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ABSTRACT

AN EXPERIMENTAL AND THEORETICAL STUDY OF
THE FLOW PHENOMENA WITHIN A
VORTEX SINK RATE SENSOR -

by

Dr. G. L. Goglia (Principal Investigator)
Professor & Chairman
Mechanical Engineering
01d Dominion University

and

Dr. D. K. Patel
Research Associate
01d Dominion University

June 1974

~The objective of this investigation was to obtain a de-
tailéd description of the flow field within a vortex sink
rate sensor and to observe the influence of viscous effects
on its performance.

The sensor basically consists of a vortex chamber and a
- sink tube. The vortex chamber consists of two .circular co-
axial disks held apart, at their periphery, by a porous
coupling. One circular disk has an opening to permit the
mounting of the sink tube, in such a manner that the vortex
chamber as well as the sink tube have a common axis of
rotation.

Air was supplied radially to the sensor through its
porous coupling as the sensor was rotated at various speeds.
Particular emphasis was directed toward an understanding of
the flow field in the sink tube region. Thus velocity measure-
ments at various stations along the length of the sink tube
as well as along a given radius at any designated station
were taken. :



A computer program was developed, for obtaining the
numerical solution of the Navier-Stokes equations, assuming
laminar flow, having generally prescribed inlet conditions
and axisymmetric boundary conditions. Computational results
for various viscous flows -and assorted boundary conditions
have been obtained. :

For a specific mass flow rate and the geometry of the
vortex chamber, it was found that the flow in the vortex
chamber was only affected, locally (i.e., only near the
sink region), by the size of the sink tube diameter. How--
ever, within the sink tube, all three velocity components
were found to be higher for the smaller sink tube diameters.
As the speed of rotation of the sensor was increased, the
tangential velocities within the vortex chamber, as well as
in the sink tube increased almost in proport1on to the speed
of rotation. _

: The only noticeable effect on the flow pattern, due to
the variation of the vortex chamber spacing, was found to be
at the entrance section of the sink tube. For a given mass
flow, the radial and tangent1a1 velocities in the vortex
chamber increased with an increase in the chamber diameter.
The same effect was also observed in the entrance region of
the sink tube. | ‘

A change in the flow.rate had an appreciable effect
within the sensor and particularly near the sink tube en-
trance. As the flow rate was increased, both the tangential
velocity and tangential vorticity 1ncreased rapidly. At. the
higher flow rates, vortices were produced at the corner of
the entrance section of the sink tube and thus the flow
became unstab1e.

The theoretical predictions were found to be in reason-
able agreement with the experimental results.
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I. INTRODUCTION

An interest in vortex flows has existed for many decades.
The beauty and vigor of the whirling and swirling motions 1in
water and air has fascinated man from his earliest days.
~Yortices may have been what inspired the Mediterranean artists
and craftsmen, well over 3000 years ago to create their
spiral ornamentations. Today, man describes vortex motions
as the sinews and muscles of fluid motion and the scientists
through résearch efforts attempt to harness the energy
contained therein. Researchers are attempting to utilize
yortex flbws in many energy conversion schemes such as in
aeroplanes and other 1ifting bodies. As the state of the art
of vortex flow develops many new applications are brought
into focus. In recent years, vortex flows within confined
chambers have become of considerable interest. This interest
arose as a direct consequence of attempting to learn more
about the flow phenomena relevant to the gaseous core of a
nuclear rocket [28], electric power generation using magneto-
hydrodynamic effects [12], and pure fluidic devices such as
the vortex amplifier and the fluidic gyroscope [15].

A search of the literature readily reveals that.there
have been many contributions made to the study of vortex
flows through investigations pertaining to meteorology, the
Ranque-Hilsh tube, the cyclone separator, wing theory, com-
pressors, fluidics and others. To adequately discuss here
the voluminous literature on vortex flows would serve little

purpose, thus, a condensation of the important contributions

1



is presented.

Vogeipohl [61] was the first jnvestigator to attempt an
analysis of a confined vortex; He obtained an analytic
| solution for the tangential velocity under the restrictive
assumptions that the radial velocity was completely indepen-
dent of the axial coordinates and that the axial velocity
was zero. These assumptions precluded the increase of'the
radial mass flow within the boundary layers due to the action
of the pressure defect. Thus, his solution was not an
accurate representation of‘the vortex flow between two flat
plates.

~In the case of coaxial disks flow, by assuming the
axial velocity to be radius independent, K&rmin [25] obtained
a set of ordinary differential equations that described the
stéady state viscous flow above an infinitely large rofating
disk. A numerical solution to these equations was presented
by Cochran [9]. Bbtdewadt [4] solved the problem of a uni-
formly rotating fluid over an infinite stationary wall.

_Batche]or'[3J generalized the Kdrmdn's method to include
the case of two rotating disks and discussed, semi-quanti-
tatively, the nature of the steady flow between the two disks.
Additiona1 comments on this problem have been presented by
Stewartson [57]. He also studied the boundary layer on a
semi-infinite cylinder which was either rotating about its
axis in a fluid otherwise at rest or was stationary with a
rotating fluid inside it [59]. He also investigated the shéar

layer at the boundary of a finite circular cylinder for a



fluid rotating uniformly about jts axis in the same reference.
Matsch and Rice [36, 37, and 38] studied the inward

flow between rotating disks; which corresponded to the multiple-

disk turbine. Thejr analyses and results were for the

potential flow between the disks as well as for creeping flow

between the disks accounting for the certrifugal effects.

These analyses considered both partial and full admission of

the fluid at the outer periphery. The asympfotic flow was

shown to depend only on the fluijd flow rate and the radial

Reynolds number (N ), while independent of the tangential

Re-u
velocity. '

By employing the numerical method developed by Hall [20],
Stewartson and Hall [58] obtained a solution for a viscous
1ﬁcompressib1e flow within the inner core of a nuclear reactor.

Tﬁeoretica1 jnvestigations of unstable flows of the |
second kind were reported by Ludwieg [33] and Jones [24].
Axisymmetric and spiral disturbances were considered. Lud-l
wieg presented stability criteria for the core flow of
Hall [19] and predicted instability for small disturbances
if the pitch angle of the helical streamlines became too
steep and thus the Rossby number too small.

Rosenzwéig, Lewellen and Ross [52] also analyzed the
two plate problem. They limited their analysis to the case
where the tangential velocity was much greater than the .
radial velocity and the separation distance between the plates
was greater than the radius of the plates.

Yiscous effects in vortex motions driven by an inward



radjal convection of aﬁ angular momentum were examined in
more detail by Lewellen [30]. Exact and some nearly exact
soluttons of the Navier-Stokes equations, applicable to this
case, were also obtained. These solutions weré found by a
~general expansion of the equations of motion for a large
swirl (t.e. for a small Rossby number) and by linearizing

the equations for pertdrbations about known flows for a weak
swirl (i.e., a large Rossby number). He discussed the axijal
-variattons of flow. The results for large Rossby numbers
tndicated that as the circﬁlation decayed with increasing
axjal distance, the axial velocity in an annulus about the
axis actually increased faster than on the axis itself. This
caused a reduced axial pressure gradient along the axis. The
results for small Rossby numbers indicated that the axijal
-pressure gradient could be reversed to produce a reverse
flow. It was found that in the flows dominated by rotation,
the fluijd motion was forced to be two dimensional except for
a thin shear region where all necessary adjustments 1mposed
by the boundary conditions were satisfied by the flow.

Granger [18] studied the steady three dimensional

vortex flow for a specified vorticity distribution along the
axis of rotation within a vortex chamber whose disks were

an apprecijable distance apart. |

Kidd and Farris [29] ebtained rather .interesting results

from a flow produced by the interaction of a potential vortex
with a stationary surface. In the analysis they transformed

the full Navier-Stokes equations by a similarity technique



and thenvnumerically integrated resulting ordinary differ-
ential equations. Very close to the surface, the radial
velocity was found to be directed towards the axis and there-
fore the flow was able to redistribute itself. Such problems
were of interest in the study of tofnadoes and hurricanes.
Recently, they have become of interest especially in the
design of nuclear reactors.

Donaldson ahd Sullivan [13] made an extensive study of
the class of solutions u'= u{r), v = v(r), w = zw(r) for
~ laminar incompressible flow conditions. The solutions by
Burgers [5) and Rott [53], in which uv= -ar, v = v(r) and
w = 2az, (a = constant), were included in this class.
Dona]dsbn and Sullivan began their work as a consequence of
an interest on "canned" vortex flows, where fluid imparted
with a swirl entered a cylindrical contajner through its
side and discharged axially.

Yih [65] obtained a closed form solution of the Euler's
equations for an axi;ymmetric flow of a swirling and non-
swir1fng flow discharging into a point sink. He,'however;
made no provision for boundary layer development.

Ostrach and Loper [41] analyzed the vortex motion between
two closely spaced disks. The vortex was assumed to be
driven by the tangential injection of the fluid at the pes~
riphery of the configuration and was discharged at its center.
The‘momentum integral solution of this problem showed the
strong dependence of the boundary layer thickness as well as

the radial velocity on the imposed radial mass flow. The



results indicated that the boundary layer blockage effects
~could be reduced by increasing the imposed radial mass flow.
ft shou]d be noted that they considered the case where the
relative tangenttal velocity at the periphery of the con-
figuration_héd a finite magnitude. Thus the results are
not applicable to the vortex rate sensor, where indeed the
relative tangential velocity at the periphery of the con-
figuration is zero.

~ Fiebig [15] studied the response of the radial flow to
harmonic oscillations of the sensor. The approach used was
to approximate the transport flow by a family of "parabolic”
profiles which satisfied.the equation of continuity but not
the momentum equation.

Egli, Kizilos and Reilly [14] analyzed the radial flow
Boundary layer on a circular flat disk; In their investi-
gation, the drain was approximated by a line sink and the
radial potential flow was assumed to be unaffected by the
boundary layers.

| Sérpkaya [54] studied the radial f]ow‘between two co-
axja1 disks. He‘computed the boundary layer development
by two methods. Similarity solutions of the equations were
obtained by employing an integral momentum techhique through
uti]izatipn of an approximation suggested by Thwaits [60].
The result showed that the bbundary layer thickness decreased
linearly to zero from fhe periphery. to the center pf~the deks[

A theoretiéal and experimental investigation of the gain

and the frequency response in a vortex sink rate sensor was



conducted by Ostdijek 1401. He reported that the dynamic
characteristics of the viscous flow within a rate sensor
operating in the fully developed range were significantly
more favorable than those for the.inviscid fluid within the
sensor. |

Richards [48] applied the numerical techniques of the
imp1icit alternating direction (ADI) method; as well as of
“the exp1icitvitération method to study the characteristics of
the flow in a vortex rate sensor in which fluid discharged
into a point sink. He comﬁared his numerical results with
- the experimental results obtained by Hellbaum [22] and found
that the agreement was good for values of r > 0.2 o

Roache,and Muller [51] developed a numerical procedure
for finding solutions to both incompressible and compressible
laminar separated flows, using time depehdent finite
difference equations. They used fhe conservation forms of the
governing equations and used the upwind difference technique
for the advection (inertial) terms in both the compressible
and intompressib]e fTows.

Macagno and Hung [34] studied the annular laminar
- captive eddy ih a conduit expansion. The numerical proceduré
used was restricted to.an expansion ratfo of 2:1-and was -

Timited to radial Reynolds numbers (N ) up to 200. A

Re-u
correlation of experimental results with their numerical
results was also included.

Pao [42, 43] considered two cases of the rotary disk-

cylinder combinations and numerically computed the flow



pattern of a viscous incompressible fluid confined within
the cy]indricé1 chamber. He found that for a-tangential

Reynolds number N = (mrﬁ/v) in excess of 8, nonlinearities

appeared in the f?gw? He also observed that as the tangential
Reynolds number CNRe-e) was increased beyond 400, convergence
by the numerical iteration technique for steady state con-
ditions became extreme1y slow.

Pearson [44] described a method for obtaining an exact
numerical solution for the flow between two infinite rotating
disks. He also described a computational method for solving
the time-dependent two-dimensional viscous flow problems [45].

In addition to the numerical and anaiytical investigations
of vortex flows, a number of experimental investigations are'
reported in the liferature. AExperimental studies of confined
vortex flows can be broadly classified into two subcategories.
The first is concerned mainly with high swirl flows. Because
of its practical importance, such as in the case of hydraulic
cyclones, magnetohydrodynamic vortex power generators (nuclear
reaction chambers), dust cleaners, etc., -high swirl flows
received a great deal of attention. |

One of the earlier experiments, was a visual experiment
by Savino and Keshock [55]. It was conducted in an attempt |
to suspend fine particles of various sizes in a vortex of
air 1nside a right circular cylinder, which had a 1ength-to¥
diameter ratio of approximately one. This study revealed
‘the presence of some axial motion, as particles appeared to

- always cluster at the.corner of the cylindrical surface and



“the exit end wall. This observation suggested that an
appreciable radial in-flow existed at the end-wall boundary
layer. They concluded that the amount of swirl (ratio of
tangential to radial velocities) imparted to the fluid, as
it was injected into the chamBer; alone determined that
fraction of the total mass flow which was forced tnwardly
within the end wall boundary layers. When the swirl was

Tow (less than 0.5), the radial inflow had sufficient inward
-momentum to penetrate the qentrifuga1 field. The inflow
existed at all axial and radial positions away from the walls.
When the swirl was high (greater than 10), the radial inflow
‘was diverted axially and if the flow was confined within two
walls, all the fluid left the chamber by way of the boundary
regions adjacent to the end walls. This latter conclusion
was consistent with the result of Lewellen [30].

Kelsall [26] made measurements of the radial, tangential
and axial velocity components inside a hydrocyclone separator.
His experiments revealed the existence of large secondary
motions with most of the mass movement occurring close to the
walls where the centrifugal force was least.

Williamson and McCune [64], and Donaldson [13] conducted
expériments in short cylinders (0.130 < (L/D) < 0.281). In
both references, the radial distribution of the tangential
velocity was calculated through axjal traverses of the tbta]
pressure. -

Ragsdale [46] tOOkaitot tube measurements within a

yortex chamber (L/D = 0.5) at two radial stations and several
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- axial stations. He concluded that the motion vas essentia]]y
tangential with very little variation of magnitude in the
axial dfrection:

Kendall [27] experimented with a vortex that was generated
by a rotating porous cylinder which imparted a swirl to‘the
fluid supplied to it through the porous wall. A flattened
pitot tube was used to traverse the boundary layers. In the
measurements of both total pressure and local fluid direction,
the radial velocity was assumed zero at distances far removed
from the wall.

The second subcategory of experimental studies of con-
fined vortex flows is mainly concerned with the low swirl
flows. One such flow is the flow in a vortex rate sensor as
reported in references [10, 22, 40].

Hellbaum [22]) conducted experimental work in a vortex
réte sensor and obtained characteristic flow angles for
different tangential Reynolds numbers, radial Reynolds numbers
and plate-spacings. By the smoke trace technique, he studied
the effects of the geometrical parameters on the characteristics
of flow angle in the vortex chamber of the sensor. He selected
r =0.2 r, as the smallest radius for which the flow angle a
was not abpreciab]y affected by the sink proximity. By
determining o O.é (flow angle o at 0.2 ro)s he plotted graphs
of tan o 0.2 Versus tangential Reynolds number (hzw/v), with
(ro/h) and radial Reynolds number (Qg/hv) as dimensionless
parameters. Hellbaum showed an increase in tan o for

0.2
a decrease in flow rate.
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The paper by DeSantis and Rakowsky ilo, 11] reported
the experimental veTocity profiles and boundary layer
charaéterfstics in a steady state weak vortex flow produced
by the combination of an axisymmetric sink flow and a.vortex
flow between two coaxial circular plates of very small aspect
ratio (h/r, < 0.03).

I'n the experimenta]Astudies of Sarpkaya [54], using air
as the fluid, it was observed that the output of the pickoff
signal was linear for small values of 'w' and that linearity
Tncfeased with increasing %1ow rates., He further observed
' that rotations in counterclockwise as well as clockwise
directions aboﬁt the axis of symmetry gave identical
differential pressure signals.

Rakowsky and Schmidlin [47], with water as the working'
fluid, studied the flow in the vortex chamber by photographing
the dye traces of the streamlines and then reducing the re-
-sulting data. Angular momentum efficiency (ratio of angular
momentum at any r to that at r = rj) of the midplane of the
vortex chamber was plotted as a function of radius. These
results were then compared with the results predicted by a
momentum integral method with an assumed parabolic momentum-
profile and the unknown matching paraheter was determined.

In_additidn to the effect that the coupler diameter had
on the pickoffs, Burke and Roffman [7] studied the performance
of two different pickoffs (one axijally slotted and one cir- -
cumferentially slotted). They observed that for couplers

of smaller diameters the pressure output decreased.
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With an angular rate sensor, Burke [6] observed the
effect of the coupler height and pickoff on the sensitivity
(defined as signal output unit rate of rotation). He re-
ported that for a given rate of rotation, the sensitivity
(which now is a measure of differential pressure) decreased
rapidly as the angle between the axis of spin and the axis
of symmetry increased. The maximum sensitivity occurred when
the two axes coincided. The sensitivity was also found to
increase with increased spacing between the couplers. He
also diséussed the time dependent phenomena such as the noise
frequency in the output of the pickoff, the transporf time
and the threshoid (ratio of Ap of signal to Ap of noise).
These phenomena are of importance in the practical use of
sensors when the response time is of importance. ;

Arimilli [2]. Gala [17] and Lu 1321&each undertook an
experimental investigation of a vortex sink rate sensor.
Their studies, however, were confined only to the sink tube.
The apparatus they used had vortex chamber diameters of 5
and 10 inches, while the sink tube diameters ranged from 1/4
"to 1 inch, The objective of their studies was to observe -
experimentally the effect of the flow rate,'change of
’ rotafion. and change of configﬁration on the tangential
velocity within the sink tube.

Several investigators have undertaken studies, experi-
mentally as well as theoretically, within the vortex chamber
only. Rakowsky and Schmidlin ([47] have considered the entiré
vortex sink rate sensor as their system. However, they assumed

the fluid to be inviscid and therefore were able to use the
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Euler equations and easily find the numerical solutions. None
of the previous investigators, however, have considered a
viscous fluid. No direct measurements of the velocities in
the sink tube have been made before. Thus in the present
investigation a viscous fluid is assumed and the velocities
within the sink tube are directly measured. 1In addition to
this experimental investigation, a complete numerical analysis
of the flow pattern in the entire sensor is undertaken.

The vortex sink rate sensor presently under consideration,
consists.basica11y of an ideal sink flow between two coaxial
p1atés having a single outlet. The entrance flow to the
device is radial and the sensor design permits an angular
rotation about its geometric axis. This arrangement results
tn the creation of a vortex flow within the sensor.

The sensor is essentially a fluidic device which, in
addition to being inexpensive to manufacture, has all the
desired characteristics for use as a guidance control instru-'
ment. Its simplicity, high reliabjlity and long 1ife are
asséts not to be overlooked. The present exp]oratioh of spacé
has also created the need for a guidahce control instfument.
that would essentially be unaffected by severe environmental
conditions such as high temperature, shock, vibration and
nuclear radiation. The sensor can indeed serve this need as
a fluidic gyroscope. The fluid vortex amplifier also shows
promise forvfuture application to liquid propellant rocket
engine control systems. The advances in the art of fluidics
within the past few years, and the successful application of

fluid amplifiers has made the sensing and amplification of a



14

signal possible by merely varying the rotation of the sensor.

As the sink tube is considered the most likely Tlocation
for any signal detection element, the study of the flow
pattern within the sink tube is given particular attention
here. A signal détection element senses changes as a con-
sequence of fluctuations at its location. Thevsignal could
be a relatively weak one and therefore could need to be
amplified for transmission to the controlling device. Thus
it is important to strategically locate the signal detection
element at the location where maximum amplification occurs.

Th1§ present investigation was therefore undertaken
with the primary objectives being to investigate the steady
state flow conditions, and to develop an understanding of
the flow pattern within the sensor.

Chapter II describes the formulation of the governing
equations, Chaptek IIT presents the numerical analysis used
for solution of the flow field. Chapter IV and V are devoted
to the numerical results. The experimental investigation
and results are discussed in Chapter VI, Experimental results
are compared with numerical results in Chapter VII and the

conclusions are given in Chapter VIII.



IT. BASIC FORMULATION

2.1 Goyerning Equations

The vortex sink rate sensor considered for this invest-
tgation is shown Tn_Figs: (2.1) and (2.2). The sensor,
Basfca11y; consists of a vortex chamber and a sink tube.

The yortex chamber consists of two circular co-axial disks
held apart, at their periphery, by a porous coupling. One
circular disk has an opening to permit the mounting of the
sink tube in such a manner that the vortex chamber as well
as the sink‘tube have a common axis of rotation. Air flow
was supplied radially to the vortex chamber through the
porous coupling. The objective behtnd this investigation
was to determine the flow pattern within the vortex sink
rate sensor.

The axisymmetric f]ow through the sensor suggested the
selection of the cylindrical coordinate system, as shown in
Fig. (2.3), to establish the governing equations for the flow.
The.-radial, tangential and axial coordinates are respectively
represented by r, 6 and z while u, v énd w denote the
respective velocity components. In the analysis that follows,
the top piate of the vortex chamber is considered to be
located at z = 0 and the axis of symmetry is located at r = 0.

The Navier-Stokes equatjons for a viscous incompressible
fluid with constant properties may be expressed in cy]indri¢a1

coordinates as

15
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"2 e a2 N2

3u , 1 3u u 1 3% _ 2 3v 3¢ (2-1)
+ 2= + = - —_—t e - = + 4

[arz POT T p2 0 p2 pe2 4298 azz]

96
+ 38y +13v_v .1 32y + 2_3u 3y ,
Lol ey r or 2 2~ 2 2-5_9 2
ar r ro36 r 32 (2-2)
2 - 2
3°w . 1 aw. . 1 3% |, a°w (2.3)
+ujo W 4 L :
M= trywt 22t
Aor r 36 ¥4
and the continuity equation is given by
du , u 1 ov . aw _ (2-4)
vty Trw w0 -

Essentially, two methods are employed in obtaining
numerical solutions of the governing equations. In the first
method, a steady state approach is used to find the solution
of the flow field for low Reynolds numbers. At higher
Reynolds numbers the steady state equations become unstable
‘and are not applicable. Thus, a transient approach is
adapted in obtaining the solutions for flow at higher Reynolds

numbers.
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2.1.1 Steady State Approach
Steady flow conditions are assumed throughout the
sensor, and since the air velocities are sha]];
the flow +s assumed to be incompressible. The temperature
of the air entering the sensor is considered constant and is
taken to be the same as the environmental temperature.
Throughout the sensor, laminar'flow is aséumed and the in-
fluence of body forces is neglected. Axial symmetry is also
assumed and therefore the'gy( ) term is set equal to zero.
Under these assumptions, Equations (2-1), (2-2),:(2-3)
and-(2-4) reduce - to

2 | N2 | 2
du dBu ve _ 13 3°u 1 3y wu ul (2-5)
"’5?+W5‘2'F'""EF§+\’[;2+r'§F':2'+;;Z]"
3V , .3V . uv 55 1av v, 3%y (é 6)
s Wzt TV Tz trw szt 7
, ar r 9z
LU\ R -] I v‘azw + Low 32“.. . (2-7) |
or 0z p oz 1.2 ror T
ar 9z |
..a._u.. _l:'_ M: (2"8)
or fr ¥ 9z o .
Equations (2-5), (2-6) and (2-7) are then, respectively

the radial, tangential and axial momentum equations for the
flow in the sensor. The continuity equation, Equation (2-8),

is eliminated ~ by tntroduction of the stream function, V¥,

such that
=1 9) ‘ (2-9a)
u ¥ 5E
and _
R Y (2-9b)
W r or :
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Tﬁus the velocity components u and w can be expressed.
in térms of i. _
The tangenttal vorticity is defined by
- % _ %g | ‘ (2-10)
A combination of Equations (2-9) and (2-10) results in

2. 2

= 199 1 8,1y
n w2 1 + ¥ —7 (2-11)
ar r 52

Since vortfcity and cjrcu]ation are related, it seems
desirable to express Equation (2-6) in terms of circulation.
thation (2-6) is first multiplied by r and then rearranged
to give

2
3 7. 9 . -
Ugr(ry) + wgz(rv) = V[r%?(%\% )t é—z(rv)--]. (2-12)
~ | 2z

Upon cross differentiation of Equations (2-5) and (2-7),
followed by taking their difference, the pressure term is

eliminated and the result is expressed as

- - - = 2
an an un _ 2v 9V _ 52n . 1 31 _ 1 (2-13)
Usr * W3z - v T Tr 32 \’-[‘a‘r'z*FW :Z"';Z}-.

By emp1oyingkphg¢definition of circulation, T = v.r,

Equations (2-12) and'(2-13) are transformed to give

2= -
oF °%r 1 ofF 8T (2-14)
uzy * Wa—z' "*[—z r 3T —?] ’

ar 92

.— -~ - - - 2.. - - 2—
9f , .9n 2T 3T _ f9n ., 19n _ n, 9°n] (2-15)
Usy * Y3z '%";Erz "L—z*Fs?‘;z* ;z]
ar
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Equations (2-11), (2-14) and (2-15) now constitute the
governing equations for flow through the sehsor under steady

state conditions.

2.1.2 Transfent Approach
In a manner similar to that described aboye, the tran-

sient form of the governing equations are found to be

10% 1 a9, 1299 . (2-16)
r 2" Z% Ty oz o
= = 5 2z - 27
af , y3F , o - yj3°r _18r  3°r{ (2-17)
ot 0 0Z 1.2 " r 3r z
or 52
- - - - - - 2- -
an an an _un _ 2T aI _ 9 1 9n
3Tt Usy f W3z - Ty R “{;‘7 o T
r
LT 25
Z T . A (2-18)
or 9z

These equations, with appropriate initial and boundary
conditions, are used to find solutions in the transient

approach.

2.2 Initial and Boundary Conditions

Initial conditions are necessary for Equations (2417)
and (2-18). Upon considering the inertia of the fluid, the
simp1e and physically realistic assumption for the jnitial
condition jis found to be that of a solid body rotation of the
fluid. Thus the radial and axial velocities are assumed to |
be zero, and initial fluid shear Stress is therefere .neglected.

Consequently, at t = 0

2, (2-19a)

f(r;z) = wr
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Alr,z) =0 . | (2-19b)
The boundary conditjons yalid for both the transient
and steady state equétions are the same, and are shown in
Fig. (2.4).
Sitnce the flow is symmetric with respect to the z-axis,
it ts only neceSsary to specffy boundary conditions for half
of the sensor. With the origin chosen as the center of the
| top plate of the vortex chamber the boundary conditions can

be written as

(#) S¥nk tube and vortex chamber axis, r =0, 0 < z < %

-

5(0,z) = F(0,2) = 7(0,2) = u(0,2z) = v(0,z) = 0,  (2.20a)

w(0,2) = . 33%

or |y =10 . (2-20b)

(i) Top plate of vortex chamber, z = 0, 0 < r < r,

(r,0) = u(r,0) = w(r,0) =0 , (2-21a)
v(r,0) = wr , (2-21b)
F(r,0) = wrl, (2-21c)
A(r,0) = 1 3%y

: r - 2
3z lz = 0 . (2-214d)
(1i1) Entrance to vortex chamber, r = rg, 0 <z <h
ro,z) =% 2z, 2-22
u(r.,z) =u_ = Qo . 2-22b
° °  Zwhry ( )
v(ro,z) =ory _ (2-22;)
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F(J‘Q:z), s wroz s (2"22d)
w(ro;z) = nlrg,z) = 0 . (2-22e)
(iv) Bottom plate of vortex chamBér; Z =-h; ri'i rar,
&(r;ﬁ) = Q ; (2-23a}
2n
u(r;h) = w(r;h) =0 , (2-23b)
y(r,h) = wr ; (2-23¢)
F(r,h) = wrl , (2-23d)
Alr,h) = 1 3% (2-23e)
r 2 :
32 |z = h
(v) Sink tube wall, r =ry, h<z<32
‘I’(r L42) = 'QO s (2*243)
! o
u(ry,z) = wcrl\;z), =0 , (2-24b)
virs,z) = wr (2-24¢)
Flri,z) = wrg? (2-24d)
Rlriaz) = 1855 (2-24e)
ry ~ 2
3 {r = p, .
(vi) Sink tube exit, z =2, 0 <r < rs
e _or _ fy - (2-25a)
5.‘;_.(r,sa) gi(r.x) =5{r.2) =0
(2-25b)

3V, oW
3z(rs2) = 3z(r,8)
The justification of the

given fn Appendix A.
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2.3 Nondimensional Form
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‘Qj;the‘Governing'EquatiOns

The system of gover

ning equations are made dimensionless

by introducing the following nondimensional quantities.

. Independent VariaBles;

Dependent Variables,

u
U= wry s
=V
v wry s
- W
W mro s
wr 2
NRe-e 0

w.(2-26)

n = nfw ., ' (2-27)

Upon introducing Equations (2-26) and (2-27) into

Equations (2-11), (2-14) and (2-15), the nondimensional form

of the steady state equatjons are found to be

32

0

=

% *

x.J
X s
™)

1
R

azw (2-28)

L2y .o,
R 27
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T or o1 pfr 19T L 9T, (2-29)
UsR * W5Z T We {ékz R ;E?

Re-6 R
on 4 3% | | - (2-30)
RS

Simtlarly Equations (2-16), (2-17) and (2-18) are trans-
formed to give the dimensionless form of the transient

equations.as

2

"1 3 ¥ 1 oy . 137y _ _ (2-31)
R = =N o :
B oré  RER TR
8T , yor , 2l _ 1 o2r _ 1 a7 , a%r ’ (2-32)
3T 7 T9R T 8T T Wpeog [pr% R T T
an an an Un 2T ol _ 1
ARG ARC R S A
2 2
3 n,13n _n ,3™n .
[EEZ R /% a1t (2-33)

The dimensionless initial conditions for the transient
equations are
for T = 0 -
R2 , (2-34a)
0o . : (2-34b)

r(R,z)
n(R9Z)

The dimensijonless boundary conditions are shown in

[}

Ftg. (2.5) and are written as
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(#) Sink tube and yortex chamber axis, R =0, 0 < Z <L

u(0,z) = v(0,2) . r{0,2) = n(0,Z) = v(0,2) = 0O, (2-35a)

W0,z _ _3%y|
= =z
R IR

Q

=0 . (2-35b)

() Top plate of vortex chamber; Z=0,0<R<1

U(R,0). = W(R,0) = y(R,0) = 0 , (2-36a)
“¥(R,0) = R, o (2-36b)
F(R,O) = st (2-35C)
n(R,0) = 1 3%y
R —2
9Z |z = 0 (2-36d)

(iii) Entrance to vortex chamber, R =1, 0 < Z < H

u(1,2) = % N

= 50 | ~ (2-37a)
2nr wh '
N(lsZ) = n(l,z) =0, (2-37b)
v(1,2) = r(1,z) =1, , (2-37C)
1,])((1 z - Qo » Z _ N . Z .
2) = 3 K= Ro (2-37d)
ZTTY‘O w \

(iv) Bottom plate of vortex chamber, Z = H, Ry < R <1

U(R,H) = W(R,H) = 0, ' (2-38a)
Y(R,H) = Npo (2-38b) -
Y(RHF = R . (2-38c)
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T(R,H) = R (2-384d)
n(R,H) = 19%]" | |
R 572 - (2-38e)
(y] Stnk tube wall, R = Ry, H<Z <L
U(R;,2) = W(Ry.Z) = 0, (2-39a)
p(R4sZ) = Np, s (2-39b)
F(R,,2) = RZ; (2-39d)
n(Rguz) = 1 2%y
Ry 5R7 ;
R IR =Ry . (2-39e)
(vi) Sink tube exit, Z = L, 0 <R < Ri
%llz{(R’L) =. %;(—RIL) = %';(R;L) = 0 , (,2"403)
oV oW, 2-40b
3 (RoL) = BF(RLL) = U(R,L) = O (2-40b)

These injtial and boundary conditions are utilized in the
numerical analysis of this investigation.

The systems of nondimensional governing equations, along
with appropriate injtial and boundary conditions, are then
solved to obtain the stream function, circulatijon and the tan-

gentjal yvorticity in the vortex sink rate sensor.



I11. FORMULATIONS FOR
NUMERICAL ANALYSIS

As mentioned in the introduction, it {s necessary to
‘approxfmate the governing equattons by a finite difference
scﬁeme; so that calculations remain stable for all Reynolds
numﬁers; A similar approach for viscous flows has been used
by other investigators 18; 16; 451, and is discussed in the
tntroduction. In references [48, 49] the finite difference
technique was used to solve the non-1inear equations for the
flow within a vortex chamﬁer; Both the implicit alternattve
dtrection (ADI) method and explictt finite difference methods
were used in reference [48])]. The agreement in results was
found to be within one percent for the stream function and
one and half percent for the radial velocity variatijon. The
computer running time for the explicit method, however, was
noted to be two orders of magnitude less than that for the
ADI method. Consequently, for this study, the explicit
method was selected to determine the flow pattern in the.
vortex sensor.

For stability purposes the central difference method ié
most suitable [34, 42, 45], and therefore it was used in the
numerical analysis for this problem. The central differences
are obtained by using a Taylor series expansion for each term
in the differential equatijon. :

As mentioned in Sectjon (2.1), steady stdte and transient
procedures were adopted for computational purposes. In the

steady state approach, when the viscous equations are expressed

31
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in a finite difference form, an iterative numerical scheme

is employed to obtain an approximate solution. 1In this
approach theAprocedure begins with an assumption of some
approximate flow pattern for a very low Reynolds number. The
numerical iteration technique is then used and continued,
unt{l the finite difference equations are satisfied. This
u]timate1y:1eads to an acceptable flow pattern, for that
Reynolds number. This flow pattern then becomes the input
data at a slightly higher Reynolds number, and the procedure‘
Ts conttnued, until converéence is reached.

At the.hfgher Reynolds numbers;these-equations become un-
stable and thué a transient approach, rather than the steady
state approach, is used. In this approach a technique of
expressing the differential equations in a succession of
discrete steps is employed. As an initial input for
calculations at the higher Reynolds numbers, a known flow
pattern from the steady state approach is used. The iteration
is then continued until the results approach steady state
conditions. For subsequent higher Reynolds numbers the last
results are used as the input data and the procedure ijs con-

tinued. .

3.1 Steady State Problem

By employing the central space difference technique,
Equations (2-28), (2-29) and (2-30) can be written in the

fintte difference form as
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JoT 1-1,3 1,341 Ped=d
2 - 3-1
. %R'(ZR I S AT 1_1.J) , (3-1)
PF o= . + T + T
fhj T ( 1+1’J Tbl’j ’J+1 Taj"l)
- Npe-p .
Re ~2a
" Tl6R (g 441 - vy,5-1 ¢ NRe-o ) (Ti41,3
- Pi"lsj) ) (w-i+]_ i 1 -1 ) (_ =T )
o < DGR IR TS U I TS R
(3-2)
*
n -

= . R + . . + .
i, [% (Mi+1,3 7 M1, 0 Migger T MiLge1)

NRe 0 (v, - Y. o - 2a n .
{( s Jj+1 1,3-1 NEETE) ( i+l,J

Nio1,i) T (Vien,g 7 Yiel,g) (Mgl T ”i.j-l)s

- %%F'i.j (Pi.j"’l - ri,j‘l) ]/
' 2 ~aNpe.g . -
[1 + :Rz + 8R27 ,(w1.j-1 ¢i,j+1)] . (3-3)

This procedure is employed to calculate the temporary
values of y*, P* and n*. In the above equations i and j de-
note the space point in R and Z direction respectively. For
a gtven value of i and j, the space coordinates are represented
by R = (#-1)a and Z = (j-1)a, where a is the size of the grid

spacing. The explanation of these difference equations is
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~given in Appendix B.

In the aboye equations, the non-superscripted dependent
vartables are assumed to have the superscript (n) whereas
the astertsk is ;éed to denote a temporary value such as

’ﬁ:’j respresenting the new fterate_ﬂgnfl) at that point. This
R 9 J
new iterate ts obtained from the temporary values and the
preceding (o1d) fterate Agng by the relaxation procedure as

3
~given by

(n+1) - (n) | .

where 0 < w, < 1.

3.2 Transient Problem

_ In the procedure used to solve thé jnitial boundary.
value problem, governed by Equations (2-31), (2-32) and (2-33),
the derivatives are approximated by finite differences in a
“manner similar to that used in the steady statezprob1em.‘

‘In this caée. however, the central time difference as well as
the central space difference techniques are used and result

in the following eqUations.

kel K K k K
i T E Wi s T a t Yged)

k k k

ca_ (RPang oty o G) (3-5)

i1,
8R 1 J
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In the above equations, the subscripts i1 and j designate
the space point in the R and Z directions respectively, where-
as the‘superscript k denotes the time point. For given
yalues of T; j; k; the space and time coordinates are re-
presented by R = (i-l)a; Z = (i-1)a and T = KAT, where a is
the stze of the grid spactngs and AT {s the size of the time
step. | |

The method for obtatning these equations are similar
to that adapted by Fromm [16], Pao [42], and Macagno and
Hung [34]1. The explanation of these equations is given in

Appendix B.
| Tﬁ?s.procedure mandated considering numerical stabi]ity'
itn the selectfdn of the time step size. The most stringent
restriction on the time step size.'for the cases considered,

s suggested in reference [21], and is given by. -

| 2 1+ 1 1
AT < 7 @ 7 TR — 3
Npwoo (42) 7 Neo.g (8R)
oy -1
U _ W (3-8)
AR AZ .

In:tﬁtseequatieny;ﬁ»and,ﬁiare_thetaygkaggayglqctties for
the grid point under consideration. For the sake of con-
venience, AT, in most of the calculation, is taken to be

(ﬁR/4ﬁ) in the present formulation.

The only boundary conditions that have to be expressed
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in the finite diffefence form are those that involve a
derivative. They, in turn, are the expressions for the tan-
gential vorticities on the solid surfaces as well as for the
axial velocity along the geometrical_axis.

The tangential vorticities are calculated by use of the
Taylor series expansion. By using B as a point on the plate
or wall and A at oné mesh distance away, the Taylor series

expansion is expressed as

op = vp * adw | +aZ3% | +o0(ad) . (3-9)
sT| 7T ' -
5 o2 |

i

for vortex chamber plates. Upon neglecting the terms of order

a3 or higher order and by using the plate boundary conditions,

N=0,U-=0, op . 30 .
7 -0 3509

the series expansion is reduced to

32y _
5y -
LA B

(3-10)

mN|r\)
—
<
1
<
A —

The expressions below for vorticities are found at J = 1
or Z = 0, and at J = mor Z = H, by using Equation (3-10) in
Equations (2-36d) and (2-38e). ’

-1 - 0 < R 3-11

"y i, (w1’2 wi,l) for 0 <R <1 (3-11)
Ra

. =2 - for R: < R < 1. = (3-12

T =2 ¥y Lt ) for Ry R (3-12)
Ra

A similar procedure is used for the sink tube wall boundary

conditions and from Equation (2-35e) the vorticity is obtained



at i = nn or-R = Ry and is given by

nn,j = —> (wnn-l;j
R4a

N

n - ¥y ) forH sz < L. (3-13)
‘The tangential vorticities can also be obtained by em-
ploytng the MAC method [62] where a phantom boundary point is
used, The MAC method produces the same results as giyen above.
An alternate method for computing vorticities is the one
suggested by Hung [23] which has the advantage of requiring
only information at an adjacent point. Consistent with the
above notations, the expfessions for vorticities are found

to be

Ra
Thus; the vorticity, at J = 1 or

for 0 <R <1, (3414)

-3 . ) - N m-1 for Ry <R < 1.
—7 =L T ,m —Z -
Ra (3-15)

Similarly along the sink tube wall, one finds at i = nn or

R = Rj. |
= ' - S { W .
My~ 2y Win-1,5 ™ Yon.j) nnzl.g v H<Z<L,

R;® - (3-16)

The boundary condition for the tangential vorticity at the

corner junction of the sink tube and the vortex chamber is
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determined by use of a method suggested by Roache [50]. He
calculated the boundary conditions for the tangential vorticity
at the corner by using both the upstream and downstream
neighboring points for given values of stream function and

VOrticity: Thus the boundary condition can be represented by

at = nn; j=morR = RT; Z=H

Tnn,m =1 (wnn-l.m * lpnn,m-l 'zwnn,m) ' _(3-17)
2R ;a S
or
= + -
"an,m ‘—2—7 (wnn-l.m lpnn.m-l zwnn,m)
2Ria
- % (nnn-l,m * nnn,m-1)° (3-1?)

The axial velocity boundary condition along the geometrical

axis is given By

at R =20
W(0,z) = 2im (.1 ay)
R0 R 3R
- - 3%y
—7

R" |R =0 for0<2Z<L.
By use of the forward difference technique, this can be
written as,
at .= 1orR =0,
v‘{l ,j': 1 (’15")1 .J - 16‘1’2;3 + ‘P3’J) ’ (.3-.19)

6a’
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or

LI
- 5a

where 0 < Z < L.
In the sink tube at the downstream section, the dependent

variables are assumed to be constant and parallel to the tube

“axis. Thus at the sink tube exit, the boundary conditions

can be determined through use of a parabolic extrapolation.

The relattonship for boundary conditfons employed here was

developed by Hung [23]. Consequently, for this case (where

0 %R % Rs) the boundapy conditions can be written as

at J = mm or Z = L,

l”1‘v.mm - wf;mm-4 _zwi;mm-3 * 2w1,mm_1 ’ (3-21)
Ty, mm ) Ty ,mm-4 'Zri_,mm-3'+ 2T5 mm-1 (3’?2)
",mm ”i;mm—4~‘2“i.ﬁm-3 * 2y ime1 (3-23)
W = Wy g 29 mme3 * Mg oot - | (3-24)

i,mm

3.4 Jteration Technique

In the jteration procedure for this region, sweeps of
the interior mesh points are made, in turn, for each of the
dependent variables, ¢, T and n. This procedure is continued

until



(n+1) (n})
A{}J '7A1 .3

(n+1)
max At j

(3-25)

{A
m
[

where ¢ 1s‘the required tolerance.

To accomplish the sweeps as~mentionedeabove. it becomes

essenttal to adapt the following sequence of steps, which

are also t1lustrated in Fig. (3.1).

1)

2

3)

4)

5)

6)

7

Assign the inittal values for V. T and n as _

y =0, = RZ, n = 0. | AP

Assign the boundary conditions for . -
Solve the stream function Equation (3 1) by the

' relaxation method.

Solve the circulation Equation (3-2) by the

reTaxat1on method.

‘Calculate the boundary conditions for n,

Solve the tangential vorticity Equation (3-3) by

the relaxation method.

4Repeat procedure commencing w1th Step 3 through

- Step 6 until required tolerance is reached.

The sequence 6flndmer1ca1 procedures described above {s

bastcally the same as that proposed by Pao [42], with the

exception of the use of the relaxation technique. This

technique is sufficiently discussed in Section (3.1),

Hav1ng obtained the solutions to the difference equations

for w. F and n, the velocity components are calculated from

the relations
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Figure 3.1 ~ Simplified Computer Flow Diagram
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These are then expressed in the difference form as

U.'..J = _Z%R_ (‘Pi.jﬂ_ - ‘p'l.j"l) I..

R A WM T W LI
and |
T,
V.'..J = i, ’

where R = (1-1)a.
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(3-26a)

(3-26b)
.(3-26c)

: (3-27)

(3-28)

- (3-29)
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Through use of the numerical technique of Chapter III,
-pumerical results are obtained. These results are discussed

in Chapter IV and V.



IV, RESULTS OF THE NUMERICAL ANALYSIS

4,1 Stream Function

The.symmetry of the sensor permits one to assigh a value
of zero to the streamline corresponding to its geometrical
axis. On the top plate of the vortex chamber, the stream
function is arbitrarily assigned the value of zero. Since
NRo is the value of the stream function along Z = H and
R = Rj, it is taken to be the value on the bottom plate of the
vortex chamber. At the entrance to the vortex chamber (i.e.,
at R = 1), thé flow is assumed to be uniform and therefore the
stream function is directly proportional to Z, and along the
sink tube wall it is assigned the value Npy. On the downstream
section'ofrthé sfnk-tube;wthe~stream1ines'are'assuméd to be
parallel to the geometrical axis. With this information as
input data, Equation (3-1) is solved numerically by following
the procedure‘described in Section (3.4). The pattern of the
stream]jnes in the sensor is shown in Fig. (4.1) and (4.2)
for two different sets of values of the radial and tangential
'Reyno1ds numbers.

The variation of the stream function within the vortex
chamber, ih moving from the periphery to its center, is shown
in Figs. (4.3) and (4.4). From Fig. (4.3), it is evident
that thetstreamlines in the region 0 < Z < H contractﬂfn'a 
manner similar to a vena contracta. This contraction is a
different consequence of the boundary layer at the entrance:to
the region. The plots in Fig. (4.3) further reveal that the'

streamlines in the region 0.3 < R < 0.9 are approximately

45
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Figure 4.4 " yardation of Stream Function, %,
S with Axfal Length, Z, at Different
—R {(for NRe-u = 8 and "Re-e = 512)
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parallel to the plates. This indicates that in this region,
the variation in the boundary layer thickness is negligible.
The existence of the sink-at the center of the bottom plate
produces considerable streamline movement toward the sink for
R values less than 0.2. In Fig. (4.4) the same results for
stream function are plotted as a function of axjal length with
R being the parameter.

The effect of the rotational speeds on the flow pattern
within the vortex chamber was investigated undér various flow
conditions. As the tangential Reynolds number, Npe.g» was in-
creased from 1 to 512, the numerical results revealed no _-
appreciable effect on the flow pattern. The resﬁ]is further
indicated that for R < 0.2 the streamlines moved toward the
top plate, as the tangential Reynolds number was increased.
However, this movement was so small, that it was very difficult
to illustrate this effect on any figure. This slight effect
could be due to the increase in centrifugal force resulting
froh the increase in rotation,

As the tangential Reynolds number is increased and reaches
a value in excess of 2000, the streamline pattern within the
vortex chamber changes from that observed at Tower Reynolds
numbers. This pattern is shown in Fig. (4.5). In the region
0.14 < R < 0.9, the streamlines, above Z = 0.4H and below
Z = 0.6H, move toward the plates. The boundary layer thickness
at these Reynolds numbers is much thinner than at lower
Reynolds numbers. This pattern indicates that the flow is no
1ongerv1aminar but becomes turbulent. For values of Z > 0.6H;

~in the vicinity of the sink (i.e., at the geometrical axis),;
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the flow appéars outward rather than inward.

The flow pattern within the sensor is indeed affected as
the rate of flow is increased. The numerical results as
shown in Figs. (4.6) and (4.2) indicate that the boundary
layer thickness decreases as the flow increases. As a con-
sequence of this condition the streamlines appear to move to-
ward the plates as well as c)bser to the sink tube wall.

As shown in Figs. (4.7) and (4.8), the discharge from

-the vortex chamber into the sink tube results in smooth con-

tinuous streamlines of appreciable curvature. For a short
distance into the sink tube the stream1ines remain close to
the geometric axis. This is due to the conservation of thevv
radial momentum. However, farther into the sink tube, the
streamlines are somewhat removed from the geometric axis.

Th1s shift is hot appreciable. This effect is probably a
result of stability conditions becoming evident in the flow.
The stream1ine$ ultimately become paré11e1 to the geometric
axis. In the immediate vicinity of the geometric axis, a core
region (i.e., a region with no streamlines) is observed. The
core region is a consequence of the centrifugal forces tending

to move fluid away from the geometric axis.

4.2 Tangential Velocity

The dimenéion]ess tangential velocity is defined as the
ratio of actual tangential velocity to the tangential velocity
at the entrance (i.e., at R = 1). Thus the dimensionless
tangential velocity at the entrance to the vortex chamber is'

assigned the value one. On the top and bottom plates, where.
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Figure 8.7

AXIAL LENGTH, Z = z/r,

VYariation of Stream Function, ¥,
“with Axtal Length, Z, at Different
R (for Npo_y = 8 and Np,_q = 512)
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solid body rotation exists, ithe velocity is assumed to have
a linear relation with the radius R, i.e., V « R, Along the
sink tube wall this velocity is assumed to be a constant.}
With this as input data, the tangential velocity, at any {
Tocation in the sensor is obtained from Equation (3-20) by
following the procedure discussed in Section (3.4). 3

The variation in the tangeﬁtia] velocity in the vortex
chamber is shown in Figs. (4.9) and (4.10). It is noted that
for low radijal Reyno]ds numbers,'(NRe_u) and for values of
R > 0.2.vthere is no appreciable change in the tangential
velocity. TheAvelocity in the interior region however is
seen to be consistently higher than at the plates. As shown
~ 4n Fig. (4.10), the velocity profile, parallel to the Z-axis,
‘15 found to be parabolic. It should also be noted that the
velocity reaches a maximum in the plane midway between the
plates. In general, the parabolic velocity profile is séén to
increase in size as the radius R decreases and is found to
reach a maximum value near R approximately equal to 0.1, .This
is due to the conservation of an angular momentum combinéa with
the fluid viscosity effect near the plates. Along the gep-
metrical axis (i;e.. at R = 0), the tangential velocity is zero
for all va]ués of Z.

The effect of the tangential Reynolds numbers on the tan-
gential velocity is shown in Figs. (4.11), (4.12) and (4.13).
As NRe-e is increased from the value 1 to 16, the tangential
ve]oéity in the vicinity of the sink tube entrance increases
in almost a linear manner,'as noted in Fig. (4.11). This 1n;

dicates that the velocity V is approximately constant.- This is
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TANGENTIAL VELOCITY, V = v/(wro)
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particularly true for low N » as the flow behavior is linear.

Re<g
Also it is noted that the characteristic curve of R = 0.08 has
very high tangential velocity near the sink region. But as
‘_the flow progresses into the sink tube, due to the sink tﬁbe
wall, the velocity reduces rapidly and in the downstream :
section of the sink tube velocity prdfi]e is proportiona1;to
the radius. Thus such profile is obtained, (crossing twd
times of profiles of R = 0.06 and R = 0.,04).

At a Np,_o = 16, the velocity reaches its peak value.
As Npe-p 15 further increased to a value of 512, Fig. (4.12),
the Velocity decreases continuously. ?or the range of NRe-e.
values from 16 to 512, the maximum decrease in tangential
velocity is only 3 percent. However, as NRe-e is further
increased beyond the value of 512 this rate of decrement of
maximum value increases. The decrease continues, and as

N reaches a value of 2048, the decrease in the velocity is

Re-~-8
approximately 25 percent of that at NRe-e = 16. This pattern

ref]ecté the fact that the flow at the higher NRe-e’ is bé-
having much 1ike that of a solid body rotation.

As shown in Fig. (4.14), the presence of the sink ha% an
appreciable effecf on the tangential velocity profile in the
vortex chamber and becomes apparent for R < 0.2. Thus, in the
presence of fhe sink, the rate of tangential velocity increase:
V‘appears'greater in the vicinity of the sink than at other.
regions. This results in a velocity profile distortion and
bending towards the sink entrénce.

The magnitude of tangential velocities in the sink re§16n,

on the discharge side of the vortex chamber, is higher than .
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those near the other plate. The presence of thé sink opening
produces a greater momentum on the sinkrtube side and accounts
for tHe above result,

The effect of the radial Reynolds numbers, Np,_,» on the
tangential velocity within the vortex chamber is illustrated
in Figs. (4.15) and (4.16). In the vortex chamber, as the
flow is increased (i.e., for higher value of NRe;u)' a rapid
Increase in tangential velocity is observed for R < 0.2. At
Iow NRe-u and for R > 0.2, however, the incréase of this
Qelocity”is not appreciable. In this case, the tangential
velocity is observed to be only slightly higher than the
values at the wall (i.e., the flow is approximately that of
the solid body rotation). As shown in Fig. (4.17) at higher
value of Npg.,s the circulation (or angular momentum) is con-
‘sef?ed at the midplane of the vortex chamber. Everywhere,
in the region, the tangential velocity is higher than ijts
inlet value for R > 0.1. Also due to the higher radial and
tangential Reynolds numbers, the instability in the flow is
observed in the sink region, therefore a wavy profile of the
'tahgential velocity is obtained.

As shown in Fig. (4.16), in the vicinity of the sink tube
entrance, the tangential velocity shows a rapid increase as
NRe-y values are increased. Approximately a one hundred per-
cent increase in tangential velocity is noted in the immediate
-vicinity of the sink tube, as Np,_, is increased from 8 to 16
whereas approximately a fifty percent increase is observed for
‘values of R < 0.1. This is so because as the Npe-u increase§

the mass flow rate also increases and thus the momentum of mass
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increases at a greater rate than the mass increment.

As shown in Figs. (4.18) and (4.10), the tangential
velocity is considerably higher in the immediate vicinity.of
the sink tube entrance than anywhere else in the tube. For
Z.> 0.2; the velocity decreases rapidly with an increése in

Z. At very low Np, _, and N values, the tangential

Re-u
velocity becomes the equivalent of a solid body rotation. This
occurs at a distance into the sink tube of approximately three
times the height of the vortex chamber. This condition con-
tinues fdr all subsequent downstream sections. The equivalence
of solid body, }otation is principally due to the fact that
the viscous effect of the fluid predominates and therefore the
fluid rotates at the same angular velocity as the tube. As
Npe-g and Np,_, are increased, the distance into the sink tube

at which solid body rotation first becomes evident is also

increased.

4.3 Axial Velocity

The axial velocity is calculated after determining the
stream function values. Equation (3-28) is used to obtain the
axfal velocity at any location within the sensor. The axial
velocity along geometric axis however is calculated by using
Equation (3-20).

Figure (4.19) shows the varjation of the axial velocity |
within the vortex chamber. As the entrance flow to the vortex
chamber is uniform and purely radial, the axial velocity is
assumed to be zero at that location. It however rises rapidly

into the chamber for a short distance (from R = 1 to R = 0.95)
7
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and then almost becomes zero at R = 0.94, For values of
R > 0.94, the axial velocity is positive in the upper portion
of the vortex chamber, while it is negative in the lower
portion. This result is a direct consequence of the boundary
layer growth, which occurs at the entrance section and then
stabilizes in the region 0.2 < R < 0.94., The axial velocity,
for R < 0.2, increases rather rapidly, and become$ everywhere
positive, as R decreases. This phenomena takes place as a
result of the presence of the sink located on the bottom plate.
fhus, in the vicinity of the sink, the flow tends toward the
sink entrance and the axial velocity becomes positive every-
where. The axial velocity is observed to have a maximum value
near the geometriea] axis of the vortex chamber. This is a
result of both the axial velocities on the plate and the sink
tube wall being zero.. The axial velocity near the wall is
small because of the boundary layer growth, and it is a
maximum near the geometrical axis. A

Figures (4.20) and (4.21) reveal the variation of the
axial velocity in moving from the top plate of the vortex
chamber to the exit of the sink tube. It is noted that the
axial velocity is positive everywhere within the sink tube,
with the maximum value occurring a1dng the geometrical axis.'
As shown in Fig.'(4.20). the axial velocity in the vicinity
of the geométric axis, from the sink-tube entrance to a
distance approximately 3H into the sink tube, continuously
increases to a maximum, then decreases s1ight1y, and subsequently
becomes constant at the downstream section. A reverse flow |

pattern to the above is observed within the sink tube for
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R > 0.06. This variation in pattern is possibly due to the
radjal momentum having a higher magnitude at a sink entrance
and then decreasing to zero for the short distance (3H).
Within this short distance the radial momentum is converted
to axial momentum, and as seen the axial velocity rises for
R < 0.04. However, beyond this (3H) length, due to stability
of f1ow the value of axial velocity changes and becomes a
constant along the axial length. At R = 0.08, however, the
axial velocity rises continuously until a peak value is
reached énd this is accounted for, by the gain of axial
momehtum over radial momentum. At R = 0.08 and beyond (where
the peak velocity occurs), the viscosity effect reduces the
vé]ocity at a greater rate near the wé]].*and ultimately pro-
duces a constant velocity inlthe downstream section.

In Fig. (4.21) the axial velocity results are plotted
. as a function of radius with Z as a parameter. Here, the
axi1al velocity profile is not fully parabolic as encountered
in the Poiseville flow. This is due to the sensor rotation
which moves the fluid toward the wall and away from the geo-
metrical axis. |

As NRe-u was increased, the axial velocity, within the
sink tube, along thé geometrical axis, increased at a faster
rate than elsewhere. This was substantiated by the predomi-
has over N

nate effect that N e-9° at the higher values.

Re-u R
Thus at the higher flow rates the flow was attempting to be-
come similar to the Poiseville flow.

The effect of the tangential Reynolds number on the axial

velocity, within the sink tube, was negligibly small. There-
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fore it was difficult to show .this effect in graphs. This
effect, however, is mentioned here merely for discussion

purposes. As NRe was increased to a value of 16, the axial

-0
velocity at a given station along the geometrical axis, in-

creased continuously and reached a peak value at NRe-e = 16.

However, as NRe-e was further increased to a value of 512,

the axial velocity decreased continuously. This pattern was

interpreted as being due to the predominate centrifugal

effect aﬁ the higher NRe-e values.

4.4 Radial Velocity . v ' f

The radial velocity is considered negative when it is
directed towards the geometrical axis and considered positive
in the reverse direction. The radial velocity is assumed
constant at the entrance to the vortex chamber and zero on
all remaining‘boundaries. After obtaining the stream function
values, Equation (3-27) is solved numerically to obtain the
radial velocity at any location in the vortex sink rate sensor.

The variation of radial velocity within the vortex
chamber is illustrated in Figs. (4.22) and (4.23). As a con-
sequence of the radial momentum conservation, the radial
velocity continuously increases as R decreases to the value
R =0.1, At thét location it reaches a peak value and then
decreases to zero at the geometrical axis. This is due to
symmetry about the geometrical axis. The figures also show
that there is a slight decrement of radial velocity at the
entrance region of the vortex chamber near the plates which

is attributable to the growth of the boundary layer near the-
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~plates. It is also observed that the radial velocity is
- approximately inversely proportional to the radius for R > 0.1.

- The radial velocity, overall, within the vortex chamber is

negative everywhere.

The radial velocity profile is found to be of parabolic

- shape, symmetrical about Z = 0.5H. This profile remains as

such up to a value R > 0.3. As R is further decreased, the
presence of the sink, distorts this profile. The sink tube
tends to suck the fluid and thus the radial velocity, on the
sink side, rises faster than near the top plate. The distorted
parabolic profile therefore turns toward the sink entrance.

The results of the radial velocity in the sink tube are
illustrated in Figs. (4.24) and (4.25). The radial velocity
is highest at the entrance region. This is due to the con-
servation of radial momentum in the vortex chamber. As the
flow progresses into the sink tube, the radial momentum

rapidly converts to axial momentum and thus the radial velocity

_rpaidly decreases. At a distance of approximately 5H into

the sink tube,‘fhe radial velocity changes direction, (the
negative radial velocity becomes positive). The estab]ishing
of stability of flow causes this to occur. The radial velocity
subsequently approaches a value of zero at the tube exit
section. As observed, the positive magnitude of ve]ocitysfs
negligible for low radial Reynolds numbers. However, as will
be shown in Chapter VII, this velocity is significant at the
higher radial Reynolds numbers. The change from a negative

to a positive value is a result, of the higher rates of flo@,

within the vortex chamber, at the higher N values and thus

Re-u
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the fluid experiences a greater force moving it away from the
geometkica1 axis.

As noted in Fig. (4.25), throughout the sink tube region,
‘the radial velocity profile at any given axial station is
somewhat of a parabolic shape. The profile begins to develop
at the tube entrance, continues its development into the sink
tube and ultimately becomes a fully developed parabolic pro-
file about R = 0.5 Ry at Z > 4H. The development of the
parabolic profile is in part due to the fact that the visposity
reduces the radial velocity both near the wall and near tbe
core, with the velocities there ultimately becoming zero.: The
conversion of the radial momentum to axial momentum also

contributes to the development of the profile.

4.5 Tangential Vorticity

The tangehtia1 vorticity is defined as the difference
between the gradient of the radial velocity along the axial
length and the gradient of the axial velocity along the radius.

As a result of uniform radial flow into the vortex
chamber, the vorticity is considered zero at the entrance to-
the flow field region, (except of the corners). As discussed
in Appendix A [Equation (A-12)], the vorticity along the geo-
metrical axis is zero. The tangehtia1 vorticity on the vgrtex
chamber plates and on the Sink tube wall is calculated through
use of the stream function results and Equations (3-14), (3-15)
and (3-16). This information is used as the boundary conditions
for Equation (3-6) which is then solved numerically, by |

following the procedure described in Section (3.1).
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Figures (4-26) and (4-27) show the variation of vorticity
within the vortex chamber, in moving from the periphery to
its center. ‘As a result of the large velocity gradients, a
maximum abso]ute value of vorticity occurs in the boundary
1ayer'regions within the vortex chamber as well as at the
entrance corner of the sink tube. Thus the vorticity on
both plates is higher than the vorticity in the flow field.
The vorticity n on the top plate is found to have a negative
value whi]e a positive value is observed on the bottom plate.
A zero value of vorticity occurs, for R > 0.3 in the midplane
of the vortex thahber plates. The vorticity pattern discussed
above is a consequence of the axial velocity gradient along
R being negligible in'fhe entire vortex chamber except for
R < 0.2, and also due to the radial velocity gradient along
Z being negative near the top plate, zero at the midp1ane of
the chamber plates and positive near the bottom plate.

As discussed earlier, the vorticity at R = 1 is zero and
it is due to the uniform radial flow at this section. There
is, however, some vorticity at the plate edges for this
location and it is attributable to the boundary layer effect.
The vorticity on the plates decreases approximately 20 percent
from R = 1 to R = 0.9, at which location it reaches a minimum
value. It then continuously increases to a maximum value as
R decreases to R = 0.1. This occurs because near the plates,
the radial velocity also follows the same trend as discussed
before in Section (4.4) and the vorticity is indeed an axial
gradient of radial velocity, and there the radial gradient of

axial velocity is negligible.
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As shown in Fig. (4.27), the vorticity in the flow field

continuously increases from the value zero, which occurs at
the entrance section up to R = 0.1 Throughout the range
0.3 <R <1, it is observed to be approximately a linear
function of Z, except within the boundary layer region. The
above pattern is attributable to the fact that within the-
~flow field, the radial velocity profile along Z is approxi-
mately parabolic.

| The effect of the sharp corner at the entrance to the
sink becomes evident at values of R < 0.3. This is particu-
larly noticeable as the velocity on the bottom p]atevincrgaéés
at a faster rate than on the top plate. At the corner, the
vorticity reaches a maximum and is approximately 10 to 25
times greater than the maximum vorticity on the plate. Iﬁ
explaining this pattern it should be noted that the ve]ocity
gradients near the Bottom plate are higher than those near
the top plate. In addition, it is seen that the magnitude of
the radial velocity, in the vicinity of the corner, is greatest
énd also that the magnitude of the axial velocity is significant.
It is also observed that the axial gradient of the radial’
velocity is positive and of appreciable value while the radfa]
gradient of axial velocity is negative. Thus, a high value
of vorticity occurs at the corner due to the difference of
both of these gradients. |

Figure (4.27) also reveals that, within the vortex

chamber, the radial velocity gradient.is significant in the
flow field at R ~ 0.1. The vorticity then appears to decrease’

as R increases, ultimately reaching a value of zero at the

¥
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geometrical axis.

Figures (4.28) and (4.29) illustrate how the tangential
vorticity varies within the sink tube. It is apparent that
the vorticity within the sink tube flow field is greater than
that existing within the chamber flow field. The radial
gradient of the_axia] velocity within the sink tube is ostensibly
much greater than the axial gradient of the radial velocity
within the voftex chamber. This appears to be so as the
average axial ve]ocity within the sink tube is much higherl
than the inlet radial velocity, and also since both the radial
velocity gradient in the axial direction within the sink tube
as well as the axijal ve]ocity gradientva1ong the radijus in the
vortex chamber are negligible. As a result of this the
vorticity in the sink tube appears to be higher.than that with-
in the vortex chamber. Since the axijal velocity gradient is,
in general, negative the vorticity is overall positive every-
where within the sink tube.

As discussed in Section (4.3) for R = 0.08, the axial
velocity decreases in the entrance section of the sink tube.
After determining its radial gradient it becomes evident that
along the sink tube wall and in its immediate vicinity, thé |
vorticity continuously decreases. This decrease occurs frdm
the sink tube entrance Z = H to approximately a distance Z = 3H
into the tube. From this point on the vorticity becomes ‘ |
virtually constant. For R <'0.04, no appreciably variation in
vorticity is noticeable. However, within a sink tube entrance
length, the vorticity decreases to a lower value and then increases

to an equilibrium value. The vorticity for a given R within
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the downstream region, remains constant along Z.

The vorticity, in the downstream section of the sink tube,
- is obéerved to be approximately directly proportional to the
radius for low radial and tangential Reynolds numbers. This
is particularly true at 1ow Reynolds numbers where the effect
of rotation on axial velocity is negligible énd the axial
velocity profile is approximately parabolic as for poiseuille
flow. Thus the radial gradient is a straight line. At the
higher Reynolds numbers,}however. due to the effect of higher
rotational sﬁeeds nonlinearities become evident.

The effect.that NRe-e has on vorticity along the bottom
plate and along the sink tube wall is illustrated in Figs.
(4.30) and (4.31). As the flow is maintained constant and the

rotation is increased, the vorticity, n(n = ﬁ) decreases in an
. ]

inVerse1y proportional manner with respect to NRe- Since the

eI
rate of decrease in vorticity is greater than the rate of decrease
Re-6
angle in the sink tube, Thus the rate of production of the

in N » the flow changes to a spiral form with a small heljcal
vortices reduces near the corner. This indicates that the
flow becomes more stable gf the higher Np . _o values.

The effect that NReJ; has on vorticity along bottom plate
and along the sink tube wall is shown in Figs. (4.32) and (4.33).
As NRe_uVincreases, the rate of increase in vorticity is
greater in the region R < 0.2 elsewhere in the vortex chamber,
At the corner of the sink tube the vorticity incfeases byla
~ factor of 2-1/4 as NRe increases from 8 to 16. Within the

sink tube, the vorticity also increases as NRe " increases.
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Thus at high flow rates, more vortices are created near the
solid boundaries as well as near the corner.

Figures (4.34) and (4.35) illustrate the constant
tangential vorticity lines for two different séts of values of
radfal and tangential Reynolds numbers. It is evident that
the highest vorticity occurs at the sink tube corner. As
discussed before this is the location at which instability in
the flow begins. It is also observed from Fig. (4.35) that
| vortices are produced in the flow at the higher radial Reynolds
numbers. The vorticity lines are found to be parallel to
geometrical axis in the downstream section of the sink tube.

A zero vorticity l1ine exists in the midplane of the vortex
chamber plates for R > 0.3. The curvature of the zero
vorticity line, near the sink corner increases as the flow rafe

increases.
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V. EFFECT ON FLOW PATTERN WITHIN SENSOR
DUE TO CONFIGURATION CHANGES

5.1 Effects Due To Variation of Vortex Chamber Radius, o

To determine the effect, if any, that the variation in
vortex chamber radius had on the flow paftern within the
sensor, a humerical computation was undertaken for assigned
values of vortex chamber radii of 5, 10, 15 and 20 inches .
respectively. For each radius the vortex chamber height (h)
as well as the sink tube radius (rj) were held constant at
1 inch. In each case the flow rate and rotation were also
assumed to be cohstant. The following conc]usions were
“drawn from the numerical results.

1) The streamlines in both the vortex chamber and the
sink tube moved closer to the wall surfaces as, the
chamber radius was decreased.

2) As shown in Fig. (5.1), the tangential velocity, V,
fn the vortex chamber (at the same rédia] location,
R) decféases as the vortex chahber radius increases.
However. in the immediate vicinity of the sink
region and also within the sink tube there is no
noticeable effect on the velocity, V.

3) There was only a negligible effect on the tangential
vorticity throughout the vortex chamber and the
sink tube.

4)' There was a negligible effect on the radial and axial
velocities throughout the vortex chamber and the sink

tube.
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5.2 Effect Due to the Varjation of the Sink Tube Radius 'i

To determine the effect of the variation in the sink
tube radius on the flow pattern within the sensor, a numerical
computation was undertaken for assigned values of sink tube
radii of 1/2, 5/8, 3/4, 7/8, 1 and 1-1/8 inches respectively.
For each sink tube radius both the vortex chamber height and
vortex chamber radius were held constant at 3/4 and 10 inches
respectively. For constant flow rate and rotation the
numerical results revealed the following conclusions.

1) As shown in Fig. (5.2), the tangential velocity in
the vortex chamber near the sink tube region in-
creases as the sink tube radius is decreased. An
increase in the peak value of the tangential
velocity is also noticed at the sink tube entrance.

2) The distance into the sink tube required to obtain
constant axial velocity in the downstream section
decreased as the sink tube radius was increased.

3) The radial velocity within the vortex chamber near
the sink tube region (i.e., for R < 0.1) increased
as the sink tube radius was decreased.

4) The tangential vorticity, near the sink region in
the vdrtex chamber (at the junction of the vortex
chamber and sink tube) and within the sink tube,
increased as the sink tube radius was decreased.

5) The slope of the zero vorticity line, at the
entrance section of the sink tube, decreased as the

sink tube radius was decreased. This resulted in



TANGENTIAL VORTICITY, n = fi/w

AT SINK TUBE ENTRANCE
0.6 | —
= 0.625"

0.5 0.75"
0.875"
1.0°

0.4
1.128"

0.3

0.2

0.1

0.0 . : . .

0.0 0.025 0.05 0.075 0.1
RADIUS, R = r/r,
Figure 5.2 - Varijation of Tangentfal Velocity,

vV, with Radius, R, for Different
~ Sizes of Sink Tube

100



101

the intersection of the zero vorticity line with the
sensor's geometrical axis which is moved closer to

the center plane of the vortex chamber.

5.3 Effect Due to the Variation of Vortex Chamber Spacing h

To determine the effect of the variation in vortex

chamber spacing on the flow pattern within the sensor, a

numerical computation was undertaken for assigned values of

vortex chamber spacing of 1, 1.2, 1.4, 1.8 and 2 inches re-

spectively. For each spacing the vortex chamber radjus as

well as the sink tube radius were held constant at 10 inches

and 1 inch respectively. -For constant flow rate and rotation,

the numerical results revealed the following conclusions.

1)

The tangential velocity decreases at the sink tube

entrance, as the spacing increases [Fig. (5.3)].

‘The distance into the sink tube, where the flow

becomes equivalent to a solid body rotation, also
increases slightly. As the vortex chamber spacing
decreases, a peak tangential velocity is observed
midway between the geometrical axis and wall of the
sink tube. As the spacing h was increased, the peak
value of tangential velocity decreased and moved
smoothly either toward the geometrical axis or sink
tube wall. The same result was obtained experi-
mentally by Lu [32]. Fér the higher values of
spacing h, since the velocity profile was not
affected by the boundary layer, the peak value of

velocity moved closer to either the geometrical axis-
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2)

3)

4)

5)

6)
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or the sink tube wall. From its peak value, the
tangential velocity decreased rapidly but smoothly
to both the geometrical axis and sink tube wall.
The uniform entrance radial velocity to the vortex
chamber decreased as the spacing was increased.

The radial velocity at the entrance section of the
sink tube also decreased for increased spacing
heights.

The streamlines, at the sink tube entrance, appeared
to move closer to the geometric axis as the spaéing
height was increased. That is to say that the bulk
of the flow was closer to the geometrical axis.

The distance into the sink tube where the axial
velocity became a constant, increased as the spacing
height was increased.

The fangentia1 vorticity along the solid surfaces
of the vortex chamber as well as at the sink tube
entrance, decreased as the spacing h was increased.
There was, however, no appreciable effect on the
tangential vorticity along the sink tube wall.

The entrance length into the sink tube increased as
the spacing height was increased. (The entrance
length is defined as the depth into the sink tube
where radial velocity changes direction from inward

to outward).



VI. EXPERIMENTAL INVESTIGATION

6.1 Qgscrfptfon‘gi'Appafafué

The apparatus which was constructed and assembled con-
sists of a vqrtex chamber, three sink tubes, a high pressure
as well as a low pressure regulator, an air filter, an air
dehydrator, a flow meter, a manifold, a probe assembly, a
positiye drive assembly and the necessary gages, valves and
piping. The vortex sink rate sensor, in which a sink tube
i{s assembled to the vortexkﬁhamber, was so designed as to
permit a number of possible combinations of physical dimensions.
‘A constant temperature Hot Wire Anemometer was used in
obtaining the velocity distributions.

A schematic of the vortex sink rate sensor is shown in
Fig. (6.1). The vortex chamber is made of two circular
plexiglass disks held apart by a porous coupling securely
mounted at the periphery of the circular disks. One circular
disk has a threaded opening at its center to permit the
attachment of a sink tube. The second circular disk is
_attached, by means of a flanged coupling, to a drive shaft
that is supported on two bearings. The drive shaft, through
a speed reduction gear box and sprocket wheel and chain drive,
is connected to a varjable low speed motor to assure con-
centricity with the axis of symmetry of the circular disks.
Both piexiglass disks have grooves on their surfaces for pro-
per setting of the porous coupler. To provide rigidity and

unjformity of spacing between the disks eight spacers,
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symmetrically positioned around the circumference, are used.

The yortex sensor is mounted within a manifold assembly
th such a manner that its axis of rotation is horizontal.
The sensor rotates freely within the manifold assembly. As
3 result of a sealed ring pressfitted fo the assembly the
possibility of air leakage from the sensor is negligible.
The manifold assembly is rigidly fastened to a steel frame
platform to which the variable speed motor and speed reducer
are also mounted. The design permits a vortex sensor speed
range from 0 to 35 revolutions per minute.

Three interchangeable plexiglass sink tubes of 1,‘1-1/4
and 1-1/2 inches inside diameters were used to vary the sink
tube sizes. Two sets of such sink tubes, one of twelve and
the other of twenty-four inches length were employed. The
sink tubes were designed to enable pitot tube pressure measure-
ments as well as hot wire velocity measurements at various
stations along the length of the sink tube as well as along
:ahyﬁgiyen~fadius.

The porous coupler, used in the vortex chamber, was
similar to the one used and discussed by Burke [6]. The
coupler was made from stacked 0.0625 inch thick steel rings with
an inside diameter of 20 inches. Triangular -grooves of -0.0227
inches in width (approximately) and 0.03 inches in depth were
cut radially towards the center of each of the rings. The
grooves were cut, side by side, sugh that on the inside cir-
cumference of the ring, they wereicontinuous, that was, with-

out any flat tops between_groovesf In all approximately 2700
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such grooves were cut around the periphery of each ring.
" The rings were stacked with the grooved side of one ring
against the smooth side of the next ring. The stacked rings
were held under compression in the assembly of the sensor
forming triangular nozzles of 0.375 inches in length. The
aggregate jet area was about twenty-five percent of the .in-
side area of the coupler. The coupler was practically unj-
form throughout its circumference. The rings, therefore,
could be stacked to any desired height from a minimum of 1
inch to a maximum of 1-1/2 inches. This arrangement provided
the means by which different coupler heights could be achieved.
The static pressure probe, as shown in Fig. (6.2), was
fabricated from two stainless steel tubes of 0.06 and 0.03
inches outside diameter both having a thickness of 0.01 inches.
The larger diameter tube was tapered to a conical shape at
1ts‘closed~end. In its periphery at distance of 0.1625 and.
©0.1937 inches from the closed end, are eighteen equispaced
0.005 inch drilled holes arranged in a manner resembling a
pizometer tube. .The smaller diameter tubé at its closed end
was chamfered and a 0.01 inch hole was drilled through the
tube at 3/4 of an inch from its closed end. The tubes were
assembled in such a manner, the smaller tube inside the
larger tube was then soldered to the inner tube. Static
pressure measurements are obtained by connecting one open end
of the pressure transducer, to the static pressure probe,
while the other is open to the atmosphere. The circuit dia-

gram for the pressure transducer is shown in Fig. (6.3)
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The schematic of the probe holder stand is shown in
Fig. (6.4). The probe support mechanism has been so designed
with a rack and pinion arrangement, to allow for a longitu-
dinal movement of the static pressure probe and probe holder
along the sink tube length. The probe support mechanism has
also been so designed to provide means by which the static
pressure probe and probe holder can be moved in a vertical
direction normal to and intersecting with the sink tube axis.
For all movements it is possible to maintajn the static
pressure probe and hot wire probe holder axis parallel to the
sink tube axis, at all times.

The velocity distribution throughout the sink tube is
obtained by use of a constant temperature hot wire probe as
shown in Fig. (6.5). The hot wire probe used in conjunctijon
with the anemometer is supported by a pin-joint on its own
support as shown in Fig. (6.6). The hot wire probe can easily
be positioned anywhere within the sink tube. The probe is
also capable of being rotated spherically, so as to position
the probe, to be perpendicular to the resultant velocity.

A disc worm wheel and worm screw arrangement provides the
mechanism by which an azimuth angle of rotation can be obtained.
A string and roller arrangement provides the means by which

a longitudinal angle can be obtained. Thus the hbt wire probe -
can easily be positioned to measure the resultant velocity.
From the measurement of the resultant velocity, and the longi-
tudina1>and azimuth angles, the axial, radial and tangential

velocity components can be calculated.
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A block diagram of the DISA constant temperature hot
wire anemometer (No: 55A01) used in this investigation is
shown in Fig. (6.7). The anemometer, in essence consists of
a fine electrically heated wire which is convectively cooled
when placed in an air stream. The resistance of the wire,
which increases linearly with temperature, is uniquely related
to the mean speed of the air stream and the current. The
equation for calculating the velocity with this anemometer is

<<
N

|

b3

+

[ve}

Z&‘l

(6-1)

where Vl is the bridge voltage, W is the mean flow velocity,
8 is the probe operating resistance, and A and B are con-
stants which depend only on the physical properties of the
wire and fluid. |

This relationship which governs the equilibrium behavior
of the wire is in reality a heat balance. The left hand
side of the equation is proportional to the heat input of the
wire, while the first-term on the right hand side is proportional
to the forced convection cooling. MWith the constant temperature
hot wire anemometer, a feedback amplifer system is employed
to keep.the probe resistance and hence also the probe tempera-
ture constant. Fundamentally, the measured quantity is the
~power required to keep the temperature constant.

The hot wire probes that were referred to earlier and used
in this investigation are the DISA type No: 55F21 and are
shown in Fig. (6.4). The wire itself is a platinum-plated

tungsten, 5um in diameter, and is stretched across two needle
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supports. The probe resistance is 4.0Q. The average flow
velocity is indicated by a multirange D.C. bridge voltmeter
which has an accuracy of + one percent. This accuracy was
improved by use of zero shift D.C. voltages of 1, 2, 5 and 10
volts. This also permitted the meter operation in the lowest
full scale range. A square wave generator is incorporated
into the instrument to allow checking actual dynamic responses
under operating conditions.

A DISA type No: 55D10 linearizer is connected to the
anemometer to determine the linear relationship between the
veioc1ty and the bridge voltage.

The air flow system is shown in Fig. (6.8). Filtered
and metered low pressure air is supplied to the vortex sensor
through six symmetrically spaced inlets which are on a mani-
fold attached to the vortex chamber. Compressed air is first
passed through a dehydrator and then reduced to approximately
5 psig. pressure as it passes through a high pressure regu-
lator. The air is then filtered and its flow regulated as
it passes through a low pressure regulator. The air flow
rate is measured by means of a flowmeter and finally the air

is supplied radially to the vortex chamber of the sensor.
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6.2 Test Procedures

As mentioned under the description of apparatus, the
yortex sink rate sensor was designed to allow & number
of possible combinations of its physical dimensions. The
vortex chamber has a radius of 10 inches. 1Its design, how-
ever is such that through use of spacers the distance
between disks can be changed. This arrangement makes possible
a number of slenderness ratios(ri/h) for experimental pur-
poses. Three interchangable sink tubes of 1, 1-1/4 and
1-1/2 inches in diameter make possible a number of different
chamber to sink tube radii ratios. A variable speed motor
further provided the means of obtaining a sensor speed of
rotation range from O to 35 revelution per minute.

For each test run velocity profiles as well as static
pressure distributions were obtained at a number of different
axial lTocations within the sink tube. The axial locations,
along the sink tube, selected for recording measurements were
Z equal to 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 9.0, 12.0, 15.0, 18.0, and 21.0
inches respectively. At each axial location the radius was
traversed, with measurements in general taken at r values of

0.0, 0.1ry, 0.2r;, 0.3r;, 0.4r,

i 0.5r; inches respective]y_

where rywas the inside radius of the sink tube. Three sink
tubes were used with respectiye inside radij of 0.5, 0.625
and 0.75 inches.

Prior to conducting any of the experiments, all instru-

ments were calibrated according to the standard procedure.
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'Howeyer, it is considered desjrable to include here a brief
discussion of the calibration and technique of using the hot
wire probe. The hot wire probe was calibrated with the use
a special pitot tube shown in Fig. (6:9) in conjunction with
a transducer. The pitot tube and the hot wire probe both
were positioned at the immediate exit of the sink tube in
such a manner as to have symmetry with respect to the sink
tube axis. The longitudinal angle of the hot wire probe was
set at zero. Then as the air flow rate, for zero rqtation,
was varied both the pitot tﬁbe and the hot wire probe
readings were recorded through use of the exponential and gain
“adjustments on the Tinearizer, the linear relation between
the.anemometer voltage and air velocity was obtained. This
therefore resulted in a hot wire probe calibration curve
shewn .th-Fig. (6.10),

The calibration curve,relating to the probe longitudinal
angle and the protractor angle,is given in Fig. (6.11).

A calibration curve was also plotted to correct for
any lag existing within the roller-string mechanism. One
strajght 1ine curve was for the clockwise rotation of the
roller (pointer and protractor) and the second curve was for
the counterclockwise rotation of the roller. The protractor
was graduated in degrees and as a reading was recorded, then
with the appropriate calibratjon curve for roller rotation,
the probe longitudinal angles 6 and ¢ were obtained. These
longitudinal angles 6 and ¢ Wéfe then used to calculate the

velocity components u, v and w.
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The technique of how the hot wire probe was used to
measure the resultant air velocity also merits a brief
discussion. ‘A more elaborate explanation is given in
Appendicies C and D. The hot wire probe was introduced into
the air stream within the sink tube in such a manner that
the wire itself was in a horizontal positionQ Simultaneously
the probe support was secured in a position to only permit
the hot wire probe movement in a longitudinal direction in
the horizontal plane. The hot wire was then rotated such that
a point on the wire would éweep'out a}sphericaT curve.v The
hot wire probe, thus positioned, only sensed a velocity -
~due to the axial and radial components. The effect of tan-
~gentjal velocity component on the probe, for the probe so

positioned, was negligible. Rotation of the probe in an
longjtudinal direction then accounted for the tangential
velocity component. As the hot wire probe was rotated in the
Tongitudinal direttibn a-maXimum reading on the anemometer
was ultimaté1y observed. This reading is the resultant air
velocity at that particular location. The hot wire probe
ho]der mechanism was designed to enable the measurement

of the longitudinal angle (6).

In a manner similar to the aboVe the hot wire probe was
jntroduced into the air stream, within the sink tube, such
that the wire itself was in a vertical position. Simultan-
eously the probe support was secured in position to only per-
mit the hot wire movement in a longitudinal direction within

the vertical p]ane; The hot wire probe thus positioned,
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oﬁ1y sensed a velocity due to the axial and tangential
components. The effect of the radtal yelocity component on
the probe; for the probe so posftfoned; was negligible.
Rotation of the probe in a longitudinal direction then
accounted for the radial component: As the hot wire probe
was rotated in the longitudinal direction; évmaximum reading
was ultimately observed. This reading is the resultant air
velocity at thét particular location. The hot wire probe
holder mechanism had been so designed that the longitudinal
angle ¢ was also measurable.‘ In all measurements using the
hot wire probe, the probe holder axis was, at all times,
parallel to the sink tube axis. This technique made certain
that the air velocity was perpendicular to the hot wire and
also that the.air velocity measured was the resultant velocity.
Haying, at a particular location, measured the resultant
velocity and the angles ¢ and 6 the radial, axial and tan-
~gentjal velocity components could then be calculated as in-
dicated in Appendix C.

The'experimenta1 investigation began with the case of
constant air flow of 3.93 cubic feet per minute, sensor
rotations of 0, 5, 10 and 20 revolutions per minute
respectively, and maintaining throughout a unity slenderness
ratio. Fn>the;sinkﬁt&5e;?theaexperimenta1,datatwere taken.
aiVG*to*IO’préétr?ﬁed~ax?a1 stations, . depending en the length
of cach’stnk tube. |

At each statijon along the sink tube from 5 to 7 static

pressure readings were taken as the radius was traversed.
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The static pressures were measured by a static pressure probe
used in conjunction with a transducer. The static pressure
probe was first located at the innermost station in a manner
suth that the static pressure probe and probe holder axis
coincided with the sink tube axis. Once the static pressure
at this location was recorded, the probe was then successively
positioned and the pressures were recorded at the other pre-
scribed sink tube stations along the sink tube axis. Thus

at each sink tube station 5 to 7 static pressure readings

were recorded as the probe was traversed along the radius.

In addition to measuring the static pressure at each sink
tube station the resd]tant velocity as well as the longitudinal
angles ¢ and 6 were also measured. The manner in which thesé
readings were taken is similar to that discussed previously.

In view of the fact that the radial velocity u, within
the sink tube (except at its entrance section) is everywhere
approximately zero, a simplified technique was also used to
measure the axial and tangential velocities. This measure-
ment technique was also used to check the results of pre-
vious experimentators and has been found to be most
satisfactory.

A previous technique used for the velocity measurements
was found to be far too time consuming and on occasions
difficulties were encountered due to'the fluctuations in the
meter readings. The time required particularly to measure
the longitudinal angles 6 and ¢, was considerable and there-
fore a simplified but accurate method was desirable.

Therefore, another technique which was reliable as well as
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accurate was employed and is, briefly described here. A con-

stant temperature hot wire anemometer was used for the velocity
| measurements. The same apparatus used for making the velocity
measurements is described under the description of apparatus.
In making the velocity measurements at any location two hot
wire readings were taken. The first reading was taken with the
hot wire maintained in a horizontal position, while the hot
wire probe axis.was.maintained parallel to the sink tube axis
as Wel] as in the central vertical plane of the sink tube. It
was then possible by this arrangement to have the hot wire, at
a given station, traverse along the radius. With the hot wire
located at a given radius, by means of the rack and pinion
device the hot wire could then be moved along the axial length
of the sink tube. Thus with the hot wire maintained in the
horizontal position, as described, one reading V, was recorded
for each position.

The second reading, at a given position, was taken
with the hot wfke maintained in a vertical position, while
the hot wire probe axis was haintained parallel to the sink
tube. The hot wire was changed to its vertical position
by means of a rotary disk that was turned 90° degrees. As
discussed above a second reading Vv was then recorded for
each position.
The Vi and Vy values were then used to calculate the

tangential and axial velocity components. This was accomplished

in the following manner:
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The equatjons obtained from Fig. (6.12) are

Sy

Tana, =+ 3 5 , and (6-2)
1 v aw

Tan o, = ¥ 3 > (6-3)
ve o+ ow

wheyre dl is the éngle made by resultant velocity with the
plane perpendicular to the hot'wire; when the hot wire was
hortzontal and dz is the angle made by resultant velocity
with the plane perpendicular to the hot wire, when the hot
| wire was vertical. o
Stnce the radial, velocity u is considered negligible,

the above two equations reduce to

Tan a4 (6-4)

'% ’ and
0

Tan o, or a, = 0 . (6-5)

Now by fnyoking the hot wire theopy.[62], the relation between

the resultant velocity V*, VH and Vv can be written as

VH
V* _
(coslay + Kq2 sinzal)l/f
, y
) ; Vz 7 172 (6-6)
(cos ay + Ky¢ sin aa)’ s

where Ko is a constant and equal to 0.2 for Tow velocity flow.
In view of the fact that a, is zero, V* then becomes:. Vy and

—(Yn)?
cosay + K 2 sinay

(v+)2 - (6-7)
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With Tanzd _y
1 =
Thus,
(v*)? =
or

=

2 , one can write
(VH)Z ............
1, K% ran?eg
1+ Tanzoa1 1+ Tanzd1
(vg)2
1 > KO . %_
1 +¥2 g v
w2 wl

(y*)¢ = (VH)2 (v2 + wd)

Sihbe-v2 + w2
2
Vy
and
2
VV

w2 + K2 v2

y*2 = w2 + v2
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(6-8)

(6-9)

(6-10)

=-(v*)2, then the -above equation reduces to

(6-11)

(6-12)

The above equations were are solved for the velocity com-

ponents and there is obtained
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2 _ 2
AVVTT.fyH
v .2 (6-13)
0
and
2 2 . 2

W 2 , (6-14)

1 -k

0

Thus the tangential velocity v, and the axial velocity w

are calculated from the measured values of VH and vv.
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6.3 Experimental Results

An experimental investigation was undertaken to determine
the flow pattern existing in a steady state weak vortex.

The vortex sink rate sensor is shown in Fig. (6.1). The
measurements were only taken within the sink tube and air was
the only working fluid used. A constant temperature hot wire
anemometer was used for the velocity measurements while a
pressure transducer was used in conjunction with a pitot tube
for the pressure measurements. The radial Reynolds numbers
were approximately maintained at values of 524.5, 629 and 767
for a flow rate of 3.93 cubic feet per minute while the
characteristic vortex chamber spacing height h was fixed at
1-1/2", 1-1/4" and 1" respectively. The tangential Reynolds
numbers were successively maintained at valued of 0.0, 2372.5,
4545 and 9090 based on the vortex chamber radius of 10 inches
and the respective speeds of 0, 5, 10 and 20 rpm,

The fact that the radial velocity within the sink tube
was approximately zero everywhere, with the exception of the
sink tube entrance section, revealed that the flow was helical.
The flow helical angle within the sink tube decreased as the
rate of rotation increased. This was supported by the fact

that the tangential velocity was found to be approximately

- proportional to the rate of rotation.

No appreciable variation of the axial velocity within the
sink tube was observed. The axial velocity in the vicinity of
the sink tube geometric axis, however, was found to be slightly -

lTower than neighboring points. Throughout the remaining
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portion of the sink tube (with the exception of the region near
the sink tube wall) and for a given radius, the axial velocity
was approximately constant. In the immediate vicinity of the
sink tube wall the axial velocity decreased rapidly.

The external effect on static pressure measurements became
observable at a distance 9 inches into the sink tube for the
short tube whereas the same observation was noted at a distance
of 21 inches for the longer tube. When a comparison was made
"~ for the two tubes at a given r value, a step increase in static

pressure was observed in going from the longer tube to the
shorter tube.
The resh]t of static pressure measurements within the
" sink tube are shown in Figs. (6.13) and (6.14). They reveal
that a minimum value below atmospheric occurs in the immediate
vicinity of the sink tube geometrical axis. Slightly higher
values of static pressure are observed along the geometrical
axis. The variation of static pressure along axial length,
with R as a parameter, is shown in Fig. (6.15) for a flow rate
of 3.93 cubic feet per minute and a speed of 20 revolutions
per minute.
Along a given axial location and beyond the radius
mentioned above, the static pressure increases continuously
as the static pressure probe is moved toward the sink tube wall.
At a given radius and along the axial length the static pressure
increasés continuously from the sink tube entrance and ultimately

becomes atmospheric near the sink tube exit. An exception to

the above is noted in the vicinity of the sink tube wall. Every-
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where a]ohg the sink tube wall the static pressure values are
above atmospheric. As the static pressure probe is moved
toward the sink tube exit the static pressure values decrease
continuously and ultimately become atmospheric at the exit
section. This characteristic of static pressure is obtained
as a result of a vortex imposed on the fluid due to'the

rotation of the sensor.



VII. CORRELATION OF RESULTS

Air fs supplied to the vortex chamber through a porous
coupling by means of six circumferentially placed equispaced
tubes. Therefore, analytically it is difficult to conclude
whether the flow fn the vortex chamber is axisymmetric or not.
This remains to be proven. The symmetry assumed in this
case, however, merely refers to the symmetries with respect
to the sink tube axis. This assumption is particularly
valid for the sink tube, is not also for the vortex chambér.

Numerical and experimehta] results, for the radial
velocity variation in the sink tube, are jllustrated in
Fig. (7.1). The radial ve]oéity measurements for the en-
trance length of four inches into the sink tube are not only
accurately and easily measurable but they also seem to
correlate well with the numerical results. However, farther
into the sink tube the radial velocity values are negligible
and are difficult to measure.

As shown in Fig. (7.2), for the case of zero rotation
of the sensor, the axial ve]dcity profile at the downstream
section of the sink tube is not parabolic in shape. For r
values less than 0.6 r;, the axial velocity appears approxi-
mately constant. This indicates that either the flow is not
fully developed or that it has indeed become purely turbu]ent
As the speed of rotation is 1ncreased, the fluctuations,
evident at the lower speeds, virtually disappeared. Thus at
the higher speeds the experimental results should be considered .

more reliable than at the lower speeds. At a speed of

137
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rotation of 20 revolutions per minute, for example, the
correlation of the experimental results with the numerical
results proves to be most satisfactory. It is also observed
that the experimental axial velocity values correlate very
well with the numerical results for the larger r values.
Closer to the sink tube geometrical axis, however, the axial
velocity values do not correlate that well with the numerical
" results. This is attributed to the existence of a core region.
Experimental and numerical results for the tangential
velocities, in the sink tube, are jllustrated in Fig. (7.3)
and (7.4). These resu]ts'revea1 that-the tangential velocity
is consistent]y higher'near fhe sink tube entrénce and it
decreases continuousTy as the flow progresses into the sink
tube. Throughout the sink tube, and within the region
between the sink tube wall and the sink tube geometric axis
(i.e., 0 <r < ri), the tangential velocity is observed to
be positive everywhere and its magnitude is found to be
greater there than at the wall. Within the sink tube, the
tangential velocity profile, which may be characterized by
a parabolic profile, has two peaks, one at r = 0.2ri and the
other at approximately r = 0.75r;. For the location Z = 0.2,
a depression in the velocity profile is noticed, in Fig. (7.4),
around midway between the axis and the wall. The data
collected further reveals that the maximum tangential com-
ponent of velocity over the entire range of r/ri approximately
occurs between 0.25 and 0.55,
As discussed previously nonlinearity effects are taken

into account in the theoretical analysis and the nonlinear
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equations are solved by numerical techniques.  The experimental
results as shown in Fig. (7.4) also reveal the presence of
ndh]inear effects and these nonlinearities were similar to
those in the theoretical analysis. |

In the process of comparing the experimental results
with those in the theoretical analysis, it is necessary to
recall that the axial length differed by the vortex chamber
spacing height h., This is because the axial length in the:
theoretical analysis is measured from the outer plate of the
vortex chamber, whereas for the experimental investigation
it is measured from the sink tube entrance. A similar
characteristic is noted from the experimental results reported
by Lu [32].

As §hown in Appendix E, an error analysis has been under-
téken for both fhe numerical and experimental aspects of the
investigation. The curves of Figs. (7.1), (7.2) and (7.3)
show the comparison of experimental and numerical results of
velocity components. The numerical results are seen to be in
good agreement with the experimental resu]ts..

The scatter of data in the exberimental results in

slightly greater than the 1imits of error estimated in Appendix E.



VIII. CONCLUSIONS AND RECOMMENDATIONS

The objective of this study was to investigate the flow
phenomenon numerically as well as experimentally Within a
vortex sink rate sensor. The conclusions deduced from both
the theoretical and experimental results are as follows.

The theoretical and experimental results are in good
agreement particularly for the 20 revolutions per minute
rotational speed of the sensor, flow rate of 3.93 cubic feet
per minute and for a sink tube diameter of 1-1/2 inches.

The results reveal that the tangehtia] velocity near.
the sink tube entrance is higher for the higher flow ratés.

An unstable situatijon is noted within the numerical
as well as-experimental results for the rotational speeds of
5 and 10 reyolutions perAminute, with a flow rate of 3.93
cubic feet per minute. However, stability is indeed observed
at 20 revolutions per minute speed for the sensor.

At the higher radial Reynolds numbers, the angular and
radial momentum within the vortex chamber are approximately
conserved. _ |

Due to the exclusion of the entrance energy losses
occurring in the sink tube and also partly due to interference
introduced by the presence of the probes within the sink tube,
the experimental values of the tangential velocity are slightly
lower than the theoretical values.,

As Npe_p is increased, the tangential vorticity n de-
creases, thus it appears that an increase in speed of rotation

brings about a more stable flow.

144
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A§>a consequence of these observations for a vortex
sink rate sensor to have maximum signal amplifications, it
is suggested that the sensor be operated at the high flow
rate condition.

As a direci consequence of this investigation, a number
of recommendations are suggested here for future studies.
‘In general, these recommendations sUggegt a correlation of
existing data, conducting additional tests and/or analyses
as well as summarizing the information in a form suitable for
design purposes.

Specific Eecommendations for future investigations are
as follows: | | |

1) study of the viscous core aréa.

‘-2) study the noise generation.

3) investigate the non-conventional boundary

conditions for the sensor.

4) theoretical and experimental flow phenomena =

‘studies within a sensor with symmetric sink tube,
and consideration of proper location for pick off
points. |

5) study the temperature, density and viscosity

variation.

6) 1nves£igate the unresolved problem of rapid

fluctuations and wondering of the stagnation

point within the core region of the sink tube.
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BOUNDARY CONDITIONS

The boundary conditions for the systems shown in Fig.

(24) are as follo

WS

On the top and bottom plates of the vortex chamber and

along the sink tube wall, the no s1ip condition must be

satisfied (i.e. the fluid must move with these surfaces).

Thus, for the sensor rotating with an angular velocity, w,

this requirement

a) at z =0
b) at z = h
c) atr=r
d) atr=nr
where h

sink tube radius.

mandates that

u(r,0)

v(r,0)
f(v,0)

u(v,h)
v(r,h)
T(v,h)

wiri,z) =

viry,z) =

Fry,z)

o v(ro,z)

T{r,,z) =

is the vortex

0

rw 0<rcx< L (A-1)
rly

0
rw ry <rsr, (A-é)
rly

0

riw h<z<2 (A-3)
rife,

fdw 0 <z<h (A-4)
=)

chamber height and r; is the

In view of the fact that both plates of the vortex

chamber as well as the sink tube wall are non porous, they

are considered as stream surfaces,

The bottom plate of the

vortex chamber and the sink tube wall are considered the same

stream surface.

faces are

Thus the boundary conditions for these sur-



154

e) atz =20 w(r,0) = 0, 0<rsr, (A-5)
$(r,0) = Cl;%

f) ét z = h w(r,h) = 0, ri $r<r, (A-6)
| P(r,h) = Cz:%

g) atr =r; u(ry,z) = (A-7)

w(r-iaz) = Cz,

where C1 and C2 are constants.

1
o
-

ot
>
I A
N
A
P

At the periphery of the vortex chamber (r = ro), the
fluid enters in a uniformly radial manner (relative to sensor).

Hence the boundary condition is

) atr=ry wlrgez) =0
ulr ,z) = u. =" Qo "0 <z<h (A-8)
0 °  Zmrh .

The axis of symmetry for the sensor is considered a
streamline which is the same streamline as for the top plate
of the vortex chamber. This is so because, along the axis
of symmetry, both the radial and tangential velocity components

vanish. Thus at r = 0,

¥(0,2) = Cy,

u(0,z) = 0, 0<z<3y (A-9)
v(0,2) = 0,

T(0,z) = 0.

Along the axis of symmetry, a minor difficulty is en-
countered with respect to the definition of the radial velocity
which is expressed in the terms of the stream function. For
instant, at r = 0, the velocity w(0,z) is expressed as

w(0,z) = gim|[ _ 1 3y
r-+0 r ar
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By applying the L'Hospital rule, this can be written as

at r = 0 w(0,z) = _'82@ 0<z<2, (A-10)
. 3‘2 -
r
r =0
and since the 1imit does exist, it indicates that
at r = 0 Y =0 (A-11)
ar .
r =0

Also, on the axis of symmetry, the boundary condition
for the tangential vorticity component is written as

at r = 0 n(0,z) = 2im [ _ AW ] 0<z<2 (A-12)

r-0 or

since the radial velocity af the location is zero. Thus at
r = 0, the axial gradient of radial velocity is zero. If%aw;
js not zero at r = 0, tﬁeh’ﬁﬁe“veiocity profile would o
have a cusp at the axis of symmetry resulting in a discontinuity
in the value of the derivative as one crossed the axis of
symmetry. This would result fn a shear stress.‘which is proF
portional to the first derivatfve of the velocity, being dis-
cont1nuods. This condition can not occur in a physical

system. Thus, an additional necessary requirement is that

at r = 0 W _ g ‘ (A-13)
A 7 = 0. : .

This, therefore, results in the tangential vorticity being -
zero on the axis of symmetry, i.e. ,
at r =0 n(0,z) = 0 0<z<2. (A-14)
At the periphery of the vortex chamber, the entering
fluid is assumed uniform as well as purely radial, hence ;

at r = r_ AW g W g (A-ls)

F3 > r
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Thus, the tangential vorticity s considered zero at r = Yoo
i.e. _
at r = r, nlry.z) = 0 0 <z <h, (A-16)

The difference between the value of the stream function
on the top plate of the vortex chamber (or the sensor geo-
metrical axis) and the stream function value on the bottom
plate of vortex chamber (or the sink tube wall) is proportional
to the flow discharge rate Qo' This is shown to be so in
the following manner. The continuity equation requires that at

-Q, = 2mr, [ udz . ' (A-17)
0

By using the definition of u, this is written as

h
-Q, = 2mr g 13 4, (A-18)

o 57.

0
This equation is then used to show that at r_, § is a function

of z only. Since at r = r,, u = u, = constant, then

3P =
- oz
constant. Thus, at r = Fos ¥ is a linear function of

z and the integral is an exact differential. Thus, Qo can

be expressed as ,

Q= 2 [ B(h) - @(o)} : (A-19)
where @(O) is a constant and is assigned the stream function
value for the top plate, i.e., 7(0) = C1 = 0. Consequent]y,
the stream function for the bottom plate, ¢¥(h), is given by -
the relation

f% = const. = C (A-20)
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~ The tangential vorticity values on the top and bottom

plates of the vortex chamber as well as on the sink tube wall

are calculated from the stream function by use of the Tayﬁor

Sertes.

expressed in terms of the stream

- 1 323
"T3z T v o7

= U _ oW _

Specifically then along top

vortex chamber, one can state
u{r,0) = u(r,h) =0
w(r,0) = w(r,h) =0

and with

o(r0) = ¥ (rn)

the tangential vorticity n is reduced to

A o= du _ 1 32{13 s
92 r _ 2
9z
1.e.,
at z = 0 n(r,0) =1
r
at z = h n{r,h) =1
r
Along the sinkztube wall at r =
U(Y‘.i,Z) = W(Y‘.i,Z) =
and '
du
3z’ Y'i = 0 s h
the tangential vorticity is redu
ilraz) = 1%
" ar
r =

The general value of tangential vorticity %, as

function ¢, is

1
2

Q)|

QL
-4

r

2+
+ 20
2z’

(A-21)

and bottom plates of the

|

=0’

"4

that, at z

229 0 <
9z |z =0
32§ rs <
— =
92z

z = h

ri-w1th

0
L.z <48

ced to

h <z <2

0 and z

(A-22)
(A-23)
(A-24)

a

(A-25)

(A-26)

(A-27)
(A-28)

(A-29)
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In the downstream section of the sink tube the charac-
teristics of stream function, circulation and tangentijal
vorticity are assumed such-that the slope of streamline,
circulation jine and tangential vorticity lines are zero
along the z-direction. 1In addition to the above, the radial
velocjty is also assumed to be zero at the downstream
section of the sink tube. Thus, the boundary conditions at

downstream section of the sink tube are given by

at z = & 3 _ 0 3V _ g
3z -V 9z
5T ow

A
N N
T

o

o

i

o
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DETAILS OF THE
NUMERICAL FORMULATION

In view of the axial symmetry of the sensor, only the
flow in the region D = {(R,Z)}, as shown in Fig. (2.2) has
to be considered. Within a region D, a network of uniformly
spaced grid lines is constructed. At each interior mesh
point (the Tnter§ect10n of two grid lines), the derivatives
that appear in Eqs. (2-28) through Eqs. (2-30) are approxi-
‘mated by the central difference technique.

For example, if A be'any dependent variable and R and Z

be independent varjables in the i and j direction respectively

. then dA , 3A , 3°A, and 3247 Can' be written as
R T g2 322
%ﬁ- = Mg,y - Ai_l,j + 0(aR)? , (B-1)
2AR
o= Mgn T M v 0a)? (B-2)
| 2407
L37 N S IR I BT (B-3)
3R? S "+ 0(aR?)
(4R)
320 _ A - 2A, , + A
— = Ti,j+l i,d i,3- 2 :
572 ’ Lo 13- ey s (B-4)

where AR représents the grid size along R (or i) direction

and AZ along Z (or j) direction. Furthermore, higher orders
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than the second order of grid size are neglected, and U and
W can be eliminated from the governing equations, by employ-

ing the definition of the stream function as

U T‘ , j = %_ %%)_ o = q) 1 ,j+1 v-. w 'i ’.j, ,.1
| 1o ) , (B-5)
2(7-1) ARAZ
W, I - _
]’J T E ﬁﬁ i j ; wi'l!i‘ 'wi+1,j (B_s)

2(i-1) (aR)2

The following formulation illustrates how the various
equations are approximated by the central difference technique.
1. Stream Function Equation.

The equation for the stream function is written as

2% _ 1oy, 2% _

— TR Tz 7R
oR 9Z

(B-7)

By employing the central difference technique and by choosing
equaT grid size along R and Z (i.e., AR = AZ = a), the above

" equation is written as

Yiet,s T i T Vet Yieng T Vil

az 2aR

t Y. o, -2 + -
Vi,+1 wi,j Yi,5-1 - Rn.- (8-8)
2 = B A 0]

1]
a

In the above equation the subscripts i and j correspond to the

R and Z coordinates respectively, since R is the instantaneous
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radius, thus R = (i-1)a. Equation (B-8) is then solved for

v, i’ which results in

Ts

¥

)

=1 v
LI T (w‘i+1,j ¥ l,)1'--.].,:] * lp.i’j.{,.l + lpl',j-l

a 2 B-9
gﬁ (ZR ani,j + wi+1’j - wi_l’j) ( )

where R = (i-1)a.
2. Steady State Equations
2.1 Circulation Equation

The circulation equation js written as

1 2°r 1 ar , 9°r (B-10)
e-o |

R SR Y Sl 2 RO® 72

By expressing the velocities in terms of the stream

function, the above equation is written as

198y dr _ 1 3y oT = 1 52t _lr g, 52y (B-11)
R3ZBR RIBRIZ N 2 R 9R 2
In the difference form, this is expressed as
v, . -V, . r, ., =T,
1 i,+1 i,j-1 i+l,J i-1,]
R 2a 2a
Y, /R . r, . - T, . 1
1 i+1, -1, i,+1 i,j-1 - N X
"R = "Re-8
2a ] 2a
F. , - ZP. 1 + I‘- . ' -
i+1,] 15d i-1,3 1 I‘1'+1,j r'1--1,,]'
g ) K
a 2a
e Tagn 7 2y T (8-12)
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Equation (B-12) is then solved for Lo oo which results in

1{r, . I
i, = I[ i+l,5 * 41,5 7 ri,3+1+ri,j-1]

- NRe_e {w 4 - Y, + 2a B{T. .- I, B .
s 1 sJ ™ H +1, -1,
16R [ 1 fa3-1 Re-96 ! ! ! ) B

- {?1+1,j - wi_l’jg {ri’j+1 - Fi.j-lgl] - (B-13)

2.2 Tangential VYorticity Equation

The equation for the tangential vorticity is written as

b0, 30 . Un | 2r ar |1 .
PL3 °Z R R3 °Z N

: 333 g Llon n | EEﬁ B
R 3R . - (B-14)

Upon eliminating U and W by use of the stream function ¢, this

is expressed as

O] =
b
9

(B-15)

]
—
T\
e
~n
+
|+
Q
=
1
!J
+
=3

The above equation is now written in the difference form as

1 - - -
R{Tan Yi,4-1 }{”m,j_ "i-1,3
2a , 2a _

- %;{wi+1,j T Vi1, (ML 941 T “i,j-ll N,3
72 73 f 2 X

W s - Y. . 2 . -
{ w1’3+1 lp"sJ"l 'risJ r1§j+1 '.Pi{j"l
2a R3 2a
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= ﬁRe . “\“Hl,j F 1,5t Y s
- 22 i ‘
BRTY
R2 o (B-16)

Equation (B-16) is then solved for n s which results in

= 1 '
", [1-{ﬁ1+1,j Pyt Tan r Tgaad

- ,N:Re..e f{(wi’j_l_l - wi’j_‘l . 2a ) «

Re-6
‘16R
(M1, 7 Mi-1,g) - G,y ™ Yo, ) X
. ..4 =M 4a T - r.  _ =-rT )
(n1 9J+1 i’j—l) .,- -—2- 1,3 ( 1aJ+1 1sj"1}]
: ' R g

2 .
1 a aN Y, . - P, .
[ e REFREE SRR REAS )] . (B-17)
2 -
8R

where R = (i-1)a, with subscripts i and j are along R and Z
direction respectively.

3; Transient Case

3.1 Circulation Equation

In the circulation equation,

oT - o or _ 1 o T 1 9T a3
+ U + W = , +
T IR EYA NRe-e [ R 57

U and W are eliminated by the stream function ¢ and one obtains
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3T y Lovoar ol oyer .1l 4

3T TRIZR TR T Wpop
9°r _ 1oar, ar (B-19)
RZ KR 572

The difference equation is then rewritten by use of the
central time and central space technique. Consequently,

Eq. (B-19) becomes
k+#1 k-1 /( ) k k )
I - T 2AT) + . . -
i, i,J _ {IP1sJ+1 wi,j-l §
k | k // 2
ri+1,j - Pi-l,j (4Ra%)
kK k k kK (1822
- - r - T 4Ra
{"’nl,j Vi1, g’{ i3+ 1,3-1% )

K k k k
_ 1 r 4+ T .+ T r :
B P { 1,5 T A-1,0 Y g a5

Re-6
- 47 a - )T . - T
i {Hl.a ,1‘-1,& (2aR)
(B-20)
: k
In the first term of right hand side, 4ri j is written as’
k k+1l k-1 ‘
4r. . - 2T, ., 2T, , B-21
T1sd 1,J + 1,50 ( )
k+1

and then the equation is solved for I', , to give

9
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k+l k-1 _ k k
r, .= T + AT -
i i3 &”’Hl,j Vi)
- 2aZR S
k Kk k ok
r, . ,-T ) ) X
i,J+1 iyj-1 i,j+1 1,j-1
k k k k
(T =T ) - 2a (T - T ) /N
i+1,§  i-1,j i*1,j . i-1,j5 [ Re-8
k k ok
+ 4R (T, + T £ T + Tk - 2rk 1y
i1, i-1 i,j+1 i,j-1 i,

//NRe ekJ//[l + 4AT //; N . azg] . (B-22)

where R = (i-1)a.
3.2 Tangential Vorticity

The equation for the tangential vorticity is written as

an 1 39 dn _ 1 93y dn _ n_ 3y _ 2T 3T
T TRILORIRI 2L ;‘ 3
2 2 -
= 4 9n, 1% _n_43nm
"Re-o | sr2 RO p2 472 (B-24)

Through the use of the central time and central space technijque,
the above equation is written in the difference form and

there results

% k+1 k-lk}// (K k
L= My . 2AT) + -
Mg T ML/ BT R “i,j-l& x
k k // o,
- 4
{”1+1,j "i-1,3 (4Ra7)

k k k k 2
- j‘wi.’.l’\] B wi'lsjgjkn'ls\]*'l ) nisj-lg/(4Ra )



167

o« k k k k // )
+ + 4 -4
Mivr,g T Tiger T "3 0

.i-l’j -i’j-l 1,j

+('nk - nk /(ZaR) - nk /R2 . (B-25)
?. i+l,J i-l,j' isd 5
k

In the first term of right hand side 4ni ; is rewritten as

k k+1 k-1 _
dn, . = 2n,  + 2n, (B-26)
1"\] 1’J 19\]
. k+1
and then the equation is solved for n,. ; to obtain
k+1 k-1 k k
= n + AT . A .
nisj i,d 2 % (w1+19J w1'133) X
2a R
k k ’
k k
(Mige1 7 M) 7 W g 7 %5000
k k + 2a N ¢ k
( Ni41,3 ni—l,j) "i,3 ( ll’i,:i+1 lpi,j-l
k k k //2
- + . . . - T
2a/NRe_e)//R 4ar1,J (F1’J+1 i,j-l) R
k

.+_

k k
- b
22 (0,57 "o1,5) /MRe-o AR (Miar,

k k k k-1
+ +n. . + - N
ni-l,j Mi,3+1 ni,j-l 2”1,3) Re-9 % ]

/// [1 + 4AT///(NRE_6 . 2%y ] : (B-27)

~
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Equations (B-5), (B-9) and (B-13) constitute the govern-
ing difference equations for the steady state case and

Eqs. (B-5), (B-20) and (B-27) for the transient case.
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VELOCITY COMPONENT
CALCULATION PROCEDURE
As discussed‘under the test procedure, (Section (6.2))
the resultant velocity V* és well as the Tlongitudinal angles
® and ¢ are measured at a particular Tocation in the sink
tube by a constant temperature hot wire anemométer. The angle
9 is the longitudinal angle made by the probe with the sink
tube axis in a horizontal plane, whereas ¢ is the longitudinal
angle made by the probe with the sink tube axis in a vertical
plane.
The measured values of V*, 6 and ¢ are used to calculate
the radial (u), axial (w) and tangential (v) velocity com-

ponents. The resultant velocity is defined as

V* = /uz + v2 + w2 - (c-1)

Since o is measured in a tangential direction then

v = w tan 6 . (c-2)
Similarly since ¢ is measured in a radial direction then

u = w tan ¢-. (c-3)
Thus the square of the résu1tant velocity becomes

v¥2 = w2 [1 + tan? ¢ + tan? ¢)

or V*

w = (C-4)

Y1 + tan® o + tan2 ¢

.

The axial ve1o¢ity component w is calculated first by
use of Eq. (C-4), and then the tangential and radial velocity
components are calculated by use of Eqs. (C-2) and (C-3)

respectively.
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PROBE MECHANISM FOR RESULTANT
VELOCITY MEASUREMENT

The probe holder and mechanism used, for measurement of
the resultant velocity within the sink tube is shown in
Fig. (6.6). This Appendix jis devoted to a discussion as
to how thie probe is positioned to measure the resultant
ve1ocity,

The distance between the center of the probe wire and
the probe rotating axis (probe longitudinal rotating axis)
is denoted by ry. The instantaneous vertical movement
(radius) of the probe support axis from the sink tube axis is
denoted by S, when probé wire is horizontal, and S, when the
probe wire is vertical. Thus the instantaneous radius made
by the probe wire in its movement, for the case when the

probe wire is horizontal, is given by

P= Y52+ (ry sine)2 - (D-1)

1
Similarly the instantaneous radius made by the probe wire in
its movement, for the case when the probe wire is vertical,
is given by
r=S,+r; sin ¢ . (D-2)

As the probe wire is positioned at a particular location
for measurement of the resultant velocity both radii, as
given by Egs.(D-1) and (D-2), have to be equal. This results

in

r=~)[ = §

2 : 2 +ry sin ¢ . (D-3)
(s,)° + (ry sin o)

2
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within the sink tube the radial velocity u is negligible and
the measured value of ¢ is rather sma11; therefore, the value
of 1 sin ¢ is also very sma11; However; the tangential
velocity v is of appreciable value, so the measured value of
e; and thus r sin 8 is of an appreciable magnitude. Hence
from Eq. (D-3), it is concluded that 52 is greater than Sl
and that the difference between r and 82 is negligible.

In the process of measurement of the resultant velocity,
the probe and probe support are first positioned at a
particular z location. The probe support is then moved
vertically making a radius S1 with respect to the sink tuBe
axis. By use pf ihe roller-string arrangement the-horizontai]y
mounted probe wire is then rotated about its axis to obtain
the location at which the anemometer voltmeter reading is
maximum. This procedure determines the distance rys between
the center of the probe wire and the probe rotating axijs.
At that particular location, the longitudinal angle 6 is then

measured. Thus with the values of Sl’ r, and 8, the

1
instantaneous radius r is calculated through use of Eq. (D-1).
The maximum anemometer voltmeter reading is the resultant
velocity at that location.

In a similar manner and with the vertically mounted hot

wire probe, S, is adjusted equal to r, and then the probe

2
wire is rotated to obtain the longitudinal angle ¢. The re-
sultant velocity is then checked and corrected for 52. since
U << v in the sink tube, and- ¢ << 6. Also, since ¢ is smali,
and r > 52, then r-52 is very small. Thus r can be approxi-

mated by 52.
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In a similar manner to the method used in calculating
the radial distance, the correction for z is accounted for
and results in the expression

z =23 -y €OS B = 2z, -r, COS $ (D-4)

1
where z is the instantaneous location of probe wire. In this
equation, z, and z, are the axial distances of the Tongitudi-
nal rotation of the probe axii measured from the sink tube
entrance, when hot wire is fn a horizontal and a vertical

position respectively.



APPENDIX E

175



176

ERROR ANALYSIS

The possible sources of error throughout this study may
be due to either experimental or numerical errors. The
experimental error may be subdivided into the static pressure
measurement error and the velocity measurement error resulting

from use of both velocity calculation methods.
Experimental Error Analysis

In an experiment requirihg measurements of several
quantities, each of which has an error associated with it,
the total error that propagates into the final result may be

estimated by the expression [66]

2—% 3F |2 (E-1)
eE n=1 (557 ¢ )

where F is a function of n independent variables having errbfé
enp. For repeated measurements of the variables, it is assumed
that errors are normally distributed about the true value.

The possibilities of errors in velocity measurements may
be attributed to several factors; (i) exact positioning of
probe holder in sink tube .for either a radial or axial position,
(ii) longitudinal rotation of the probe in either a horizontal
or vertical direction through use of the roller-string arrange-
ment, (iii) calibration of hot wire anemometer (specifically
the linearizer for gain and exponent adjustment), and (iv)
human error in'reading the scales.

The error in positioning the probe holder is fixed and 3

is considered as e

rl' for the radial lecation and e, for the

1
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axial location.
The error due to the longitudinal rotation of the probe
in a horizontal plane is obtained as follows. The quantity
r is defined in Equation (D-1), and by applying Equation (E-1),

the expression for error becomes

ry” e . (E-2)

-
H
~—
QU
-
—~—
1]
L7200 y N ]
—
+
—
[e%] o5

The partial derivatives in this equatijon are obtained from
Equation (D-1) and are found to be

S

ar ! | (E-3)
9% /512 + rlz sin‘o ‘
2 <sin B
Pl sin cos 6
ar _ - (E-4)
9 v. 2 2

. 2
51 + Pl Sin g

By substituting Equation (E-3) and (E-4) into Equation (E-2),

the expression for error is obtained as

+ r14 sin2 9 cosze eg

er‘2 ) 2 2 2 :

S * y»  sin @ . (E-5)
In a similar manner the error equation for location of
axial length, due to the longitudinal rotation of the probe
in a horizontal plane, is determined by using Equation (D-4)

2 - 2 2 .2 2

e, = eZl + ryo sin 6 eg . | (E-6)

The error equation due to the longitudinal rotation of

the probe in a vertical plane is obtained in a similar manner.
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As the radial velocity in the sink tube is negligible, the
longitudinal rotation of the probe in the vertical plane 1;
also negligible. Thus, no additional discussion is necessary

in arriving at the error equations given below

ep” = es2 + rlz cosz¢ e¢2 ' (E-7)
2 2
and
2 2 2
e. =¢ +r sin2¢ e¢2. . (E-8)
22 22 1 y
The calibration errors are fixed and are denoted by e,
: 1
and e. The quantity e, denotes the error for probe

2 1

longitudinal rotation calibration and e. denotes the error
2 .

of calibration of the hot wire anemometer combined with
linearizer.

The error in velocity measurement is obtained by de-
riving an error equation for each component of velocity. The
error equations are obtained through use of Equation (E-1)
and the fundamental definition of the velocity components,
(C-2), (C-3) and (C-4), and are found to be

e 2 = e2 + Vé%tanze sec4e~ee2 + ;an:¢ sec4¢'e¢21///

W V* 2
(1 + tan & + tan ¢)

2 2
(1 + tan 6 + tan ¢) (E-9)
2 2 2 2 4 2
e, = tang¢ e, + w sec ¢ ey (E-10)
9 2 2 2 4 2
e =tan 6 e + w sec 6 e (E-11)
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To estimate the relative magnitudes of errors associated
with the uncertainties in the measurements, numerical values
from a fypica] test conditionAare substituted in the above
equations.

The following values are taken from a typical test run
from which.the velocity components are determined

Radial location of pin bearing

from the sink tube axis ; Sq 0.5 inch,

Length of rotating arm of probe

(hot wire) ' ry = 0.546 inch,

Axial location of pin bearing

from sink tube entrance z, = 6 inches,
Horizontal longitudinal angle 0 =.38.7 degrees,
Vertical 1ongitudina1 angle ¢ = 0.0 degree,
Resultant velocity V* = 6,95 ft/sec.,
Speed of sensor N =20 rpm,,

and Radius of vortex chamber | ro = 10 inches,

By using V*, & and ¢, the axiai; tangential and radial velocity
components are calculated and found to be 5.45, 4.36 and 0.0
feet-pej sec. respectively.

The following errors or uﬁcertainties are assumed, taking
into account instrumentation accuracy errors due to lack of
resolution, human errors in reading instruments and general

velocity losses, etc.
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. Errors ‘1n Error Magnitude
Name of Error Percentage Symbols of Errors
Resultant velocity + 1% e * 0.0695 ft/sec
horizontal v
Longitudinal angle + 1% e, 0.387 degrees
vertical
Longitudinal angle + 1% e, 0.0 degrees
Calibration of + 1% €c -
longitudinal angle 1
Calibration of + 0.5% e 0.03475 ft/sec
anemometer €2 .
Radial distance + 1% e, 0.005 inch
1
Axtal location + 0.2% e, - 0.012 inch
. 1 _

"The error in measuring the radius r in the horizontal plane
position is calculated by using Equation (E-5). By using the

values given in the Table above, the error is found to be
er2 = 0,006438 inch. (E-12)

The error in measuring the radius r in the vertiéa] plane
position’ﬁs calculated by using Equation (E-7). By using the
values given in the Table above, the error er.2 is calculated
and found to be
e, = 0.005 inch. 3 (E-13)

2
Comparing (E-12) and (E-13), the larger value is chosen for
the total error calculation. The magnitude of error in measur-
ing the radial distance s, (given in Table) is e, = 0.005 inch.

1
Thus the total error in measuring the radius is given by
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er

1t
—
o
+
(1]
-
~r

2 2 0.5
(0.005° + 0.006438 ")
0.008152 inch. (E-14)

The magnitude of error‘in measuring the axial length Zys
is (from Table) ez1 = 0.012 inch. This error in axial length
is calculated from Equation (E-6) and is found to be very
small (i.e., eZl = 0;00003), and therefore is neglected.
Similarly the error ez2 obtained from Equation (E-8) is also
neglected.

The error in axial velocity is calculated as follows.
The error'in measuring the axial velocity is a result of
human error, error due to positioning of the probe in either
the axial or radial location and the error arising from
calibration of the anemometer.

The value of the human error in reading of the meter is
used in Equatioh (E-9) to determine its portion of the error
occurring in the measuring of the axial velocity. This value
js found to be &, h = 0.1459 feet per second.

The value of the error resulting from”positioning the
probe in either the radial or axiai location is obtained
through use of numerical data. The magnitude of error for
positioning the probe in the radial location is taken from
Equation (E-14). This value is e. = 0.008152 inches. The
portion of the error occurring in measuring the axial velocity
due to this positioning error is then calculated and found to

be e = 0.0043 feet per second. In a similar manner the

W,r ,
calculated error in axial velocity due to positioning of the
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probe in the axial location is found to be e,z = 0.0036
feet per second.

The portion of the error in measuring the axial velocity
that is due to the calibration of the hot wire anemometer must
also be accounted for. This value ié found to be eC2 = 0.03475
feet per second.

The total error in measuring the axial velocity is then

determined by use of the equation
(E-15)

and is found to be 0.15 feet per second. The percent error
therefore is 2.75.

In a procedure similar to the above, the error in
measuring the tangential velocity is also obtained. The estimate

of the human error e found from Equation (E-11) is 0.1316
]

feet per second. The magnitude of the error for probe
positioning in the radial direction is e, = 0.008152 inch which

results in a value of e, p = 0.0124 feet per second. Then

from the value of e, = 0.012 inches the value of ev . becomes

0.014 feet per second. These component values then result in

Z

a total error of 0.1374 feet per second and a percentage error
or 3.15,

In a manner similar to the above, the error in measuring
the radial velocity is shown to be zero since the radial
velocity is zero for this location.

The same procedure is adopted for obtaining the error
analysis in the second method of velocity measurement.

In this method the radial velocity is assumed to be zero.
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The tangential and axial velocities are given by Equations
(6-13) and (6-14) respectively. By using the same technique

as before, these equations are transformed to the error

equations.
2 2 2 2
v e + Vy e
2. L Ny Yy (E-16)
"2 2 2
and
2 2 4 2 2
V., e + K v e
82 i H “vy o V. TV (E-17)
W 2 2 2 2 -
(1 - K, ) (vH - K, vV )

After combining all errors as discussed previously the
resultant total error in tangential and axial velocities are
found to be respectively 0.1455 and 0.157 feet per second,
while on a percentage basis these values are 3.34 and 2.88
respectively.

In addition to accounting for the errors in measuring
the component velocities it is also necessary to account for
the error in measuring the static pressure.

The static pressure is measured by a specially designed
static pressure probe. The probe consists of two concentric
tubes. Very small holes were drilled through the outer tube
so as to eliminate the dynamic pressure head. The static
pressure then is directly measured by means of the inner tube
which is connected to a pressure transducer. Since the
transducer directly measures the pressure, the possibilities
of error are minimal. Nevertheless, a discussion pertaining

to any erkor, thus resulting, follows.
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An error could result from not properly positioning the
static pressure probe in either the radial or axial directions.
The probe is located at a given radial position through means
of a precision mechanism having a measuring scale whose
smallest graduation is 0.001 inches. Thus any error arising
is indeed negligible. Similarly the rack and pinion mechanism
used to position the probe at a given axial location has a
measuring scale with its smallest graduation being 0.05 inches.
Again, any error occurring would indeed be minimal. The error
arising due to the boundary layer growth effects are minimized
due to the tapered tip of the probe. Another possible error
could result fkom the flow being at an angle to the sink tube
geometric axis and thus to the probe. This effect experi-
mentally is observed to be negligible up to angles of forty
degrees. Beyond this angle a deviation of 3 to 4 percent is
- noted in the readings. As observed from the experimental
data the axial velocity is higher than the tangential velocity.
Also it is noted that the radial velocities are negligible.
Therefore, the flow angle encountered throughout the experiment
never exceeded 35 degrees and hence the error is negligible.

Any error resulting from use of the transducer is also
minimal as it 1suca1ibrated and checked by means of a standard
resistance.

The probable human error arising from reading of the trans-
ducerfscale-is~estiﬁated%to*be*1essﬁtﬁanwone“peﬂcent;"Tﬁe sma]iest
division on the transducer sca1e has a 0.0005 mm of mercury
head and this is sufficiently small for the pressure range

encountered within the sink tube.
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Error Analysis Pertinent to the Numerical Results

The steady state and transient governing equations con-
sist of first and second order derivatives in R and Z. When
these differential equations are written in the difference
form a truncation errof results., The evaluation of this
error is determined for any dependent variable as here
described.

Let A be any dependent variable, x be any independent
variable and a be assigned the grid size, then A can be
 expressed as function of x and a, A = A(x,a). By use of the

Taylor series expansion A(x+a) and A(x-a) become respectively

3

Alx+a) = A(x) + ah'(x) + %i A" (x) + %T A" (x)
+ 2t A1V(x) + ... (E-18)
T
. _ ' 2 n - 3 Vo
A(x=a) = A(x) - anr'(x) + %T A" (x) + %T A" (x)
+ Z_‘I‘_A'V(x) .. (E-19)

The subtraction of these equations gives the first order
derivative of A with respect to x, and is shown in Equation
(E-20). The addition of these equations, however, gives the
second order derivative of A with respect of x, and is shown

in Equation (E-21)

gﬁ _ A(x+a)2;‘A(x-a) + O(az) (E-20)

and
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2
) g - A(x+a) - SA(X1,+ A(x-a) . 0 (a2) . (E-Zl)
ax a

It becomes evident that the central difference technique
contains the truncation error of order a2 for both the first
and second order derivatives. In this analysis a is chosen

to be < 0.02 and, therefore, the truncation error is of order

(0.02)2 or 0.0004.
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APPENDIX F

COMPUTER PROGRAM - TRANSIENT CASE

READ
READ
READ
XNEU
RE =
ROSB

|

2,500
2,550
2,600
= 0.00016
OMEGA * RO * RO/ XNEU

Q0 / (2.*3.14159*0MEGA * RO **3 )

§

N,M,NN,MM
Q0, OMEGA,

XLL;

VO = RO * OMEGA

GEMA

WRITE (3;700) Q0, OMEGA, H, RO, RE, GEMAO, ROSB

0

OMEGA * RO ** 2
Uo = Q0 / (2. * 3.141593~* RO8H )

LL1,

REU = U0 * RO / XNEU
R=1.0

NI =N -1

XN1 = N1

M1 =M -1

MP = M + 1

XM1 = M1

NNl = NN = 1

NNP = NN + 1

XNN = NN

XNN1 .= NN1

MM1 = MM - 1

MM3 = MM - 3

MM4 = MM - 4

A =R / XN1

DELR = A

DELZ = A

DT = XLL

RI = A * XNN1

REI = 1. / RE

R3 =1. / (A * A
CA = 4, * DT * REI * R3
CB = 2.0 * A * REI
DENO = 1. + CA

RO,
LL2, LL3,

WRITE (3,710) UO, REU, VO

—

W on un e

-

. ]

o

=
=
—

RA * RA

GA (I,J)

[N w)

o

WRITE (3,720) N, M, NN, MM

H, TOL

LLX
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IF ( I - NN) 3,2,2
MMT = M

CONTINUE
DO 4 J =

o=
-
=

- ROSB * X2 / XM1

il M~ 1l M~ 1
n =
=
-
=2

DO 6:J M, MM
PA (NN,J) = - ROSB
CONTINUE

A EEEE S EESEE SRS EELEEEEREEEEEEEEEEEEEEEEEEEEEESEEES SRS

STREAM FUNCTION CALCULATION WITH ZERO VORTICITY TERM

khkkhkhkhkhkkhkkhkhkkhkhkhhkkhkhkhhhhkkhhkhhhkhkhhkhkhhkhkhkkhdhhkhkhkhkhkhhhkkhkkhkkihkkk

K2 = 0

D0 15 I5 = 1, LL1
K2 = K2 + 1

MMT = MM

DO 9 1
DO 7.4
PB (I,J
CONTINUE

IF ( I - NN) 9,8,8
MMT = M

CONTINUE

DEVMP = 0.0

MMT1 = MM1

DO 13 I = 2, N1

X1 =1 -1

0o
J>ZZ

MT
(L,

— I n

J)

PB(I+1,J) + PB(I-1,J) + PB(I,J+1)
LA-*‘R **SA (1 J) e LPB (1+1 J).
/*RA% g LN EVE N
v )

DEVMP =
CONTINUE .
IF (I - NN1) 13,12,12

MMT1 = M1

CONTINUE

DO 14 I = 2 NNI A
PA(I,MM) = PA(I,MM4&) - 2.* PA(I,MM3) + 2.* PA(I,MM1)
CONTINUE

WRITE (3,730)

WRITE (3,740) K2

WRITE (3,750) DEVMP, TOL

WRITE (3,760) (J, J = 1, M)
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16

17

OOOOOO

18
19

20

21
22

23

24

25
26
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DO 16 I =1, N

WRITE (3,770) I, (PA(I1,d), Jd =1, M)
CONTINUE

WRITE (3,780) (I, I = 1, NN )

DO 17 J = M, MM

WRITE (3, 770) J, (PA(I,Jd), I =1, NN )
CONTINUE

MX = LL3

DO 53 KX = 1, LLX

T=T+ DT

dhkkkhkhkhkhkhkhkhhhkhkkhkhkhkhkhkhhhkhkkhkkhkkhkkhkhkhkkhkkhkhhkhkhkkhkkhkkkkkhkkkkk

STREAM FUNCTION CALCULATION WITH NEW VORTICITY TERM

khkkkkhkkkhhkkhkhhkhkkhkkhkhkhhhkkhkhkkhkkhkhkhhkkhhhhkkhkhkhkkhkkhkkhkhkhkhkkhhkhkkhkkkkkkk

DO 26 16 = 1, LL2

MMT = MM

DO 20 I 1, N

DO 18 J 1, MMT

PB (I,Jd) = PA (I,J)
CONTINUE

IF ( I - NN) 20,19,19
MMT = M
CONTINUE
DEVMP = 0.0
MMT1 = MM1
DO 24 I =
X1 =
RA = X1
DO 22 ¢

—
|}
—
O™ > N
i -
-
=
—
—
[y

(PB(I+1,Jd) + PB(I-1,J) + PB(I,J+1)
(A * RA * SA (I,J) + (PB (I+1,J)
0.5/ RA ))
J) - TEMP

22,21,21

(oo B B | '
1 == ool *
X~ oG =xX

m ~ S

< O [«
MmO~ 1
< I
O % ¥ X
N’ Y

CONTINUE

"IF (I - NN1) 24,23,23

MMT1 = M1

CONTINUE

DO 25 I = 2, NN1

PA(I,MM) = PA(I,MM4) - 2.* PA(I,MM3) + 2.* PA(I,MM1)
CONTINUE

KRKK KRk hkkhkkhkhkhkkhkhkkkhhkhkhhkhhhkhkhkkhkhkhhkhkhkkkhkkhhhkhkkkdkkhkhkdkkkkkk

CIRCULATION CALCULATION BY ITERATION TECHNIC 'PB' IS
USED FOR STORING THE PREVIOUS VALUE OF 'GB'

hkhkhkkkhkhkhhkkhhhkkhkhhkhkhhkhkhhkhkhhhhkhhkhhkhkdhhhhkhkhhhhrkdhhrhkhkkhhkik

MMT = MM
DO 29 I R
D0 27 J R

PB (I,d) = GB

1, N
1, MMT
(I,d)
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28
29

30

31

32

OO0

34

35

36

37
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GB (
CONT
IF (I
MMT = M

CONTINUE

DEVMG = 0.0
MMT1 = MM1
DO 33 I =
X1 =1 -1

= GA (I,J)
NN) . 29,28,28

oD I *

Cue o o

+ VA * ( (PA(I+1,3) - P
)) - (PA(I1,J+1) - PA(I,Jd-
J)) + VB* (GB(I+1,J) + GB
1) - 2,* PB(I,Jd)) - CB *
)

v e PO

-
ot v OO

s G+
A~ s I % ¥ ¥

-~ n

I ~~

[ap] [

(=) o«
e~~~ N I N

——
T 0 o=t o

T v

+ GB (1,d)) / 2.0
MP)

— O oD
x>
-

1 W»n

m

,30
DEVMG
CONTINUE ,

IF (I - NN1) 33,32,32

MMT1 = M1

CONTINUE

DO 34 I = 2, NNI

GA (I,MM) = GA (I,MM4) = 2.* GA(I,MM3) + 2.* GA(I,MM1)
CONTINUE

R R I T I I I T I S I I I I I I

BOUNDARY CONDITIONS FOR TANGENTIAL VORTICITY CALCULATION

kkkdkkkhkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhhhhhkhhkkhkhkhkhhkdhhkhhhhhhkhhkdhkkhhkhkhdhkkhkx

DO 35 J = MP, MM

SA (NN,Jd) = 3.* (PA(NN1,J) - PA(NN,J)) / (A*A*RI)
1-SA (NN1,J)/2. '

CONTINUE

Jd =1

DO 36 1 = 2, N

XI =1 . ,
RN = (XI - 1.) * A ' |

SA (1,d) = 3. % PA (I,+1) - PA (I,3)) / {(A¥A%RN)
1- SA (I,J+1)/2.

CONTINUE

* A
* (PA (I,0-1) - PA (I,J)) / (A*A*RN)
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38

39

41
42

43
44

45
46

1(SB(1,d+1) - SB(I,

~4+-CB *{2.0 * XI *
~6)) / DENOQ
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SA (NN,M) =.1.5 *( PA(NN1,M) + PA(NN,M1) - 2. * PA(NN,M))
1/ (A*A*RI) - ( SA(NN1,M) + SA(NN,M1)) / 4.0

hkkkhkkhhkkhkkkkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdhkhkhhhkhkhkhkhkhkhhkhkhkhhkrhkkhrhkk

TANGENTIAL VORTICITY CALCULATION BY ITERATION TECHNIC
'PB' IS USED FOR STORING THE PREVIOUS VALUE OF 'SB'

kkkkkkkhkhkhkkkkhhkkhkhkkhkkhkkhkhkhkkkhkhkkhkhkhkkhkhkhhkkhhkhhhkhkkhkhkhkkkhkhkhkkhkikdix

CONTINUE

DEVME = 0.0
MMT1 = MM1

DO 44 I = 2, N1
X1 =1 -1

RA = X1 * A

TEMP

=3
O
nnmnunwn
NPO#DOII

OCDO(nM
% % % *
=
~
=
>

SA (1,J) -

J
J
2( SBEI+1 J) - SB(I-
3- PA(I,J-1) - CB) +

( B(I 1
5+ SB(I,J-1) - 2.0 *

SA(I,J) = ( SA (I,

DEV = ABS( SA(I,d) - TEMP)
IF (DEV - DEVME) 42,42,41
DEVME = DEV |

CONTINUE

IF (I - NN1) 44,43,43

MMTI = M1 .

CONTINUE
DO 45 I =
SA {I,MM)
CONTINUE
IF (KX - MX)53,46,46
WRITE (3,790) MX

MX = MX + LL3

WRITE (3,810) T
WRITE (3,800)

2 NN :
=-SA (I,MM4) - 2.* SA(I,MM3) + 2, * SA(I,MM1)
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47

48

49

50

51

52
53

- 54

55
56
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khkkkhkkhkkhkkhkkhhkkhhhkkhkkhkhkhhkkhkhkhkhkhkhkhkhhkhhkhkhohkkdhkhkkkikhkkhkdhkkkhkkkk

PRINTOUT OF STREAM FUNCTION, CIRCULATION AND TANGENTIAL
YORTICITY .

Khhkkhkhkkhkhkhkhkhhdbhkhhhkhkhdrhhhkhkhkdhhkhkhkhkkhhhhkhkhrhhhhhhkkhkhhhhk

WRITE (3,730)

WRITE §3,750§ DEVMP, TOL

WRITE (3,760) (J, J = 1, M)
DO 47 I = 1, N

WRITE (3,770) I, ( PA (I,d), U
CONTINUE |
WRITE (3,780) (I, I = 1, NN)
DO 48 J = M,MM |
WRITE (3,770) J, ( PA (I,J), I
CONTINUE

WRITE (3,820) »

WRITE (3,273) DEVMG, TOL

WRITE (3,760) (J, J = 1, M )
DO 49 I =1, N

WRITE (3,770) I, ( GA (I,Jd), U
CONTINUE

WRITE (3,780) ( I, I = 1, NN )
DO 50 J = M, MM

WRITE (3,770) J, ( GA (I,d), I
CONTINUE

WRITE (3,830)

WRITE (3,750) ) DEVME, TOL
WRITE (3,760) (J, J =1, M)
DO 51 1 =1, N

WRITE (3,770) I, ( SA (I,J), J
CONTINUE .

WRITE (3,780) (I, I = 1, NN )
DO 52 J = M, MM

WRITE (3,770) J, ( SA (I,J), I
CONTINUE

CONTINUE

khkkkkhkkhkkhkhhkhkhhkhdhkkhhkhkhkhkhkhkhkhkhkhkhhkhkhdhhhkdkhkhkhkhkhkdhkhkhhkkkkkkk

1, M) -

1, NN )

1, NN)

1]
Py
=

g

1, n)

'RADIAL VELOCITY IS CALCULATED FROM STREAM FUNCTION

DEFINITION,'SA' IS USED FOR 'U' CALCULATION FOR SAVING
STORAGE CAPACITY.

Ihk kI IR KK F R I kI kh kb hkhkkhkhhdkhdhhdhhhhhrhhkhhhrhkhhrdkhhkhkdkk

MMT = MM
DO 56 I = 1,
DO 54 J = 1,
SA (1,J) = 0.
SB (I,J) = O.
CONTINUE .
IF ( I - NN)}'56,55,55
MMT = M '
CONTINUE

MMT1 = MM1

N
MMT
0
0
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DO 59 I =1, N

X1 =1-1

RA = X1 * A

DO 57 J = 2, MMT1

SA(I,J) = ( PA(I,J+1) - PA(I,J-1)) / (2.* RA * A)
CONTINUE

IF (I - NN1) 59,58,58

MMT1 = M1

CONTINUE

WRITE (3,840)

WRITE (3,760) ( J, d =1, M)

DO 60 I = 1, N

WRITE (3,770) I,( SA (I,d), d =1, M)
CONTINUE ,

WRITE (3,780) ( I, I =1, NN )

DO 61 J = M, MM

WRITE (3,770) J,( SA (I,J), I =1, NN )
CONTINUE

khkkkkkkhkhkdkhhhkrkhkhhhhhkkhhhhkhkhkhhkhkkkdkhkhkhkkhkhkhkkhkkhkdhhkkhkhkhkk

AXIAL VELOCITY IS CALCULATED FROM STREAM FUNCTION
DEFINITION 'SB' IS USED FOR 'W' CALCULATION FOR SAVING
STORAGE CAPACITY

Akkkhkhhkhkhkhhkdhhhrhhkhhkdhhhhhkdkhhhdhhkhhhhhkhhhkhhdhhkhhkhkd

MMT1 = MM1

DO 64 I = 2, NI

X1 =1 -1

RA = X1 * A

DO 62 J = 2, MMT1

SB(I,Jd) = ( PA(I-1,J) - PA(I+1,d)) / (2. * RA * A)
CONTINUE

IF (I - NN1) 64,63,63

MMT1 = M1

CONTINUE

DO 65 J = 2, MM

SB(1,J) = (PA(4,3) - 2.*PA(3,J) - 11.*PA(2,d)) / (5.*
1A ** 2) :

CONTINUE

DO 65 I = 2, NN1

SB(I,MM) = SB(I,MM4) - 2.0* SB(I,MM3) + 2.0* SB(I,MMYL)
CONTINUE

WRITE 23,850) '

WRITE (3,760) ( J, d =1, M)

DO 67 I = 1, N
WRITE (3,770) I, ( SB (I,Jd), J=1,M)
CONTINUE

)
WRITE (3,780) (I, I = 1, NN )

- DO 68 J = M, MM

WRITE (3,770) J,(SB (I,Jd), I = 1, NN )
CONTINUE
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TANGENTIAL VELOCITY IS CALCULATED FROM CIRCULATION
'PB' IS USED FOR 'V' CALCULATION FOR SAVING STORAGE
CAPACITY
khkhkkkhkhkhkkhkhkhkhkhhkhkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhkhkhkhhkhkhkhkhkhkkkkkik
DO 69 J = 1, MM
PB(1,d) 0.0
69  CONTINUE
" MMT = MM
DO 72 1 = 2, N
X1 =1 -1
RA = X1 * A |
DO 70 J = 1, MMT
PB(1,d) = GA (I,J) / RA

70 CONTINUE
IF (I - NN ) 72,71,71
71 MMT = M
72 CONTINUE
WRITE (3,860)
WRITE (3, 760) (Jd, J =1, M)

DO 73 1 =
WRITE (3, 770 I,(PB (I,d), d=1,M)
I, I =1, NN )

)
73 CONTINUE
WRITE (3,780) (
DO 74 J = M, MM »
WRITE (3,770) J, ( PB (I,d), I =1, NN)
74 CONTINUE

500 FORMAT (416) :
550 FORMAT (5F12.7 )
600 FORMAT (F10.5, 4110)

700 FORMAT (//' Q0 = ' E16.7 '/ OMEGA =', E16.7/ ' H = '
1El1657-/' RO = ', E16.7/ 10X, 'TANGENTIAL REYNOLDS NUMBER
2= ',E16.7 / 10X, ' INLET CIRCULATION = 'y, E16.7 / 10X, '
3ROSSBY NUMBER = ', E17.7 )

710 FORMAT :(/ 10X,' RADIAL INLET VELOCITY = ', E18.7 / 10X, '
1RADIAL REYNOLDS NUMBER = ', E18.7 / 10X,' TANGENTIAL

' 2INLET VELOCITY = ', E18.7/ )

720 FORMAT ( /5X,'N = ',I3,5X,'M = ', I3,5X, 'NN =', I3,5X,

1'MM = ', I3.)

730 FORMAT (/' STREAM FUNCTION TABLE ' // )

740 FORMAT (// 17, ' ITERATIONS WERE USED ' / )

750 FORMAT ( ' MAXIMUM DEVIATION = ', E18.7 / ' ASSUMED
1TOLERANCE = ', E18.7

760 FORMAT (/ 8X, ' I / 3 =" 7( 12, 15X ) / )

770 FORMAT ( I10, 6E17.7 )
780 FORMAT ( / 8X, ' dJ / I = ',7( 12, 15X ) /)
X, ' NUMBER OF ITERATIONS ARE ' , 15 / )

790 FORMAT (/8

800  FORMAT (8X, ' *¥ddkkdkkdkkkhkhxkhkhhkhhhdkkhhkkk |/
810  FORMAT 5X, 7H TIME = F10.5 )

820 FORMAT (// ' CIRCULATION DISTRIBUTION ' / )

/
// ' TANGENTIAL VORTICITY DISTRIBUTION ' / )
/

(
830 FORMAT (
( 10X, ' RADIAL VELOCITY DISTRIBUTION ' / )

840 FORMAT
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850 FORMAT é / 10X, ' AXIAL VELOCITY DISTRIBUTION ' / )
860 FORMAT ( / 10X, ' TANGENTIAL VELOCITY DISTRIBUTION ' / )
STOP .
END
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APPENDIX F
COMPUTER PROGRAM - STEADY STATE CASE

PROGRAM PATEL

IMPLICIT REAL *8(A-H,0-Z)

DIMENSION PSY (51, 51), GEMA(51,51), ETA(51,51), U (51,51)
READ(2,82) N, M, NN MM

READ (2 90)LA LB LC,LX

XNEU = 160.E-6

R = 1.

N1
XN
M1
MP
XM
NN1.-
sNNP
XNN
MM1
MM3
MM4
DELR
DELZ

RI =
MMT
DO 3
RN =
DO 1
PSY 2
ETA
GEMA
U(r,9
CONTI
IF(I
MMT =
CONTINUE

READ (2,81) QO0, OMEGA, RO, H, TOL

VO = RO * OMEGA

UO = Q0 / ( 2. * 3.14159 * RO * H )

REU = U0 * RO / XNEU

ROSB = Q0 / ( 2. * 3.14159 * OMEGA * RO ** 3 )
RE = OMEGA * RO ** 2 / XNEU

GEMAO = OMEGA * RO ** 2

RX = 2. * DELR / RE

DO 4 T = NNP,N
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PSY(I,M) = - ROSB
DO 54J =M, MM

PSY (NN,J) = - ROSB
CONTINUE

DO 6 J = 2,M]
XJd =Jd
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PSY(N,J) = -ROSB * (XJ -~ 1,) / (XM -~ 1.)
WRITE %3 ,85) QO OMEGA, H, RO, RE, GEMAO, ROSB
WRITE (3,89) N, M, NN, MM

DO 14 T5 = 1, LA

kkkkkkhkkhkhkhkhhhkhkhkhhkhkhhkhkhhhkhhkhhkhhkhkhkhhhkhhrbhhkhhkhkhhkhhkhhhkdkdk

STREAM FUNCTION CALCULATION WITH ZERO YORTICITY TERM
‘U' IS USED FOR TEMPORARY STORAGE OF STREAM FUNCTION

khkhkhkhkkdkkhkhhkhhhhkhkhkhhhhhhhdhhhhhhdhhhhhhhbhhhhkkhkkkhdhkk

MMT1 = MM1

DO 91 =2, N1
XI
RN
DO
Pl

P2
u

MT1
PSI)§I+J,J) + PSY (I-1,d) + PSY (I,J+1)
) * RN **2 *.DELR + PSY(I+1,J)

I,Jd 2 *A/(8.*RN)
CONTINU
I

IF ( - NN1 ) 9,8,8
MMT1 = MM1

CONTINUE

MMT1 = MM1

DO 12 1I
DO 10:J =.
PSY (I,J)
CONTANUE -
If (I - NN1) 12,11,11
MMT1 = M1
CONTINUE
DO 13 I =
PSY(I,MM)
CONTINUE
CONTINUE
MX = LB
DO 52 KX = 1, LX

*********************************************************

n~dnn

vJ
J)
P

s N1
s MMT1
0.2 * PSY(I,J) + 0.8 * U(I,d)

il n
n N

2, NN1
= PSY(I,MM4) - 2.*PSY(I,MM3) + 2.* PSY(I,MM1)

STREAM FUNCTION CALCULATION WITH NEW TANGENTIAL VORTICITY
TERM 'U' IS USED FOR TEMPORARY STORAGE OF STREAM FUNCTION

hhkkkkhkhkhkhkkhkhhhkkhkhkhkhkhhhhkhkhkhhhkhhhkhkhkhkkhhhhhkhhhkhhhhhkkdk

DO 23 I4 =1, LC

DEYMP = 0.

MMT1 = MM1

DO 18 I = 2, N1

X1 = I

RN = A * (XI - 1.)

DO 16 J = 2,MMT1

TEMP = PSY(I,J)

P1 = 0.25 z( PSY)(I+1,J) + PSY (I-1,d) + PSY (I,J+1)
+ PSY
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P2 = 2. * ETA(I,J) * RN **2 * DELR + PSY(I+1,J)
1 - PSY (I-1,9)

U (T,d) = P1 - P2 *A/8.*RN)

DEY = ABS( U (r,d) - TEMP)

M (DEY - DEYMP) 16,16,15
DEYMP = DEV

CONTINUE

IF (I - NN1 ) 18,17,17
MMT1 = M1

CONTINUE

MMT1 = MM1

DO 21 1
DO 19 J MMT1

PSY (I,Jd) ( PSY (I,3) +U (1,9) )/ 2.0

CONTINUE

IF (I - NN1) 21, 20,20

MMT1 = M1

CONTINUE

DO 22 I = 2, NN1

PSY(I,MM) = PSY(I,MM4) - 2,* PSY(I,MM3) + 2.%* PSY(I,MM1)
CONTINUE

CONTINUE

khkdkkkkkhkhkkhkhkkkhkkhkhkhhkhkhkhhkkhkhkhkhhkhhkhkhkhkhkkkhkhkkhkhkhkhkkkkkkdhk
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CIRCULATION CALCULATION BY ITERATION TECHNIQUE
'U' IS USED FOR TEMPORARY STORAGE OF CIRCULATION

khkkhkkhkhkhhkkhkkhhhkhkhkhhhkhkhhhkhhkkhkhkhhhkhhkkhhkhkkhhkhkhkkhhkkhkkkhkkk

DEVYMG = 0.
MMT1 =.MM1

DO 27 I = 2,N1
XI = 1

DO 25 J = 2, MMT1

TEMP = GEMA ¢I;0) gema Gi-1,J)

G4 = GEMA(I+1,d) + GEMAEI 1,33 MA I,J+1) + GEMA(I,Jd-1)
G5 = ( PSY(I,J+1) - PSY(I,d-1) + Y*( GEMA(TI+1,J)

1 - GEMA(I-1,d))

G6 = ( PSY(I+1,J) - PSY(I-1,d))*( GEMA(I,J+1) - GEMA(I, Jd- 1))
G7 = RRX * ( G5 - G6 )

U (1,d) = 0.25 * G4 - G7

DEV = ABS( U (I,J) - TEMP)

‘IF (DEV - DEVMG) 25,25,24

DEVMG = DEV

"CONTINUE

IP (I - NN1) 27,26,26

MMT1 = M1

CONTINUE

MMT1 = MM1

DO 30 I = 2, N1

DO 28 4 =.2, MMT1

GEMA(I,J) = 0.7*U (I,J) + 0.3 * GEMA(I,J)
CONTINUE -
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IF (I - NN1) 30,29,29

MMT1 = M1

CONTINUE

DO 31 T = 2, NN

GEMA(I,MM)=GEMA(T ,MM4) - 2,*GEMA(I,MM3) + 2.*GEMA(I,MM1)
CONTINUE

hkkkkkhkhkkkhhkkhhkhkhhkhhkhhhhkhkhkhhkhhkhkhkhhkhhkhhhhkhkhkhhkhhkhkkhkkkkkk

TANGENTIAL VORTICITY CALCULATIONS BY ITERATION TECHNIQUE
‘U' IS USED FOR TEMPORARY STORAGE OF TANGENTIAL VORTICITY

kkdkkhkhkhkkbkkhkhhhkhkdbhkhhhhhhkhkhkhkhkhkhkkhkhhkkhhkhkhkkhkhkhkhkkkd

DEVME = O.
MMT1 = MM1
DO 35 T = 2,N1

ETA(I-1,J9)
- Psv(r J-
1

- PSY(I-
(GEMA(I
PSY(I J-
- (ET5
- TEMP)
3,33,32

TA(T,0+1) + ETA(I,J-1)
RX ) (ETA(I+1 J)
(I )

+
)
,JI))*(ETA(I, - ETA(I,J-1))
J+1) - GEMA( ) )*VY
) - PSY(I,Jd+

:

+1
J
)
ET6 - ET7) * RR

J+
I,
1)
*

#(\*

, 1))
1 * VZ
U (I,J) = é . - RX ) / DENO
IF (DEV - DEV
DEVME = DEV
CONTINUE ‘
IF ( I - NN1 ) 35, 34 34
MMT1 - M1
CONTINUE
MMT1 = MM1
DO 39 1 )
DO 37 4 s MMT1 .
ETA (I,J) 0.2 *U (I,J) + 0.8 * ETA (I,J)
CONTINUE
IF (I - NN1) 39,38,38
MMT1 = M1
CONTINUE

khkkkkdkhkkhhkhkhhkhkhhkkrkhkhkhhhkdkhkkkkkkkdhhhkkkkkkrdhdhhkikkkkkd

N1

n
H NN

BOUNDARY CONDITIONS FOR TANGENTIAL VORTICITY

kkkkhkkhkhkhkkhkkhkhkhkkhhkhkhhkdkdhhhkhkhkkkhkhkhkkhkhkhhhbhhkkhkkhkkrhhhkhkhkkhx

DO 40 I = 2, NN
ETA(I,MM) = ETA(I,MM4) - 2.*ETA(I,MM3) + 2.*ETA(I,MM1)

CONTINUE
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DO 41 J = 2, Ml
ETA (N,d3) = O.-
CONTINUE

DO 42 I' = 25 N
XT = T

RN = A * (XI -
ETA (T,1) = 2.
CONTINUE

DO 43 I = NNP,
XI =1

RN = A * (XI -
ETA (I,M) =
CONTINUE

DO 44 J = MP, MM :
ETA (NN,J) = 2. * (PSY(NN1,Jd) - PSY(NN,J)) / (RI * DELR ** 2 )
CONTINUE

ETA (NN,M) = (PSY(NN,M1) - PSY(NN,M)) / (RI * DELZ ** 2 )

1 + ?(PSY(NNl M) - PSY(NN, M)) / (RI * DELR ** 2)

IF (KX - MX ) 52,45,45

WRITE §3 ,93) MX

WRITE (3,91)

MX = MX + LB

hkkhhkkkhhkhkkhkkhkhkhkhkhhkdhkkhkhkhrkhkhbhkdhhkdhhkhhkkihhkhkkrhkhkhhkhkhkhkdhkkhk

* =

.)
(PSY(T,2) - PSY(I,1)) / (RN * DELZ ** 2 )

* b =

.%PSY(I,MJ) - PSY(I,M)) / ( RN * DELZ ** 2 )

PRINTOUT OF STREAM FUNCTION, CIRCULATION AND TANGENTIAL
YORTICITY V

Kkdkkkkdhhkhkdkhhkkkhkhdhhhkhhhhhhdhkkhhkhhkkhkhhkkrrhkkhkhkhrhhk

WRITE (3,95)

WRITE §2,94) DEVMP, TOL
WRITE (3,84) (U, d = 1, M)
DO 46 I = 1,N

WRITE (3,88) I, (PSY(I,d), d =1, M)
CONTINUE .

WRITE (3,93) ( I,I = 1, NN )

DO 47 J = M,MM

WRITE (3,88) J, (PSY(I,Jd), I = 1,NN )

CONTINUE
WRITE (3,86)
WRITE é3, 94) DEVMG, TOL
J, d =1, M)

WRITE (3 84) (

DO 48 I = 1, N

WRITE (3, 88) I, (GEMA(1,J), J=1,M)
CONTINUE

WRITE (3,93) (I,I.= 1, NN )

DO 49 J = M,MM

WRITE (3,88) J, ( GEMA(I,J), I =1, NN )
CONTINUE

WRITE (3,87)

WRITE (3,94) DEVME, TOL

WRITE (3 84) (g, =1, M)

DO 50 I = 1, N :
WRITE (3 88) I, ( ETA(I,d), J=1,M)
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CONTINUE
WRITE (3,93) ( I,b = 1,MN )

DO'51 J = M, MM ;

WRITE (3,88) d, ( ETA (I,d), I = 1, NN )
CONTINUE

CONTEINUE

khkkkkhkhkhkhkhRkhkhkhhkhkhkhkhkhhkhkRhhkkhkhhkhkhhhhkhohkdhkhkhdhkhkdkhhhkdhhkrk

RADIAL VELOCITY - U CALCULATION FROM STREAM FUNCTION

*********************************************************

DO 53 J = M1
U (N,d) = -uo / ( RO * OMEGA)
CONTINUE
MMT1 = MM1
DO 56 I = 2, N
I =1
= (XI - 1.) * A
DO 54 J = 2, MMT1
U (I,Jd) = (PSY(I,d+1) = PSY(I,d-1)) ¢/ (2. * RN * DELZ )
CONTINUE o
IF (I - NNl ) 56,55,55
CONTINUE
WRITE %3 ,96)
WRITE (3 84) (3,9 = 1,M)
DO I =1,
WRITE (3, 88) I, (U (1,9), d=1,M)
CONTINUE
WRITE (3,93) (I, I =1, NN )
DO 58 J = M,MM

WRITE (3,88) J, (U(I,d), I =1, NN )
CONTINUE

khkkhkkkhkkkhhhkhkhdkdhhhhhhhhdhhhkhhdhhhhhdhhrhhhhhhdhkhhkhkhkhrdkhk

AXIAL VELOCITY CALCULATION FROM STREAM FUNCTION ‘Ut IS
USED FOR AXIAL VELOCITY CALCULATION FOR SAVING STORAGE
CAPACITY

Tdkkk kI hkk kA ARk Ak hkkkhkhkhk bk hkkkhkhhkkdkhhkkkhkdkhkkdhkdkhikkhx

1

DO 59 J =1, M

U (N,J) = 0.

CONTINUE

DO 60 J = 2, MM

U (I,9) = -(-PSY(4,d) + 2. * PSY(3,J) + 11.*PSY(2,d))"/
(5.*DELR 1 ** 2 ) '

CONTINUE

MMT1 = MM1

DO 63 I =2, Nl

XI =1

RN = A * (XI - 1.)

D061 J = 2, MMT1 ‘

U (I,3) = ( PSY(I-1,d9) - PSY(I+1,3) ) ¢ (2. * RN * DELR )
CONTINUE

IF (I - NNl ) 63,62,62
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“ WRITE (3,88)
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MMT1 = M1
CONTINUE
DO 64 I = 2, NN1
U (I,MM) = U(I,MM4) - 2.* U (I,MM3) + 2.*U (I,MM1)
CONTINUE
WRITE (3,97)
WRITE (3,84) (J,d =1, M)
DO 65 I = 1, N (

I

, U(I,J), J=1,M)
CONTINUE

WRITE (3,93) (I, I = 1, NN )

DO 66 J = M, MM

WRITE (3,88) J, ( U (1,d), I =1, NN )
CONTINUE

hkkhkkhkhkkkhkkhkkkkhkkkkhkkkhkkhkhkkhkhkhkkkkhkhkkhkhkkkkhkkkhkkkkkkhkkkhkkhkkkkkkkx

TANGENTTIAL VELOCITY CALCULATION FROM CIRCULATION 'U'
IS USED FOR TANGENTIAL VELOCITY CALCULATION FRO SAVING
STORAGE CAPACITY

khkkhkkkkhkkkkkkhkhkkhkkkkhkkhkkkhhkkhkkhkkhkhkkhkhhkhkkhhkhkkkkhkhkkkkhkkk

DO 67 J 1, MM
U (I,9) .0
CONTINUE

MMT = MM

DO 70 I =2, N

MMT = M
CONTINUE
WRITE 23,98
WRITE (3,84
DO 71 I =1
WRITE (3,88
CONTINUE

ngJ:lnM)

)
WRITE (3,93)

)

(

N _

I, (U (1,3), -d=1,M) NN )
( I,I =1, NN)

DO 72 (J = M, MM

WRITE (3,88) J, ( U (I,d),

CONTINUE -

1, NN )

FORMAT §5F12.7 )

FORMAT 416 )

FORMAT (/ 10X,' RADIAL INLET VELOCITY = ', E18.7 / 10X,
1' RADIAL REYNOLDS NUMBER =', E18.7 / 10X,' TANGENTIAL
2INLET VELOCITY =', E18.7 )

FORMAT ( /7X, ' J = ', 5X, 7( 12, 14X) / )

FORMAT (// QO = ', E16.7 / 'OMEGA 'WE16.7/ ' H = '
1E16.7 /' RO =',E16.7 / 10X, ' TANGENTPALUREYNOLDS NUMBER
2= ',E16.7 / 10X ' INLET CIRCULATION = v, E16.7 /710X, !
3ROSSBY NUMBER = ',E17.7 )
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86 FORMAT (// ' CIRCULATION DISTRIBUTION ' / )

87 FORMAT // ' TANGENTIAL VORTICITY DISTRIBUTION / )

88 FORMAT ( 110,6E16.7 ) . \

89 FORMAT ( /5X,'N =',I3,5X, #M-&2, I8Y5X4s)NN ="', I3,5X,
1 ‘MM = ',I3 )

90 FORMAT (416)

91 FORMAT ( 8X., ! **f************************* ') g

92 FORMAT (/8X ' NUMBER OF ITERATIONS ARE ', 15 /

93 FORMAT ( /7%, "1 = ', 56X, 7( 12, 14X ) / )

94 FORMAT ( ' MAXIMUM DEVIATION = " , E18.7 / ' ASSUMED
ITOLERANCE = ', E18.7

95 FORMAT (/' STREAM FUNCTION TABLE ' // )

96 FORMAT (/ 5X, ' RADIAL VELOCITY DISTRIBUTION ' /

)

97 FORMAT (/ 5X, ' AXIAL VELOCITY DISTRIBUTION ' / )

98 FORMAT / 10X, ' TANGENTIAL VELOCITY DISTRIBUTION
- STOP
END

‘)



