface were input into single-cell computer models to determine the

phase change front position time history. The fihn data also was used to deter-

mine the phase change front position histories. The computed and fihn derived

position histories were compared. Physical interpretations of film and tem-

perature data are given and the validity of analytical models is discussed, along

with possible reasons for model output discrepancies.

5



CHAPTERII

LITERATURE SURVEY

Introduction

The literature survey considered only those studies that related

directly to the thermal design of a finned thermal capacitor. Special emphasis

was placed on space vehicle applications. Information of interest pertaining

to phase change materials is discussed, followed by a survey of applicable one-

g and zero-g studies, and concluded with a brief description of previous experi-

mental programs.

Analytical comments are abbreviated, as volumes of material are

available pertaining to solutions of the freeze/melt problem. There was no

intent in this research to cover the large body of literature relating to macro-

scopic and microscopic aspects of phase change. These are normally included

in the materials disciplines (e.g., phase diagrams, nucleation, supercooling,

superheating, etc.). For information concerning these areas, an excellent

text by Chalmers [1] is available.

Phase Change Material

In general, PCMs may be catagorized into two groups: paraffinic and

nonparaffinic. The paraffins are the most widely used PCM in current



aerospace applications, while the nonparaffins are being used in nonspace and

future aerospace study applications. The nonparaffin group incorporate a large

body of materials, including: water, hydrated salts, organics, acids, and

synthetic mixtures.

Some researchers [2, 3, 4] have defined the qualities that a good PCM

should exhibit, which are as follows:

1. high heat of fusion

2. proper melting point

3. high,thermal diffusivity

4. high coefficient of thermal conductivity

5. non-corrosive

6. low coefficient of expansion and small volume change during phase

and lattice changes

7. stable

8. high flash point

9. good wetting characteristics

10. low cost

ii. minimum of void formations

12. relatively pure

13. non-toxic

14. readily available



Grodzka [2] screened a large field of nonparaffin candidate PCMs covering

a range of freezing/melting points from 16.12°C (61°F) to 83.96°C (183°F).

She designated a salt hydrate and three nonparaffin organics as prime PCM

candidates.

Grodzka and Fan [5] also examined the limits of thermal stability and

long term thermal cycling effects on certain nonparaffins considered suitable

for use as PCMs. They found that long term thermal cycling can result in a

buildup of impurities that may interfere with efficient operation of the PCM.

They concluded that this also could cause eventual destruction of nucleation

catalyst and result in stratification of impurities.

Designers have found normal paraffins to be a good PCM for space

applications. Normal paraffins are hydrocarbons whose generalized chemical

formula is given by CnH2n + 2' A selected list of normal paraffins that are

commercially available, along with their published freeze/melt points, are

given in Table i.

Paraffins with an even number of carbon atoms between 20 and 32, and

those with any odd number of carbon atoms exhibit a latticetransition. The

even numbered carbon atom paraffins exhibit this transition near their melting

point, whereas odd numbered paraffins exhibitthe transition in the solid state,

as much as 16°C (30°F) below their freeze/melt temperature. Broadhurst [6]

has shown that the energy associated with thistransition is subtractive from the



TABLE 1. NORMAL PARAFFINS

Name

Undecane

Dodeeane

Trideeane

Tetradeeane

Pentadeeane

Hexadeeane

Heptadeeane

Oetadeeane

Nonadeeane

Eieosane

Heneieosane

Doeosane

Trieosane

Tetraeosane

Pentacosane

Hexacosane

Hcptaeosane

Octacosane

Nonacosane

Triaeontane

C hemica 1

F ormula

el! H24

C 12 H26

C 13 H28

C _4 Hao

C15 H32

C 16 H34

C 17 H36

C _8 Ha8

C 19 H40

C20 H42

C21 H,14

C22 tI,t6

C23 tt48

C24 1{50

C25 H52

C26 H54

C27 H5¢,

C28 H58

C29 H6o

C:_o H62

Freezing Point

oF

-14.1

14.7

22.3

42.6

49.9

64.7

71.6

82.8

89.4

98.2

104.9

111.9

117.7

123.6

128.7

133.5

138.2

142.5

146.7

150.4

°C

-25.6

-9.6

-5.4

5.9

10.0

18.2

22.0

28.2

32.1

36.8

40.5

44.4

47.6

50.9

5:;. 2

56.4

59.0

61.4

63.8

65.8



normal energy absorbed or liberated due to phase change. Paraffins exhibiting

this phenomena have latent heats of fusion that are 10 to 20 percent below the

latent heats exhibited by their carbon atom neighbors (Fig. 3). Shlosinger

and Bentilla [7] have noted that the freeze/melt point of normal paraffins

increases with the number of carbon atoms (Fig. 4).
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Figure 3. Energy associated with solid-liquid phase change and solid-

solid transition of even-numbered and odd-numbered paraffins.

Designers have considered mixing paraffins to achieve a freezing point

which is different from that of a pure material. In such cases, the question

arises as to the resulting mixture's freezing point, latent heat of fusion, and

other properties. Bentilla, et al., [8] constructed a two constituent phase

10
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Figure 4. Temperature associated with solid-liquid phase change and

solid-solid transition of even-numbered and odd-numbered paraffins.

diagram (Fig. 5) for octacosane/eicosane mixtures. These data indicate an

undisturbed mixture will melt/freeze over a range of temperatures. Further-

more, additional data from this source, using the same constituents, shows

that there is some selective freezing at the individual phase change temperatures

of the components (Fig. 6, 7, 8). Nagel 1 and Shelpuk 2 independently produced

similar results with dodecane/tridecane and eicosane/docosane mixtures,

1Nagel, R. : Unpublished Data. McDonnell Douglas Company, St.

Louis, Mo. 1972.

2Shelpuk, B. : Thermal Design of the Lunar Communications Relay

Unit. Unpublished RCA Presentation, 1971.
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Figure 5. Temperature-composition phase diagram for the octacosane-

eicosane binary system.

respectively. However, Prenger [9] has shown that a discrete phase change

temperature proportional to the mass ratio of the constituents can be achieved

by constant mixing of the liquid phase for a tridecane/tetradecane mixture

(Fig. 9). Shelpuk has observed that on mixing eicosane and docosane (Fig. 10),

both of which have latent heat of fusions of approximately 244 J/gm (105 BTU/

lb) D the heat of fusion of the mixture was reduced as low as 139 J/gm (60

BTU/lb). The uncertainty of a mixture melt/freeze point, added to the

12
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Figure 10. Heat of fusion for eicosane/docosane mixture.

reported degradation in the latent heat of fusion, couple to make paraffin

mixtures unattractive from a heat transfer viewpoint. However, other consid-

rations discussed in Chapter 3 may override thermal considerations.

Property data for PCMs can be found in various texts, most ostensibly

in references 10, 11, and 12. Hale, Hoover and O'Neil [13] have tabulated

some selected property values, as well as cost and compatibility information

17



for a group of paraffin and nonparaffin materials. The Boeing Company 3 has

tabulated some thermal properties (excluding the thermal conductivity values)

of paraffins for a range of temperatures. A more comprehensive property

tabulation was compiled by the Phillips Petroleum Company [ 14]. However,

certain property values do not agree with those quoted in earlier references

[7, 11]. This disagreement in property value was not surprising in light of

recent findings [15] which indicate that paraffin properties can vary significantly,

depending on the production techniques, the levels of impurity, and the pre-

treatment. It must be noted that a single paraffin may be commercially

available in a number of purity levels, which are not specified in most property

data. Commonly, technical grade paraffin (> 95 percent pure) is used because

of its lower cost. However, more expensive laboratory grade paraffins (> 99

percent pure) are available. These higher purity paraffins offer a more

predictable freezing point, as well as higher latent heat of fusions than techni-

cal grade.

The most comprehensive literature search and property measurement

survey to date is given in reference 7. Unfortunately, this study considered

only paraffins with freeze/melt points between 5.6 °C (42°F) and 65.6 °C

( 150 ° F). A comprehensive tabulation of paraffin properties excerpted from

numerous documents is given in Appendix A.

3The Boeing Company, unpublished internal memorandum.
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One-g Performance

For estimating the one-g performance of a closed cell phase change

system, a determination of the relative importance of the three basic modes of

heat transfer occurring internal to the capacitor must be made. Radiation for

most applications at normal temperatures is negligible, leaving only conduction

and convection as possible transfer modes.

Causes for convective motion in one-g could be due to:

1. buoyancy forces

2. surface tension forces

3. volume change forces

4. external forces

5. other less common effects, such as electric fields, atomic radia-

tion, chemical reactions, etc.

Neglecting the affects of the last two, only buoyancy, surface tension,

and volume change remain.

In early studies of buoyancy driven convection, Lord ttayleigh [ 16] re-

lates the non-dimensional Nusselt number (Nu) to the Grashoff (Gr), Prandtl

(Pr) number product. The significance and definition of these non-dimensional

quantities arc given by Knudsen and Katz [ 17] as

Nu = dimensionless temperature ratio -
hL

K
(1)



Gr = (Bouyancy forces) (inertia forces) = gift (Tw - Tc°) L 3 (2)

(Viscous forces) 2 u?

Molecular diffusivity of momentum Cpp

Pr = Molecular diffusivity of heat = _ (3)

Later, the product of the Grashoff

Rayleigh Number (Ra).

and Prandtl number became known as the

Numerous experimenters have conducted studies that were related to

hydrodynamic instability caused by buoyancy as it effects the heat transfer

process, including the studies cited in references 18 through 29. Silveston

and O'Toole [30] verified the Nusselt number versus Rayleigh Number corre-

lation for a fluid confined between two parallel plates (Fig. 11). A number of

authors, including Catton and Edwards [31] later showed the effect of L/D ratios

for closed cells (Fig. 12), where L is the cell height and D represents the

fin cell spacings.

The critical Rayleigh Number is defined as the value at which convec-

tion begins. In the region below the critical value, the heat transfer is sub-

stantially by conduction only, Nu _ 1. The critical value, which depends on

the boundary conditions, is 1708 for a fluid confined between two infinite

horizontal, isothermal, conducting walls; and 720 for a non-conducting wailed

container [29]. As shown in a bounded cell (Fig. 12a), this critical value

tends to increase as the cell sides approach one another (i.e., as L/D in-

creases), and also tends to increase as the walls become more conducting

(Fig. 12b).
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Although scientists have been aware of surface tension driven convection

for some time, quantitative studies of this phenomena are scarce. The flow

patterns created in B_nard's classic experiment [32], which produced cellular

circulation patterns in a very shallow liquid was initially attributed to buoyancy

effects. However, Block [33], Pearson [34], Scriven [35], and Sternling [36],

later proved that this phenomena was due to surface tension driven convection.

The initial discovery of this phenomena is attributed to Marangoni [37], and

the commonly used term " Marangoni Flow T' was coined to name this phenomena.

The nature of the Marangoni flow, as discussed by Young, Goldstein

and Block [38], is that temperature variations across a free gas/liquid inter-

face changes the shear forces of the surface. This is due to the dependency of

surface tension on temperature, which is estimated by Gambrill [39] to be

linear:

a = _ + bT . (4)
O

The coefficient "b" is negative, so that an increase in temperature at the sur-

face is accompanied by a subsequent decrease in the surface tension. Hershey

[40] has shown qualitatively that a depression in the surface at a local hot spot

results, causing the liquid to flow away from the hot zone and toward the cold

zone (Fig. 13). Subsequently, McGrcw and Larkin [41] have photographed

this effect for a number of configurations, producing dramatic verification of

the phenomena.
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The level of surface tension driven convection is correlated by using

the Marangoni number, Ma, which is given by:

Ma =
Surface tension forces

Viscous forces

-da dT
L 2

dT dy

pyoz
(5)

The critical Marangoni number for a fluid fixed between a rigid and free sur-

face is given as 80.

Nields [42] has stated that the onset of convection in one-g might be

better determined by correlating the Nusselt number to a normalized parameter,

R, given by

R Ra Ma+ (61
Ra Ma

er cr

23



This assumes that buoyancy and Marangoni driven convection are additive.

However, Grodzka [43] noted that experimental data on buoyancy and Marangoni

surface effects indicate that an additive theory does not follow. Regardless,

the convective currents caused by Marangoni flow in one-g are usually small

compared to those caused by buoyancy. Pearson [ 34] has shown that for most

fluids at normal temperatures, a liquid thickness of one cm or less must be

attained before Marangoni effects overshadow buoyancy effects.

For systems with small characteristic dimensions, the non-dimensional

Bond number, Bo, is given by:

Bo = gravity forces
Surface tension forces

_ pgL 2
{Y

(7)

Appendix B outlines a typical calculationusing nonadecane. This number is some-

times used to qualitativelyevaluate the relative importances of Marangoni effects

as compared to buoyancy effects. From equation (7), itfollows thata low Bond

number indicates a high degree of surface tension effects.

Although surface tension effects exist at allunlike interfaces, only the

liquid/gas interface (as opposed to liquid/liquidand liquid/solidinterfaces) is

expected to produce appreciable resulting flows. However, no proof of this

conjecture was noted in the literature surveyed.

Volume change driven convection can be caused by the phase change

process. During freezing, the new layer of frozen material at the interface

tends to contract, since the solid density is usually greater than the liquid
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density• Consequently, the liquid near the front will flow toward the interface

to fill the volume shrinkage caused by solidification. During melting, the liq-

uid at the interface tends to flow away to allow for the volume created by melt-

ing. Tien and Koump [44] have stated that this effect will cause both the freez-

ing and melting processes to be retarded. This is due to the ingress of warm

fluid during freezing and the egress of warm fluid during melting (Fig. 14).

However, if circulation is created in the melting processes, warm fluid could

be drawn into the interface thereby augmenting the melting process•
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i
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Figure 14. Volume change driven flow patterns.

Reference 44 has also shown in a computational exercise for a ficti-

tious system where the solid density is 25 percent greater than the liquid den-

sity, that only a 10 percent reduction in the freezing rate occurs due to volume

change effects. Since paraffins experience only a 5 to 10 percent volume in-

crease on melting, it can be inferred that an even smaller effect can be

expected in paraffins for similar conditions.
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In summary, the only modes of heat transfer that are involved in a

typical one-g static phase change process are conduction and convection.

Convection is caused only by buoyancy driven currents for reasonable con-

tainer sizes. Surface tension effects are negligible, except for very thin films,

and volume change effects may be ignored.

Zero Gravity

When comparing environs of near earth orbital space with that of the

earth, several differences are noted in the heat transfer process. In earth

orbit, the reduced gravitational force is nearly balanced by the centripetal

orbital force, creating an effective zero-g environment. Effects caused by

reduced pressure, radiation field, meteoroid bombardment, and three-

dimensional spacecraft maneuvers are also possible.

Restricting the hypothetical capacitor under consideration to be a

hermetically sealed container that is isolated from exterior thermal effects by

insulation and anti-penetration shields and to be aboard a non-maneuvering

vehicle, then reduced gravity remains as the only important alien effect.

The primary effect of reduced gravity on the heat transfer mechanism

is in the lessening or elimination of buoyancy convection. Typical measure-

ments of the net gravitational acceleration force on a spacecraft indicates

values of the order of 1 x 10 -_ g. Using nonadecane paraffin properties, a

typical Rayleigh number at zero-g is:

Ra = 0.01 L 3 AT (8)
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Details of this calculation are given in Appendix B. From this, it is apparent

that for reasonablecontainer sizes (i.e., less than 15-cm (6-in.) cell depths),

the temperature difference across the liquidus portion of the cell must be

> 444°C (830°F) to produce buoyancydriven convection. As this temperature

range is well in excess of normal operating values, buoyancystimulated

convection may be considered negligible.

At one-g, Marangoni flow driven convection is normally unimportant,

however, at zero-g this is not necessarily true. As discussed earlier, liquid

flow causedby surface tension at a liquid/vapor interface may occur.

A group of recent experiments, carried out during the mission of

NASATs Apollo-14, revealed that the surface tension driven phenomena in zero-

g is a reality and can produce significant convection [45, 46]. Using data from

these experiments, Grodzka [46] has plotted the relation existing between the

Marangoni number and the ratio of effective thermal conductivity to actual

conductivity (Fig. 15). These data show a rapid increase in the convective

level at a Marangoni number slightly greater than 300. The temperature

difference in the Krytox test liquid was only 2.5°C (4. I°F) in this instance.

Close examination of this data stimulates some questions. Applying

these data to nonedecane paraffin contained in a cell with a 15.24-cm (6-in.)

characteristic dimension at a Marangoni number of 300, a Keff/K of 12 is pre-

dicted in Figure 15. This is a very high convective level. The temperature

difference across a parallel plate system required to reach this level is only
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Figure 15. Heat transfer characteristics of B_nard cells.

0.0011°C (0.002°F). However, for this same system a Rayleigh number of

4.32 × 105 is predicted at one-g. From this, a Keff/K of only 2.5 is indicated,

which is a convective level well below that predicted by the tentative surface
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tension data. This conflicts with earlier investigators, who reported that for

this condition at one-g, Marangoni driven convection is unimportant. However,

this could be explained, at least partially, by the fact that the Apollo-14 data

is taken for a free surface, whereas the Figure 11 correlations were taken for

top and bottom bounded cells.

Using nonadecane paraffin properties at the phase change temperature,

the Marangoni number is given in Appendix B as

Ma : 2374 ATL (9)

This indicates that for reasonably sized capacitor cells, a temperature

difference of only 0. 003 °K (0. 006°F) is necessary for the onset of Marangoni

driven convection in a paraffin filled capacitor at zero-g. This fact indicates

that Marangoni eonve_ tion ca', be appreciabte at zero-g.

Since the magnitude of volume change effects discussed earlier were

low for freezing (where buoyancy driven convection is negligible) as well as

melting, it may be implied that the volumetric effects are negligible for pure

conduction as well as convective processes. Consequently, the volumetric

effects on the heat transfer process are negligible for zero-g operation. Heat

transfer modes available to a thermal capacitor at zero-g are then reduced to

Marangoni driven convection and pure conduction.

A secondary effect of reduced gravity which can significantly alter the

heat transfer process is the ullage gas position. In a typical rectangular cell
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containing ullage volume, the ullage gas may configure itself in any of a number

of possible modes. A number of possible cell ullage locations arc given by

Reference 16, those of more importance are shown in Figure 16. Vqhen heating/

cooling from the bottom, only configurations d and e (Fil,. i(,) would alter

the normal process; however, when heating/cooling from the top or sides, con-

figurations a, b, d, and e would all reduce the rate of heat transfer due to the

insulating effect of the ullage gas. Small bubbles occurring in the liquid could

induce convective currents. In a zero-g field, this motion couldbe caused by

the Marangoni flow phcnome_:e causing the bubbles to migrate toward warm

zones. Also bubbles could be entrapped in the freezing solid (configuration d

of Figure 16) decreasing the apparent thermal conductivity of the PCM. Fortu-

nately, paraffins have the property of being good surface wetters, which in zero-

g tends to force the ullage to form in the center of the cell (configuration c of

Figure li:). However, insufficient quantitative data are available on these

phenomena to determine affect on the heat transfer process under given

conditions.

Grodzka ]2] has examined effects of the space environment on the

microscopic processes. She concluded that complex coupling effects between

phase change kinetics and various possible mo(les of convective motion cannot

be predicted accurately without actual flight data. She also concluded that the

magnitude of magnetic and electric fields likely to be encountered in the earth's

orbit are not expected to alter phase ch:mge bv!,a\'ior significantly from that

observed on the earth. Finally, she stated that radiation fields encountered
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Figure 16. Zero-g ullage configurations.

in earth orbit are expected to have little effect, except perhaps in the case of

organic PCM where long time exposures will result in buildup of impurity.

Although the later statement applies to paraffin, no definitive information on

this effect could be found in the literature surveyed.

Although insufficient reduced gravity data are available to corroborate

these findings, some observations have been made as to the mechanisms of

heat transfer in a thermal capacitor. When a free surface is present and

thermal conditions are proper, Marangoni convection may be present. In-

sufficient data are currently available to determine quantatively the influence
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of this phenomena.

sole process governing heat transfer.

be altered by the ullage gas location.

In the absenceof surface tension effects, conduction is the

ttowever, the conduction process may

Furthermore, secondaryeffects of

property degradation due to radiation may occur if the PCM is organic.

Experimental Investigations

The publications on experimental studies of thermal capacitors are

limited. Altman, et al., [47], Fixler [3, 48], Bannister [4], and Kaye, et

al., [ 50] experimented with various capacitor designs, proving the feasibility

of the capacitor thermal control approach. The most comprehensive experi-

mental data published were by E. Bentilla, K. Sterrett and L. Karre [8].

Using four different paraffins, they tested a variety of packaging techniques

including aluminum wool, aluminum foam, copper foam and aluminum honey-

comb. They concluded that the temperature rise of the paraffin container

during melting was due to the insulating effects of the liquid paraffin. They

also noted that the experimental data indicated a higher thermal conductivity

than that specified for the property data. Freeze data indicated that the conduc-

tion model which they used to attempt to match test data, repeatedly yielded

lower freeze rates. Data from melting tests, showing maximum coldplate

temperature rises above the melting point temperature versus time for varying

heating rates in an aluminum honeycomb system, are shown in Figure 17.
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Various investigators have produced microscopic photographsof the

freezing interface in paraffins [51, 52, 53]. Magnification photography (175

power) by Bannister and Richard [52] showsthe freeze front is composedof

a multitude of dendrites of varying geometry (Figure 18). All paraffin

freeze data surveyed contained references to dendrite formations. Dendrite

arms appear much like cilia or fine fur to the nakedeye, and they tend to grow

in the direction of heat transfer. Westwater and Thomas [53], have shown

that the physical shapeof these dendrites are at least partially dependenton

the rate of freezing. Other dependencieswere not well defined, with little

information available which would allow correlation of dendrite geometry to

cooling rates.
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CHAPTER 3

APPLICATIONS

Summary of Applications

The thermal capacitor design concept has a multitude of possible appli-

cations for both commercial and aerospace systems. A number of actual appli-

cations (along with problems encountered during design), as well as possible

applications currently under study are discussed.

A list of these applications are given below:

A. Commercial

1. Actual

ao

b.

C.

2.

children's kool aid freezer

portable freezer chest

thaw warning indicator

Possible

a. thermal insulation for homes

b. air conditioner supplement

c. large solar thermal energy collector

d. laser heat pulse absorber

e. hospital food cart heat storage supplement
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go M ilitary/Aerospace

I. Actual

a. Titan transtage suction line temperature control

b. Pegasus Ill temperature reference

c. Lunar roving vehicle electronics tcmperature control

d. Skylab coolant loop augmentation

e. Skylab waste refrigeration

f. Poseidon gimbal shipping container

2. Possible

a. space shuttle wing leading edge temperature control

b. space station space radiator augmentation

c. astronaut suit cooling

d. extra planetary probe thermal control

e. Air Force satellite

f. F-4 aircraft

g. short term thermal control of army shelters

Commercial Applications

The commercial applications include a plastic container surrounded

with a hollow annulus which contains a PCM. Placing the container in the freezer

compartment of the refrigerator cools the PCM so that a water suspended bev-

erage, such as kool aid, may be frozen in a slurry much like the corner store
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"Koolee" or "Ieee". A freezer chest is available which has a PCM liner that

may be removed and refrigerator cooled, to be later used to store drinks and

perishable items for long trips.

The mushroom industry commonly freeze their product for shipment.

Thawing causes permanent qualits' degradation. As a result, a thaw warning

indicator has been developed using a phase change device. A salt PCM is

attached in a bag to the side of mushroom containers. The frozen salt con-

tains a chemical additive which causes litmus pal)er, visible to container handlers,

to change color if the PCM melts [53].

Telkes [55, 56, 57] has, for many years, conducted research on appli-

cations of PCMs to residential dwellings to minimize thermal oscillations on

their heating/cooling systems. Brine and other salt solutions have been typi-

cally used in this research. Also under study are applications of PCMs to

large solar collection systems, with surface dimensions upward to 10 square

miles. Rapid energy conversion inherent in laser systems are prime targets

for a thermal capacitor type application, ttospital carts required to store

warm food for extended periods may be fitted with PCMs.

Aerospace Applications

The most widespread use of thermal capacitor techniques has been in the

aerospace field, One of the earliest applications in this field was used on the

Titan water jacket, applied around the engine attitude control system oxidizer



lines to limit temperature excusionsbelow 32°F. An Eicosane PCM was used

on the PegasusIII flight [ 58] to act as a constant temperature reference

junction for a surface coating experiment.

Recently, moon flights of Apollo 15, 16, and 17 have transported

thermal capacitor devices, which were mounted on various heat producing

electronic components (Fig. 19) in the Lunar Roving Vehicle (LRV). The

wheel drive control electronics (DCE) and the navigational signal processing

unit [SPU], designed by Elliott and Paoletti [59], used paraffin filled capaci-

tors for cooling. These two devices had sufficient masses to allow energy

storage from their respective components during LRV sorties, so that compo-

nent temperature excursions were kept below allowable levels. Even more

tmusual than the thermal capacitor applications was the thermal strap techni-

que of transferring heat from the capacitor to a set of second-surface mirror

radiators. After each sortie, the LR\:was parked so that these mirror

radiators were in the shade. A thermostatically controlled shutter was then

opened, automatically closing after the two capacitors were refrozen.

The most significant problem reported in development of these capacitors

was due to paraffin property variations. The dispersion inprol)erty data was

so great that after being received, the parafl_ins were subjected to tel)rated

degassings trader reduced l)ressure to stabilize properties.

Shellmk, designer of the LRV lunar communications relay unit (LCllI)

capacitor, also noted parafI'in property dispersion. IIe found that synthetically
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produced paraffins had better property stability than naturally produced paraf-

fins. He used a mixture of two paraffins in the LCRU. This allowed softening

of the solid paraffin at temperatures below melting, thereby minimizing stress

buildups in the capacitor cells.

Oneinteresting aspect common to all LRV capacitors was that all were

completely filled at temperatures abovetheir maximum operating values,

leaving no ullage. This technique assumesgas does not leak into the paraffin

container after cooldown. This technique inherently relies on the quality Qf

workmanship, since significant gas in-leakage could cause a large pressure

buildup during subsequentheating. A strong argument for this technique is the

fact that flight data telemetered back from the moon indicated that all LRV

capacitors functionedproperly.

There were fifteen thermal capacitors used on the first mannedearth

orbiting space station, Skylab. A total of five of these were located in two

cooling systems, thermally controlling liquid temperatures. Two of these five

capacitors were located on the primary Skylab spaceradiator fluid outlet,

while the other three were located at the outlet of a smaller radiator used to

refrigerate food and biological waste samples. Ten other capacitors were

mountedin the bottom of trays usedto store humanwaste samples while they

are being transported from the SkylabVehicle to earth.

The most significant problem encounteredduring developmentof these

capacitors was the large structural stresses which occurred in the paraffin
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housing during rapid melting. In the initial design, even thoughullage volume

was provided, stresses were sufficient to cause local buckling of the housing.

This overstress conditioning was causedby the inability of the paraffin mate-

rial to expandinto the ullage volume. This occurred only when the capacitor

was oriented in such a manner that the ullage volume migrated to a position

away from the melting cells. As a result, the non-sealed corrugated fin-cell

arrangement initially usedwas replaced with a honeycombfin-cell arrangement.

The honeycombcells could be hermetically sealed on top andbottom, restricting

ullage migration within the small honeycombcell regardless of orientation.

This particular designby the McDonnell-Douglas Company incorporated

a 20 percent ullage allowance in each cell. Although this eliminated the depend-

ency on workmanship required in LRV capacitors, the large gasvolume could

interfere with the heat transfer. Additionally, this design required a heavier

walled housing thanwas required by an evacuatedconcept.

A tabulation of the NASASpaceVehicle Applications is given in Table

2, itemizing the subsystemcontrolled and the capacitor functions. Pictorials

of NASA spacevehicle capacitor systems with their associated attachment

arrangements are shownin Figure 19. Table 3 itemizes interesting design

features of these capacitors.

The capacitor concept was used also for temperature control of the

Poseidon engine gimbals during shipment. This device used a mixture of

organic acids, consisting primarily of Palmitic and Stearic acids, to control

the gimbals at temperatures below 55°C (131°F).
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TABLE 2. NASA SPACEVEHICLE CAPACITOR APPLICATIONS

Vehicle SubsystemControlled Function

Surface coating contami-
nation experiment

PegasusIH

Apollo 15
Apollo 16
Apollo 17

Skylab

1)

2)

3)

Lunar roving vehicle

drive control

electronic s

Lunar roving vehicle

signal processing unit
electronics

Lunar roving vehicle

Lunar communica-

tions relay unit

1) Airlock coolant

system

2) Refrigeration coolant

system

3) Urine freezer

To provide a constant

temperature reference

for a thermocouple

To provide regenerable

heat absorbing source

To incrdase thermal

capacitance available

to signal process unit

To provide regenerable

heat absorbing source

To augment space

radiator performance

and limit inlet temper-
ature to downstream

heat exchangers

Enhance space radia-

tor performance to

limit cold inlet temper-
ature to downstream

c ompone nts

To provide temporary

cooling for urine

sample when being

transported between

Skylab and earth
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Another possible space application includes the thermal protection

system for the. space shuttle orbiter wing leading edge [60]. This concept

utilizes a PCM which melts near 176.8°C (350°F) to limit the extreme temper-

ature surges normally encountered on frontal areas of supersonic vehicles.

Phosphonium chloride, a high latent heat PCM, has been studied for

use in Astronaut Extra Vehicle Activity (EVA) cooling equipment. Schelden

and Golden [61], have studied the capacitor technique for application to

thermally controlled devices in Jovian and Venusian extraplanetary space

probes. The Air Force has examined this technique for classified applications

to unmanned earth orbiting satellites, and as a special cooling system for modi-

fied F-4 aircraft. This technique of thermal control is also being investigated

by the Russians (Vaselou, Kalisheva, and Telepin) for use on gravity measuring

devices [62 ].

A salt hydrate type PCM has been studied for application to Army

shelter refrigeration systems. This PCM material is designed to maintain a

relatively constant temperature in the absence or failure of the active refrig-

eration system.
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CHAPTER 4

EXPERIMENTAL APPARATUS

Test Item

The initial capacitor design goal was to produce a test item which

closely simulated the heat transfer paths expected in a typical flight thermal

capacitor while still allowing observations of the melt/freeze phenomena.

Unfortunately these two goals were found to be incompatible, since the high

resistance to heat transfer offered by most transparent materials disallows

simulation of transfer paths normally available to an all metal capacitor. As

a consequence, the final design stressed capacitor visibility, relegating geo-

metrical simulation as a secondary goal.

The resulting design incorporated a structure fabricated almost entirely

of plexiglas* with aluminum surfaces transferring heat to and from the paraffin

into the coolant. The capacitor was fabricated in two parts: the fluid passage

and the paraffin housing (Figures 20 and 21).

The overall fluid passage envelope dimensions were 26-cm ( 10.25-in. )

long by 14.61-cm (5.75-in.) wide by 2.54-cm (1-in.) depth. Three 0.635-cm

A Rohm and Haas tradename
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( 1/4-in. ) diameter tapped holes were inserted parallel to the housing length

(i. e., in direction of fluid flow) and into both ends of the initially solid plexi-

glas block. These holes extended 3.81-cm (1.5-in°) in from both ends of the

housing. These three circular passages entered a 1.27-cm (1/2-in.) long by

1.91-cm (3/4-in.) deep mixing plenum, extending the width of the housing.

These inlet and outlet plenums were connected by 10 fluid channels extending

the remaining 15. 875-cm (6.25-in.) of the housing length. The channels formed

individual flow cross sections of 1.27-cm ( 1/2-in. ) by 1.91-cm (3/4-in.),

separated by 0.318-cm (1/8-in.) thick plexiglas partitions. After milling these

flow passages out, a 0. 635-cm (1/4-in°) thick bottom and 0.953-cm (3/8-in.)

thick sides remained, with the top over the 10 fluid flow channels left open.

The upper paraffin housing was fabricated by attaching 0.02-em (0° 008 -

in. ) thick 5052-T30 aluminum fins to a 6061-T6 aluminum bottom plate (Figure

22). The fins were 13.34-cm (5.25-in.) long and 6.35-cm (2.5-in.) deep,

notched at both ends to accommodate 0.48-cm (0.188-in.) deep grooves cut

in the plexiglas sides. The fins were vertically mounted on the bottom plate

by first soldering a 0.24-cm (3/32-in.) long base along the length of each fin°

Three 0.08-cm ( 1/32-in. ) diameter rivets were then driven through the fin

foot into the bottom plate, while being sealed at the same time by an epoxy

filler with a silver matrix coating between the foot and the bottom plate.

Four 1.9-cm (3/4-in.), four 1.27-cm (1/2-in.) and three 0.635-cm

(1/4-in.) fin spacings were used in the paraffin housing. The spacings were

Emerson and Cummings Co., Ecco Bond 56C
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2.5 in. (6.4 cm)

FIN SPACING

.008 in.

(0.02 cm)

1/32 in. (0.085 cm)

RIVET

O

BASE

,I

FLUIO FLOW DIR.
0.032 in.
(0.08cm)

Figure 22. Typical fin mounting arrangement.

symmetrically arranged with two 1.91-cm (3/4-in.) spacing on each of the outer

ends, two 1.27-cm (1/2-in.) spacing following these, and three 0.635-cm

( 1/4-in. ) spacing at the housing center section.

Then 0.95-cm (3/8-in.) grooved sides and 0.635-cm (1/4-in.) thick

ends were bonded together and attached to the bottom plate, using epoxy.*

Finally, the bottom plate of the paraffin container section was epoxied to the

open top of the fluid housing (i. e., on edges and top of partitions) so that the

fin lengths were perpendicular to the direction of fluid flow.

The top of the housing for paraffin was fabricated of 0.635-cm ( 1/4-in. )

thick plexiglas, with two 0.95-cm (3/8-in.) diameter paraffin fill bosses, and

*NARMCO 7343 was used for all plexiglas bonding
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was mountedon top of the paraffin housing with epoxy. Screws 032 cm

(1/8 in. ) in diameter were used to secure the paraffin housing top, being

installed into tappedholes which extendedthrough the top into the vertical sides.

At each corner underneaththe fluid housing 2.54-cm ( 1-in. ) cubical plexiglas

standoffs were bondedto minimize heat transfer from the supporting surface.

After fabrication and instrumentation, two calibrated strips with 0. 318-

cm ( 1/8-in. ) indexing were attached to the face of the paraffin housing (as

viewed by the camera). A vertical strip was attachedto the fluid outlet end,

extending the full 6.50-cm (2.56-in.) height of the PCM housing. Along with

the length of the housing, in the fluid flow direction and at the top, a 15.24-cm

(6-in.) calibrated strip was also attached. These strips provided visual

dimensional reference for filmed data.

Instrumentation

At various times during the experimental program, the system was

instrumented with as many as 40 temperature probes, 6 differential temperature

probes, an RPM counter (pump flow rate controller), a flow meter, and a

pressure transducer. All thermocouple temperature transducers were fabri-

cated from 0. 025-cm (0.01-in.) diameter (No. 30 gage) chromel constantan

wire with 0.08-cm (0.031-in.) diameter thermocouple beads. Both resistance

temperature bulb* (RTB) and chromel-constantan type probes were used for

Rosemont platinum resistance bulb
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differential temperature measurements. The flowmeter was a Potter 0.954-cm

(0. 375-in. ) turbine type which provided flow measurements over the range of

zero to 1.26 × 10-4 m3/sec (2 gal/min). The pressure transducer was a

Statham strain gagetype.

The test item was instrumented with 27 thermocouples, as shownin

Figure 23. Three paraffin cells were instrumented, two 1.9-cm (3/4-in.)

width cells and one 0.625-cm (1/4-in.) width cell. The 1-9-cm (3/4-in.)

width cells are located on each side of the capacitor, adjacent to the outermost

cells. Each of these had one thermocouple attached to the paraffin/fluid

separator plate, three thermocouples attached to the surface of the interior fin,

and four thermocouples suspendedinto the paraffin. The 0.625-cm (1/4-in.)

cell was located in the mid-section of the capacitor andhad three thermocouples

attached to the upstream-side fin surface andthree thermocouples were

suspendedinto the paraffin.

After the first series of tests, three externally mountedthermocouples

were additionally attached. These thermocouples were centrally mountedon

the outer paraffin housing width andheight, located at the capacitor inlet/outlet

andthe capacitor center top. Thesemeasurements were used to determine the

sensible heat absorbed/rejected by the plastic structure.

In addition to the 27 thermocouples mountedon the capacitor, four

thermocouples andtwo RTBTswere installed in the fluid inlets and outlets.
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Differential temperature readings were taken on these thermocouples between

the inlet and outlet fluid. The flowmeter recorded the fluid volumetric flow-

rate while a thermocouple mounted in the fluid at position adjacent to it re-

corded the fluid temperature. All other measurements were used to monitor

facility input parameters for control purposes and were not used for data

reduction.

All thermocouples which were suspended in the paraffin were covered

with 0.24-cm (3/32-in.) diameter ceramic sheaths to rigidize them in their

locations. The lower end of the sheaths were stripped away to allow a 0.32-cm

(1/8-in.) length of the thermocouple to extend out of the sheath. Figure 24

shows a typical paraffin suspended thermocouple arrangement.

PARAFFIN .
HOUSING "_

FLUID iPASSAGE

LOCATION
HEIGHT

TOP

EPOXY SEAL

I I

I I

I I .jCERAMIC

I I _SHEATH

II

II

_ THERMOCOUPLE

WIRE

BEAD

FLUID PASSAGE

_*"CAPACITOR BOTTOM

f, FIN

F LUID/PARAFFIN

TRANSFER PLATE

Figure 24. Typical thermoeouple instrumentation.
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All surface and fin mounted thermocouples were attached with epoxy.

The fin surfaces were thoroughly cleaned and lightly roughened with sand

paper before application. The thermocouple beads were then flattened and

pressed to the surface, using 1-mil. thick 0. 954-cm (3/8-in.) by 0. 954-cm

aluminum tape patches. Epoxy was then applied over the entire patch/thermo-

couple installation. Figure 25 shows a typical fin mounting scheme.

FIN MOUNTING SCHEME

j THERMOCOUPLE

J / ALUMINUM TAPE
I

EPOXY COVERING

I

J

I

Figure 25. Typical fin thermocouple mounting arrangement.

The circuitry for all thermocouple installations inside of the paraffin

housing were routed through the capacitor top using epoxy to seal the penetra-

tions. The circuitry for thermocouple measurements of fluid temperature

were routed through the bottom of the fluid passage and sealed with epoxy.
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A chromel-constantan thermocouple accuracy study, performed by the

Marshall Space Flight Center Test Instrumentation Group, indicates an abso-

lute accuracy of 0.4 °C (0.8 _F) or better. RTB's were more accurate, but

exhibited poorer response. RTB measurements were not used for evaluating

data because of the transient nature of these tests. Thin wire chromel-

constantan thermocouples were selected because it minimized heat leak into

the paraffin housing, thereby maximizing temperature response, to givc the

largest possible voltage output per unit temperature rise (Fig. 26).

An extensive study was conducted to minimize error in reading the

differential fluid temperature across the capacitor. However, due to the low

temperature difference 0.9°C (I. 5°F), the accuracy of this measurement

never reached an acceptable level to allow correlation of the differential

temperature data.

The raw data was routed to the digital computer for interpretation on

the basis of calibration curves that had been programmed into the computer

system. Tabulated printouts of data was available immediately during and

after each test. After the first 15 tests, the computer program was reconstructed

to allow computerized plotting of the temperature versus time test data.

Test System

During all testing, the test item and support hardware were located in

a thermostatically controlled room. As a consequence, the external environ-

ment for all tests was at temperatures between 21.2 and 23.9°C (70 and 75°F).
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Nonadecane,normal paraffin was used as the PCM during all tests. The

nonadecane was procurred from the Phillips Petroleum Company in the techni-

cal grade.

The plexiglas test item was mounted in a closed fluid flow loop (Fig.

27). This allowed circulation of cold and hot fluid through the fluid passage at

varying fluid flowrates. A motion picture camera was mounted in a position

whereby paraffin phase change position with respect to time could be viewed

and recorded (Fig. 28).

The coolant flow system consisted of hot and cold heat exchangers, a

small-fluid pump, and appropriate valves and tubing (Fig. 27). The fluid was

Monsanto coolanol-15, a silicate ester, used because of its frequent applica-

tion to space vehicle coolant loops. The pump was a Viking 2.5 m3/sec × 10 TM

to 3.8 m3/sec x 10 -3 (4 to 60 gal/hr) variable speed constant volumetric

flow device. The pump speed was electrically controlled so that a constant non-

varying mass flowrate could be set as desired.

The coolant temperature was controlled by routing the thermal capacitor

test item outlet fluid to a parallel bank of a hot and cold "tube-in-shell" heat

exchangers. The hot heat exchanger contained water which was heated with a

3000 joule/sec (3 kW) chromalox calrod unit mounted internally to the heat

exchanger shell. This unit was thermostatically controlled to maintain the

heat exchanger shell fluid at a maximum of 82.3°C (180 ° F). The other leg of

59



q_

0

°l-q

C_

c_

f_

t_

Q_

r_

60



WHITE

PAPER

LIGHT SOURCE
I

TIMER

L _x,,/,,r ] j r i1_ ",_ FIELD OF VIEW

TEST ITEM

Figure 28. Motion picture camera arrangement.

the parallel bank was routed through the cold heat exchanger, containing a

coolanol-15/dry ice slurry. The shell fluid temperature stayed at a relatively

constant -79°C (-ll0°F).

Hand valves were mounted on the heat exchanger outlets to control the

ratio of hot to cold fluid mixed. Downstream of these valves, the tubing was

joined. From this point, a common line was routed back to the thermal

capacitor inlet.
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All line routings were fabricated from 1.27-cm (1/2-in.) stainless

steel tubing of 0. 127-cm (0.049-in.) wall thickness. The three 0. 635-cm

{ 1/4-in. ) ports on the thermal capacitor inlet and outlet were manifolded

together before the inlet and outlet tubing was connected. Prior to testing,

flow checks were made to assure an even flow split between the three fluid

connections.

The output of a thermocouple mounted at the test item inlet was trans-

mitted to a visual output meter. Using this output, hand valves were adjusted

to maintain the desired fluid inlet temperature.

The capacitor was insulated on both top and bottom with 5.08-cm (2-in.)

thick fiberglas bating. The interconnecting tubing was insulated with 2.54-cm

( 1-in. ) fiberglas wrap.

A motion picture camera was mounted so that it viewed the capacitor

paraffin housing from the sides where the majority of the instrumentation was

located. The camera was situated so that its field of view included the entire

capacitor plus a digital timer (Fig. 28). During initial testing, the timer was

located on the fluid outlet side of the capacitor. In later tests, it was relocated

to the top of the paraffin housing.

The camera used during initial testing was a Mitchell, which filmed

real time at variable speeds between 6 and 24 frames per second. Due to the

voluminous amount of data which was accumulated, with a real-time output,

the camera was intermittently switched on and off. Later, a Cine Special
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camera with a variable framing rate of 0.25 to 1 frame per second was used

for intermittent filming. This allowed compact filming without compromising

data acquisition. During all runs, color film was used to optimize film

definition.

The timer was a Cramer Controls Corporation device. The digital

readout contained five digits: four whole digits and one decimal second digit.

During initialtesting, the capacitor was illuminated from the camera

side of the test system. However, the lightingwas later moved to the opposite

side of the capacitor for better film definition.

Testing

Prior to starting the tests, the capacitor was filled with nonadecane by

heating the paraffin and the capacitor separately to a temperature of 71.7°C

(160°F). The housing was filled by simply pouring the hot paraffin into one

of the two fill ports, while allowing the other to vent.

The initial weight of the nonadecane required to fill the paraffin housing

was 1.95 lbs. The paraffin weight was determined by using a specially con-

structed load cell weighing arrangement. The paraffin weight was determined

by weighing the full paraffin container plus the paraffin prior to fill; then

weighing the container plus the remaining paraffin after fill.

Wtf = Wtc+pf - Wtc (10)

63



The inlet andoutlet fluid temperatures, alongwith the test item struc-

tural temperature measurements, were used to determine the heat lost or

gained from the fluid during paraffin phase change. This was compared to the

heat received by the paraffin during phase change plus the sensible heat change

of the test item, assuming heat loss to be negligible.

Nonadecane was selected because its melting point is slightly above

normal room temperature, its physical properties were known, and the liter-

ature search had showed that none of the previous experimenters had used

this particular PCM.

The band of inlet fluid temperatures was arbitrarily established over a

range of + 21. I°C (70°F) which centered on the published nominal freezing

point temperature. This required an inlet temperature range from -6.7 to

71.1°C (20 to 160°F). The mass flowrate range from 12.6 to 37.8 g/sec

(100 to 300 lb/hr) was used because it represented space vehicle typical

coolant flowrates.

Based on information given in Reference 70, the need for a guard vacuum

around the capacitor to assure an adiabatic system was not considered neces-

sary. This is primarily because of the good insulating qualities of the plexiglas

walls [K-- 0.16 J/m sec °K (0.09 BTU/hr ft°R)]. However, all

surfaces except those requiring exposure were well insulated during all runs.

One test was conducted to verify the adiabatic assumption. During this run the

entire capacitor was enveloped in insulating material. These test data were
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compared to data obtained from a previous uninsulated test which was performed

with identical input conditions. This comparison confirmed the adiabatic test

item assumption.

A typical test procedure is itemized in Table 4. The designation used

for all thermal capacitor tests by the testing group was with the prefix 230.

The total number of tests performed in conjunction with this study was 60 tests,

230-1 through 230-60. However, of these runs, a large number of facility

checkout tests were performed, during which unacceptabledatawas obtained.

As a result, only 20 of these tests are reported herein. Of these, 9 were melt

tests and 11were freeze tests. A summary of the test designation, alongwith

pertinent input parameters for those tests deemedacceptable, is given in

Table 5. Appendix D presents all pertinent raw test data.

The primary problem associatedwith operation of the test apparatus

lay in the control of the fluid inlet temperature. Using hand operated valving,

the inlet temperature could be maintained no closer than 2.8°C (5°F), with

short excursions reaching a variation of 5.6°C (10°F) from the nominal

target value. These excursions stemmed from the inherent time lag that

existed from the time that hot and cold fluid was introduced into the system,

until the time whenthe temperature sensor began to pick up the perturbation.

For example, whenthe operator received a low temperature reading on the

inlet sensor, he would increase the flow with the hot side valve. There would

be a time interval before the hot pulse could be detected by the sensor,
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'FABLE 4. TYPICAL TEST PROCEDURE

Test Time

Reference

Pretest

Pretest

Pretest

iT=0

During entire test

Test end

Freeze Test Only

• heat paraffin to
a uniform tem-

perature above

melt point, i.e.,
35 to 48.9°C

(95°F to 120°F)

Procedure

Common

Using the pump

speed control

establish the de-

sired constant

mass flow rate

by causing the

fluid to bypass

the capacitor
establish the flu_

id inlet tempera-

ture

• Simultaneously,

open the capac-

inlet valve and

• turn on the mo-

picture camera
and

• initiate instru-

mentation data

sampling

maintain a con-

stant inlet fluid

temperature to

capacitor

deactivate mo-

tion picture cam.
era data sam-

pling, and turn

off pump

Melt Test Only

• Allow the paraf-

fin temperature

to stabilize at

room tempera-

ture, i.e., 21.1

to 23.9°C (70

to 75°F)
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TABLE 5.

Test Designation

230-5

230-6

230-7

230-8

230 -9

230-10

230-11

230-15

230-49

230-50

230-51

230-52

230-53

230-54

230-55

230-56

230 -57

230 -58

230-59

230-60

Type Test

SUMMARY OF TEST INPUTS

Nominal Fluid Inlet Nominal Fluid

Temperature F lowrate

°C

Melt

Melt

F reeze

Melt

Melt

Freeze

Freeze

Freeze

Melt

Melt

Freeze

Freeze

Freeze

Freeze

Freeze

Freeze

Melt

Freeze

Melt

Melt

o F

71.2

54.7

-6.7

43.4

65.6

10.0

21.1

-1.1

65.6

54.7

-6.7

-l.l

10.0

21.1

21. I

-I.I

71.2

-i.I

43.4

54.7

lb/hr.

300

300

300

300

300

300

300

300

100

100

100

30

200

100

100

100

200

20O

2OO

30O

160

130

20

110

150

50

70

30

150

130

20

30

50

70

70

30

160

3O

ll0

130

kg/sec

0.038

0. 038

0. 038

0. 038

0.038

0. 038

0.038

0. 038

0.013

0.013

0.013

0. 0038

0.025

0.013

0,013

0.013

0. 025

0. O25

0. O25

0. 038
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probably due to slow fluid velocity, poor mixing, and the large sensible mass

of the system. As a result, if the operator reacted too quickly or overacted to

a temperature pertubation, it would induce a cyclic temperature, with a large

excursion band. This was magnified by the control band placed on the thermo-

stat control in the hot heat exchanger, which was quite large
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CHAPTER 5

ANALYTICA L TECHNIQUES

Introduction

The energy equations which must be solved in order to determine such

values as interface position and temperature profile variation with time are

formulated in this section. The techniques used to soh'e these equations and

the equation input values are discussed.

General

The first law of thermodynamics for a system may be written in

differential form as

de dq dw
dt - dt dt (11)

For an open, unsteady system (neglecting radiation, nuclear, and electromag-

netic contributions), Bird, Stewart, and Lightfoot [63] have expressed the

first law as the following energy balance:

/ Rate of \ / Rate of \ / Rate of \ / \ /net rate of\
net rate

/accumulation/ /internal and\ /internal and_ [ \ /work done by\
+ of heat

I' of internal-I Ikinetic energyl-lkinetic energx_=f -d'i t-I" the system '1
and kinetic] /-- out by _] _ in by _] lad it on. by] _ on ]

\ energy / \convection/ \ convection/ \conouc_lo_ _urroundings/
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for a fluid, this reduces to a vector tensor form:

,,'a) (b)

Ot

(c) (d) (e).

= _ + _ PV)

where:

forces

forces

forces

(a) is the rate of gain of energy per unit volume

(b) is the rate of energy input, per unit volume, by convection

(c) is the rate of energy input, per unit volume, by conduction

(d) is the rate of work done on the fluid, per unit volume, by gravity

(12)

(e) is the rate of work done on the fluid, per unit volume, by pressure

(f) is the rate of work done on the fluid, per unit volume, by viscous

For a typical cell undergoing phase change, the kinetic and potential

energy contributions are small, eliminating the last term in a and b and the

whole of d. Assuming the pressure forces are not allowed to build up appreci-

ably, e may be neglected. The limited fluid velocities encountered for normal

melting processes eliminates f. Thus equation (12) reduces to:

8__(p_) : _ [_. (p_*_) ] _ (_.-_) (13)
8t

For a fluid at constant pressure, the internal energy differential is given by:

70



d(_ = -pdv + cpdT (14)

Neglecting viscous dissipation and assuming constant properties and an

incompressible fluid, equation (13) may be written:

DT pc (V'. _T)
pCp a-'}" = - p

(15)

Since _'-Q = - KV 2 T, then from equation (15):

aT K
- V2T _ (g. VT)

at pc
P

(16)

for the fluid phase. For the solid phase, the convective term does not exist

and (16) reduces to the familiar Fourier Conduction equation

aT
= (_V2T (17)

Using equation (17), a formulation of a one-dimensional phase change

problem may be constructed (Fig. 29). Consider the liquid phase to be at a

constant temperature, T at time t = 0, and the surface temperature at x = 0
O

to be step changed from T = T to 0 and maintained there for all t > 0. For a
O

pure conduction process, differential equation (17) for cach zone is

aT D2T
S S

ax 2

and

3T L O2T L

at - o_L ax 2
(is)

with initial conditions:
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T L = T = T at t= 0 (19)o s

and

T = 0 atx = 0 (for allt) (20)
s

If PL Ps P , then

8T a T L
K _ = K L --+ p AH--dS , (21)s Ox 8x dt

at x = S(t) ; therefore,

T L = T = (22)s TFr

and

T L = To as x--- co . (23)

The first published discussion of this classical problem was by Stefan [64], and

the first solution attributed to Neumann [65]. These solutions were discussed

by Carslaw and Jaeger [65].

T = TFr

LIQUID o_., k L, PL

TLIX,t)

l --
• " " I |

' _s' ks' Ps " IS(t)

SOLID "x'
, Ts(X,tl

Figure 29. One-dimensional freezing.
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Numerous other solutions for various boundary and initial conditions,

for pure conduction andconvection processes are available in technical publi-

cations. SunderlandandMuehlbaur, [67], gave anexcellent bibliography of

techniques used to solve the phasechangeproblem through 1965. Additional

work hasbeendone since then on specific conduction problems, someof the

more notable being cited in I_eferences62, 68, and 69. The more important

convection problems are cited in References 49 and 70. The work on freezing

and melting done under the tutelage of Golden at the Colorado School of

mines is worthy of mention [51, 71, 72, 73, 74]. These studies attempt to

solve the fluid motion equations in conjunction with the energy equation by

using a numerical scheme. Although this technique is commendable, as yet,

it has not proven to be sufficiently flexible to allow application to a broad bank

of real physical geometries. This is because the flow pattern must be known

before a solution can be obtained.

The typical capacitor celt presents problems which are considerably

more complicated than those formulated in previous studies. In a typical cell

(Fig. 30), the problem is two-dimensional, involving convection and conduc-

tion in the one-g case, with varying boundary conditions on a minimum of three

sides; where T F = T (y, t), T B = T(t), andy= S(x, t} constitute the phase

change position occurring on the moving boundary.

Assuming again a pure conduction process, the differential equations

for the liquid phase are:



TF

LIQUID T I a I
J\ /

\ /

\ /
\_t _/=SIX't)SOLID T$,as

H

X

Figure 30. Two-dimensional freezing.
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8T L

_t

_2T L a2T L

- 7)

for 0<x<S, S(x, t) <y<H

The equations for the solid phase are:

DTs-°_Sat (_ 2S + O_ 2S)

for0<x<S, S (x, t) <y<H

The initial conditions are given by

= = T F =T S T B at t 0

and

T L = T B = T F at t = 0

and the boundary conditions are:

T B

T L

a nd

= TS, at y = 0 ;

= TS, at y = S (x, t)

(24)

(25)

(26)

(27)

(28)

aT L
- 0, at y = H (29)

Oy

From Rathgen and Jiji [75l, the second boundary condition at the interface is

given by

i)-_ - KL -_y / \Ox]J 3"-t" "

(See Appendix E for the derivation of this boundary condition).
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Due to the complexity of this problem it has not been solved in a closed

form. In non-idealized problems, such as this, a numerical technique is

typically utilized.

Single Cell Description

After analyzing film data (see Chapters 6 and 7) and a report from a

previous study [76], it was concluded that proper selection of the cells in the

capacitor housing allow the ceils to be considered thermally independent.

However, since this adiabatic assumption could have introduced error, the cells

were also isolated from each other by specifying fin and plate temperatures as

boundary conditions. Computer models of the 1/4 inch and 3/4 inch cells were

constructed. These single cell models were used to predict variations in

temperatures and interfacial positions with time.

The model used an explicit forward finite differencing routine. Programs

were initially written in a simplified computer language known as CINDA

(Chrysler Improved Numerical Differencing Analyzer [77]). Later, a more

specific Fortran program was written which allowcd operational convenience

in varying the parameters of the phase change study. Using identical inputs,

the programs were compared and found to have nearly identical outputs. As a

result, these two programs were used interchangeably to analyze test results.

A description of these programs is given in Appendix C.
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Initial computer runs used to provetthe CINDA and Fortran models were

madeon an IBM 230computer. All other runs were nmde on the Univac 1108

and IBM 7094high speedcomputers. Run times varied from 15minutes to 1

hour, dependinglargely on the time step required for stability and the duration

of the experimental test. During most computer runs, a time step of 0.0001

hours sufficed.

For analytical purposes the cells were subdivided into the nodal

arrangement shownin Figure 31. The general calculation flow chart scheme

is shownin Figure 32 and the notation used in the Forti-an program is shown

in Figure 33.

The computational procedure started with specification of initial

temperatures for all nodesandcalculation of all physical and thermal charae-

teristies. Typically the following properties were used in all runs.

Paraffin properties:

p = 47.2 lb/ft _ (755.7 kg/m 3)

K = 0.087 BTU/ttr ft °R(0.149 J/m see °K)

Cp = 0.5 BTU/Ib°R (2092 J/kg-_C)

AH = 73.4 BTU/lb (1.70 x 105 J/kg)

AH T

=

CP L

= 22. II BTU/Ib (5.14 x 104 J/kg)

0.00045 1/R ° (0.00081 1/°C)

14.3 Lbm/Hr-ft (5.9 × 10-3 Newton sec/m 2)

= CPs
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KL = K S

WT = 73.04°F (22.81°C)

WFr = 89.8°F (32.13°C)

Metal properties:

p = 171 lb/ft3 (2.736 × 103 kg/m 3)

K = 93 BTU/Hr ft ° R (159.2 J/m-sec°K)

C = 0.22 BTU/lb°R (919.9 J/kg°C)
P

Plexiglas properties:

p = 72.5 Ib/ft3 (0.94 x 103 kg/m 3)

K = 0.09 BTU/Hr ft°R (0.154 J/m-sec-°K)

C = 0.33 BTU/lb°R (1380.7 J/kg-°C)
P

In addition to the above property data, cell geometry data and initial

temperature data were input. Although the model had the capability of using

temperature dependent properties, constant values were used. An initial study

had proven that the variation in temperature and distance outputs was not highly

sensitive to small variations in p, C and K. Moreover, the accuracy of
P

available property data was questionable. Therefore, the additional computer

time required to incorporate a varible property routine and to change a forward/

backward finite differencing approach was considered unnecessary.

Node positions were located as close as possible to the fin and plate

experimental points of measurement, and the measured values of temperature,
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Figure 32. Computer model flow chart.
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Figure 33. Typical node arrangement.

as a function of time, were input for these nodes. This technique precluded

error in the side walls, due to the adiabatic cell assumption. Due to the small

capacitance and the resulting small computer time step required to achieve

stability, when using a transient for analyses of the thin fins, the steady state

Laplace equation was used to solve for the fin temperatures. Also the nodes

were arranged in two dimensions, assuring no heat transfer down the cell.

During most tests, this assumption was verified by the fact the interface height

remained relatively constant across the test unit's width.

The heat transfer rate of each paraffin node was computed by using the

following two dimensional numerical approximating technique:
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q(i,j) - T(i-l,j) -T(i,j) T(i+i,j) - T(i,j)
IttI(i, j) ÷ Rtl(i+],j)

T(i,j-1) - T(i,j) T(i,j 1) - T(i,j) (31)
_- ttV( i, j) + IIV( i, j+l)

This rate was stored and used in subsequent calculations.

the node at the next time increment, t+At,

q(i,j)
T' (i,j) = T(i,j) + _ At

was found by

The temperature of

(32)

The computation was then iterated by computing q'(i,j) using equation

(31) and the new temperature found using equation (32). The average of q(i,j)

and q'(i,j) was then used in equation (31) to predict a more accurate T'(i,j)

value. This proeedure was repeated at eaeh time step.

Appropriate modification to equations (31) and (32) were made for

nodes located on or near a boundary. Since the boundary condition at the

interface changes due to the absorption or rejection of the latent and

transitional heats, a special technique had to be used at the phase change and

transitional temperatures. The method used herein forced the temperature to

be eonstant until sufficient heat had been absorbed or rejected by the node to

change phase (Fig. 34). This was accomplished by monitoring the total energy

stored in each node so that when the nodal temperature reached the transition

or fusion temperature, it was maintained at this value until sufficient energy

was absorbed or rejected to balance the transitional or latent heat of fusion for

the node. The fraction of the node melted or frozen was determined at each
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time step basedon the energy accumulation in the node. From this, the melt

height was determined for each column of nodes.

Q(i,j)

I

S I

TTr TFr

TEMPERATURE

Figure 34. Heat stored versus temperature.

After initial runs, the basic conduction model was modified for melt

analysis. During melting, the thermal conductivity values were modified in

the liquid region to account for convection. The method used was to determine

the Rayleigh number by using an average melt height, given by

m

x= S_ xi / m (33)
i=1 /

The driving temperature difference was the absolute difference between the

melting temperature and the lower plate temperature.

AT = T B - TFr (34)

Using these variable quantities along with appropriate physical properties, the

Rayleigh number was determined at each time step.



Initially the boundedeeli Nusselt number versus Rayleigh number

correlations of Catton and Edwards [31] were considered; however, since the

initial point at which the melt layer exceedsthe critical Rayleigh number is

extremely small, the infinite flat plate correlations of Silveston and O'Toole

Thesecorrelations are given for the four Rayleigh[30] were used instead.

number regimes, as

Regime I Ra < 1700 Keff/K

RegimeII 3,500 >- Ra -> 1700 Keff/K

Regime III i × 105 -> Ra >- 3500 Keff/K

Regime IV Ra > 1 x I05 Keff/K

=1

= 0. 00238 Ra °'81_

= 0. 229 Ra °" 252

= 0/104 Ra°'3°5pr°'°s4

Although correlations are actually for Nusselt number, the Keff/K ratio

is the same since, Kef f = hL.
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Node Sensitivity Study

To avoid excessive computer time usage without compromising

modeling accuracy, a study was made to determine optimum node spacing.

Although the study included both the modified and unmodified conduction models,

no significant differences were noted.

Half of a 1.9-cm (3/4-in.) cell was modeled. The cell was assumed

to be isothermal along its width, so that heat was allowed to transfer only in

the cell height and length directions. The nodes were arranged in square.

patterns. The node sizes examined ranged from 0.16-cm (I/16-in.) to 0.95-

cm (3/8-in.). The melt front position versus time data was used for

comparison.

Figure 37 shows the convective model runs. From this data, itcan be

seen that there was a significant difference in data output when comparing 0.48

-cm (3/16-in.) node data with 0.32-cm (1/8-in.) node data. However, when

the 0. l_}-cm node data was run, the interface position matched that of the 0.32-

cm node model, within one percent for the range of values run. Stability runs

using the sensitivity model also showed that a stable time step of 0. 001 hours

was required to avoid unstable data outputs.

As a result, all runs were made with nodes arranged in 0.32-cm square

patterns, requiring 21 vertical nodes for the single cell model. In the case of

the half model of the 1.9-cm cell, the node matrix was 3-by-21, and for the

0.64-cm (I/4-in.) cell itwas 1-by-21.

85



1.3(3.30)

1.2 (3.05)-

1.1

1.0 (2.54

.2 (.51)-

.1 (.25)-

0
0

O 3/16"' x 3/16" NODE SIZE
(0.48cm x 0.48cm)

[] 1/8"' x 1/8" NODE SIZE
(0.318cm x 0.318cm)

A 1/16" x 1/16" NODE SIZE
(0.16cm x 0.16cm)

* 1/16'" (0.16crn) SQUARE NODE MODEL
RUN ONLY 0.4 HOURS IN REAL TIME
BECAUSE OF EXCESSIVE COMPUTER
TIME REQUIRED TO RUN TO COMPLE-

TION

0.2 0!4 016 018 1!0

TIME(hrs)

12

Figure 35. Node sensitivity study.
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CttAPTER 6

DATA REDUCTION

Film Data Reduction

All motion pictures were screened on a Data Instrunmnts Fihn Analyzer.

The apparent phase change position versus time was recorded for the center

of paraffin cells and at the innermost fins of the three representative ceils.

Early tests demonstrated that the plate which separated the coolant fluid and

paraffin acted as an isothermal surface. For this reason, the melting of the

1.9S-cm (3/4-in.) and 1.27-cm (1/2-in.) paraffin ceils were nearly symmet-

ric from inlet to outlet sides of the capacitor. Some edge effects were noted

on the outer 1.9-cm cells, so that only the visual data from the innermost 1.9-

cm cell on the fluid outlet was used for data reduction. The innermost 1.27-cm

cell on the fluid outlet side of the capacitor and the center 0.G4-cm cell were

also used in visual data reduction (Fig. 36).

The film analyzer projects an enlarged image of each fihn frame on

the moveable grid surfaces of the film analyzer (Fig. 37). Two grids allow

sensi_ N of both horizontal and vertical positions. These grids are electrically

integrated with the interpreter section of the analyzer so that it automatically

senses these positions. Each cell image is calibrated in the analyzer as the

ratio of the known height, tI, of the cell to the image height. The moveable
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Figure 36. Visual data reduction cells.

horizontal grid was positioned over the phase change vertical position and the

height was recorded by the interpreting electronics. These values, along with

corresponding timer readings from the film, were fed in by the operator

forming a bivariant height/time array. These data were automatically key-

punched on computer cards for later use.

During melt tests, the phase change front position was obvious because

of the well defined liquid/solid interface. However during freezing, a dark
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Figure 37, Data instruments film analyzer.
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liquid/solid dendritic front progressed into the liquid phase, followed by a

completely solid region characterized by a chalky appearance. Since the

dendrite front progressed well in advanceof the chalky region, someconfusion

as to the actual phasechangefront position resulted. As a result, a study was

made to determine what line defined the front. The results of the study, dis-

cussed in Chapter 7, indicated the forward most dendrite penetration represents

the phasechangefront. This definition is shownpictorially in Figure 38.

LIQUID REGION

t
•":'::::::: ..::'"=: :':." "::.':.:." ,'7.':. .'.'Z:.'::.'"

. __" ":i75".:".':.:.'.:"::':::':'::'." FIN
FREEZE I-RONT__ DENDRITE FRONT

_O=TION__= p..._.=_'___DARK uouID/SOUO
C.ALKYREGIO'" _.":':':_:" i REGION

HEAT TRANSFER PLATE

FLUID PASSAGE

Figure 38. Freeze front definition.

Although only one individual transcribed most of the film data, two

different individuals were used to take readings on selected runs to determine

the possible reader error. Comparisons of the independent melt height read-

ings showed that paired data varied no more than 0. 127 cm (0.05 in.). How-

ever for the freeze test, the variations were as large as 0.38 em (0.15 in.).
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These paired readings were compared only for melt heights above 0.51 cm

(0.2 in.) because the epoxy used to seal the paraffin housing to the fluid

passage partially obscured readings below this level.

The data points on the computer cards output from the film analyzer

were programmed, using an existing root mean square smoothing routine.

Another routine was used to make linear approximation of the phase change

front velocity by first fitting the smoothed height versus time data to a first

degree polynominal, x = a + bt, and then differentiating this to get a constant

cLx
velocity approximation _- = b. This was justified by the fact that in most

cases the height-versus-time data could be approximated by a straight line,

with little error.

Freezing Temperature Data

The temperature probe profiles during all freeze runs were similar.

A typical profile of temperature variation of the paraffin probes with time is

shown in Figure 39 for a 1.9-cm (3/4-in.) inch cell, with numerical designa-

tions of significant events. Event number one designates the point at which the

entire cell was at a uniform temperature. This point also coincides with inci-

pent freezing at the cell bottom, which indicates that during freezing tests the

initial cooling was devoted almost entirely to removing sensible heat from the

liquid mass, cooling the entire cell to the paraffin freeze point. The tempe-

rature did not then drop significantly until the freeze front had passed through
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Figure 39. Typical 1.9-cm (3/4-in.) cell freezing temperature history.

the thermocouple positions which are designated as events two, three and four.

From visual data, it was apparent that the dendrite front passed by the thermo-

couples just before their temperature started to drop from the plateau. The

plateau temperature ranged from29°5°C (85°F) to32.3°C (90°F). In early

tests, the plateaus occurred at temperatures near 90°F, however the plateau

tended to occur at lower temperature during later tests.

A typical 0. 635-cm (1/4-in.) cell temperature profile during freezing

is given in Figure 40. In contrast to the 1.9-cm (3/4-in.) cells, in which all

thermocouples reached the freeze plateau simultaneously (Fig. 39), the 0o 635-

cm cell freeze front passed consecutively through each respective thermocouple

location (Fig. 40). This indicates that sensible heat was still being removed

from the upper cell liquid while the lower cell had already frozen. This shows
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fins to be the dominant cooling path in the small cells, whereas the lower

plate is dominant at wider spacings. This effect was partially causedby the

higher cooling rates due to the closer fin spacing in the smaller cells. Events

one, three andfive in Figure 39 represents the time at which the liquid had

dropped into freeze temperature zone. Events two, four and six represents

the freeze front passing the _'espectivethermocouple positions. Point seven

is at the freeze plateau level. The freeze plateau exhibited by the two cells

were approximately equal.
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0 a D _O 0

%
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Figure 40. Typical 0,635-cm (1/4-in.) cell freezing temperature history.
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Interpretation of Melting Temperature Data

A melting history comparison is shown in Figure 41, Comparing the

characteristics of melting front progression for low and high heating rates.

Although the 1.9-cm (3/4-in.) cell melting temperature profiles were similar,

there were differences, depending on the heating rates. Point one corresponds

to a temperature level at which a marked increase in the rate of temperature

rise begins. From observations, the melt front appeared to pass the thermo-

couple locations just after the temperature rise occurred and well before, point

two was reached, at temperatures slightly below the published melting point.

Point two corresponds to a characteristic overshoot, followed either by a

temperature leveling at point three or a slight drop. After maintaining a pla-

teau (represented by point four) for a period of time, the fluid temperatures

dropped to a level represented by point five, prior to the celt being completely

melted. Also prior to complete melting, temperatures recorded in the liquid

exhibited unstable oscillations between points two and six levels. At six, the

cell was completely melted and all thermocouples rose above the pseudo pla-

teau level.

For the low heating rate experiments, the temperature rise which had

occurred in the high heating rate cases was either greatly diminished or

completely absent. The temperatures slowly rose to a plateau at point seven

only slightly above the published melting point, with the phase change occurring

at point eight as each thermocouple reaches the plateau temperature. Again
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Figure 41. T52oieal 1.9-cm (3/4-in.) cell melting temperature history.

after the cell was completely melted, all liquid temperatures started to rise

sharply, as indicated by point nine. Although unstable temperature oscillations

were present between eight and nine, they were diminished and of a higher

frequency than for the high heating rate cases.

The 0. 635-cm (1/4-in.) cell data is not worthy of separate discussion

since the primary difference as compared to the 1.9-cm (3/4-in.) cell data,

was the delay time at the plateau temperature. In the case of the 0.635-cm cell,

the plateau consisted only of a slight curve inflection near the values of the 1.9-

cm (3/4-in.) cell plateau. In the fast melt cases, the 0.635-cm (i/4-in.)

cell melted so rapidly, that in some cases temperatures in these cells reached

a second higher plateau corresponding to the liquidequilibrium value.

Test Observation

Figures 42 through 49 show views of the thermal capacitor cells

during the phase change process for four arbitrarily selected times. Low and
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Figure 42. Initial stages of slow melt phase change process.
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Figure 43, Final stages of slow melt phase change process,
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Figure 44. Initial stages of fast melt phase change process.
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Figure 45. Final stages of fast melt phase change process.
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Figure 46. Initial stages of slow freeze phase change process.
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Figure 47. Final stages of slow freeze phase change process.
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Figure 48. Initial stages of fast freeze phase change process.
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Figure 49, Final stages of fast freeze phase change process,
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and high heating rate tests (230-59 and 230-49) and low and high cooling rate

tests (230-54 and 230-58) are presented, respectively. It appears from these

photographs that the zero point on the vertical scale is below the plate level.

However, as discussed earlier, the bottom of the cells are obscured by an

epoxy coating used to seal the bottom plate to the coolant passage. The rear

epoxy line appears as a lighter horizontal line in these photographs. The

irregular dark vertical lines appearing in the 1.9-cm (3/4-in.) and 0. 635-cm

( 1/4-in. ) ceils are thermocouple wires of which the wider ones are the freely

suspended sheathed wires and the narrower ones are the wires leading to plate

and fin thermocouples.

The absence of photographs of elevated phase change interface heights

near the top of the cells was caused by two limitations. The first was due to

the prohibitive length of time required to run a complete capacitor phase change

cycle, especially in low heat fh_x tests. The second, which occurred in the

case of melting only, is the fact that when the cells had melted to within 1.27

cm (1/2 in. ) of the top, the unmelted solid tended to slide down into the liq-

uidus region. Either of these reasons was sufficient to terminate a test.

In the case of melting (Fig_lres 42 through 45) some disparity is seen

between the melt heights of the 1.9-cm (3/4-in.) cells on the right and left

sides of the capacitor. This disparity occurred only in a few tests and was

discernable in these photographs. The nebulous appearance is due to fur-like

dendrite formations at the interface, shown magnified in Figure 18A.
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Also the nearly planar front evident in the melting photographsgives

way to a sharp saw tooth freeze front profile. The saw tooth profile is less

pronouncedfor the closer fin spacingbecause the freeze front moving up the

fins and the cell center are merged.

Comparison of the meniscus formed in the upper portion of each frame,

betweenthe ullage and the liquid, indicates a decreasing level with time. This

decrease is causedby freezing contraction occurring in the paraffin, and was

most pronounced in slow melting tests as shownby comparison to the fast

melting andfreezing photographs. Since the melting heights were repeatedly

higher on the coolant inlet side (i. e., left side in photographs), the bottom

plate was apparently not exactly isothermal, but sustained a temperature

gradient, increasing from inlet to outlet sides.

In both rapid and slow cases it is obvious that the 1°9-cm (3/4-in.) and

1.27-cm (1/2-in.) cell melting rates are nearly equal. However, a much

faster rate is seen in the 0.635-cm cell.

In Figures 46 through 49 (representing slow and fast freezing), the

liquid/solid interface, which was well defined in melting, appears nebulous.

Although not well defined in the photographs, the rough dendrite interface is

visible as a dark region. For those frames in which the freezing of the cell is

nearly complete, the chalky zones are visible.

It is obvious that the freeze rates are much slower than the melt rates.

This is caused by loss of convection in the freezing modes.
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CHAPTER 7

DISCUSSIONOF EXPERIMENTAL AND ANALYTICA L RESULTS

Phase Change Temperature

Because the apparent temperature plateau achieved during melting

tests did not correspond to the phase change temperatures exhibited during

freezing, only freeze tests were used to estimate variations in the phase change

temperature. From discussions to be given later, it will be apparent that the

phase change temperature was not constant. Figure 50 shows a plot of the

measured freeze temperature as a function of time. It can be seen from this

Figure that the apparent freeze temperature decreased with time. This was

accompanied by a "yellowing" of the solid paraffin, which had been initially

chalky white in the solid state.

To account for this apparent change in the freeze temperature in the

numerical work, the phase change temperature used in the numerical compu-

tations was altered to agree with experimental freeze data. However, since

numerous investigators have reported that deviations between freezing and

melting temperatures are common, referred to as phase change hysteresis,

the phase change temperature was not altered for numerical predictions

corresponding to the melt tests. However_ for a single melt test, computer

runs were made with varying phase change temperatures to illustrate the effect
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of altering this property. The influence of changingthe fusion temperature

on numerical predictions for the selected melt runs is illustrated in Figure 51.

From this Figure it can be seenthat small changesin the melting

temperature drastically alter the predicted melt height velocity. As this

temperature is depressed, the onsetof increased interface velocity occurs

earlier. This is explainedby the fact that for the sameboundary temperature

in both cases the temperature difference in the Rayleigh Number expression

is proportionately higher for the case with lower melting temperature. This

reduces the height at which the onset of convectionoccurs andthereby causes

the melting velocity to increase at an earlier time. No suchdrastic differences

were notedfor the predictions for freeze runs since contributions dueto

convection were absent and accordingly omitted from the numerical model.

Apparent Heating/Cooling Rates

The apparent experimental heating/cooling rates for tests were deter-

mined by using appropriate paraffin property data along with the interface

velocity information discussed in Chapter 6.

Since the 1.9-cm (3/4-in.) cell freeze and melt fronts approached a

planar front, a uniform horizontal front was assumed. Even though the front

was not exactly planar, especially in the freezing case, this is an acceptable

approximation since the phase change front velocity, which was used to deter-

mine the experimental heating/cooling rates, did not alter shape with time.
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Also, since the sensible heat absorbed/rejected by the paraffin and its housing

were small compared to the heat absorbed/rejected by the phasefront, all of

the energy transfer was considered to produce phasechange. Finally, to

express the heating/cooling rates on a unit area basis, the lower plate was

considered to be the base area through which the heat was transferred. Visual

data revealed that the assumptionof a planar interface was not valid for 0. 635-

cm cells. As a result, heating andcooling rates andfluxes are given only for

1.9-cm (3/4-in.) cells.

Using the approximations outlined above, the following equations were

used to generate experimentally determined heating/cooling rates,

ds
Qap = p _- V AH

and

ap =  ap/Abp,

These values are given in Tables 6 and 7.

Comparison of Experimental and Analytical Data

The experimental data were compared to analytically generated inter-

facial positions at varying times. Although the analytically predicted temper-

ature profiles with respect to time and distance are discussed, it should be

emphasized that the primary objective in formulating the numerical model was

to match the interface position data, and consequently the rate and flux data.

It was realized that the artificial manner in which convective effects were

incorporated into the numerical model would not provide accurate predictions

of the temperature field in the liquid region.
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Freeze Temperature Profiles

In the case of freezing, the analytically produced temperature profiles

versus time and distance matched quite well with experimental results. Typi-

cal comparisons are shown in Figures 52 and 53.
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Figure 52. Freeze test temperature versus distance.

From Figures 52 and 53, it is apparent that the largest discrepancy is

in the solid region. This is due to the method by which the heat transfer

surface area was artificially increased for all nodes to account for the aug-

mented interface velocities, thereby causing an apparent increase in the

thermal conductivity of the paraffin. In the liquid region, the temperature

profile tended to yield a better match for the experimental data with augmented

transfer area, indicating the thermal diffusivity properties used for the liquid

were either low or that some convection was occurring in the liquid during

113



W
_r

b"

er
u3
a.

MJ
b-

_ LIQUID _ _ SOLID

e._EXPERIMENTAL

i \
TIME

Figure 53. Freeze test temperature versus time.

freezing. This was possible, to a degree, since the fins were typically cooler

than the paraffin in the center of the cell, giving rise to a doublet with flow

from the fins toward the center, see Figure 54.

ISOTHERM

Figure 54. Possible doublet flow during freezing.
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The temperature plateau in the liquid portion of the cell formed

quickly and was maintained as the freeze front passed through the entire cell.

This indicated that most sensible heat was removed from the paraffin before

latent heat removal started. The plateau apparently was caused by the liquid

region being surrounded by a nearly isothermal freeze boundary. Although

not apparent on filmed data, visual inspections and the freeze models indicated

a thin freeze film occurred on the fin and plate wall almost immediately. This

is consistent with the rapid drop in fin and plate temperature. On reaching the

freezing temperature, the fin temperatures leveled out until the freeze front

had passed through the vicinity.

As noted earlier, the plateau temperature decreased below the published

phase change temperature with time. From inspection of the test data, it was

apparent that this depressed plateau was the temperature level at which phase

change was actually occurring. Since most freeze tests were slow, it could

be easily determined that the liquid dendrite front had passed the thermocouple

at about the same time the thermocouple indicated a "decline" from the plateau.

Since phase change had to be occurring on the dendrite zone or the chalky zone,

and the chalky zone passed through at temperatures well below plateau values,

the freeze front was taken to be the line of demarcation between the liquids and

dendrite zones and the corresponding plateau was then considered to be the

freeze temperature.
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Apparently the depression which occurred in the measured fusion

temperature could be a result of contaminants ingested during testing, or al-

ready present in the newly procured paraffin. The cause for this freezing point

depression was not investigated.

Melt Temperature Profiles

The predicted and experimental results for melt tests exhibit more of

a discrepancy in temperature versus time and distance data, see Figures 55

and 56° The primary reason for this is the artificial way in which the effective

thermal conductivity of the liquid was used to account for convective effects.

The analytical predictions, based on a pure conduction model with the thermal

conductivities modified in the liquid, do not reveal a constant temperature

plateau. The experimental data, although exhibiting some oscillations, remains

relatively constant at a plateau value for a period of time inversely proportional

to the heating rate.

The plateauing is immediately preceded by a temperature jump. This

jump may be due to the film coefficient which occurs at the liquid/solid inter-

face as a result of convection in the liquidus region. The convection is a result

of buoyancy induced convection in the fluid cell. In the case of melting, the

mixing action of the convective currents caused the pseudo-plateau, as

opposed to the isothermal boundary causing the plateau in the freezing case.

The unsteady oscillations in the liquidus plateau region are caused by these

If6



uJ

D
I-
,¢

IJJ

IJJ

[ LIQUID-'_p'_'- SOLID _ TEST DATA
I

_-.. , ---,,.._,_,_,oo_

I
I

DISTANCE

Figure 55. Melt test temperature versus distance.

b-

J

SOLID-,_JI-_ LIQUID

I

TIME

Figure 56. Melt test tempersture versus time.

117



convective currents. Since these tests were run, Griggs [78] has run tests on

individual cells which verify the occurrence of these oscillations. The plateau

level is dependent upon the mean temperature between the melt temperature

value at the solid/liquid interface and the plate temperature. TypiCally a

simple averaging of these two values at any time approximated the plateau

level. The plateau level is maintained in the cell until the entire cell is melted,

which is followed by a rapid rise in all measured liquid temperatures. A

second plateau is reached in some cases. This plateau is the limiting temper-

ature of the cell, slightly lower than the plate temperature.

As the heating rates were increased and for narrow fin spacings, the

plateau became less pronounced, tending to disappear with very high heating

rates in the 0.635-cm (1/4-in.) cells. Reference 77 verifies these findings,

showing that the plateau duration in time and absolute level is a function of cell

wall material as well as heating rates.

Freeze Front Position

Comparison of measured transient freeze front position histories with

corresponding numerical predictions are shown in Figures 57 and 58 for slow

and fast cooling rates, respectively. From these figures it is apparent that a

pure conduction modeling technique under-predicts the transient freeze inter-

face position as well as the freeze front velocity.

A literature research reveals this disparity has also been noted in

References 8 and 74. Reference 8 gave no explanation for this underprediction.
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Figure 57. Comparison of freeze front position test data and predicted

data for a slow cooling rate.

Although Golden [74] attributed this disparity to erroneous property data, evi-

dence shows this not to be the case in this instance.

Possible causes of underprediction are liquid phase convection, aniso-

tropic or erroneous property data resulting in higher thermal diffusivities or
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Figure 58. Comparison of freeze front position test data and predicted

data for a fast cooling rate.

latent heat values than used in the model, and augmented heat transfer surface

area at the interface due to dendrite formation. Bailey _ has shown however,

_'Verbal communication between the author and Dr. Bailey of N.C.

State University.
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that the deviation in latent heat of fusion of the paraffin used in these tests

from the values quoted in the literature is negligible.

Convection in the bulk liquid or local interdendrite convection could

produce this underprediction. However, since freezing is from below the

former is not expected to be a large effect, and the latter effect produced by

the volume change phenomena has been shown in Chapter 2 to be negligible.

To examine the approximate level of paraffin thermal conductivity

change required to match test data, a highly simplified technique was used.

The vertical conductors (i.e. KA/AX values) in the conduction model were

artifically increased by applying multiplying factors to the conductors in the

liquid and solid phases. These factors were varied until a good interface

position match was attained.

Plots of fast and slow cooling rate tests showing the effect of the opti-

mum match are shown in Figures 59 and 60, respectively. Applying this tech-

nique to a number of tests, multiplying factors ranging from 4 to 10 resulted.

Although the technique used to reproduce test data is highly siml)lified, it

serves to show the magnitude of thermal conductivity coefficient augmentation

required is much greater than any expected increase due to anisotropic effects

or property measurement inaccuracies.

Using the author's data, Griggs [77] has shown that by altering the

vertical conductors at the interface only, good approximations of test results

can also be achieved (Fig. 61). Extrapolation of these data indicates multi-

plieation factors on the order of 100 to 200 are required for best results.
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Examination of microscopic photographs indicates these magnitudes are not

inconsistent with the dendrite geometry at the interface.
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Figure 59. Comparison of freeze front position test data and predicted

data for fast cooling rate.

From the foregoing discussion it can be concluded the exclusion of the

heat transfer surface area augmentation at the interface is the most probable

cause of underprediction. However, combination effects of augmentation with

other effects discussed is also a possibility.
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Melt Front Position

The pure conduction model did not predict the melt front position with

any degree of accuracy (Fig. 62). Estimations of natural convective levels,

clearly indicated that this was due to the augmentation created by the convective

currents. As a result, the basic conduction program was modified, as dis-

cussed earlier, to provide an estimate of convective enhancement. An esti-

mating approach was taken rather than try to solve the convection problem,

because of the complicated nature of the problem when the energy is coupled
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with the momentum equations. No attempt was madeto form convection co-

efficient conductors because insufficient film coefficient data were available

to estimate these coefficientsat a melting solid/liquidinterface.
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Figure 62. Conduction mode sensitivity for 1.9-cm (3/4-in.) cell.

Comparison plots of experimental data with analytical data are shown

in Figures 63 through 71 for 1.9-cm (3/4-in.) cells and in Figures 72 through

76 for 0.635-cm (1/4-in.) cells. From these plots, it is obvious that in most

cases the modified model satisfactorily represents melting rates and corse-

quently the heating rates. The analytical data in most cases slightly under-

predicts the experimental results, although the lag is only slight.
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Figure 63. A comparison of experimental and analytical data for test 230-5.

A constant melt temperature of 89.8°F was used in the model for all

computer sums. The experimental results of freezing tests indicated that phase

change temperature appeared to decrease with time. The later predictions

could have been improved by decreasing the model melt temperature to the

experimental level.
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From the data is it obvious that the phase change position versus time

for melting runs can be approximated by a straight line. This phenomena can

be justified ,_nalytically. In Appendix B the Rayleigh Number is given as

Ra = 1.68× 108 L 3 AT

For these tests the range of temperature differences in the liquid region was

2.8°C (5°F) < AT < 13.9°C (25°F)

Using these limits with the above equation and the Rayleigh Number

regimes defined by Silveston and O'Toole [30], a plot of Rayleigh Number versus

melt height may be generated. (See Figure 77).

From this figure, it is apparent that most of the cell is operating in

regime 4. Although this is basically a transient problem, a steady-state

approximation of the velocity profile may be made. Noting that the Nusselt

Number is given by

hL
Nu -

K

and combining this with the regime 4 Nusselt Number expression, the heat

transfer coefficient may be approximated by

h = K 305 084E (0"104) Ra 0. Pr o.

Again assuming constant properties and a constant temperature differ-

ence, the following relation holds

h = C 1 L -0' 085
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neglecting sensible heat and an energy balance on the melt interface yields

hAT = AHpV

or

V = C2 L-0"
O85

This indicates that velocity is relatively constant, only weakly dependent on the

melt height.
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CHAPTER 8

SUMMARY AND CONC LUSIONS

1. In a one-g environment, a pure conduction model cannot be used to

determine freeze or melt front position accurately in paraffin. The freeze

and melt front positions are both underpredicted. In the case of melting, the

actual rate is faster beeause of the augmenting effect of natural convection.

For freezing, the inability to reproduce experimental results is thought to be

due to the influence of dendrites. However, this suggestion is not proven herein.

2. A convection model accurately predicted experimental results for

melting. However, a notable fallacy is that this model cannot accurately re-

produce temperature profiles in the liquid phase. This model utilizes an

effective thermal conductivity variation with Rayleigh Number to simulate

conductive effects. Although the model has been demonstrated to give good

results for only the geometry and heat flux ranges discussed in the text, the

model is expected to apply to larger cell sizes and for lower and higher heat

fluxes up to nucleate boiling initiation. Because of the reversal trend predicted

by Jones and Smith [791, for cell sizes below 0.6a5-cm (1/4-in.) (Figure78)

alterations are necessary. These alterations require the Silveston and O'Toole

correlations be replaced by the Catton and Edwards closed cell correlations.
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3. During freezing of paraffins the phase change boundary is made up of

numerous dendritic arms. This phenomena is not present in melting. Although

this effect is well known in material sciences, it was not considered by a

number of authors investigating heat transfer during solidification.

4. The freeze front position cannot be matched without making unverified

assumptions. It is apparent that dendrite formations augment the surface area

available for heat transfer at the interface during freezing. Augmentation of

this area will improve conduction model data matching. It is hypothesized that
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failure to include this augmented area effect is the major cause of the reported

underprediction. Further study of these effects is needed before positive

conclusions may be reached.

5. Insufficient information is available to determine if the unexpectedly

rapid freeze front progression noted in one-g will also occur in zero-g. How-

ever, assuming the augmented rate is due to dendrite formations, as hypoth-

esized, the paraffin freeze rate should again be underpredicte.d by a pure con-

duction model. This is true since there is no evidence in the literature that

dendrite formations are affected by the gravity level.

6. In a zero-g environment, conduction modeling techniques are expected

to be applicable to determining melt front positions and temperature profiles

unless significant surface tension driven convection is present, tIowever,

there are insufficient zero-g data to corroborate this finding.

7. From the literature, surface tension driven convection can be appreci-

able for normal paraffin capacitors in zero-g only in systems contain-

ing adjacent liquid/gas phases. Insufficient data are currently available to

allow quantitative estimates of convective levels created by this phenomena.

8. Excluding convection due to orbital maneuvers, the only other affect

expected to be important during phase change is that of ullage bubble location.

The ullage location, in the case of paraffins, will be favorable for maximum

heat transfer from metal surface, because of good wetting characteristics of

paraffins.
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APPENDIX A

PARAFFIN PROPERTIES

Introduction

A tabulation of paraffin property data is given in Table A-1. These

data were compiled from the authors listed below in references A-1 through

A-10. Items A-25 through A-59 give a list of property references compiled

by the Thermophysical Properties Research Center at Purdue University.

These authors in-turn referenced those items listed for A-11 through A-24.

In most cases the authors did not specify the paraffin grade, however, it is

assumed that all data was acquired by using pure or research grade paraffin.

Only those data considered reliable are presented herein.

Data for twenty normal paraffins with carbon atom chains ranging from

eleven to thirty are presented. These paraffins cover a freezing point temper-

ature range from -25.6°C (-14°F) to 65.6°C (150°F), encompassing the

normal interest of the thermal capacitor designer.

The reader is referred to references A-4, and A-5, for more specific

information of property variations with temperature.

Available paraffin cost data is given in Table A-2.
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Item

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
_...

Name

Undecane

Dodecane

Trideeane

Tetradecane

Pentadecane

Hexadec ane

Heptadecane

Octadecane

Nonadecane

Eicosane

Heneicosane

Docosane

Tricosane

Tetracosane

Pentacosane

Hexacosane

Heptacosane

Octacosane

Nonacosane

Triacontane

Chemical Molecular

Formula Weight

Phase Change Transition

Temperature Temperature

°F °C °F °C

CllH24 156 . 302 -14.1 -25.6 -32.8 -36.0

*Values taken at 158°F (70°C)

**Values taken at 107°F (41.7°C)

C12H26 170. 328 14.7 -9.6 none none

C13H28 184.354 22.3 -5.4 -0.4 -18.0

CItH30 178. 380 42.6 5.9 none none

C1_H32 212.406 49.9 10.0 27.9 -2.3

ClsH34 226. 432 64.7 18.2 none none

C17H36 240.458 71.6 22.0 50.9 10.5

C laH3a 254.484 82.8 28.2 none none

ClaH40 268. 510 89.4 32.1 73.0 22.8

C20H42 282. 536 98.2 36.8 97.2 36.3

C21H44 296.562 104.9 40.5 90.5 32.5

C22H46 310.588 111.9 44.4 109.4 43.0

C23H48 324.614 117.7 47.6 104.9 40.5

C_4H50 338.640 123.6 50.9 118.6 48.1

C25H52 352.666 128.7 53.8 117.6 47.6

C2_H54 366.692 133.5 56.4 127.9 53.3

C27H56 i380.713 138.2 59.0 127.4 53.0

C28Hsg 394.744 142.5 61.4 137.4 58.6

C2aHG0 408.770 146.7 63.8 136.8 58.3

C30I_2 F422. 796 150.4 65.8 143.6 62.0





LatentHeat Heatof
of Fusion Transition TotalHeat

Btu/lb J/g Btu/lb J/g Btu/lb J/g

57.9 134.6 18.4 42.7 76.3 177,3

93.0 216.1 none none

66.5 154.5 17.9 41.6

97.7 227.1 none none

70.5 163.8 18.6 43.2

101.3 235.4 none none

72.4 168.3 19.6 45.6

104.7 243.3 none none

73.4 170.6 22.1 51.4

107.0 248.7 none none

69.1 160.6 22.4 52.1

69.1 160.6 39.6 92.0

71.5 166.2 28.8 66.9

69.7 162.0 39.7 92.3

76.7 178.3 31.8 73.9

69.8 162.2 37.8 87.8

68.2 158.5 32.7 76.0

70.4 162.8 38.6 89.7

69.5 161.5 31.2 72.5

108.0 251.0 none none

Density at

-Phase Change Temperature Specific Heat

at Phase Change

Liquid Solid Temperature

lb/ft 3 Kg/m 3 lb/ft 3 Kg/m 3 Btu/lb- °R J/Kg- _K

93,0 216.1 - -

84.4 196.1 - -

97.7 227.1 48.4 774,4

89.1 207.0 - -

101.3 235.4 48.4 774.4

92.0 213.9 - -

104.7 243.3 48.5 776.0

95.5 222.0 48.2 771.2

107.0 248.7 48.6 777.6

91.5 212.7 47.4* 758.4*

108.7 252.6 47.6* 761.6"

100.3 233.1 47.7* 763.2*

109.4 254.3 48.02* 768.3*

108.5 252.2 48.01" 768.3*

107.6 250.0 48.2 771.2"

100.9 234.5 48.7 779.2

109.0 252.5 48.4* 774.4*

100.7 234.0

108.0 251.0 - -

50.8 812.8

52.1 833.6

53.3 852.8

52.4 838.4

51.2 819.2

0.50

0.51

0.52

O. 53

0.52

2092

2134

2176

2218

2176





TABLE A-I. PARAFFIN PROPERTY DATA

CoefficientofThermal
ConductivityatPhase
ChangeTemperature

Btu/hr-ft-° F

0. 087

0. 087

0.087

0. 087

Boiling Point at

14.7 psia

J/see-m- ° K

O. 149

O. 149

O. 149

0.149

o F

384.60

421.30

455.79

483.43

519.13

548.23

575.28

601.02

625.5

648.9

671.2

692.6

712.9

732.6

751.5

769.5

786.9

803.7

819.9

835.5

Heat of Vaporiza-

tion at 14.2 psia

and Boiling Point Vapor Pressure

°C Btu/m J/g Psia @°F @°C

196.05 114.2 265.4 41.6 220 104.5

216.45 110.2 256.1 - -

235.63 106.3 247.0 41.5 139 59.5

251.00 103.4 240.3 1.03 166 74.5

270.84 I00.0 232.4 - - -

287.07 97,7 227.0 1.03 222 105.6

302.06 95.0 220.8 _ _ _

316.38 92.6 215.2 1.03 347 175.1
/

329.99 90.5 210.3 - - -

343.00 87.8 204.0 1.03 388 197.9

355.39 .....

367.29 .....

378.58 ....

369.53 ....

400.04 - __

410.05 - -

418.61 ....

429.07 .....

439.07 .....

446.74 ....

Coefficient of

Expansion at

60°F (15.6°C) and

14.7 psia

(1.013× 105N/m 2)

1/°F 1/°C

0.00056 0.00101

0.00055 0.00099

0.00052 0.00094

0.00051 0.00092

0,00050 0.00090

0.00047 0.00085
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Volume

Change on

Freezing/

Surface

Tension

at 14.7 psia

(1.013 × 105 N/m _)Melting

Percent dynes/cm Centipoise

24.7

25.4

25.9

26.6

27.1

27.6

27.9

28.3

28.6

28.9

Absolute Viscosity

of Liquid at 68°F
(20°C) and 14.7 psia

(1.013× 105 N/m 2)

N -sec/m 2

1.185

1.503

1.880

2.335

2.863

3.474

4.196

4.8

7.4

9.6

5.2/3.0 4.29**

0.0O1185

0.001503

0.00188

0.002335

0.002863

0.003474

0.004196

0.00429**

Refractive Index

of Liquid at 68°F

(20°C) and 14.7 psia

(1.013x 105N/m 2)

1.4173

1.4216

1.4756

1.4289

1.4355

1.4368

1.4389

1.4408

1.4425

1.4420

1.4247

1.4260

1.4276

1.4286

1.4302

1.4310

1.4321

1.4330

1.4340

1,4348

Heat of Formation

of Gas at °R

Btu/lb-mole J/gm-mole

-88434

-94986

-101556

-108176

-114678

-121230

-127782

-134352

-140886

-147456

-2.05 x 105

-2.20 x 105

-2.36 × 105

-2.51 x 105

-2.67 x 105

-2.82 x 105

-2.97 × 105

-3.12 x 105

-3.27 × 105

-3.43 x 105





Net Heat of Combustion at

77°F (25°C) and 14.7 psia

(1.o13× io_N/m 2)

Btu/Ib-mole J/gm-mole

2968.2

3230.3

3492.6

3754.7

4016o8

4278.9

4541.0

4803.5

5065.4

5327.8

6898.1

7507.2

8116.8

8725.9

9335.8

9944.2

10553.3

11163.3

11265.5

12381.8

Flash Point

°F °C

65

71

79

121

CRITICAL CONSTANTS

Pressure Temperature Specific Volume

Psia N/m 2 °F °C

282 1.94x 106 694 368

262 1.81x 106 728 387

250 1.72x 106 761 405

235 1.62× 1061 791 422

220 1.52 x 106 818 417

206 1.42 × 10 G 844 451

191 1.32 x 106 869 465

176 1.21x 106! 890 477

162 1.12 × I0 _ 912 489

162 I. 12 × 106 932 500

ft3/Ib m 3/Kg

0. O676 0. O042

0. 0676 0. 0042

0. 0667 0.0042

0. 0667 0. 0042

0. 0667 0.0042

0.0667 0.0042

0. 0667 0. 0042

0. 0667 0. 0042

0. 0667 0. 0042

0. 0667 0. 0042
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TABLE A-2. PARAFFIN COSTDATA*

Paraffin

1 Undecane

2 Dodecane

3 Tridecane

4 Tetradecane

5 Pentadecane

6 Hexadecane

7 Hcptadecane

8 Octadecane

9 Nonadecane

10 Eicosane

11 Heneicosane

12 Docosane

13 Tricosane

14 Tetracosane

15 Pentacosane

16 Hcxacosane

17 Heptacosane

18 Octacosane

19 Nonacosane

20 Triacontane

Cost/lb

> 90_oPure

w

Technical

Grade

C ost/lb

> 95% Pure

Pure

Grade

C ost/lb

> 99% Pure

Research

Grade * ".,

C ost/lb

> 99.8_o Pure

$13.70

6.40

5.75

10.10

8.60

13.60

14.30

13.60

13.60

12.70

1.60

$ ll. 30

.08

20.00

9.20

20.00

8.40

22.00

9.30

24.00

1 .30

30.00

30.00

30.00

$ 86.40

107.3O

106.40

Lowest 1972 prices from Eastman (Kodak) Organic Chemicals, Rochester,

N. Y. ; Humphrey Chemicals, North Haven, Conn. : and Phillips Petroleum

Co., Bartlesville, Okla. - based on quoted quantity prices nearest one pound.

> 99.9 percent purity sold for _2 90 per 5 ML sample.
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APPEND_ B

NON-DIMENSIONA L NUMBERS

Introduction

When estimating thermal performance in zero-g and one-g environments,

the Rayleigh Number, Marangoni Number and Bond Numbers often appear. The

Rayleigh Number can be used to estimate the convective level due to natural

buoyancy in a one-g field. The Maragoni Number may be used to correlate the

Nusselt Number at zero-g. Finally, the Bond Number may be used to assess

the relative magnitude between buoyancy driven and surface tension or cap-

illary driven convection.

where

Rayleigh Number

The Rayleigh Number is given by

Ra = GrPr- gilL3
l,o_ (Ts - TE) '

g

L

k
m

pep

= gravitational constant = 32.2 ft/sec 2 (9.8 m/sec),

= coefficient of Volumetric expansion,

= characteristic fluiddimension -- in this case L is taken to be

the average height of the fluid phase in a cell,
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TS =

TE =

k =

p =

Cp =

# =

boundary temperature of the hot fluid temperature at the transfer

plate,

is the equilibrium temperature at the phase front = TFr ,

P the kinetic viscosity,
P

the coefficient of thermal conductivity in the liquid phase,

the average liquid phase density,

the specific heat of the liquid phase, and

the absolute viscosity of the liquid phase.

Assuming the following constant values for these properties, the one-g

Rayleigh number for melting may be found in terms of the fluid temperature

difference and characteristic dimension:

fl = 0.00045 (1/°R) [0.00081 (1/°C)],

k = 0.087 BTU/HR-FT-°R (0.149 J/sec-m-°K),

p = 47.2 lb/ft 3 (755.2 kg/m3),

C = 0.5 BTU/lb m-°F (2092 J/kg-°K),
P

= 14.3 lbm/hr-ft (0. 0059 n j/m 2) , and

giving for one-g

1.68 × 108 L 3 AT;Ra =

where

AT= T S - T E

For a zero-g determination, the Rayleigh Number is zero because of the

gravity term. For the case where the net equivalent gravity acting on the

melting cell is reduced to 1 × 10 .7 g, the zero-g Rayleigh Number is given by
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Ra = 16.8 L 3 AT .

Marangoni Number

In the case of paraffins the diminution of surface tension as temperature

increases is approximately linear over a large temperature range [39]. The

variation of surface tension with temperature is given by Eotvos, Ramsey and

Shield equation [80] as

where a

a _--/ = a (Tc - T-6) (B-l)

is the surface tension in dynes/cm, M is the molecular weight, T
C

is the critical temperature and a is an arbitrary constant. Since a, M and

T are constant, and p varies only weakly with temperature over the range of
C

interest, differentiating equation (B-l) with respect to temperature yields the

surface tension-temperature gradient,

do r a

d"T = - [M \2/._ , (B-2)

/"7/ /,J

a constant. Rearranging equation (B-l), an expression for a results in

a - (T -T-6) -p/ (B-3)
o

Substituting a surface tension value of 28.7 dynes/era at 20"C (68°F), a critical

temperature of 490°C, a density of 0.79 gm/cm :t and a molecular weight of

268.51 for nonadecane [ 14], the value of a is found to be 3.0.

Now using equation (B-3), we have
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dcr dynes- -0. 062
dT cm-°C (B-4)

so that the Marangoni Number may now be determined by using

Ma

(-d 3(dT3
dT/ XdL/

pl)o!
( B -5)

dT L 2 product becomes ATL.
Assuming a linear temperature profile, the _--_,

Substituting the liquid properties for nonadecane given earlier, the gravity

independent Marangoni Number relationship is found to be

Ma = 1684 ATL (B-6a)

for AT in °C and L in centimeters, and

Ma = 2374 ATL (B-6b)

for AT in °F and L in inches.

Bond Number

The Bond Number is given by

Bo- pgL2
O"

(B-7)

Again using the nonadecane liquid properties given earlier, the one-g Bond

Number is given by

Bo = 26.6 L 2

where L is in centimeters, and

Bo = 171.6 L2

where L is in inches.

(B-8a)

(B-8b)
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Reynolds, et al., [81] have shown by a graphic representation similar to Figure

B-I, the hydrostatic regimes for typical liquids. The gravity dominated

regime being above the paraffin diagonal in this Figure and the capillary or

surface tension dominated regime being below. Operating points falling in a

near proximity of the diagonal are not clearly dominated by either phenomena.

10

O

10"4-

10"5-

10"6_

10"7-

10"8
0,1

]

__ _ GRAVITY DOMINATED REGIME

\\\

.01 FT. 1 1 FT 10 1 FT, 100 10 FT 1000
2 5 2 5 2 5 2 5

Lf cm.

Figure B-1. Hydrostatic regimes for typical liquids.
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APPENDIX C

COMPUTER PROGRAMS

Introduction

The computer programs used in the foregoing study are detailed in this

Appendix. Some of the information given herein is excerpted from Reference

78. Copies of the FORTRAN programs for a typical melting run with inclusion

of convective effects (Table C-l), a typical freezing run, written in FORTRAN

(Table C-3), and a CINDA freezing run (Table C-4) are given, along with the

corresponding notations. The details of each step is discussed for the melting

FORTRAN model in Table C-2. All programs, excluding the CINDA program,

are written in FORTRAN V. Programs utilize explicit forward finite differ-

encing techniques.

Since the CINDA model uses techniques similar to those employed in

the FORTRAN model no explanation is given and the reader is referred to

Reference 77 for explanations of listed sub routines. A skeleton flow chart for

the melting model is given in Figure C-1.

It was later discovered that the FORTRAN program for melting would

not run for the case of m = 1. The statements causing this incompatibility are

indicated in the melting program listing by an arrow placed at the left of the

appropriate statement. The FORTRAN freezing program incorporates the

changes necessary to allow runs for m = 1.
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i°,3

AFI

B

BETA

BJ

C(I ,J)

CL

CP

CPI

CP2

CP3

DAVG

DDOT

DELT

DEN

DENI

DEN2

DEN3

I
DFLO

DFIN

DIF

DMID

NOMENCLATURE

constant pressure

constant pressure

constant pressure

constant pressure

constant pressure

average height of

J-J, used in computing interface location

value of integer M converted to floating point

length of section, ft.

volume expansivity of wax, R-I

J-2, used in computing interface location

thermal capacitance of node (l,J), Btu/F

specific heat of wax, Btu/IbmF

specific heat of wax, Btu/IbmF

specific heat of bottom plate, Btu/IbmF

specific heat of fin, Btu/IbmF

specific heat of top plate, Btu/IbmF

liquid based on amount melted, in.

interfacial velocity for nodes adjacent to centerline (I:MM), in/hr.

absolute value of temperature difference between bottom plate
and interface, F.

wax density, Ibm/ft 3

bottom plate density, Ibm/ft

fin density, ]bm/ft 3

top plate density, Ibm/ft 3

approximate interfacial location for nodes adjacent to fin (I=2)
based on amount melted being equal to F2JM, in.

interfacial position for nodes adjacent to fin (1:2) based on any
amount being melted, in.

temperature difference used in comparing new and old temperatures
during iteration when solving steady state equations for unspecified
fin temperatures, °F.

interfacial position for node adjacent to centerline, in.
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DMO

DT

EPS

ERROR

F(I,J)

FAC

F2JM

G

H

HBOT?

HMELT

HTOP3

HTR

I

JOE

KCHK

KCOUNT

MCOUNT

MFIN

M_4

NOMENCLATURE (Continued)

DMID evaluated at previous time, in.

time increii_nt, hr.

arbitrarily set small number used as a comparator

percent error in computed energy balance based on transfer
rates, percent.

mass fraction of node (l,J) which has undergone phase change
since start of process

time ratio used in linearly interpolating specified fin temperatures
at a particular time in terms of bracketed data values.

fraction of S which corresponds to 1/32 inch (arbitrary)

acceleration of gravity, ft/hr 2

PCM section height (See Figure _i), ft.

heat transfer coefficient between external fluid and bottom plate,
Btu/hr-ft2-F

heat of fusion, Btu/Ibm

heat transfer coefficient between external fluid and top plate,
Btu/hr-ft2-F

heat of transition, Btu/lbm.

integer designation of vertical column in which a mode is located
(See Figure 31)

integer designation of horizontal row in which a mode is located
(See Figure 31)

counter used in refining the heat transfer computation before
progressing in time

integer used to control printing of results at desired times
(See definition of KCOUNT)

integer counter used to print our results at times when
KCOUNT : KCHK

number of wax nodes in a horizontal row

counter used in determining unspecified fin temperatures

maximum value of MCOUNTwhich when exceeded causes program to stop

M+I (See Figure 31)
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NDP

NI

NJ

NN

PR

Q(I,J)

QBT

QBW

QFTR

QMELT

QRAT(I,J)

QS(I,J)

QSIN

QSW

QTOP

QTTR

QTW

QWAX

Q1

Q2

Q3

Q4

NOblENCLATURE (Continued)

nuJ_er of wax nodes in a vertical column

number of data points for measured fin temperatures

ND-I

N+4

N+3

_+2

Prandtl number

unnecessary variable - replaced where needed by QS(I,J)

instantaneous heat transfer rate through bottom, Btu/hr

instantaneous heat transfer rate through bottom to wax only,

Btu/hr

instantaneous rate of heat transfer to fin, Btu/hr.

energy which acounts for amount of wax melted at any time, Btu.

the instantaneous net rate of heat transfer to node I,J, Btu/hr.

the energy stored by node 1,J above TREF for wax and above 0 for

metal nodes, Btu

the energy stored by node I,J above TREF corresponding to initial
temperature throughout network, Btu.

instantaneous heat transfer rate from fin to wax, Btu/hr.

instantaneous heat transfer rate out of top of section, Btu/hr.

instantaneous rate of heat transfer to top plate, Btu/hr.

instantaneous heat transfer rate from top plate to wax, Btu/hr

net energy transfer to wax since start, Btu.

energy stored by wax node above TREF corresponding to start

of phase transition, Btu.

energy stored by wax node above TREF corresponding to end of

phase transition, Btu.

energy stored by wax node above TREF corresponding to start
of melting, Btu.

energy stored by wax node above TREF corresponding to end of

melting, Btu.
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':lO",?_( I ,J )

RH(I,J)

RV(I,J)

S

Sl

$2

$3

TAMB

TAU

TIME

TIN

TK

TKL

TKR

TMELT

TREF

TTR

Tl(I,J)

T2(I,J)

T3(I ,J)

TAU2

NOMENCLATURE (Continued)

_nstdnLaf_eous rate of heat transfer to node l,J based on temperatures
obtained from QRAT(I,J) and then used to correct temperature

predictions, Btu/hr

Rayleigh number for liquid wax

ratio of instantaneous heat transfer rate from fin to wax to that

from bottom plate to wax

horizontal thermal resistance between node I-l,J and node I,J,

hr-F/Btu

vertical thermal resistance between node I,j and I,J-l, lir-F/Btu

wax node width, ft.

bottom plate thickness, ft.

fin thickness, ft.

top plate thickness, ft.

temperature of environment external to top plate, °F

limiting time value to stop program, Hr.

instantaneous value of time, Hr.

initial temperature of all nodes, °F

wax thermal conductivity (artificially allowed to vary in liquid
to account for convection), Btu/hr-ft-F

thermal conductivity of liquid, Btu/hr-ft-F

ratio of effective thermal conductivity to thermal conductivity

fusion temperature of wax, °F

arbitrary reference temperature (should be less than TIN), °F

transi tion temperature, °F

temperature of node I,J at time t, °F

temperature of node I,J at time t+&t, °F

temperature of node l,J in fin at beginning of each iteration

step used in finding steady state solution, °F

arbitrarily defined time value used in print-out control, Hr.
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TK1

TK2

TK3

TiM(L)

TMI(L)

TM2(L)

TM3(L)

TM4(L)

VIS

Vl

V2

W

NOM ENC LATURE (Concluded)

thermal conductivity of bottom plate, Btu/hr-ft-F

thermal conductivity of fin, Btu/hr-ft-F

thermal conductivity of top plate, Btu/hr-ft-F

time value corresponding to input data of measured fin temperatures,
hr.

measured bottom plate temperature (input data), °F

first measured fin ten_oerature (input data), °F

second measured fin temperature (input data), °F

third measured fin temperature (input data), °F

viscosity of liquid, Ibm/hr-ft

volume of wax melted at time t, ft)

volume of wax melted at time t+At, ft_

width of wax cell, ft

I This assumes that some finite thickness must have melted before it

would be detectable on the film. The nunV_er DFIN is the height

corresponding to a node with any amount melted.

2 This was included to be general but has not been used to date as

bottom plate temperatures were specified as input data.

3 This has been included but set at a small value to essentially

correspond to the top being insulated.
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TABLE C-1. FORTRANCOMPUTERPROGRAMFOR MELTING

1
2
3
4
5
6
7
8
9
I0
II
12
13
14
15
16
17
18
19
2O
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
4O
41
42
43
44
45
46
47
48
49
50
51
52
53
54

DIMENSION RV(5,31) ,
DIMENSION T2(5,31) ,
DIMENSION TMI(9), T?,12(9),
DI:IENSlOrl QRA2(5, 31)

COMPUTATIONAL PARAMETERS
N=27
M=4
AM=M
MM=M+1
NN=N+2
NJ=N+3
NI=N+4
ND=9
rIDP=8
TAU: 1. l
KCOUNT=I
MCOUNT=1
MFIN=500
EPS=I .E-06
KCHK:IO00
JOE= 1
DT=I .OE-04
TAU2=( I0 .*DT)+(DT/3. )

PHYSICAL PROPERTIES
TAMB=80.
TIN=73.5
HTOP=I .E-08
HBOT=5.0
G=( 32.2*3600. *3600. )

WAX
DEN=47.2
TK=O.087
CP=O.5
TTR=73.04
HTR=22.108
TMELT=89.8
HIIELT=73. 357
TREF=50.0
BETA=O.00045
VlS=I4.3
CL=CP
TKL=TK

BOTTOM PLATE DENOTED BY l
DENI=I71.0
TKI =93.0
CPl =0.22

FIN DENOTED BY 2
DEN2=I71.0
TK2=93.0
CP2=O.22

TOP PLATE DENOTED BY 3
DEN3=72.5
TK3:0.09
CP3=0.33

RH(5,31) , C(5,31) , QS(5,31), TI(5,31)
F(5,31) , Q(5,31) , QRAT(5,31), T3(I,31_

TM3(9), T144(9), TIM(9)
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TABLE C-1. (Continued)

55 GEOMETRYPARAMETERS
56 W:0.75/12.0
57 H=2.625/12,0
5B B=5.0/12.0
59 S=W/(2.0*AM)
60 SI=0.032/12.0
6! $2=0.008/12.0
62 $3=0.25/12.0
63 F2JM=I.O/(32.0*S*I2.0)
66 VERTICAL RESISTANCES
65 RV(I,2)=(SI/(TKI*S2*B))+(2./(NBOT*S2*B))
66 DO I0 I=2,MM
67 lO RV(I,2)=(SI/(2.*TKI*S*B))+(I./(HBOT*S*B))
68 RV(I,3)=(S/(TK2*S2*B))+(SI/(TKI*S2*B))
69 DO 20 I=2,MM
70 20 RV(I,3)=(I./(2.*TK*B))+(SI/(2.*TKI*S*B))
71 DO 30 J=4,NN
72 30 RV(I,J)=((2.*S)/(TK2*S2*B))
73 DO 40 J=4,NN
74 DO 40 I=2,MM
75 40 RV(I,J)=(I./(TK*B))
76 RV(I,N+3)=(S3/(TK3*S2*B))+(S/(TK2*S2*B))
77 DO 50 I=2,MM
78 50 RV(I,N+3)=(S3/(2.*TK3*S*B))+(I./(2.*TK*B))
79 RV(I,N+4)=(S3/(TK3*S2*B))+(2./(HTOP*S2*B))
80 RV(2,N+4):(S3/(2.*TK3*B*(S+(S2/2.))))+(I./(HTOP*B*(S+(S2/2.))))
81 -'----'o-DO 60 I=3,MM
82 60 RV(I,N+4)=(S3/(2.*TK3*S*B))+(I./(HTOP*S*B))
83 HORIZONTAL RESISTANCES
84 RH(2,N+3):((S2+S)/{2.*TK3*S3*B))
85 ----.-m.- DO 70 1:3 ,MM
86 70 RH(I,N+3)=(S/(TK3*S3*B))
87 DO 80 J=3,NN
88 80 RH(2,J)=(S2/(2.*TK2*S*B))+(I./(2.*TK*B))
89 DO 90 J=3,NN
90 "---'P"DO 90 I=3,MM
91 90 RH(I,J):(I./(TK*B))
92 RH(2,2)=((S2+S)/(2.*TKI*SI*B))
93 "-----.-'DO I00 I=3,MM
94 I00 RH(I,2)=(S/(TKI*SI*B))
95 RH(2,N+3):RH(2,N+3)+RV(I,N+3)
96 NODAL CAPACITANCES
97 C(I,2)=((DENI*SI*S2*B*CPI)/2.)
98 DO II0 I:2,MM
99 llO C(I,2):(DENI*SI*S*B*CPI)
I00 DO 120 J=3,NN
I01 120 C(I,j):((DEN2*S2*S*B*CP2)/2.)
102 C(I,N+3):((DEN3*S2*S3*B*CP3)/2.)
103 C(2,N+3)=(S3*B*(S+(S2/2.))*DEN3*CP3)
104_DO 130 I=3,MM
I05 130 C(I,N+3)=(DEN3*S3*S*B*CP3)
I06 DO 140 J=3,NN
I07 DO 140 I=2,MM
]08 140 C(I,j)=(DEN*(S**2)*B*CP)
I09 "----_'QI=(C(3,4)*(TTR-TREF))
II0 Q2:QI+((DEN*(S**2)*B*HTR))
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TABLE C-1. (Continued)

III-----,--Q3=Q2*((C(3,4))*(TMELT-TTR))

|12 Q4=Q3+((DEN*(S**2)*B*HMELT))
113 INITIALIZATION OF PERTINENT QUANTITIES
lI4 TIME=O.O

I15 QWAX=O.O

116 QBW=O.O
117 QSW=O.O
118 QTW=O.O

119 QTOP=O.O
12o QFTR=O.O
121 QTTR=O.O
122 Vl=O.O
123 V2=O .0
124 DI_K)=O.0

125 DO 150 J=2,NJ
126 DO 150 I=I,MM
127 150 TI(I,J)=TIN
128_IF(TIN.LT.TTR)QSIN=(C(3,4)*(TIN-TREF))
129-----,--IF(TIN.GT.TTR.AND.TIN.LT.TMELT) QSIN=Q2+((C(3,4))*(TIN-TTR))

130 ----o-IF(TIN.GT.TMELT)QSIN=Qn+((C(3,4!)*(TIN-TMELT))
131 DO 160 I:I,MM
132 160 TI(I,N+4)=TAMB
133 DO 170 J=3,NN
134 DO 170 I=2,1_M

135 170 QS(I,J)=QSIN
136 DO 180 I=I,MM
137 0(1,2)=0.0

138 180 Q(I,N+3)=O.O
139 DO 190 J=3,NN

140 190 Q(I,J)=O.O
141 DO 199 J=2,NI
142 DO 199 I=I,MM

143 F(I,J)=O.O
144 199 QRAT(I,J)=O.O
145 READ(B,11) (TMI(1), I=I,ND)
146 READ(5,11) (TM2(1), I=I,ND)
147 READ(5,11) (TM3(1), I=I,ND)
148 READ(5,11) (TM4(1), I=I,ND)
149 READ(5,11) (TIM(1), I:I,ND

150 11 FORMAT(8FIO.O)
151 WRITE(6,22) TIME,W,H,N,M
152 22 FORMAT(1X,5HTIME=,E15.8,10X,2HW=,E15.8,10X,2HH=,EIS-8,10X,2HN=, 12,
153 15X,2HM=,12)

154 WRITE(6,33)Q1,Q2,Q3,Q4
155 33 FORMAT(1X,3HQ1=,E15.8,10X,3HQ2=,E15.8,10X,3HQ3=,E15.8,10X,3HQ4=, El

is6 5.8)
157 WRITE(6,44)
158 44 FORMAT(ZX,4HI J,5X,IBHVERTICAL RESISTANCE,6X,21HHORIZONTAL RESIST
159 ANCE,6X,17HNODAL CAPACITANCE,6X,IIHTEMPERATURE,5X,IHQS(I,J))

160 DO 200 J=2,NI
161 DO 200 I=I,MM
162 IF(J.EQ.N+4) GO TO l
163 GO TO 2

164 1QS(I,J)=O.O
165 RH(I,J)=I.E08
166 C(I,J):O.O
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TABLE C-1. (Continued)

167
168

169
170
171
172
173
174

175
176
177
178

"179
180
181
182 210
183
184

185
186
187
188
189
190

191
192
193

194
195
196
197
198
199

200
201
202

203
204

205
206
207
208
209
210
211
212

213
214

215
216
217
218
219
220

2,21

2 IF(I.EQ.I)RH(I,J):I.E08
IF(J.EQ.2.0R.j.EQ.N+3)QS(I,J)=O.O
IF(I.EQ.I)QS(I,J)=O.O
WRITE(6,55)I,j,RV(I,J),RH(I,J),C(I,J),TI(I,J),QS(I,J)

55 FORMAT(IX,12,1X,12,5X,E15.8,10X,E15.8,10X,EI5.8,6X,E16.8,4X,E15.8)
200 CONTINUE

DO 889 J=3,NN
889 T3(l,J)=Tl(l,j)
COMPUTATION SECTION COMPUTATION SECTION COMPUTATION SECTION
3 TIME=TIME+DT

DO 210 J=3,NJ

QRAT(I,J)=((TI(2,J)-TI(I,J)_RH(2,J))+((TI(I,J-I)-TI(I,j))/RV(I,j)
+((Tl(l,J+l)-Tl(l,j))/RV(l,j+l))

QRAT(MM,J)=((TI(M,J)-TI(MM,J))/RH(MM,J))+((TI(MM,J-I)-TI(MM,J))/RV
(MM,J))+((TI(MM,j+I)-TI(MM,J))/RV(MM,J+I))
CONTINUE

DO 211 J=3,NJ
DO 211 I=2,M
QRAT(I,J)=((TI(I-I,J)-TI(I,j))/RH(I,j))+((TI(I+I,J)-TI(I,J))/RH(I+
I,J))+((TI(I,J-I)-TI(I,J))/RV(I,j))+((TI(I,J+I)-TI(I,J))/RV(I,J+I)
)

211 CONTINUE

212 DO 220 J=3,NJ
DO 220 I=I,MM

220 QS(I,J)=QS(I,J)+(QRAT(I,J)*DT)
DO 240 I=2,MM

240 T2(I,N+3)=TI(I,N+3)+((QRAT(I,N+3)*DT)/C(I,N+3))
T2(I,N+3)=T2(2,N+3)
DO 250 J=3,NN
DO 250 I=2,MM
IF(QS(I,J).LT.QI)T2(I,J)=TREF+(QS(I,J)/C(I,J))
IF(QS(I,J).GE.QI.AND.QS(I,J).LE.Q2) T2(I,J)=TTR

IF(QS(I,J).GT.Q2.AND.QS(I,J).LT.Q3) T2(I,J)=TTR+((QS(I,J)-Q2)/C(I,
J))
IF(QS(I,J).GE.Q3.AND.QS(I,J).LE.Q4) T2(I,J)=TMELT

WHEN GOING FROM MELT TO FREEZE OR VICE-VERSA CHANGE THE FOLLOWING CARD

IF(QS(I,J).GT.Q3.AND.QS(I,J).LT.Q4) F(I,j)=(QS(I,J)-Q3)/(DEN*(S**2
)*B*HMELT)
IF(QS(I,J)GT.Q4) T2(I,J)=TMELT+((QS(I,J)-Qn)/c(I,J))

WHEN GOING FROM MELT TO FREEZE OR VICE-VERSA CHANGE THE

IF(QS(I,J).GE.Q4)F(I,J)=I.O
IF(QS(I,J).LE.Q3) F(I,J)=O.O

250 CONTINUE

SPECIFICATION AND/OR DETERMINATION OF FIN TEMPERATURES

255

260
4

FOLLOWING CARD

THE FOLLOWING DO LOOP ASSUMES FIN TEMPERATURES FOR ITERATION

DO 255 J=3,NN
T2(l,J)=T3(l,J)
DO 260 L=I,NDP
IF(TIME.GE.TIM(L).AND.TIME.LE.TIM(L+I)) GO TO 4
CONTINUE

FAC=(TIME-TIM(L))/(TIM(L+I)-TIM(L))
T2(I,2)=TMI(L)+((TMI(L+I)-TMI(L))*FAC)
T2(I,8)=TM2(L)+((TM2(L+I)-TM2(L))*FAC)
T2(I,15)=TM3(L)+((TM3(L+I)-TM3(L))*FAC)
T2(I,21)=TM4(L)+((TM4(L+I)-TM4(L))*FAC)
DO 270 I:I,MM
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TABLE C-1. (Continued)

222
223
224
225
226
227
228
229
230
231 5
232 280
233
234
235
236
237 281
238
239
240
241
242 888
243
244
245
246
247
248 282
249
250
251
252
253
254 283
255
256
257 284
258
259 285
260
261 286
262
263 287
264
265
266 290
267
268
269 300
270
271 310
272
273 311
274

275 312
276
277

270 T2(I,2):T2(I,2)
UNSPECIFIED FIN TEMPERATURESDETERMINED BY STEADY
256 MCOUNT=MCOUNT+I

DO 280 J=3,NN
T3(I,J)=T2(I,J)
IF(J.EQ.8.0R.J.EQ.15) GO TO 5

STATE EQUATIONS

IF(J.EQ.21) GO TO 5
T2(I,J)=((T2(I,J-I)/RV(I,j))+(T2(2,J)/RH(2,J))+(T2(I,J+I)/RV(I,J+I
)))/((I./RV(I,j))+(I./RH(2,JT)+(I./RV(I,J+I)))
CONTINUE
CONTINUE

IF(MCOUNT.GT.MFIN) GO TO 8
DO 281J=3,NN
DIF=T2(I,J)-T3(I,J)
IF(ABS(DIF).GT.EPS) GO TO 256
CONTINUE

IF(JOE.EQ.2) GO TO 285
JOE=jOE+I
DO 888 J=3,NJ
DO 888 I:I,MM
QS(I,j):QS(I,J)-(QRAT(I,J)*DT)
DO 282 J=3,NJ
QRA2(I,J)=((T2(2,J)-T2(I,J))/RH(2,j))+((T2(I,J-I)-T2{I,J))/RV(I,J)
)+((T2(l,J+l)-T2(l,J))/RV(l,J+l))
QRA2(MM,J)=((T2(M,J)-T2(MM,j))/RH(MM,J))+((T2(MM,J-I)-T2(MM,J))/RV

(MM,J))+((T2(MM,J+I)-T2(MM,J))/RV(MM,J+I))
CONTINUE
DO 283 J=3,NJ
DO 283 I=2,M
ORA2(I,J)=((T2(I-I,j)-T2(I,J))/RH(I,J))+((T2(I+I,J)-T2(I,J))/RH(I+
I,J))+((T2(I,J-I)-T2(I,J))/RV(I,j))+((T2(I,J+I)-T2(I,J))/RV(I,J+I)
)
CONTINUE
DO 284 J=3,NJ
DO 284 I:I,MM
QRAT(I,j):(QRAT(I,J)+QRA2(I,J))/2.0
GO TO 212
MCOUNT:I
DO 286 I:I,MM
QRAT(I,2):((T2(I,2)-TI(I,2))*C(I,2)/DT)
DO 287 I=I,MM
QS(I,2):QS(I,2)+(C(I,2)*(T2(I,2)-TI(I,2)))
O0 290 I:2,MM
QBW=(T2(I,2)-T2(I,3))/RV(I,3)+QBW
QTW:(T2(I,N+3)-T2(I,N+2))/RV(I,N+3)+QTW
QBT=QBW+((T2(I,2)-T2(I,3))/RV(I,3))
DO 300 J:3,NN
QSW=QSW+((T2(I,J)-T2(2,J))/RH(2,J))
DO 310 I:I,MM
QTOP:((T2(I,N+3)-TAMB)/RV(I,N+4))+QTOP
DO 311J:3,NN
QFTR=QFTR+QRAT(I,J)
DO 312 I=I,MM
QTTR=QTTR+QRAT(I,NJ)
QWAX=(QBW+QTW+QSW)*DT+(QWAX)
RATIO=QSW/QBW
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TABLE C-1. (Continued)

27g ERROR:((QBT-(QBW+QSW+QTW+QTOP+QFTR+QTTR))*IOO.O)/QBT
279 DO 930 J=3,NN
280 DO 930 I=2,MM
281 V2:V2+(F(I,J)*(S**2)*B)
282 930 CONTINUE
283 DAVG=((2.0*V2)/(W*B))*I2.0
284 QMELT=((V2-VI)*DEN*NMELT)/DT
285 VI =V2
286 V2=O. 0

287 DELT=ABS(T2(I,2)-TMELT)
288 PR=(VIS*CL)/TKL
289 RA=((DEN**2)*G*CL*BETA*DELT*(DAVG**3))/(VIS*TKL*I728.0)
290 IF(T2(I,2).LE.TMELT) RA:O.O
291 IF(RA.GT.I.EO5)TK:(TKL*O.IO4*(RA**O.305)*(PR**O.084))
292 IF(P_A.GE.3500.O.AND.RA.LE.I.E05) TK=(TKL*O.229*(RA**O.252))
293 IF(RA.GE.1700.O.AND.RA.LT.3500.O) TK=(TKL*O.OO238*(RA**O.816)
294 TKR=TK/TKL
295 DO 945 I=2,MM
296 IF(F(I,3).LT.O.25) GO TO 945
297 RV(I,3)=(I./(2.*TK*B))+(SI/(2.*TKI*S*B))
298 945 CONTINUE
299 DO 946 J=4,NN
300 DO 946 I=2,MM
301 IF(F(I,J).LT.EPS) GO TO 946
302 RV(I,J)=(I./(TK*B))
303 946 CONTINUE
304 DO 947 I=2,MM
305 IF(F(I,NN).LT.O.75) GO TO 947
306 RV(I,N+3)=(S3/(2.*TK3*S*B))+(I./(2.*TK*B))
307 947 CONTINUE
308 DO 950 J=3,NN
309 IF(F(2,J).LT.O.25) GO TO 949
310 RH(2,J)=(S2/(2.*TK2*S*B))+(I./(2.*TK*B))
311 949 CONTINUE
312 _DO 950 I=3,MM
313 IF(F(I,J).LT.EPS) GO TO 950
314 RH(I,J)=(I./(TK*B))
315 950 CONTINUE
316 IF(KCOUNT.EQ.KCHK) GO TO 6
317 KCOUNT=KCOUNT+I
318 GO TO 7
319 6 WRITE(6,66) TIME, QWAX, ERROR
320 66 FORMAT(IX,5HTIME=,EI5.8,1OX,5HQWAX=,EI5.8,1OX,6HERROR=,EI5.8)
321 DO 313 J=3,NN
322 AJ=J-3
323 Bj=J-2

324 IF(F(2,J).GT.F2JM) DFLO=(BJ*S*I2.0)
325 DFIN=(AJ*S*I2.0)
326 IF(F(2,J).LT.EPS) GO TO 314
327 313 CONTINUE

328 314 DO 315 J:3,NN
329 AJ=J-3

330 IF(F(MM,J).LT.I.O) DMID=((AJ*S)+(F(I_,J)*S))*I2.0
331 IF(F(MM,J).LT.I.O) GO TO 316
332 315 CONTINUE

333 316 WRITE(6,67) DFIN, DFLO, DAVG, DMID
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TABLE C-I. (Concluded)

334 67 FORMAT(IX,5HDFIN=,EIS.8,1OX,5HDFLO=,EI5.8,1OX,SHDAVG=,EI5.8,1OX,5H

335 DMID=,EI5.8)
336 DDOT=(DMID-DMO)/DT
337 DMO=DMID
338 WRITE(6,68) RA, TKR, QMELT, DDOT
339 68 FORMAT(IX,3HRA=,EI5.8,1OX,4HTKR=,EI5.8,1OX,6HQMELT=,EI5.8,1OX,5HDD
340 om=,El5.8)
341 WRITE(6,77) QBW, QSW, QTW, QBT, RATIO
342 77 FORMAT(IX,4HQBW=,EI5.8,3X,4HQSW=,EIS.8,3X,4HQTW=,EI5.8,3X,4HQBT=,E
343 15.8,3X,6HRATIO=,EI5.8)
344 WRITE(6,88)
345 88 FORMAT(2X,IHI,2X,IHJ,IOX,IIHTEMPERATURE,IOX,15HFRACTION MELTED,fOX
346 ,IIHENERGY RATE,IOX,13HENERGY STORED)
347 DO 320 J:2,NJ
348 DO 320 I:I,MM
349 WRITE(6,99)I,J,T2(I,J),F(I,J),QRAT(I,J),QS(I,J)
350 99 FORMAT(IX,12,1X,12,8X,EIS.8,8X,EI5.8,8X,EI5.B,SX,EI5.8)
35] 320 CONTINUE
352 KCOUNT=I
353 7 QBW=O.O
354 QSW=O.O
355 QTW=O.O
356 QTOP=O.O
357 QTTR=O.O
358 QFTR=O.O
359 DO 330 J=2,NJ
360 DO 330 I=I,MM

361 330 TI(I,J)=T2(I,J)
362 JOE=]

363 IF(TIME.LT.TAU) GO TO 3
364 8 WRITE(6,]]I) MCOUNT

365 Ill FORMAT(IX,13)
366 STOP
367 END
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TABLE C-2. DISCUSSIONOF COMPUTERPROGRAMFORMELTING

In the following discussion, references are made to line numbers

corresponding to those designated on the copy of the program.

LINES

1 - 4

5 - 23

24 - 54

55 - 63

64 - 82

83 - 95

96 - 108

109 - 112

113 - 144

145 - 150

DISCUSSION

required dimension statements for subscripted
variables; values should be (MM, NI) for all

double subscripted variables except T3 for which
they should be (I, NJ); values should be ND for

single subscripted variables; NOTE: Q(MM,NI)
is superfluous and can be omitted with lines
136 - 140.

specification of computational parameters

specification of physical properties

specification of geometry parameters

computation of all vertical thermal resistance

values RV (I,J)

computation of a11 horizontal thermal resistance

values RH(I,J); note that line 95 is a special
definition which amounts to bypassing node

(l,N+3) which was done to overcome stability
criterion required by this small corner node

computation of all nodal capacitance values
C(I,j)

computation of energy stored by a wax node relative

to TREF for the start and end of phase transition

and the start and end of fusion, respectively

initialization of pertinent quantities; the initial

value of the stored energy depends on the relationship
of the initial temperature to the reference temperature
TREF; note that lines 136 - 140 are superfluous
and can be omitted; some initialization of certain

parameters is done in the DO loop between lines
160 and 172 which are set primarily to avoid
random print-out and are not essential to the

computation done in the heart of the program

input data values for measured fin and bottom

plate temperatures and corresponding time values
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151 - 172

173 - 174

175

176

177 - 188

189 - 191

192 - 193

194

195 - 208

TABLE C-2. (Continued)

print out of initial values for checking purposes
and print out of certain computed quantities for
informational purposes

initially defines T3(l,J) for all fin nodes and
sets these equal to the initial temperatures
TI(I,J)

beginning of main computation scheme

time is stepped forward by At

loops which compute and store the net rate of heat
transfer to nodes (I,J) based on old temperatures
TI(I,J); the rate of heat transfer to node (I,J)

is given by

TII-I,jI-T.(I,J) + T{I+I,J)-T(I,J)q(I,J) = RH(I,J RH(I,J)

T(I,J-I)-T(I,J) + T(I,J+I)-T(I,j)
+ " RV(I,J}" RV(I,J+I)

this expression must be modified accordingly for
nodes near a boundary which are not surrounded
by four neighbors

computation of total energy stored by node (l,J)
since the start which is given by

_At
Qstored = time

computation of new top plate temperatures T2(I,N+3)
from the expression

_(I,J)At
T2(I,J) = Tl(I,J) + C(I,J)

sets the corner top plate node (l,N+3) temperature
equal to that of the second node (2,N+3); omission
of the corner node in the computation scheme was
done to avoid stability problems due to its small
size

computation of new wax node temperatures from the
energy stored by the nodes and their capacity and/or
phase change enthalpy values; when the stored

energy lies between Ql and Q2 the new temperature
is forced to be the transition temperature and
when it lies between Q3 and Q4 the new temperature;
is forced to be the fusion temperature; also
the fraction of the node which has undergone
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209 - 210

211 - 212

213 - 220

221 - 222

223

224 - 237

238

239

240 - 242

243 - 254

TABLI< C-2. (Continued)

phase change is calculated from the relationship
of the stored energy to Q3 and Q4; note that
certain designated cards need to be changed when
running the program for freezing as contrasted
to melting

beginning of determination of fin temperatures

all new fin temperatures are set to T3(I,J)
which simply represents an assumed value always
corresponding to the previously computed value
except at the very beginning at which time it is
set as the initial temperature

interpolation scheme which assigns new temperatures
to the three nodes on the fin and one on the bottom

plate corresponding to positions where temperature
measurements were made; the new temperatures are
linearly interpolated from the input data

assigns all nodes along the bottom plate the same
value of new temperature

beginning of iteration process to determine unspecified
fin temperatures from steady state equation; fin
nodes were not treated as transient cases due to

their extremely small capacitances that would impose
a severe stability criterion

iteration process used to determine unspecified
fin temperatures; in each iteration, T2(I,j)

is computed from steady state equations and then
compared with T3(l,J) which corresponds to the
calculated temperatures during the previous
iterative step; the iteration is continued until
the differences between computed fin temperatures
and their corresponding values for the previous
iterative step are all acceptably small; should
the iteration exceed MFIN counts the program is
directed to stop

when counter JOE equals 2, the new temperatures at
all nodes are considered to be the solution at the

particular time and the program advances to line 259

increase of counter JOE to 2

the energy stored at each node (l,J) is reset
back to its original value; this is to allow for an
improved computation of the net heat transfer rate

to each node to be made and then a recomputation of
the stored energy and the corresponding new temperatures

computation of net heat transfer rate to each node
using new temperatures T2
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255 - 257

258

259 - 278

279 - 282

283

284

285 - 286

287

288

289 - 290

291 - 293

294

295 - 315

316

317

318

TABLE C-2. (Continued)

calculation of net heat transfer rate to each node

as the average of that based on old temperatures
TI and new temperatures T2

return to line 189 which consists of redirecting
the computation through that of computing improved
new temperatures, energy storage values, and
fractional melted values by using the improved
(averaged) heat transfer rate (Lines 255 - 257);
this corrective technique is only employed once

computation of various heat transfer quantities
from the new temperatures obtained at time t+At

computation of volume of melted wax

computation of average liquid depth from the
volume melted

computation of energy required to melt the wax
which has melted

resetting of Vl and V2 for next time step

determination of absolute value of temperature
difference between bottom plate and the fusion
temperature

computation of the Prandtl number

computation of the Rayleigh number

determination of effective liquid conductivity
due to convection by using correlations of O'Toole
and Silveston

computation of ratio of effective liquid conductivity
to actual value

recomputation of thermal resistances in the liquid
by using the effective thermal conductivity rather
than the actual value

counter check which controls printing out of
desired results as well as computation of
interfacial position

counter advance

by-pass of printing results except when line 316
is executed
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TABLE C-2. (Concluded)

319 - 320

321 332

333 - 335

336 - 337

, 338 - 351

352 - 358

359 - 361

362

363

364 - 365

366

367

write statement for printing results

computation of interface position for columns
next to fin and next to centerline

write statement for printing results

calculation of interfacial velocity and renaming
interfacial position to provide for determining
its change at the next time step

write statements and corresponding formats for
printing results

reinitialization of pertinent quantities for next
time step.

setting new temperatures for current time step to
be old temperatures for the next time step

reinitialization of counter

comparison of time to upper limit value which
when exceeded results in stopping the program

printing out of value of counter used in fin
temperature iteration

STOP

END
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I SPECIFY PARAMETERS I

t

I,
I ,-,+_, ]

I COMPUTE HEAT TRANSFER RATES q(I,J) IFROM T VALUES

EVALUATE ENERGY STORED BY INODE (I,J) FROM q(I,J)

i
COMPUTE T2 FROM ENERGY STORED

VALUES EXCEPT FOR FINS AND
BOTTOM PLATE

I

I JoE_]
I

..,.--.n(I,J)= q(I.J)+q' (l.J)
2

NO :_ [ COMPUTE HEAT TRANSFER RATES t

I FROM T2 VALUES q' (I,J)

DETERMINE DEPENDENT QUANTITIES

VARIOUS HEAT TRANSFER VALUES
INTERFACIAL POSITIONS

_ RECOMPUTE THERMAL

"_" _/_/ _ , RESISTANCES IN LIQUID ]

¥ .o . !
tPRINTRESULTSI

t
TllI,J) = T2II,J) IJOE = 1

NO

Figure C-1. Skeleton flow chart.
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TABLE C-3. FORTRAN COMPUTER PROGRAM FOR SOLIDIFICATION

TE_] 230-,_ F_EEZ_ TEST 3/_ ]N3H CELL
DI_EhSIU_ R_(5a31), R_(5_31), C(5a31), QS(5_31)a T1(5

1a31)

DIME_5IO_ T2I_,31)_ _(5J311s Q_AT(5o31), T3(I,31)sQRA2
1(5,31)
_IHENSION T,l(25)a T_2(25)a TH3(25)_ T_N{25)J TI_(25)

3I_[_SIO_ VR(Sa31)j M_(5,31l
C CO_uTATIJNAL PARAMETERS

_-27

_BN

A_m_

N|=_+q
_0m23

T&_=l.5
K_OJNT-I

MCOJNT-I

EPS=I,E-06

KC_Kml_0C
JOE=I

0T=O,OCO05

_-I.Q-EP$ . .
C _YSICA_ P_OPERTZE$

TI_'IOQ,

_T3_-I,E-08

C wAX
DEN'*7,2
TK=0$087
C_=3.5
TTR=73,0N

T_E.T=_9.B
_E_T=73,357

TRE_mSO,
BETk'O,OOC¢5

VIS=%_.3

CLm3P

TK_mlK
C _0TT3_ PLATE _EN3TE_ _Y %

T<1"93.
C_I-0,22
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TABLE C-3. (Continued)

C F[_ _EN_TED BY
DEN2-171.

TK2m93.

CP2-0.22

C TOR P_ATE DE_OTE; BY 3

DEN3-7_.5
TK3"OtO9
C_3=0e33

C GEOMETRY PARAMETER5

W'0.75/12.0

H'P.625/12.0

B'5'0/12'0

S'W/C2._A_}

$I=0'032/12'0

S2=a.OOS/12.0

S3"0'25/12'0
F2J_Jl.0/(32'O_S_12oO)

C VERTICAL RESISTANCES
RV(I_)-(SIt(TKl_S2_B))+(2./(HSOT4S2_B))
DO 10 1-2._

10 RV(I,2)-(SI/(2._T<IvS_BI)*(I./(HBOTvS_B))

RV(Is3)m(B/(TK24S2_B))*(SI/(TK%_S2_B))
DO 20 I-2,MM

20 RVtI_3)-(Io/(2._T<_B))*(SI/(2._TKI_S_B))

O0 30 QmNaNN

_O WO QmNsNN

DO _0 I'2_MM

NO RVII_J)-I%./(TK,B)}

RV(I_N*3)m{S3/{TK3_S2_B)I÷(S/(TK_8_BI)
DO 50 I-2_MM

RV(I_N+_) - ($3/(_._TK3_S_8)) + (I./(MTOP_S_B))
50 RV(I_N+3}.IS3/(2._TK3_S_B)I÷I%./(_,_TK_B))

RV(_,N+_}-(S3/(2._TK3_B_(S*(S2/_e))I)*(Ie/(HTOP_B_(B÷

1(S2/2.))}}

C HORIZONTAL RESISTANCES
DO 70 Im21MM

RH(I_) - (S/(TKI_I,B))

70 RH(I_÷3)-(S/ITK3_S3,B))
O0 $0 _B3_NN

DO 80 I-2_M_

O0 90 Jm3_NN

R_(3,2I=((S2*b)/[_.eTKI_Sl_B))
_(E*N+3}m(iSE*S)/(_._TK3_S3_BI)
R_I_,N*3)=RH(2, N.3I.RV(I,N÷3)

C c_ODAL C_PACITANCES
C{1,2)=((DENlmSI_S2_B_CRI)/_.)
DO 110 I-2_MM
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TABLE C-3. (Continued)

ltO E{IJ_|-iDENI_SI_SIB#EPti
DO 12a J=dthN

120 C(loJ)mI(DEN2_S2_S_BIEP2)I2,)

EilaN+3).IIDEN3_S2_S3_B_CP3)/2*)
DO 130 I=2_MM

130 C(IaN*31-{DEN3_S3_S_B_CP3)
C(2,N+3)m(S3_IS*IS2/2=l}_DE_3_CP3)
UO 1_0 J=3aNN
DO 140 I-2, MM

140 C{I_J)'(QEN_(S*_2I_B_CP)
O1 • {EI2J3}_ITTR-TREF))
OE=3t+((DEN*(S=_EI_B_HTR))

03 - _2 + ((C{_,3))=(T_ELT'TTRI)
Q4-a3+I(DEN=(S_2I_B_MMELT))

INITIA=IZATION OF PERTINENT OuANTITIE5
TI_E=O.O

Q_AX=O*O
OBw'O'O
gS,'O.O

QT_=O,Q
QTOP=O,O
_FTR=O.O
QTT_=O.O
Vl=;ºO
V2-O,O
D_3=O,O

DO 150 dm2_hd
DO 150 I'%sMM

150 TltI_Jl=Tlh
IF(TIN*LT.TTRIOSIN=(C(Ea3I=ITI_'TREF)!

IrITIN.GT.TTR.AND.TIN.LT.TMELT) eSIN=gE+ICIE#3I_(TIN

%-TTR))

I_(TIN,GT,TMELT}QSlN-O_÷I(CI2_3II_tTIN'TBELT|I
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TABLE C-3. (Continued)

C
C

1,ZOX,2NN-,I2,15X,2HM-,I2)
wRITEi6#33)GZ,G2,G3aG_

33 FOR_AT(ZXa3MQl-,EIS.B, lOX,3HG2.aEI_.B,lOX$3HG3=*E%SeB

laI3Xs3M_4-aEIS,Bl
wRITE(6,_*)

_ FOR_AT(EX,_M_ _SxalgHVERTICA. RESISTANLE,bX

1,21_O_ZZONTA_ _ESISTA_CE,6X,17MNOOAL CAPACITA_CE,6X

2_11HTEMPERAT_REsBX#lHQS(IsJ))

_ 200 Jm2$Nl
DO 200 I-I,MM

Ir(J.EQ.N*W) GO TD 1
_C TO

I QS(I,J)-Q.O

R_(I,j)-t.E08

C(I_J)=G.O

I¢(JoEQ.2.GR.joEQ._.3} QSIIaJ)=O.O

Ir(I.E_.1) QS(IsJ)-O.O
w_ITE{6s55)I,_sRv(laJ}sRM(IsJ),C(lJJ)sT1(I,J},OS(I*J)

55 FOR_MT(lX_I2_%X_I2_5X,E%B.8_IOX_F%5.8,10X_EI5.B_6X

200 CONTINUE
DO qOO J=3,NJ

VR(laJJmRV(laj)

NOO MR(lag)mRM(IsJ)

_0 BB9 JI3/NN

8_9 TOlLsj)_Tl(l$J)
COMPUTATIOr_ SECTICN COMPUTATION 5ECTZGN COMPUTATION

SECTIUN
3 TI_E=TIME_DT

DO _10 Jm3*_J
QRAT(t_JI=((TI(_J)-TI(t,U))/RM(Z_gI}+((Tt(t*J'I)'Tt(1

I,JII/RV(t,JII+(ITIIIsJ_II'TI{t_J)I/_V(I*_IJJ

O_AT(MM#J}-((T%(M_J)-T$(M_J))/RH(MMsJ))$((Tt(_Msj-t)
1-TI(M_sJ)I/RV(_MsJ))+((TI(_MsJ_II=TIIM_J))/_V(_$J
_+1))

_10 CO_,TI_uE

Ir(_.EQ.1)_O TO 212
[10 _11 dm3aNJ
00 211 I=_e

_R_T(I_J)-I(TI(I-t_J}-Tt(I_J])/RH(I_J))+I(TI(I÷t,J)-Tt

I(I,J_)/RM(I*;,_)I.((Tt(I_J-%}-TIII_J))/RV(I,J))_I(TI(I

_J*t}-TI(I_J))/_V(I,J.%))

B1% COnTInuE

212 03 220 Q_3$N_

_0 OSIIsa}-QS(l,Jl_{_RkT(I_J)_DT}

_0 T_IIt_OI=T%tlt_+OI÷{(_AT(ItN+3I._TI/_{taN÷O))
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C

C

TABLE C-:_. (Continued)

_3 250 _m3j_N

[r(_S(I,j),LT,_I) T2(IsJImTREF÷(OS(IaJ)t_(IaJ))

I;C_S(IsJ).GE._I.s_D.OS(I_JI.LE.Q2) T2(I*J)sTTR
Ir(_S(I,_).GT.Q2.A4D.OS(I,_).LTeQ3I T2(I,d)mTTR+((QS(I

I_)-Q2)/C(I,_))

I;(_5(Is_).GE._3oJ4DoOS(I,J).LEeQ4) T2(I*JIaTM(LT

wHEN 30ING FROM _E_T TO FREEZE Oq VICEeVERSA CH&NOE THE
FO_LO_INQ CA

Ir(QS(IsJ)oOToQ3,a_C,Q$(I,J),LT,Q_) F(IaJ}-(Q4-QS(I

I,JJ)/I&EN_(S,e2)_B_HMELT)

I;(QS(Isj)°GEoQ_) r(laJ)aOoQ

Ir(QB(I,J),GT,Q4) T2(IsJ)-TMELT÷((QS(IaJ)-O4)/C(I,J))

,HE_ aCING F_OM _ELT TO FREEZE OR VICE-VERSA CMANOE THE
FO_LO,ING CA

IRt_S(I*J;°LE,Q3) R(l,J)mX,O

250 CONTINUE

IPECIFICATIOh ANQ/JR _ETER_IINATICN OR FIN TE_PER,TQR(S
T,E F_LLO.IN_ DO LOOP ASSjMES R_N TLMPER4TURES

FOR ITERATION
O0 255 J_3$NN

255 T2(I,JI-T3(I,J)

00 _60 L-ls_

IF(TIME.GE.TIM(L)oAND.TIME.LE_TIM(_÷I)) 30 TO
260 CO_TINOE

N RAC-(TIME-TIM(L))/(TI4(L÷I)-TIM(L))

• T2(I*2)-TMI(L}+((T_I(L÷i)-TMI(61)_FAC)
T2(I*BI-TM2(L)÷((T_2(L+II-TM_(6)I_FAC)
T2(1,15)-TM3(L)+((TM3(L÷%}-TH3(LI)_FAC)

T2{la21)aTM_(LI+((T_(L÷l)-TM_(L))_FAC)
00 270 ImisMM

270 T2{I_2)mT2(I_2)

u_SmE:IFIEO FIN TEMPEraTuRES OETER_INED 5Y StEaDY 9TkTE
EOOATIONS

256 MCOJNT_MCOUNT+I

DO 280 _'3_N
T3 I_J)-T2(I_J)
Ir O,E_.g,OR,a,Ea,15) _0 TO 5
I r _,E_,21) _0 TO 5

T2 la_)'((T2(la_'%)IRv(la_l)÷(T2¢2a_)IRH(2adl)÷(T2(l_J

%+1 /RVLI)J÷I)))/((Io/RV(i,J))÷(Io/RM(_aJ))÷(Io/RV(IaJ
_÷1 ))

5 C04TI:_UE

_dO CONTInuE

Ir(_COuNT,_T,M_IN) 00
00 _81 JmasNN

OIFmT2(laJ)-T3(1,J)
IrikBSiDIR).OT.EBS) O0

281 CONTINUE

Ic(JOE,EQ,_) OO TO 285

TO

TO 256
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TABLE C-3. (Continued)

j3E=JOE+%

OD _BB Jm3,_J

DO BBB Iml*MM

_ QS(IaJ}=OS{IaJ)'(_RAT(I*J)_OT)

O0 282 J=3_
O_A211sJI.IIT2I_aJI-T2IljJI|IQ_12aJllelII2IIsJ=II'T@(I

IaJ})/RV(laJ)I*;iT211aJ÷I)=T_(IaJ)I/RV(IaJ÷II)
OqA2|_M_JImlIT2IMaJI-T2IMMsJ) IIRH(MMaJ)I+(|T_I_MsJ'I)

%=T2(_oJ))/RV(M_taJ))_((T2(MMaJ÷I|'T2(M_,JI)/_V(MMeJ

2+1)l

_82 CO_TI;w_E

O0 283 J=3a

DO 283 I=2,

g_A2(I,J)-(
t(I,J))/RM(I

2_J+l)'T2(I_
2S3 C0NTI4UE

DO 28_ _=3_

28_ O_4TII_J)-C
GO TO _12

285 MCOdNT=I

_0 NO% Js3$NJ
DO 401 Z=2aMM

0 T_ 283

NJ
M

+I_J)),I(TE_I_J=II-T_(I,JI)/RVII_J))÷((T_(.I

jI)/RVII,J÷i))

NJ

MM

ORkTIIeJI*OR&gClaJI}/Z*O

I_(_CI,JI.GT.EPS.kND.F(IaJI'LT.UNI 80 TO _0_

Ir(F(I_Q),GT,ON) 30 TO _03
G3 To NO1

• 03 R¥(I,JI=V4(I,J!
R4(I_JI=MR(I_JI

O0 TO _01
_02 Rv(I,JImVR(I,JI/k _

_4(I,JI-MR(I,JIt&R
RV(I_J÷I)=VR(_aj÷tI/&F
R_II+I_JIaHRII÷I_J)/AF

_01 CONTInuE

DO 286 I=I_MM

286 @R_T(I,Z)=((T_(I_SI-TI(I,_II_CCIa_)/DT)
DO 287 I=taMM

287 QBII,2)=QS(I,_|+IC(Iaa}_IT_(I_)-Tt(Ia_II|
DO 290 I=E,MM

OBw=ITE(I,_)'T_IIa3)I/RV(I_3I÷_BW
290 QT,v=|T_|I,N$3)'T_(I,N*_II/RV(I_N+3)+QTW

Q_TmQBw+I(TZ(ta2)=T_(I,3II/RV(I*3))
DO 300 J=3aNN

300 OS_-OSw+|(T_It,J)=TZ(_aJ)I/RMiZaJ))
_3 310 I=%aMM

310 QTO=-IIT_(I_N÷3)-T_MBI/RVIIaN÷_)I÷@TOP
O0 311 Jm3sNN

311 ORTR=@FTR÷OR&T(laJ)
DO 312 I=larM
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TABLE C-3. (Continued)

J;2 QrTRm_TTRg_AT(I_jj

Q_MX'(QBw*QTw+QSw)_DT÷(QWAX)
RATIOmQSwlQB_

ERRORm((QBT'(QBW+_S_QTW+QTOP+QFTR*_TTR})_IOO,O)/QBT
DO 930 Ja3_NN

DO 930 I-2_MM

930 COnTInuE

DAV3=((2.OlV_I/IW=B))=12oO

Q_ELTm((V2-VI)_DEN,M_ELT)/DT
QrREZ=_MELT
Vl-V2

V2=O.O

IF(KCOuNT.E¢.KCMK) GO TO 6
KCOJNT=KCGUNT*I

GO TO 7

b wRITE(@_6b) TI_Es QwMX, ERPOR

66 FOR_ATllxsBHTI_Em_E15.B_IOXsSh_NAX.oElSm_IOXabHERRORm
LsE15.8)

O0 31_ J-3_NN

AJ=J-3

BdmJ=2

Ir(r(2_j).OT.F2_M} DFLOe(BJeS*12.D)
OrI_-(Aj_S,12.0)

Ir(F(2sJ).LT.E_S) BO T3 31_
313 C3_:TINUE
31_ DO 315 J=3)NN

AJ=J'3

IF(F(MM_JI.LT.I.0) DMIQ-((AJ_S)÷{F(MMaJ)=8))=IZoO
IrlF(_K_J)oLT.I.O) GO TO 316

315 COnTINuE

3%6 wRITE(6_67) DFIN_ DFLO_ OkVGa DMID

67 FOR_AT(%x_SHDFIN=,E15.8_tOX#SMOFLO=aElS.B#IOX_SMD&V_=
l#ElS'8_%OXaSHDHIO=,E%5.8)
DOOT-|DMID-DM_}/DT

D_O-DMID
wRZTE(6_69) QFREZ_ DCOT

69 FOR_AT(lX_6HQFREZ=_E15.B_lOX_SMDDOT=_Et5.S)
WRITE(_,77) QB_* _Sw* _Tw, QBT, RATIO

17 FOR_ATClX,_HQSw=,£1S.B,3Xa#H_SwaaEIS.8,3X#_HgTW=aEtSo8
l_3Xa_M_BT=,E15.B,3X,6HRkTIO=,E%5.8)
wRITE{6_88)

8a FO_AT(2x_lMI_2X_lHJ_IOX_ItHTEM_ERATURE, ZOXatSHFR_CTIO
IN _ELTED_IOX_tlME_ERGy RATEalOX,13MENERGY STORED)

DO 3_0 Jm_#hj

DO 320 I-I_M

wRITE(6_99)I,J, T2(I_J)_r(I_J),QRATII_Q)_QS(I_J)

99 rDR_ATIlXaI2_tx_I2_8X_EtS.8_SX_EtS.8_BX_t5.S_SX
1_E15,8)

3_0 COnTInUE

K_OQNT=I
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TABLE C-3. (Concluded)

_30

8

111

QS_,
QTM
QT0
QTT
Q_'T
90
D0
1"1(
J0E
IF(
wRI

ST0

=OtO
=0=0
==0°0
_=0=0
_=OeO
330 _=2sNJ
330 Z=I_MM
IsJ}=T2(IaJ}
=1
TZME,LT*TAU_ G3 TO
TE(6sllI} ME;u_T
_ATIlxmI3I
P
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NOMENCLATURE

A

ADI

Bi

C(I,J)

C
P

GH

GV

g

H

h

h
f

I

J

k

L

M

N

Nu

PCM

q

°If

q

Ra

Area

Alternating direction implicit numerical method

hx
Blot modulus =-

k

Thermal capacitance of node (l,J)

Heat capacity

Horizontal Thermal Conductance

Vertical Thermal Conductance

Acceleration of gravity

Height of PCM in Cell (Figure 51)

Convective heat transfer coefficient

Latent heat of fusion

Designation of nodal location (See Figure 51)

Designation of nodal location (See Figure 31)

Therrnal conductivity

Oistance between bottom surface of cell and liquid-solid

interface at center of cell

Number of horizontal nodes in PCM (Figure 31)

Number of vertical nodes in PCM (Figure 31)

hx
Nusselt number = --

kf

Phase change material

Heat transfer rate

Heat transfer rate per unit area

Rayleigh number = _I3x3AT
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NOMENCLATURE (Concluded)

RH

RV

S

Si

$2

S3

T

t

W

X

Horizontal thermal resistance

Vertical thermal resistance

Nodal spacing PCM

Thickness of bottom plate

Thickness of fin

Thickness of top plate

Temperature

time

Width of PCM in Cell

Significant length

GREEK SYMBOLS

OL

A

V

p

k
Thermal diffusivity =

pCp

Denotes a finite increment

Dynamic viscosity

Kinematic viscosity

Density

SUBSCRIPTS

f fusion value

g Glass

s Surface

SUPERSCRI PT

' Denotes calculated value at time t + At
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TABLE C-4. CINDA COMPUTERPROGRAMFOR FREEZING

r_Cb

BCD

_iCD

,_,CL)

i._CD

ENO
HCIJ

GU_

_EN

GI-LN

(_I:.N

GIz-M

END

3THERMAL LPCS
THFRMAL C_PACIION $2 WAX NoIIF 3/_ FIN SPACING SIlI(JY

9 TEST 4(23u-1) ;'OF FLIJ]o Ir,Lr_.l MONAI)tCA_Ic PLASTIC =_OX

9 FIRST CELL- 3UU/t-;L:.,/Hk FLUIF) FLOWRATE-K-PLEXIGLAS:.09

9 K-',_,AX-,U8 ,4X13 NODES Ir,_ _NAX-IFIPUI FII_ [E_iPS AND UASE

9 Tt'_PS FRU,_ TEST DI_TA

.SNO[,F DATA

:)I_,I00. w. OI)_

2.w4pl plllil.p-l,wl,pl. Pl,

_ebelwlCO.,-.1,1.el.pl.

;-O, _.,,I elii')•,,-.2 p2. ,i • ,,I.

16rdp I pIlJi)°_--I. e I. Pl • el •

-i _,I00, _,O. ._I_0 I[0

-t',,lOI_ •, ¢)• _F Io'_

-7,iOU. ,0, _FI

-14,, ] UO. ,,U. _FI_;

-18, lOU, ,0. _FI r._

-19,1UO°,O, _FIh TEmpO

_-'_CD

BEN

GEN

GEN

GEN

GEF._

GEF_

GEt:

GLN

GEN

GEN

G E I'J

GEN

(JEN

GEN

OCONDUCIOR UATA

_05_qSel,20L,le205,le,O31_'i.'l.'l-

_01,_,ZOI,,u71

_22,2,1e_t_,l_9,1,.u71,1.,l._i.

3Z7,2,1,2_tl,l,ll,l,.071,1o,l.,1.

J32,?,1,_#,I,I0,I,._I/I,1.'I_,I.

337,2,1,_2_,l,lb,l,.UTl,]-'l.,1.

34_,P,1,P3Z,l,17,1,.UII,I.'Io,I.

357,?,l,_4,l,Z3,1,.nTl,l.,l.,t.

347,P,I,_3b,l,19,l,._I71,1.,I._lo

36Z,2,1,_,1,20,I,._)71,I-'I.,1.

Jb_,_,l,_ii,l,21,1,.t171,1.,lo,t.

_b7,P52,_7,.n71
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_Lb

_SEIN
(;E N

,aEt_
<-_tb

<:,t 1,,

(_[-.N

I'_U Ft

J. P{},

?PUo

i_, tJ.

boU.

7IU,

8it].

9,0.

1 O, 'D•

11,0.

J_'O.

13,f'.

14,1!.

16,1i.

TABLE C-4. (Continued)

_O_,?,I,;_OI,I,_u_,),.U31,1.,I.,1.

bl;_),?[)3,_(]4,.(]31

$09,_,I,?I]b,l,2U(_,I,.U31,1.,].,I.

014,3,1,_!)9,1,21U,l,.[J31,I°,].,I.

I,_Iq,I,.u31,1.,;.,I°

1,2lh.l,.U31,1.,l.,lo

1,2_2,1,.U31,I.,I.,I.

I,_,I,.031,1.,i.,i.

I,_i_,i,.031,I.,I.,1.

1,2bi_,l,.O31,1.,l.,_o

1,aJ_,1,.i}31,I.,].,].

i'2_,I,.[J31,I.,_.,I°

l'2g_,l,.U_l,lo,l.,l.

l,_bu,l,.031,1°,l.,l.

o_J,_,l,2_ _, l,_tl,l,.[}_,l.,l°,l.
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17,0.

18,0.

19,0.

20,0 •

21,0.

22,0.

23,0.

24,0.

25,0.

26,P.

27,0.

28,0.

29,fl.

,50,0.

31,0.

32,0 •

33,P.

34,N.

35,0 •

3_'0.

37, f_•

3_,0.

39,0.

40,0.

41,0.

42,P.

_3,0.

44,{J.

45,0.

@6,0 •

qV'n.

4_,U.

4Q, fl.

50 ,[_.

bl'f.

52'0.

53'0.

b4,0.

b5,0.

b6,O.

b7'O.

58'0.

59,0.

60,0.

61'0.

TABLE C -4. (C ontinued)

b2,0.

b3,O.

6_,0,

6b,0.

66,0.

b7,1} .

bS, [i.

b9 s(!.

70,I}.

71,[_.

72,(J.

73,0 •

7#,0.

75,0.

76,0.

77,0.

78,11.

79,0.

_0,0.

81,U.

82,0.

83,0.

e.5,0,

t_b, O.

87,('.

88,0.

89,0.

90,0.

91,0.
92,0.

93,0.

94,0.

95,0 •

96,0.

97,0.

98,0.

99,0,

I00,0,

I01,0.

102,0.

I03,(_.

I04,0.

105'0.

106,0.

107,0.

108,0.

109,0.

flU,0.

111'0.

112,0.

113,0.

II_'0.

I15,0.

116,0.

117,0.

IIM,D.

IIW,0.

120,0.
121,0.

122,0.

123,0.

12_,0.

125,q.

12b,O.

127,0o

128,o.

129,0.

130,0.

131,0.

132,0.

133,0.

13_,n.

155,0.

I_6, f).

137,(}.

138,0.

139,0.

140,0.

141,0.

142,0.

I_5,0.

144,(1.

145,0.

I#6,0.

147,0.

148,0.

149,0.

150'0.

151'0.
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Ib2,0.
153'0.

154' 0,

155, !).
156,0,

Ib7 ' t1.
15_,f),

lb9,0.

I60pO°

lhl,O°

162,fl°

163, (t o

lt_5_ G°

1615,0o

107, (},

168 _ 0.

169 t 0,
170,0°

171'0,

172'0.

173,0.

i 74, I).
175,0,

17b p tl °

177, O.

178,0.
179,0.

180,0 •

I_I,0.

I_2,0.

I _Ji_9 I'l ,

185,U.

186,no

I_7,_o

Its8,0 °

189pPo

140,13.

191, P.

192,0.

lgS,00

194, P..

195, _],

196, O.

TABLE C-4. (Co_mued)

198,0.

199,0.

200,0.

201,0.

_02,0.

203_0.

20_,0.

205,0,

2U6,0.

Z07,O.

20_,0.

2OgpO,

210,0.

_II,0.

212'0.

a13,0.

ZI4,0.

ZlS,0.

_16,fl.

_17,0.

ZlS,n.

a19,0.

_20,0.

221,0.

222,0.

Z23,0.

22_,N.

225,0.

a26,0.

227,0.

228,0.

229,0,

230,0.

_31,0.

232,0.

_33,0.

_35,0.

?bh,_.

Z37,0.

239,f).

_gO,O.

241,0.

242,0.

_43,0.

2_4,0.

_gS,0°

2Wb,O.

2_7,0.

2U9,0.

250,0.

_bl,O.

_b2,(|°

_53,0.

?Sg,F.°

_55,0.

Zbb,O.

ZbT'O.

?58;0.

_bg,fl.

abO'O.

2bl'O.

_O2,O.

g63,1) o

_65_0.

_b6,0.

2_7,0o

269,l_,

270,0.
271,0,

k72,0.

273,0.

_Tg,O.

_75,_.

Z76,0.

ZT?,O.

Z78,11,

_79,q.

_O,O.

281,0.

_82,0.

_83_0.

28g,0.

Z85,0.

286,0.

287,0.

288,0.

289,0.
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_90wO.

292,(I.

_93F0.

_9_pO,

_95,No

_97p0.

300,0.

_01,fl.

502,0o

305P0.

305 F0 •

306 w0 •

_07, (I.

bU_,n.

509P0.

310,0.

311,0.

312,0.

313,.617

31_,.617

515,.617

316P.617

317,.617

31_,.617

319,.617

_20p.617

521,.b17

322,._17

523t.617

32#,.617

326,.617

_27w._17

TABLE C-4. ( Continued)

528,.b17

32g,.617

b30,.bl?

551,._17

J32,.617

333,.b17

o3_,.e_17

555,.b17

_36,.617

057,.017

53B,.617

33g'.617

040,._1/

5#l,.bl?

b42,.b17

545,.617

545,.017

346,.617

_#7,.617

_#9,._17

550,.b17

551,.617

O52,.e17

bb#,._17

556,.617

057,.617

bbS,.bl7

b59_._17

560,.617

561,.617

56Z_.617

363'._17

364,._17
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ENU

HC[I

REly,

_E_

REN_

HEW

END

HCU 3E×ECUTION

:)IML-.NSION X(IO0)

"_[)IM:lOtl

N TH:U

CS(,U_P

CNFwHK

EN{]

iDAMP_ P ,J

(_AMPD, ,5
NLO()P e 41 SA

ARLXCA..UI "DRELAXATION

DRLXCA, .01

uIIkFI, .UU_'5

CSGF AC, 10.

] I _[INI] p4 • 0

(HJTVI!T _, 0.I

TABLE C-4. (Continued)

$A_ITH NOI)E OAMPINb

CRiTERiA

oARI_ ^Y DAFA

I $ TE.MP VS QiI_}IU) uF hAX Rr_F -50-F

(!.pSl_!.e.n#g_e/'3.,.to72e73.e.2U_b,90.,.b952P_'L].

• 7206_.15U.,ENI) .I, (,I PER NOUE VERSUS TENP

-2 $ [.AHEL ARRA'( FOK WAX
G-WAX,D(_*TIM, Q*I'IM, I_AX ,EI_ID

-_ _ LADP:L iEMPS EXCE_JT _4AX

ll,T2,I3,T4pTbPT6,17,Tb,F9tTIn,Tll

TI, _,TI3,TL4,Tjb,TIo,TI7, [l_,TIg,T20,T21,T2,_

T2o,T24,T2b, 120, T2/, T2#, 1"29, T30,131,ENO

4.,0. ,IOU., • 139,9_. n, .276,91.6, .4-17,91 °_P. bSb, 91 .S, .690,91.13

.85tL,gb.6, .975,gU.P, 1. IlP,_£.5, t °2ol,£b.b, 1.590,8eo3,1.52g

t42.1 , I .h 7q e L41),, 0 e I, h_i_e 7P,° L4e | .9q._,77.2,2.USb,75.O,2.224.,72.8

2.J6b,¥1.6,2.SU2,7(..OeEHL)

_;_IDCLE Flw NO01: -lEST TEMP T26

_.)e () . e i ()(J.ile •139,q6._, .P7£'go.z, ._17'91 .7, .556'91. O, .695,90.h

.H3_,90.3'.97_'9(!-_'l.l12'90.3,1.2bt'gO.O'l.390,90._'1.52g

2.363,5_.6'2.502,_1 .',.'.'.'5,E r Id

t,.II>DLE FiN NODE lEST TEMH I27
h,O. ,lOO.O' •i_9,9H.n, .278,9b. 3, ._i 7'95.Z_ .556,92° 1, .695,91. O

•R_e,gu • ?' .957,51. i, 1 •11 _'9fl.9, t .2bl,gl .3' 1- 3g0,91.2, ] .52g

91 .6, I._,7_,91. U, I.c13,9_I._, t .946,gU.b,2. USb,90.A,2.22_,gO. 3

2.363,90.7,2.5U2,_u. O,Er'O

TOP FIN NOOE TFbT TE'_P ..'._

7,0. , lOO,Ue .],_geOU.be .27_e'7,_._e • D,I'/e 70 • 3, .5b_,67.7, .695,65._

•_5_,(ob.B, .9 ISle2.9,1. I] Z,OO.g, 1.2Ul ,59.e, 1 .Jgo,sR._e t.B2q

57. £, I. ¢_7_, So.e, I.*_13,55.7, t.9_6,5_.7,2.08b, 53.6,2.22_, 52.3

2.563,bI .3,2.SU2,bo.e,_UU

PLATE NODE TEwP lEST I_ATA F33

F

F

F
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BCD

TABLE C-4.

5VAPTABLFS l

ONETER (T 1, TROI,G201, KI)

uP,!ETFR (T2, T_OI,G301, K2)

(.._ETEH (T2US, T201, ¢;2u5, K6)

_ETER (T202, T201, G3u2, K4)

'--,MEI rN ( 1 l,T202,G2112,KS)

,LME]FR (] PO 1, T202, GSU2, _.o)

(vN,RIFR (T20O, T202, G206 e K7)
('+ME1 FR ( 1203, T2 U2, (:,.5u ;5, k,f:, )

_MF. I Ft-,' ( l" 1, T,-' CI3,02113, K9 )

r._P+_[-_]Ft4 ( ]21}2, ]lO0 p (-,,5u,5 i, g 11) )

(.;.;Z,E1 [ R ( T207,1203, c_2 u ?, v 11 J

(,NiF[IF R (T2(J_, T2Oa, G5,;6, K I))

uME 1E N (TI, T,dtj#, t,/O#, KI_5)

S.,;IV+E+I EN ( ] 203 ,T_Ow ) G51i6, K1LI. )

(_MFTF_ (l 208, T2ON.) G2L_, K lh )

_:P'iI:-1F(4 ( T3, T20@, (5507, K 10 )

tflCElFR(l_O1, [_tib,G2Ub,Kl7J

(_NiFTFR (]L_, T/Ob,GoOg, K IS)

<+V_FIFR(]2b9,T2Ub,_2Ug,KIg)

,:lviF II.-+R(i 206, r2bb, (_5i; (-'1PK20. )

t.'N;kI FI,C( 12 [)2,1"," bb, C,2 u6, K _' ! )

t+MEIF R ( TPrjb, TZUo, G.Sbg, K22)

_.:F;EII-FR ( ] 2 t 0, r?lJo, GPIlI,KP_3 )
t, lVF TF l< ( 1207, T21)o,(_3LO,K2£_ }

(.;MEJTF R ( T20.5 e 1'21] 1 p b2U7 e K2 _, }

t:N:E+l FR (T206, [ZO/,G31t),KP6)

<,MCIFR (1_11, T2(;/, (#211, K_7 )

(_.Mt-Tlfl.,' (l 208, T2[) 1, G3J I ,k_ )

(+teE1 FR (1204,[ 20_t, G2',J_', K2 "-_)
()_F/]l--R (l 207, r2[}+i,nSi I ,_ 51! )

_.,t.'_6lF _ (]212, [21Jb, G? L2, K31 )

, >e,:E [F R (T5, I,"r..)_,<-,,I1.2,K .12 )

:_EI FR (T/Oh, 120_, r,PCq, K3._)

',_',ET FI-,'(I,%, r _ o'.9, b.313, K3# )

U_,,E I k F+(1 .;Z_L5, T_/!'--,J, G?i.5, t'...1'+ )

,_rct-lFR([;lO, 12',]'9,r,3t#,W3_,)

i,PqE l[-:R (]+2f]he] 21.0 eC-,2[lJ,k57)

u.,_EIF R (1209, T? 1U P r_,.51 # eK .'%;_)

(;-t,"E IF I+ (12Lq-, TglU ,(;21u,K.:s.))

uF.E t FR (1211, l_iU ,GSL5,KUC, }

(.'i_fET_ k (T207,1"?.. ] l ,G2 i I ,_q] )

(;MF I FR ( 1 210, T21 i ,, C-;.-tL ":,, +,,.+p .)

r.._l+iF.TEN ( "T2 t 5, [211,(;21b,_'_)

L_NE'I FR (T212, T21 I, G316_, KU,q.)

(C ontinued)

CMEIFR ( [20_, T212, G212, KUh)

_i,,Ei FR (T211, T21 M, G3 L6, Kq+,}

t+t,,El_ R (121t_, T?-I2,G216,K_7J

okLIFN(I I,T,"I2,0.SI7,K#_)

'J_E:TF R (T2U9, T21..%, O213, K+.+_)

UP+EIFR (l e, T-"13, GJ16, KbO)

,,#,,E1-FR (1 217, T21J, G217, K 51 )

(,.I¢,LIER(12.L4,I-21b,r_6Ig,Kb2. J

(:,N'E IFH (T21U, T21_,/;2±4, k :+_3)

(,N.ElEF+ (l 2-13, T21 +-+,GL_ L(',Kba )

t;N'F [_ H (-r 2 }.a, 121_+eG2JH,Kbh)
uN+EI F.I: (T2 tb, T21'+, (4.3zn,_< b_, }

(o_"ETFR (lPll ,T21b, G2 | 5,KDT)

'.'P"EIER (1 21_, T21b, (4.5z,i,K.hF,)

t.'_,LIFt4(IPt9, [ZI'.), LC'2iC)'I"bq)

_*_'t:..+IF R (T2Io' ] 215' C:.SP-1, K(",,')

t.._EIP'R (1212, T210, G21 _, Kb I )

'_I',,E:l r-I._("[215, T21o, GSd I, K6P )

<,METFF_ (122U, 121u,r_PzO ,K_-%)

(_'MFTFI_ (T9, l ,-"t6, <,.522, K_# )

_&WE IF # (1 21:5, T217, &217 ,KGS}

t;ME ]Ft_ (1]t}, I?17,(_52.:,pK6o)

t4c'ElE-k(1221,T21 _,G2,_I,K_7)

(,_-'+ TFI' ( T P.t 8, 1Z 17, L+5+ _+, K t,_:-+)

+.jlvF_1E k (121_, TZld, G2 J ++, _'6¢+)
,,M[:IFF_ (l P 17,'[2 Id, G5-<_4, K 10 )

_+tv'Elr--k(1222,121d,_',2F2,K71 )

(,_,L-:I+F _ ¢1219, T2"] b, 0 L_,-_"_,K 77-')

_,_'IF 1EP (l _ Ib, T219, G2._(_, k 1A)

(_N"ETF I_([2t_, 121_, c..5_-5, K 7u }

(..l'.;t::l FH ( IZ'2.5 p T2 t9, #'2_:3, KY.h J

_.+i,*Fl r-h' (127. I), T219, GS,_ +_, K 76 J

+'f_.E:l_fR ( T216, l ?-?U, G2: _), K7:! )

(,l',t+ IF# (T219, I Z20, G3_fl,t<. 7q )

_:MI:: 1 E I_ (TP2q,, t22u, (;2,-"4, #,Tu )

_:_ETFR(III, 122U,L, 321,Kt+b)

(:NL I_ R (T_ l 7,1"2-21, r-,?,.-.I, V ,h1.)

".'Iv'ElI F t:: (I ]2 , [27-I ,,-52"", Kh2 )

t,+_+[:lF R (T225,1_'21, _2,::h, k_i-t)

, _I_;El F_ ( l ?22, r221, G.+z'.+, Kt, L_)

','F"E+IFR (T218, [222, (:,2_P, K++_h)

t_, F 1 F R (1 _P.I, 1"22,..',(G5,-++-J, K,r'h )

<.[",_T[H( 1;-'_6, [.<2_-',(;2,'_,_7)

_.F.,L]F_(]225, f?2_,c, Son,K*t'_}

(:_lViEl FR ( T2 ].9, TZ?.1, G2,='_, Re_ )
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TA B LE C -4.

c _FI FR. (1 _2, T2_O, <_3J(l, KWl) )

'.!_4EIF_ (TPZ7, ]Z_'6, GPZ7, Kgl )

(._NiEIER (122(+, T22h, G33 t, }(.92)

I_FI_ZIEN (1220, [221+, G22_, K95 )

(:_'k. IF N (1225,122W, GSOl, K94 )

_..'_.EIPP. (1P2._, TkPW, G2ZH, KgS)

'_N,FII F PC([ IJ, 1 2Zq, C-.53Z, K96 )

','/_'6 TF_ ( ] P..?l,T22_, G2£5, K(-J7)
_,N;FIFF_(I14, 12Zb,(_330,Kg_)

_.,k:E'IF F_(l 2--?-(4,[2_5) G2/-9) Kgq)

u_;El_-I,_ (122-6, [22D, G3O_,Klr) O )

_'f_'.EIFFc(IP_2,TZ2o,G2_.6pKI.ql}

<..NiE[l Ft_ (T?-2b, T220, G.3.o'&, Klf}F )

_F_TF P.(I 260, T22o, G230,KIr)3 )

<.l,,_tIFIR (1223, I22 7, G2_7, KI rib)

_:)F,E.IF-)R(12 .iI )1227, G2._ I, K 1 _)l}

<;_F[TFR {T22d, 1221, G.:_36, K 1 !1_)

,_NiElF F<(122(+, T2:ad, (._2/_,K I ()9)

_N,ETFI_ ( 1227, rz2,_j, nL_,oh, K 11U }

oN.£.TFI_ { 1232,1220, (%2,52., y 111 )

(_,E) FR {1'1o, f 2?_#,,-,J57, K.1.12, _

;_.F IFI'< (]22_5, T?.29,02c9, K1 tO }

t_,iF 1 F._ ( l 1 o, 12)9, _._,33_ _,, K 1 l '* )

(,N)EIEH (TZ53, T229, (G203, K 1 Ib)

_M[ ;Ff_ (1230,1229, G3.gW, F i l.o)

QMEIER(T22_b, T23U,G2JO,KI17)

_v_E TFR {T2P-9, T23U, G509, K 1 I_)

_ETF H ([254,T25O,C;264)KI19)

(_N;ET_P.(I __51,123u, G340,K l;)U )

UP.E1E h_( 1227,1231, GPJl, K 121 )

_,'_E1F H (T2,50, TZ31, (;5'_ (1,t', i ?Z )
(..,Iv4!1 I_t< ( T? 35, T'4. 31, (-_2O5, K 1 .°6 )

(;_iEIFR (T232, T231, G34 1 ,K 1Pw )

<:_,E rFR ( T228, T23Z, (52o2, F 125 }

(.h',ElFR (1231, T23-', G3_ 1 ,F .tRb)

(.:_F'fFR (1 } 7,T232,C-34,:_,K12R)

'_E'IFIH (l 2P.9 _-[Z35 _G2._3, K 129 )

(,r/:E lr F-R ( 1_37,1"Z3o, (-_2,'_7, K l 3i )

v_NiE1 ER {1 ".)-30,[2_W, G25(+, K I .'13)

(._°FTF R (T?35, T23(+, r_3,+4, K 13_ )

(C ontinued)

C_NEI F R (T23_, TZ3_,G2oP,,KI3b )

uN,E'IFR {1_.55, T23W, G3-b, K136)

_)F:_'I[-R(f;31,TZ3b,G2oS,KI.5/}

O_E'[F R (l'P3(+, 1 ?.it),G3'.5, K 13_ )

w_:,E.TFR (1239 pTi3b) G?Oq, K139 }

(v_.;EIFR ('[2.S6,T23b,(_3_+60K 1"0)

twME.]'F R ("[2.32 'T_,_t), G206, K 1_,i )

_._I_[-;I F'FI {T 235, TZ6o, _3_,6, K I q ) )

_,I'_E"TEI<(-I2'40,1"_3o, C,24n, )< iUj )

L,l_it-.l F N (l'J9, 123e,,_.3_ I, K I(+_-_l

{.;<EIFiR (1Z_53, I?-6 l, GZ.17, K 1(+5 }

_J'!F IF)',) ( 1 ;-',), T267, u L'_ _,* K i'4_ )

_,_FiEIFN (12u, I, T_31 ,(,241,Klq7)

(vFIET_ [_([2.5_, I:;/-.57, G3_ _.,K la_ )

()_'.E[lFR (] 2 3(+, T25t_, C_2on )K I 4_9 )

_vME.1Ei_ (T237, T23d, __:,3u,C),K 1"_0 )

_"4E TF I{( T2q_, 125t_, GP(42, K .I'_i )

OrvEl FR (1 ;9.59,l230, G3bi), K I 5_ )

!'2tv'E ] F'[_ (1255e T;_ig,G2.sg,K J hS)

(.f4FI Fit (125H, [2._9, G3b_1, KIS_ )

_,ME"T F H {"[2(+0,12.39,63:?, 1, K 1 _0 )

"Q_iEIIFH (T236, TP._U, G2_(), K 152 )

(_N'.EIF I':,'(lP Li9 )124 U, c_'Sbi ek ]%d )

._)_)E.IFF_ (T2q.(+, T2uO, GP4_,,KI59)

_:MFI F_ (I/1,1 240, (_35,'.,_ ton)

{.l','E TFF_ (T237, T_q I, G2'_l, KI&I )

(;r¥1_iI_-}((1"2_? I_f2_ 1 '(:'353'K l.e,2.}
(.:NEIf 1_(I 2(+ b, T2q. 1, (._2_)5, K 163 )

_,_t[TFI_ (1 Zq2,12(+1, G3.h_, KI_)

(._NiF.IFI:((l ?.3_I,T2q-Z, (;2qP, K ihb )

L.&.!L:[ FR ( 1 2(). 1., T_4Z, (4.5.bH, K 16o )

(',fv:E"rF: R (12_6,1,_, G?_6, K ].h7)

_.._'IET F-R (1 243, l Z_+_, 63')5, K 1 r,d )

u_}F 1FR (1239, T2_._, &?_.5, K i(_)

,.;t,,LIF l._(12(_2,1 2K, o, G665, K 170 )

(.s_E1FH {12-47,T2q_5, G247,K ]71)

,_i4E I F;R (1 ?.;4(+, TZU,6, O3b_, K172)

_:._,"ET_- H ( I Zq, U, ra4_, G2_+(+, I,.J 70 }

b,r,iE1FR ( i _,q.Lt, T2q.q., G3b6, K 174 )

(..)_,_ET_ R ( T 2q.H, T 2(+q,, (.,2'¢ H, K 17b }
(..'P'E1F_ ( r?3, l2_q., (-,3D (, K 17_ }

(,_"FIEN (1,]_1, T?-Wb, GT'*5, K 177 )

tvNt;l'_)_( '12_, -I ?(+b, (_3",, '_,,_ 17" )
(',:M[- I" [-"I'_ ( I ?O,g, [2q b, +i;;"+9, K 179 )
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TABLE C-4.

_,.METFR (T24b, T2_b,G3_9,K 1 _.U)

(_METER (12*2,T24o,G2_6,KI._I)

{Jr,I£"T F r (T245 e,T24b, G369, K 1 '_;")

UME TFR (l ?5U, T24O pG2._O, K IR3 )

t_NEI FR (T 247, T24b, 03,-,0, K 1 a'_ )

_t.IEIFR (1243, T;_47,G247, K I_5)

(_ET_ R ( T246, T24?, G3oO, K ] Pb )

(:;MEfER (l_'5|, TAW7, GPDI,K IR?)

@METER (T2_, T_7,c.3oI ,Kl,'i_)

OMEIER (I 244, T24o, G2*_,K] _9)

LvMETFH (1247, l('_tl, G3hl,KI_)(,)

(_MFTFR (I 252, T24_, G262,K191)

t>.MF/fFR (T?_5,124_,t_36Z,K192)

(,'METFR (T245, [249,G2_g,K193)

_,l_.EIFR (T?6, ]-Pq.9, (,3h.3, K 1_ll )

_h| FR (1 28,1249,025J, K] 9L.)

(_l_itTF R.(T;'Sg, T249, G3o4, K 19b )

UME]Ft( (T246, T;_SIJ,G2bO, K197)

(,:'&_ETF R (] 2'¢9, T_SO, G3t>_, K 19h )

OMEIFR(T30, 1250,U25_,K190)

(.)PEIE!_ (I251, [250,c305, K2()O)

tv_:ElFR (1247pTZS1,G2bl,K2{11)

L_I_ETF k (T250, T251, G3o5, F.211-")

L¢I_£fFR (T31, T251, (5253, K2US)

(.<.l_E1FR (T252, TMbi, G366, K;_n_ )

(vMETFR (1248, T252,6252, K2flS)

@_.ETFR (1"251, T252 _G3_f,K2(!b)

UMETEH ( T29, T262, G25b, KP(17 )

@MET FR ( T27 ,,I 262, (.;5_-t e K2U_ )
ADD (K1, K2,K3_K4,K209)

ADO (KS, K6 ,K/, KS, K21b )

ADD (Kg,KI|),I<II,K ]2, _,211 )

ADD {K 13, F114,K15, KI_, K212 )

_DD (W 17,K I_, KIg,K28 ,K213)

ADD {K21, K22, K23, K2_, K214)

ADD {K25, K2b, K27, K28, K21b)

nDD t_I;'9,KS(J,K31,K32,K2_Ih)

,god (K33,K34,K35,K36,K217)

ADD (K37, V38, K39, K41], K21_)

ADD (I<41, K42, K43, V,44, K219)

ADD (K45, K_6,K47, K/_H, K22(I)

ADD (K49, K50, KS1 ,K,52, K;'21 )

• AD[) (K53 _K54' KbS, K56, K222)

ADD (K57,K58, K59, K60, KM_'_)

ADD (K61, K62, Kb3, K64, K;':>/_)

ADD {K65,K66, K67, K68, K225)

(C ontinued)

['l)D (Kbg,K/U, K71, _72,K22h)

_DD {K73,_ 74, K?5,KT_, K277)

_',DD ( K 77, _ 78, K79 e I'<f_.(), K228 )

/_DD (K _I, K _2, KH3, K _4, K229)

AI}D (K_5,1',Hb, KH7, K8_'t, K23U )

ADD(KB9,KgO,KgI,K9?,K231 )

_DO (K93, K94, K95, Kgh, K_,.32 )

r,DO (_97, K9H, K99, K.I()_),K2J% )

ADI) (K 101, K IU2, KIU3,,,IOU, K__54)

*%DD (F I05, KIUo, KiU7, _ I0/_, K 23j )

AD[) {K 109, K 11(/'KIt 1 ,P,I 1__, K_._r,)

ADD (K113_KI I_ _K 115,_ l lb,K_.I/)

ADD (_ 117,Kll_,Kllg,_IP_fl,Ki36)

AI'.,I}(_(121, K 1Z2, K 123, ,",12q, K259 )

ADD(I< 125,Kl?..h,_127,_. 12_,K?__U)

ADD (w 129,KI._I},K 131 ,_ ]37, K2_4 I )

ADD (K 133, Klan, K135,,x 13h, K _?. )

ADD(I< 137,KI3R,KIJW,K I40,KZ4J)

ADD (K 141, KI_2,Kl(+3,,_I44, K2_4 )

ADD {K 14b, Kl_h _K147, r,14_, K24z))

l_l)[)(K149,KlblleK/D1,r<lb2,K2(.l.t))

_[.)D{KI53,Kl_4,KI55,_ 156,_g 1)

ADD (K ]5-I, K [b{_, K lbg, 6 loll _,K;,'qO)

/tOt) (K 161 'K 1_2, K I_).___ 10/4, k_-q9 )

,WD[}(K 1 ()b' K I06' K I_7, _,ibS, K.'.')d)

/_DD (I"16g' K1 lfl'K 171, K 172, K_51 )

AI)I_iW I 7.%,KI _/4'KITb,I_IZh,KZSZ)

A[)U (K I 77 ,K I-/M,KI/g,KI_(I ,KZSj )

ADD{KIHI ,Kl_2,Klt53,r. 1_,K25_ )

ADI) (K 16b, KIo6,KIH7, _,IL_, K_Sb)

ADD (V 189, KIg(] ,K 1'91,6, ! '-92 ,K_SO )

ADD {K 19-%, K 194 _klgS, _,| 96, K_5/)

ADD (K 197, KI9_ _K 199, r,2U(), KZbd )

hOD I KPOI,K202,K21}3, _20_, K259)

ADDIK2Ub,K2U6,K2iI7,r,20_,K2bO)

I.,1DI-G1 (K313,A1,l20] .l

[)IDEGI(KSI4,AI _T202)

l.l IJl: (-'1 (K3IS,AI, 12'03)
I}IDEGI (i_,316, AI,-f?04)

UIDE(%I (h317, AI, 1205)

L,IDLGI (h3tS, A1,1"2:0t_)

DII)LGI (K._lg, At, [21)7 )

I_IDI-GI (K320, AI, T2rl_)

DIDEG1 (K32;), AI,121(})

DIDEG1 (h323, AI, T211)
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TABLE C-4.

I>IOEGI(K3_4,A1,TZI2)

_IDkGl(k32bpA1p1213)

I_IDL61 (k326p A1 r 1214)

l JlDt. 61 (K32"lpAIPT_lS}
L.IDEGI ( K32_ p A1 p 1216_

L)I[)kAI (K_agPAlpl_lT)

[;IDt.GI (K330, A1 pTPIH)

[,IDEGI(K3_IpAIPT219)

L, lt)EGl(KJ32,Altl220}

l,IOLGI(K333,AI,[221;

I_IDEGI(K33_pAIpF_22}

[;ID_l(K335PAlp[223)

L)IDLGI(K3_btAIPIaa_)

L_lOLGl(K337,Alp1225)

UIOEGI{K_38eAIp[226)

[;1DE_41(_339pAlrT_27)
i.}IDEGItK3#O,AI,122_)

_IDEGI(K341_AIwT2291

I)]DKGI(K3W2pAIpl_30_

I_ID_alIK3_3pAIPI231)

ttlOkGllK_44pA1pI2_21

I.!lDE61(K345pAlpI233)

UIO_GI{K546rAIp[_54)

UIOEGI(_47pAI,1235)

i_l[)kGl(k848,Al,l_36)

t_ID6GI(K3qg,AI,T237_

b1[)LGI(h351),Al_T238)

UIDL&I(K_51,AI,T239)

UIDLGl(K552,AI,_2#O)

UIL)_GI(K553,AI,T2#l)

[)IOk_I(K35#,AI,T2#2)

blDE&I(K555,AI,12_3)

I)IDEG1(K356,AI,I244)

[;10_GI(K357,AI,lZ451

I_l[)K_l(KSbS,A1,T246}

L)IDEGIiK359,AI,F2_7)

L;IDkGl(K361,AI,T249)

[}IDEGI(K362_AI,T_50}

DIDEGI{K365,AI,T251;

DIDL_I{K3_,AI,lZ52)

_iLTPLY(KaOg,DIIMEU_261]

I_LTPLY(K210,DTIaEU,_ibl)

_LTPLY(K211,DIIMEU,_ib3}

MLTPLY(Kili,DTIMEU,_96W)

_LTPLY(_aI3,DTIMEU,_265)

( C ontinued)

I,iLTPLY(K2_,OTI_EU_2bb}

NLTPLY(_215*DII_EU,_2bT)

ivILTPI .Y (k216 _ oT 1 _ll _K _b8 )

_iLTPLY (_al 7,[)TIi_U,_2hg}

_LTPL Y (K218, [1lI _KU, K270 )

_LTPLY(K219,DTI_EU,_271)

MLlPLY(_220,oTI_EtI,_272)

NLT}'LY(K221,01I_EU,K273)

_LTPLY(K222,OTI_EU,_274)

_;LTPLY (KPa3,[)TI_C_I, K275)

_LTPLY (_ 224, I}T Ii_Lt;,k27_ )

P_LTPLY (_225, D1 I_I_IU, _277)

hLTPLY(K_26,[)II_EU,_.27_)

_LTPLY(KaaT,OTIMEU,t279)

_LTPLY(K228,t_TI_EU,_2HO)

_LTPLY(Ka2g,OTIMEU,_Rd1)

N,LTPLY(K2JO,f)TII_EU,_2_2)

&_LTPLY(K23I,OTIMELt,K2_3I

IqLTPLY(K2J3,r)_I_EU,K2dS)

_LTPI_.Y(K23w,E_TI_EU,_2_6)

PLTI'LY(_255,DII_EII,_P_7)

_LTPLY{_36,DTI_EU,_26_)

_iLIPLYIK257,1)III_EU,_2_9)

_LTPLY(Ka58,DII_F_I,_.290)

_LTFLY(K2_9,OTINEU,K291}

_[-TPLY(KP_O,DTIM_(I,_292)

_;LTPLY(K2_I,DIIMEU,_293)

NiLTPLY(K2_2,DTI_EU,_29_)

_ILTPt.Y (K2W3,01IMEU,K295)

_iLTPt.Y ( K2_, OT I MEll, _29b )

_ILTPLY (K2W5, oT I_EI1,_297)

_LTPLY (Ka_6,OT I_EU, K298)

_LTPLY(_7,OTI_ELI,_agg)

_LTPLY(K2Wg,DIIM_U,_b01)

_LTPLY(K2_8,DTI_EU,_3UO)

_LTPLY(K250,DTIME_J,_301)

_LTPLY(K251,[)TINr.U,_3U3)

_ILTPLY(K252,DTIMEU,K3U4)

_LTPLY(K253,DTIMEU,K305)

MLTPLY(K_b_oTI_ELI,K3Ob)

NILTPLY(K255,DTIMEU_K307)

_LTPLYiK_56,DTI_EU,K308)

_LTPLY(K257,DTIMEU,K3Ug)

MLTPLY(_258,DTIMEU,_310)

_LTPt.Y(K259,DTIMEU,_311)

198



TABLE C-4.

MLTPLY (K260, DI INEtI,,'..312)

ADD (K201, K313, K.)I 5 )

ADD (_(26L, K3I u,, K314 )

&U[I(W2_,K3IS,KQIh)

/_DD (K264, K516, K31_))

ADD (K2(_5, KSi/e Kbi7 )
ADI) (_ 26o, K 51_4, K.51._)

AD.D ( K2f)7, K519, K319)

a[)[_(K26_, K3ZO, KS;0)

ADD (K269, K_,:::I, g 321 )

A[)[](KPTU, K_zZ, Kb_2)

ADD (K271, Kb_b, K3L_3)

_l'_t-) ( K272, K3Z4, K324 )

_D.D (F<273, K3zS, KSZ.5)

ADD ( K 274, K326, K._26)

ADD (1_ 27b, K3L7, K3c'7)

_DD (K27_, K3Z8, K3#_)

A[_D ( K 277, K3Z9, K 32c_)

ADD ( K27_, K5_tO, I_ .).30 )

#DU (K279, K531,1453t )
AD[) (Ie280, K332, K332)

_DD (K281, K333, KoJ3)
ADD ( K282, KbO#, K.f)3u, )

ADD I K2_3, K._._5, K3J _) )

ADD (F(2R#, KJ.J6 pKS.SE_)

At)[) ( iz 28b, K 337, K 3,J7 )

ADD (K28b, K338' K33._)

n[)D (v2H,7, KbJ9, KOJq)

I,DD (K24It_, KSU, O, KOgO )

AL)D(KZ89,K3_I,K5_| )
aDD { _290,K3_2, K542)

( C ontinued)

END

t_,L,I-) ( _2Q1, KSU.3, I,, 343 )

ADI] ( K 2':}_:, K3,4q, K 5'-4q. )

,'_1_[_(K29b, K3_,b p M.3u,5)

ADD (K29_, K3_o, KO#6)

41_D (1<293, K3U,7, K.)_;7)

ADD { K29o, K3_d, KjL_t_ )

,;UD (K297, K3U,9, K._C_(4)

_,F)D(K29(4,KBbO, K.Jhh)

hDD ( K299, K3bt, K.ibl )

ADD (g_O0, K332, _ bb2)

l:tD()(K 301, K3o3 _ K,)b,_)

/41)D (g 3(1_, K 3b#, I",ohq )

h[)D ( g3{},_t, K3bb, Kob.%)

/ADD (_ 30#, K3b_, _ 366)

,_DO (_ 3Oh, K3r_7, K3,h7 )

;,.[)lJ (g 300, _33_,, K Jh_ )

ADD (1_._07, K339 _KSb9 )

AI)D ( K3tlh, KSoU, K,._b 0 )

I_I)D(K3(]9, K3ol, _361 )

ADD (g31U,K3o2, _ JP_P)

_bO(K311

ADD (k 312

[_tDLC-.I (T

l,lDEnl (]"

I _ll_F__nl (f

,K3o3,KJh3)

,K3o#,kOe4)

IME¢_,A4, [h)

IMEN,A4,17)

IME_,Ab,II_)

I;IDEC, I (_I!_EN,Ab, fib)

DIDtGI(TIfCEIJ,A6,1 IH

[)IDI-.G1 (l I;_E,,i, A6, I lq

IilOEGI (1 IMEN, AT, l I )
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HCD

END

HCD

3VARIABLES 2

TABLE C-4. (Continued)

5OUTPUT CALLS

STNuRD

PRINTLIA2pK209tK261pK313pI201}

F_INTLIA2pK210p_262pK314pI2U2)

PRINTL(A2tKZllpK263fK31bpTZb3_

PRINTL(A2pKZ12pKZ64wK31OpT2u4)

PRINTL(A2PKZI3,_265pK317,I205)

PRINTL(A2wKZI4pK266,K318,T2U6)

PRINTL(A2pKZI5,K267pK31qpT207}

PHINTL(A2pKZlOpKZ6BpK320PT2u_)

PRIIGL(A2pK217_K269pK521p[2ttq)

PRINTL(A2pK218,R270,K522,T210)

PRINTL(A2pKZIgpKP71wK323pr211}

PRINTL(A2,KZ20wK272pK324tT212)

PHINTL(A2tK221PK273pK325pT213}

PRINTL(A2,K222wKP74pK32bpT2J4}

PRINTL(A2pK223pK275,K327,T2159

PRINTL(A2oK22_pK276wK328pT216}
PRINTL(A2pK225,K277,K32g, r217)

PRINTL(A2,K22b,K278,K53D,T21H)

PNINTL(APpK227pK27gtK331pT21g}

PRINTL(A2PK_2_pKPBO,K332,T2_O)

PRINTL(A2,K229,_PRI,K_3_,T221)

PRINlL(A2,KZ30,K282,K334,T2_2)

PRINTL(A2,K231,K285,K335,T2_3}

PRINTL(A2,K_32,K_8_,K33b,TP_)

PRINTL(A2,K233,K285,K337,r2z5)

PRINTL(AP,K23_K2R_K558_I2_6)

PRINTL(A2,KZ55,_287,K339,T2_7}

PRINTL(A2,K2_b,K288,K3_O,|2(_)

PRINTL(A2,K_57,K2R9,K541,I2_q)

PRINTL(A2,K_38*K290_K3_2_T23U_
PRINTL(A2,K239_K291,KS_5,r2_19

PRI_TL(A2,KZBO,K2g_,K_,123_}

PRINTL(A_,K_I,K293,K3_5,T233;

PRIHTL(A2,K2W2,_2gg,K3_b,123_9

PRINTL(A2,K2_3,KPgS,K3_7,12JS)

PRINTL(A2,KZ_W,K296,K3W_,_23_)

PRINTL(A2,KZ_b,KZg7,KS_9, I237)

PRINTL(A2,K2_b,K298,K550,r208)

PkINTL(A2,KZ_7,K299,K55.1,I23g)

PRINTL(A2,K2_B,K300,K552,I2_O|

PRINTL(A2,K2_9,K30I,K353,T2_l)
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ENLJ

PH

PH

PH

I-'R

HR

Pk_

PR

k'R

PR

PH

PP,

MR

I_TL

IrJTL

Ir,_TL

INTL

II,JTL

IF_TL

INTL

II',_TL

INTL

I,_'rL

Ir,_TL

(A2_K25Up_302p

{A2pK251,K303P

(A2pKZ52P_304p

(A2pKZbbeK_N5,

(A2,K254w_(36p

TABLE C-4. (Concluded)

K354p12_2_

K355p1243)

(A2,KZ55,_307,

(A2,K257._J09,

(I_2pK25_pK310p

(A2pK_bgPK311,

(l_2,K_bUpK_12,

INTL(A3,TI,I>', 13, i

TI_), r16, TI 7, T1

"r2t_,r>>9, T 5(_, TJ

K356,[2_4)

Kj57,T_bJ

K35_,T2_6)

K359,[247)

K6O(_pl_4R)

K361pI249J

KJ62pI'2b())

K565,T261J

K36_,T262)

_,Tb,

H,TIQ

IJ

F_,T/,TR,Tg,TIu,rII,r12,T13,Tl_

,T_n,)2I,TZ2,TZ3,T2q,T25,T_,TZ7
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APPEND_ D

TEST DATA

Introduction

Test data for twenty phase change tests run at Marshall Space Flight
.

Centerts Test Division are included herein. These data includes temperatures

and phase change position time histories. Data for 1.9-cm (3/4-in.) and

0.635-cm (1/4-in.) ceils for twenty tests are given. Of these, nine tests are

melting runs and eleven tests are freezing runs. Data are divided into four

sections; Section I, freeze temperatures; Section II, freeze front position

height; Section III, melt temperatures; and Section IV, melt front position

height. Figure D-1 gives a presentation of temperature instrumentation loca-

tion for all runs. Only data from the last 1.9-cm (3/4-in.) and the center

0.635-cm (1/4-in.) cells are presented.

General Data Description

Temperature plots for test 230-5 through 230-15 were hand plotted, and

all subsequent tests were computer plotted. Although numerous additional

temperature data were acquired, only the fin and cell temperatures for the

center 0.635-cm (1/4-in.) cell and the last 1.9-cm (3/4-in.) cell (i.e., at

fluid outlet) are presented. Thermocouple T31 through T33 represent fluid
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temperatures not used in analyses and T-34 represents the lower plate temper-

ature. The phasechangeposition data were visually read from filmed data

using a film analyzer. Readingswere recorded and stored on computer cards.

These cards were input to a 4020computer plotter to generate position versus

time plots. Position data for center of cell readings are given for all tests.

In so_,e cases, the phasechangeposition on the upstream fins are _lso given,

these data are represented by starred and unstarred lines, respectively. In

the case of the 0.635-cm (1/4-in.) cell, when only one set of data is given

for both fin and center cell, this indicates that these two heights coincide. In

some cases the datawere truncated when the cells were completely melted,

in others the data plotting was continued. In the later case, this canbe easily

seenby the flatting of the data plots.

Across the top of somedata plots the following information parameters

are given; test type, internal test designation (official test designation), test

duration, date the test was run, initial paraffin temperature and fluid inlet

temperature.

In test 230-52 only 2000secondsof data is available becauseof

improper camera positioning. In test 230-7 the 1.9-cm (3/4-in.) cell data

were inadvertently lost. For this case the smootheddata are presented in

lieu of raw data.
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SECTION I

FREEZE TEMPERATURE DATA FOR

FINNED THERMAL CAPACITORS
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SECTION II

FREEZE FRONT POSITION DATA FOR

FINNED THERMAL CAPACITORS
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Figure D-24. Freeze front position data (test no. 230-7).
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Figure D-25. Freeze front position data (test no. 230-7).
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Figure D-26. Freeze front position data (test no. 230-10).
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Figure D-33. Freeze front position data (test no. 230-51).
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Figure D-35. Freeze front position data (test no. 230-52).
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Figure D-36. Freeze front position data (test no. 230-57).
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SECTION III

MELT TEMPERATURE DATA FOR
FINNED THERMAL CAPACITORS
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SECTION IV

MELT FRONT POSITION DATA FOR

FINNED THERMAL CAPACITORS
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Figure D-64. Melt front position data (test no. 230-5).
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Figure D-68. Melt front position data (test no. 230-8).
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Figure D-69. Melt front position data (test no. 230-8).
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Figure D-72. Melt front position data (test no. 230-49).
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Figure D-74. Melt front position data (test no. 230-50).
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Figure D-75. Melt front position data (test no. 230-50).
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APPEND_ E

DERIVATION OF INTERFACE BOUNDARY CONDITION*

8S
An observer on the interface at S(x', t) moves with the velocity _-_ in

OS
the y direction. He observes p_- 5 x 5t mass change phase during the time

5x 5x
interval 5t in the distance interval x' --- -< x -< x' + --. The heat

2 2

5x
liberated because of the change in phase is pAH _- and is equal to the net heat

5x 6x
conducted away from the interface between x' - -- and x' + u during St.

2 2

In the y direction, the heat conducted away is given by

aT L OT S ]
(E-l)

for

y : S(x' t)

In the X direction the heat conducted away is given by

_T L 8T S ]-KL 8_-("Ks "-_-x) (_0__.S5x8x 8t) ( E-2)

for

y : .

Equating the net heat conducted away from the interface and the heat librated

due to phase change gives

K. A. Rathjen; and L. M. Jiji: Heat Conduction with Melting or

Freezing in a Corner. Trans. of ASME, Journal of Ileat Transfer, February
1971.
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8Ts 8S 8TL 8S

- KS 8x 8x 0x0t + K L 8x 8x
8xat

8 T S 3S

5xSt + K S -_y 6xSt = pAH _ 6t6x

for

y = S(x',t)

rearranging and dividing by 5x 5t we have

8Ts OTL 8TL 8S 8Ts 8S

KS -_y -KL a--'-y--+ KL 8x 8x KS ax 8x

for

y = S(x' t)

We know the total differential is given by

8T S 8T S aT S

dTs = 8"-_ dx + O--'y- dy + O'--t- dt

However, along the interface T S = T F, a constant, so that

a T S 8 T S 8 T S
0 - dx + -- dy + -- dt

ax Oy at

for

y = S(x ,t) ,

and we also know

8S 8S

dy = 8--_ d_c + _-_ dt

(E-3)

(E-4)

(E-5)

for

y = S(x,t)

29O



Putting (E-5) into (E-4) gives

dx +

for

OTSoy 0tOS) dt = 0 (E-6)

y = S( x, t) .

Since x and t are independent

8Ts _Ts _S

Ox 0y Ox '

for

and

y = S(x, t) ,

(E-7)

8Ts 3Ts 8S

0t 0y _t

from equation (E-6), for y = S(x,t)

Also by the same method

for

and

8TL 8TL 8S

8x 8y 8x '

y = S(x,t) ,

(E-8)

(E-9)

8TL 8TL 8S

8t 8y 8t
, for y = S(x,t)

Substituting (E-7) and (E-9) into (E-3), we obtain

(E-IO)
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for

°Ts °TL OTL(as_
Ks a--y-- KL a--7-- KL 0--7-"_I

aTs (aS_ aS+ K S -_y _-_ = pAH s"T

y = S(x,t) o

Since x' is a general coordinate

s oy -KL ay/

y = S(x,t) ,

for

[1+ (aCXX_] = pAH aSat '

If the dimensionless temperatures TS* and TL* are introduced, the desired

boundary condition form is obtained,

where:

T S - T F

TS* =
T F - Tw

KL ( TL-TF )

T F = Fusion temperature,

T S = Solid Temperature,

T L = Liquid temperature, and

T w = Wall temperature.
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