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ABSTRACT

The use of satellites for wide area direct broadcasts results
in large power requirements for the satellite. Such satellites are
or will be used to provide remote health care delivery and educational
services to remote regions and many other new services including
warnings to the public of impending natural disasters. These new
special purpose satellites are very cost sensitive to the number of
broadecast channels, usually will have Poisson arrivals, fairly low
utilization {less than 35%), and a very high availability requirement.
To solve the problem of determining the effects of limiting C the
number of channels, the Poisson arrival, infinite server queueing
model will be modified to describe the many server case, The model
is predicated on the reproductive property of the Poisson distri-
bution.

For small changes in the Poisson parameter under the assumptions
stated previously, the resulting distribution of states or number in
the system will be Poisson. A difference equation will be developed
to describe the change in the Poisson parameter. When all initially
delayed arrivals reenter the system a (C + 1) order polynomial
must be solved to determine the new or effective value of the Poisson
parameter. When less than 100%Z of the arrivals reenter the system
the effective value must be determined by solving a transcendental
equation.

The model will be used to determine the effects of limiting the
number of channels for a disaster warning satellite. S5tate probabil-
ities and delay probabilities will be calculated for several values
of the number of channels C for arrival and service rates obtained
from disaster warnings issued by the National Weather Service. The
results predicted by the queueing model will be compared with the

results of a digital computer simulation.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

The use of geosynchronous orbit satellites for communications
began in the 1960's with SYNCOM I. Since then a network has been
established to provide international telecommunications via sat-
ellite to about 80 countries throughout the world. The use of
modern telecommunications has become so commonplace that there
is often a tendency to forget how recent are the technological
achievements which make such usage possible (COMSAT Report 1972).

The presently used network of commercial traffic comsists of
four INTELSAT IV series satellites and over 70 earth stations
all of which are used for point-to-point transmission of tele-
phone and television traffic. Such a network requires large and
expensive ground transmltter-receiver systems.

According to Podraczky and Kiesling (1972), INTELSAT is
presently prolecting annual growth rates of 15 to 35%. 1In
1965 INTELSAT I consisted of 480 communications channels. By
1971, each INTELSAT IV had a capacity of 10,000 channels,
Podraczky and Kiesling (1972) estimate that each next generation
satellite will have a capacity of 50 to 100 thousand channels
and that by 1990 the Atlantic region alone will reqﬁire 1,000,000
channels if the growth rate averages 357 annually,

In late 1971 an dinitiative study was conducted for the
Executive office of the President primarily by NASA and included
about 100 participants from various govermment agencies. This
study, "Communications for Social Needs" (1971), was an effort
to solve social problems through the use of advanced technology.
One of the results of the study was the conclusion that there

is an evolving need for what might be called special purpose



communications satellites.

The initiative study concentrated on an area of communication
satellite applications in which the ground receiver systems or
terminals were very large in number and hence a driving cost
parameter. Contrasting the commercial and the special purpose

types of communication satellites, one finds the following

differences:
Commercial Special Purpose
Low Power ' High Power
Point-to-Foint Transmission Wide Area Coverage
Small Number of Expensive Large Number of Low Cost
Terminals Terminals
Large Number of Channels Small Number of Channels

In usage, the operation of the special purpose type gener-
ally consists of transmitting information to many receivers over
a relatively large geographic area. The applications considered
in the aforementioned study were the uses of communications for
remote health care delivery, electronic mail handling, law
enforcement, education and as a possibles means of warning the
public of impending natural disasters, such as hurricanes or
tornados.

The most important difference between the commercial and
the special purpose satellites is that the major design objec-
tives are radically opposed to one another. Herbert Raymond
(1971) suggested that the most meaningful parameter for a com-
merclal satellite system is probably the utilization factor. It
should be high in order to maintain a profitable system. The
special purpose satellite must be designed using availability as
the major parameter. In the remote regions of the far northern
hemisphere, for example, where neighboring villages may be
separated by distances of hundreds of miles, the need for

emergency medical care can be met through the use of parapro-



fessionals communicating with doctors via satellite. However,
it is not reasomnable to expect anyone té wait for service in
this application. Should satellites be used in the future to
warn the public of impending natural disasters, it would be
essential to dispatch warnings as quickly as possible, A
system which warns of tornados 15 minutes after their occurrence
would be of little value to the public,

The National Aeronautics and Space Administration (NASA)
and the National Oceanic and Atmospheric Administration (NOAA)
have been conducting joint investigations of wvarious tech-
nologies in order to examine the feasibility of using communi-
cation satellites for one of the applications mentioned previously,
namely, to provide warnings to the general public in the event
of an Iimpending natural disaster. The various candidate systems
for disaster warning which have been suggested for consideration
include the mass ringing of telephones, microwave transmission
of radio signals, terrestrial radio networks and the use of
communication satellites.

Government organizations other than NASA are conducting
studies of terrestrial systems and NASA is confining its in-
vestigation to the use of satellites. When completed, the
studies will be used to determine the most cost effective system.
At the present time, satellites offer a very viable alternative
because several metecrological functions may be combined with
the communication function, and the satellite system has the
desirable property of being "hardened" against natural disasters,
That is, satellites are not prone to destructicn from an im=-
pending natural disaster,

The functions of a natural disaster warning system as re-
ported by Heln and Stevenson (1972) and in the Federal Plan for
Disaster Preparedness (1973) are:

1. Route disaster warnings to the general public.



2. Provide disaster communications among national,
regional and local weather offices and
affected areas.

3. Provide environmental information to the public.

4. Provide a system for collecting decision infor-
mation for the dissemination of warnings.

The natural disasters which would be monitored by a DWS
include tornados, severe thunderstorms, flash floods, tsunami,
earthquakes,hurricanes, forest fires, winter storms, and a
category called other,

The National Weather Service (NWS) is organized to monitor
and predict weather locally, regionally and nationally. This
organization as described in the Operations of the National
Weather Service (1971), consists of about 300 offices and centers
throughout the United States., There are national centers which
speciaglize in certain types of weather phenomena, such as the
Naticonal Hurricane Center in Miami, Florida. As part of the
NWS network, 41 Weather Service Forecast Offices (WSFO's) are
located throughout the contiguous United States.

The Weather Service transfers an enormous amount of data
through its network of offices. In the event of an impending
natural disaster, the NWS network is responsible for warning
the public through the mass media. In recent years, it has been
found that the present warning system tends to become saturated
during large scale disasters such as Hurricane Agnes which
occurred in 1972, 1In a report entitled The Agnes Floods (1972),
the saturation of the present warning system was cited as reason
for continuing research efforts to increase the capacity of the
NWS to provide natural disaster warning to the publiec.

In order to alleviate problems and to deal with the pro-
jected data transfer of the future (1980's) the NWS is in the
process of implementing the automation of routine weather data

through a network called Automation of Field Operations and



Services (AF0S) (1972). When fully implemented, AFOS will be
used to collect meteorological data through a data collection
system called GOES (Geostationary Operational Environmental
Satellite) (1972). Through the satellite system thousands of
data collection platforms (DCP's) located throughout the

United States will be interrogated periodically via a satellite-
computer system in order to determine local weather conditions
and whether or not there is an indication of any potential
natural disaster occurring within any given populated region.
For example, sensors might be used to determine water levels in
areas subject to flash floods. TIf conditions indicate a danger
level, a flood warning would be issued to the public in that
particular area.

The system may include a direct broadcast capability.
Warnings would be broadcast directly to home receivers or to
local transmission points which would then be rebroadecast to
home receivers. The home receivers would be designed so that
they could be activated by a signal repeated through the satel-
lite. A conceptual diagram of the functional system appears
in Figure 1.1.

In September 1973, the Aerospace Systems Group of the Com-—
puter Sciences Corporation in Arlington, Virginia, began work on
a feasibility study of using satellites for a natural disaster
warning system. This study, funded by the NOAA and managed by
the NASA Lewis Research Center, will provide the conceptual
design of a satellite DWS.

As will be indicated in more detail, the primary problem with
the design of such a satellite DWS is the determination of the
minimum number of communication channels required to service the
system needs. This determination requires an extensive analysis
of the message traffic for the proposed system in the early
1980's.

A message traffic analysis and simulation was performed at
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the NASA Lewis Research Center by Gerald F. Heln and Steven M.
Stevenson with the assistance of NOAA's Environmental Satellite
Service Administration and another was conducted by Vern Zurick
of the Environmental Research Laboratory in Boulder, Colorado.

In the former report, a model of communications traffic
was developed from the theory of multiserver queues., The
accuracy of the model is dependent upon the assumption that
the messages are requested to be sent according to a Polsson
distribution and the time required to transmit the messages
is distributed as an exponential density.

The data available at the time both studies were performed
was somewhat incomplete in that warning messages issued by the
NWS were recorded in terms of the number and type of messages
per month. The only information available concerning the message
length was the average message size. Thus a goodness-of-fit
test for the assumption of Poisson arrivals could only be
performed on the basis of number of messages per month. Since
this was adequate at the time, a test was performed and the
Poisson hypothesis could not be rejected at the 5% level of
significance. Because no data were available, the hypothesis
of the exponential density for processing times could not be
tested. The studies reported by Hein and Stevenson (1972) and
Zurick (1973) yielded valuable estimates of the number of channels
required, but the problem was somewhat complicated by a NOAA
requirement that the probability of message transmission would
have to be at least 0.9999999., Some method was required for
treating this specification. Hein and Stevenson (1972) inter-
preted the specification as "virtual certitude™ that at least
one channel would always be available to transmit a warning
message, Such a concept can be manipulated with multiserver
queueing theory if the arrivals are Poisson distributed and the
departures are distributed exponentially. Thus the emphasis on

Poisson arrivals and exponential departures in Hein and Stevenson



(1972) becomes obvious. The difficulty encountered with the
aforementioned analysis is that the limiting distributions of
service times do not seem to be exponential.

The satellite system will require a high Effective Isotropic
Radiated Power (EIRP). Present total satellite power is on the
order of 50 watts and designs of the mid to late seventies will
be limited to less than 500 -watts. As reported by the Computer
Sciences Corporation (1973), DWS satellites will require more
power than present designs can deliver. If the satellite is to
be a viable alternative, the power will be limited to something
less than 10 kilowatts which thus precludes the addition of
large safety margins for the channel requirements.

There is a genuine need to determine the minimum number of
channels for the DWS requirements. The application of satellite
technology for the solution of social problems such as those
discugsed in the study "Communications for Social Needs" (1971)
may be delayed if the problem discussed above is not solved.

The requirements for the DWS satellite are very similar to the
requirements for a large class of satellites which may be used

to solve some social problems. For lack of a better description
this class of satellites will be called special purpose communi-
cation satellites. The salient need is to determine the perfor-
mance criteria required for the estimation of the channel require-
ments. Thus the motivation for the topic of this dissertation

is the need for a solution of the problem discussed above. The
alternatives are to overdesign which is not feasible here, use
simulation techniques which may be expensive or use an analytical
technique.

A search of the literature dealing with queueing theory
revealed that general independent input and service distributions

present many difficulties. Thomas Saaty has stated (1961):



We shall give only the result. We refer readers
to the works by Kiefer and Wolfowitz on this
subject. The authors polnt out the desirability
of solving their equation for special values of
the input and service distributions but also
state the task is likely to be difficult.

In another work Saaty (1966) stated that queueing models
are rarely applied in practice. One of the main causes of this
dearth of applications is that the theory has seldom been de-
veloped because of need. In the solution of problems a frequent
approach is the use of fluid approximation techniques as dis-
cussed by Gordon Newell (1971). 1In the problem reported in this
dissertation the development of the theoretical model was
motivated by the application.

The potential solutien of the channel requirements problem
for special purpose communication satellites was thought to he
in the problem class of the GI/G/C queue. An extensive analysis
was made of the types of messages sent over the teletype network
of the National Weather Service. It was found that the messages
could be classified into six different groups of input. It was
also demonstrated that the six types of messages could each be
represented by a Poisson distribution, as will be reported
later. Although such a simplification should be expected for
large numbers of messages over the perlod of a month, the hypoth-
esis testing was done for: relatively short intervals such as four
or five days because of requests by the people involved with the
problem at NOAA. It is very important to know the distributions
of what NOAA personnel have called "spikes" or short bursts of
increased traffic intensity such as that experienced during the
ten days of rampage by Hurricane Agnes from June 14-28, 1972 or
the Palm Sunday tornados of April 11, 1965, so that the communi-
cation system can be designed to handle such traffic loads.

For this type of problem Saaty (1961) presented the distri-
bution of the waiting time for the M/G/1 queue using an n-fold
convolution. In the case of the M/G/» :queue Lajos Takace (1961)
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proved that the limiting distribution of the number in the
system exists and is also a Poisson distribution. In the case
of the many server process M/G/C, it is difficult to find useful
expressions. Newell (1971) states that the case of infinite
channel servers M/M/= represents an idealized form of a queueing
system in that the server itself causes no interaction between
customers. He also states that useful approximations can be
obtained for systems with sufficiently many channels, without
stating what is meant by sufficiently many.

Recent work such as Chen (1970), Inglehart and Whitt (1%69),
Inglehart (1969), Ross (1970) and Yu (1971) represents contri-
butions for certain classes of the many server problem, but
nothing was found which provides an analytical solution for the
problem of concern here, namely an estimation of the limiting
distribution of the number of customers in the system or the
waiting time distribution for Poisson arrivals and arbitrary
service.

A general background of the queueing problem was presented
in this chapter. In Chapter II there is a development of the
applicable queueing model. To demonstrate the applicability of
the theory, the work performed to classify the statistical distri-
butions of six types of message arrivals and departures for the
DWS is presented in Chapter III, and the third chapter is con-
cluded with the application of the theory to determine the DWS
channel requirements. In Chapter IV the predicted values and the
results of a continuous digital simulation are compared in order
to provide verification of the analytical model. This dissertation
ig concluded with a summary of results and suggestions for further

research endeavors in Chapter V,



CHAPTER TII
DEVELOPMENT OF THE APPLICABLE QUEUEING MODEL

In the previous chapter a rationale was presented for the
development of an availability criterion for special purpose
communication satellites rather than the utilization criterion
which is so important to a commercial venture. In this chapter
a queueing model will be developed for the type of problem dis-
cussed in Chapter I.

To develop the framework of the model, reference will be
made to the Poisson arrival model with an infinite number of
servers discussed in Takaés (1962). The infinite server case
has been solved for Poisson arrivals. The basic hypothesis for
Chapter II is that the state distribution for the many server
case should be similar to that for the infinite server case,

As will be seen from the Theorem of Takaés, the state distri-
bution for the infinite server model is Poisson. Because of the
reproductive property of this distribution and the fact that

the mean and variance are equal, a change in the Poisson para-
meter A to A + AA results in a Poisson distribution with a
mean and varlance of X + AN,

Thus the many server case should have a state distribution
which is at least similar to a Polsson distribution. The hypo-
thegsis will be developed with a presentation of background
material in 2.1 and the development of the model in 2.2. A
general relationship will be presented in 2.3.

2.1 Prerequisite Queueing Theory

In the case of an infinite number of servers with Poisson
arrivals, Takacs (1962) proved that with an arbitrary service

discipline, the limiting distribution of the states can be

11
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represented by a Poisson distribution. Moreover, the distri-
bution is independent of the initial state. The proof of this

t
theorem is given in Takacs (1962), and is stated here.

oa

Let o iﬁde(X) and P{£(t) = K} = Pk(t)
0

where o 1s the average service time, Pk(t) is the probability
of being in state K at time ¢, © d1s the Poisson arrival para-
meter, and E£(t) is the queue size or number in the system.

Theorem 1. If £(0) = 0 then

t V -
t ,[e f [ - H:(x)]d:JK
P (t) = EXP [-Ef[l—ﬂ(x) ]d)a 0_ =
5 7 K!

(1)

for K=0, 1,2, . ..
and if o < = then

1im P_(t) P* (K=0,1, 2 )

m = = , e

tom K K ? ?
exists and we have

P‘* . e—eﬂ. (GG)K

K X! (2)

The interpretation given to equation (2) is that it gives the
long term proportion of time spent in each state, where state
refers to the number in the system. Since there are an infinite
number of servers available, an arrival is served immediately
upon entry into the system. Because of the immediate service
the servers do not cause any interaction between customers. There

is input, processing and output. The expected values of the

queue length and the waiting time (excluding service) in the
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queue are both zero,

2.2 Development of Applicable Model and Effective Values of State

Parameters for the Many Server Queue -

In the situation encountered in the special purpose communi-
cation satellite (which is also applicable to many other problems
where availability is an important design criterion}, the mar-
ginal cost of adding a server is usually large. At the same
time the risk encountered by not adding a needed server is prob-
ably larger than the marginal cost of adding a server. Because
of the intangibles involved it may be necessary to accept the
risk of not adding a server. It is important to determine the
effects of limiting the number of servers. In the infinite
server case depicted in Figure 2.1 arrivals are served upon entry
and depart after receiving service.

In the case of the many server queue without storage,
arrivals will have a certain probability of being rejected if
there is no server available when the arrival enters the system.
In the case of the special purpose communication satellite,
most of the arrivals will keep trying to enter the system until
a server is available. 1In many problems, however, a fixed
portion will leave the system and not return. The fixed fraction
not returning will be specified by (1 - v) where 0 <y < 1.
Figure 2.2 shows the effects of limiting the number of servers.

As stated previously, y will usually be 1 in the application
presented in this work. Thus 100y% return for service again.

In the theorem of Takacs (1962}, the state probabilities of
the system can be described with a Poisson distribution. The
parameter for this distribution is the Poisson parameter for
the arrival rate times the average service time. That is ‘A = Ba.
When the number of servers is constrained, the effect of the con-
straint may be described as an effective increase in the average

number of arrivals. Since the service time remains constant, a
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15

difference equation can be written to describe the effects

of server-customer interaction. An arbitrary time interval

will be selected so that the rejected arrivals will have a

very low probability of entering the system more than once during
the same time interval. For the first interval of time at start-
up, the parameter Ai = Bia may be described as

Ag = Ag + 0 (3)

During the second time interval

Ay = Ao F yagR(Cig) ()
where Yy 1is the portion of rejects returning; ¢ is the comple-
mentary cumulative of the Poisson distribution; AO is the

Poisson parameter and € 1s the number of servers in the system,
The second term on the right side of equation 4 is the parametric
increment caused by the rejected customers returning for service.

For the third interval

>
L]

2 = g+ YA E(CA))

KO + Y[AOQ(C,AI) + ylo®(C,ll)®(C,lo)]

Ao+ 72(C,0 ) + v28(C,A ) 8(C,2 )] (5)

To simplify the notation, &(i) will be used to denote
@(C,li). For the next interval

= g + gl + yo() + yZe(1)e(0) 14(2)

xoll *+ ve(2) + vPae) + s @)e1)0()] )
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In general,

-
1

5= Aoll + o031y + Y28(4-1)8(4=2) + ... + yI0(§-1)...9(0)]

|
>
o
{ = )
+
._1
Clhmu
-<u
-
[y
|
O
2
=
L=
_J

(7

It 1is necessary to determine whether this sequence converges
and if so, to determine the interval of convergence. In the

event that'{Aj} converges to some effective value, there will be

an epsilon such that

where epsilon can be made arbitrarily small.
The sequence‘{kj} is a non-decreasing sequence. Each
successive value of the sequence is the sum of positive terms

because RO is positive, v lies between 0 and 1 and the

{#(i)} are probabilities. Thus

Ael 2 Ay for all N >0

which implies
Ao > A for all N>0

The ¢omplementary cumilative of the Poisson distribition for
C servers 1s the probability of an arrival being rejected and

is denoted by
n -A
.15 e’'g
¢(g) = o(C,A ) =1 - ii
g =g )
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Substituting this relation into equation (7) yields

n
j=1 . .| 3-1 A, C A
=g (TS VT T (- FY
J 1=0 =1 n=0 ' (9)

-
H
o
o
=t
+
-
o
|
[
.
|
=
r—I‘
-
+

The summations can be simplified using the relation

bl
lim A
C—mZ:_ nr - ¢ -
n=0

Then the term

Sy, &AL
yl1 —e 37ty =L

where the number of servers is infinite, results in the following

o1 M-t

¥[l - e e 1=0
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In general, since

n!

A1 & Mg e,
il - e J E:: . <y \l-e J

independently of the wvalue of (. Using this inegquality, equatiomn

(10) may be rewritten as an inequality

~A -A, Y
RV ;\0[1 . 7(1 . j—l)_k ¥ (1 . 3-1) (1 . 1_2) .
A -1
+...+'Yj(1—e J_l> res (1—9 0)] (11)

Using the fact that

_lo < kN for N> 0

it 48 then true that

pod -

for all j > 1.

It is also true that

o) o

for all N such that 1 <N < j.

-1 “Ay-n
Substituting 1 - e for all 1 - e for all N din the
interval 1 < N < j does not change the direction of the inequal-

ity in 11, and so it can be simplified to
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-2 A
?\jf_lo[l-i—y(l-!.-e jl)+'\(2(l-—e j'1)2+
Iy —)\._ .

+...+Yj-(l—e 31)3]

which can be expressed

j ( -2, )
i j=1 )i
A, <AL D ) 1~
g =0l Y © (12)
-\, -A,
As Aj-l increases, e -1 approaches 0+ and Y(l - e 3'3

is always less than one. The use of d'Alembert's Ratio Test
guarantees the convergence of the right side of inequality (12)
as j appreoaches =,

The interval of convergence for the sequence‘{kj} is de-
pendent upon the value of C, the number of servers. For the
case where C = =, the sequence should provide results which
are consistent with the theorem of Takaés mentioned in the be-

ginning of this chapter.

For C = =, during the interval of time for ‘Aj where j > 0

A=At g, ¢(3-1)

Ai

A1 <L A
= AO + YA._l 1-e 3 E:: —%T—
J i=p (13)

Since there are an infinite number of servers,

A1 Ay
*-1 Z_;,____e L I
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Thus equation (13) reduces to

AL (L-1) =2

= +
3 AO YA

j-1 0

'
which agrees with the theorem of Takacs. In the case of the
infinite server model, there are no limitations placed upon
arrival rates or service times. In the limited or many server
case, it is necessary that AO = Gou be less than the num?er
of servers in order to have a stable queueing system {Takacs
1962); otherwise the queue length increases without bound. The
model developed in this chapter implies an additional constraint
for stability in the many server case. Thus it is necessary to
investigate the convergence interval for the model in order to
determine the effects if any on the limiting value of AO = Goa.
If there exists a limit which is less than the number of servers,
this value may be determined from the convergence interval. The
maximum Ao will be given by Min [C,AO].

The C = 1 case will be examined to determine the extent of
the more stringent stability requirement for the reentry model
for y =1, The C=2, y =1 case will be discussed in the
next section, and then a general case will be develeped for
y = 1.

Single Server Case When vy =1

Since Aj = X

-1 + ¢ and from the proof that the sequence
converges, e can be made less than some arbitrary number. When

this convergence ocecurs, A and all‘{AK}K > j} may be denoted

by A, which will be refeired to as the "Effective" A. The
limiting effective values will be developed for 2 values of C
in this section and the next and then a general relation will he
given.

C = 1. For the case when € = 1, assume that the Effective 2

has been reached if it exists. Thus
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_A*
;‘* = Ao + ;\*[1 - e 1+ A*ﬂ (14)

will be used rather than the exact relation

‘-;\j"'l
-Aj-l =‘A0 + kj—l 1l -e (1+ lj—l) - €

A proof is given in Appendix A that the two forms are equivalent

if the sequence converges. Solving equation (14) for AO yields

.-K* 2
g e (A*_k)l*) A{15)

Considering AO as a function of X, it is necessary to de-
termine the value of A, which maximizes the function in the in-

terval of convergence if such a value exists.

da - —~A
=0 AT ] * .
@, GFIme  Oy# D =0 (16)
2
d. }\0 _ ._;\* 2 :
> = e (Ag = 32 (17)
di,

The second derivative is negative for all A, 1n the interval
0 < A, < 3. Therefore the function has a maximum value in this
same interval if there is a solution of equation (16) in the in-

terval. Solving the equation yields

Discarding the negative root which is physically meaningless
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A*MAX = 1.618
which lies within the constraint. Solving equation (15) for
the value of ”AO yilelds

AOMAK = MIN [1, 0.8399] = 0.8399

The interpretation is that Aomax (GOG)MAX is the maximum
value that will yield a controlled process if there is only a
single server. If this value is exceeded, the average state of
the process will eventually increase without bound because of the
reentry mechanism. As an example, if ¢ = .5 minutes, then

BOMAX = 1.6798/minute is the maximum average arrival rate that
will yield a stable system for the C = 1 case. Also, the
proportion of time that the system will be in each state can be
described by a Poisson distribution with a maximum parameter
.A*MAX = 1.618. A table of limiting values for C =1 to 20

is given in Appendix C and the general equation for determining
the values is presented in the neﬁt section of this chapter.

2.3 General Equation for Evaluating the Limiting State Parameters

In this section a presentatlon of the C = 2, vy =1 case
will be given and then the general equation for C =n, y =1
will be presented. When vy = 0, the solution is trivial and
when 0 < y < 1, the resulting equation 1s transcendental; this
case will be discussed later,

C=2,y=1

For this case

2
A A
l*=.}\0+)\* l1-e l+k*+i—
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Solving for 10 yields

-A 3
® 2 Al
?\0=e (A*+)L*+ ;)

Differentiating with respect to A and equating to O,

*

dA
0 _ .3 2 _
T A~ Ae — 21* -2 =20
*
yields
A*MAX = 2,2695
and
AOMAX = MIN {2, 1.3711] = 1.3711
In addition to the constraint that AO < 2, the new constraint
requires lo < 1.,3711 for a stable system when vy = 1,
C=n, y=1
For the general n server case
' n %
Ag = i + a2+ + A* -FA*' 18
0~ °© S AR e Y ) (18)

Differentiating with respect to A, and equating to zero yields

nt+l n n—-1
A* . A* . A* 1 =0
Sy =y B s b R (19)

According to the rule of signs developed by Descartes (1637),
this polynomial has exactly one positive root. To obtain the
roots of polynomials there are many computational methods
available. One which is rather easy to use is the Newton-Raphson

method discussed in Dorf (1967). According to this method the
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next estimate of the root of £(x) is given by

f(xn)

x = X = o
nt1l n f (xn)

A computer program was written to search for the root of

equation (19). The program and sample outputs are presented in

Appendix C,

After the value of -A*MAX is obtained AOMAX may he
computed, If AOMAX is less than C, then -AOMAX is the
maximum A for that C; otherwise C 1is the limit.

0
Case when 0 < vy < 1

In the case when Yy = 1 a polynomial evaluation is re-
quired to determine the value of X, for a given C. Then

the limiting value of }. may be determined. When 0 < y < 1,

0
only a fraction of the rejected arrivals return to the queue.

Thus -A*MAX increases without bound as vy approaches zero. As

this happens, the new constraint on AO is relaxed until

Aoy = C. For C =1 ‘this happens wherw -y < 0.85.. The general
constraint is = MIN [C,AO] so that vy < 0.85 yields a

limit of 1 for

Aomax
A omax”
values of C d1is given in more detail in Appendix D.

The effect of varying vy for different

Summarizing the results of this chapter, an equation
which describes the effective change 1n the Polsson parameter
of the theorem of Takaés was developed as a model for the
many server case. It was proven that the sequence converged,
The root of (19)is the effective value of the Poisson parameter
for the many server case when Yy = 1. Using the root of the
equation a maximum allowable value of AO can be determined
using equation (18). If this value is less than the number of
servers or channels, then a more stringent maximum value of
X, = 6. a exists in order to have a stable system. If the

0 0

maximum AO is not exceeded, then the resulting state probabil-

ities may be described as a Poisson distribution with a parameter
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~A,. The constraint for stability is

AOMAX < MIN [C"AO]
where € 1is the number of channels and ADMAX for a given
C may be calculated or determined for some values of C
from the table in Appendix C.
To make use of the model presented in this chapter, it
is necessary to evaluate AO from data and then determine
the feasible range for C. Thus if ), 1is greater than .83
and y = 1, the minimum feasible € 1is 2 rather than 1 which
would be the minimum feasible C for y = 0.
In the next chapter, an application of the theory presented

in this chapter will be developed for a particular communication

satellite system.



CHAPTER I1II
APPLICATION T0 THE DESIGN OF SATELLITE CHANNEL REQUIREMENTS

In Chapter I a comparison was made between the commerical and
the special purpose communication satellites., Tt was pointed
out that the design philosophies of the two are in general quite
different. As an example of this difference it was stated that
high utilization is one of the most important parameters of the
commerical venture whereas availability is one of the most important
parameters for the special purpose type. One of the best
examples of a special purpose satellite design being motivated
by an availability criterion is the proposed use of a satellite
system to provide warnings to the public in the event of an impending
natural disaster such as a hurricane or a tornado,

The problem of determining the required number of communications
channels for a natural disaster warning satellite has been selected
to demonstrate the application of the theory presented in Chapter II.
This demonstration requires a knowledge of the statistical patterns
associated with the message arrival and processing times. As
stated in Chapter I, the analysis performed by Hein and Stevenson
(1972) was incomplete because the data were analyzed for
intervals of a month over a period of six years to determine the
arrival patterns. In order to demonstrate that a Polsson distri-
bution could be uged to describe the arrival patterns over a period
of a few days or even a single day, it was necessary to take the
output of the present NWS communications system and perform tests
on these data.

Another shortcoﬁing of the study by Hein and Stevenson (1972)
is that the message lengths could not be categorized statistically
since data were not available. In order to obtain this information,

it was mecessary to count the number of characters in each message.

26
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This determination of arrival patterns and message lengths was
performed for six categories of messages issued by the NWS.
These categories are:
Hurricane Warnings
Tornade and Severe Storm Warnings
Winter Storm Warnings
Small Craft Warnings
River Warnings
Other Warnings
The source of data for hurricane warnings consisted of the
819 messages sent during the events of Hurricane Agnes; these
messages were published in the Preliminary Report on Hurricane
Agnes (1972). The source of data for the remaining five types
consisted of hundreds of feet of teletype output from the NWS in
Silver Spring, Maryland. The origination time of each message was
noted for every message of each particular category to determine
whether Poisson distributions could be used to describe the arrival
patterns of each category for the contiguous United States.  Each
message size was determined through a character count and the
processing time was determined by allowing 5 characters per word
at a nominal speaking rate of 137 words per minute. The categories
"River" and "Other" were combined in the analysis because there was
an inadequate sample for the "Other" category. A summary of the
results of the analysis of the message data is presented in Figure
3.1. The procedure used for each message type is discussed in more
detail below.
A presentation of the statistical procedures and analysis of
the NWS warning data is given in Section 3.1 for each of the six
categories of messages. Since the Poisson arrival pattern is
required for the theory developed in Chapter II, the null hypothesis
is that the arrival pattern may be represented by a Poisson distri~
bution for each of the six types of message categories. Since the

class marks are integers and the number of events for a Poisson
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distribution is an exclusive class (as discussed in Bradley
(1968)), the Chi-squared goodness-of-fit test was selected to test
the Poisson arrival hypothesis.

The message broadcasting time probability densities may be
arbitrary according to the theory of Chapter II. In order to
develop a computer simulation of the model, however, individual
service densities were hypothesized and tested. For each
category of warning message, the broadcast times were plotted as
histograms with varying class sizes (.05 to .1 miputes). In the
case of the hurricane warning messages, the density was immediately
seen to resemble a log normal density as will be demonstrated in
Section 3.1. For the remaining categories, the uniform density
seemed to be the most logical choice. The goodness-of-fit test
used for the determination of the acceptability of the hypothesized
densities was the Kolmogorov-Smirnov because the distribution
functions are continuous and because the Kolmogorov-Smirnov test
is superior to the Chi—squared'testf(Bradley;(1968)).

In Section 3.2 a projection of message traffic is made for
1985 since that will be the nominal traffic year for the first
generation of DWS satellites if satellites are to be used, Then
the theory of Chapter II is used to perform a comparative analysis
for different values of €, the number of channels available for
simultaneous broadcasts.

3.1 Analysis of Message Traffic Data

Hurricane Message Traffic

In order to determine whether hurricane warnings occur according
to a Poisson arrival patterﬁ as required for the theory of Chapter II,
an analysis was made of all warning messages sent during Hurricane
Agnes during the period June 14-28, 1972. Each of the 819 messages
were used to determine the arrival pattern. The movement of Agnes
up the Atlantie coast is shown in Figure 3.2. The maximum daily

count of messages was 195; the date of occurrence was June 19,
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which coincides with the approach of the hurricane to Panama City,
Florida.

The days prior to the nineteenth saw relatively little warning
message activity. Once the hurricane passed Panama City and
started up the east coast the message intensity subsided with the
hurricane as it passed over land. The next major problem was one
of severe rain and floods around Washington, D.C. and in Pennsylvania.
Thus the message intensity increased around the twenty-second of
June and remained rather high until the twenty-fifth,

The data analysis for the hurricane warnings consists of
testing the hypothesized statistical patterns. A goodness-of-fit
test was performed for the Poisson arrival hypothesis and will be
presented with the data and analysis for the broadcast time
densities. Agnes was recommended for analysis by the NWS because
it represents one of the worst hurricanes on record, and would
have to be considered in the design of a satellite DWS.

In order to test the hypothesis of Poisson arrivals over the
peak ten days of Agnes and over an interval of one day, two
goodness-of-fit tests were performed. Some of the days during the
June 14-28 period had relatively little message activity. As
might be expected these periods are June 14-16 and June 25-28.  The
time of greatest interest to the NWS and to NASA would be June 19th
because of the 195 messages transmitted that day. The design of
the satellite requires a consideration of the worst spikes im the
system. The 19th was divided into 48 periods of a half hour duration
in order to perform a goodness-of-fit test. Any period smaller
than one-half hour would degrade the arrival pattern to an exponential
form because of the large frequency of zero events.

The 195 messages over 48 periods yielded a parameter estimate

of 4.08 messages per half-hour. The frequencles were as follows:
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No. of Messages Frequency
0
1 3
2 5
3 11
4 8
5 7
6 3
7 4
8 2
9 1
10 0
11 0
12 1

Since the Chi-squared test requires that cell frequencies
be equal to or greater than 5, the classes 0, 1 and 2 were
combined into one class and 6 to 12 were combined. The Poisson
probabilities were calculated for each class and multiplied by
the total events to get expected cell frequencies. The experimental

value of Chi-squared was calculated using the equation

2

S (fi - ei)z
X = [ S

1=1 i

where fi is the observed frequency for cell 1, e, is the ex-
pected frequency and K is the number of cells or classes, For

this test the experimental value was 0.39. In Miller and Freund
(1965), the tabled value of Chi-squared for the 5% level of signi-
ficance and 3 degrees of freedom is 7.815. Although the experimental
value of Chi-squared. was reduced through the combination of classes,

the fit is very good; the null hypothesis could not be rejected.
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Another distribution of considerable importance is that of
the maximum number of messages during each 15 minute interval over
the period June 14-28. This distribution is important because
it represents an arrival compression (such as occurred in the
tornados of April 3, 1974) of the traffic intensity. Another
reason for the importance of this distribution is that it filters
the effects of arbitrarily selecting a convenient time period
for broadcasting warnings. For this distribution the parameter
estimate was 2.96 per 15 minute interval or 6 per half hour. This
rate is about 50% greater than that for June 19. The number and

frequency of events for the distribution of the maxima is as follows:

Number of Messages Frequency

3
23
20
13
13
12

(Yo R (I N T B - " I - R ]
- O = B R

=
<

Classes 6 to 10 were combined into one class in order tc have five
or more in each class for the Chi-squared test. The experimental
value of Chi-squared was 10.09. The tabled value in Miller and
Freund (1965) for the 5% level of significance and 5 degrees of
freedom is 11.07. Thus the hypothesis that the distribution of the
maxima may be represented as a Poisson distribution camnot be
rejected.

The goodness-of-fit tests for the Poisson arrival hypothesis

were required because the theory of Chapter II requires Poisson Iinmput.
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The only requirement for the output, or broadcast times in this
case, is a knowledge of the average broadcast time. In order to
develop a computer simulation of the process so that the theory
may be appropriately tested, the density functions for the
broadcast times were determined.

The hurricane warning message broadcasting times were
classified into cells of .05 minutes (3 seconds) on the interval
0.3 to 4.0 minutes. The frequency histogram of the broadcast
times is shown in Figure 3.3. This frequency polygon possesses
the shape of the log normal density and so the null hypothesis was
that the broadcast times for hurricane warnings are distributed
as a log normal density. Since the logarithm of a log normally
distributed random variable is distributed normally, the logarithms
of the boradcast times were used for the goodness-of-fit test.

The test used was the Kolmogorov-Smirnov but the test was for a
normal distribution and since the mean and variance were unknown,
the test for normality as described by Lilliefors (1967) was used.
If N is the sample size and D 1is the maximum deviation
between the hypothesized and the actual distributions, then for

a significance level of 5%, the critical value of ’y”ﬁ'D “is
0.886.

After the broadcast times were determined and classed the
mean and standard deviation of the logarithms were estimated from
the data to be 0.13 (1.15 minutes) and 0.6 (1.8 minutes) respectively.
The theoretical and experimental distributions were then compared
to determine the maximum deviation between the two, The largest
deviations occurred in the right tail of the density functions in
such a way that the theoretical distribution function lagged the
experimental distribution function. The two distributions differed
by less than 0.02 up to the 0.909 value of the experimental distri-
bution. The maximum deviation of 0.039 occurred when the wvalue
of the logarithm of the broadcast time equalled 1.08.. At this wvalue

the observed and expected values of the distribution functions were
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0.982 and 0.943 respectively. The calculated value of ’Vﬁ_ D

was 0.866 which is less than the ecritical value of 0.886. Thus
the log normal hypothesis could not be rejected at the 5% level

of significance. Moreover, since the theoretical distribution
function lags the experimental one, there is a safety margin

added in the simulation program because the dispersion of
broadcast times is larpger than is actually necessary, as indicated
by the fact that the experimental density tapers off more quickly
than the hypothesized density functiom.

Winter Storm Warning Message Traffic

The data sample for the winter storm warnings consisted of
the NWS teletype rolls for the period December 15-17, 1973. There
were 89 messages in the sample. The maximum number over a period
of one hour occurred from noon to 1 p.m. on December 1l6th. At
that time 7 messages originated at 12 noon. To test the Foisson
arrival hypothesis, the Chi-squared test was used. The experimental
value of Chi-squared was calculated to be 1.59. The tabled
value of Chi-squared for the 5% level of significance and 2 degrees
of freedom is 5.991. Thus the Poisson distribution seems to be
quite acceptable.

The message broadcasting times varied from .55 minutes to
3.81 minutes. The 9 messages with durations greater than 2.7 minutes
originated primarily in New York and consisted of regional warnings
for the eastern USA (Maine to Georgia, Lake Erie to the Atlantic
for Special Weather Bulletin 15 originating in New York at 6 p.m.
December 17, 1973 and lasting 2.8 minutes).

The broadeast time probability density function for the winter
storm warnings seemed to be uniform on the interval from .55 to
2.7 minutes. Since the hypothesized density was continuous, the
Kolmogorov-Smirnov test was used. The hypothesized interval was
0.5 to 2.7 minutes. The maximum deviation between the observed
and expected distribution functions was 0.13 which occurred twice

at 2.03 and 2.06 minutes. The expected distribution lagged the
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observed distribution; the theoretical values of the distribution
were 0.70 and 0.71 and the sample values were 0.83 and 0.84. Thus
the theoretical distribution is more conservative than what was
actually encountered in the sample.

In Beyer (1966}, the asymptotic critical deviation for the
Kolmogorov-Smirnov test at the 5% level of significance is given
as 1,36/'Yﬁ_ where N dis the sample size. The sample size for
the winter storm warnings was 80 (9 regional broadcasts excluded
from sample) and the critical value was 0.15. Since the maximum
deviation between the distribution functions was 0.13 the uniform
density hypothesis for the winter storm warning boradcast times
could not be rejected.

Tornado and Severe Storm Warning Message Traffic

The data sample for tornado and severe storm warnings consisted
of the NWS teletype rolls for December 3, 4 and 13, 1973, when there
was considerable meteorological activity of this type. Although
the occurrences were small compared to the April 3, 1974 tormados
which oecurred on a line from Huntsville, Alabama to Toronto, Ontario,
the analysis was performed to determine if the statistical arrival
pattern could be modeled with a Poisson distribution and to obtain
information regarding the broadcast time densities.

The data comsisted of 100 messages originating over the 3
days in the states of Georgia, Tennessee, South Carolina, Loulsiana,
Texas, Arkansas, Mississippi, Missouri, Alabama, Florida, Indiana,
Illinois and Kentucky.

The Chi-squared statistic was used to test the Poisson hypothesis
using the number of messages origlnating in each 15 minute interval
over the 3 days of data. The calculated value of Chi-squared was
2.31, The tabled value of the statistic for the 5% significance
level and 2 degrees of freedom is 5.991. The hypothesis could not
be rejected at the 0.05 level of significance.

The broadcast times for the 100 messages ranged from .45 to 1.23

minutes. A uniform density from .45 to 1.25 was hypothesized and tested
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using the Kolmogorov-Smirnov test., The asymptotic critical value
of the maximum deviation between the observed and expected distri-
butions at the 0.05 level is 1.36/ AN = 0.136. The maximum de-
viation of 0.11 occurred at the 4 times 1.04, 1.05, 1.06 and 1.07
minutes. The observed and expected values were .85, .86, .87, .89
and .74, .75, .76, .78 respectively. The expected values of the
distribution lagged the observed values yielding conservative
estimates of processing times. The uniform hypothesis could not
be rejected at the 0.05 level of significance.

The density type and bounds are not surprising in view of
the necessity for extremely rapid dispatch for this category of
message. The body of the messages consists primarily of an
alert, watch or warning and the expected duration of the hazard.

Small Craft Warning Message Traffic

The data sample for the small craft warnings was taken from
the NWS teletype rolls for December 5, 11, 17, 1973 and covered
a geographic region from Maine to Texas.

The three days were divided into 15 minute intervals to test
the hypothesis of Poisson arrivals. The tabled value of the
Chi-squared statistic for the 5% level of significance and 2 degrees of
freedom is 5.991., The calculated value of Chi-squared was 3.33.
Therefore, the Poisson hypothesis could not be rejected at the
0.05 level of significance.

The message sample consisted of 35 messages with a range of
broadcast times from 0,25 minutes to ome minute. A uniform
distribution was hypothesized for the message duraticns and tested
with the Kolmogorov-Smirnov goodness—of~fit test. The critical
value at the 0.05 significance level and a sample size of 33 is
0.23. The maximum deviation between the observed and expected
distributions was 0.13. This deviation occurred when the
expected and observed values of the distribution functions were 0.73
and 0.86 respectively. Again, a lag exists between the expected

and observed values causing the simulation to produce somewhat
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conservative results.

The goodness-of-fit test for the small craft warning
broadcast times was performed by excluding the 3 data points
1.70, 1.85 and 1.87. However, all calculations and simulations
were performed using the interval 0.25 to 1.75 for the uniform
distribution of small craft warning broadecast times.

River and Other Warning Message Traffie

The river and other categories were combined because
there was an inadequate sample of the '"other' category. The
data for these categories came from the teletype rolls of the
NWS for the period December 3-7, 1974 and the messages examined
covered the 48 contiguous states. The Poisson arrival hypothesis
was tested in the same manner as the other warnings. The tabled
Chi-squared value for the 57 significance level and 1 degree of
freedom is 3.841. The experimental Chi-squared value was caleculated
to be 1.88. The null hypothesis could not be rejected at the
0.05 level of significance.

A uniform distribution was hypothesized for the broadcast
times on the interval 0.6 to 1.6 minutes and was tested using
Kolmogorov-Smirnov. For the 5% significance level the critical
value of a sample size of 35 is 0.23. The maximum deviation
between the observed and expected distributions was 0.20 at the
value 1.21 minutes. The expected distribution lagged the observed
distribution over the entire interval which causes the data to
yvield conservative time estimates.

3.2 Expected Message Traffic and Channel Requirements for 1985

The NASA and NOAA joint working group for the examination
of the feasibility of implementing a satellite DWS has been in
existence since 1971. Before the results of detailed traffic
analyses were obtained, it was estimated by the joint group that
a satellite DWS would be required to have ten simultaneous broadeast
channels for disaster warnings to the public. As the feasibility

study by CSC progressed during early 1974, it became obvious that
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the ten channel requirement would result in very heavy and
expensive satellites, Therefore it was necessary to examine the
ten channel reguirement to determine whether or not it could be
relaxed. This examination required a detailed traffic analysis
of the type presented in Section 3.1. At the same time, it was
necessary to obtain estimates of what might be expected as the
worst case occurring in 1985 when the satellite system would be
in operation.

A linear regression analysis was performed using six years
of weather warning data and was reported by Hein and Stevenson
(1972). A more detailed analysis was performed by the Computer
Science Corporation (1973). In the latter analysis, each message
category was analyzed to determine trends and seasonal variations.
The upper 95% confidence interval was used as an upper bound for
traffic estimates. These data were then extrapolated to 1985.
Although this estimate may seem unrealistic, very definite linear
growth patterns have been experience during the last eight
years. The linear correlation coefficient for the regression
analysis of total monthly warnings was greater than 0.95. However,
it is believed that the traffic load estimates by CSC (1973) for
1985 are conservative. During a joint NOAA-NASA review of the
satellite feasibility study on April 23, 1974, Dr. John Townsend,
Deputy Administrator of NOAA, stated that the primary factor for
the growth in numbers of warnings during recent years has been
the increased capability of spotting severe weather conditions.
This growth in capability has been multilateral. There are thousands
of spotters throughout the U.S. at the local community level who
report sightings of tornados to the NWS within minutes, and some-
times seconds, after the sighting. At the same time, the use of
advanced technology has enhanced the capability of the NWS. A
vast communications network exists to relay data from all parts
of the country, and to transfer satellite imagery which also has

greatly enhanced meteorological capability. Dr. Townsend said that
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he expected the growth in warnings to subside as the network
reaches a point of diminishing returns. Thus linear extrapolation
to 1985 is fairly conservative,

The maximum estimated monthly load of 21,370 messages will
occur during the month of December. The estimates for each category

are as follows:

Number of Messages

Category ) Per Month
River 1608
Tornado and Severe Storms 548
Winter Storms 5521
Small Craft 8727
Other 4966

The effect of a hurricane such as Agnes will be included below.

The average number of messages occurring in December for the
six years of data examined is about 7500. The estimate of 21370
for 1985 will probably not be achieved. In this situation such
conservatism is preferable to underestimating the traffiec flow
because of the availability requirement. Using the 21370 estimate
and the evidence that the arrival patterns can be described by a
Poisson distribution, an estimate of the parameter is 0.495
messages petr minute for the ‘arrival rate. The Poisson parameter
obtained for Hurricane Agnes was 0.035. Thus the parameter for
the total arrival rate is 0.53 per minute.

A welghted average broadcasting time was determined from the
data analyzed and is summarized in Figure 3.4.

The estimate of the awverage broadcasting time is 1.18 minutes.
This estimate is for the month of December which is weighted heavily
by the effect of winter storm warnings. The 1.18 minute estimate
is the longest average broadcast time since the largest number of

messages as well as those longest in duration occur in December.
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Hurricanes
Tornados
Winter Storms
Small Craft

River & Other
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Relative Frequency

0.066

0.024

0.242

0.381

0.287

Average Broadcast Times (mins.)

1.15

0.85

1.60

Figure 3.4 Relative Frequencies and Average Broadcasting
Times for Each Message Category for the Month

of December.



43

The Poisson parameter and the average broadcasting time

may be used to determine the ipitial state parameter:

A, =0 .0 = (0.53) (1.18) = 0.6254

6
0 0

Once the value of AO has been determined, it is necessary to
determine the feasible range for the number of channels. Since
%

is l <C < e,

is less than AOMAX for one channel, the range of feasibility

The equation
-k M A
A = Ag T re |1 - L4, +t5r + .0t or

must be solved for A, over the range of values of interest for
C, the number of simultaneous broadcast channels in the satellite.
After determining A4 for the range of C, the state probabilities

must be determined from the equation

Y S W
PK = E%‘e K=0,1, 2, ...

These state probabilities for the effective lambda (3,) may be

used to calculate the probability of a delay, or to determine the

probability of a delay exceeding a given time value. Now the

determination of the effects of limiting C becomes a relatively

simple analytical procedure and does not require the use of

simulation. The procedure may be used to determine the required

number of channels for any queueing system with Poisson arrivals

and arbitrary service. A criterion may be established in advance

and then the implications of the criterion may be analyzed. Moreover,

the results are quite realistic as will be demonstrated in Chapter IV.
Using the wvalue of ko = 0.6254, the values of , and the

state probabilities are given for a ramge of C in Figure 3.5,
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The maximum number of warning messages in a single month for
the NWS data from 1966 to 1972 was about 10,000. The data in
Figure 3.5 allow for a 130% growth in message traffic by 1985.
Whether such a growth is realistic can only be judged by the
National Weather Service.

In order to provide information regarding various growth rates,
the state probabilities for A, = 0.4, 0.5 and 0.6254 are presented

0
for comparison in Figure 3.6. These values of A, correspond to

monthly traffic loads of 14688, 18317 and 22896 mgssages,
respectively, with average broadcasting times of 1.18 minutes.

Tt is believed that the data presented in Figures 3.5 and
3.6 are more realistic than the results originally reported by
Hein and Stevenson (1972) because the Poisson arrival assumption
has been justified, and the general nature of the short interval
message processing characteristics have been determined through
an analysis of several thousand messages sent by the NWS.

In order to determine the delay or queueing time for messages,
it is necessary to introduce a time factor. The probability of
a delay is the probability that Wq {queueing time) is greater

than zero:

- 3= p
P (Wq > 0) ngégl n

where C 1is the number of simultaneously accessible channels in

the satellite system. Thus

PMW »>0)=1- :f} b
q n=0 n
The average service rate per channel is 1/a. For .C channels
this rate is C/a. But this is true only when there are C
channelg available for service. The average availability is

(1 - Utilization Factor) which is
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0.7597

0.4678
0.3554
0.1350
0.0342
0.0065
0.0010
0.0001
1X10~

1X10~

0.6432

0.5256
0.3381
0.1087
0.0233
0.0037
0.0005
0.00005

5%10~°

4x10”7

0

Figure 3.5
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0.6279

0.5337
0.3357
0.1052
0.0220
0.0035
0.0004
0.00005
4X10

3X10~

0.6257

0.5349
0.3347
0.1047
0.0218
0.0034
0.0004
0.00004
4x107°

3%10°

0.62543

0.5350
0.3346
0.1046
0.0218
0.0034
0.0004
0.00004
4%10°

3X10~

Estimated State Probabilities for

A. Equal to 0.6254 and C =1 to =,

0

6 +

0.62540

0.5350
0.3346
0.1046
0.0218
0.0034
0.0004
0,00004

4x1o'6

3%10 7

0
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State

>9

o
=4

0.6703
0.2681
0.0536
0.0072
0.0007
6X10~
1X10
5X10°
3X10°

1X10~
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0.6065
0.3033
0.0758
0.0126
0.0016
0.0002
1X10~
9X10~
6X10~

3X10°

0.6254

0.5340
0.3347
0.1047
0.0218
0.0034
0.0004
4X10°
4x107°
3X10°

2x10~8

>

.6254

< Lh

0.5350
0.3346
0.1046
0.0218
0.0034
0.0004
4¥10°
4X10°
3X10°

2X10°

Figure 3.6 Estimated State Probabilities for

Equal to 0.4, 0.5, and 0.6254,

and ¢ =1 to
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The average service rate is then

A
C AL
a(l-"a)

which is analogous to the constant hazard rate in reliability theory.

The complementary waiting time distribution is then given by

PI{W >t} =22 P P {W>t|E}

q n=0 n q n
k~
' _-E (1 - ¥%)t

PW >tl=e @ P {w >0}

q q
and

P{W <t}=1-P {W >t}

q — q

Using the lo's from Figure 3.6, which corresponded to 14688,
18317 and 22896 messages per month, respectively, for 0.4, 0.5,
0.6254, the probabilities cof delays exceeding various times are
given in Figure 3.7 for & channels. For the most adverse value
of 0.6254, a delay of more than 30 seconds would occur on the
average only once in 4.3 years.

A summary of the effects of 4, 6 and 10 channels are
presented for 23,000, 18,000 and 15,000 messages per month in
Figures 3.8 to 3.10.

As a result of the model developed in Chapter II, it is possible
to determine the required number of channels to meet design avail-
ability requirements for queueing systems with Poisson arrivals
and a knowledge of the average service time. In Chapter IV, a
comparison will be made between the analytical results and the results

obtained from a computer simulation.
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A

0
Delay 0.4 G.5 0.6254
> 5 seconds 13 years 3 years 0.7 years
>10 seconds 19 years 4 years 1.0 years
>15 seconds 27 years b years 1.4 years
>30 seconds 95 years 21 years 4.3 years

Figure 3.7 Mean Time Between Delays Exceeding
Certain Durations for A Equal to |
0.4, 0.5, and 0.6254 for 6 Channels.
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Case 1: 23,000 Per Month

Channels 4 6 10
Utilization % 15.6 10.4 6.3
Frequency of Delays

>30 sec 1/week 1/4.3 yrs never

> 1 min 1/month 1/41 yrs never

Figure 3.8 Utilization and Expected Delays
for 23,000 Messages Par Month.
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18,000 Per Month

Channels

Utilization %

Frequency of Delays
>30 sec

> 1 min

12.5

1/3 weeks

1/3 months

8.3

1/20 yrs

never

10

5.0

never

never

Figure 3.9 Utilization and Expected Delays for
18,000 Messages Per Month.
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Case 3: 15,000 Per Month

Channels &4 6 10
Utilization Z% 10 6.7 4
Frequency of Delays

> 30 sec 1/2 months never never

> 1 min 1/8 months never never

Figure 3.10 Utilization and Expected Delays
for 15,000 Messages Per Month.



CHAPTER IV
RESULTS OF THE COMPUTER SIMULATION

In order to verify the theory of Chapter I1 and the pre-
dicted results of Chapter III, a computer program was written to
simulate the warning communications traffic for a DWS satellite,
In the report hy Hein and Stevenson (1972), a digital simulation
of the same process was reported using Poisson input and exponential
service disciplines,

The simulation process reported here differs in several
respects from the one mentioned above. Both are digital, and
both use Poisson arrivals but the service disciplines reported
here are not exponential. In the Hein and Stevenson report, there
were three arrival categories, whereas here there are six. The
timing here is asynchronous; in the other report, the timing is
synchronous. Finally, this simulation process is in continuous
time, whereas that reported by Hein and Stevenson was performed
in discrete time. The basic unit of time for the process reported
here is one minute.

Because the basic time unit is small, many problems normally
assoclated with obtaining a steady state have been avoided. The
parameter of prime importance here is the number of message
requests in the system at any given time. Short simulation runs
of one or two days were more than adequate to demonstrate that
the process cycles "infinitely often' through a single state
(namely zero) as described by Crane and Inglehart (1972). When
such a cycling occurs, the sample sizes required to reduce intervals
of uncertainty are significantly smaller than what would normally

be required because steady state is achieved upon startup.

52
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For the cases where an interval estimation is made and the

variance is unknown, the following relationship will be used:

X -U . ¢

af?2 < s/4fa

-t af2

The interval for u is

X - ta/Z s/ < u < x+ ta/2 sfém

where * ta/Z is the Student - t distribution curve area to the
right or left equal to a/2; x 1s the estimated mean; s is the
sample standard deviation; and n 1is the sample size.

This chapter will consist of a description of the computer
software used for the simulation and a comparison of the simulation
results with those predicted in Chapter III.

4.1 Description of Computer Programs

The simulation computer program was written in FORTRAN IV
for the IBM 360/67 running under TSS (Time Sharing System) at the
NASA Lewis Research Center. The program consists of a main routine
and four subroutines and is designed to operate in an on-line
interactive mode. A functional description will be given of each
segment and more explicit documentation may be obtained from the
program and sample outputs Iin Appendix B.

MAIN ROUTINE - Indtializes all variables and requests the user

to specify the dioration of the simulation run in days, the number
of communication channels and a random number seed between 1 and
100,000. The seed allows reproduction of the same sequence or the
generation of unique sequences. The main routine generates the
sequence of Poisson arrivals and then calls subroutines to generate
service times, calculates the run statistics and then generates the

report.
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SUBROUTINE RAND - This subroutine generates a sequence of

uniformly distributed random numbers on the interval zero to one.
The technique used is the multiplicative congruential as described
in Carnahan, Luther and Wilkes (1969). The period of the gen-
erator is greater than 500,000 and the autocorrelation is less than
10_6. An integer is required to start the generator and allows
reproducibility or the generation of large numbers of unique
sequences.

SUBROUTINE MMIN - This subroutine determines the channel which

is available in the shortest period of time. In the event more
than one are available simultaneously, the one with the lowest index

is chosen.

SUBROUTINE MMPROC -~ This subroutine contains the probability

distribution functions for the message broadcast times of the
six message types,

SUBROUTINE CHAN - This subroutine manages the channel

traffic and accumulates statistics pertaining to arrival and de-
parture times as well as any delays in processing.

The report produced for each simulation includes the number
of channels, the duration of the simulation and the number of
arrivals., Means and standard deviations are given for the inter-
arrival time, broadcast time and number of messages in the system.
Other information given includes the maximum delay, if any, number
of delays, the distribution of states over the duration of the
simulation at a sampling rate of once per minute and a log of
delayed messages. Various sampling rates were tried and it was
found by trial and error that the one minute rate provides about
the same Information as rates of every 15 or 30 seconds but with
much less computer processing time.

4.2 Comparison of Results

In Chapter III the values for A, were calculated when

*

AO = 0.6254 for C ranging from 1 to 6. These values are given

in Figure 3.5. As may be seen in the figure, there is mno arrival
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interaction causing an increase in A for 6 channels. For

0

cC=6, AO = 0.6254., The interaction begins causing an increase

in AO for C equal to 5 and continues to the limiting value of
C equal to 1.

Simulations were performed to test whether the effective
lambda's (l*) approach the predicted values, and to determine
whether the predicted distribution functions describe the process
adequately. The cases for C equal to 2, & and 6 were selected
for evaluation because the satellite DWS will consist of a pair
of satellites. In order to meet the DWS operational requirements
by satellite, two satellites separated by 20 degrees are requifed
because of the eclipsing caused by the earth. The total shadow
time each year is about 1% with the maxima of 70 minutes per
day occurring at the vernal and autumnal equinoxes. The
shadowing begins about 20 days before each equinox and gradually
builds up to a maximum and then tapers off to zero about 20 days
after each equinox.

The simulation period was 18 days or 25,920 minutes. The
procedure used for sampling was to simulate 9 periods of 2 days
each for the values of C. There is no need to test values of
C greater than 6 since the state probabilities would be equal
to the 6 channel case. The tests performed and the data are
summarized below for each case. The Ao's and the expected A,'s
for the 3 cases are:

A A

c 0 *

2 0.62540 0.64315
4 0.62540 0.62569
6 0.62540 0.62540

Case for C = 6. A summary of the results of the 9 simulation

runs for this case is presented in Figure 4.1. The observations were
made at the rate of one per each simulation minute. The Poisson

probabilities were calculated from a Poilsson distribution with the
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State Observations Poisson Probability Fxpected Observations
0 14001 0.5400 13996.7
1 8647 0.3327 8623.6
2 2620 0.1025 2656.8
3 545 0.0211 546.9
4 87 0.0032 82.9
5 18 0.0005 13.0
6 2 0.00004 1.0
Ay = 0.6162 5% = 0.6213

Figure 4.1 Summary of Results for the C =6
Case Simulation.
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parameter estimate X* = 0.,6162 which was the estimate obtained
from the 9 simulation runs. A Chi-squared goodness of fit test
was performed on the data in Figure 4.1.

States 5 and 6 were combined because of the small number of
observations of state 6. The c¢ritical values of Chi-squared for
significance levels of 5%, 10% and 25% are given in Beyer (1966)

for 4 degrees of freedom as follows:

2 -

X 5,4 = 9:49
2 -

X 10,4 =778
2 -

X 5,4 =539

The calculated value of Chi-squared obtained from the goodness of
fit tests was 4.55 which is less than any of the critical values.
The Poisson hypothesis must be accepted for the C = 6 case. The
next tests conducted were on the mean and variance. The student-t
distribution was used for the test on the mean, and the Chi-squared
test was used for the variance test. The null hypotheses are

that the mean ), = 0.6254 and that the variance ), = 0.6254,

The test statistics are obtained from:

X-—
t =

T s/4T

2 _ (n - 1)s*

2
o}

where x is the sample mean, u is the hypothesized mean, s is
the sample standard deviation and n 1is the sample size. The

calculated statistics are:

_ 0.6162 - 0.6254

0.7882/149

= - 0.03
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2 (8)(0.6213)
- 0.6254

= 7.95

The critical values of t and X2 for B8 degrees of freedom and

a significance level of 107 are given by Beyer (1966) as 1.397

and 13.362, respectively. The null hypotheses cannot be rejected.
There were no delayed messages for the C = 6 case. The final

tests conducted were to develop 95% confidence intervals for the
state probabilities. These intervals are presented in Figure 4.2,
In all cases the intervals include the expected and observed wvalues.

Case for C = 4. A summary of the results for this case 1s

presented in Figure 4.3. The data consist of the same number of
samples, but the random number sequences were varied to ensure

results which were independent of the 6 channel case. The obser-
vations were again made at the rate of one per each simulation

minute. The parameter estimate for the 4 channel case was i*-= 0.6145
which was the estimate obtained from the 9 simulation rums. The
Chi-squared test for goodness—of-fit was performed on the data in
Figure 4.3. Because there are only two observatlons of state 6,

states 5 and 6 were combined. Since there are 4 degrees of

freedom, the critical values for this case are identical to the 6
channel case. The calculated value of Chi-squared for this test

was 3.76 which is less than the critical values. Again, the Poisson
hypothesis cannot be rejected. The parameter estimate of A %

is lower in this case than in the 6 chamnel case. This is attributed
to randomness. The tests for the mean and variance were conducted
with the null hypotheses being that the mean and variance were

each equal to 0.6257, the value predicted from the theory in Chapter II.
Again the student-t statistic was used for the mean and the Chi-

squared was used for the variance.
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Observed Relative Expected Relative 95% Confidence
Frequency Frequency Interval
0.5402 0.5350 0.5301 to 0.5503
0.3336 0.3346 0.3265 to 0,3407
0.1011 0.1046 0.0963 to 0.1061
0.0210 0.0218 0.0175 to 0.0245
0.0034 0.0034 0.0029 to 0.0039
0.00069 0.00043 0.00035 to 0.00101
0.000077 0.000044 0.000006 to 0.00015

Figure 4.2 Observed and Expected Relative
Frequencies and 957 Confidence
Intervals for
Ag = 0.6162,

C=6 and
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State Observations Poisson Probability Expected Observations
0 14035 0.5409 14020.4
1 8596 0.3327 8615.6
2 2648 0.1021 2647.1
3 548 0.0209 542,2
4 76 0.0032 83.3
5 15 0.0005 10.2
6 YA 0.00004 1.0
A, = 0.6145 &% = 0.6172

Figure 4.3 Summary of Results for the
C = 4 Case Simulation.
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The calculated statistics are:

b= 0.6145 - 0.6257

.7856/45

- 0.04

2 _ (8)(0.6172)
0.6254

= 7.90

Both values are less than the critical values for 8 degrees of
freedom as given above. Thus the null hypotheses cannot be rejected.
The relative observed and expected frequencies are given in
Figure 4.4 along with the 95% confidence intervals. In all cases,
the intervals include the expected and observed values.

In the 4 channel case, it was mentioned previously that the

increase in A, over A is caused by the customer-server

interaction., A more valgd test of the model is whether or not
delays encountered correspond to the predicted delays. There were
no delays encountered in the simulations of the 6 channel case.

In the 4 channel case, however, delays began occurring with regularity.
The delays varied from 0.01 minutes to 0,64 minutes. Since the
standard deviations of the broadcast times are usually on the order
of 0.5 minutes, a delay of 0.0l minutes is meaningless. From a
human factor's point of view, a delay becomes substantial when it
reaches a certain magnitude. Since the definition of intolerable
delays is beyond the scope of this work and really lies with those
individuals who must use the system, it was arbitrarily decided

that only those delays greater than 30 seconds would be noted. The
frequency of these delays in the simulations would then be compared
with the predicted delay frequencies., For the 4 channel case, there

were 4 delays exceeding 30 seconds. The durations were 33, 34, 34



State

oo WO

62

95% Confidence

Observed Relative Expected Relative

Frequency Frequency
0.5414 0.5409

0.3316 0.3324

0.1022 0.1021

¢.0211 0.0209

0.0029 0.0032
0.00058 0.00039
0.00008 0.00004

Interval
0.5302 to 0.5528
0.3227 to 0.3405
0.0990 to 0.1054
0.0193 to 0.0229
0.0023 to 0.0035
0.00028 to 0.00088
0.000006 to 0.000150

Figure 4.4 Observed and Expected Relative
Frequencies and 954 Confidence
Intervals for €= 4 and A =

0.6145,
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and 38 seconds. Using the equations for delays exceeding T

from Chapter III:

cl;‘-*
e a “¢/te {Wq > 0}

C
1-%%

For € =4, A, =0.6257 and o = 1.18,

P {Wq > t}

P {W_ > 0}
q

P'{wq> 30 seconds} = 1.13 x 10—£l

There were 4 delays greater than 30 seconds during a simulated
period of 25920 minutes. The relative frequency of delays en-
countered is 1.54 x 10_4 or a 36% difference from the expected
occurrence. The sample mean of expected delays was 1.54 x 10_4.
The sample standard deviation was 1.24 x 10-2. Using the t statistic

for coniparison of means

- U

s/

t =

yields a value of 0,532, The critical values for an infinite
sample size at the 10%, 5% and 1% levels of significance are given
in Beyer (1966) as follows:

t.lo,m = 1,282
1:.05’m = 1.645
t.Ol,m = 2.326

The test demonstrates that there is no significant difference between

the predicted value and that encountered in the simulations at the
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0.05 level of significance.

It was predicted that there should be about 3 delays in
18 days and the simulations produced 4 delays in 18 days. In
order for there to have been a significant difference between
expected and predicted delays at the 10%, 5% and 1Z levels of
significance, there would have to be at least 6, 7 and 8 delays,
respectively, in a simulation of 18 days.

Case for C = 2. A summary of the results for this case is

presented in Figure 4.5. The observations were made at the rate
of one per minute of simulated time. An anomaly appears in the
data in that the expected number of observations is lower than what
was observed for state zero, but the reverse is true for state
one. This suggests that for this case a faster sampling rate
would be more appropriate. To do so, however, would require
much more storage in the computer. Since the program runs in
real time on a virtual storage machine, a faster sampling rate
would require an enormous increase in computer time because execution
time is a function of storage on a virtual memory machine.

Since states zero and one do not impose any delays, the
2 states may be combined into an aggregate state. Another point
about the results 1s that the degradation from a Poisson to a
discrete-type of exponential distribution has begun to occur.
One would expect that the relative frequency of the higher states

would increase as A approaches

" The parameter estimates

Maax: e
obtained from the 9 runs of 2 days each was A, = 0.6508. The
Chi-squared test for goodness of fit was performed on the data of
Figure 4.5. Because of the anomaly in states 0 and 1, these
states were combined, Also the same type of anomaly appears in
states 4, 5 and 6; these states were combined because of the small
number of observations in state 6 and because of the anomaly. In
Beyer (1966) the critical value of Chi-squared for 2 degrees of

freedom at the one percent level of significance is 9.21. The

calculated value of Chi-squared was 8.82. The Poisson hypothesis
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State Observations Poisson Probability Expected Observations
0 13693 .5216 13519.3
1 8548 +3395 8799.7
2 2864 .1105 2863.9
3 681 0240 621.4
4 122 .0039 101.1
5 11 .0005 13.2
6 1 .000055 1.6
A, = 0.6508 5% = 0.6721

Figure 4.5 Summary of the Results for
the C = 2 Case Simulation.
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cannot be rejected; but it would have been at any higher level

of significance or without the state combinations described above.
The tests for the mean and varilance were conducted with the null
hypotheses being that the mean and variance were each equal

to 0.6432, the value predicted from Chapter II. The procedure was
identical to the two previous cases. The calculated statistics

are.

¢ = 0.6508 — 0.6432
.8198/45

.0278

2 8(0.6720)
0.6508

= 8.26

Both values are less than the critical values given above for the

C = 6 case, The null hypotheses cannot be rejected. The relative
observed and expected frequencies are given in Figure 4.6 along

with the 99% confidence intervals rather than the 957 intervals.

The wider Interval does not include the expected relative frequencies
for state 1 and state 4. This exclusion is not as Important for
state 4 as for state 1 because of the magnitude of the values.

The standard deviations of the samples for all states were as
follows:

State Standard Deviation

0.0080
0.0033
0.0053
0.0028
0.0012
0.00029
0.000117

[ B I N ™
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Observed Relative Expected Relative 99% Confidence
State _Frequency Frequency Interval
0 0.5283 0.5216 0.5194 to 0.5372
1 0.3298 0.3393 0.3261 to 0.3335
2 0.1105 .1105 0.1046 to 0.1164
3 0.0263 0.0240 0.0232 to 0.0294
4 0.0047 0.0039 0.0044 to 0.0050
5 0.00042 0.,00051 0.00011 to 0.00075
6 0.00003% 0,000055 0.0 to 0.00017

Figure 4.6 Observed and Expected Relative Frequencies
and 99% Confidence Intervals for C = 2
and 11* = 0.6508.
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The expected standard deviation for state 2 should lie between
0.0053 and 0.0080. This anomaly in the standard deviation supports
the combination of states 0 and 1 in the goodness-of-fit test
above. States 0 and 1 were combined to obtain a total confidence
interval with an expected relative frequency of 0.8611 and an cb-
served frequency of 0.858l. The combined standard deviation is
0.0087 and the combined 99% confidence interval is 0.8484 to
0.8678.

Large numbers of delays were encountered in this case. Only
those delays longer than 30 seconds were included. The delay
equations for € =2, A, = 0.6508 and o = 1.18 yield

P {wq > 0} = 0.0284
P {wq > 30 seconds} = 0.0160
P {wq > 1 minute} = 0.0091

For an 18-day perilod, the number of delays greater than zero
is expected to be 736. Over the same period, 416 delays are
expected to exceed 30 seconds and 235 are expected to exceed 1
minute. When the number of channels is limited toc 2, a new phenomenon
1s encountered. The server—-customer interaction increases greatly
so that many more small delays are encountered than would be
expected. Also, when the interaction increases, clusters of
delays occur. One delay may be the cause of 5 or 6 other delays.
The expected and observed delays for queueing times greater than
zero, 30 seconds and 1 minute are shown in Fipure 4.7. TFor
this case it is obvious that the delay equations are no 1onger
adequate for delays in the zero to 30 second range. For delays
exceeding 30 seconds the equations yield results which may be
unacceptable in many cases., However, for delays exceeding one
minute, the predicted results become conservative again. Also, for
delays greater than 30 seconds, if each cluster is counted as a

single delay, the results of observed and expected delays become
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compatible again.

The delay results for the 2 channel case demonstrate that the
model begins to break down as the utilization and server-customer
interaction increases. The interaction effect is very noticeable
for delays of 30 seconds or less but disappears completely for
delays exceeding 1 minute.

Summary of Simulation Results. The results of the simulations

demonstrate that the model developed in Chapter II provides
excellent results as long as the original assumption remains valid;
namely, that utilization is relatively low. Thus, the model is
still valid for many realistic applications. Some useful results
may be obtained for higher utilizations but the model would have

to be improved in order to provide acceptable results in all cases.
In the next chapter, the satellite system design will be summarized
to demonstrate how the model may be used for the satellite DWS

and application to other areas will be discussed.
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Expected Observed
Delays Delays
>0 736 1885
> 30 seconds 416 770
> 1 minute 235 167

Observed

Clusters

NA

519

None

Figure 4.7 Expected and Observed Delays for
C=2, 2, = .6508 for a Simulated

Period of 18 days.



CHAPTER V
SUMMARY OF RESULTS AND CONCLUSIONS

In Chapter I, the rationale for special purpose communication
satellites was developed with particular emphasis on the need for
a satellite based DWS, The model for this type of queueing
system was developed in Chapter II. The major assumptions were
that utilization would be relatively low because of the availability
criterion and that the arrivals are Poisson distributed. Large
amounts of weather warning data were obtained from the National
Weather Service in order to analyze the arrival and broadcast
distributions for warning messages. These data were also used to
analyze the effects of limiting the number of satellite broadcast
channels in Chapter III. The expected results were compared
with the résults of a computer simulation in Chapter IV.

The results obtained from the model developed in Chapter II
provided excellent approximations for the 6 and 4 channel cases.
Statistically there was no significant difference between the
predicted results and those obtained from the simulations. When
the traffic intensity was increased through a reduction in service
channels to 2, the customer-server interaction caused a degradation
in the quality of the predicted results. The interaction causes
the variance of the Poisson distribution to increase through a dis-
tortion of the relative state frequencies. This distortion causes
a change in the state distribution; it deviates from the predicted
Poisson distribution. Although the 2 channel case may provide useful
results, it also demonstates that the model is close to the
1imits of usefulmess. In order to demonstrate why and how the
model developed in Chapter IT may be used, a summary of the feasi-

bility study and conceptual design by the Computer Science Corporation

71
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will be included in this Chapter. The summary is taken from the
report to Dr. John Townsend, Deputy Administrator of the National
Oceanic and Atmospheric Administration. The presentation was made
on May 23, 1974 at NOAA Headquarters in Rockville, Maryland and
included the work done by CSC and the results of the 4, 6 and 10
channel cases using the model developed in Chapter IT.

Although the message traffic analysis constitutes only a small
part of the study, the cost of doing the traffic analysis using
computer simulation required 50 to 100 hours of computer time. At
a nominal cost of $1000 per hour for computing time, the advantages
of using an analytical technique rather than simulation are immed-
iately obvious.

The operational concepts of the terrestrial and the satellite
systems for disaster warning are shown in Figures 5.1 and 5.2.

In the terrestrial system, the NWS network would consist of ground-
based transmission systems connecting spotters with WS0's (Weather
Service Offices), WSF0's (Weather Service Forecast Qffices) and
such specialized centers as the National Hurricane Center (NHC)

in Miami. The operational concept for both systems is shown in
Figure 5.3. The design criteria for the dissemination of warnings
is shown in Figure 5.4, and the operational requirements are

shown in Figure 5.5. The geographical coverage pattern required
for the DWS is denoted by the shaded portion of Figure 5.6. In
order to meet the operational requirements by satellite, two
satellites separated by 20 degrees are required as described in
Chapter IV. Imn Figure 5.7 a qualitative comparison is made between
the satellite and the terrestrial systems, and the major cost
drivers for each system are shown in Figure 5.8. The original
satellite requirements were that 10 simultaneous channels would be
required for broadcasting warning messages. The delays expected
with 4, 6 and 10 channels were shown in Figures 3.8, 3.9 and

3.10.
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Figure 5.1 Terrestrial based DWS.
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Figure 5.2 Satellite based DWS.
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Figure 5.3 Operational concept of a DWS.
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Required Response To Disaster Types

Disaster Smallest Message On-Line

Type Area Warned Upper Bound
Tornado or Severe Storm Part of County 1-5 Min
Hurricane Part of Coast 1-15 Min
River Flood Part of State 15 Min-1Hr
Small Craft Part of Coast {Lake) 15 Min-1Hr
Winter Storm Part of State 15 Min-1Hr
Others Part of County 1 Min-1Hr

Figure 5.4 Functional Design Requirements
for a DWS.
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OPERATIONAL REQUIREMENTS

System
24-Hour Operation
Immune From Natural Disasters
Autonomous Power Source

Simultaneous Warning Capability

Home Receiver
Inside Antenna
Activate < 15 'Seccnds
Selective Addressing
On-0f£f Option

Figure 5.5 Operational Design Requirements
for a DWS.



GEOGRAPHICAL COVERAGE REQUIREMENT

. (s &

CANADA

BRAZIL

PACIFIC OCEAN

Figure 5,6 Coverage requirements for a IWS.
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Although this document is not the proper forum for a cost
comparison, it must be acknowledged that the satellite system with
10 channels would not be competitive with the terrestrial system.
Four channels may be adequate to meet NOAA requirements. 1If so,
reducing the channel requirements from 10 to 4 would make the
satellite and terrestrial systems approximately equal in cost.

If it were possible to use a 2 channel system, the satellite system
would probably be more advantageous than the terrestrial system.
Such a reduction would require a reduction in the present warning
traffic or the use of priority queueing.

As a result of the model developed in Chapter II, a more
realistic appraisal method of the channel requirements for a
satellite DWS was obtained. The model developed here may also
be used to determine channel requirements for other types of
special purpose communications satellites. Remote health care
delivery systems via satellite have been in existence for several
vears. This application will increase as a result of the recent
launch of ATS-F (Applications Technology Satellite-F) by NASA.
This satellite will be used to provide high powered television
signals to remote areas in the western states, Alaska, and to
remote villages in India. The smallest antennas will be 15 feet
in diameter and the receivers will cost about 5 or 6 thousand
dollars. This size and cost represents an enormous reduction
compared to the commercial satellite ground staticens and renders
feasible many applications of communications in regions which
previously could not afford anything beyond the essentials for
existence. As the cost of receivers is reduced through an increase
in the satellite power, the many applications discussed in
Communications for Social Needs (1971) will become realities. All
of these applications are characterized by relatively low utili-
zation and a high availability factor. Some of these applications
are the DWS neoted previously, remote health care delivery, educational

television for remote regions, electronic mail handling, finger-
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SATELLITE/TERRESTRIAL COMPARISON

Terrestrial

Uncertain

Cost Dependent

Complex

Figure 5.7

Satellite
Immunity To Good
Natural Disasters
Response Time Fast
System Control Good

Qualitative Comparison of Terrestrial
and Satellite Based Systems.
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MAJOR COST DRIVERS

Terrestrial Satellite
Extensive Coverage Simultaneous Transmiszssions
Complete Connectivity Small Ground Terminals
Fast Response Time Real—Timg Vo?ce Communications

Figure 5.8 Major Cost Sensitive Parameters
for Terrestrial and Satellite Systems.
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printing transmissions for law enforcement agencies, and many
others. The model developed in this dissertation is applicable
to these new applications of communications satellites whenever the
input can be shown to be Poisson distributed.

There are many areas of application beyond usage of the
model for communications satellites. For example, stock brokers
must be available by phone to their ¢lients. When line utilization
increases beyond some point, customers will begin going elsewhere.
The model could be used to determine the optimal number of telephone
lines for a broker to have. Police departments might also use
such a model to meet some pre-specified telephone line availability
requirement. Applications of the model to queueing systems where
low utilization/high availability is the predominant character-
istic are more numerous than can be mentioned here. Moreover, the
necessity of minimizing waiting time will become even more important
in the future as world economies become dominated by service
industries. Market strategies will include tradeoff analyses of
the value of minimizing waiting versus the cost of adding more
service channels.

The major shortcoming of the model developed here is that
when utilization increases beyond a certain point, the reliability
of the results is questionable. Extension of the model to
heavy traffic would allow many new applications of queueing
theory. Urban ground transportation and traffic is a subject
which might use an extension of the model. Those service industries
and markets where traffic flow is heavy and utilization is high
have often demonstrated that adding service channels was
seldom part of their planning. Rather, many organizations simply
expanded their hours of cperation. Examples of such a policy are
gasoline service stations, supermarkets, discount department
stores, airports, and many others. With the advent of the
petroleum shortage of the 1970's, service station operators found

they could shorten operating hours; the effect was a large decrease
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in operating expenses and overhead.

In order to conserve energy, many public buildings and
stores changed operating hours and increased the traffic intensity
in the process. In order to maintain customer satisfaction and
to keep the customer, consideration should be given to the effect
of operational changes om the customer whether the motive is
profit or public service.

In Chapter I, it was mentioned Thomas Saaty wrote in 1966 that
queueing models are seldom applied to real situations. Saaty's
lament pointed to the very genuine problem of allowing need to
dictate the direction of technological change and innovation. The
decade since 1966 has witnessed new developments and applications
of queueing theory. Operational needs have been the driving
force behind the development of many applications. Such was the

motivation here,
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APPENDIX A
Proof Of The Equivalence Of hj-l And
Ay When The Sequence Converges

It was stated that the forms for

Ap = AL T oydg 00D Al

0

and
lj_l =2 * yaj_l®(xj_l) A.2

are equivalent if the sequence {),6} converges. Lf the sequence
i

converges then kj differs from Aj- at most by some value

1
g which can be made arbitrarily small. Thus for some jJ

greater than N
A. = A + e A.3
Substituting A.3 into A.l yields

A

5-1 = Ao + YAy_1? (Aj_l) - €

Since ¢ can be made arbitrarily small

1im _
50 M-1 = Ao + TAy-10 (Aj_l)
This procedure may be repeated for j, j+1, j+2, ... so that for
some N and all integers greater than N, the relationship for

A may be expressed as

N
hie = Ag tovage (W)
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APPENDIX B

Computer Simulation Programs And Sample Output



ap00l00
apgozao
ap00250
opo0300
0600350
opoosoe
opo)s00
oe00600
0090700
00oo&no
FILLERN]
0090820
0DOO&30
6000900
ogglo00
0001100
0pol1200
pog13nn
0001400
0001450
D001500
0901600
0001700
00G1800
001900
0002000
BO0Z100
0002200
0002300
0002400
0002500
1002800
0002900
0003000
0403100
0003200
0003300
0003400
0003500
0003600
aqo37on
Qao3900
0004000
aaoLu1oa
00042040
aopL3o0
Jo04%00
gooL590
annL4s00
o004 700

1000

1003

100

200
250

300

500

60D

700
0o

a0
1001
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IMPLICST REAL*8 {A-F)

DIMENSION A{50},B{50),C{50},D(50),FE(5a},F{50)

DATA E/50+1,D/

DMAX=100,0

INDEX=0

DFAC=1.0

WRITE (B,1000)

FORMAT (' ',T5,'THIS PROGRAM CALCULATES THE MAXIMUM VALUES DF'/-
175, 'LAMBDAO AND LAMBDA+ FOR A GIVFN NUMBER OF CHANNELS'//T5,'NO. CHANN-
2ELS LAMBRDAD LAMBDA*"/}

WRITE (6,1003)

FORMAT (' ',T75,5%,' 1 0,.839962 1,6180341)

0o 500 J=2,20

DX=NMAX

Do 100 1=1,20

DFAC=DFACH]

A{l)=-1,D/DFAC
AfU+1)=mALJY

DFAC=1.0

JML=yg=]

DO 204 1=1,JM1

B{Hy=AL)

B{JI=A{J+1)%{Js1}

DFN=-1,0

DFNPR=-1.0

DA 300 t=1,J

DFEN=DFN#+A(|}*(DX%*1)

DFNPR=DFNPR+B{ 1) #(DX#*x1}

DFN=DFN+A{J+1)#{DX=#J}=DX

DTEMP=DX-DFN/DFNPR

INDEX=TNDEX+1

DEL=DABS{DTEMP-DX)

IF (DEL.LT,.0.000000001} GO TO 500

DX=DTEMP

GO TO 250

C(J)=DTEMP

DO 600 J=1,20

C1=Ct{J)

D{J}=DEXP{-C1)#C1

DO 800 J=1,20

DFAC=1.0

DO 74D 1=1,4

DFAC=DFAC+I

E{J}=E(J)+ (C{J)*=])/DFAC

F{Jd}aD{JI*E(J)

DO 900 J=2,20

WRITE {6,1001) J,F{J},C(J)

FORMAT (' ',T5,5X,12,9%,F9.6,3X,F9.6)

STOP

END
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goonino C THIS PROGRAM [S A CONTINIDUS TIME ASYHCHRONAUS
opoonzon € SIMILATION PROGRAM, THF PRIMARY USE 1S INTEMDED
anoninn C FOR THE SIMULATION DF THE CNMMUMICATIONS 0OF A
apnouag C DISASTER WARNIMA SATELLITE SYSTEM, HOWEVER, THE
annnsnn ¢ PROGRAM MAY BE 'ISED TO SIMULATE ANY AUENEING
0nDOROD C SYSTEH WITH PNISSOM ARRIVALS.

3000700 C

oenoana ¢ THE PROGRAM CONSISTS NOF A MAIN RNUTIMF AND FOUR
anoaana c SHBROUTIMES. THE FUNCTIOMS OF EACH MDRIILE ARE
onoraong € DPESCRIBED BELAYW AND FACH MODULE CONTAINS SOME
poollng ¢ NOCMENTATINM FON TIE MAJOR FIINCYIONS,

nolzoo0 €

paa13nog ¢

naalwon ¢ MATM BOUT [ HE hdkkk e ke v ke @ b h kAR AN ke S e ARk bt
1001500 ¢ SNUACE PROGRAIY SOURCE,CONS I

noaleon ¢ NRJECT PROGRAM: £0OHS M

0001700 € THE HMATH ANUTIME ITMITIALIZES SIX POISSON ARRIVAL
0001800 € PARAMETERS AHD THEN PROMPTS THE USER TN SPECIFY
Q0016800 ¢ THE HUMRER DF DAYS IN THIS RUN, THE NUIMBER NF
00020090 C CHANMFELS AMD AN IHTEGER SEFED FAR THE RANDDM
0002100 C HUMRER GEMERATOR, THE PROGRAM THEN GENERATES A
aap2200 € SEMHIENCE OF ARRIVALS AMD CALLS THE PROCESSOR TO
nnoz23on ¢ NETERMIME THE PROCESSIHNG TIHES INCLUNING WAITING
aon2400 C TIMES IF ANY, THE PROGRAM THEN CALLS THE CHANMEL
0002500 € ASS IGHMENT SURRDUTINE TO PETERMINE WHERE THE
onp2600 C ARRIVAL wiLI RE PRONESSED. TYHE STATISTINS ARE
anp2700 C COMPUTEDR AND TIIEM THE REPORT I8 GENERATED,

noozana ¢

apn2ano

aooannn ¢ SURRDUTIHE RAND#twhs rndd kv sh bk hd bk b e kb kd * kAN RR
afozinn ¢ SNURCE PROGRAM: SDURCE ,URANMO

onaszan ¢ DRJECT PROGRAM: LIRAMHO

neoRIne C THIS SURRNUTIME GEMERATES UMIFORMLY NISTRIBUTEN
adoznne C RANPOM MUMRERS NF THE HTERVAL FROM ZERND TO OHE.
0063500 C THE VARIABLE 1GESS IS AH IMTEGFA SEFD MHICH ALLOWS
apnicon ¢ THE REPAONURTINY OF A SEOUEMIE OR THE GENERATION OF
onaizno ¢ 1nn,nn0 UHIANE SEMTEMCES,.  THE TECHNIAUE LSED IS
nnnzana ¢ THE MILTIPLICATIVE CHIGRUENTLAL,

apaiang €

Q00koan ¢

aans1nd ¢ SUBRMUTIMNE MIINAw ek ar arrkka v ke kh kbt s s a e haw
nnoszne ¢ SOURCE PROCRAM: SNURCE,SMIN

0004300 ¢ NRIECT PRORRAM: SHIN

apoLhng ¢ THIS SURRMHTINE PETERMIMES THE MEXT ARRIVAL FRNM THE
nooesno € SIX NIFFERENT TYPES 0OF ARRIVALS, FEACH OF THE 51X
aoGLe00 C ANRIVAL PATTERMS ARE GENFRATED IMDEPEMPENTLY. THIS
QO0DLTN0 C SIIRPROGRAN COMPARES THE ARRIVAL TIMES MITH THE CLOCK,
2004800 C

aconugnd C

0onsnng c SHRROUTINE MHMPRNC skt aanddesadda e rnadhdnrbant
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nans1na ¢ SOURCE PROGRAM: SOURECE,SMPROC

nO05200 € ORJFCT PROGRAM: SHPAROM

n0a53Inn ¢ THIS SURRNUTINE GFEMERATES AMP TRAMSFENRMS THE
o0as400 € UMTENRMLY NISTRIBUTER AAMDOM MUMBERS Tn THE
naaRsENn ¢ NISTRIRUTIONS REMIIRED FOR TUE SEX TYPES OF
95690 € POISSON ARRIVALS IN OQPER TN ORTATH THE
05700 € PROGESSIMG TIMES,

0065300 C

anons900 ¢

NooRDDA SURROITIME CHAN S d ke rh e s AR AT AR RN AT wdd
0nga10n C SOURRE PROGRAM: SNURCE,SCIHAN

anhe200 ¢ ORJECT PROGRAM: SCHAN

apos3ng ¢ THIS SURRAUTINE 15 THE CUANHFL PRNCESSOR, T
000600 C MAINTAINS A RECNRD NF THE 1ISAGE AND THE
aDDESN0 € SNOMEST AVAILARLE FHANMEL, WAITINGA TIMES ARE
anosang ¢ ALSO CALCHLATER IF THERE ARE ANY,

nangzoen C

GONGRND G

na0EaAce €

0gaznnn ¢

nnaz1a0 DIMENS [OH ACBY, LAMPACG), CL10N), TFRENT1NT), ARR( 3000, AWA IT(3000), ARRON( 3000)
apaz7200 DIMENS 10N PRAGCE 3000, ARROFEL 3000, ISTATEC3AND), TAR{ 3000), LARC( 3000 )
neo73nn REAL LAMNA

oeeTHAD INTEGER*2 [AR, VARE

ann7snn NATA LAMPA /A, N35,0,01%5,0,0%72,0,1278,0,2015,n,1150/
a0 yaan T=0,0 '

ong7700 154 =0

non7R00 €

gnpyaan ¢

anegono ¢ PRAMPT FNR EHTRY OF TIMF,CHANMNELS AND
anasion ¢ THF RAMDOM MIIMRER SEED

noasaNn ¢

LLERT T

OLETAE WRITE {6, 1000}

0008500 READ (5,1n01) N

DUNET THAX=50, O=2h NN

ne0R70N WRITE (6,1R02)

NODRROD READ  (5,1003) HNCHAN

a0089NC WRITFE (6,1000)

onaaann REAN  (5,10N05) IGESS

onoa1an 9 ho 100 J=1,%

nnas2n0 CALL RAMRCZ, IGESS, A, 1Y, 1XX, 1SY)

0pon3nn 100 ACSY=ALOG(Z Y/ (=LAMDA())

nooguno ¢

onnaesnn ¢

0DOSROD © THE FIRSGT SI1X ARPIYALS ARF GEMERATED WITH
nenazoo ¢ THE TRANSFNRMATINH AT STATFHENT 100

ooooagen ¢

anaaano ¢

anp1naoo 1=0



0010100
aaronz00
aolo3a0
0010400
0019500
Q010600
0010700
aoraano
aplaann
0611000
ogl1ion
0011200
0011300
0011409
0011500
DO11600
09117049
0011800
0011900
0012000
0012100
agl2zo0
0012300
0012400
0012500
0012600
aal1270n
anr2e00
gnrzgon
0nI3000
0013100
0015200
0013300
0013400
pO13500
DO13600
0013700
0013800
0013900
0014000
0014100
o01kzoo
0014300
0014500
0014500
Q014600
0014700
0014800
0015900
og15000

200

=

nnnnng oooho8E WOOOOOOODOOo0n
o

600
C
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CALL MMINCA,T,J)

TeA(J)

IF (T.GE.TMAX) GO>TO 300

I=1+1

ARRCH) =T

AR )=

CALL RAND(Z, IGESS, 1A, X, 1XX, [5W)
A{J)=T+{ALOG{Z)/(~LAMDA(J)})

GO TO 200

ARRIVALS ARE GEMERATED WITH THE CLOCK TIME
DISPLACEMENT ADDED ON

| = NUMBER OF ARRIVALS UP Tn TIME D DAYS
ARR(J) = ARRIVAL TIME OF ARRIVAL J
IAR{J) = TYPE OF ARRIVAL (1-8)

no 4o J=1,1
CALL MMPROCCIARCJ),PTIM, Z, IGESS, LA, 1X, 1 XX, ISW)
PROC(J}=PTIM

CALL THE CHANNEL PROCESSOR

DO 500 J=1,1
CALL CHAN(&UCHAN,ARR(J),PRUE(JJ,ARRON(J),ANAiT(J),ARROFF(J),IARC(J),C}

CALCULATE STATISTICS FOR THIS RUM

TUN=TMAX

DO 600 ICTR=1,1UN

TCTR=tCTR

00 600 INDEX=1,1

égngfnﬁg(INDEX).LE.TCTRJ.AND.(ARROFF(INBEXJ.GE.TCTR)) ISTATECICTR)=1STATE{ ICTR}+1

DMAX=0, 0

SUMAR=ARR(1)
SUMAR2=ARR(1)+ARR(1)
SUMPR=PROC(1)
SUMPR2=PROC{1)*PROC{1)
Do T00 Je2, |
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015100 JM1l=y=-1

0015200 IF (AWAIT(J).GT.0.0) NODEL=NODEL+1
6015300 DELA=ARR(.JJ-ARR[JM1)

00155400 SUMAR=SUMAR+DELA

0D15500 SUMARZ=SUMARZ+DELA~DELA

0015600 IF (AWAIT(J).GE.DMAX) DMAX=AWALIT(J)
0015700 SUMPR=SUMPR+PROC{J]

0015800 700 SUMPR2=SUMPR2+PROC(J)*PROC(L)
0015900 SNO=NDCHAN

DDIG000 UT1L=SUMPR/{ TMAX*+SNO)

0016100 UTIL=UTEL=100.0

0016200 Ti=I

0016300 ARRBAR=SUMAR/TI

ODIGLOD PRBAR=SUMPR/TI

0016500 TI12=T1*{T1-1.D)

0D16600 ARSTD=SORT( (T *SUMAR2-SUMAR®%2}/T12)
opls700 PRSTD=SORT((TI+5UMPRZ=SUMPR**2}/T[2)
0016800 TIUN=1UN

0016900 C

oo17000 €

0017100 €

0017200 €

0p17300 DO 800 [CTR=1,IUN

oprrean SUMSTaSUMST+ISTATECICTR)

0017500 SUMST2=SUMST2+ISTATE(ICTR)*=»2
p0ol7600 1CTL=ISTATE(ICTR) +1

00r7700 ftF {1CTL.GT.100) 1CT1=100

0017800 800 IFREQ(ICT1)=1FREQ{ICT1)+1

0017900 C

aolsoo00 C

0018100 C

0018200 TIUNM1=TIUN-1.0D

po18300 STRBAR=SUMST/TILN

Q015400 STSTD=SQRT{(TIUN*SUMST2-SUMST=SUMST )/ {TIUN*TIUNML))
o018s500 C

0018600 C

0D18700 C

opigsan ¢

onlsaon € GENERATE REPORT

o0lagon €

0ol191no ¢

0019200 €

0019300 C

0019400 WRITE (6,1010)

06019500 WRITE (G,1011) NOCHAN,D,|

opIgs0n WRITE (6,101D)

0019700 WRITE (6&,1012) ARRBAR,ARSTD
0019800 WRITE (6,1013) PRBAR,PRSTD

0019900 WRITE (6,101hL) STBAR,STSTD

0020000 WRITE (6,1010)
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0020100
0020200
0020300
0020400
0020500
0020600
#020700
BD20800
0020900
0671000
0021100
0021200
0021300
anziyno
0021500
0021600
Q021700
0021800
0021900
0022000
0022100
0022200
0022300
0022400
op22500
0022600
oD22700
0022800
0022900
0023000
00231400
0023200
Jq023300
042300
0023500
0023600
0023700
0023800
0023800
0024000
0024100

900

950

1a0n
1001
1002
1003
1004
1005
101D
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

WRITE (6,1015)
WRITE (6,1016}
WRITE (6,1010}
WRITE (6,1017)
WRITE (6,1018)
Do 3d¢ I1CT=1,3
1CTI=1CT+3
1CT2=1CT+6
ICT3=1CT+9
ICTHE=1CT=1
1CTIML=1CT1-1
1CT2MI=16T2-1
{CT3M1=1CT3-1
WRITE (6,1019)
WRITE (6,1010)
WRITE (§,1020)
DO 950 J=1,1

9l

DMAX
NODEL, UTIL

ICTMI,IFREﬂ(ICT},ICTlMl,IFREQ(ICTI),ICTZMI,IFREQ(ICTZ),ICTSMI,!FREQ(ICT3]

IF (AWAIT(J).LE.0.50) GO'TO 950

WRITE (6,1021}
CONTINIE
5TOP

J, TAR{J ), ARR(J), PROC(J), ADALT(J)

FORMAT (' !, T5,'ENTER NO. DAYS TO BE SIMULATED IN F10.2')

FORMAT (F10.2)

FORMAT (' ', T5,"ENTER HO., COMM. CHANNELS IN 12")

’l l’)

12, CHANMELS SIMULATED FOR',FlL,

LYAY, ARR, TIME',3X,F7.4,L4K,"ST,
L YAV, "SER, "TIME',3X,F7.4,LX, 'S8T,
YAV, 'STATE',7X,F7.L,uX,"sT, DEV
L YMAX DELAY',7X,F5.2)

L,'DISTRIBUTION OF STATES'/)
JUCTSTATE FREQ H
Lul12,18,5X))

,'MSG. NG.',16,' MSG. TYPE', IS,

I
1
!
1
T
t
'
]
* 1724, ND. DELAYS',6X,15,6%,'UTIL. %",6%,F6.2)
]
'
]
L]
]
T

FORMAT (12)
FORMAT (
FORMAT (1B)
FORMAT (' ', T10
FORMAT (' ', T17
FORMAT (' ', T24
FORMAT (' ", T24
FORMAT (' ',T24
FORMAT (* ', T24
FORMAT {
FORMAT (" ',T17
FORMAT (' ',T21
FORMAT (' ',722
FORMAT {
FORMAT (' ', T17
1' WAIT TIME',F10.2)
END

',T5,"ENTER A RANDOM INTEGER BETWEEN 1 AND 140,000 IN FORMAT 16%)

1,' DAYS WITH ',15,' ARRIVALS')
DEV.', 6X,F5,2)

DEV.',6X,F5.2)

. BX,F5.2)

',T17,'LOG OF DELAYS LONGER THAN 30 SECONBS'/)

' ARR. TIME',F10.2,' PROC, TEME',F1p.2,°'



0anolon
aop0200
anon30o
agoopsoa
0aon500
0000600
QQon700
gapogaoq
00009400
aQol1000
4001100
0001200
gopl3oq
agnlyon
goplsodq
gool600
ganlyon
ooplseao
oonlgoo
aog2000
gag2l100

1oe

200

inn
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SUBROUTINE RAND(Z,IGESS,A, X, 1, I5W)

INTEGER A, X

M=2+220

FM=M

IF {1.EQ.1} GD"TO 100
1=1

X=566387

A=2++10 + 3

X=MOD (A%, M)

FX=X

Z=FX/FM

IF (1SW.EQ.1) GO 70O 300
DO 200 K=1,|GESS
X=MDD{A*X, M)

FX=X

Z=FX/FM

CONTI NLIE

15W=1

CONTINUE

RETURN

END



00001490
0000200
agon3oag
0000350
0000400
0aons0gQ
aaoo60a
gaod7oa
0004800
a00d990
oooloa0

100

SUBROUTINE MMIN(A,T,d)
DIMENSION A{G}

J=1

XMIN=A(1)

DO 100 K=2,6

IF (XMIN,LE.A(K}) GO TO 100
XMIN=A(K)

J=K

CONT INUE

RETURN

END
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poooico
aapg200
0000300
00a0LDD
0000500
pagosno
0000700
aooogap
pojogon
a0a1000
0001100
Qo01200
oo0ol300
0oa1400
4001500
0401600
0001700
oppigon
poolaon
0002000
0002100
00022404
anp2300

100

150

200
E1ild]
Lop
500

600
2an
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SUBROUTINE MMPROC(K,PT!M,Z,IGESS,IA,IX,IXX,ISH)
INTEGER*2 K

CALL RAND(Z, IGESS, |A, IX, | XX, 15HW)
GO TO leD,200,300,&00,500,500),K
V=Z

DO 150 Jv=1,11

CALL RAND (Z, IGESS, 1A, IX, 1XX, ISW)
V=W+7

V1eD,peV-3, 47

SMU=EXP{V1)

GO TO 300

SMU=0.80+2 + 0,45

GO TO 80D

SMU= ¥ + 0,60

GO TO 800

SMU= 2.20+Z + 0,50

GO TO 8090

SMU= 1.50+Z + 0,25

GO TO §00

SMU= Z + 0.60

PTIM=5MU

RETURN

END



qaaoniaa
Q000200
a0pd300
aooou0Q
agpasao
0000600
0ogd700
0000800
0000900
npol1000
0001100
0001200
0001300
(I
p001500
0001600
0001700
0001300
0001900
pogz2000

100

200
300
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SUBROUT INE CHAN(NOCHAN, ARR, PROC, ON, WAIT,OFF, |CHAN, C)
DIMENS10N C{100}

INTEGER«2 ICHAN

MIN=1

GO 100 J=2,NOCHAN
IF{C{MIN),LE.C(J)) GN'TD 10€
MIN=J

CONT INIJE

1CHANRMIN

IF (ARR.GT.CIMIN)) GO TO 200
WAIT=C(MINI-ARR

ON=C{MIN}

OFF=C(MIN) +PROC

GO TO 300

ON=ARR

OF F=ARR+PROC

CONTINUE

CIMIN)=0FF

RETLIRN

END
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gonsim
ENTER NO. DAYS TO BE SIMULATED IN F10,2

0
ENTER NO, COMM, CHANNELS IN 12

oL
ENTER A RANDOM |INTEGER BETWEEN 1 AND 106,000 [N FORMAT I8

034421

4 CHANNELS SIMULATED FOR 2.0 DAYS WITH 1537 ARRIVALS

AV. ARR, TIME 1.8723 ST, DEV. 1.81
AY. SER. TIME 1,2108 5T. DEV. 0.56
AV, STATE 0.6503 5T. DEV, 0.81
MAX DELAY 0,64

NG. DBELAYS iz UTIL. % 16.15

DISTRIBUTION OF STATES
STATE FREQ STATE FREN STATE FREQ STATE FREQ
a 1487 3 64 6 1 9 0

1 1015 i 11 7 | 10 0
b4 298 5 L) 8 0 11 D

LOG OF DELAYS LDNGER THAN 30 SECONDS
MSG. NO. 215 M5G. TYPE 6 ARR. TIME L06.80 PROC., TIME

1.32

WAIT TIME

0.

64
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APPENDIX C
Limiting Values Of ?\0 And A, For C =1 To 20



0000100
0000200
0000250
0aan3og
ao06350
onoo400
aneasno
nppasno
Dooo700
0pongoon
0000810
ponoa2o
0000830
anangoo
aaoln0g
0001100
gonlzoo
opnl3an
opoluon
oenlaso
pRO1500
0901600
pOO1709
0001800
aan19oo0
qaozaaq
ganzlon
anooz200
0002300
oeo2400
noa2500
DNozaon
0002500
0003000
00031400
aq03200
0003300
non3400
ana3isna
0on36a0
0003700
6003900
0904000
0aa410n
aaou20q9
aonu3ing
agoLsan
aanusno
0o0hE00
nnns700

raon

lo03

100

200
250

300

500

(X}

700
800

900
100t

28

IMPLICIT REAL#*Z (A-F)
DIMENSION A(5a),B(50),C(501,n(50),E(50),F(50}
DATA E/50%1.0/

DMAX=10D, D

INDEX=n

DFAC=1,0

WRITE (6,1000)

FORMAT (' " 75, '"THIS PROGRAM CAICULATES THFE MAXIHUM VALUES OF'/-
175, "LAMRDAD AND LAMBDAx FOR A GIVFEN HUMBER OF CHANMELS'//T5, NO. CHANN-
2ELS LAMBDIAD LAMBRA®Y /)

WRITE (F,1003)

FORMAT (* ', TS5,5X%," 1 0.839962 1.618034")

nn 5040 J=2,320

DX~hMAX

pn 100 1=1,20

DFAC=DFACK]

ACI)=-1,0/DFAC

Afdel)=-A())

DFAC=1,0

JMl=g-1

ne 200 1=1,4M1

B{I)=A(Y)

BOJY=ACU+1)a{U+1)

DFN=-1.0

DFNPR==1,0

pn 300 1=1,J

DFN=DFN+A{ L } = (DX*w1)

DFNPR=DFNPRSR{ )% {[Xwa|)}

DFN=DFN+A(J*L )« (DX ))aDX

DNTEMP=DX-DFN/DFNPR

IRDEX=IMDEX+1

NEL=DARS(DTEMP-DX}

IF (DEL,LT.0,000000001) GO TO 500

DX=DTEMP

Gn To 250

C{J)=DTEMP

nO 600 J=1,2D

Cl=C{J)

D{J)=DEXP(-C1)*C1

DN 800 J=1,20

DFAG=1.4

Dn 700 1=1,4

DFAC=NFAC=|

E{d)=FE(J)+ (C{JI)*~[)/NFAL

FCJI=DLSI*E(U)

Do 900 J=2,2n

WRITE ¢6,1001) J,F{J)}, 0}

FORMAT (' ',T5,5X,12,9%,F%.6,3%,F9.6)

STOP

END
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THIS PROGRAM CALCULATES THE MAXIMUM VALUDES OF
LAMBDAO AND LAMBDA* FOR A GIVEM NUMRER OF CHAMNELS

NO. CHAHNELS LAMBDAD LAMBDA*

1 n.8399A2 1.61B034

1,371102 2,269531

3 1.942381 2, 945186

[l 2.503534 3.630547

5 3.168185 4.3490LR

6 3.812021 5.071184

7 L.t 71954 5.804110

8 5.145672 65460411

9 5.831388 7.296973

10 G.52768% 8. 0548085
11 7.233412 B,B1944LD

12 7.947624 9,580989
13 8.6609525 10,366021
1n $.308444 11.147089
15 10.133803 11.932806
16 10,875103 11.72283h
17 11.621909 13.5106878
12 12.373R37 14314675
18 13.13n5u8 15.1150790

20 13.891741 15,920615
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APPENDIX D
Examples Of Effect Of Varying v For

Certain Values Of IAO And C

Whenever 0 < y < 1, the resulting equation is trans-
cendental and must be solved numerically. The solution of
the equation is dependent upon the values of AO’ Y, and C.

" The equation for the effective lambda is

A= Rt A 0(CA, )

Repegtedly solving this equation until it either diverges or
convérges for given values of ‘AO’ Y, C' yield the effective
value A*. Three sets of values were selected for KO’ Y,
and C and a convergence criterion of lO_5 was used to demon-
strate the effects of varying v for fixed values of AO
and C.

In the first example A . =1.5and C=2, If vy =20

0

% ©€quals AO since no rejects reenter the system.

As y 1s increased, X, iIncreases nonlinearly. For AO = 1.5

then the A

and Yy = 1, the minimum feasible value of C for a controlled
process 1s given in Appendix C. This value is C = 3. For
A0-= 1.5 and C = 2, the value of A, begins to increase very
rapidly for ¥y > 0.8 until the process diverges at some Yy in
the interval 0.9 =« v ¥ 1.0. The second and third sets of
values demonstrate the effects of varying  for Ao = 5.5

and C =6 and 7.
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1.50
1.53
1.56
1.60
1.65
1.71
1.78
1.89
2.00
15.00

0123.&.56?890
00000000001

1.5

570.&.133350

" 1A O O I~ 0,1,9,7.R,m
o e

0123:&.567890
00000000001

3.5

568927.&.250

" 1A S O N~ g
— e

0123.&.56?890
00000000001

5.5
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