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I. Review

a. Physical problems and test computations

Our research has concentrated on the numerical 'olution" of a single,

mixed, nonlinear equation with prescribed boundary data. The governing

equation has the general form

{C(y) + x xx - yy = 0 (1)

For the caustic problem, which we examined first, C(y) has the simple form

C(y) = y, (2)

and the boundary data are prescribed in accordance with the asymptotic

analog of (1), viz.,

Yxx - yy = 0. (3a)

These boundary data include an incoming signal,

ox = y-1/4 F(p), along q = -1, (3b)

where F(p) gives the shape of the incoming signal, j characterizes its strength,

and p,q = x + 2 y3/2 respectively.

For the two-dimensional transonic flow problems, which we are now investi-

gating, C(y) is the constant transonic parameter, - K. The boundary data here

are the far-field behavior of the solution and the tangency condition on the

airfoil.

We have developed a second-order numerical procedure for "solving" (1)

and a shock-fitting scheme to treat the discontinuities that appear in the

solution. Numerical results for this (the caustic) problem are codified in

the appended paper, which will be delivered at the First International Confe-

rence on Computational Method in Nonlinear Mechanics, September 23-25, 1974.
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In the following sections, we outline the research progress we have made

to date and further work now underway. These include a brief review of the

second order scheme, the shock fitting technique, comparison of the results

of various schemes, and a preliminary test computation of a transonic flow

problem.

b. Second-order scheme

The second-order scheme which is used in the present computation is

similar to the first-order scheme of Murman and Cole (1971), i.e., in elliptic

regions (C(y) + cx < 0) a central difference approximation is chosen to

represent the x- -and the y-derivatives:

x= ( i+l,j - il,j)/2 Ax ,

= (i+lj - 2. . + .i )/Ax 2  , (4a)
xx i+1,j - i-1,j 2

yy = (i,j+l - 2ij + 2,j) / Ay 2

In hyperbolic regions (C(y) + x > 0) the x-derivatives are replaced by one-

sided differences to correctly represent the domain of dependence,

x = (24,j i -2,j +  .i-3,j )/2Ax
x 1,3 i-1,j - i2, + -,

(4b)

xx = (2 1i,j - 5i-l,j + 4i-2,j i-3,j)/Ax2

After substituting (4a) and (4b) into (1), we obtain a set of nonlinear

difference equations of the form

n+l n+l n+l
Al  i,j+l + A2  ij + A3 i,j-l + A5 = F (4) = 0 . (5)

The coefficients An, are shown in Table 1 of the appended paper. Equation (5)

is flux conservative; we solve it by the Newton's method:

(n+l n) Fj/I3 k = - F() . (6)
W(6)
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In our last report we pointed out that the matrix aF / k loses diagonal

dominance in hyperbolic compressive regions, which causes poor convergence or

instability in the iterative procedure when the initial guess is not accurate.

We remedied this by introducing an artificial viscosity, vjxxx' such that (1)

becomes

{C(y) + x}xx yy : xxx (7)

The diagonal term of (6) becomes

aF j/ + -_ 2 x + xx + v/Ax3 ; (8)

4y 2 x AXXX

v is zero when

2 {C(y) + 1x + xx > 0 . (9a)
Ax2 x AXX

When this is not the case, we choose

v = kAx 2 f [C(y) + x] + xx (9b)

where k > l

With this modification, equation (6) has diagonal dominance everywhere in the

computational field. Test computations show that the present scheme provides a

converged solution for a wide range of signal strengths (1 = 0.05 to 0.25)

with the linear solution to (3a) as an initial guess. After the numerical value

of 0ipj becomes more accurate (usually about.20 computations ), we can set

v = 0 and continue the computational procedure without difficulty until the

"solution" converges. The results for our second-order calculation for signal

strength of p = 0.05 are displayed in Figure 3 of the appendix.

A computation is one complete calculation of the flow field.
A comutation is One complete calculation of the flow field.



c. Shock fitting scheme for the caustic problem

Usual finite difference schemes give poor representations of flow fields

with shock waves embedded in them. This is the consequence of replacing deri-

vatives by difference approximations in the whole computation region regard-

less of the discontinuous behavior of the solution. A correct "solution" can

only be obtained by treating shocks as a discontinuity. Moretti (1972,1973)

has emphasized the importance of shock fitting for flows containing shock

waves in several of his papers. Without shock fitting a large number of grid

points and considerable computing time are required to achieve a given accuracy.

In the appendix we demonstrate the computational advantage of shock-fitting

scheme by studying the nonlinear acoustic behavior of a shock wave near a

caustic using different numerical schemes. The difficulties associated with

shock fitting include determining the location of the shock and simplifying

the numerical program so that it can be easily used. We have developed a

successful scheme to solve the caustic problem; for other applications, our

results require proper generalization.

We assume a discontinuous signal with prescribed shape and strength given

by (3b). The initial position of the signal (shock) is known (Figure 1 of

the appendix) and the successive position of the shock along each computation

column x = xi is determined by

(dy/dx)s = {C(y) + (1x - . (10)

The flow properties ahead of the shock are obtained by the characteristic

relations

{C(y) + x} 1/ 2 dox =d , (11)

and the flow properties right behind the shock are determined by one of

equations (11) and the jump condition

2  C,1 2
(x -x ) {C(y) + (2 x : y ) (12)
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Table 2 of the appendix details the procedure used to compute the position of

shock and determine 0, ox' y at the shock.

Difference equations are then constructed by considering the shock point

as a grid point. The entire difference equations including both shock, and

shock free, regions are listed in Table 1 of the appendix. At every computa-

tion point, the type dependent coefficient, C(y) + Ox is evaluated by a central

difference approximation. At the same time, the position of the shock is de-

tected such that the proper difference equation can be chosen. The difference

equation in shock region is not in conservative form, since such a form is not

possible. Internal sources or sinks due to the nonconservative approximation

are localized and can be considered negligible as we have avoided differencing

across sharp gradients.

In the region where the downstream condition of the shock becomes subsonic,

equation (11) is no longer valid and we have to evaluate the flow property,

e.g., x, by a one-sided difference approximation, and calculate (p by (12).

As the incident shock reaches the sonic line, i.e., C(y) + px = 0, we

assume a reflected wave is formed. The initial strength of the reflected shock

is obtained by using backward differences to approximate properties ahead of

the shock and using forward differences to approximate properties behind the

shock. With such an approximation, the reflected shock is quite weak. We have

tried local symmetrical shocks at the triple point as proposed in the last

progress report, but these do not seem to have the correct properties as we

have not obtained a converged solution using them. A more general triple-pcint

model is now under investigation.

Computer drawn plots of Ox/p at different y are shown in Figure 5 of the*

appendix.
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2. Comparisons of various schemes

In Figure 2 cof the appendix the linear solution of equation (3) for

= 0.05, and 6 = 20 (Gill and Seebass, 1974) is reproduced. This serves as

an initial guess for our second-order scheme. Figure 4 of the appendix shows

the first-order numerical results of Seebass, Murman, and Krupp (1971). First-

order truncation errors diffuse the shock waves, especially near triple point

where the incident shock and the reflected shock can not be clearly distin-

guished. Figure 3 of the appendix is the result obtained by the present

second-order scheme. The shock waves become sharper and the amplitude of the

shock jump increases. However, in the region where dispersive errors dominate,

i.e., IC(y) + xI > xx , an unpleasant "wiggle" appears downstream of the

shock. Such phenomenon can be eliminated by fitting a shock wave that satis-

fies the correct jump relations. Figure 5 of the appendix shows the result

of the shock-fitting scheme after 20 computations from the converged second-

order "solution". The dispersive "wiggle" vanishes after the first computa-

tion with the shock-fitting scheme. Table 3 of the appendix shows the dif-

ferences in computing time and the rate of convergence for different schemes.

Compared with the first-order and the second-order schemes, computing time

per computation with the shock-fitting scheme is doubled, but the total

computing time to bring the result to the same final accuracy is appreciably

reduced. The fast rate of convergence and the correct shock jump are the

main advantages of our shock fitting scheme.

3. Transonic flow over two dimensional airfoils

a. Governing equation

The first-order approximation for transonic flow over a thin airfoil is
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(K - #x xx +nn = 0, (13)

where K is the transonic similarity parameter, and is defined as

K = (1 - M2)/(2r 1 T M2) 2 / 3 , (14)

and c is the nondimensional perturbed velocity potential, which is related

to the perturbed velocities u, v', by

(2r M2)1/3
x 2/3 (u'/Uoo) (15a)

1

1 (v'/U.). (15b):l T

Here T is the thickness ratio, r = (Y + 1)/2, x, nTi are related to the

physical coordinates by

x = x/c, n = (21 T M2)/3 y/c, (16)

where c is the chord length.

The boundary conditions are then on y = T Y(x), or n 0

S= Y'(x), (17a)

and at infinity,

for MO < 1 . (17b)

For MO > 1 far-field boundary data are calculated by the method of character-

istics. For example, at boundary point B in the following sketch, we have

(Ox - Ks)3/2.d Ox = - d n'

or

2/3 {(O - Ks)3/2 - (x - K )3/2} iB + n
along the characteristic C2 .

along the characteristic C2.



8

Both Oxo and 0r0 are zero on C2 , thus B

77 B-I

nB {(- K)3 /2 -K)/2 (17c)@riB 3 X -B *  -(

Using (13), we can calculate 4B by a one- 22
sided difference approximation, i.e.,

-I.0 I 1.0 x

TMB Tn - nB-1/? nAT11.rB - B-0

2 [(- K)3/2  xB- 3/2B B- (17d)
AnI 3 (xB K) A(q B  'ObB- ).

where QxB is computed by a backward difference approximation.
XB

For a finite computation region, the far field boundary data for Mo < 1

are obtained by using the formula derived by Murman and Cole (1971),

1 9S 1 J n2  x Y()d + I x 2 d~dn . (18)

2Tr K. -1l (x- )2+Kn2 x2+K -ox

The first term in (18) is the traditional Prandtl-Glauert solution for the

linear asymptotic analog of (13); and the second term is the nonlinear cor-

rection due to the perturbed velocity Qx .

On the airfoil 0pM is approximated by a reflected boundary condition,

i.e.,

n -12 (2 - 2 o)= 2(2 - 2AT 1 (19)
I  0 AnI2  2 _1 fbl Ij

where subscript "l" refers to the point on the body.

The same numerical procedure discussed in section 1 is followed. A test

computation for a 6% thick parabolic, nonlifting airfoil at various Mach

numbers has been carried out. For subsonic flow over the airfoil, the far

field solution is corrected after every 5 forward computations. At the same
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time the computation procedure is reversed, i.e., from downstream to upstream,

to bring the effect of the downstream boundary condition to the whole flow

field as soon as practicable. Converged solutions have been obtained using

our second-order scheme for M. = 0.806, 0.861, 0.909. Figure 1 shows the

present results, the results of first-order computation, and the results of

Murman (1974). There is a major discrepancy in the shock wave position

between our results and those calculated by Murman. This results in a large

disagreement in the wave drag:.

Murman and Cole (1974): CD = 0.0315

Present: 0.0125

Knetchtel: 0.00835

This discrepancy could be attributed to our use of a normal shock on the

shock-fitting scheme, but initial calculations which allow for a floating

shock of general shape, locate the shock at x/c = 0.875 . 0.025. This dis-

agreement needs to be resolved and we are in the process of refining our cal-

culations in order to do so.

b. Embedded shock

For supercritical flow, i.e., subsonic flow with embedded supersonic

region, a shock wave is formed near the trailing edge through coalescence of

waves originating on the body and reflected from the sonic line. Numerical

results for the 6% parabolic arc airfoil show a rapid compression region near

the trailing edge for M. > 0.85. Correct representation of embedded shock

requires a shock-fitting scheme. We assume the shock originates in far-field

with infinitesimal strength, where the position of the shock is determined

by the following criteria:

(K -4X)c = 0 , and (K - X)b = 0 ; (20)

the subscript "c" refers to the quantity evaluated by central difference
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approximation, and "b" the backward difference approximation. This criteria

is equivalent to insisting that the shock form in a supersonic,compression

region. Once the starting point of the shock is determined, we can then trace

out the shock position by the procedure of section Ic. Our preliminary compu-

tations have been limited to fitting a normal shock throughout the flow field.

This is not a true representation of the shock that appears in the flow, but

it provides some qualitative features of the flow field. Figure 2 shows the

velocity variation at different n for Mm = 0.909. An expansion occurs behind

the shock; this probably corresponds to the Zierep (1958) singularity which

does not show up in many numerical results. A floating shock fitting scheme

is now under investigation.

c. Wave drag

Transonic wave drag can either be calculated by a contour integration of

the pressure around the airfoil, or by the entropy production due to shock

waves. Murman and Cole (1974) have pointed out.that due to the leading edge

singularity, the embedded shock waves, and the fast variation of pressure near

trailing edge, an accurate drag is hard to obtain by contour integration around

the body. The alternative method is to compute the entropy production due to

shock waves, and then to apply Oswatitsch's drag formula to determine the

wave drag,

D = lim p. T f (s - s,) dy
X->0o -

p TJ shocks(As) sho k dy. (21)
shocks sok

We know that (13) is the correct first-order approximation for transonic

flow over a thin airfoil in the domain where shock waves and other discontinuities
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are excluded. In the sketch, S represents the

shock, W the wake, and B the airfoil. D is
D

the domain where (13) applies. A weak solution• C'

of (13) provides a proper jump in pressure and \
S

velocity across S, which can be used to relate

to the entropy change to the pressure jump:
-- ---- I

12 y

The pressure jump (P/P) - 1 can be replaced by

the velocity jump through

P/P - 1 = {(P/P)/(P/P.) - 11

2 +y2 2= {l + y/2 M2 (- 2 u'/U)} {1 + y/2 Me (- 2 u'/U )}- 1

= - y ML (u'/U - u'/U) , (23)

or 2 3 4

3 * 3 6 1 U03 co ( M(/P-1) - y3 Mm (u'/U - u'U) 2) x x)3 . (24)

After substituting (22) and (24) into (21), we have

2 M2 T5/ 3
D 12 (2 M2 ) /3  shocks x- x)3 df (25)

Once the shock jump x - x is accurately calculated by a shock-fitting scheme,

the drag can easily be evaluated from (25). A different approach in deriving

(25) can be found in Murman and Cole (1974).
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4. Applications and further research

Most two-dimensional problems with shock waves can be studied by the

present shock-fitting scheme. For flow problems with multiple shocks, special

care has to be paid to the region where shock waves merge or intersect each

other. For three dimensional problems, the scheme becomes more complicated;

we intend to try a simple, finite span wing problem, with shock waves

determined by the converged second-order solution. We also intend to compare

the result of our scheme with Moretti's three-dimensional shock-fitting result

(1973).

At present, we are improving our calculation of flow over a two-dimensional

airfoil using the shock-fitting scheme we have developed. For the caustic

problem we already studied,numerical computations with a much finer mesh near

the triple point will be tested. The goal of the present research is to

generalize the present numerical procedure to be useful for most two-dimensional

and some simple three-dimensional flow problems.
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Abstract

This paper discusses the procedures we have developed to treat a can-
onilcal problem involving a mixed nonlinear equation with boundary data
that imply a discontinuous solution. This equation arises in various phys-
ical contexts and is basic to the description of the nonlinear acoustic
behavior of a shock wave near a caustic. The numerical scheme developed
is of second order, treats discontinuities as such by applying the appro-
priate jump conditions across them, and eliminates the numerical dissipa-
tion and dispersion associated with large gradients. Our results are com-
pared with the results of a first-order scheme and with those of a second-
order scheme we have developed. The algorithm used here can easily be
generalized to more complicated problems, including transonic flows with
imbedded shocks.

Introduction

The computation of mixed, e.g., transonic, flows has been investigat-
ed extensively in the past decade. Recent surveys of the numerical proce-
dures used can be found in Nieuwland and Spee (1973), and Yoshihara (1972).
The numerical treatment of such flows when shock waves are present has not
been developed satisfactorily. Recently, Murman (1974) improved previous
relaxation procedures by introducing a "shock point operator" to the dif-
ference equations. His scheme notes the local character of the flow, and
provides a relaxation scheme that insures that the calculation is fully
conservative. However, due to first-order truncation errors, shock waves
are smeared out, and consequently shock wave geometry can not be accurate-
ly predicted. We present a numerical procedure for solving mixed equat-
ions with second-order numerical accuracy by treating discontinuities as
such. Moretti (1969 , 1972, 1973) has pursued a similar course in tack-
ling related problems.

Governing Equation and Boundary Conditions

We consider
(y + ) -. =0 (1)



where # may be thought of as a (perturbed) velocity potential, with bound-
ary data prescribed in accordance with the nonlinear generalization of
properly posed problems for

y x - y = 0. (2a)
xx yy

Numerical boundary data are determined from the solution to (2a) for an
incoming signal with

x 1-/4 F(p) , for q - g , (2b)

where F(p) gives the shape of a incoming signal, p characterizes its
strength, and p, q = x + 2/3 y3 / , respectively. Equation (1) arises in
various physical contexts; one of these is discussed in some detail in See-
bass (1971). A discontinuous signal with strength i = 0.05 was chosen for
the present study with

F(p) = H(p)- H(p + 6), (2c)

where H(p) is the Heaviside unit function, and 6 was taken to be 20. This
problem is sketched in figure 1 for the domain considered here.

The characteristic directions and the corresponding compatibility
relations for (1) are -12

dy/dx = + (y + x)-2 (3)
x

(y+ x)1 2 d@x = + dy (4)(yy

If discontinuities are present in the solution of (1), then they must have

the directions dy/dx = {y 1 + -1/2  (5)
dy/dx Y 1 {y +2 xx)} (5).

and across them
2 12

- f2 y + + 21 (6)
(x x 2 x x+ )} y y) (6)

where, e.g., cx - x is the jump in x across the discontinuity.

Solutions to the linear problem (2) may be calculated with any pre-
cision desired (Gill and Seebass, 1974). Values of for fixed y are
displayed in figure 2. The results provide an initial' guess of the solu-
tion to (1), as well as the boundary data. The computation is carried out
in the region of figure 1. At points on the boundary where y + x < 0,
is prescribed; at appropriate points on the boundary where y + x > 0 ,and
4 are prescribed. On certain portions of the boundary, no data are pre-
scribed because the solution is determined uniquely without them.

A first-order numerical"solution" to (1) was obtained by Seebass, Mur-
man, and Krupp (1971) with an implicit, backward difference approximation
to x-derivatives chosen for the grid points that lie in the hyperbolic re-
gion. The scheme is unconditionally stable and the numerical calculations
converge. Hoever, the solution" does not give a satisfactory represent--

4-2



tion of the discontinuities. We have developed a modified second-order
scheme that solves (1), the smeared "discontinuities" obtained are con-
siderably thinner than those obtained from the first-order scheme. One
drawback of the second-order scheme is that in certain regions dispersive
errors dominate and an unpleasant "wiggle" appears on the "downstream"
side of the discontinuity. Using these second-order results for initial
conditions, we then proceed with a second-order "shock-fitting" scheme
that treats the discontinuities as such in order to satisfy the jump
conditions to second-order.

Numerical Procedure

Second-Order Scheme

The difference equations for (1) are of the form

A n+l + A 2n+l + A n+l + A = 0 (7)
1  i,j+l A2  i + A3  i n  5

or Fj() = 0, where the index "i" refers to grid points in the x-direction,
"j" .to the grid points in the y-direction, and the superscript "n+l" to

the number of iterations of the entire region. The coefficients, An, are
listed in table 1. Equation (7) is linear in elliptic domains, and non-
linear in hyperbolic domains and can be solved by Newton's method, i.e.,

n+l n _{3F -()/k- F(). (8)

The difference approximation displayed in table 1 has the truncation
error

5 Ax2  11 Ax2 + 2 yy, for y + x> 0
6 A x xxx 12 x xxxx 12 yyyy x

(9)
1 x x2 ( 1 2 ,for y + < o.
6 A 'xx xxx 12 x xxxx 12 yyyy x

Special care has to be taken when Newton's method is applied to hyp-
erbolic domains. For hyperbolic equations the numerical error will not
decay unless a proper scheme has been used. In the present problem the
diagonal term of the tri-diagonal matrix DF ()/.k for hyperbolic domains
is of the form

Ax2 Ax n+1,j+1 n+1Diag(j) 2+ - + 2 (2 +l - 3 n l , + n ,)
A2 A2 A3 i'j i-1, J -2,j

+y 2  x Ax3

2 2 2 + 1 (a)
y2 2  x Ax xx (10a)

4Y Ax

In hyperbolic compressive regions the matrix loses diagonal dominance when

2 (Y + + < 0 . (10b)
2  x Ax xx

Ax

4-3



This can lead either to poor convergence or. to instability of Newton's
method. Thus an amendment is made by adding an artificial term K xxx to
(1), such that the difference equation remains diagonally dominant in

the iterative procedure. The value of K is of second order, and is deter-
mined by

2 (y + x - > 0 (11)
Ax Ax

With this modification, a stable second-order numerical solution is obtain-
ed. Computer-drawn plots of -4 /p at constant y are shown in figure 3. Whai
these results are compared witn the first-order computation shown in figure
4, it can be seen that the second-order scheme provides sharper and thinner
"shocks". However, as mentioned, in regions where [y + xl> xx" , wig-
gles" appear.

Shock-Fitting Technique

Moretti (1972) has emphasized the importance of treating discontinui-
ties as such for flows containing shock waves. He calls this procedure
"shock fitting". Without shock fitting, a large number of grid points and
considerable computing time are required toachieve a given accuracy. The
advantage of shock fitting is clearly demonstrated by the present study.
With shock fitting, we can determine both the shock position and the shock
pressure rise with reasonable accuracy. Moreover, effects of numerical dis-
sipation and dispersion are reduced to a minimum.

We assume the computation procedure has reached station "i", i.e.,
x = x., as shown in the sketch of table 2; the upstream conditions are tha
all k own, and the properties of the downstream shock point "b" can be cal-
culated by using the characteristic relations along bd, be, bf, and the
jump condition (6). At point "c", where the shock intersects vertical grid
line x = x., the value of is calculated by direct integration of d alorg
bc. We than construct the difference approximation to x, and y derivatives
by using the shock points b and c instead of the regular grid points, e.g.,
h and k. Again, an implicit scheme is used when the equation is hyperbolic
and a central-difference scheme when it is elliptic. During the computa-
tion the position of the shock is determined and the quantity y + 4 is
computed at each grid point so that the proper difference equationsx can

be selected.

As the incident discontinuity approaches the line where y + = 0 it

grows in strength until the flow right behind the incident wave ecomes
sonic. At that point wve have assumed that a reflected wave is formed. The
initial strength of the reflected wave can be obtained either by construct-
ing local symmetrical discontinuities that meet at this point (a triple
point), or by using backward differences to approximate properties ahead
of the shock and using forward differences to approximate properties behird
the shock. The second method is easier to use and the present study is
limited to it. The strength of the discontinuity increases rapidly and ap-
proaches its final value within 5 to 10 iterations. Computer-drawn plots.
of - #,,/p at constant y are shown in figure 5. The reflected discontinuity
is ea, but this may be due, in part, to the procedure we invoked at the
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triple point. However, the reflected wave is not weak and is poorly repre-

sented by the second-order results without shock fitting.

Conclusion

The numerical scheme outlined here offers a reliable method of comput-
ing solutions to the mixed nonlinear equations with discontinuities. Compa-
rison of the graphical results for different schemes shows the present
method provides quantitatively superior results for an equal investment in
computational time.

Stability criteria for shock-fitting procedures derive from the same
arguments used for the first-order and second-order implicit scheme. The
rate of convergence may be studied by examining the maximum error of for
each successive calculation along column x.im which requires the maximum
number of iterations to compute, i.e.,

Max n+l nMaximum error = j=l, 1 - /ij4i,l along Xim

Table 3 compares the computation time and the maximum error for the first-
order, the sec6nd-order, and the shock-fitting schemes. It can be seen that
for 60 iterations both the first-order and the second-order schemes have
approximately the same rate of convergence. The initial guess was the lin-
ear solution for both calculations. We can not use the linear solution as
initial data with shock-fitting because the linear solution is too poor an
initial guess. Our computation used the results from the second-order
scheme as initial data. It took only twenty computations to reduce the max-
imum error to 1%. The fast rate of convergence probably derives from the
accuracy of the second-order solution away from the discontinuities, but it
also indicates the efficiency of our procedure. The most undesirable feat-
ure of the shock-fitting scheme is that the program becomes complicated
with bookkeeping. However, for two-dimensional problems, even those with
multiple discontinuities, the present scheme seems easy to apply.For three-
dimensional problems the difficulties are more substantial.
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Table 1. Formulation of Difference Equations

Sn+1 n+l n+l + AS = 0A2 lj+ + 2i j  3 A3tj. 1  4 A4 s .

Case 1. Shock-free region:

2[y + (Otn+l n+l *n+1 n+1 n+1 n+1 n+1
Ax i," -,j + i-2 ,j ij . (-5i-1 ,j41-2,'i-3,j)

y (+ l,j - 2 ,J n+3j)] Y + x > 0(y+ x) xx= 1 2 y " Tx i-nI . 1-2~ , n J-

Ax 0, Y + * = 0

[-- - ( n+Ij n+l n + - )[ + - I+ n I y + x < 0
Ax i+lj Ji-l ,j ~T i -1' ,VL 2A~+ J -

1 n+l+l n 
>

y 2 .'i,j+l - + ij-1) for y + 1< 0.

Case 2. Shock region:

1 1Y n+l ', n+l 1 I I n+1 n+l 4 n+l
an+. - 2n+ - aa ) - -(y- s  )(n+ - as n+) 0 < xi-x s  xa' Y 'i ,j " axs i'j 712

a s a s
[E n+1 E n+, + E (y n+1 + n+l )+E nl n+

(5i-,j +
6  2 ,J+ ,, E5(y+E4 1  3 s )+E3 E4  , JJl ,J

(y+ = + (y+E n+ +E n+)(E n+l . n+l Ax < x -xsg 2Ax
x xx A 3 S. 5 1-1,J1 6 )

"D (D n+l +n+l, n+l )+D,+D n+l n++l Dn+l +D D n+ n+
1D 6 i-l,j+D7 i-2,j+D8¢s ,+ 5 (Y 2 1 1 , 3 1 -2 ,j 4 s ) D 1D5 , ,

+ (y+D n +D n+ n+l )(D n+l n+2,j+D8 n+l). 2x < xi-s3Ax
+ 0- ,yD~ 1 ~+ 341..2 ,+D~s 0-1 Ji6~~ ~+ 7 4- 2 ,+ 5  ) . 2Ax 4x 1-xsr 3Ax

i n,j+- 2,n+ n+j1 1 Regular point- i ,j+l li,j 1i,j-l
Ay

2 n+1 2 n+l 2 n+I d ys
yy dd+Ay-s dAy 1,j + Ay(d+A-- ',J-1 TYJ AY < Yj+I d .. yj

2 n+1 2 n+1 + 2 n+l
Ay(e+Ay) ij+l eAy 1,j e(e+Ay) s Yj-I < Y < e yj - Ys

Here a = xi - x, the Dn, En are coefficients determined by appropriate Taylor series expansions.
The A are obtained from the appropriate choice of the above representations.
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Table 2. Illustraticn of Shock Fitting

Position of shock point b:

- X 1/2
xb a 1 +

xb Y a 2  x  Ix
2ab

Properties ahead of the shock:

ox ~1/2 112 y+c ) 1/2 pX+ Yo 12o+o. y
xb (y+ )x + (y+ )/2 x be Xe x bd Xd d e

be bd

= 4 - (y+4x '1/2• +Y -0d (Y+ox)I/ (ox -ox)
b d bd b d y

do f
Properties behind the shock:

1 /2

•x bf xb xf y b b

((Pb-;= b) ./ ,j)
b xb 2 xb xb b Yb 2

S/ C

b h + y (xb-xh )(x +oxh b
X

Shock point c:

bb

Here ( )abmeans [( )a +  b ]

Table 3. Computation Time and Rate of Convergence

Number of ** Maximum
i x j Scheme Computations Time/Comp. Error

First order 60 4.11 (sec.) 0.039593+
51 x 71 Second order 60 4.51 0.060134+

Present 20 9.16 0.010475

A computation is one complete calculation of the "solution".
**

Compiling time excluded.
+Maximum error still fluctuates after 60 computations.
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