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1. Review

a. Physical problems and test computations

Our research has concentrated on the numerical Solution" of a single,
mixed, nonlinear equation with prescribed boundary data. The governing

equation has the general form

AC(y) *+ o} 8y -9, =0 -

For the caustic.prob1em, which we examined first,rc(y) has the simple form

=y, - (2)
and the boundary data are prescribed fn accordance with the asymptotic
analog of (1), viz., -

Y9

XX Yy

-9 = 0. . . (Sa)
These boundary data include an incoming signal,

6, = - u, /4

y F(p), along g = - 1, (3b)

1

where F(p) gives the shape of the 1ncomfng'signa], u characterizes its strength,
and p,q = x f %—y3/2,,respective1y.

For the two-dimensional transonic flow problems, which we are now investi-
gating, C{y) is the constant transonic parameter, - K. The boundary data here
are the far-field behavior of the solution and the tangency conditioh on the
airfoil. '

We have developed a second-order numerical procedure for "solving" (1)
and a shock-fitting scheme to treat the discontihuities that appear in the
solution. Numerical results for this (the caustic) problem are codified in
tﬁe appended paper, which wiT]lbe delivered at the First International Confe-

rence on Computational Method in Nonlinear Mechanics, September 23-25, 1974.



In the following sections, we outline the research prﬁgréss we have made
. to date and further work now underway. These include a brief review of the
second order scheme, the shock fitting technique, comparison of the results
of various schemes, and a preliminary test computation of a transonic flow

problem.

‘b. Second-order scheme

The‘second-order scheme which is used in the present computation is
similar to the first-order scheme of Murman and Cole (1971), i.e., in elliptic
regions (C{y) + ¢, < 0) a central difference approximation-%s chbsen to
reﬁresent the %x--and the y-derivatives:

¢x = (¢i+],j = 1 -1 J)/z Ax

¢XX = (¢'.|+'| .5 - 2¢'|,j + 1 -1 J)/Ax ) (43)

= 2
. ?yy - (¢i,j+1 - 2¢ + ¢j,j_])/ay

i,J
In hyperbolic regions (C{y) + ¢x > 0) the x-derivatives are replaced by one-
sided différences to correctly represent the domain of dependence,

= (205 5 - 0y,5 " W05t %i-3 ,j1/ex

, - (4b)
= (2055 7 59,5 Y Mp,5  bioa 3)’6“
After substituting (4a) and (4b) into (1), we obtain a set of nonlinear
difference equations of the form
n+] n+l. ntl - - _
Motisn PRt gt Ay A = Fler =0 (E)

The coefficients An, are shown in Table 1 of the appended paper. Equation (5)
is flux conservative; we solve it by the Newton's method: '

. ntl ny

(6™ < o) B /o = - Fyle) . (6)



In our last report we pointed out that the matrix 8Fj/8@k loses. diagonal
dominance in hyperbolic compressive regions, which causes poor convergence or
instability in the iterative procedure when the initial guess is not accurate.

We remedied this by introducing an artificial viscosity, vé_. ., such that'(l)

XXX
becomes

Cly) + o 3oy, =y = Wy - @)
The diagonal term of {6) becomes
| | S22 g a 3

9F /3; = A Cly) + ¢ + 10 by + VX7 5 (8)
v i5 zero when

2 1

AR SR (92)
When tﬁis is not the case, we choose

v=km2{—2—[0(y)+¢]+¢ ] | (9b)

Ax X xx) ?

where k > 1

With this modification, equation (6) has diagonal dominance everywhere in the
computatioha] field. Test computations show that the present scheme provides a
converged solution for a wide range of signal strengths (u = 0.05 to 0.25)
with the linear solution to (3a) as an initial guess. After the numerical value
of ¢1’j becomes more accurate (usually about 20 computations*), we can set

v =0 and continue the computational procedure without difficulty until the
"sotution" converges. The results for our second-order calculation for signal

strength of u = 0.05 are displayed in Figure 3 of the appendix.

[3 .
A computation is one complete calculation of the flow field.



€. Shock fitting scheme for the caustic problem

Usual finite difference schemes give poor representations of flow fields
with shock wéves embedded in them. This is the consequence of replacing deri-
vatives by difference approximations in the whole computation region regard-
less of the discdntinuous behavior of the so]utibn. A correct "solution" can
only be obtained by treating shocks as a discontinuity. Moretti (1972,1973)
has emphasized the importance of shock fitting for flows containing shock
waves in several of his papers. Without shock fitting a large number of grid
Points and considerable computing time are required to achieve a given accuracy.
In the appendix we demonstrate the computational advantage of shoék-fitting
scheme by studying the nonlinear acoustic behavior of a shock wave near a
éaustic using different numerical schemes. The difficulties associated with
shock fitting include determining the locatioﬁ of the shock and simplifying
the ‘numerical program so that it can be easify used. We have developed a
successful scheme to solve the caustic problem; for other‘épp1ications, our
‘results require proper generalization. |

We assume a discontinuous signal with prescribed shape and strength given
by (3b). The initial position of the signal (shock) is known (Figure 1 of
the appendix} and the successive position of the shock atong each computation
column x = x, is determined by |

1 |
(dy/dx)g = T HCly) + 5 (¢, + 603 T2 (10)

The flow properties ahead of the shock are obtained by the characteristic
relations
cly) + 6,372 dp, =+ dp, (11)
X X - Yy?
and the flow properties right behind the shock are determined by one of
equations (11) and the jump condition

(8 - 007 1€ + % (o, + 803 = (3, - 607 . a2



Table 2 of the appendix details the protedure used to compute the position of
shock and determine ¢, By » ?y at the shock.

Difference equations are then constructed by considering the shock point
as a grid point, The entire difference equations including both shock, and
shock free, regions are listed in Table 1 of the appendix. At every computa-
tion point, the type dependent coefficient, C{y) + 9y is evaluated by a central
- difference approximation. At the same time, the position of the shock is de-
tected such that the proper difference equation can be chosen. The difference
equation'in shock region is not in conservative form, since such a form is not
possible. .Internal sources or sinks due to the nonconservative approximation
are localized and can be considered negligible as we have avoided differencing
across sharp gradients. |

In the region where the downstream condition of the shock becomes subsonic,
equation (11) is no Tonger valid and we have to evaluate the flow property,
e.g., $x’ by a one-sided difference approximation, and ca]éu]ate $y by (12).

As the incident shock reaches the sonic line, i.e., C{y) + = 0, we
assume a reflected wave is formed. The initial strength of the reflected shock
is obtained by using backward differences to approxihate properties ahead of
the shock and using forward differences to approximate properties behind the
shock. With such an approximation, the reflected shock is quite weak. We have
tried Tocal symmetrical shocks at the triple point as broposed in the last
progress report, but these do not seem to have the correcf properties as we
have not obtained a converged solution using them. A more general triple-pcint
mode] is now under inQestigationﬁ

Computer drawn pfots of ¢x/u at different y are shown‘in Figure 5 of the:

appendix.



2. Comparisons of various schemes

In Figure 2 ¢f the appendix the Tinear solution of equation (3) for
u=0.05, and § = 20 (Gi11 and Seebass, 1974) is reproduced. This serves as
an initial guess for our second-order scheme. Figure 4 of the appendix shows
the first-order numerical results of Seebass, Murman, and Krupp (1971). First-
order truncation errors diffuse the shock waves, especfally near triple point
where the incident shock and the reflected shock can not be clearly distin-
guished. Figure 3 of the appendix is the result obtained by the present
second-order scheme. The shock waves become sharper and the amplitude of the
shock jump increases. However, in the region where dispersive errors dominate,
i.e., |Cly) + ¢x] > |¢xx| » an unpleasant "wiggle" appears downstream of the
shock. Such phenomenon can be eliminated by fitting a shock wave that satis-
fies the correct jump relations. Figure 5 of the appendix shows the result
of the shock-fitting scheme after 20 computations from the converged seco;dw
order "solution". The dispersive "wiggle” vanishes after the first computa-
tion with the shock-fitting scheme. Table 3 of the appendix shows the dif-
ferences in computing time and the rate of éonVergence for different schemes.
Compared with the first-order and the second-order schemes, computing time
per computation with the shock-fittiné scheme is doub]ed, but the total
computing time to bring the result to the same final accuracy is appreciably
Eeduced. The fast rate of convergence and the correct shock jump are the

main advantages of our shock fitting scheme.

3. Transonic flow over two dimensional airfoils

a. Governing equation

The first-order approximation for transonic flow over a thin airfoil is



(K - ¢x) ¢xx + ¢nn = 09 (13)

where K is the transonic similarity parameter, and is defined as
K= (1 - My/(2r, = wa?/3, | (18)

and ¢ is the nondimensional perturbed velocity potential, which is related

to the perturbed velocities u', v', by

| (ar, M2)1/3 -
¢, = ~—————————— (u'/u ) (15a)
¢, = I (v g ' (15b)

Here t is the thickness ratio, F] = {y + 1)/2, x, n are related to the
physical coordinates by |

X = x/¢, n = (2r, T M,E,)U3 y/c, . (16)

- where ¢ is the chord length.

The boundary conditions are thenony =1 Y(x), or n >0

¢, = Y'(x), (17a)
and at infinity, |
.¢x’¢n+0
for M, < 1. : (17b)

For M_ > 1 far-field boundary data are calculated by the method of character-

istics. For example, at boundary point B in the following sketch, we have
| 372 _

(0 - KT d o = ~do,

or

2/3 {9, - lfcs)zl2 - (o, - K )3/2 = - gg* ¢

along the characteristic C2.



D e e enmm————e e R

Both Fyeo a”d‘¢nm are zerg on CZ’ thus

.2 3/2 3/2
bop = 5 (- 08 - (o - K038 (170)

Using (13), we can ca]cu]ate'q;B by a one-

sided difference approximation, i.e.,

[ A I 5 A IR
P A”{¢”B ¢”s-1/2} A”{%B B % ¢B"}}

212 3/2
5{§n-m’ - (6

where ¢, is computed by a backward difference approximation. . -

327 1,

For a finite computation region, the far field boundary data for M, <1

are obtained by using the formula derived by Murman amd Cole (1971},

.1 X-£ 1 X fr .2
¢ = 2 ——— Y(E}ME + 55— [{ ¢ dsdn}- (18)
2w /K { !1 (x-g)2+K‘n2 _ 27x2+K,n2 -i X

The first term in (18) is the traditional Prandt]-Glawert solution for the
linear asymptotic analog of (13); and the second term is the hbn]ihear cor-
rection due to the perturbed velocity ¢X.

On the airfoil ¢nn is approximated by a refleqted boundary condition,
i.e., ,

¢nn] = Eig (¢2 - 2¢1 + ¢0) = Eig‘[2(¢2 - ?1) - 24n ¢n1] , (19)
where subscript "1" refers to the point on the body.

The same numerical procedure discussed.in sectiom T is followed. A test
computation for a 6% thick parabolic, nonlifting airfoil at various Mach
numbers has been carried out. For subsonic flow over the airfoil, the far

field solution is corrected after every 5 forward computations. At the same

e



time the compdtation procedure is reversed, i.e., from downstream to upstream,
to bring the effect of the downstream boundary condition to the whole flow
field as soon as pfacticab]e. Converged solutions have been obtained usfng_
our second-order scheme for M_ = 0.806, 0.861, 0.909. Figure 1 shows the
Dresent'results, the results of first-order computation, and the results of
Murman (1974). There is a majbr discrepancy in the shock wave position

" between our results and those calculated by Murmén. This resu]ts iﬁ a large

disagreement in the wave drag:.

Murman and Cole (1974): ¢y = 0.0315
Present: ) 0.0125
Knetchtel: 0.00835

This discrepancy could be attributed to.our use of a normal shock on the
shock-fitting scheme, but initial calculations which allow for a floating
shock of general shape, locate the shock at x/c¢ = 0.875 ¥ 0.025. This dis-
agreement needs to be resolved and we are in the process of refining our cal-

culations in order to do so.

b. Embedded shock

For supercritical flow, i.e., subsonic flow with embedded supersonic
region, a shock wave is formed near the tfai]ing edge through coalescence of
waves originating on the body and reflected from the sonic Tine. Numerical
results for the 6% parabolic arc airfoil show a rapid compression region near
the trailing edge for Mo > 0.85. Correct representation of embedded shock
requires a shock-fitting scheme. We assume the shock originates in far-field
with infinitesimal strength, where the position of the shock is determined
by'the following criteria: -

_ it -
(K- 6, = 0% and (K- 0), =0 ; (20)

the subscript "c“'refers to the quantity evaluated by central difference
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approximation, and "b" the backward difference approximation.” This criteria
is equivalent to insisting that the shock form in a supersonic, compression
region. Once the starting point of the shock is determined, we can then trace
out the shock poéition by the procedure of section 1c. OQur bre]iminary compu-
tations have been 1imited to fitting a normal shock throughout the flow field.
" This is not a true representation of the shock that appears in the flow, but
it provides some qualitative features of the flow field. Figure 2 shows the
velocity variation at different n for M_ = 0.909. An expansion occurs behind
the shock; this probably corresponds to the Zierep (1958) sjngularity which
does not show up in many numerical results. A floating shock fitting scheme

is now under investigation.

c. Wave drag

Transonic wave drag can either be ca1cu1atéd by a contour integration of
the pressure around the airfoil, or by the entropy production due to shock
waves. Murman and Cole (1974) have pointed out.that due to the leading edge
singularity. the embedded shock waves, and the fast variation of pressure near
trailing edge, an accurate drag is hard to obtain by contour integration around
the body. The alternative method is to compute the entropy production due to

shock waves, and then to apply Oswatitsch's drag formula to determine the

wave drag,
D=1imp T_f (s -s)dy
X0 -
=0, T,/ (s)y o dy. | (21)
- shocks shock

We know that (13) is the correct first-order approximation for transonic

flow over a thin airfoil in the domain where shock waves and other discontinuities



= -
b / M-00 | 3
X . : ,
, 0 o Normal Shock Fitting
20} o.l | _ L _
/0.3
1.5+ .
‘ 05
/0.7 ;
10+ '
0.5+ I
»
' (o (< (;; e '
08| 09 08 l o8 * ’0.8.. * 08
-0.54 : \
2~
1.0+ Fig. 2. by VS X at different n in shock "'r‘egion. =
[ - .

6% arc, M_ = 0.909.



are excluded. In the sketch, S represents th?
shock, W the wake, and B the airfoil. 'D is
.tﬁe domain where (13) applies. A weak solution
of (13) provideé'a proper jump 1in pressure and
velocity across S, which can be used to reTaté
to the entropy change to the'pressure Jump:
2 .
ps/c, = fg—igl (e - 1)3 (22

The pressure jump (ﬁ/P) - 1 can be replaced by

the velocity jump through

B/ -1 = {(B/p )/ (P/R) - 1}
=0 e 22 (-2 G0 O+ /2 MR (- 2wt )b
ooyl -t . ' - (23)
or | I
(Brp-13 2 - ¥ w8 (o, - )= - “ET;‘“E (by - 8,)3. (24)

After substituting (22) and (24) into {21), we have

- meezo Mi "['5/3 f (A )3 7 . )
D= d. - ¢ dn . (25
12 (2r; ¥5)!/3 “shocks X X |

Once the shock jump $x - ¢x is accurately calculated by a shock-fitting scheme,
the drag can easi1y be evaluated from (25). A different approach in deriving

{25} can be found in Murman and Cole (1974).
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4. Applications and further research -

Most two-dimensional problems with shock waves can belstudied by the
present shock-fitting scheme. For flow problems with multiple shocks, special
. care has to be paid to the region_where shock waves merge or intersect each
other. For three dimensional problems, the scheme becomes more complicated;
we intend to try a simple, finite span wing problem, with shock waves
determined by the converged second-order solution. We alsc intend to compare
the result of our scheme with Moretti's three-dimensional shock-fitting result
(1973).

At present, we are improving our calculation of flow over a two-dimensional
airfoil using the shock-fitting scheme we have developed. For the caustic
- problem we already studied, numerical computations with a much finer mesh near
the triple point will be tested. The goal of the present research is to<
generalize the present numericé] procedure to be useful fo} most two-dimensional

and some simple three-dimensional flow problems.
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‘ AbS£réct

This paper discusses the procedures we have developed to treat a can-
onical problem invelving a mixed nonlinear equation with boundary data
that imply a discontinuous solution. This equation arises in various phys-
ical contexts and is basic to the description of the nonlinear acoustic

" behavior of a shock wave near a caustic. The numerical scheme developed

is of second order, treats discontinuities as such by applying the appro-
priate jump conditions across them, and eliminates the numerical dissipa-
tion and dispersion associated with large gradients. Cur results are com-
pared with the results of a first-order scheme and with those of a second-

- order scneme we have developed. The algorithm used here can easily be

. .generallzed to more complicated problems, including transonic flows w1th
imbedded shocks. :

Introduction

The computation of mixed, e.g., transonic, flows has been investigat-
ed extensively in thz past decade. Recent surveys of the numerical proce-
dures used can be found n Nieuwland and Spee (1973), and Yoshihara (1972).
The numerical treatment of such flows when shock waves are present has not
been developed satisfactorily. Recently, Murman {1974) improved previous
relaxation procedures by introducing a "shock point operator" to the dif-
ference equations. His scheme notes tha Jocal character of the flow, and
provides a relaxation schema that insures that the calculation is fully
conservative. However, due to first-order truncation errors, shock waves
are smeared out, and consequently shock wave geometry can not be accurate-
v pradictad. Ve present a numerical procedurs for solving mixed equat-
jons with second-order numerical accuracy by treating discontinuities as
such. ~Moretti {1869 , 1972, 1973) has pursued a similar course in tack-
iing related problems.

Governing Equation and Boundary Conditions
He consider '

(¥ + 8,) Gy = 4y, =0 (1)

A -1



vhere ¢ may be thought of as a {perturbed) velocity potential, with bound-
ary data prescribed in accordance with the nonlinear generalization of
properly posed problems Tor

- ¢ = 0. - (2a)

y ¢ vy

AX

Numerical boundary data are determined from the solution to (2a) for an
incoming signal with : - '

O v " W Ep) L for gr-e - (2p)

where F(p) gives the shape of ap incoming signal, u characterizes its
strength, and p, q = x T 2/3 y*?, vespectively. Equation (1) arises in
various physical contexts; cne of these is discussed in some detail in See-
bass {1971). A discontinuous signal with strength u = 0.05 was chosen for

the present study with _ o
F(p) = H(p) - H(p + &), , {2c)

where H{p) is the Heaviside unft function, and & was taken to be 20. This
problem is sketched in figure 1 for the domain considered here.

The characteristic directions and the corresponding compatibility
relations for (1) are 1/2

dy/dx = ¥ {y + 0,07 "%, B

(v + 6.7 ap =¥ do

y . (4)

If discontinuities are present in the solution of (1), then they must have
the directions 1 a =172
dy/dx = £ {y + 5 (¢, + §)) (5).

and across them _ |
| (5, - 0,020y + § (o, + 803 = (3, - 6,)° (6)

~

where, e.g., ¢ is the jump in ¢x across the discontinuity.

x "~ ¥ |

Solutions to the linear problem (2} may be calculated with any pre-
cision desived (Gill and Seabass, 1974). VYalues of ¢ for fixed y ave
displayed in figure 2. Tha results provide an initiaT guess of the solu-
tion to (1), as well as the boundary data. The computation is carried out
in th2 region of figure 1. At points on the boundary where y + ¢ <0, ¢
is prescribed; at appropriate pcints on tha boundary where y + ¢ *> (t»dand
$. are prescribed. On certain portions of the boundary, no data” are pre-
sfribad because the solution is determined uniauely without them.

A first-order numerical”solution” to {1) was obtained by Seebass, WMunr-
man, and Krupp (1971) with an implicit, backward difference approximaticn
to x-derivatives chosen for the grid points that lie in the hyperbolic re-
gion. The schema is unconditionally stable and the numerical calculations
converge.  However, the "solution” does rot give a satisfaciory representa-

A-2



tion of the discontinuities. We have developed a modified second-order
schema that solves {1}, the smeared "discontinuities" obtainad are con-
siderably thinner than those obftainzad from the first-order scheme. One

- drawback of the second-order scheme is that in certain regions dispersive
errors dominate and an unpleasant "wiggle" appsars on the "downstream"
side of the discontinuity.. Using these second-order resuits for initial
conditions, we then proceed with a second-order "shock-Titting" schame
that treats the discontinuities as such in order to satisfy the Jumo _
conditions to second-order. ‘ .

- Numerical Procedure

Second~Order Scheme

The difference equations for (1) are of the form

. n+l
+ A3 ¢

n+i + A n+l -l

Ap b 549 * Ry 95 5

pTA =0 | (7)
or F:(¢) = 0, where the index "1" refers to grid points in the x-direction,
o "3" “to the grid points in the y-direction, and the superscript "n+1" to

the number of jterations of the entire vegion. The coefficients, An, are -
listed in table 1. Eguation (7) is linear in elliptic domains, and non-
lTinear in hyperbolic domains and can be solved by Mewton's method, i.e.,

n+}

S O RN O (®)

The difference approximation displayed in tab]e 1 has the truncat10n
error

5 2 11 ,.2 1 2

g & ¢XX¢XXX,+ T2 80U+ o)ty T8 B dyyyye TORY + 02> 0, (9)

, __ _ | o
R T SR Ayl (P TR L e for y + 6.< 0
6 XXTxxx ] X Fxxxx 12 7Y Tyyyy? $¢,.< 0.

Special care has to be taken when Newton's method is applied to hyp-
erbolic domains. For hyperbolic equations the numerical error will not
decay unlass a proper scheme has been used. In the present problem the
diagonal term of the fri-diagonal matrix BF {@) o¢P for hyperbolic domains
is of the form : ‘

N 2y 2 n+] n+1 n+l
ag(j) = S5+ S v S (200 5~ 30 4 ot o o 1)
_ [ AN i, i-1,5 ¢ Ti-2,]
%~%+“2~2(J+¢) B b | ~ {10a)
AY" Ax S

In hyperbolic compressive regions the matrix loses diagonal dominance when

2 (s L
Lyt o) g by <0 - (105)

A3



This can lead either to poor convergence or. to instability of Newton's
mathod. Thus an amendment is made by adding an artificial term xo___, to
(1), such that the difference equation remains diagonally dominant in
the jterative procedure. The value of x is of second order, and is deter-
mined by

2 _ 1 K -
A (V9,0 * 509 - Ax3 >0 | (11)
With this modification, a stable second-order numerical soluticn is obtain
ed. Computer-drawn plots of -¢_/u at constant y are shown in figure 3. Whan
these results are comparad with the first-order cemputation shown in figure
4, it can be seen that the second-order scheme provides sharper and thinner
"shocks". However, as mentioned, in regions where [y + ¢ I>I¢xx" "wig-
gles" appear. X _

Shock-Fitting Technique

Moretti (1972) has emphasized the importance of treating discontinui-
~ties as such for flows containing shock waves. He calls this procedure
"shock fitting". Without shock fitting, a large number of grid points and
considerable computing time are required to.achieve a given accuracy. The
~advantage of shock fitting is clearly demonstrated by the present study.
With shock fitting, we can determine both the shock position and the shock
pressure rise with reasonable accuracy. Moreover, effects of numericai dis
sipation and dispersion are reduced to a minimum. :

We assume the computation procedure has reached station "i", i.e.,
X = X., as shown in the sketch of table 2; the upstream conditions are than
all kﬁown, and the properties of the downstream shock point "b" can be cal-
culated by using the characteristic relations aloay bd, be, bf, and the
jump condition (6). At point "c", where the shock intersects verticai grid
" 1ine x = X., the value of ¢ is calculated by direct integration of dp alom
be. We thén construct the difference approximatiom to x, and y derivatives
by using the shock points b and ¢ instead of the regular grid points, e.g.,
h and k. Again, an implicit scheme is used when the equation 1s hyperbolic
and a central-difference scheme when it is elliptic. During the computa-
tion the position of the shock s determined and the guantity y + ¢, 1is
computed at each grid point so that the proper difference equations™ can
be selected.

As the incident discontinuity approackes the Tine where y + o = 0 it
grows in strength until the flow right behind the incident wave Becomes
sonic. At that point we have assumed that a vefiected wave 15 formad. The
initial strength of the reflected wave can be obtainad either by construct-
ing local symmetrical discontinuities that meet at this point (a triple
point}, or by using backward differences to approximate properties ahead
of the shock and using forward differences to approximate properties behind
the shock. The second method is easier to use and the present study is
lTimited to it. The strength of the discontinuity increases rapidly and ap-
proaches its final value within § to 10 iterations. Computer-drawn plots
of - ¢_/u at constant y are shown in figure 5. Th2 reflectad discontinuity
is wea®, but this may be dus, in part, to the progedure we invokad at the
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trIple point. However, the reflected wave is not weak and is poorly repre-
sented by the second-order results without shock fitting. :

Conclusion

‘The numerical schemz cutlinad here offers a reliable method of cemput-
1ng solutions to the mixed nonlinear eguations with discontinuities. Compa-
rison of the graphical resulis for different schemes shows the present
method provides quantitatively superior results for an equa] 1nvestment in
computational time.

Stability criteria for shock-fitting procedures derive from the same
arguiients used for the first-order and second-order implicit scheme. The
‘rate of convergence may be studied by examining the maximum error of ¢ for
each successive calculation along column X, which requires the maximum
number of iterations to compute, i.e., i

. _ Max n+1

Maximum error = ;20 4 [1 - 655/8
Table 3 compares the computation time and the maximum error for the first-
- order, the second-order, and the shock-fitting schemes. It can be seen that
for 60 iteraticns both the first-order and the second-order schemes have
approximately the same rate of convergence. The initial guess was the lin-
ear solution for both calculations. We can not use the Tinear solution as
initial data with shock-fitting because thz linear solution is too poor an
initial guess. Our computation used the results from the second-order
scheme as initial data. It took only twenty computations to reduce the max
imum error to 1%. The fast rate of convergence probably derives from the
accuracy of the second-order solution away from the discontinuities, but it
also -indicates the efficiency of our procedure. The most undesirable Teat-
ure of the shock-fitting scheme is that the precgram becomes comblicated |
with bookkeeping. However, for two-dimensional problems, even those with
multiple discontinuities, the present scheme seems easy to apply. For thrae-
dimensional problems the difficulties are more substan+1a]

] along x
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Case 1, Shock-free region:
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Case 2, . Shock region:
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Table 1. Formulation of Difference Equations

n+l n+l n+l N
A1¢1J+1+A¢15+A¢111+A4¢s-+‘“ 0

( 2y + - 1 (¢n+1 n+l n+l )]¢n+1 (_5¢n+] n+l n+1 )

-lg'(¢?:}+1 2¢?+} + ¢T+} 1) . Regular point
1 2_ n+l ' Ay o
.;my‘*i.a ’TTm«T*i.JI LAY 4T _*J
n#l n+l o, Rl ' | ;

YZE+AYJ ¢1,J+1 e&y % J Ie+A ) s ¢ Yj,] <Y < yJ » €% yj -

, the B, E, are coefficients determined by appropriate Taylor series expansions.

ned from the appropriate choice of the above representations.
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" Table 2. I]]ustrat1cn'of_5hock Fitting

Position of shock point b:

- " 31/2
X X

b "a. 1 3

Yb - ya.j-q{y + 7 (¢X + ¢x§b

: ab
 Properties ahead of the shock:

\ 1 Loz, 1/2
= (y+o,) /%o, + (y+9,) ¢+¢-¢}
b (yee )2 (y+¢x)”2{ *be *e T Xpd % Yd e
o be : .- . . 7 . — .

-
]

bd

6, = o, - (19,077 (0, -0, ) o
Y Y4 bd  *b *d 7 |
o | lda f
Properties behind the shock: \‘Qﬁ\\ 1
e 1202 _ s R
(y+¢.) "“(o, -9, ) =0d, -9 R \
%% %y Xet o Ye Yy N
| 2 1 A A 2 h, > (i,j}
(3, -0, )<y +5 (¢, ¥ )>= (o, -9, ) 7 L
Xy X 2 Xy xb b Y _ -:/
- | v ¥c
¢b ¢h + 7 (xb xh)(¢x ¢xb) ]
. e/ K,
- Shock point c: _ X
. ’ C ° ”~ ~
¢C = ¢b ¥ ! d¢ < ¢b * ¢x (XCfxb) * ¢y (yc_yb}
| b b ¢ " b _
: Here.( )ab'means-% [( )a + )b]. '
Table 3. Computation Time and Rate of Convergence
, Number of , , % HMaximum
ixJ Scheme - -Computations Time/Comp. Error
- First order 60 A1 {sec.) 0.039593+
51 x 71 Second order 60 4.51 0.060134+
- Present 20 9.16 0.010475

+

* - = S ' ,
A computation is one complete calculation of the “"solution®.
*

*

Compiling time excluded.
+ . ) .
Maximum ervor still fluctuates after 60 computations.
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