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ABSTRACT

The use of satellites for wide area direct broadcasts results

in large power requirements for the satellite. Such satellites are

or will be used to provide remote health care delivery and educational

services to remote regions and many other new services including

warnings to the public of impending natural disasters. These new

special purpose satellites are very cost sensitive to the number of

broadcast channels, usually will have Poisson arrivals, fairly low

utilization (less than 35%), and a very high availability requirement.

To solve the problem of determining the effects of limiting C the

number of channels, the Poisson arrival, infinite server queueing

model will be modified to describe the many server case. The model

is predicated on the reproductive property of the Poisson distri-

bution.

For small changes in the Poisson parameter under the assumptions

stated previously, the resulting distribution of states or number in

the system will be Poisson. A difference equation will be developed

to describe the change in the Poisson parameter. When all initially

delayed arrivals reenter the system a (C + 1) order polynomial

must be solved to determine the new or effective value of the Poisson

parameter. When less than 100% of the arrivals reenter the system

the effective value must be determined by solving a transcendental

equation.

The model will be used to determine the effects of limiting the

number of channels for a disaster warning satellite. State probabil-

ities and delay probabilities will be calculated for several values

of the number of channels C for arrival and service rates obtained

from disaster warnings issued by the National Weather Service. The

results predicted by the queueing model will be compared with the

results of a digital computer simulation.
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CHAPTER I

INTRODUCTION AND BACKGROUND

The use of geosynchronous orbit satellites for communications

began in the 1960's with SYNCOM I. Since then a network has been

established to provide international telecommunications via sat-

ellite to about 80 countries throughout the world. The use of

modern telecommunications has become so commonplace that there

is often a tendency to forget how recent are the technological

achievements which make such usage possible (COMSAT Report 1972).

The presently used network of commercial traffic consists of

four INTELSAT IV series satellites and over 70 earth stations

all of which are used for point-to-point transmission of tele-

phone and television traffic. Such a network requires large and

expensive ground transmitter-receiver systems.

According to Podraczky and Kiesling (1972), INTELSAT is

presently projecting annual growth rates of 15 to 35%. In

1965 INTELSAT I consisted of 480 communications channels. By

1971, each INTELSAT IV had a capacity of 10,000 channels.

Podraczky and Kiesling (1972) estimate that each next generation

satellite will have a capacity of 50 to 100 thousand channels

and that by 1990 the Atlantic region alone will require 1,000,000

channels if the growth rate averages 35% annually.

In late 1971 an initiative study was conducted for the

Executive office of the President primarily by NASA and included

about 100 participants from various government agencies. This

study, "Communications for Social Needs" (1971), was an effort

to solve social problems through the use of advanced technology.

One of the results of the study was the conclusion that there

is an evolving need for what might be called special purpose

1
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communications satellites.

The initiative study concentrated on an area of communication

satellite applications in which the ground receiver systems or

terminals were very large in number and hence a driving cost

parameter. Contrasting the commercial and the special purpose

types of communication satellites, one finds the following

differences:

Commercial Special Purpose

Low Power High Power

Point-to-Point Transmission Wide Area Coverage

Small Number of Expensive Large Number of Low Cost

Terminals Terminals

Large Number of Channels Small Number of Channels

In usage, the operation of the special purpose type gener-

ally consists of transmitting information to many receivers over

a relatively large geographic area. The applications considered

in the aforementioned study were the uses of communications for

remote health care delivery, electronic mail handling, law

enforcement, education and as a possibles means of warning the

public of impending natural disasters, such as hurricanes or

tornados.

The most important difference between the commercial and

the special purpose satellites is that the major design objec-

tives are radically opposed to one another. Herbert Raymond

(1971) suggested that the most meaningful parameter for a com-

mercial satellite system is probably the utilization factor. It

should be high in order to maintain a profitable system. The

special purpose satellite must be designed using availability as

the major parameter. In the remote regions of the far northern

hemisphere, for example, where neighboring villages may be

separated by distances of hundreds of miles, the need for

emergency medical care can be met through the use of parapro-
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fessionals communicating with doctors via satellite. However,

it is not reasonable to expect anyone to wait for service in

this application. Should satellites be used in the future to

warn the public of impending natural disasters, it would be

essential to dispatch warnings as quickly as possible. A

system which warns of tornados 15 minutes after their occurrence

would be of little value to the public.

The National Aeronautics and Space Administration (NASA)

and the National Oceanic and Atmospheric Administration (NOAA)

have been conducting joint investigations of various tech-

nologies in order to examine the feasibility of using communi-

cation satellites for one of the applications mentioned previously,

namely, to provide warnings to the general public in the event

of an impending natural disaster. The various candidate systems

for disaster warning which have been suggested for consideration

include the mass ringing of telephones, microwave transmission

of radio signals, terrestrial radio networks and the use of

communication satellites.

Government organizations other than NASA are conducting

studies of terrestrial systems and NASA is confining its in-

vestigation to the use of satellites. When completed, the

studies will be used to determine the most cost effective system.

At the present time, satellites offer a very viable alternative

because several meteorological functions may be combined with

the communication function, and the satellite system has the

desirable property of being "hardened" against natural disasters.

That is, satellites are not prone to destruction from an im-

pending natural disaster.

The functions of a natural disaster warning system as re-

ported by Hein and Stevenson (1972) and in the Federal Plan for

Disaster Preparedness (1973) are:

1. Route disaster warnings to the general public.



2. Provide disaster communications among national,

regional and local weather offices and

affected areas.

3. Provide environmental information to the public.

4. Provide a system for collecting decision infor-

mation for the dissemination of warnings.

The natural disasters which would be monitored by a DWS

include tornados, severe thunderstorms, flash floods, tsunami,

earthquakes,hurricanes, forest fires, winter storms, and a

category called other.

The National Weather Service (NWS) is organized to monitor

and predict weather locally, regionally and nationally. This

organization as described in the Operations of the National

Weather Service (1971), consists of about 300 offices and centers

throughout the United States. There are national centers which

specialize in certain types of weather phenomena, such as the

National Hurricane Center in Miami, Florida. As part of the

NWS network, 41 Weather Service Forecast Offices (WSFO's) are

located throughout the contiguous United States.

The Weather Service transfers an enormous amount of data

through its network of offices. In the event of an impending

natural disaster, the NWS network is responsible for warning

the public through the mass media. In recent years, it has been

found that the present warning system tends to become saturated

during large scale disasters such as Hurricane Agnes which

occurred in 1972. In a report entitled The Agnes Floods (1972),
the saturation of the present warning system was cited as reason

for continuing research efforts to increase the capacity of the

NWS to provide natural disaster warning to the public.

In order to alleviate problems and to deal with the pro-

jected data transfer of the future (1980's) the NWS is in the

process of implementing the automation of routine weather data

through a network called Automation of Field Operations and
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Services (AFOS) (1972). When fully implemented, AFOS will be

used to collect meteorological data through a data collection

system called GOES (Geostationary Operational Environmental

Satellite) (1972). Through the satellite system thousands of

data collection platforms (DCP's) located throughout the

United States will be interrogated periodically via a satellite-

computer system in order to determine local weather conditions

and whether or not there is an indication of any potential

natural disaster occurring within any given populated region.

For example, sensors might be used to determine water levels in

areas subject to flash floods. If conditions indicate a danger

level, a flood warning would be issued to the public in that

particular area.

The system may include a direct broadcast capability.

Warnings would be broadcast directly to home receivers or to

local transmission points which would then be rebroadcast to

home receivers. The home receivers would be designed so that

they could be activated by a signal repeated through the satel-

lite. A conceptual diagram of the functional system appears

in Figure 1.1.

In September 1973, the Aerospace Systems Group of the Com-

puter Sciences Corporation in Arlington, Virginia, began work on

a feasibility study of using satellites for a natural disaster

warning system. This study, funded by the NOAA and managed by

the NASA Lewis Research Center, will provide the conceptual

design of a satellite DWS.

As will be indicated in more detail, the primary problem with

the design of such a satellite DWS is the determination of the

minimum number of communication channels required to service the

system needs. This determination requires an extensive analysis

of the message traffic for the proposed system in the early

1980's.

A message traffic analysis and simulation was performed at
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Figure 1.1 Conceptual diagram of a satellite DWS.
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the NASA Lewis Research Center by Gerald F. Hein and Steven M.

Stevenson with the assistance of NOAA's Environmental Satellite

Service Administration and another was conducted by Vern Zurick

of the Environmental Research Laboratory in Boulder, Colorado.

In the former report, a model of communications traffic

was developed from the theory of multiserver queues. The

accuracy of the model is dependent upon the assumption that

the messages are requested to be sent according to a Poisson

distribution and the time required to transmit the messages

is distributed as an exponential density.

The data available at the time both studies were performed

was somewhat incomplete in that warning messages issued by the

NWS were recorded in terms of the number and type of messages

per month. The only information available concerning the message

length was the average message size. Thus a goodness-of-fit

test for the assumption of Poisson arrivals could only be

performed on the basis of number of messages per month. Since

this was adequate at the time, a test was performed and the

Poisson hypothesis could not be rejected at the 5% level of

significance. Because no data were available, the hypothesis

of the exponential density for processing times could not be

tested. The studies reported by Hein and Stevenson (1972) and

Zurick (1973) yielded valuable estimates of the number of channels

required, but the problem was somewhat complicated by a NOAA

requirement that the probability of message transmission would

have to be at least 0.9999999. Some method was required for

treating this specification. Hein and Stevenson (1972) inter-

preted the specification as "virtual certitude" that at least

one channel would always be available to transmit a warning

message. Such a concept can be manipulated with multiserver

queueing theory if the arrivals are Poisson distributed and the

departures are distributed exponentially. Thus the emphasis on

Poisson arrivals and exponential departures in Hein and Stevenson
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(1972) becomes obvious. The difficulty encountered with the

aforementioned analysis is that the limiting distributions of

service times do not seem to be exponential.

The satellite system will require a high Effective Isotropic

Radiated Power (EIRP). Present total satellite power is on the

order of 50 watts and designs of the mid to late seventies will

be limited to less than 500 watts. As reported by the Computer

Sciences Corporation (1973), DWS satellites will require more

power than present designs can deliver. If the satellite is to

be a viable alternative, the power will be limited to something

less than 10 kilowatts which thus precludes the addition of

large safety margins for the channel requirements.

There is a genuine need to determine the minimum number of

channels for the DWS requirements. The application of satellite

technology for the solution of social problems such as those

discussed in the study "Communications for Social Needs" (1971)

may be delayed if the problem discussed above is not solved.

The requirements for the DWS satellite are very similar to the

requirements for a large class of satellites which may be used

to solve some social problems. For lack of a better description

this class of satellites will be called special purpose communi-

cation satellites. The salient need is to determine the perfor-

mance criteria required for the estimation of the channel require-

ments. Thus the motivation for the topic of this dissertation

is the need for a solution of the problem discussed above. The

alternatives are to overdesign which is not feasible here, use

simulation techniques which may be expensive or use an analytical

technique.

A search of the literature dealing with queueing theory

revealed that general independent input and service distributions

present many difficulties. Thomas Saaty has stated (1961):
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We shall give only the result. We refer readers
to the works by Kiefer and Wolfowitz on this
subject. The authors point out the desirability
of solving their equation for special values of
the input and service distributions but also
state the task is likely to be difficult.

In another work Saaty (1966) stated that queueing models

are rarely applied in practice. One of the main causes of this

dearth of applications is that the theory has seldom been de-

veloped because of need. In the solution of problems a frequent

approach is the use of fluid approximation techniques as dis-

cussed by Gordon Newell (1971). In the problem reported in this

dissertation the development of the theoretical model was

motivated by the application.

The potential solution of the channel requirements problem

for special purpose communication satellites was thought to be

in the problem class of the GI/G/C queue. An extensive analysis

was made of the types of messages sent over the teletype network

of the National Weather Service. It was found that the messages

could be classified into six different groups of input. It was

also demonstrated that the six types of messages could each be

represented by a Poisson distribution, as will.be reported

later. Although such a simplification should be expected for

large numbers of messages over the period of a month, the hypoth-

esis testing was done for:relatively short intervals such as four

or five days because of requests by the people involved with the

problem at NOAA. It is very important to know the distributions

of what NOAA personnel have called "spikes" or short bursts of

increased traffic intensity such as that experienced during the

ten days of rampage by Hurricane Agnes from June 14-28, 1972 or

the Palm Sunday tornados of April 11, 1965, so that the communi-

cation system can be designed to handle such traffic loads.

For this type of problem Saaty (1961) presented the distri-

bution of the waiting time for the M/G/l queue using an n-fold

convolution. In the case of the M/G/ queue Lajos Takacs (1961)
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proved that the limiting distribution of the number in the

system exists and is also a Poisson distribution. In the case

of the many server process M/G/C, it is difficult to find useful

expressions. Newell (1971) states that the case of infinite

channel servers M/M/- represents an idealized form of a queueing

system in that the server itself causes no interaction between

customers. He also states that useful approximations can be

obtained for systems with sufficiently many channels, without

stating what is meant by sufficiently many.

Recent work such as Chen (1970), Inglehart and Whitt (1969),

Inglehart (1969), Ross (1970) and Yu (1971) represents contri-

butions for certain classes of the many server problem, but

nothing was found which provides an analytical solution for the

problem of concern here, namely an estimation of the limiting

distribution of the number of customers in the system or the

waiting time distribution for Poisson arrivals and arbitrary

service.

A general background of the queueing problem was presented

in this chapter. In Chapter II there is a development of the

applicable queueing model. To demonstrate the applicability of

the theory, the work performed to classify the statistical distri-

butions of six types of message arrivals and departures for the

DWS is presented in Chapter III, and the third chapter is con-.

cluded with the application of the theory to determine the DWS

channel requirements. In Chapter IV the predicted values and the

results of a continuous digital simulation are compared in order

to provide verification of the analytical model. This dissertation

is concluded with a summary of results and suggestions for further

research endeavors in Chapter V.



CHAPTER II

DEVELOPMENT OF THE APPLICABLE QUEUEING MODEL

In the previous chapter a rationale was presented for the

development of an availability criterion for special purpose

communication satellites rather than the utilization criterion

which is so important to a.commercial venture. In this chapter

a queueing model will be developed for the type of problem dis-

cussed in Chapter I.

To develop the framework of the model, reference will be

made to the Poisson arrival model with an infinite number of

servers discussed in Takacs (1962). The infinite server case

has been solved for Poisson arrivals. The basic hypothesis for

Chapter II is that the state distribution for the many server

case should be similar to that for the infinite server case.

As will be seen from the Theorem of Takals, the state distri-

bution for the infinite server model is Poisson. Because of the

reproductive property of this distribution and the fact that

the mean and variance are equal, a change in the Poisson para-

meter X to A + AX results in a Poisson distribution with a

mean and variance of X + AX.

Thus the many server case should have a state distribution

which is at least similar to a Poisson distribution. The hypo-

thesis will be developed with a presentation of background

material in 2.1 and the development of the model in 2.2. A

general relationship will be presented in 2.3.

2.1 Prerequisite Queueing Theory

In the case of an infinite number of servers with Poisson

arrivals, Takacs (1962) proved that with an arbitrary service

discipline, the limiting distribution of the states can be

11
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represented by a Poisson distribution. Moreover, the distri-

bution is independent of the initial state. The proof of this

theorem is given in Takacs (1962), and is stated here.

Let a= xdH(X) and P{f(t) = K} = Pk(t)
0

where a is the average service time, Pk(t) is the probability

of being in state K at time t, e is the Poisson arrival para-

meter, and (t) is the queue size or number in the system.

Theorem 1. If (0) = 0 then
t

Pk(t) = EXP- [-H(X) ]d ]

for K = 0, 1, 2, .

and if a < - then

lim PK(t) PK (K = 0, 1, 2, . . .)
t-oK

exists and we have

* -a (a)K
PK e K! (2)

The interpretation given to equation (2) is that it gives the

long term proportion of time spent in each state, where state

refers to the number in the system. Since there are an infinite

number of servers available, an arrival is served immediately

upon entry into the system. Because of the immediate service

the servers do not cause any interaction between customers. There

is input, processing and output. The expected values of the

queue length and the waiting time (excluding service) in the
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queue are both zero.

2.2 Development of Applicable Model and Effective Values of State

Parameters for the Many Server Queue

In the situation encountered in the special purpose communi-

cation satellite (which is also applicable to many other problems

where availability is an important design criterion), the mar-

ginal cost of adding a server is usually large. At the same

time the risk encountered by not adding a needed server is prob-

ably larger than the marginal cost of adding a server. Because

of the intangibles involved it may be necessary to accept the

risk of not adding a server. It is important to determine the

effects of limiting the number of servers. In the infinite

server case depicted in Figure 2.1 arrivals are served upon entry

and depart after receiving service.

In the case of the many server queue without storage,

arrivals will have a certain probability of being rejected if

there is no server available when the arrival enters the system.

In the case of the special purpose communication satellite,

most of the arrivals will keep trying to enter the system until

a server is available. In many problems, however, a fixed

portion will leave the system and not return. The fixed fraction

not returning will be specified by (1 - y) where 0 < y <1.

Figure 2.2 shows the effects of limiting the number of servers.

As stated previously, y will usually be 1 in the application

presented in this work. Thus 100y% return for service again.

In the theorem of Takacs (1962), the state probabilities of

the system can be described with a Poisson distribution. The

parameter for this distribution is the Poisson parameter for

the arrival rate times the average service time. That is .X = ea.

When the number of servers is constrained, the effect of the con-

straint may be described as an effective increase in the average

number of arrivals. Since the service time remains constant, a
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difference equation can be written to describe the effects

of server-customer interaction. An arbitrary time interval

will be selected so that the rejected arrivals will have a

very low probability of entering the system more than once during

the same time interval. For the first interval of time at start-

up, the parameter X. = O.a may be described as
1 1

X0 = 0 + 0 (3)

During the second time interval

X1 = X0 + yX0 D(C,X 0 ) (4)

where y is the portion of rejects returning; D is the comple-

mentary cumulative of the Poisson distribution; X0 is the

Poisson parameter and C is the number of servers in the system.

The second term on the right side of equation 4 is the parametric

increment caused by the rejected customers returning for service.

For the third interval

12 = 0 + ykX1 (C, 1)

= 0 + y[X0 '(C, 1I ) + YA 0(C,11) (C,X0)]

= i0 [l + pY(C,xl) + y2 (C,ll))(C,X0)] (5)

To simplify the notation, 0(i) will be used to denote

@(C,.). For the next interval

13 =0 + yX2 (2)

=0 + yX0 [l + yO(1) + y2 (1) (0)](2)

= 0[l1 + yo( 2) + y2 (2)m(l) + y3 (2)0(1)o(0)] (6)
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In general,

j = 10[1 + y@(j-1) + y 2(j-l)0(j-2) + ... + yJ (j-1)...(O)

= 101 + E yj-i (K)
i=0 K=i7)

It is necessary to determine whether this sequence converges

and if so, to determine the interval of convergence. In the

event that {X.} converges to some effective value, there will be

an epsilon such that

xN+l = N + E

where epsilon can be made arbitrarily small.

The sequence {X.} is a non-decreasing sequence. Each

successive value of the sequence is the sum of positive terms

because X0 is positive, y lies between 0 and 1 and the

{O(i)} are probabilities. Thus

xN+ > XN for all N > 0

which implies

N >- XA for all N 0

The opplementary cumulative of the Poisson distribution for

C servers is the probability of an arrival being rejected and

is denoted by

C n -X
C e g

0(g) = ((C, ) = 1 - n0 n! (8)g n=0
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Substituting this relation into equation (7) yields

j-1 j-1 -X CXn
=0 + y Y -i[ l - e K K

Si=0 K=i n=0- (9)

Expanding equation (9) yields

1 +Y e-xj- C +Xj = 0  + y(1 - e j- + +

+ y2  1- e 1 - .j -i 1 - e i

n0 n=)

e j - eA

+ . e : e 1

The summations can be simplified using the relation

lim C Xn X
C-WL n ! = e=

n=O

Then the term

-A C A
y(l - j- 1  n=oj

n !

where the number of servers is infinite, results in the following

y(l - eXj eX - ) =0
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In general, since

X n

n=0

then

1 - e - 1-i g n -" <- - e

n=0

independently of the value of C. Using this inequality, equation

(10) may be rewritten as an inequality

+ <0 1 + - e -J-l + Y2 (- e Xjl) (- e-J-2) +

+ ... + e ... e 0) (11)

Using the fact that

x0 
<  XN for N > 0

it is then true that

e -e
for all j > 1.

It is also true that

(1 - e l) > (1 - e-N)

for all N such that 1 < N < j.

Substituting 1 - e j -  for all 1 - e j - N  for all N in the

interval 1 < N < j does not change the direction of the inequal-

ity in 11, and so it can be simplified to
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1. < 0 + y 1 e l+ 2 1 - e +
3 -- 0

+ ... +y 1- e

which can be expressed

i < i l - e-j-l ) i

=0 7 1 - e (12)

j-1 + j
As Xj_l increases, e j approaches 0+  and y1 - e

is always less than one. The use of d'Alembert's Ratio Test

guarantees the convergence of the right side of inequality (12)

as j approaches -.

The interval of convergence for the sequence {A.} is de-

pendent upon the value of C, the number of servers. For the

case where C = =, the sequence should provide results which

are consistent with the theorem of Takacs mentioned in the be-

ginning of this chapter.

C =

For C = m, during the interval of time for X. where j > 0

Xj = 0 + yXj- 1 ¢(j-l)

= X + yXj 1 - e X j - 1  C

j-1 i=0 (13)

Since there are an infinite number of servers,

i
X j-1 0 L- ej-1 j-1

i= i
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Thus equation (13) reduces to

X 0 +  YX ( - ) = X0

which agrees with the theorem of Takacs. In the case of the

infinite server model, there are no limitations placed upon

arrival rates or service times. In the limited or many server

case, it is necessary that X0 = e0a be less than the number

of servers in order to have a stable queueing system (Takacs

1962); otherwise the queue length increases without bound. The

model developed in this chapter implies an additional constraint

for stability in the many server case. Thus it is necessary to

investigate the convergence interval for the model in order to

determine the effects if any on the limiting value of X0 = 6 0 .

If there exists a limit which is less than the number of servers,

this value may be determined from the convergence interval. The

maximum X0 will be given by Min [C, 0].

The C = 1 case will be examined to determine the extent of

the more stringent stability requirement for the reentry model

for y = 1. The C = 2, y = 1 case will be discussed in the

next section, and then a general case will be developed for

y = 1.

Single Server Case When y = 1

Since Xj = X 1j- + E and from the proof that the sequence

converges, E can be made less than some arbitrary number. When

this convergence occurs, Xj and all {XK > j} may be denoted

by X, which will be referred to as the "Effective" X. The

limiting effective values will be developed for 2 values of C

in this section and the next and then a general relation will be

given.

C = 1. For the case when C = 1, assume that the Effective X

has been reached if it exists. Thus
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* = 10 * 1 - e (1 + , (14)

will be used rather than the exact relation

S = + X 1 - e -- l( -

A proof is given in Appendix A that the two forms are equivalent

if the sequence converges. Solving equation (14) for X0 yields

A0 
= e A*i A (15)

Considering A0  as a function of X, it is necessary to de-

termine the value of * which maximizes the function in the in-

terval of convergence if such a value exists.

o d* -* -X 2
dX = e (1 + 2~X) - e (A* + ) = 0 (16)

d2

2=e (A - 3A) (17)

The second derivative is negative for all A, in the interval

0 < * < 3. Therefore the function has a maximum value in this

same interval if there is a solution of equation (16) in the in-

terval. Solving the equation yields

Discardin the neative root which is sically meaninless

Discarding the negative root which is physically meaningless
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X*MAX = 1.618

which lies within the constraint. Solving equation (15) for

the value of .0 yields

X0AX = MIN [1, 0.8399] = 0.8399

The interpretation is that XOMAX = (60a)MAX is the maximum

value that will yield a controlled process if there is only a

single server. If this value is exceeded, the average state of

the process will eventually increase without bound because of the

reentry mechanism. As an example, if a = .5 minutes, then

6OMAX = 1.6798/minute is the maximum average arrival rate that

will yield a stable system for the C = 1 case. Also, the

proportion of time that the system will be in each state can be

described by a Poisson distribution with a maximum parameter

*MAX = 1.618. A table of limiting values for C = 1 to 20

is given in Appendix C and the general equation for determining

the values is presented in the next section of this chapter.

2.3 General Equation for Evaluating the. Limiting.State Parameters

In this section a presentation of the C = 2 ,=y: =1 case

will be given and then the general equation for C = n, y = 1

will be presented. When y = 0, the solution is trivial and

when 0 < y < 1, the resulting equation is transcendental; this

case will be discussed later.

C = 2, y = 1

For this case

, = X0 - e 1 ( + 2
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Solving for X0 yields

X eX0  = e ( , + , + -

Differentiating with respect to A and equating to 0,

dA
0 3 2= A - A - 2, - 2 = 0

dX * *

yields

A = 2.2695*MAX

and

0MAX = MIN [2, 1.3711] = 1.3711

In addition to the constraint that 10 < 2, the new constraint

requires X0 < 1.3711 for a stable system when y = 1.

C = n, y = 1

For the general n server case

n xn+l

S = e + + ... +( n-l) 18)

Differentiating with respect to X* and equating to zero yields

n+l n n-l

n! (n-l)! .. - -1= 0 (19)

According to the rule of signs developed by Descartes (1637),

this polynomial has exactly one positive root. To obtain the

roots of polynomials there are many computational methods

available. One which is rather easy to use is the Newton-Raphson

method discussed in Dorf (1967). According to this method the
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next estimate of the root of f(x) is given by

f(x )
Xn+l =Xn f'(x )

n

A computer program was written to search for the root of

equation (19). The program and sample outputs are presented in

Appendix C.

After the value of *MAX is obtained X may be
.*MAX OMAX

computed. If XOMAX is less than C, then 10MAX is the

maximum X0 for that C; otherwise C is the limit.

Case when 0 < y < 1

In the case when y = 1 a polynomial evaluation is re-

quired to determine the value of X* for a given C. Then

the limiting value of 0 may be determined. When 0 < y < 1,

only a fraction of the rejected arrivals return to the queue.

Thus X*MAX increases without bound as y approaches zero. As

this happens, the new constraint on A0 is relaxed until

X0MAX = C. For C = 1 this happens when -y < 0.85.' The general

constraint is X0MAX = MIN [C,AO0 ] so that y < 0.85 yields a

limit of 1 for X0MAX. The effect of varying y for different

values of C is given in more detail in Appendix D.

Summarizing the results of this chapter, an equation

which describes the effective change in the Poisson parameter

of the theorem of Takacs was developed as a model for the

many server case. It was proven that the sequence converged.

The root of(-19):is the effective value of the Poisson parameter

for the many server case when y = 1. Using the root of the

equation a maximum allowable value of A0 can be determined

using equation (18). If this value is less than the number of

servers or channels, then a more stringent maximum value of

X0 = 80a exists in order to have a stable system. If the

maximum A0 is not exceeded, then the resulting state probabil-

ities may be described as a Poisson distribution with a parameter
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X*. The constraint for stability is

10MAX < MIN [C, X 0

where C is the number of channels and X0MAX for a given

C may be calculated or determined for some values of C

from the table in Appendix C.

To make use of the model presented in this chapter, it

is necessary to evaluate A0 from data and then determine

the feasible range for C. Thus if X0 is greater than .83

and y = 1, the minimum feasible C is 2 rather than 1 which

would be the minimum feasible C for y = 0.

In the next chapter, an application of the theory presented

in this chapter will be developed for a particular communication

satellite system.



CHAPTER III

APPLICATION TO THE DESIGN OF SATELLITE CHANNEL REQUIREMENTS

In Chapter I a comparison was made between the commerical and

the special purpose communication satellites. It was pointed

out that the design philosophies of the two are in general quite

different. As an example of this difference it was stated that

high utilization is one of the most important parameters of the

commerical venture whereas availability is one of the most important

parameters for the special purpose type. One of the best

examples of a special purpose satellite design being motivated

by an availability criterion is the proposed use of a satellite

system to provide warnings to the public in the event of an impending

natural disaster such as a hurricane or a tornado.

The problem of determining the required number of communications

channels for a natural disaster warning satellite has been selected

to demonstrate the application of the theory presented in Chapter II.

This demonstration requires a knowledge of the statistical patterns

associated with the message arrival and processing times. As

stated in Chapter I, the analysis performed by Hein and Stevenson

(1972) was incomplete because the data were analyzed for

intervals of a month over a period of six years to determine the

arrival patterns. In order to demonstrate that a Poisson distri-

bution could be used to describe the arrival patterns over a period

of a few days or even a single day, it was necessary to take the

output of the present NWS communications system and perform tests

on these data.

Another shortcoming of the study by Hein and Stevenson (1972)

is that the message lengths could not be categorized statistically

since data were not available. In order to obtain this information,

it was necessary to count the number of characters in each message.

26
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This determination of arrival patterns and message lengths was

performed for six categories of messages issued by the NWS.

These categories are:

Hurricane Warnings

Tornado and Severe Storm Warnings

Winter Storm Warnings

Small Craft Warnings

River Warnings

Other Warnings

The source of data for hurricane warnings consisted of the

819 messages sent during the events of Hurricane Agnes; these

messages were published in the Preliminary Report on Hurricane

Agnes (1972). The source of data for the remaining five types

consisted of hundreds of feet of teletype output from the NWS in

Silver Spring, Maryland. The origination time of each message was

noted for every message of each particular category to determine

whether Poisson distributions could be used to describe the arrival

patterns of each category for the contiguous United States. Each

message size was determined through a character count and the

processing time was determined by allowing 5 characters per word

at a nominal speaking rate of 137 words per minute. The categories

"River" and "Other" were combined in the analysis because there was

an inadequate sample for the "Other" category. A summary of the

results of the analysis of the message data is presented in Figure

3.1. The procedure used for each message type is discussed in more

detail below.

A presentation of the statistical procedures and analysis of

the NWS warning data is given in Section 3.1 for each of the six

categories of messages. Since the Poisson arrival pattern is

required for the theory developed in Chapter II, the null hypothesis

is that the arrival pattern may be represented by a Poisson distri-

bution for each of the six types of message categories. Since the

class marks are integers and the number of events for a Poisson
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Message Arrival Broadcasting Average
Category Pattern Time Density Value

Hurricanes Poisson Log Normal 1.15 Mins.

Tornados Poisson Uniform 0.85 Mins.

Winter Storms Poisson Uniform 1.60 Mins.

Small Craft Poisson Uniform 1.00 Mins.

River & Other Poisson Uniform 1.10 Mins.

Figure 3.1 Statistical Patterns for Message Categories
and Average Broadcasting Times.
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distribution is an exclusive class (as discussed in Bradley

(1968)), the Chi-squared goodness-of-fit test was selected 
to test

the Poisson arrival hypothesis.

The message broadcasting time probability densities may be

arbitrary according to the theory of Chapter II. In order to

develop a computer simulation of the model, however, individual

service densities were hypothesized and tested. For each

category of warning message, the broadcast times were 
plotted as

histograms with varying class sizes (.05 to .1 minutes). In the

case of the hurricane warning messages, the density was immediately

seen to resemble a log normal density as will be demonstrated in

Section 3.1. For the remaining categories, the uniform density

seemed to be the most logical choice. The goodness-of-fit test

used for the determination of the acceptability of the hypothesized

densities was the Kolmogorov-Smirnov because the distribution

functions are continuous and because the Kolmogorov-Smirnov test

is superior to the Chi-squared test' (Bradley i(1
9 6 8)).

In Section 3.2 a projection of message traffic is made for

1985 since that will be the nominal traffic year for the first

generation of DWS satellites if satellites are to be used. 
Then

the theory of Chapter II is used to perform a comparative analysis

for different values of C, the number of channels available for

simultaneous broadcasts.

3.1 Analysis of Message Traffic Data

Hurricane Message Traffic

In order to determine whether hurricane warnings occur according

to a Poisson arrival pattern as required for the theory of Chapter II,

an analysis was made of all warning messages sent during Hurricane

Agnes during the period June 14-28, 1972. Each of the 819 messages

were used to determine the arrival pattern. The movement of Agnes

up the Atlantic coast is shown in Figure 3.2. The maximum daily

count of messages was 195; the date of occurrence was June 19,
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which coincides with the approach of the hurricane to Panama City,

Florida.

The days prior to the nineteenth saw relatively little warning

message activity. Once the hurricane passed Panama City and

started up the east coast the message intensity subsided with the

hurricane as it passed over land. The next major problem was one

of severe rain and floods around Washington, D.C. and in Pennsylvania.

Thus the message intensity increased around the twenty-second of

June and remained rather high until the twenty-fifth.

The data analysis for the hurricane warnings consists of

testing the hypothesized statistical patterns. A goodness-of-fit

test was performed for the Poisson arrival hypothesis and will be

presented with the data and analysis for the broadcast time

densities. Agnes was recommended for analysis by the NWS because

it represents one of the worst hurricanes on record, and would

have to be considered in the design of a satellite DWS.

In order to test the hypothesis of Poisson arrivals over the

peak ten days of Agnes and over an interval of one day, two

goodness-of-fit tests were performed. Some of the days during the

June 14-28 period had relatively little message activity. As

might be expected these periods are June 14-16 and June 25-28.- The

time of greatest interest to the NWS and to NASA would be June 19th

because of the 195 messages transmitted that day. The design of

the satellite requires a consideration of the worst spikes in the

system. The 19th was divided into 48 periods of a half hour duration

in order to perform a goodness-of-fit test. Any period smaller

than one-half hour would degrade the arrival pattern to an exponential

form because of the large frequency of zero events.

The 195 messages over 48 periods yielded a parameter estimate

of 4.08 messages per half-hour. The frequencies were as follows:
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No. of Messages Frequency

0 3

1 3

2 5

3 11

4 8

5 7

6 3

7 4

8 2

9 1

10 0

11 0

12 1

Since the Chi-squared test requires that cell frequencies

be equal to or greater than 5, the classes 0, 1 and 2 were

combined into one class and 6 to 12 were combined. The Poisson

probabilities were calculated for each class and multiplied by

the total events to get expected cell frequencies. The experimental

value of Chi-squared was calculated using the equation

K 2
2 K (f. - e)

X =
i=1l e i

where f. is the observed frequency for cell i, e. is the ex-
1 1

pected frequency and K is the number of cells or classes. For

this test the experimental value was 0.59. In Miller and Freund

(1965), the tabled value of Chi-squared for the 5% level of signi-

ficance and 3 degrees of freedom is 7.815. Although the experimental

value of Chi-squared.was reduced through the combination of classes,

the fit is very good; the null hypothesis could not be rejected.
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Another distribution of considerable importance is that of

the maximum number of messages during each 15 minute interval over

the period June 14-28. This distribution is important because

it represents an arrival compression (such as occurred in the

tornados of April 3, 1974) of the traffic intensity. Another

reason for the importance of this distribution is that it filters

the effects of arbitrarily selecting a convenient time period

for broadcasting warnings. For this distribution the parameter

estimate was 2.96 per 15 minute interval or 6 per half hour. This

rate is about 50% greater than that for June 19. The number and

frequency of events for the distribution of the maxima is as follows:

Number of Messages Frequency

0 5

1 23

2 20

3 13

4 13

5 12

6 4

7 4

8 1

9 0

10 1

Classes 6 to 10 were combined into one class in order to have five

or more in each class for the Chi-squared test. The experimental

value of Chi-squared was 10.09. The tabled value in Miller and

Freund (1965) for the 5% level of significance and 5 degrees of

freedom is 11.07. Thus the hypothesis that the distribution of the

maxima may be represented as a Poisson distribution cannot be

rejected.

The goodness-of-fit tests for the Poisson arrival hypothesis

were required because the theory of Chapter II requires Poisson input.
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The only requirement for the output, or broadcast times in this

case, is a knowledge of the average broadcast time. In order to

develop a computer simulation of the process so that the theory

may be appropriately tested, the density functions for the

broadcast times were determined.

The hurricane warning message broadcasting times were

classified into cells of .05 minutes (3 seconds) on the interval

0.3 to 4.0 minutes. The frequency histogram of the broadcast

times is shown in Figure 3.3. This frequency polygon possesses

the shape of the log normal density and so the null hypothesis was

that the broadcast times for hurricane warnings are distributed

as a log normal density. Since the logarithm of a log normally

distributed random variable is distributed normally, the logarithms

of the boradcast times were used for the goodness-of-fit test.

The test used was the Kolmogorov-Smirnov but the test was for a

normal distribution and since the mean and variance were unknown,

the test for normality as described by Lilliefors (1967) was used.

If N is the sample size and D is the maximum deviation

between the hypothesized and the actual distributions, then for

a significance level of 5%, the critical value of -NrD :is

0.886.

After the broadcast times were determined and classed the

mean and standard deviation of the logarithms were estimated from

the data to be 0.13 (1.15 minutes) and 0.6 (1.8 minutes) respectively.

The theoretical and experimental distributions were then compared

to determine the maximum deviation between the two. The largest

deviations occurred in the right tail of the density functions in

such a way that the theoretical distribution function lagged the

experimental distribution function. The two distributions differed

by less than 0.02 up to the 0.909 value of the experimental distri-

bution. The maximum deviation of 0.039 occurred when the value

of the logarithm of the broadcast time equalled 1.08.. At this value

the observed and expected values of the distribution functions were
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0.982 and 0.943 respectively. The calculated value of YN-- D

was 0.866 which is less than the critical value of 0.886. Thus

the log normal hypothesis could not be rejected at the 5% level

of significance. Moreover, since the theoretical distribution

function lags the experimental one, there is a safety margin

added in the simulation program because the dispersion of

broadcast times is larger than is actually necessary, as indicated

by the fact that the experimental density tapers off more quickly

than the hypothesized density function.

Winter Storm Warning Message Traffic

The data sample for the winter storm warnings consisted of

the NWS teletype rolls for the period December 15-17, 1973. There

were 89 messages in the sample. The maximum number over a period

of one hour occurred from noon to 1 p.m. on December 16th. At

that time 7 messages originated at 12 noon. To test the Poisson

arrival hypothesis, the Chi-squared test was used. The experimental

value of Chi-squared was calculated to be 1.59. The tabled

value of Chi-squared for the 5% level of significance and 2 degrees

of freedom is 5.991. Thus the Poisson distribution seems to be

quite acceptable.

The message broadcasting times varied from .55 minutes to

3.81 minutes. The 9 messages with durations greater than 2.7 minutes

originated primarily in New York and consisted of regional warnings

for the eastern USA (Maine to Georgia, Lake Erie to the Atlantic

for Special Weather Bulletin 15 originating in New York at 6 p.m.

December 17, 1973 and lasting 2.8 minutes).

The broadcast time probability density function for the winter

storm warnings seemed to be uniform on the interval from .55 to

2.7 minutes. Since the hypothesized density was continuous, the

Kolmogorov-Smirnov test was used. The hypothesized interval was

0.5 to 2.7 minutes. The maximum deviation between the observed

and expected distribution functions was 0.13 which occurred twice

at 2.03 and 2.06 minutes. The expected distribution lagged the
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observed distribution; the theoretical values of the distribution

were 0.70 and 0.71 and the sample values were 0.83 and 0.84. Thus

the theoretical distribution is more conservative than what was

actually encountered in the sample.

In Beyer (1966), the asymptotic critical deviation for the

Kolmogorov-Smirnov test at the 5% level of significance is given

as 1.36/ J where N is th.e sample size. The sample size for

the winter storm warnings was 80 (9 regional broadcasts excluded

from sample) and the critical value was 0.15. Since the maximum

deviation between the distribution functions was 0.13 the uniform

density hypothesis for the winter storm warning boradcast times

could not be rejected.

Tornado and Severe Storm Warning Message Traffic

The data sample for tornado and severe storm warnings consisted

of the NWS teletype rolls for December 3, 4 and 13, 1973, when there

was considerable meteorological activity of this type. Although

the occurrences were small compared to the April 3, 1974 tornados

which occurred on a line from Huntsville, Alabama to Toronto, Ontario,

the analysis was performed to determine if the statistical arrival

pattern could be modeled with a Poisson distribution and to obtain

information regarding the broadcast time densities.

The data consisted of 100 messages originating over the 3

days in the states of Georgia, Tennessee, South Carolina, Louisiana,

Texas, Arkansas, Mississippi, Missouri, Alabama, Florida, Indiana,

Illinois and Kentucky.

The Chi-squared statistic was used to test the Poisson hypothesis

using the number of messages originating in each 15 minute interval

over the 3 days of data. The calculated value of Chi-squared was

2.31. The tabled value of the statistic for the 5% significance

level and 2 degrees of freedom is 5.991. The hypothesis could not

be rejected at the 0.05 level of significance.

The broadcast times for the 100 messages ranged from .45 to 1.23

minutes. A uniform density from .45 to 1.25 was hypothesized and tested
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using the Kolmogorov-Smirnov test. The asymptotic critical value

of the maximum deviation between the observed and expected distri-

butions at the 0.05 level is 1.36/ A( = 0.136. The maximum de-

viation of 0.11 occurred at the 4 times 1.04, 1.05, 1.06 and 1.07

minutes. The observed and expected values were .85, .86, .87, .89

and .74, .75, .76, .78 respectively. The expected values of the

distribution lagged the observed values yielding conservative

estimates of processing times. The uniform hypothesis could not

be rejected at the 0.05 level of significance.

The density type and bounds are not surprising in view of

the necessity for extremely rapid dispatch for this category of

message. The body of the messages consists primarily of an

alert, watch or warning and the expected duration of the hazard.

Small Craft Warning Message Traffic

The data sample for the small craft warnings was taken from

the NWS teletype rolls for December 5, 11, 17, 1973 and covered

a geographic region from Maine to Texas.

The three days were divided into 15 minute intervals to test

the hypothesis of Poisson arrivals. The tabled value of the

Chi-squared statistic for the 5% level of significance and 2 degrees of

freedom is 5.991. The calculated value of Chi-squared was 3.33.

fherefore, the Poisson hypothesis could not be rejected at the

0.05 level of significance.

The message sample consisted of 35 messages with a range of

broadcast times from 0.25 minutes to one minute. A uniform

distribution was hypothesized for the message durations and tested

with the.Kolmogorov-Smirnovgoodness-of-fit test. The critical

value at the 0.05 significance level and a sample size of 35 is

0.23. The maximum deviation between the observed and expected

distributions was 0.13. This deviation occurred when the

expected and observed values of the distribution functions were 0.73

and 0.86 respectively. Again, a lag exists between the expected

and observed values causing the simulation to produce somewhat
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conservative results.

The goodness-of-fit test for the small craft warning

broadcast times was performed by excluding the 3 data points

1.70, 1.85 and 1.87. However, all calculations and simulations

were performed using the interval 0.25 to 1.75 for the uniform

distribution of small craft warning broadcast times.

River and Other Warning Message Traffic

The river and other categories were combined because

there was an inadequate sample of the "other" category. The

data for these categories came from the teletype rolls of the

NWS for the period December 3-7, 1974 and the messages examined

covered the 48 contiguous states. The Poisson arrival hypothesis

was tested in the same manner as the other warnings. The tabled

Chi-squared value for the 5% significance level and 1 degree of

freedom is 3.841. The experimental Chi-squared value was calculated

to be 1.88. The null hypothesis could not be rejected at the

0.05 level of significance.

A uniform distribution was hypothesized for the broadcast

times on the interval 0.6 to 1.6 minutes and was tested using

Kolmogorov-Smirnov. For the 5% significance level the critical

value of a sample size of 35 is 0.23. The maximum deviation

between the observed and expected distributions was 0.20 at the

value 1.21 minutes. The expected distribution lagged the observed

distribution over the entire interval which causes the data to

yield conservative time estimates.

3.2 Expected Message Traffic and Channel Requirements for 1985

The NASA and NOAA joint working group for the examination

of the feasibility of implementing a satellite DWS has been in

existence since 1971. Before the results of detailed traffic

analyses were obtained, it was estimated by the joint group that

a satellite DWS would be required to have ten simultaneous broadcast

channels for disaster warnings to the public. As the feasibility

study by CSC progressed during early 1974, it became obvious that
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the ten channel requirement would result in very heavy and

expensive satellites. Therefore it was necessary to examine the

ten channel requirement to determine whether or not it could be

relaxed. This examination required a detailed traffic analysis

of the type presented in Section 3.1. At the same time, it was

necessary to obtain estimates of what might be expected as the

worst case occurring in 1985 when the satellite system would be

in operation.

A linear regression analysis was performed using six years

of weather warning data and was reported by Hein and Stevenson

(1972). A more detailed analysis was performed by the Computer

Science Corporation (1973). In the latter analysis, each message

category was analyzed to determine trends and seasonal variations.

The upper 95% confidence interval was used as an upper bound for

traffic estimates. These data were then extrapolated to 1985.

Although this estimate may seem unrealistic, very definite linear

growth patterns have been experience during the last eight

years. The linear correlation coefficient for the regression

analysis of total monthly warnings was greater than 0.95. However,

it is believed that the traffic load estimates by CSC (1973) for

1985 are conservative. During a joint NOAA-NASA review of the

satellite feasibility study on April 23, 1974, Dr. John Townsend,

Deputy Administrator of NOAA, stated that the primary factor for

the growth in numbers of warnings during recent years has been

the increased capability of spotting severe weather conditions.

This growth in capability has been multilateral. There are thousands

of spotters throughout the U.S. at the local community level who

report sightings of tornados to the NWS within minutes, and some-

times seconds, after the sighting. At the same time, the use of

advanced technology has enhanced the capability of the NWS. A

vast communications network exists to relay data from all parts

of the country, and to transfer satellite imagery which also has

greatly enhanced meteorological capability. Dr. Townsend said that
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he expected the growth in warnings to subside as the network

reaches a point of diminishing returns. Thus linear extrapolation

to 1985 is fairly conservative.

The maximum estimated monthly load of 21,370 messages will

occur during the month of December. The estimates for each category

are as follows:

Number of Messages

Category Per Month

River 1608

Tornado and Severe Storms 548

Winter Storms 5521

Small Craft 8727

Other 4966

The effect of a hurricane such as Agnes will be included below.

The average number of messages occurring in December for the

six years of data examined is about 7500. The estimate of 21370

for 1985 will probably not be achieved. In this situation such

conservatism is preferable to underestimating the traffic flow

because of the availability requirement. Using the 21370 estimate

and the evidence that the arrival patterns can be described by a

Poisson distribution, an estimate of the parameter is 0.495

messages per minute for the arrival rate. The Poisson parameter

obtained for Hurricane Agnes was 0.035. Thus the parameter for

the total arrival rate is 0.53 per minute.

A weighted average broadcasting time was determined from the

data analyzed and is summarized in Figure 3.4.

The estimate of the average broadcasting time is 1.18 minutes.

This estimate is for the month of December which is weighted heavily

by the effect of winter storm warnings. The 1.18 minute estimate

is the longest average broadcast time since the largest number of

messages as well as those longest in duration occur in December.
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Category Relative Frequency Average Broadcast Times (mins.)

Hurricanes 0.066 1.15

Tornados 0.024 0.85

Winter Storms 0.242 1.60

Small Craft 0.381 1.00

River & Other 0.287 1.10

Figure 3.4 Relative Frequencies and Average Broadcasting
Times for Each Message Category for the Month
of December.
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The Poisson parameter and the average broadcasting time

may be used to determine the initial state parameter:

X0 = 6 0 a = (0.53) (1.18) = 0.6254

Once the value of X0 has been determined, it is necessary to

determine the feasible range for the number of channels. Since

X0 is less than X0MAX for one channel, the range of feasibility

is 1 < C < 0.

The equation
2

1* = 0 + * 1- ie 1+ .. ++ + + J

must be solved for X, over the range of values of interest for

C, the number of simultaneous broadcast channels in the satellite.

After determining * for the range of C, the state probabilities

must be determined from the equation

PK = e K = 0, 1, 2,

These state probabilities for the effective lambda (X,) may be

used to calculate the probability of a delay, or to determine the

probability of a delay exceeding a given time value. Now the

determination of the effects of limiting C becomes a relatively

simple analytical procedure and does not require the use of

simulation. The procedure may be used to determine the required

number of channels for any queueing system with Poisson arrivals

and arbitrary service. A criterion may be established in advance

and then the implications of the criterion may be analyzed. Moreover,

the results are quite realistic as will be demonstrated in Chapter IV.

Using the value of X0 = 0.6254, the values of X, and the

state probabilities are given for a range of C in Figure 3.5.
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The maximum number of warning messages in a single month for

the NWS data from 1966 to 1972 was about 10,000. The data in

Figure 3.5 allow for a 130% growth in message traffic by 1985.

Whether such a growth is realistic can only be judged by the

National Weather Service.

In order to provide information regarding various growth rates,

the state probabilities for X0 = 0.4, 0.5 and 0.6254 are presented

for comparison in Figure 3.6. These values of X0 correspond to

monthly traffic loads of 14688, 18317 and 22896 messages,

respectively, with average broadcasting times of 1.18 minutes.

It is believed that the data presented in Figures 3.5 and

3.6 are more realistic than the results originally reported by

Hein and Stevenson (1972) because the Poisson arrival assumption

has been justified, and the general nature of the short interval

message processing characteristics have been determined through

an analysis of several thousand messages sent by the NWS.

In order to determine the delay or queueing time for messages,

it is necessary to introduce a time factor. The probability of

a delay is the probability that W (queueing time) is greater

than zero:

P (W > 0) = ' P
q n=C+l n

where C is the number of simultaneously accessible channels in

the satellite system. Thus

C
P (Wq > 0) = 1 - 2 Pn

q n=0

The average service rate per channel is 1/a. For -C channels

this rate is C/a. But this is true only when there are C

channels available for service. The average availability is

(1 - Utilization Factor) which is
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C
1 2 3 4 5 6 -co

0.7597 0.6432 0.6279 0.6257 0.62543 0.62540

State

0 0.4678 0.5256 0.5337 0.5349 0.5350 0.5350

1 0.3554 0.3381 0.3357 0.3347 0.3346 0.3346

2 0.1350 0.1087 0.1052 0.1047 0.1046 0.1046

3 0.0342 0.0233 0.0220 0.0218 0.0218 0.0218

4 0.0065 0.0037 0.0035 0.0034 0.0034 0.0034

5 0.0010 0.0005 0.0004 0.0004 0.0004 0.0004

6 0.0001 0.00005 0.00005 0.00004 0.00004 0.00004

7 1X10-5  5X10-6 4X10-6  4X10-6 4X10-6 4X10-6

8 1X10-6 4X10- 7  3X10-7  3X10- 7  3X10 - 7  3X10 - 7

>8 0 0 0 0 0 0

Figure 3.5 Estimated State Probabilities for
x0 Equal to 0.6254 and C = 1 to m.
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4-*.c 4 - 4 5-co

0 0.4 0.5 0.6254 0.6254

State

0 0.6703 0.6065 0.5340 0.5350

1 0.2681 0.3033 0.3347 0.3346

2 0.0536 0.0758 0.1047 0.1046

3 0.0072 0.0126 0.0218 0.0218

4 0.0007 0.0016 0.0034 0.0034

5 6X10-5  0.0002 0.0004 0.0004

6 1X10 - 7  1X10 - 5  4X10 - 5  4X10 - 5

7 5X10-8 9XlO- 7  4X10-6 4X10-6

8 3X10 -8  6X10-8 3X10- 7  3XlO-7

9 1X10-9  3X10-9  2X10-8  2X10-8

>9 0 0 0 0

Figure 3.6 Estimated State Probabilities for
)0 Equal to 0.4, 0.5, and 0.6254,
and C = 1 to c.
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1-- C

The average service rate is then

C (

which is analogous to the constant hazard rate in reliability theory.

The complementary waiting time distribution is then given by

P {W > t} =2 P P {W > t E }
q n=O n q n

1- 1 t
P {W > t= e a P {W > 0}

q q

and

P {W < t} = 1 - P {W > t}
q -- q

Using the X 's from Figure 3.6, which corresponded to 14688,

18317 and 22896 messages per month, respectively, for 0.4, 0.5,

0.6254, the probabilities of delays exceeding various times are

given in Figure 3.7 for 6 channels. For the most adverse value

of 0.6254, a delay of more than 30 seconds would occur on the

average only once in 4.3 years.

A summary of the effects of 4, 6 and 10 channels are

presented for 23,000, 18,000 and 15,000 messages per month in

Figures 3.8 to 3.10.

As a result of the model developed in Chapter II, it is possible

to determine the required number of channels to meet design avail-

ability requirements for queueing systems with Poisson arrivals

and a knowledge of the average service time. In Chapter IV, a

comparison will be made between the analytical results and the results

obtained from a computer simulation.
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0

Delay 0.4 0.5 0.6254

> 5 seconds 13 years 3 years 0.7 years

>10 seconds 19 years 4 years 1.0 years

>15 seconds 27 years 6 years 1.4 years

>30 seconds 95 years 21 years 4.3 years

Figure 3.7 Mean Time Between Delays Exceeding
Certain Durations for X0 Equal to
0.4, 0.5, and 0.6254 for 6 Channels.
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Case 1: 23,000 Per Month

Channels 4 6 10

Utilization % 15.6 10.4 6.3

Frequency of Delays

>30 sec 1/week 1/4.3 yrs never

> 1 min 1/month 1/41 yrs never

Figure 3.8 Utilization and Expected Delays
for 23,000 Messages Per Month.
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Case 2: 18,000 Per Month

Channels 4 6 10

Utilization % 12.5 8.3 5.0

Frequency of Delays

>30 sec 1/3 weeks 1/20 yrs never

> 1 min 1/3 months never never

Figure 3.9 Utilization and Expected Delays for
18,000 Messages Per Month.
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Case 3: 15,000 Per Month

Channels 4 6 10

Utilization % 10 6.7 4

Frequency of Delays

> 30 sec 1/2 months never never

> 1 min 1/8 months never never

Figure 3.10 Utilization and Expected Delays
for 15,000 Messages Per Month.



CHAPTER IV

RESULTS OF THE COMPUTER SIMULATION

In order to verify the theory of Chapter II and the pre-

dicted results of Chapter III, a computer program was written to

simulate the warning communications traffic for a DWS satellite.

In the report by Hein and Stevenson (1972), a digital simulation

of the same process was reported using Poisson input and exponential

service disciplines,

The simulation process reported here differs in several

respects from the one mentioned above. Both are digital, and

both use Poisson arrivals but the service disciplines reported

here are not exponential. In the Hein and Stevenson report, there

were three arrival categories, whereas here there are six. The

timing here is asynchronous; in the other report, the timing is

synchronous. Finally, this simulation process is in continuous

time, whereas that reported by Hein and Stevenson was performed

in discrete time. The basic unit of time for the process reported

here is one minute.

Because the basic time unit is small, many problems normally

associated with obtaining a steady state have been avoided. The

parameter of prime importance here is the number of message

requests in the system at any given time. Short simulation runs

of one or two days were more than adequate to demonstrate that

the process cycles "infinitely often" through a single state

(namely zero) as described by Crane and Inglehart (1972). When

such a cycling occurs, the sample sizes required to reduce intervals

of uncertainty are significantly smaller than what would normally

be required because steady state is achieved upon startup.

52
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For the cases where an interval estimation is made and the

variance is unknown, the following relationship will be used:

-t < < t
a/2 s/ff a/2

The interval for p is

x - tat/2 s/-f-< p < x + ta/2 s/ n

where ± t /2 is the Student - t distribution curve area to the

right or left equal to a/2; x is the estimated mean; s, is the

sample standard deviation; and n is the sample size.

This chapter will consist of a description of the computer

software used for the simulation and a comparison of the simulation

results with those predicted in Chapter III.

4.1 Description of Computer Programs

The simulation computer program was written in FORTRAN IV

for the IBM 360/67 running under TSS (Time Sharing System) at the

NASA Lewis Research Center. The program consists of a main routine

and four subroutines and is designed to operate in an on-line

interactive mode. A functional description will be given of each

segment and more explicit documentation may be obtained from the

program and sample outputs in Appendix B.

MAIN ROUTINE - Initializes all variables and requests the user

to specify the duration of the simulation run in days, the number

of communication channels and a random number seed between 1 and

100,000. The seed allows reproduction of the same sequence or the

generation of unique sequences. The main routine generates the

sequence of Poisson arrivals and then calls subroutines to generate

service times, calculates the run statistics and then generates the

report.
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SUBROUTINE RAND - This subroutine generates a sequence of

uniformly distributed random numbers on the interval zero to one.

The technique used is the multiplicative congruential as described

in Carnahan, Luther and Wilkes (1969). The period of the gen-

erator is greater than 500,000 and the autocorrelation is less than
-6

10- . An integer is required to start the generator and allows

reproducibility or the generation of large numbers of unique

sequences.

SUBROUTINE MMIN - This subroutine determines the channel which

is available in the shortest period of time. In the event more

than one are available simultaneously, the one with the lowest index

is chosen.

SUBROUTINE MMPROC - This subroutine contains the probability

distribution functions for the message broadcast times of the

six message types.

SUBROUTINE CHAN - This subroutine manages the channel

traffic and accumulates statistics pertaining to arrival and de-

parture times as well as any delays in processing.

The report produced for each simulation includes the number

of channels, the duration of the simulation and the number of

arrivals. Means and standard deviations are given for the inter-

arrival time, broadcast time and number of messages in the system.

Other information given includes the maximum delay, if any, number

of delays, the distribution of states over the duration of the

simulation at a sampling rate of once per minute and a log of

delayed messages. Various sampling rates were tried and it was

found by trial and error that the one minute rate provides about

the same information as rates of every 15 or 30 seconds but with

much less computer processing time.

4.2 Comparison of Results

In Chapter III the values for X* were calculated when

A0 = 0.6254 for C ranging from 1 to 6. These values are given

in Figure 3.5. As may be seen in the figure, there is no arrival
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interaction causing an increase in X0 for 6 channels. For

C = 6, A0 = 0.6254. The interaction begins causing an increase

in A0  for C equal to 5 and continues to the limiting value of

C equal to 1.

Simulations were performed to test whether the effective

lambda's (X*) approach the predicted values, and to determine

whether the predicted distribution functions describe the process

adequately. The cases for C equal to 2, 4 and 6 were selected

for evaluation because the satellite DWS will consist of a pair

of satellites. In order to meet the DWS operational requirements

by satellite, two satellites separated by 20 degrees are required

because of the eclipsing caused by the earth. The total shadow

time each year is about 1% with the maxima of 70 minutes per

day occurring at the vernal and autumnal equinoxes. The

shadowing begins about 20 days before each equinox and gradually

builds up to a maximum and then tapers off to zero about 20 days

after each equinox.

The simulation period was 18 days or 25,920 minutes. The

procedure used for sampling was to simulate 9 periods of 2 days

each for the values of C. There is no need to test values of

C greater than 6 since the state probabilities would be equal

to the 6 channel case. The tests performed and the data are

summarized below for each case. The A0 's and the expected A 's

for the 3 cases are:

C X0 A*

2 0.62540 0.64315

4 0.62540 0.62569

6 0.62540 0.62540

Case for C = 6. A summary of the results of the 9 simulation

runs for this case is presented in Figure 4.1. The observations were

made at the rate of one per each simulation minute. The Poisson

probabilities were calculated from a Poisson distribution with the
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State Observations Poisson Probability Expected Observations

0 14001 0.5400 13996.7

1 8647 0.3327 8623.6

2 2620 0.1025 2656.8

3 545 0.0211 546.9

4 87 0.0032 82.9

5 18 0.0005 13.0

6 2 0.00004 1.0

^2
, = 0.6162 a = 0.6213

Figure 4.1 Summary of Results for the C = 6
Case Simulation.
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parameter estimate x, = 0.6162 which was the estimate obtained

from the 9 simulation runs. A Chi-squared goodness of fit test

was performed on the data in Figure 4.1.

States 5 and 6 were combined because of the small number of

observations of state 6. The critical values of Chi-squared for

significance levels of 5%, 10% and 25% are given in Beyer (1966)

for 4 degrees of freedom as follows:

2
X = 9.49
.05,4

2
X.10 = 7.78
.10,4

2
X25,4 = 5.39
.25,4

The calculated value of Chi-squared obtained from the goodness of

fit tests was 4.55 which is less than any of the critical values.

The Poisson hypothesis must be accepted for the C = 6 case. The

next tests conducted were on the mean and variance. The student-t

distribution was used for the test on the mean, and the Chi-squared

test was used for the variance test. The null hypotheses are

that the mean X* = 0.6254 and that the variance , = 0.6254.

The test statistics are obtained from:

t= X-

2 (n - l)s 2

2

where x is the sample mean, P is the hypothesized mean, s is

the sample standard deviation and n is the sample size. The

calculated statistics are:

0.6162 - 0.6254
t = 0.7882/,9

= - 0.03
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X2 (8)(0..6213)
0.6254

= 7.95

The critical values of t and X2  for 8 degrees of freedom and

a significance level of 10% are given by Beyer (1966) as 1.397

and 13.362, respectively. The null hypotheses cannot be rejected.

There were no delayed messages for the C = 6 case. The final

tests conducted were to develop 95% confidence intervals for the

state probabilities. These intervals are presented in Figure 4.2.

In all cases the intervals include the expected and observed values.

Case for C = 4. A summary of the results for this case is

presented in Figure 4.3. The data consist of the same number of

samples, but the random number sequences were varied to ensure

results which were independent of the 6 channel case. The obser-

vations were again made at the rate of one per each simulation

minute. The parameter estimate for the 4 channel case was , = 0.6145

which was the estimate obtained from the 9 simulation runs. The

Chi-squared test for goodness-of-fit was performed on the data in

Figure 4.3. Because there are only two observations of state 6,

states 5 and 6 were combined. Since there are 4 degrees of

freedom, the critical values for this case are identical to the 6

channel case. The calculated value of Chi-squared for this test

was 3.76 which is less than the critical values. Again, the Poisson

hypothesis cannot be rejected. The parameter estimate of X*

is lower in this case than in the 6 channel case. This is attributed

to randomness. The tests for the mean and variance were conducted

with the null hypotheses being that the mean and variance were

each equal to 0.6257, the value predicted from the theory in Chapter II.

Again the student-t statistic was used for the mean and the Chi-

squared was used for the variance.
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Observed Relative Expected Relative 95% Confidence
State' Frequency Frequency Interval

0 0.5402 0.5350 0.5301 to 0.5503.

1 0.3336 0.3346 0.3265 to 0.3407

2 0.1011 0.1046 0.0963 to 0.1061

3 0.0210 0.0218 0.0175 to 0.0245

4 0.0034 0.0034 0.0029 to 0.0039

5 0.00069 0.00043 0.00035 to 0.00101

6 0.000077 0.000044 0.000006 to 0.00015

Figure 4.2 Observed and Expected Relative
Frequencies and 95% Confidence
Intervals for C = 6 and
A, = 0.6162.
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State Observations Poisson Probability Expected Observations

0 14035 0.5409 14020.4

1 8596 0.3327 8615.6

2 2648 0.1021 2647.1

3 548 0.0209 542.2

4 76 0.0032 83.3

5 15 0.0005 10.2

6 2 0.00004 1.0

-2
A = 0.6145 a2 = 0.6172

Figure 4.3 Summary of Results for the
C = 4 Case Simulation.
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The calculated statistics are:

0.6145 - 0.6257
.7856/ 1-

= - 0.04

X2 (8)(0.6172)
0.6254

= 7.90

Both values are less than the critical values for 8 degrees of

freedom as given above. Thus the null hypotheses cannot be rejected.

The relative observed and expected frequencies are given in

Figure 4.4 along with the 95% confidence intervals. In all cases,

the intervals include the expected and observed values.

In the 4 channel case, it was mentioned previously that the

increase in * over X0 is caused by the customer-server

interaction. A more valid test of the model is whether or not

delays encountered correspond to the predicted delays. There were

no delays encountered in the simulations of the 6 channel case.

In the 4 channel case, however, delays began occurring with regularity.

The delays varied from 0.01 minutes to 0.64 minutes. Since the

standard deviations of the broadcast times are usually on the order

of 0.5 minutes, a delay of 0.01 minutes is meaningless. From a

human factor's point of view, a delay becomes substantial when it

reaches a certain magnitude. Since the definition of intolerable

delays is beyond the scope of this work and really lies with those

individuals who must use the system, it was arbitrarily decided

that only those delays greater than 30 seconds would be noted. The

frequency of these delays in the simulations would then be compared

with the predicted delay frequencies. For the 4 channel case, there

were 4 delays exceeding 30 seconds. The durations were 33, 34,34
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Observed Relative Expected Relative 95% Confidence
State Frequency Frequency Interval

0 0.5414 0.5409 0.5302 to 0.5528

1 0.3316 0.3324 0.3227 to 0.3405

2 0.1022 0.1021 0.0990 to 0.1054

3 0.0211 0.0209 0.0193 to 0.0229

4 0.0029 0.0032 0.0023 to 0.0035

5 0.00058 0.00039 0.00028 to 0.00088

6 0.00008 0.00004 0.000006 to 0.000150

Figure 4.4 Observed and Expected Relative
Frequencies and 95% Confidence
Intervals for C = 4 and , =
0.6145.
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and 38 seconds. Using the equations for delays exceeding T

from Chapter III:

P {W > t} = e a C {W > 0
q q

C
P {W > 0} = 1 - nZ- P

q n=O n

For C = 4, X* = 0.6257 and a = 1.18,

P {W > 30 seconds} = 1.13 x 10 - 4

q

There were 4 delays greater than 30 seconds during a simulated

period of 25920 minutes. The relative frequency of delays en-

countered is 1.54 x 10-4 or a 36% difference from the expected

occurrence. The sample mean of expected delays was 1.54 x 10- 4 .
-2

The sample standard deviation was 1.24 x 10 . Using the t statistic

for comparison of means

t =x -1

yields a value of 0.532. The critical values for an infinite

sample size at the 10%, 5% and 1% levels of significance are given

in Beyer (1966) as follows:

t = 1.282

t = 1.645
.05,-

t.01,m = 2.326

The test demonstrates that there is no significant difference between

the predicted value and that encountered in the simulations at the
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0.05 level of significance.

It was predicted that there should be about 3 delays in

18 days and the simulations produced 4 delays in 18 days. In

order for there to have been a significant difference between

expected and predicted delays at the 10%, 5% and 1% levels of

significance, there would have to be at least 6, 7 and 8 delays,

respectively, in a simulation of 18 days.

Case for C = 2. A summary of the results for this case is

presented in Figure 4.5. The observations were made at the rate

of one per minute of simulated time. An anomaly appears in the

data in that the expected number of observations is lower than what

was observed for state zero, but the reverse is true for state

one. This suggests that for this case a faster sampling rate

would be more appropriate. To do so, however, would require

much more storage in the computer. Since the program runs in

real time on a virtual storage machine, a faster sampling rate

would require an enormous increase in computer time because execution

time is a function of storage on a virtual memory machine.

Since states zero and one.do not impose any delays, the

2 states may be combined into an aggregate state. Another point

about the results is that the degradation from a Poisson to a

discrete-type of exponential distribution has begun to occur.

One would expect that the relative frequency of the higher states

would increase as, X approaches A*MAX* The parameter estimates

obtained from the 9 runs of 2 days each was X* = 0.6508. The

Chi-squared test for goodness of fit was performed on the data of

Figure 4.5. Because of the anomaly in states 0 and 1, these

states were combined. Also the same type of anomaly appears in

states 4, 5 and 6; these states were combined because of the small

number of observations in state 6 and because of the anomaly. In

Beyer (1966) the critical value of Chi-squared for 2 degrees of

freedom at the one percent level of significance is 9.21. The

calculated value of Chi-squared was 8.82. The Poisson hypothesis



65

State Observations Poisson Probability Expected Observations

0 13693 .5216 13519.3

1 8548 .3395 8799.7

2 2864 .1105 2863.9

3 681 .0240 621.4

4 122 .0039 101.1

5 11 .0005 13.2

6 1 .000055 1.6

X, = 0.6508 02 = 0.6721

Figure 4.5 Summary of the Results for
the C = 2 Case Simulation.
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cannot be rejected; but it would have been at any higher level

of significance or without the state combinations described above.

The tests for the mean and variance were conducted with the null

hypotheses being that the mean and variance were each equal

to 0.6432, the value predicted from Chapter II. The procedure was

identical to the two previous cases. The calculated statistics

are:

0.6508 - 0.6432
t =

.8198/r-9"

= .0278

x2 8(0.6720)
0.6508

= 8.26

Both values are less than the critical values given above for the

C = 6 case. The null hypotheses cannot be rejected. The relative

observed and expected frequencies are given in Figure 4.6 along

with the 99% confidence intervals rather than the 95% intervals.

The wider interval does not include the expected relative frequencies

for state 1 and state 4. This exclusion is not as important for

state 4 as for state 1 because of the magnitude of the values.

The standard deviations of the samples for all states were as

follows:

State Standard Deviation

0 0.0080

1 0.0033

2 0.0053

3 0.0028

4 0.0012

5 0.00029

6 0.000117
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Observed Relative Expected Relative 99% Confidence

State Frequency Frequency Interval

0 0.5283 0.5216 0.5194 to 0.5372

1 0.3298 0.3395 0.3261 to 0.3335

2 0.1105 0.1105 0.1046 to 0.1164

3 0.0263 0.0240 0.0232 to 0.0294

4 0.0047 0.0039 0.0044 to 0.0050

5 0.00042 0.00051 0.00011 to 0.00075

6 0.000039 0.000055 0.0 to 0.00017

Figure 4.6 Observed and Expected Relative Frequencies
and 99% Confidence Intervals for C = 2
and X = 0.6508.
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The expected standard deviation for state 2 should lie between

0.0053 and 0.0080. This anomaly in the standard deviation supports

the combination of states 0 and 1 in the goodness-of-fit test

above. States 0 and 1 were combined to obtain a total confidence

interval with an expected relative frequency of 0.8611 and an ob-

served frequency of 0.8581. The combined standard deviation is

0.0087 and the combined 99% confidence interval is 0.8484 to

0.8678.

Large numbers of delays were encountered in this case. Only

those delays longer than 30 seconds were included. The delay

equations for C = 2, X, = 0.6508 and a = 1.18 yield

P {W > 0} = 0.0284
q

P {W > 30 seconds} = 0.0160
q

P {W > 1 minutel = 0.0091
q

For an 18-day period, the number of delays greater than zero

is expected to be 736. Over the same period, 416 delays are

expected to exceed 30 seconds and 235 are expected to exceed 1

minute. When the number of channels is limited to 2, a new phenomenon

is encountered. The server-customer interaction increases greatly

so that many more small delays are encountered than would be

expected. Also, when the interaction increases, clusters of

delays occur. One delay may be the cause of 5 or 6 other delays.

The expected and observed delays for queueing times greater than

zero, 30 seconds and 1 minute are shown in Figure 4.7. For

this case it is obvious that the delay equations are no longer

adequate for delays in the zero to 30 second range. For delays

exceeding 30 seconds the equations yield results which may be

unacceptable in many cases. However, for delays exceeding one

minute, the predicted results become conservative again. Also, for

delays greater than 30 seconds, if each cluster is counted as a

single delay, the results of observed and expected delays become
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compatible again.

The delay results for the 2 channel case demonstrate that the

model begins to break down as the utilization and server-customer

interaction increases. The interaction effect is very noticeable

for delays of 30 seconds or less but disappears completely for

delays exceeding 1 minute.

Summary of Simulation Results. The results of the simulations

demonstrate that the model developed in Chapter II provides

excellent results as long as the original assumption remains valid;

namely, that utilization is relatively low. Thus, the model is

still valid for many realistic applications. Some useful results

may be obtained for higher utilizations but the model would have

to be improved in order to provide acceptable results in all cases.

In the next chapter, the satellite system design will be summarized

to demonstrate how the model may be used for the satellite DWS

and application to other areas will be discussed.
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Expected Observed Observed

Delays Delays Clusters

W > 0 736 1885 NA
q

W > 30 seconds 416 770 519
q

W > 1 minute 235 167 None
q

Figure 4.7 Expected and Observed Delays for

C = 2, X* = .6508 for a Simulated

Period of 18 days.



CHAPTER V

SUMMARY OF RESULTS AND CONCLUSIONS

In Chapter I, the rationale for special purpose communication

satellites was developed with particular emphasis on the need for

a satellite based DWS. The model for this type of queueing

system was developed in Chapter II. The major assumptions were

that utilization would be relatively low because of the availability

criterion and that the arrivals are Poisson distributed. Large

amounts of weather warning data were obtained from the National

Weather Service in order to analyze the arrival and broadcast

distributions for warning messages. These data were also used to

analyze the effects of limiting the number of satellite broadcast

channels in Chapter III. The expected results were compared

with the results of a computer simulation in Chapter IV.

The results obtained from the model developed in Chapter II

provided excellent approximations for the 6 and 4 channel cases.

Statistically there was no significant difference between the

predicted results and those obtained from the simulations. When

the traffic intensity was increased through a reduction in service

channels to 2, the customer-server interaction caused a degradation

in the quality of the predicted results. The interaction causes

the variance of the Poisson distribution to increase through a dis-

tortion of the relative state frequencies. This distortion causes

a change in the state distribution; it deviates from the predicted

Poisson distribution. Although the 2 channel case may provide useful

results, it also demonstates that the model is close to the

limits of usefulness. In order to demonstrate why and how the

model developed in Chapter II may be used, a summary of the feasi-

bility study and conceptual design by the Computer Science Corporation

71
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will be included in this Chapter. The summary is taken from the

report to Dr. John Townsend, Deputy Administrator of the National

Oceanic and Atmospheric Administration. The presentation was made

on May 23, 1974 at NOAA Headquarters in Rockville, Maryland and

included the work done by CSC and the results of the 4, 6 and 10

channel cases using the model developed in Chapter II.

Although the message traffic analysis constitutes only a small

part of the study, the cost of doing the traffic analysis using

computer simulation required 50 to 100 hours of computer time. At

a nominal cost of $1000 per hour for computing time, the advantages

of using an analytical technique rather than simulation are immed-

iately obvious.

The operational concepts of the terrestrial and the satellite

systems for disaster warning are shown in Figures 5.1 and 5.2.

In the terrestrial system, the NWS network would consist of ground-

based transmission systems connecting spotters with WSO's (Weather

Service Offices), WSFO's (Weather Service Forecast Offices) and

such specialized centers as the National Hurricane Center (NHC)

in Miami. The operational concept for both systems is shown in

Figure 5.3. The design criteria for the dissemination of warnings

is shown in Figure 5.4, and the operational requirements are

shown in Figure 5.5. The geographical coverage pattern required

for the DWS is denoted by the shaded portion of Figure 5.6. In

order to meet the operational requirements by satellite, two

satellites separated by 20 degrees are required as described in

Chapter IV. In Figure 5.7 a qualitative comparison is made between

the satellite and the terrestrial systems, and the major cost

drivers for each system are shown in Figure 5.8. The original

satellite requirements were that 10 simultaneous channels would be

required for broadcasting warning messages. The delays expected

with 4, 6 and 10 channels were shown in Figures 3.8, 3.9 and

3.10.



OPERATIONAL CONCEPT TERRESTRIAL DWS

WSO WSFO

Figure 5.1 Terrestrial based DWS.



SATELLITE

OPERATIONAL CONCEPT
SATELLITE DWS

Figure 5.2 Satellite based DWS.

Figure 5.2 Satellite based DWS.
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WSO

SPOTTER

HOME
Figure 5.3 Operational concept of a DWS.
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Required Response To Disaster Types

Disaster Smallest Message On-Line
Type Area Warned Upper Bound

Tornado or Severe Storm Part of County 1-5 Min

Hurricane Part of Coast 1-15 Min

River Flood Part of State 15 Min-lHr

Small Craft Part of Coast (Lake) 15 Min-lHr

Winter Storm Part of State 15 Min-lHr

Others Part of County 1 Min-lHr

Figure 5.4 Functional Design Requirements
for a DWS.
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OPERATIONAL REQUIREMENTS

System

24-Hour Operation

Immune From Natural Disasters

Autonomous Power Source

Simultaneous Warning Capability

Home Receiver

Inside Antenna

Activate < .15 Seconds

Selective Addressing

On-Off Option

Figure 5.5 Operational Design Requirements
for a DWS.



GEOGRAPHICAL COVERAGE REQUIREMENT

aj

CANADA
500 N

I FRACE 0

ATLANTIC

...

1800 350
BRAZIL

PACIFIC OCEAN

Figure 5.6 Coverage requirements for a DWS.
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Although this document is not the proper forum for a cost

comparison, it must be acknowledged that the satellite system with

10 channels would not be competitive with the terrestrial system.

Four channels may be adequate to meet NOAA requirements. If so,

reducing the channel requirements from 10 to 4 would make the

satellite and terrestrial systems approximately equal in cost.

If it were possible to use a 2 channel system, the satellite system

would probably be more advantageous than the terrestrial system.

Such a reduction would require a reduction in the present warning

traffic or the use of priority queueing.

As a result of the model developed in Chapter II, a more

realistic appraisal method of the channel requirements for a

satellite DWS was obtained. The model developed here may also

be used to determine channel requirements for other types of

special purpose communications satellites. Remote health care

delivery systems via satellite have been in existence for several

years. This application will increase as a result of the recent

launch of ATS-F (Applications Technology Satellite-F) by NASA.

This satellite will be used to provide high powered television

signals to remote areas in the western states, Alaska, and to

remote villages in India. The smallest antennas will be 15 feet

in diameter and the receivers will cost about 5 or 6 thousand

dollars. This size and cost represents an enormous reduction

compared to the commercial satellite ground stations and renders

feasible many applications of communications in regions which

previously could not afford anything beyond the essentials for

existence. As the cost of receivers is reduced through an increase

in the satellite power, the many applications discussed in

Communications for Social Needs (1971) will become realities. All

of these applications are characterized by relatively low utili-

zation and a high availability factor. Some of these applications

are the DWS noted previously, remote health care delivery, educational

television for remote regions, electronic mail handling, finger-
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SATELLITE/TERRESTRIAL COMPARISON

Terrestrial Satellite

Uncertain Immunity To Good
Natural Disasters

Cost Dependent Response Time Fast

Complex System Control Good

Figure 5.7 Qualitative Comparison of Terrestrial
and Satellite Based Systems.
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MAJOR COST DRIVERS

Terrestrial Satellite

Extensive Coverage Simultaneous Transmissions

Complete Connectivity Small Ground Terminals

Fast Response Time Real-Time Voice Communications

Figure 5.8 Major Cost Sensitive Parameters
for Terrestrial and Satellite Systems.
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printing transmissions for law enforcement agencies, and many

others. The model developed in this dissertation is applicable

to these new applications of communications satellites whenever the

input can be shown to be Poisson distributed.

There are many areas of application beyond usage of the

model for communications satellites. For example, stock brokers

must be available by phone to their clients. When line utilization

increases beyond some point, customers will begin going elsewhere.

The model could be used to determine the optimal number of telephone

lines for a broker to have. Police departments might also use

such a model to meet some pre-specified telephone line availability

requirement. Applications of the model to queueing systems where

low utilization/high availability is the predominant character-

istic are more numerous than can be mentioned here. Moreover, the

necessity of minimizing waiting time will become even more important

in the future as world economies become dominated by service

industries. Market strategies will include tradeoff analyses of

the value of minimizing waiting versus the cost of adding more

service channels.

The major shortcoming of the model developed here is that

when utilization increases beyond a certain point, the reliability

of the results is questionable. Extension of the model to

heavy traffic would allow many new applications of queueing

theory. Urban ground transportation and traffic is a subject

which might use an extension of the model. Those service industries

and markets where traffic flow is heavy and utilization is high

have often demonstrated that adding service channels was

seldom part of their planning. Rather, many organizations simply

expanded their hours of operation. Examples of such a policy are

gasoline service stations, supermarkets, discount department

stores, airports, and many others. With the advent of the

petroleum shortage of the 1970's, service station operators found

they could shorten operating hours; the effect was a large decrease
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in operating expenses and overhead.

In order to conserve energy, many public buildings and

stores changed operating hours and increased the traffic intensity

in the process. In order to maintain customer satisfaction and

to keep the customer, consideration should be given to the effect

of operational changes on the customer whether the motive is

profit or public service.

In Chapter I, it was mentioned Thomas Saaty wrote in 1966 that

queueing models are seldom applied to real situations. Saaty's

lament pointed to the very genuine problem of allowing need to

dictate the direction of technological change and innovation. The

decade since 1966 has witnessed new developments and applications

of queueing theory. Operational needs have been the driving

force behind the development of many applications. Such was the

motivation here.
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APPENDIX A

Proof Of The Equivalence Of Xj-l And

X* When The Sequence Converges

It was stated that the forms for

+ = 10 + y, ¢(X,) A.1

and

Xjl = X0 + YAjC1(Xjl) A.2

are equivalent if the sequence {1.} converges. If the sequence
1

converges then .i differs from X j- at most by some value

E which can be made arbitrarily small. Thus for some j

greater than N

Xj = j_ + E A.3

Substituting A.3 into A.1 yields

-j_1 = X0 + Yjl (Xj_) -1

Since 6 can be made arbitrarily small

lim

E-+O j-= + xj- 1 (j-l

This procedure may be repeated for j, j+l, j+2, ... so that for

some N and all integers greater than N, the relationship for

AN may be expressed as

X, = X0 + y A* (X*)
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APPENDIX B

Computer Simulation Programs And Sample Output
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0000100 IMPLICIT REAL*8 (A-F)
0000200 DIMENSION A(50),B(50),C(50),D(50),E(50),F(50)
0000250 DATA E/50*1.0/
0000300 DMAX=100.0
0000350 INDEX=0
0000400 DFAC=1.0
0000500 WRITE (6,1000)
0000600 1000 FORMAT (' ',T5,'THIS PROGRAM'CALCULATES THE MAXIMUM VALUES OF'/-
0000700 1T5,'LAMBDAO AND LAMBDA* FOR A GIVEN NUMBER OF CHANNELS'//T5,'NO. CHANN-
0000800 2ELS LAMBDAO LAMBDA*'/)
0000810 WRITE (6,1003)
0000820 1003 FORMAT (' ',T5,5X,' 1 0.839962 1.618034')
0000830 DO 500 J=2,20
0000900 DX=DMAX
0001000 DO 100 1=1,20
0001100 DFAC=DFAC*I
0001200 100 A(I)=-I.0/DFAC
0001300 A(J+1)=-A(J)
0001400 DFAC=1.0
0001450 JM1=J-1
0001500 DO 200 I=1,JM1
0001600 200 B(I)=A(I)
0001700 B(J)=A(J+I)*(J+1)
0001800 250 DFN=-1.0
0001900 DFNPR=-I.0
0002000 DO 300 I=1,J
0002100 DFN=DFN+A(I)*(DX**I)
0002200 300 DFNPR=DFNPR+B(I)*(DX**I)
0002300 DFN=DFN+A(J+1)*(DX**J)*DX
0002400 DTEMP=DX-DFN/DFNPR
0002500 INDEX=INDEX+1
0002800 DEL=DABS(DTEMP-DX)
0002900 IF (DEL.LT.0.000000001) GO TO 500
0003000 DX=DTEMP
0003100 GO TO 250
0003200 500 C(J)=DTEMP
0003300 DO 600 J=1,20
0003400 C1=C(J)
0003500 600 D(J)=DEXP(-C1)*C1
0003600 DO 800 J=1,20
0003700 DFAC=1.0
0003900 DO 700 I=1,J
0004000 DFAC=DFAC*I
0004100 700 E(J)=E(J)+ (C(J)**I)/DFAC
0004200 800 F(J)=D(J)*E(J)
0004300 DO 900 J=2,20
0004400 900 WRITE (6,1001) J,F(J),C(J)
0004500 1001 FORMAT (' ',T5,5X,12,9X,F9.6,3X,F9.6)
0004600 STOP
0004700 END
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0000100 C THIS PROnGRAM IS A CONTINIIOIUS TIME ASYNCHRONOUS
0000200 C SIMULATION PROGRAM!. THE PRIMARV USE IS INTENDED
0000300 C FOR THE SIMULATION OF THE COMMUNICATIONS OF A
0000t00 C DISASTER NARNING SATELLITE SYSTEM. HOWEVER, THE
0000500 C PROGRAM MAY BE IISED TO SIlIIll.ATE ANY QUEEIIEING
0000600 C SYSTEM WITH POISSON ARRIVALS.
0000700 C
0000800 C THE PROGRAM CONSISTS OF A MAIN ROUTINE AND FOUR
0000o00 C SIIRROIUTINES. THE FIlIICTIONS OF EACH MODIII.E ARE
0001000 C DESCRIRED RELOW AND FACH MODIILE CONTAINS SOME
0001100 C DOCIIMEFTATION FOR TIIE MIAJOR FIINCTIONS.
0001200 C
0001300 C
0001,100 C MAIN ROUTINF***********************************
0001500 C SOURCE PROGRAM: SOIRCE.CONS IM
0001600 C ORJECT PROGRAM: CONS III
0001700 C THE MAIN RnOUTINE INITIALIZES SIX POISSON ARRIVAL
0001800 C PARAMETERS AND THEN PROMPTS THE USER TO SPECIFY
0001900 C THE NIRMBER OF DAYS IN THIS RUN, THE NUMBER OF
0002000 C CANNEILS AND AN INTEGER SEED FOR THE RANDOM
0002100 C NIIMRER GENERATOR. THE PROGRAM THEN GENERATES A
0002200 C SEOIENCE OF ARRIVALS AND CALLS THE PROCESSOR TO
0002300 C DETERIMIE TIHE PPOCFSSING TIMES INCLUDING WAITING
0002400 C TIMES IF ANY. THE PROGRAM THEN CALLS THE CHANNEL
0002500 C ASSIGNMENT SURROIITINE TO DETERMINE WHERE THE
0002600 C ARRIVAL BIllI. RE PROCESSED. THE STATISTICS ARE
0002700 C COMPUTED AND THEN THE REPORT IS GENERATED.
0002800 C
0002900 C
0003000 C SIIRROIITINE RAND****,* **********************
0003100 C SOlIRCE PROGRAM: SOIIPCE.IIRANMO
0003200 C ORJECT PROGRAM: IIRANID
0003300 C THIS SIIRROJTINE GEVERATES IINIFORMLY DISTRIBIJTED
0003400 C RANDOnM lMERFRS OF THE INTERVAI FROM ZERO TO ONE.
0003500 C THE VARIARIE IGESS IS AM INTEGFR SEED IHICH ALLOWS
0003600 C TIlE REPRnnUCTION OF A SEUEIIENCE OR THE GENERATION OF
0003700 C 100,000 IUlinIIE SEFIIENCES. THE TECHNIQIIE USED IS
0003800 C THE MUII.TIPLICATIVE CONGRIfENTIAL.
0003900 C
000oo000 C
0004100 C SIIRRmITINE IMIN******************************
0004200 C SOURCE PROCRAMI: SnOIRCE.StIIN
0004300 C OR.IECT PROGRAM: SMIN
0004400 C TllIS SIIRROUTINE DETERtMINES THE NEXT ARRIVAL FROM THE
0004500 C SIX DIFFERENT TYPES OF ARRIVALS. EACH OF THE SIX
0004r600 C ARRIVAL PATTERNS ARE GENERATED INDEPENDENTLY. THIS
0004700 C SIIRPROGRAtI COMPARES THE ARRIVAl. TIMES WITII THE CLOCK.
0004800 C
0004900o C
0005000 C SIIRROIITINE M*PROtn******************* ******
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0010100 200 CALL MMIN(A,T,J)
0010200 T=A(J)'
0010300 IF (T.GE.TMAX) GOTO 300
0010400 1=1+1
0010500 ARR(I)=T
0010600 IAR(I)=J
0010700 CALL RAND(Z,IGESS,IA, IX,IXX,ISW)
0010800 A(J)=T+(ALOG(Z)/(-LAMDA(J)))
0010900 GO TO 200
0011000 C
0011100 C
0011200 C ARRIVALS ARE GENERATED WITH THE CLOCK TIME
0011300 C DISPLACEMENT ADDED ON
0011400 C
0011500 C
0011600 C I = NUMBER OF ARRIVALS UP TO TIME D DAYS
0011700 C ARR(J) = ARRIVAL TIME OF ARRIVAL J
0011800 C IAR(J) = TYPE OF ARRIVAL (1-6)
0011900 C
0012000 C
0012100 300 DO 400 J=l,I
0012200 CALL MMPROC(IAR(J),PTIM,Z,IGESS,IA,X,IX IXX,ISW)
0012300 400 PROC(J)=PTIM
0012400 C
0012500 C
0012600 C CALL THE CHANNEL PROCESSOR
0012700 C
0012800 C
0012900 DO 500 J=l, I
0013000 500 CALL CHAN(NOCHAN,ARR(J),PROC(J),ARRON(J),AWAIT(J),ARROFF(J),IARC(J),C)
0013100 C
0013200 C
0013300 C CALCULATE STATISTICS FOR THIS RUN
0013400 C
0013500 C
0013600 IUN=TMAX
0013700 DO 600 ICTR=1,IUN
0013800 TCTR=ICTR
0013900 DO 600 INDEX=1,I
0014000 IF ((ARR(INDEX).LE.TCTR).AND.(ARROFF(INDEX).GE.TCTR)) ISTATE(ICTR)=ISTATE(ICTR)+1
0014100 600 CONTINUE
0014200 C
0014300 C
0014400 C
0014500 DMAX=0.0
0014600 SUMAR=ARR(1)
0014700 SUMAR2=ARR(1)*ARR(1)
0014800 SUMPR=PROC(1)
0014900 SUMPR2=PROC(1)*PROC(1)
0015000 DO'700 J=2,1
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0015100 JMl=J-1
0015200 IF (AWAIT(J).GT.0.0) NODEL=NODEL+1
0015300 DELA=ARR(J)-ARR(JM1)
0015400 SUMAR=SUMAR+DELA
0015500 SUMAR2=SUMAR2+DELA*DELA
0015600 IF'(AWAIT(J).GE.DMAX) DMAX=AWAIT(J)
0015700 SUMPR=SUMPR+PROC(J)
0015800 700 SUMPR2=SUMPR2+PROC(J)*PROC(J)
0015900 SNO=NOCHAN
0016000 UTIL=SUMPR/(TMAX*SNO)
0016100 UTIL=UTIL*100.0
0016200 TI=I
0016300 ARRBAR=SUMAR/TI
0016400 PRBAR=SUMPR/TI
0016500 TI2=TI*(TI-1.0)
0016600 ARSTD=SQRT((TI*SUMAR2-SUMAR**2)/TI2)
0016700 PRSTD=SQRT((TI*SUMPR2-SUMPR**2)/TI2)
0016800 TIUN=IUN
0016900 C
0017000 C
0017100 C
0017200 C
0017300 DO 800 ICTR=1,IUN
0017400 SUMST=SUMST+ISTATE(ICTR)
0017500 SUMST2=SUMST2+ISTATE(ICTR)**2
0017600 ICT1=ISTATE(ICTR)+1
0017700 IF (ICT1.GT.100) ICT1=100
0017800 800 IFREQ(ICT1)=IFREQ(ICT1)+1
0017900 C
0018000 C
0018100 C
0018200 TIUNI11=TIUN-1.0
0018300 STBAR=SUMST/TIUN
0018400 STSTD=SQRT((TIIJN*SUMST2-SUMST*SUMST)/(TIUN*TIUNM1))
0018500 C
0018600 C
0018700 C
0018800 C
0018900 C GENERATE REPORT
0019000 C
0019100 C
0019200 C
0019300 C
0019400 WRITE (6,1010)
0019500 WRITE (6,1011) NOCHAN,D,I
0019600 WRITE (6,1010)
0019700 WRITE (6,1012) ARRBAR,ARSTD
0019800 WRITE (6,1013) PRBAR,PRSTD
0019900 WRITE (6,1014) STBAR,STSTD
0020000 WRITE (6,1010)
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0020100 WRITE (6,1015) DMAX
0020200 WRITE (6,1016) NODEL,UTIL
0020300 WRITE (6,1010)
0020400 WRITE (6,1017)
0020500 WRITE (6,1018)
0020600 DO 900 ICT=1,3
0020700 ICT1=ICT+3
0020800 ICT2=ICT+6
0020900 ICT3=ICT+9
0021000 ICTM1=ICT-1
0021100 ICT1M1=ICT1-1
0021200 ICT2M1=ICT2-1
0021300 ICT3M1=ICT3-1
0021400 900 WRITE (6,1019) ICTM1, IFREQ(ICT),ICT1M1, IFREQ(ICT1),ICT2M, IFREQ(ICT2),ICT3M,IFREQ(ICT

3
)

0021500 WRITE (6,1010)
0021600 WRITE (6,1020)
0021700 DO 950 J=l, I
0021800 IF (AWAIT(J).LE.0.50) GO'TO 950

0021900 WRITE (6,1021) J,IAR(J),ARR(J),PROC(J),AWAIT(J)
0022000 950 CONTINUE
0022100 STOP
0022200 1000 FORMAT ( ',T5,'ENTER NO. DAYS TO BE SIMULATED IN F10.2')

0022300 1001 FORMAT (F10.2)
0022400 1002 FORMAT (' ',T5,'ENTER NO. COMM. CHANNELS IN 12')

0022500 1003 FORMAT (12)
0022600 1004 FORMAT (' ',T5,'ENTER A RANDOM INTEGER BETWEEN 1 AND 100,000 IN FORMAT 16')

0022700 1005 FORMAT (16)
0022800 1010 FORMAT (' ',T10,' '/)
0022900 1011 FORMAT (' ',T17,12,' CHANNELS SIMULATED FOR',F4.1,' DAYS WITH ',15,' ARRIVALS')

0023000 1012 FORMAT (' ',T24,'AV. ARR. TIME',3X,F7.4,4X,'ST. DEV.',6X,F5.2)

0023100 1013 FORMAT (' ',T24,'AV. SER. TIME',3X,F7.4,4X,'ST. DEV.',6X,F5.2)

0023200 1014 FORMAT (' ',T24,'AV. STATE',7X,F7.4,4X,'ST. DEV.',6X,F5.2)

0023300 1015 FORMAT (' ',T24,'MAX DELAY',7X,F5.2)
0023400 1016 FORMAT (' ',T24,'NO. DELAYS',6X,15,6X,'UTIL. %',6X,F6.2)

0023500 1017 FORMAT (' ',T17,'DISTRIBUTION OF STATES'/)

0023600 1018 FORMAT (' ',T21,4('STATE FREQ '))
0023700 1019 FORMAT (' ',T22,4(12,18,5X))
0023800 1020 FORMAT (' ',T17,'LOG OF DELAYS LONGER THAN 30 SECONDS'/)

0023900 1021 FORMAT (' ',T17, 'MSG. NO.',16,' MSG. TYPE',16,' ARR. TIME',F10.2,' PROC. TIME',F10.2,1

0024000 1' WAIT TIME',F10.2)
0024100 END
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0000100 SUBROUTINE RAND(Z,IGESS,A,X,I,ISW)
0000200 INTEGER A,X
0000300 M=2--20
0000400 FM=M
0000500 IF (I.EQ.1) GO"TO 100
0000600 1=1
0000700 X=566387
0000800 A=2"*10 + 3
0000900 100 X=MOD(A*X,M)
0001000 FX=X
0001100 Z=FX/FM
0001200 IF (ISWN.EQ.1) GO TO 300
0001300 DO 200 K=1,IGESS
0001400 X=MOD(A*X,M)
0001500 FX=X
0001600 Z=FX/FM
0001700 200 CONTINUE
0001800 ISW=1
0001900 300 CONTINUE
0002000 RETURN
0002100 END
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0000100 SUBROUTINE MMIN(A,T,J)
0000200 DIMENSION A(6)
0000300 J=l
0000350 XMIN=A(1)
0000400 DO 100 K=2,6
0000500 IF (XMIN.LE.A(K)) GO TO 100
0000600 XMIN=A(K)
0000700 J=K
0000800 100 CONTINUE
0000900 RETURN
0001000 END
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0000100 SUBROUTINE MMPROC(K,PTIN,Z,IGESS,IA, IX, IXX,IS)
0000200 INTEGER*2 K
0000300 CALL RAND(Z,IGESS,IA,IX, IXX, ISW)
0000400 GO TO (100,

2
00,300,400,500,600),K

0000500 100 V=Z
0000600 DO 150 JV=1,11
0000700 CALL RAND (Z, IGESS,IA, IX, IXX, ISW)
0000800 150 V=V+Z
0000900 V1=0.6*V-3.47
0001000 SMU=EXP(V1)
0001100 GO TO 800
0001200 200 SMU=0.80*Z + 0.45
0001300 GO TO 800
0001400 300 SMU= Z + 0.60
0001500 GO'TO 800
0001600 400 SMU= 2.20-Z + 0.50
0001700 GO TO 800
0001800 500 SMU= 1.50*Z + 0.25
0001900 GO TO 800
0002000 600 SMU= Z + 0.60
0002100 800 PTIM=SMU
0002200 RETURN
0002300 END
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0000100 SUBROUTINE CHAN(NOCHAN,ARR,PROC,ON,WAIT,OFF,ICHAN,C)
0000200 DIMENSION C(100)
0000300 INTEGER*2 ICHAN
0000400 MIN=1
0000500 DO 100 J=2,NOCHAN
0000600 IF(C(MIN).LE.C(J)) GO'TO 100
0000700 MIN=J
0000800 100 CONTINUE
0000900 ICHAN=MIN
0001000 IF (ARR.GT.C(MIN)) GO TO 200
0001100 IAIT=C(MIN)-ARR
0001200 ON=C(MIN)
0001300 OFF=C(MIN)+PROC
0001400 GO TO 300
0001500 200 ON=ARR
0001600 OFF=ARR+PROC
0001700 300 CONTINUE
0001800 C(MIN)=OFF
0001900 RETURN
0002000 END
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onsim
ENTER NO. DAYS TO BE SIMULATED IN F10.2

2.0
ENTER NO. COMM. CHANNELS IN 12

04
ENTER A RANDOM INTEGER BETWEEN 1 AND 100,000 IN FORMAT 16

034421

4 CHANNELS SIMULATED FOR 2.0 DAYS WITH 1537 ARRIVALS

AV. ARR. TIME 1.8723 ST. DEV. 1.81
AV. SER. TIME 1.2108 ST. DEV. 0.56
AV. STATE 0.6503 ST. DEV. 0.81

MAX DELAY 0.64
NO. DELAYS 12 UTIL. % 16.15

DISTRIBUTION OF STATES

STATE FREQ STATE FREQ STATE FREQ STATE FREQ

0 1487 3 64 6 1 9 0
1 1015 4 11 7 0 10 0

2 298 5 4 8 0 11 0

LOG OF DELAYS LONGER THAN 30 SECONDS

MSG. NO. 215 MSG. TYPE 6 ARR. TIME 406.80 PROC. TIME 1.32 WAIT TIME 0.64
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APPENDIX C

Limiting Values Of X0 And X, For C = 1 To 20
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0000100 IMPLICIT REAL*8 (A-F)
0000200 DIMIENSION A(50),R(50C),C(0),D(50),E(50),F(50)
0000250 DATA E/50*1.0/
0000300 DIMAX=100.0
0000350 INDEX=0
0000400 DFAC=1.0
0000500 WRITE (6,1000)
0000600 1000 FORMAT (' ',TS,'THIS PROGRAM CALCULATES THE MAXIMUM VALUES OF'/-
0000700 1T5,'LAMRDAO AND LAMBDA* FOR A GIVEN NUMBER OF CHANNELS'//T5,'NO. CHANN-
0000800 2ELS LAMBDAO LAMRDA*'/)
0000810 WRITE (6,1003)
0000820 1003 FORMAT (' ',T5,5X,' 1 0.839962 1.618034')
0000830 DO 500 J=2,20
0000900 DX=DMAX
0001000 DO 100 1=1,20
0001100 DFAC=DFAC*I
0001200 100 A(I)=-1.0/DFAC
0001300 A(J+1)=-A(J)
0001400 DFAC=1.0
0001450 JM1=J-1
0001500 DO 200 I=1,JM1
0001600 200 B(I)=A(I)
0001700 B(J)=A(J+1)*(J+I)
0001800 250 DFN=-1.0
0001900 DFNPR=-1.0
0002000 DO 300 I=1,J
0002100 DFN=DFN+A(I)*(DX**I)
0002200 300 DFNPR=DFNPR+R(I)*(DX**I)
0002300 DFN=DFN+A(J+1)*(DX**J)*DX
0002400 DTEMP=DX-DFN/DFNPR
0002500 INDEX=INDEX+1
0002800 DEL=DABS(DTEMP-DX)
0002900 IF (DEL.LT.0.000000001) GO TO 500
0003000 DX=DTEMP
0003100 GO TO 250
0003200 500 C(J)=DTEMP
0003300 DO 600 J=1,20
0003400 CI=C(J)
0003500 600 D(J)=DEXP(-C1)*C1
0003600 DO 800 1=1,20
0003700 DFAC=1.0
0003900 DO 700 I=1,J
0004000 DFAC=DFAC*I
0004100 700 E(J)=E(J)+ (C(J)**I)/DFAC
0004200 800 F(J)=D(.)*E(J)
0004300 DO 900 J=2,20
0004400 900 WRITE (6,1001) J,F(J),C(J)
0004500 1001 FORMAT (' ',T5,5X,12,9X,F9.6,3X,F9.6)
0004600 STOP
0004700 END
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THIS PROGRAM CALCULATES THE MAXIMUM VALUES OF
LAMBDA AND LAMBDA* FOR A GIVEN NIJMRER OF CHANNELS

NO. CHANNELS LAMBDAO LAmRDA*

1 0.839962 1.618034
2 1.371102 2.269531
3 1.942381 2.945186
4 2.543534 3.639547
5 3.168185 4.349048
6 3.812021 5.071184
7 4.471954 5.804110
8 5.145672 6;.546411
9 5.831388 7.296973

10 6.527684 8.054895
11 7.233412 8.819440
12 7.947624 9.589989
13 8.669525 10.366021
14 9.398444 11.147089
15 10.133803 11.932806
16 10.875103 12.722834
17 11.621909 13.516878
18 12.373837 14.314675
19 13.130548 15.115990
20 13.891741 15.920615
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APPENDIX D

Examples Of Effect Of Varying y For

Certain Values Of X0 And C

Whenever 0 < y < 1, the resulting equation is trans-

cendental and must be solved numerically. The solution of

the equation is dependent upon the values of X0, y, and C.

The equation for the effective lambda is

j = X0 + yAj- 1~ (C',A I )

Repeqtedly solving this equation until it either diverges or

converges for given values of 0, y, C yield the effective

value A,. Three sets of values were selected for 0 , y,
-5

and C and a convergence criterion of 10 was used to demon-

strate the effects of varying y for fixed values of X0
and C.

In the first example A0 = 1.5 and C = 2. If y = 0

then the AX equals A0 since no rejects reenter the system.

As y is increased, X* increases nonlinearly. For X0 = 1.5

and y = 1, the minimum feasible value of C for a controlled

process is given in Appendix C. This value is C = 3. For

X0. = 1.5 and C = 2, the value of A* begins to increase very

rapidly for y > 0.8 until the process diverges at some y in

the interval 0.9 < y < 1.0. The second and third sets of

values demonstrate the effects of varying y for X0 = 5.5

and C = 6 and 7.



0  C

1.5 2 0.0 1.50
0.1 1.53
0.2 1.56
0.3 1.60
0.4 1.65
0.5 1.71
0.6 1.78
0.7 1.89
0.8 2.00
0.9 15.00
1.0

5.5 6 0.0 5.5
0.1 5.7
0.2 6.0
0.3 6.4
0.4 7.1
0.5 9.3
0.6 13.3
0.7 18.3
0.8 27.5
0.9 55.0
1.0

5.5 7 0.0 5.5
0.1 5.6
0.2 5.8
0.3 5.9
0.4 6.2
0.5 6.7
0.6 12.4
0.7 18.2
0.8 27.5
0.9 55.0
1.0
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