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ABSTRACT

AN EXPERIMENTAL AND THEORETICAL STUDY OF
THE FLOW PHENOMENA WITHIN A

VORTEX SINK RATE SENSOR

by

Dr. G. L. Goglia (Principal Investigator)
Professor & Chairman

Mechanical Engineering
Old Dominion University

and

Dr. D. K. Patel
Research Associate

Old Dominion University

June 1974

The objective of this investigation was to obtain a de-
ta<1l;ed description of the flow field within a vortex sink
rate sensor and to observe the influence of viscous effects
on its performance.

The sensor basically consists of a vortex cham.ber and a
sink tube. The vortex chamber consists of two.circular co-
axial disks held apart, at their periphery, by a porous
coupling. One circular disk has an opening to permit the
mounting of the sink tube, in such a manner that the vortex
chamber as well as the sink tube have a common axis of
rotation.

Air was supplied radially to the sensor through its
porous coupling as the sensor was rotated at various speeds.
Particular emphasis was directed toward an understanding of
the flow field in the sink tube regjon. Thus velocity measure-
ments at various stations along the length of the sink tube
as well as along a given radius at any designated station
were taken.
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A computer program was developed, for obtaining the
numerical solution of the Navier-Stokes equations, assuming
laminar flow, having generally prescribed inlet conditions
and axisymmetric boundary conditions. Computational results
for various viscous flows and assorted boundary conditions
have been obtained.

For a specific mass flow rate and the geometry of the
vortex chamber, it was found that the flow in the vortex
chamber was only affected, locally Ci.e.9 only near the
sink region), by the size of the sink tube diameter. How-
ever, within the sink tube, all three velocity components
were found to be higher for the smaller sink tube diameters.
As the speed of rotation of the sensor was increased, the
tangential velocities within the vortex chamber, as well as
in the sink tube increased almost in proportion to the speed
of rotation.

The only noticeable effect on the flow pattern, due to
the variation of the vortex chamber spacing, ,was found to be
at the entrance section of the sink tube. For a given mass
flow, the radial and tangential velocities in the vortex
chamber increased with an increase in the chamber diameter.
The same effect was also observed in the entrance region of
the sink tube. .,

A change in the flow,rate had an appreciable effect
within the sensor and particularly near the sink tube en-
trance. As the flow rate was increased, both the tangential
velocity and tangential vorticity increased rapidly. At the
higher flow rates, vortices were produced at the corner of
the entrance section of the sink tube and thus the flow
became unstable.

The theoretical predictions were found to be in reason-
able agreement with the experimental results.
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I. INTRODUCTION

An Interest in vortex flows has existed for many decades.

The beauty and vigor of the whirling and swirling motions 1n

water and air has fascinated man from hts earliest days.

Vortices may have been what inspired the Mediterranean artists

and craftsmen, well over 3000 years ago to create their

spiral ornamentations. Today, man describes vortex motions

as the sinews and muscles of fluid motion and the scientists

through research efforts attempt to harness the energy

contained therein. Researchers are attempting to utilize

vortex flows in many energy conversion schemes such as in

aeroplanes and other lifting bodies. As the state of the art

of vortex flow develops many new applications are brought

into focus. In recent years, vortex flows within confined

chambers have become of considerable interest. This interest

arose as a direct consequence of attempting to learn more

about the flow phenomena relevant to the gaseous core of a

nuclear rocket [28], electric power generation using magneto-

hydrodynamic effects [12], and pure fluidic devices such as

the vortex amplifier and the fluidic gyroscope [15J.

A search of the literature readily reveals that there

have been many contributions made to the study of vortex

flows through investigations pertaining to meteorology, the

Ranque-Hilsh tube, the cyclone separator, wing theory, com-

pressors, fluidics and others. To adequately discuss here

the voluminous literature on vortex flows would serve little

purpose, thus, a condensation of the important contributions

1



is presented.

Vogelpohl J61J was the first investigator to attempt an

analysis of a confined vortex. He obtained an analytic

solution for the tangential velocity under the restrictive

assumptions that the radial velocity was completely indepen-

dent of the axial coordinates and that the axial velocity

was zero. These assumptions precluded the increase of the

radial mass flow within the boundary layers due to the action

of the pressure defect. Thus, his solution was not an

accurate representation of the vortex flow between two flat

plates.

In the case of coaxial disks flow, by assuming the

axial velocity to be radius independent, Karman I25J obtained

a set of ordinary differential equations that described the

steady state viscous flow above an infinitely large rotating

disk. A numerical solution to these equations was presented

By Cochran 19] . Bb'dewadt 14] solved the problem of a uni-

formly rotating fluid over an infinite stationary wall.

Batchelor [3J generalized the KarmAn's method to include

the case of two rotating disks and discussed, semi-quantl-

tatively, the nature of the steady flow between the two disks.

Additional comments on this problem have been presented by

Stewartson [57]. He also studied the boundary layer on a

semi-infinite cylinder which was either rotating about its

axis 1n a fluid otherwise at rest or was stationary with a

rotating fluid inside it [59J . He also investigated the shear

layer at the boundary of a finite circular cylinder for a



fluid rotating uniformly about its axis in the same reference.

Watson and Rice J36, 37, and 38J studied the inward

flow between rotating disks, which corresponded to the multiple-

disk turbine. Their analyses and results were for the

potential flow between the disks as well as for creeping flow

Between the disks accounting for the ceritrifugal effects.

These analyses considered both partial and full admission of

the fluid at the outer periphery. The asymptotic flow was

shown to depend only on the fluid flow rate and the radial

Reynolds number (-Nne_u), while independent of the tangential

velocity.

By employing the numerical method developed by Hall [20J ,

Stewartson and Hall [58] obtained a solution for a viscous

incompressible flow within the inner core of a nuclear reactor.

Theoretical investigations of unstable flows of the

second kind were reported by Ludwieg [33] and Jones I24J.

Axisymmetric and spiral disturbances were considered. Lud-

wieg presented stability criteria for the core flow of

Hall 119] and predicted instability for small disturbances

if the pitch angle of the helical streamlines became too

steep and thus the Rossby number too small.

Rosenzweig, Lewellen and Ross [52J also analyzed the

two plate problem. They limited their analysis to the case

where the tangential velocity was much greater than the

radial velocity and the separation distance between the plates

was greater than the radius of the plates.

Viscous effects in vortex motions driven by an inward



radial convection of an angular momentum were examined in

more detail by Lewellen J30J. Exact and some nearly exact

soluttons of the Navier-Stokes equations, applicable to this

case, were also o&tained. These solutions were found by a

general expansion of the equations of motion for a large

swirl (.t.e. for a small Rossby number) and by linearizing

the equations for perturbations about known flows for a weak

swirl (t.e., a large Roisby numfrer). He discussed the axial

variations of flow. The results for large Rossby numbers

Indicated that as the circulation decayed with increasing

axial distance, the axial velocity in an annulus about the

axis actually increased faster than on the axis itself. This

caused a reduced axial pressure gradient along the axis. The

results for small Rossby numbers indicated that the axial

pressure gradient could be reversed to produce a reverse

flow. It was found that 1n the flows dominated by rotation,

the fluid motion was forced to be two dimensional except for

a thin shear region where all necessary adjustments imposed

by the boundary conditions were satisfied by the flow.

Granger [18] studied the steady three dimensional

vortex flow for a specified vorticity distribution along the

axis of rotation within a vortex chamber whose disks were

an appreciable distance apart.

K1dd and Farris [29] attained' ratKer interesting results

from a flow produced by the interaction of a potential vortex

with a stationary surface. In the analysis they transformed

the full Navier-Stokes equations by a similarity technique



and then numerically integrated resulting ordinary differ-

ential equations. Very close to the surface, the radial

velocity was found to be directed towards the axis and there-

fore the flow was able to redistribute itself. Such problems

were of interest in the study of tornadoes and hurricanes.

Recently, they have become of interest especially in the

design of nuclear reactors.

Donaldson and Sullivan [13J made an extensive study of

the class of solutions u = u(r), v = v(r), w = zw(r) for

laminar incompressible flow conditions. The solutions by

Burgers [5] and Rott 153], tin which u = -ar, v = v(r) and

w = 2az, (a = constant), were included in this class.

Donaldson and Sullivan began their work as a consequence of

an interest on "canned" vortex flows, where fluid imparted

with a swirl entered a cylindrical container through its

side and discharged axially.

Yih 165] obtained a closed form solution of the Euler's

equations for an axisymmetric flow of a swirling and non-

swirling flow discharging into a point sink. He, however,

made no provision for boundary layer development.

Ostrach and Loper [41] analyzed the vortex motion between

two closely spaced disks. The vortex was assumed to be

driven by the tangential injection of the fluid at the pe-

riphery of the configuration and was discharged at its center.

The momentum integral solution of this problem showed the

strong dependence of the boundary layer thickness as well as

the radial velocity on the imposed radial mass flow. The



results indicated that the boundary layer blockage effects

could be reduced by increasing the imposed radial mass flow.

It should be noted that they considered the case where the

relative tangential velocity at the periphery of the con-

figuration had a finite magnitude. Thus the results are

not applicable to the vortex rate sensor, where indeed the

relative tangential velocity at the periphery of the con-

figuration is zero.

Fiebig I15J studied the response of the radial flow to

harmonic oscillations of the sensor. The approach used was

to approximate the transport flow by a family of "parabolic"

profiles which satisfied the equation of continuity but not

the momentum equation.

Eglt, Kizilos and Reilly {14] analyzed the radial flow

boundary layer on a circular flat disk. In their investi-

gation, the drain was approximated by a line sink and the

radial potential flow was assumed to be unaffected by the

boundary layers.

Sarpkaya [54] studied the radial flow between two co-

axial disks. He computed the boundary layer development

by two methods. Similarity solutions of the equations were

obtained by employing an integral momentum technique through

utilization of an approximation suggested by Thwaits [60J.

The result showed that the boundary layer thickness decreased

linearly to zero from the periphery to the center of the d|sks

A theoretical and experimental investigation of the gain

and the frequency response in a vortex sink rate sensor was



conducted by Ostdiek J40J. He reported that the dynamic

characteristics of the viscous flow within a rate sensor

operating in the fully developed range were significantly

more favorable than those for the inviscid fluid within the

sensor.

Richards 148] applied the numerical techniques of the

implicit alternating direction (ADI) method, as well as of

the explicit iteration method to study the characteristics of

the flow in a vortex rate sensor in which fluid discharged

into a point sink. He compared his numerical results with

the experimental results obtained by Hellbaum 122] and found

that the agreement was good for values of r >_ 0.2 rQ.

Roache and Muller 151] developed a numerical procedure

for finding solutions to both incompressible and compressible

laminar separated flows, using time dependent finite

difference equations. They used the conservation forms of the

governing equations and used the upwind difference technique

for the advection (inertial) terms in both the compressible

and incompressible flows.

Macagno and Hung [34] studied the annular laminar ;

captive eddy in a conduit expansion. The numerical procedure

used was restricted to an expansion ratio of 2:4 and W;e\§

limited to radial Reynolds numbers (NRe_u) up to 200. A

correlation of experimental results with their numerical

results was also included.

Pao 142, 43] considered two cases of the rotary disk-

cylinder combinations and numerically computed the flow
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pattern of a viscous incompressible fluid confined within

the cylindrical chamber. He found that for a tangential

Reynolds number N = Cwr^/v) in excess of 8, nonlinearities
' Re-6 °

appeared fn the flow. He also observed that as the tangential

Reynolds number CNn Q) was increased beyond 400, convergence

By the numerical iteration technique for steady state con-

ditions became extremely slow.

Pearson [44J described a method for obtaining an exact

numerical solution for the flow between two Infinite rotating

disks. He also described a computational method for solving

the time-dependent two-dimensional viscous flow problems 145].

In addition to the numerical and analytical investigations

of vortex flows, a number of experimental investigations are

reported in the literature. Experimental studies of confined

vortex flows can be broadly classified into two subcategorles.

The first is concerned mainly with high swirl flows. Because

of its practical importance, such as in the case of hydraulic

cyclones, magnetohydrodynamic vortex power generators (nuclear

reaction chambers), dust cleaners, etc., high swirl flows

received a great deal of attention.

One of the earlier experiments, was a visual experiment

by Savino and Keshock [55]. It was conducted in an attempt

to suspend fine particles of various sizes in a vortex of

air Inside a right circular cylinder, which had a length-to-

diameter ratio of approximately one. This study revealed

the presence of some axial motion, as particles appeared to

always cluster at the corner of the cylindrical surface and



the exit end wall. This observation suggested that an

appreciable radial tn-flow existed at the end-wall boundary

layer. They concluded that the amount of swirl (ratio of

tangential to radial velocities) imparted to the fluid, as

it was injected into the chamber, alone determined that

fraction of the total mass flow which was forced Inwardly

within the end wall boundary layers. When the swirl was

low fess than 0.5), the radial inflow had sufficient inward

momentum to penetrate the centrifugal field. The inflow

existed at all axial and radial positions away from the walls.

When the swirl was high (greater than 10), the radial inflow

was diverted axially and if the flow was confined within two

walls, all the fluid left the chamber by way of the boundary

regions adjacent to the end walls. This latter conclusion

w.as consistent with the result of Lewellen I30J .

Kelsall [26J made measurements of the radial, tangential

and axial velocity components inside a hydrocyclone separator.

His experiments revealed the existence of large secondary

motions with most of the mass movement occurring close to the

walls where the centrifugal force was least.

Williamson and McCune I64J , and Donaldson 113] conducted

experiments in short cylinders (0.130 <_ (L/D) <_ 0.281). In

both references, the radial distribution of the tangential

velocity was calculated through axial traverses of the total

pressure.

Ragsdale 146] took pitot tube measurements within a

yortex chamber (L/D = 0.5) at two radial stations and several
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axial stations. He concluded that the motion was essentially

tangential with very little variation of magnitude in the

axial direction.

Kendall [27] experimented with a vortex that was generated

by 3 rotating porous cylinder which imparted a swirl to the

fluid supplied to it through the porous wall. A flattened

pitot tube was used to traverse the boundary layers. In the

measurements of both total pressure and local fluid direction,

the radial velocity was assumed zero at distances far removed

from the wal1.

The second subcategory of experimental studies of con-

fined vortex flows is mainly concerned with the low swirl

flows. One such flow is the flow in a vortex rate sensor as

reported in references [10, 22, 40.].

Hellbaum [22] conducted experimental work in a vortex

rate sensor and obtained characteristic flow angles for

different tangential Reynolds numbers, radial Reynolds numbers

and plate-spacings. By the smoke trace technique, he studied

the effects of the geometrical parameters on the characteristics

of flow angle in the vortex chamber of the sensor. He selected

r = 0.2 r0 as the smallest radius for which the flow angle a

was not appreciably affected by the sink proximity. By

determining a . (flow angle a at 0.2 rQ), he plotted graphs

of tan a Q £ versus tangential Reynolds number (h^w/v), with

Cr0/h) and radial Reynolds number (Q0/hv) as dimensionless

parameters. Hellbaum showed an increase in tan a for
U • c.

a decrease in flow rate.
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TKe paper by DeSantts and Rakowsky 110, J1J reported

the experimental velocity profiles and boundary layer

characteristics in a steady state weak vortex flow produced

fry the combination of an axisymmetric sink flow and a vortex

flow between two coaxial circular plates of very small aspect

ratio U/r0 <_ 0.03).

Tn the experimental studies of Sarpkaya [54J , using air

as the fluid, it was observed that the output of the pickoff

signal was linear for small values of 'u' and that linearity

increased with increasing flow rates. He further observed

that rotations in counterclockwise as well as clockwise

directions about the axis of symmetry gave identical

differential pressure signals.

Rakowsky and Schmidlin [47J , with water as the working

fluid, studied the flow in the vortex chamber by photographing

the dye traces of the streamlines and then reducing the re-

sulting data. Angular momentum efficiency (.ratio of angular

momentum at any r to that at r = r0) of the midplane of the

vortex chamber was plotted as a function of radius. These

results were then compared with the results predicted by a

momentum integral method with an assumed parabolic momentum

profile and the unknown matching parameter was determined.

In addition to the effect that the coupler diameter had

on the pickoffs, Burke and Roffman [7J studied the performance

of two different pickoffs (one axially slotted and one cir-

cumferential ly slotted). They observed that for couplers

of smaller diameters the pressure output decreased.
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With an angular rate s-ensor, Burke [6] observed the

effect of the coupler height and pickoff on the sensitivity

(defined as signal output unit rate of rotation). He re-

ported that for a given rate of rotation, the sensitivity

(which now is a measure of differential pressure) decreased

rapidly as the angle between the axis of spin and the axis

of symmetry increased. The maximum sensitivity occurred when

the two axes coincided. The sensitivity was also found to

increase with increased spacing between the couplers. He

also discussed the time dependent phenomena such as the noise

frequency in the output of the pickoff, the transport time

and the threshold (ratio of Ap of signal to Ap of noise).

These phenomena are of importance in the practical use of

sensors when the response time is of importance.

Arimilli 12], Gala 117] and Lu 132) each undertook an

experimental investigation of a vortex sink rate sensor.

Their studies, however, were confined only to the sink tube.

The apparatus they used had vortex chamber diameters of 5

and 10 inches, while the sink tube diameters ranged from 1/4

to 1 inch. The objective of their studies was to observe

experimentally the effect of the flow rate, change of

rotation, and change of configuration on the tangential

velocity within the sink tube.

Several investigators have undertaken studies, experi-

mentally as well as theoretically, within the vortex chamber

only. Rakowsky and Schmidlin [47] have considered the entire

vortex sink rate sensor as their system. However, they assumed

the fluid to be inviscid and therefore were able to use the
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Euler equations and easily find the numerical solutions. None

of the previous investigators, however, have considered a

viscous fluid. No direct measurements of the velocities in

the sink tube have been made before. Thus in the present

•investigation a viscous fluid is assumed and the velocities

within the sink tube are directly measured. In addition to

this experimental investigation, a complete numerical analysis

of the flow pattern in the entire sensor is undertaken.

The vortex sink rate sensor presently under consideration,

consists basically of an ideal sink flow between two coaxial

plates having a single outlet. The entrance flow to the

device is radial and the sensor design permits an angular

rotation about its geometric axis. This arrangement results

In the creation of a vortex flow within the sensor.

The sensor is essentially a fluidic device which, in

addition to being Inexpensive to manufacture, has all the

desired characteristics for use as a guidance control instru-

ment. Its simplicity, high reliability and long life are

assets not to be overlooked. The present exploration of space

has also created the need for a guidance control instrument,

that would essentially be unaffected by severe environmental

conditions such as high temperature, shock, vibration and

nuclear radiation. The sensor can indeed serve this need as

a fluidic gyroscope. The fluid vortex amplifier also shows

promise for future application to liquid propellent rocket

engine control systems. The advances in the art of fluidics

within the past few years, and the successful application of

fluid amplifiers has made the sensing and amplification of a
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signal possible by merely varying the rotation of the sensor.

As the sink tube is considered the most likely location

for any signal detection element, the study of the flow

pattern within the sink tube is given particular attention

here. A signal detection element senses changes as a con-

sequence of fluctuations at its location. The signal could

be a relatively weak one and therefore could need to be

amplified for transmission to the controlling device. Thus

it is important to strategically locate the signal detection

element at the location where maximum amplification occurs.

This present investigation was therefore undertaken

with the primary objectives being to investigate the steady

state flow conditions, and to develop an understanding of

the flow pattern within the sensor.

Chapter II describes the formulation of the governing

equations. Chapter III presents the numerical analysis used

for solution of the flow field. Chapter IV and V are devoted

to the numerical results. The experimental investigation

and results are discussed in Chapter VI. Experimental results

are compared with numerical results in Chapter VII and the

conclusions are given in Chapter VIII.



II. BASIC FORMULATION

2.1 Governing Equations

The vortex sink rate sensor considered for this invest-

igation is shown in Figs. (2.1) and (2.2}. The sensor,

Basically, consists of a vortex chamber and a sink tube.

The vortex chamber consists of two circular co-axial disks

held apart, at their periphery, by a porous coupling. One

circular disk has an opening to permit the mounting of the

sink tube in such a manner that the vortex chamber as well

as the sink tube have a common axis of rotation. Air flow

was supplied radially to the vortex chamber through the

porous coupling. The objective behind this investigation

was to determine the flow pattern within the vortex sink

rate sensor.

The axisymmetric flow through the sensor suggested the

selection of the cylindrical coordinate system, as shown in

Fig. (2.3), to establish the governing equations for the flow.

The~radial, tangential and axial coordinates are respectively

represented by r, 9 and z while u, v and w denote the

respective velocity components. In the analysis that follows,

the top plate of the vortex chamber is considered to be

located at 2 = 0 and the axis of symmetry is located at r = 0.

The Navier-Stokes equations for a viscous incompressible

fluid with constant properties may be expressed in cylindrical

coordinates as
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»9ur .2 . a The Vo ' r t ex ' s inK Rate Sensor
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U9u . v 3uU9T r

2_ 3v 32u
2 "3~e "*"r 9z

, (.2-1)

9v 3v uv
F"

1 3V
r "3T

92V

F
-

2 3u
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:|*
|9r'
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92w

.3w L Fz

32w

and the continuity equation is given by

9u . u^ . 1_ 9v . 3w n
9r r r Te "97 ~ u

C2- 2)

(2,3)

(2-4)

Essentially, two methods are employed in obtaining

numerical solutions of the governing equations. In the first

method, a steady state approach is used to find the solution

of the flow field for low Reynolds numbers. At higher

Reynolds numbers the steady state equations become unstable

and are not applicable. Thus, a transient approach is

adapted in obtaining the solutions for flow at higher Reynolds

numbers.
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2.1..1 Steady State Approach

Steady flow conditions are assumed throughout the

sensor, and since the air velocities are small,

the flow Is assumed to 6e incompressible. The temperature

of the atr entering the sensor is considered constant and is

taken to be the same as the environmental temperature.

Throughout the sensor, laminar flow is assumed and the in-

fluence of body forces is neglected. Axial symmetry is also

assumed and therefore the 3 r \ term is set equal to zero.
TB"̂  '

Under these assumptions, Equations (2-1), (2-2), t?-3)

and (2-4) reduce to

3u 3U 2 1*

3r
!-5)

2
3 V . 1 3v

r
v
-?
r

3z
1. J
p

3z

32W
,

lit + Ji + U* - n3r r 3z u

(2-6)

(2-7)

(2-8)

Equations (2-5), (2-6) and (2-7) are then, respectively

the radial, tangential and axial momentum equations for the

flow in the sensor. The continuity equation, Equation (2-8),

1s eliminated by Introduction of the stream function, ij>,

such that

and
u = I

r
(2-9a)

(2-9b)
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Thus the velocity components u and w can be expressed
»•

\n terms of \p.

The tangenttal vortictty Is defined by

3u 9W
Tz •

(2-10)

A combination of Equations C2-9) and (2-10) results in

2-
n - 7 3

3r'

2-

C2-11)

Since vorticity and circulation are related, it seems

desirable to express Equation (2-6) in terms of circulation.

Equation (2-6) is first multiplied by r and then rearranged

to gtye

2

f)
32

Upon cross differentiation of Equations (2-5) and (2-7),

followed by taking their difference, the pressure term is

eliminated and the result is expressed as

MIL - 2v

T ~ = v .+ r IF
_ n
~

C2-13)

By employing ,the definition of circulation, r = v«r,

Equations (2-12) and (2-13) are transformed to give

,, ,W8z = v r 87

J37 + W'
'2? SF

£ - -3^ = v
r

3 n + i 3fi ft + 3
2n,

^7' r W " r4 32' '

C2-14)

C2-15)
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Equations C2-11). C2--14) and (.2-15) now constitute the

governing equations for flow through the sensor under steady

state conditions.

2.1.2 Transient Approach

!n a manner similar to that described aboye, the tran-

sient form of the governing equations are found to be

1 3-*$ _ 1 3$ + !_ 9
2iji 12-16)

3r r 9z

• Ci ̂ ^i P ^ *P I ̂  T1 1 • ̂  T"1 ^ T* I I 9 1 7 11 -*- 'J—— + w—— = V|_ L _ i J- — ?'-'i » v£'-*'/
9 r 9 z I Z K

t3r

in 2f 9? _
T ' ~TTz " ,

f Ur
2-1+ 9 n
7T- . (2-18)

r »z J

These equations, with appropriate initial and boundary

conditions, are used to find solutions in the transient

approach.

2.2 Initial and Boundary Conditions

Initial conditions are necessary for Equations (2-17)

and (2-18). Upon considering the inertia of the fluid, the

simple and physically realistic assumption for the initial

condition is found to be that of a solid body rotation of the

fluid. Thus the radial and axial velocities are assumed to

be zero, and initial fluid shear stress is tfterefore neglected.

Consequently, at t = 0

r(r,z) - wr2, C2~19a)
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n(r.z) = 0 . U-19b)

The boundary conditions valid for both the transient

and steady state equations are the same, and are shown in

Fig. (2.4).

Stnce the flow is symmetric with respect to the z-axis,

it ts only necessary to specify Boundary conditions for half

of the sensor. With the origin chosen as the center of the

top plate of the vortex chamber the boundary conditions can

be written as

Ctl Sfnk tube and vortex chamber axis, r = 0, 0 <_ z <_ a

$(0,z) p f(0,z) = n(0,z) = uCO.z) = vCO.z) = 0, (2.20a)

WC.0.2)
7~z

r = 0 .

Cii) Top plate of vortex chamber, z = 0, 0 ̂  r <_ r0

-23
3r

Rr.O) = u(r,0) = w(r,0) = 0 ,

v(r,0) = o»r ,

f(r,0) = wr2,

n(r,0) = I

9Z z = 0

Ciii) Entrance to vortex chamber, r = rQ, 6 < z < h

r,z = o 2 ,
¥ n

C2-20b)

C2-2U)

(2-21b)

(2-21c)

(2-21d)

(2-22a)

uCr°'z) " "

vCrQ,z) = (2-22c)
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, 2
o »

wCr0,z) - ntr0,z) = 0 .

uCr.h) * w(r,h) = 0 ,

v(r,h) •= wr ,
— ?fCr.h) = wr ,

nCr.h) = 1 -a-2f

Cv) Sink tube wall » r

z = h

, h < z <

.
I?

f(rt,z) = ur,

n{ri$z) =11
2-r

Sr r =

(vi) Sink tube exit, z = A, 0 < r < r,.
— . — . j

||(r.t) -

(2-22e)

Civ) Bottom plate of vortex chamber, z = h, r. _< r £ r(

itr.h) =

(2-23b)

(2-23c)

(2-23d)

(2-23e)

(2-24a)

(2-24c)

(2-24d)

(2-24e)

^) = ?zCr.*) = utr.Ji) = o

Tfte justtffcation of the above boundary conditions is

given In Appendix A.

(2-25a)

(2-25b)
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2.3 NondjmensionaT form of the Governing Equations

The system of governing equations are made dimensionless

by introducing the following nondimensional quantities.

Independent Variables,

R = r_ Z = ~ = — R = — I - — T (2-26)
ro » ro' ro' 1 ro» " ro»

Dependent Variables,

v = _y_ r = T
-o '

W = 5F7 , n = n/w . C2-27)

2
Nn

 = t°rORe-e —T-

Upon introducing Equations (2-26) and (2-27) into

Equations (2-11), (2-14) and (2-15), the nondimensional form

of the steady state equations are found to be

il?i,- C2-28)
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(.2-29)

2r_̂ ,

V
•3*n +

C2-30)

Stmtlarly Equations (2-16), (2-17) and (2-18) are trans-

formed to give the dimensionless form of the transient

equations as

" ' C2-31)

,, , w
IT + UW+ W

. ,,3n ,T UTTIT Td i

32r
NRe-9 3R

Un 2T ar _ l
ir-prw-T^

(2-32)

(2-33)

The dimensionless initial conditions for the transient

equations are

for T = 0
r(R,Z) = R2 . (2-34a)

nOR.Z) = 0 . (2-34b)

The dtmensionless boundary conditions are shown in

Ptg. (2.5) and are written as
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CD Sink tube and yortex chamber a.xis, R = 0, O j < Z < [ L

U C O , Z I = V C O . Z I * r-CO.Z). * nCO. .Z) = 0, C2-35a)

W C O , Z j _ _

R = 0 . C2-35B)

.CM I. Top plate of vortex chamber, Z <= 0, 0 <_ fl <_ 1

utR.ol. = wC.R.05. p \J»CR,OI. = o ,

V(R,0) = R ,

rCR.o). = R2,

C2-36a)_

C2-36b)

C2-36c)

nCR»0) =
3 Z = 0 (2-36d)

( i i D E n t r a n c e t o vortex c h a m b e r , R = 1 , 0 < Z < H

UU.Z) =

wh

NRo
IT,

w ( l . z ) = n ( l , Z ) = o ,

vCi . z ) = r ( i , z ) = i ,

z N

2irr0 a)
F

(2-37a)

(2-37b)

(2-37c)

(2-37d)

Civ) Bottom plate of vortex chamber, Z = H, R., <_ R <_ 1

UlR.H) = W(R.H) = 0, (2-38a)

C2-38b)

C2-38c)



r t R . H ) = R'

n ( R , H ) = l.
...,?

Z = H .

Cy) S tnR tufre w a l l , R = Rf, H• <_ Z £ L

t ) C R t , z ) = w C R t , z ) = o,

= NRo ,

-R t .

r(JR t ,z) = R^ t

ntR t ,Z) = 1

= R.

(vi) Sink tube exit, Z = L, 0 <_ R <_

= o

8V S W
37 (R,L) = a7(R.L) = UCR.L) = 0 .

30

C2-38d)

(2-38e)

(2-39a)

C2-395)

C2-39c)

C2-39d)

C2-39e)

C2-40a)

C2-40b)

These initial and boundary conditions are utilized in the

numerical analysis of this investigation.

The systems of nondimensional governing equations, along

with appropriate initial and boundary conditions, are then

solved to obtain the stream function, circulation and the tan-

gential vorticity in the vortex sink rate sensor.



III. FORMULATIONS FOR
NUMERICAL ANALYSIS

As mentioned in the Introduction, it fs necessary to

approximate the governing equations by a finite difference

scfreme, so that calculations remain stable for all Reynolds

numbers. A similar approach for viscous flows has been used

by other investigators 18, 16, 45J , and Is discussed in the

Introduction. In references .[48, 49] the finite difference

technique was used to solve the non-linear equations for the

flov* within a vortex chamber. Both the implicit alternative

direction CADFl method and explicit finite difference methods

were used In reference [48]. The agreement in results was

found to be within one percent for the stream function and

one and half percent for the radial velocity variation. The

computer running time for the explicit method, however, was

noted to be two orders of magnitude less than that for the

ADI method. Consequently, for this study, the explicit

method was selected to determine the flow pattern in the.

vortex sensor.

For stability purposes the central difference method is

most suitable [34, 42, 45J , and therefore it was used in the

numerical analysis for this problem. The central differences

are obtained by using a Taylor series expansion for each term

in the differential equation.

As mentioned in Section C2.J.1, steady state and transient

procedures were adopted for computational purposes. In the

steady state approach, when the viscous equations are expressed
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tn a finite difference form, an iterative numerical scheme

is employed to obtain an approximate solution, in this

approach the procedure ETegins with an assumption of some

approximate flow pattern for a very low Reynolds number. The

numerical Iteration technique ts then used and continued,

until the ftnite difference equations are satisfied. This

ultimately leads to an acceptable flow pattern, for that

Reynolds number. This flow pattern then becomes the input

data at a slightly higher Reynolds number, and the procedure

is continued, until convergence is reached.

At the higher Reynolds numbers,these equations become.un-

stable and thus a transient approach, rather than the steady

state approach, is used. In this approach a technique of

expressing the differential equations in a succession of

discrete steps is employed. As an initial input for

calculations at the higher Reynolds numbers, a known flow

pattern from the steady state approach is used. The iteration

Is then continued until the results approach steady state

conditions. For subsequent higher Reynolds numbers the last

results are used as the input data and the procedure is con-

tinued.

3.1 Steady State Problem

By employing the central space difference technique,

Equations C2-28), (2-29) and C2-30) can be written 1n the

finite difference form as
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* =1
.J T

F* = l Cr, . + r. 4 + r. .+r

NRe-9 ,,

C3-2)

- 2a

,
4R 8R

This procedure is employed to calculate the temporary

values of iji*, r* and n*'. In the above equations i and j de-

note the space point in R and Z direction respectively. For

a gtven value of i and j, the space coordinates are represented

by R p C.t--l}.a and Z = (J-l)a, where a is the size of the grid

spacing. The explanation of these difference equations is
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gtven 1n Appendix B.

In the above equations, the non-superscripted dependent

variables are assumed to have the superscript (n) whereas

the asterisk ts used to denote a temporary value such as

$* respresenttng the new iterate A . * at that point. This
*»J ' t»j

new Iterate ts obtained from the temporary values and the

preceding (old) Iterate A.I by the relaxation procedure as
T > J

given by

(n+lj GO

•s.j = a - **l'\.i +yt,j • C3-4)

where 0 <_ w^ <_ 1.

3.2 Transient Problem

In the procedure used to solve the initial boundary

value problem, governed by Equations (2-31), (2-32) and (2-33),

the derivatives are approximated by finite differences in a

manner similar to that used in the steady state problem.

In this case, however, the central time difference as well as

the central space difference techniques are used and result

in the following equations.

k+1 k k k k

9 k k
a_ (2̂ a n t * - <K ) , C3-5)
on T,J
oK
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CrL < - rt,
-k k '' i+i. . i * r t- i , j

k-1

- r
M.,'\

'Re-8

2
a N

C3-6)

Re.

.1+1

- vi.V

Re-(

k k

4R

Re-e

lVi.j+ Vi.i

C3-7)

Re-6
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In the above equations, the subscripts 1 and j designate

the space point In the R and Z directions respectively, where-

as the superscript k denotes the time point, for given

values of t, j, k, the space and time coordinates are re-

presented by R = (i-l)a, Z = Ct-l)a and T = KAT, where a is

the stze of the grtd spacings and AT is the size of the time

step.

The method for obtaining these equations are similar

to that adapted by Fromm I16J , Pao ,[42J , and Macagno and

Hung 134], The explanation of these equations is given in

Appendix B.

This procedure mandated considering numerical stability

fn the selection of the time step size. The most stringent

restriction on the time step size, for the cases considered,

ts suggested in reference [21J , and is given by

AT < 1 + 1 x 1

NRe-6 C^Z) 7 NRe_0 (AR)

-1
0 _ W | (3-8)

" AT

In :thH>equatt©n>.U a,nd are th.e :a,yera^ge yeloctties for

the grid point under consideration. For the sake of con-

venience, AT, in most of the calculation, is taken to be

C&R/4U) in the present formulation.

3.3 finite Difference Forms of_ the Boundary Conditions

The. only boundary conditions that have to be expressed
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.in the finite difference form are those that involve a

derivative. They, in turn, are the expressions for the tan-

gential vorticities on the solid surfaces as well as for the

axial velocity along the geometrical axis.

The tangential vorticities are calculated by use of the

Taylor series expansion. By using B as a point on the plate

or wall and A at one mesh distance away, the Taylor series

expansion is expressed as

B

0(a3) (3-9)

B

for vortex chamber plates. Upon neglecting the terms of order
o

a or higher order and by using the plate boundary conditions,

W = 0, U = 0,

the series expansion is reduced to

(* - * ) (3"10)

B af A B

The expressions below for vorticities are found at J = 1

or Z = 0, and at 0 = m or Z = H, by using Equation (3-10) in

Equations (2-36d) and (2-38e).

n. . = 1
1,1

Ra
.

»
) for 0 < R < 1

i,m-l i ,m
) for R-- < R < 1i _ _

(3-11)

(3-12)

Ra

A similar procedure is used for the sink tube wall boundary

conditions and from Equation (2-35e) the vorticity is obtained
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at i *= nn or R = R^ and is given by

n . - 2 (# , ". - i|». i for H * Z « L. C3-13)nn,j »r nn-4fj T,ro — —

The tangential vorttctties can also be obtained by em-

ploying the MAC method 162.] where a phantom boundary point is

used. The MAC method produces the same results as given above.

An alternate method for computing vorticities is the one

suggested by Hung [23] which has the advantage of requiring

only information at an adjacent point. Consistent with the

above notations, the expressions for vorticities are found

to be

B B

Ra

Thus, the vorticity, at J = 1 or

, , - 3 (^4 2 - IK .) - '^1,2 for 0 < R < 1, (3-14)
1,1 ~ - JT ' • I »-A J » — —

Ra

and at J = m or Z = H, as

for R1 < R <
Ra ' (3-15)

Similarly along the sink tube wall, one finds at i = nn or

R = Rj.

nnn>j = ̂  C*nn^| j - *nn> .) - ̂n̂ LJu , H < Z < L.

Ria C3-16)

The Boundary condition for the tangential vortictty at the

corner junction of the sink tube and the vortex chamber is
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determined by use of 3 method suggested by Roache I50J. He

calculated the boundary conditions for the tangential vorticity

at the corner by using both the upstream and downstream

neighboring points for given values of stream function and

yorticity. Thus the boundary condition can be represented by

at t - nn, j = m or R = R, Z = H

2Rta

or

nn,m >r nn-l,m nn,m-l nn,m'
2R.a

1 (n , + ri i). (3-18)
' T nn-I»m nn,m-l

The axial velocity boundary condition along the geometrical

axis is given by

at R = 0

. W(0,Z) =
R+0 R ITT

R - 0 for 0 £ Z <_ L.

By use of the forward difference technique, this can be

written as ,

at t- 1 or R = 0,

6a
C3-19)
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or

(3-20)- - , , 9 i - ,
•i » J 2 H»J J»J ^ » J -* » J

5a
where 0 <_ I <_ L.

In the st-nfc tube at the downstream section, the dependent

variables are assumed to be constant and parallel to the tube

a,xts. Tfius at the stnk tube extt, the boundary conditions

can be determined through use of a parabolic extrapolation.

The relationship for boundary conditions employed here was

developed by Hung [23J , Consequently » for this case
tt '&$• /£•%!. ;tHe boundary condtttons can be written as

a t j = mm or Z = L ,

ri,mm = ri,mm-4 "2ri,mm-3 + 2ri,mm-l * (3-22)

n|,mm = ni^m-4 "2ni,mm-3 + 2rii,mm-l ' C3'23)

,mm = Wi,mm-4 -2Wi,mm-3 + 2Wijmm.1 . (3-24)

3.4 Iteration Technique

In the iteration procedure for this region, sweeps of

the Interior mesh points are made, in turn, for each of the

dependent variables, ̂ , r and n.. This procedure is continued

until
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Cn+l) Cnl

max . jt.J

< e . C3-25)

wfiere e is the required tolerance.

To accomplish the sweeps as mentioned above, 1t becomes

essential to adapt the following sequence of steps, which

are also Illustrated tn Fig. (3.1).

1} Assign the tntttal values for ty, r. and n a.s

$ • 0, r ° R2, n » 0.

2) Assign the boundary conditions for i|>.

3) Solve the stream function Equation (3-1) by the

relaxation method.

4) Solve the circulation Equation (3-2) by the

relaxation method.

5) Calculate the boundary conditions for n.

6) Solve the tangential vorticity Equation (3-3). by

the relaxation method.

7) Repeat procedure commencing with Step 3 through

Step 6 until required tolerance is reached.

The sequence of numerical procedures described above 1s

basically the same as that proposed by Pao {42J , with the

exception of the use of the relaxation technique. This

technique Is sufficiently discussed 1n Section (3.1),

Having obtained the solutions to the difference equations

for ty, r and n, the velocity components are calculated from

the relations
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READ DATA 7
INITIALIZE THE
VALUE il'-O.n-O,

. T-R*

I

GIVE BOUNDARY CONDITIONS OF

SOLVE FOR V USING RELAXATION
METHOD WITH 10 TO 40 ITERATIONS

SOLVE FOR F USING RELAXATION
METHOD

CALCULATE B.C. OF r\ USING

1
SOLVE FOR n USING RELAXATION METHOD

Figure 3.1 Simplified Computer Flow Diagram
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C3-26a)

(3-26b)

and

V = J- . (3-26c)

These are then expressed 1n the difference form as

! - *i-i.j' • o
and

(3"29>
where R * (1-1)a*.
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Through use of the numerical technique of Chapter III,

numerical results are obtained. These results are discussed

in Chapter IV and V.



IV. RESULTS OF THE NUMERICAL ANALYSIS

4.1 Stream Function

The symmetry of the sensor permits one to assign a value

of zero to the streamline corresponding to its geometrical

axis. On the top plate of the vortex chamber, the stream

function is arbitrarily assigned the value of zero. Since

N^0 is the value of the stream function along Z = H and

R = R.J , it is taken to be the value on the bottom plate of the

vortex chamber. At the entrance to the vortex chamber (i.e.,

at R = 1), the flow is assumed to be uniform and therefore the

stream function is directly proportional to Z, and along the

sink tube wall it is assigned the value NRO. On the downstream

section of the sink tube, the streamlines are assumed to be

parallel to the geometrical axis. With this information as

input data, Equation (.3-1) is solved numerically by following

the procedure described in Section (3.4). The pattern of the

streamlines in the sensor is shown in Fig. (4.1) and (4.2)

for two different sets of values of the radial and tangential

Reynolds numbers.

The variation of the stream function within the vortex

chamber, in moving from the periphery to its center, is shown

in Figs. (4.3) and (4.4). From Fig. (4.3), it is evident

that the streamlines in the region 0 £ Z _< H contract in a,

manner similar to a vena contracta. This contraction is a

different consequence of the boundary layer at the entrance to

the region. The plots in Fig. (4.3) further reveal that the

streamlines in the region 0.3 < R < 0.9 are approximately

45
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parallel to the plates. This indicates that in this region,

the variation in the boundary layer thickness is negligible.

The existence of the sink at the center of the bottom plate

produces considerable streamline movement toward the sink for

R values less than 0.2. In Fig. (4.4) the same results for

stream function are plotted as a function of axial length with

R being the parameter.

The effect of the rotational speeds on the flow pattern

within the vortex chamber was investigated under various flow

conditions. As the tangential Reynolds number, Np e_Q, was in-

creased from 1 to 512, the numerical results revealed no

appreciable effect on the flow pattern. The resul-ts further

indicated that for R <_ 0.2 the streamlines moved toward the

top plate, as the tangential Reynolds number was increased.

However, this movement was so small, that it was very difficult

to illustrate this effect on any figure. This slight effect

could be due to the increase in centrifugal force resulting

from the increase in rotation.

As the tangential Reynolds number is increased and reaches

a value in excess of 2000, the streamline pattern within the

vortex chamber changes from that observed at lower Reynolds

numbers. This pattern is shown in Fig. (4.5). In the region

0.14 <_ R <_ 0.9, the streamlines, above Z = 0.4H and below

Z s 0.6H, move toward the plates. The boundary layer thickness

at these Reynolds numbers is much thinner than at lower

Reynolds numbers. This pattern indicates that the flow is no
»

longer laminar but becomes turbulent. For values of 2 >_ 0.6H,

in the vicinity of the sink (i.e., at the geometrical axis), ,
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the flow appears outward rather than inward.

The flow pattern within the sensor is indeed affected as

the rate of flow is increased. The numerical results as

shown in Figs. (4.6) and (4.2) indicate that the boundary

layer thickness decreases as the flow increases. As a con-

sequence of this condition the streamlines appear to move to-

ward the plates as well as closer to the sink tube wall.

As shown in Figs. (4.7) and (4.8), the discharge from

the vortex chamber into the sink tube results in smooth con-

tinuous streamlines of appreciable curvature. For a short

distance into the sink tube the streamlines remain close to

the geometric axis. This is due to the conservation of the

radial momentum. However, farther into the sink tube, the

streamlines are somewhat removed from the geometric axis.

This shift is not appreciable. This effect is probably a

result of stability conditions becoming evident in the flow.

The streamlines ultimately become parallel to the geometric

axis. In the immediate vicinity of the geometric axis, a core

region (i.e., a region with no streamlines) is observed. The

core region is a consequence of the centrifugal forces tending

to move fluid away from the geometric axis.

4.2 Tangential Velocity

The dimensionless tangential velocity is defined as the

ratio of actual tangential velocity to the tangential velocity

at the entrance (i.e., at R = 1). Thus the dimensionless

tangential velocity at the entrance to the vortex chamber is

assigned the value one. On the top and bottom plates, where.
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solid body rotation exists, ,the velocity is assumed to have

a linear relation with the radius R, i.e., V °° R. Along the

sink tube wall this velocity is assumed to be a constant.

With this as input data, the tangential velocity, at any
$

location in the sensor is obtained from Equation (3-20) by

following the procedure discussed in Section (3.4).

The variation in the tangential velocity in the vortex

chamber is shown in Figs. (4.9) and (4.10). It is noted that

for low radial Reynolds numbers, (NRe_u) and for values of

R > 0.2, there is no appreciable change in the tangential

velocity. The velocity in the interior region however is

seen to be consistently higher than at the plates. As shown

in Fig. (4.10), the velocity profile, parallel to the Z-axis,

is found to be parabolic. It should also be noted that the

velocity reaches a maximum in the plane midway between the

plates. In general, the parabolic velocity profile is seen to

increase in size as the radius R decreases and is found to

reach a maximum value near R approximately equal to 0.1. This

is due to the conservation of an angular momentum combined with

the fluid viscosity effect near the plates. Along the geo-

metrical axis (i.e., at R = 0), the tangential velocity is zero

for all values of Z.

The effect of the tangential Reynolds numbers on the tan-

gential velocity is shown in Figs. (4.11), (4.12) and (4.13).

As ND is increased from the value 1 to 16, the tangentialKe™ o
velocity in the vicinity of the sink tube entrance increases

in almost a linear manner, as noted in Fig. (4.11). This in-

dicates that the velocity V is approximately constant. Thjs-fs
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particularly true for low NR , as the flow behavior is linear

Also it is noted that the characteristic curve of R = 0.08 has

very high tangential velocity near the sink region. But as

the flow progresses into the sink tube, due to the sink tube

wall, the velocity reduces rapidly and in the downstream :

section of the sink tube velocity profile is proportional to

the radius. Thus such profile is obtained, (crossing two

times of profiles of R = 0.06 and R = 0.04).

At a NR g = 16, the velocity reaches its peak value.

As N R e_ Q is further increased to a value of 512, Fig. (4.12),

the velocity decreases continuously. For the range of Nne_e

values from 16 to 512, the maximum decrease in tangential

velocity is only 3 percent. However, as N R e_ Q is further

Increased beyond the value of 512 this rate of decrement of

maximum value increases. The decrease continues, and as

NR reaches a value of 2048, the decrease in the velocity is

approximately 25 percent of that at N R e_ Q = 16. This pattern

reflects the fact that the flow at the higher ND ., is be-Ke~ w
having much like that of a solid body rotation.

As shown in Fig. (4.14), the presence of the sink has an

appreciable effect on the tangential velocity profile in the

vortex chamber and becomes apparent for R < 0.2. Thus, in the

presence of the sink, the rate of tangential velocity increase

appears greater in the vicinity of the sink than at other

regions. This results in a velocity profile distortion and

bending towards the sink entrance.

The magnitude of tangential velocities in the sink region,

on the discharge side of the vortex chamber, is higher than .
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those near the other plate. The presence of the sink opening

produces a greater momentum on the sink tube side and accounts

for the above result.

The effect of the radial Reynolds numbers, N R e_ u, on the

tangential velocity within the vortex chamber is illustrated

in Figs. (4.15) and (4.16). In the vortex chamber, as the

flow is increased (i.e., for higher value of NRe_u), a rapid

increase in tangential velocity is observed for R <_ 0.2. At

low N^e and for R >^ 0.2, however, the increase of this

velocity is not appreciable. In this case, the tangential

velocity is observed to be only slightly higher than the

values at the wall (i.e., the flow is approximately that of

the solid body rotation). As shown in Fig. (4.17) at higher

value of N R e_ u, the circulation (or angular momentum) is con-

served at the midplane of the vortex chamber. Everywhere,

in the region, the tangential velocity is higher than its

inlet value for R >_ 0.1. Also due to the higher radial and

tangential Reynolds numbers, the instability in the flow is

observed in the sink region, therefore a wavy profile of the

tangential velocity is obtained.

As shown in Fig. (4.16), in the vicinity of the sink tube

entrance, the tangential velocity shows a rapid increase as

NRe-u values are increased. Approximately a one hundred per-

cent increase in tangential velocity is noted in the immediate

vicinity of the sink tube, as N R e_ u is increased from 8 to 16

whereas approximately a fifty percent increase is observed for

values of R < 0.1. This is so because as the ND. .. increases
KB- U

the mass flow rate also increases and thus the momentum of mass
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increases at a greater rate .than the mass increment.

As shown in Figs. (4.18) and (4.10), the tangential

velocity is considerably higher in the immediate vicinity of

the sink tube entrance than anywhere else in the tube. For

Z > 0.2, the velocity decreases rapidly with an increase in

Z. At very low NR e_ Q and NR values, the tangential

velocity becomes the equivalent of a solid body rotation. This

occurs at a distance into the sink tube of approximately three

times the height of the vortex chamber. This condition con-

tinues for all subsequent downstream sections. The equivalence

of solid body, rotation is principally due to the fact that

the viscous effect of the fluid predominates and therefore the

fluid rotates at the same angular velocity as the tube. As

^Re-9 anc' ^Re-u are 1>ncreasec'» the distance into the sink tube

at which solid body rotation first becomes evident is also

Increased.

4.3 Axial Velocity

The axial velocity is calculated after determining the

stream function values. Equation (3-28) is used to obtain the

axial velocity at any location within the sensor. The axial

velocity along geometric axis however is calculated by using

Equation (3-20).

Figure (4.19) shows the variation of the axial velocity

within the vortex chamber. As the entrance flow to the vortex

chamber is uniform and purely radial, the axial velocity is

assumed to be zero at that location. It however rises rap.idly

Into the chamber for a short distance (from R = 1 to R = 0.9K)
7
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and then almost becomes zero at R = 0.94. For values of

R > 0.94, the axial velocity is positive in the upper portion

of the vortex chamber, while it is negative in the lower

portion. This result is a direct consequence of the boundary

layer growth, which occurs at the entrance section and then

stabilizes in the region 0.2 £ R £ 0.94. The axial velocity,

for R < 0.2;, increases rather rapidly, and becomes everywhere

positive, as R decreases. This phenomena takes place as a

result of the presence of the sink located on the bottom plate.

Thus, in the vicinity of the sink, the flow tends toward the

sink entrance and the axial velocity becomes positive every-

where. The axial velocity is observed to have a maximum value

near the geometrical axis of the vortex chamber. This is a

result of both the axial velocities on the plate and the sink

tube wall being zero. The axial velocity near the wall is

small because of the boundary layer growth, and it is a

maximum near the geometrical axis.

Figures (4.20) and (4.21) reveal the variation of the

axial velocity in moving from the top plate of the vortex

chamber to the exit of the sink tube. It is noted that the

axial velocity is positive everywhere within the sink tube,

with the maximum value occurring along the geometrical axis.

As shown in Fig. (4.20), the axial velocity in the vicinity

of the geometric axis, from the sink tube entrance to a

distance approximately 3H into the sink tube, continuously

increases to a maximum, then decreases slightly, and subsequently

becomes constant at the downstream section. A reverse flow

pattern to the above is observed within the sink tube for
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R >_ 0.06. This variation in pattern is possibly due to the

radial momentum having a higher magnitude at a sink entrance

and then decreasing to zero for the short distance (3H).

Within this short distance the radial momentum is converted

to axial momentum, and as seen the axial velocity rises for

R <_ 0.04. However, beyond this (3H) length, due to stability

of flow the value of axial velocity changes and becomes a

constant along the axial length. At R = 0.08, however, the

axial velocity rises continuously until a peak value is

reached and this is accounted for, by the gain of axial

momentum over radial momentum. At R = 0.08 and beyond (where

the peak velocity occurs), the viscosity effect reduces the

velocity at a greater rate near the wall, and ultimately pro-

duces a constant velocity in the downstream section.

In Fig. (4.21) the axial velocity results are plotted

as a function of radius with Z as a parameter. Here, the

axial velocity profile is not fully parabolic as encountered

in the Poiseville flow. This is due to the sensor rotation

which moves the fluid toward the wall and away from the geo-

metrical axis.

As NR was increased, the axial velocity, within the

sink tube, along the geometrical axis, increased at a faster

rate than elsewhere. This was substantiated by the predomi-

nate effect that N- ,, has over ND Q, at the higher values.KB-u Ke-y
Thus at the higher flow rates the flow was attempting to be-

come similar to the Poiseville flow.

The effect of the tangential Reynolds number on the axial

velocity, within the sink tube, was negligibly small. Therer
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fore it was difficult to show this effect in graphs. This

effect, however, is mentioned here merely for discussion

purposes. As ND was increased to a value of 16, the axialKe •• o
velocity at a given station along the geometrical axis, in-

creased continuously and reached a peak value at N = 16.
Re—0

However, as ND Q was further increased to a value of 512,Ke — "
the axial velocity decreased continuously. This pattern was

interpreted as being due to the predominate centrifugal

effect at the higher ND values.Ke—u

4.4 Radial Velocity !

The radial velocity is considered negative when it is

directed towards the geometrical axis and considered positive

in the reverse direction. The radial velocity is assumed

constant at the entrance to the vortex chamber and zero on

all remaining boundaries. After obtaining the stream function

values, Equation (3-27) is solved numerically to obtain the

radial velocity at any location in the vortex sink rate sensor.

The variation of radial velocity within the vortex

chamber is illustrated in Figs. (4.22) and (4.23). As a con-

sequence of the radial momentum conservation, the radial

velocity continuously increases as R decreases to the value

R - 0.1, At that location it reaches a peak value and then

decreases to zero at the geometrical axis. This is due to

symmetry about the geometrical axis. The figures also show

that there is a slight decrement of radial velocity at the

entrance region of the vortex chamber near the plates which

is attributable to the growth of the boundary layer near the
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plates. It is also observed that the radial velocity is

approximately inversely proportional to the radius for R > 0.1.

The radial velocity, overall, within the vortex chamber is

negative everywhere.

The radial velocity profile is found to be of parabolic

shape, symmetrical about Z = 0.5H. This profile remains as

such up to a value R :> 0.3. As R is further decreased, the

presence of the sink, distorts this profile. The sink tube

tends to suck the fluid and thus the radial velocity, on the

sink side, rises faster than near the top plate. The distorted

parabolic profile therefore turns toward the sink entrance.

The results of the radial velocity in the sink tube are

illustrated in Figs. (4.24) and (4.25). The radial velocity

is highest at the entrance region. This is due to the con-

servation of radial momentum in the vortex chamber. As the

flow progresses into the sink tube, the radial momentum

rapidly converts to axial momentum and thus the radial velocity

rpaidly decreases. At a distance of approximately 5H into

the sink tube, the radial velocity changes direction, (the

negative radial velocity becomes positive). The establishing

of stability of flow causes this to occur. The radial velocity

subsequently approaches a value of zero at the tube exit I

section. As observed, the positive magnitude of velocity is

ne g l i g i b l e for low radial Reynolds numbers. However, as will

be shown in Chapter VII, this velocity is significant at the

higher radial Reynolds numbers. The change from a negative

to a positive value is a result, of the higher rates of flow,

within the vortex chamber, at the higher NDo ,, values and thusKe ~ u •
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the fluid experiences a greater force moving it away from the

geometrical axis.

As noted in Fig. (4.25), throughout the sink tube region,

the radial velocity profile at any given axial station is

somewhat of a parabolic shape. The profile begins to develop

at the tube entrance, continues its development into the sink

tube and ultimately becomes a fully developed parabolic pro-

file about R = 0.5 R.J at Z > 4H. The development of the

parabolic profile is in part due to the fact that the viscosity

reduces the radial velocity both near the wall and near the

core, with the velocities there ultimately becoming zero. The

conversion of the radial momentum to axial momentum also

contributes to the development of the profile.

4.5 Tangential Vorticity

The tangential vorticity is defined as the difference

between the gradient of the radial velocity along the axial

length and the grad.ient of the axial velocity along the radius.

As a result of uniform radial flow into the vortex

chamber, the vorticity is considered zero at the entrance to

the flow field region, (except of the corners). As discussed

in Appendix A [Equation (A-12)],the vorticity along the geo-

metrical" axis is zero. The tangential vorticity on the vortex
i

chamber plates and on the sink tube wall is calculated through

use of the stream function results and Equations (3-14), (,3-15)

and (3-16). This information is used as the boundary conditions

for Equation (3-6) which is then solved numerically, by

following the procedure described in Section (3.1).
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Figures (4-26) and (4r27) show the variation of vorticity

within the vortex chamber, in moving from the periphery to

its center. As a result of the large velocity gradients, a

maximum absolute value of vorticity occurs in the boundary

layer regions within the vortex chamber as well as at the

entrance corner of the sink tube. Thus the vorticity on

both plates is higher than the vorticity in the flow field.

The vorticity r\ on the top plate 1s found to have a negative

value while a positive value is observed on the bottom plate.

A zero value of vorticity occurs, for R > 0.3 in the midplane

of the vortex chamber plates. The vorticity pattern discussed

above is a consequence of the axial velocity gradient along

R being negligible in the entire vortex chamber except for

R < 0.2, and also due to the radial velocity gradient along

Z being negative near the top plate, zero at the midplane of

the chamber plates and positive near the bottom plate.

As discussed earlier, the vorticity at R = 1 is zero and

it is due to the uniform radial flow at this section. There

is, however, some vorticity at the plate edges for this

location and it is attributable to the boundary layer effect.

The vorticity on the plates decreases approximately 20 percent

from R = 1 to R = 0.9, at which location it reaches a minimum

value. It then continuously increases to a maximum value as

R decreases to R - 0.1. This occurs because near the plates,

the radial velocity also follows the same trend as discussed

before in Section (4.4) and the vorticity is indeed an axial

gradient of radial velocity, and there the radial gradient of

axial velocity is negligible.
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As shown in Fig. (4.27). the vorticity in the flow field

continuously increases from the value zero, which occurs at

the entrance section up to R = 0.1 Throughout the range

0.3 <_ R < 1, it is observed to be approximately a linear

function of Z, except within the boundary layer region. The

above pattern is attributable to the fact that within the

flow field, the radial velocity profile along Z is approxi-

mately parabolic.

The effect of the sharp corner at the entrance to the

sink becomes evident at values of R < 0.3. This is particu-

larly noticeable as the velocity on the bottom plate increases

at a faster rate than on the top plate. At the corner, the

vorticity reaches a maximum and is approximately 10 to 25

times greater than the maximum vorticity on the plate. In

explaining this pattern it should be noted that the velocity
t

gradients near the bottom plate are higher than those near

the top plate. In addition, it is seen that the magnitude of

the radial velocity, in the vicinity of the corner, is greatest

and also that the magnitude of the axial velocity is significant.

It is also observed that the axial gradient of the r a d i a l 1

velocity is positive and of appreciable value while the radial

gradient of axial velocity is negative. Thus, a high value

of vorticity occurs at the corner due to the difference of

both of these gradients.

Figure (4.27) also reveals that, within the vortex :;

chamber, the radial velocity gradient is significant in the

flow field at R - 0.1. The vorticity then appears to decrease

as R increases, ultimately reaching a value of zero at the
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geometrical axis.

Figures (4.28) and (4.29) illustrate how the tangential

vorticity varies within the sink tube. It is apparent that

the vorticity within the sink tube flow field is greater than

that existing within the chamber flow field. The radial

gradient of the axial velocity within the sink tube is ostensibly

much greater than the axial gradient of the radial velocity

within the vortex chamber. This appears to be so as the

average axial velocity within the sink tube is much higher

than the inlet radial velocity, and also since both the radial

velocity gradient in the axial direction within the sink tube

as well as the axial velocity gradient along the radius in the

vortex chamber are negligible. As a result of this the

vorticity in the sink tube appears to be higher.than that with-

in the vortex chamber. Since the axial velocity gradient is,

in general, negative the vorticity is overall positive every-

where within the sink tube.

As discussed in Section (4.3) for R * 0.08, the axial

velocity decreases in the entrance section of the sink tube.

After determining its radial gradient it becomes evident that

along the sink tube wall and in its immediate vicinity, the

vorticity continuously decreases. This decrease occurs from

the sink tube entrance Z * H to approximately a distance Z = 3H

into the tube. From this point on the vorticity becomes ;

virtually constant. For R < 0.04, no appreciably variation in

vorticity is noticeable. However, within a sink tube entrance

length, the vorticity decreases to a lower value and then increases

to an equilibrium value. The vorticity for a given R within
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the downstream region, remains constant along Z.

The vorticity, in the downstream section of the sink tube,

is observed to be approximately directly proportional to the

radius for low radial and tangential Reynolds numbers. This

is particularly true at low Reynolds numbers where the effect

of rotation on axial velocity is n e g l i g i b l e and the axial

velocity profile is approximately parabolic as for poiseuille

flow. Thus the radial gradient is a straight line. At the

higher Reynolds numbers, however, due to the effect of higher

rotational speeds nonlinearities become evident.

The effect that N has on vorticity along the bottom
Re-6

plate and along the sink tube wall is illustrated in Figs.

(4.30) and (4.31). As the flow is maintained constant and the

rotation is increased, the vorticity, n(n = n) decreases in an
w

inversely proportional manner with respect to N R e_ Q. Since the

rate of decrease in vorticity is greater than the rate of decrease

in ND Q, the flow changes to a spiral form with a small helicalKe~ 6
angle in the sink tube. Thus the rate of production of the

vortices reduces near the corner. This indicates that the

flow becomes more stable at the higher N R e_ Q values.

The effect that N R e/ has on vorticity along bottom plate

and along the sink tube wall is shown in Figs. (4.32) and (4.33).

As ND increases, the rate of increase in vorticity isKe~u
greater in the region R < 0.2 elsewhere in the vortex chamber.

At the corner of the sink tube the vorticity increases by a

factor of 2-1/4 as N increases from 8 to 16. Within the
Re-u

sink tube, the vorticity also increases as ND increases.Ke- u
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Thus at high flow rates, more vortices are created near the

solid boundaries as well as near the corner.

Figures (4.34) and (4.35) illustrate the constant

tangential vorticity lines for two different sets of values of

radial and tangential Reynolds numbers. It is evident that

the highest vorticity occurs at the sink tube corner. As

discussed before this is the location at which instability in

the flow begins. It is also observed from Fig. (4.35) that

vortices are produced in the flow at the higher radial Reynolds

numbers. The vorticity lines are found to be parallel to

geometrical axis in the downstream section of the sink tube.

A zero vorticity line exists in the midplane of the vortex

chamber plates for R > 0.3. The curvature of the zero

vorticity line, near the sink corner increases as the flow rate

increases.
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V. EFFECT ON FLOW PATTERN WITHIN SENSOR
DUE TO CONFIGURATION CHANGES

5.1 Effects Due To Variation of Vortex Chamber Radius.ro

To determine the effect, if any, that the variation in

vortex chamber radius had on the flow pattern within the

sensor, a numerical computation was undertaken for assigned

values of vortex chamber radii of 5, 10, 15 and 20 inches

respectively. For each radius the vortex chamber height (h)

as well as the sink tube radius (r-j) were held constant at

1 Inch. In each case the flow rate and rotation were also

assumed to be constant. The following conclusions were

drawn from the numerical results.

1) The streamlines in both the vortex chamber and the

sink tube moved closer to the wall surfaces as, the

chamber radius was decreased.

2) As shown in Fig. (5.1), the tangential velocity, V,

in the vortex chamber (at the same radial location,

R) decreases as the vortex chamber radius increases.

However, in the immediate vicinity of the sink

region and also within the sink tube there is no

noticeable effect on the velocity, V.

3) There was only a negligible effect on the tangential

vorticity throughout the vortex chamber and the

sink tube.

4) There was a negligible effect on the radial and axial

velocities throughout the vortex chamber and the sink

tube.

97
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5.2 Effect Due to the Variation of the Sink Tube Radius ri

To determine the effect of the variation in the sink

tube radius on the flow pattern within the sensor, a numerical

computation was undertaken for assigned values of sink tube

radii of 1/2, 5/8, 3/4, 7/8, 1 and 1-1/8 inches respectively.

For each sink tube radius both the vortex chamber height and

vortex chamber radius were held constant at 3/4 and 10 inches

respectively. For constant flow rate and rotation the

numerical results revealed the following conclusions.

1) As shown in Fig. (5.2), the tangential velocity in

the vortex chamber near the sink tube region in-

creases as the sink tube radius is decreased. An

increase in the peak value of the tangential

velocity is also noticed at the sink tube entrance.

2) The distance into the sink tube required to obtain

constant axial velocity in the downstream section

decreased as the sink tube radius was increased.

3) The radial velocity within the vortex chamber near

the sink tube region (i.e., for R < 0.1) increased

as the sink tube radius was decreased.

4) The tangential vorticity, near the sink region in

the vortex chamber (at the junction of the vortex

chamber and sink tube) and within the sink tube,

increased as the sink tube radius was decreased.

5) The slope of the zero vorticity line, at the

entrance section of the sink tube, decreased as the

sink tube radius was decreased. This resulted in
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the intersection of the zero vorticity line with the

sensor's geometrical axis which is moved closer to

the center plane of the vortex chamber.

5.3 Effect Due to the Variation of Vortex Chamber Spacing h^

To determine the effect of the variation in vortex

chamber spacing on the flow pattern within the sensor, a

numerical computation was undertaken for assigned values of

vortex chamber spacing of 1, 1.2, 1.4, 1.8 and 2 inches re-

spectively. For each spacing the vortex chamber radius as

well as the sink tube radius were held constant at 10 inches

and 1 inch respectively. for constant flow rate and rotation,

the numerical results revealed the following conclusions.

1) The tangential velocity decreases at the sink tube

entrance, as the spacing increases [Fig. (5.3)J.

The distance into the sink tube, where the flow

becomes equivalent to a solid body rotation, also

increases slightly. As the vortex chamber spacing

decreases, a peak tangential velocity is observed

midway between the geometrical axis and wall of the

sink tube. As the spacing h was increased, the peak

value of tangential velocity decreased and moved

smoothly either toward the geometrical axis or sink

tube wall. The same result was obtained experi-

mentally by Lu [32]. For the higher values of

spacing h, since the velocity profile was not

affected by the boundary layer, the peak value of

velocity moved closer to either the geometrical axis-
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or the sink tube wall. From its peak value, the

tangential velocity decreased rapidly but smoothly

to both the geometrical axis and sink tube wall.

2) The uniform entrance radial velocity to the vortex

chamber decreased as the spacing was increased.

The radial velocity at the entrance section of the

sink tube also decreased for increased spacing

heights.

3) The streamlines, at the sink tube entrance, appeared

to move closer to the geometric axis as the spacing

height was increased. That is to say that the bulk

of the flow was closer to the geometrical axis.

4) The distance into the sink tube where the axial

velocity became a constant, increased as the spacing

height was increased.

5) The tangential vorticity along the solid surfaces

of the vortex chamber as well as at the sink tube

entrance, decreased as the spacing h was increased.

There was, however, no appreciable effect on the

tangential vorticity along the sink tube wall.

6) The entrance length into the sink tube increased as

the spacing height was increased. (The entrance

length is defined as the depth into the sink tube

where radial velocity changes direction from inward

to outward).



VI. EXPERIMENTAL INVESTIGATION

6.1 Description of Apparatus

The apparatus which was constructed and assembled con-

sists of a vortex chamber, three sink tubes, a high pressure

as well as a low pressure regulator, an air filter, an air

dehydrator, a flow meter, a manifold, a probe assembly, a

positive drive assembly and the necessary gages, valves and

piping. The vortex sink rate sensor, in which a sink tube

ts assembled to the vortex chamber, was so designed as to

permit a number of possible combinations of physical dimensions

A constant temperature Hot Wire Anemometer was used in

obtaining the velocity distributions.

A schematic of the vortex sink rate sensor is shown in

Fig. (6.1). The vortex chamber is made of two circular

plexiglass disks held apart by a porous coupling securely

mounted at the periphery of the circular disks. One circular

disk has a threaded opening at its center to permit the

a-ttachment of a sink tube. The second circular disk is

attached, by means of a flanged coupling, to a drive shaft

that is supported on two bearings. The drive shaft, through

a speed reduction gear box and sprocket wheel and chain drive,

is connected to a variable low speed motor to assure con-

centricity with the axis of symmetry of the circular disks.

Both plexiglass disks have grooves on their surfaces for pro-

per setting of the porous coupler. To provide rigidity and

uniformity of spacing between the disks eight spacers,

104
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(1) Sink tube

(2) Vortex chamber plates

(3) Porous circular coupling

(4) 8- equlspaced plates-fastening bolts

(5) Manifold for air supply

(6) 6- equlspaced perlpherlal air pipes

(7) Steel shaft

(8) Bearings

(9) Chain and sproketwheel drive

(10) Oil-slip rubber ring

Figure 6.1 Vortex Sink Rate Sensor
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symmetrically positioned around the circumference, are used.

The vortex sensor is mounted withtn a manifold assembly

tn such a manner that its a*is of rotation is horizontal.

The sensor rotates freely within the manifold assembly. As

a result of a sealed ring pressfitted to the assembly the

possibility of air leakage from the sensor is negligible.

The manifold assembly is rigidly fastened to a steel frame

platform to which the variable speed motor and speed reducer

are also mounted. The design permits a vortex sensor speed

range from 0 to 35 revolutions per minute.

Three interchangeable plexiglass sink tubes of 1, 1-1/4

and 1-1/2 inches inside diameters were used to vary the sink

tube sizes. Two sets of such sink tubes, one of twelve and

the other of twenty-four inches length were employed. The

s-tnk tubes were designed to enable pitot tube pressure measure-

ments as well as hot wire velocity measurements at various

stations along the length of the sink tube as well as along

any-given radius.

The porous coupler, used in the vortex chamber, was

similar to the one used and discussed by Burke I6J. The

coupler was made from stacked 0.0625 inch thick steel rings with

an Inside diameter of 20 inches. Triangular grooves of 0.0227

inches in width (approximately) and 0.03 inches in depth were

cut radially towards the center of each of the rings. The

grooves were cut, side by side, such that on the inside cir-

cumference of the ring, they were; continuous, that was, with-

out any flat tops between grooves; In all approximately 2700
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such grooves were cut around the periphery of each ring.

The rings were stacked with the grooved side of one ring

against the smooth side of the next ring. The stacked rings

were held under compression in the assembly of the sensor

forming triangular nozzles of 0.375 inches in length. The

aggregate jet area was about twenty-five percent of the .in-

side area of the coupler. The coupler was practically uni-

form throughout its circumference. The rings, therefore,

could be stacked to any desired height from a minimum of 1

inch to a maximum of 1-1/2 inches. This arrangement provided

the means by which different coupler heights could be achieved.

The static pressure probe, as shown in Fig. (6.2), was

fabricated from two stainless steel tubes of 0.06 and 0.03

Inches outside diameter both having a thickness of 0.01 inches.

The larger diameter tube was tapered to a conical shape at

its closed end. In its periphery at distance of 0.1625 and

0.1937 inches from the closed end, are eighteen equispaced

0.005 inch drilled holes arranged in a manner resembling a

pizometer tube. The smaller diameter tube at its closed end

was chamfered and a 0.01 inch hole was drilled through the

tube at 3/4 of an inch from its closed end. The tubes were

assembled in such a manner, the smaller tube inside the

larger tube was then soldered to the inner tube. Static

pressure measurements are obtained by connecting one open end

of the pressure transducer, to the static pressure probe,

while the other is open to the atmosphere. The circuit dia-

gram for the pressure transducer is shown in Fig. (6.3)
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The schematic of the probe holder stand is shown in

Fig. (6.4). The probe support mechanism has been so designed

with a rack and pinion arrangement, to allow for a longitu-

dinal movement of the static pressure probe and probe holder

along the sink tube length. The probe support mechanism has

also been so designed to provide means by which the static

pressure probe and probe holder can be moved in a vertical

direction normal to and intersecting with the s.ink tube axis.

For all movements it is possible to maintain the static

pressure probe and hot wire probe holder axis parallel to the

sink tube axis, at all times.

The velocity distribution throughout the sink tube is

obtained by use of a constant temperature hot wire probe as

shown in Fig. (6.5). The hot wire probe used in conjunction

with the anemometer is supported by a pin-joint on its own

support as shown in Fig. (6.6). The hot wire probe can easily

be positioned anywhere within the sink tube. The probe is

also capable of being rotated spherically, so as to position

the probe, to be perpendicular to the resultant velocity.

A disc worm wheel and worm screw arrangement provides the

mechanism by which an azimuth angle of rotation can be obtained,

A string and roller arrangement provides the means by which

a longitudinal angle can be obtained. Thus the hot wire probe

can easily be positioned to measure the resultant velocity.

From the measurement of the resultant velocity, and the longi-

tudinal and azimuth angles, the axial, radial and tangential

velocity components can be calculated.
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A block diagram of the DISA constant temperature hot

wire anemometer (No: 55A01) used in this investigation is

shown in Fig. (6.7). The anemometer, in essence consists of

a fine electrically heated wire which is convectively cooled

when placed in an air stream. The resistance of the wire,

which increases linearly with temperature, is uniquely related

to the mean speed of the air stream and the current. The

equation for calculating the velocity with this anemometer is

Vjl = A + B ?T~ (6-D
n-

i _
where V is the bridge voltage, W is the mean flow velocity,

fi is the probe operating resistance, and A and B are con-

stants which depend only on the physical properties of the

wire and fluid.

This relationship which governs the equilibrium behavior

of the wire is in reality a heat balance. The left hand

side of the equation is proportional to the heat input of the

wire, while the first-term on the right hand side is proportional

to the forced convection cooling. With the constant temperature

hot wire anemometer, a feedback amplifer system is employed

to keep the probe resistance and hence also the probe tempera-

ture constant. Fundamentally, the measured quantity is the

power required to keep the temperature constant.

The hot wire probes that were referred to earlier and used

1n this investigation are the DISA type No: 55F21 and are

shown in Fig. (6.4). The wire itself is a platinum-plated

tungsten, 5ym in diameter, and is stretched across two needle
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supports. The probe resistance is 4.On. The average flow

velocity is indicated by a multirange D.C. bridge voltmeter

which has an accuracy of +_ one percent. This accuracy was

improved by use of zero shift D.C. voltages of 1, 2, 5 and 10

volts. This also permitted the meter operation in the lowest

full scale range. A square wave generator is incorporated

into the instrument to allow checking actual dynamic responses

under operating conditions.

A DISA type No: 55D10 linearizer is connected to the

anemometer to determine the linear relationship between the

velocity and the bridge voltage.

The air flow system is shown in Fig. (6.8). Filtered

and metered low pressure air is supplied to the vortex sensor

through six symmetrically spaced inlets which are on a mani-

fold attached to the vortex chamber. Compressed air is first

passed through a dehydrator and then reduced to approximately

5 psig. pressure as it passes through a high pressure regu-

lator. The air is then filtered and its flow regulated as

it passes through a low pressure regulator. The air flow

rate is measured by means of a flowmeter and finally the air

is supplied radially to the vortex chamber of the sensor.
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6.2 Test Procedures

As mentioned under the description of apparatus, the

vortex sink rate sensor was designed to allow a number

of possible combinations of its physical dimensions. The

vortex chamber has a radius of 10 inches. Its design, how-

ever is such that through use of spacers the distance

between disks can be changed. This arrangement makes possible

a number of slenderness ratios(r^/h) for experimental pur-

poses. Three interchangable sink tubes of 1, 1-1/4 and

1-1/2 inches in diameter make possible a number of different

chamber to sink tube radii ratios. A variable speed motor

further provided the means of obtaining a sensor speed of

rotation range from 0 to 35 revolution per minute.

For each test run velocity profiles as well as static

pressure distributions were obtained at a number of different

axial locations within the sink tube. The axial locations,

along the sink tube, selected for recording measurements were

Z equal to 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0,

2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 9.0, 12.0, 15.0, 18.0, and 21.0

inches respectively. At each axial location the radius was

traversed, with measurements in general taken at r values of

0.0, O.lr^ 0.2ri5 O.Sr^, 0.4rj, 0.5r.j inches respectively

where r^-was the inside radius of the sink tube. Three sink

tubes were used with respective inside radii of 0.5, 0.625

and 0.75 inches.

Prior to conducting any of the experiments, all instru-

ments were calibrated according to the standard procedure.
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s It is considered desirable to include here a brief

dtscusston of the calibration and technique of using the hot

wisre probe. The hot wire probe was calibrated with the use

a special pitot tube shown in Fig. (6.9) in conjunction with

a transducer. The pitot tube and the hot wire probe both

were positioned at the immediate exit of the sink tube in

such a manner as to have symmetry with respect to the sink

tube axis. The longitudinal angle of the hot wire probe was

set at zero. Then as the air flow rate, for zero rotation,

was varied both the pitot tube and the hot wire probe

readings were recorded through use of the exponential and gain

adjustments on the linearizer, the linear relation between

the anemometer voltage and air velocity was obtained. This

therefore resulted in a hot wire probe calibration curve

sfiLewn 4n f tg * (16,.401,

The calibration curve .relating to the probe longitudinal

angle and the protractor angle,is given in Fig. (6.11).

A calibration curve was also plotted to correct for

any lag existing within the roller-string mechanism. One

straight line curve was for the clockwise rotation of the

roller (pointer and protractor) and the second curve was for

the counterclockwise rotation of the roller. The protractor

was graduated in degrees and as a reading was recorded, then

with the appropriate calibration curve for roller rotation,

the probe longitudinal angles 8 and $ were obtained. These

longitudinal angles 6 and <j> were then used to calculate the

velocity components u, v and w.
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The technique of how the hot wire probe was used to

measure the resultant air velocity also merits a brief

discussion. A more elaborate explanation is given in

Appendicies C and D. The hot wire probe was introduced into

the air stream within the sink tube in such a manner that

the wire itself was in a horizontal position. Simultaneously

the probe support was secured in a position to only permit

the hot wire probe movement in a longitudinal direction in

the horizontal plane. The hot wire was then rotated such that

a point on the wire would sweep out a spherical curve. The

hot wire probe, thus positioned, only sensed a velocity •-*

due to the axial and radial components. The effect of tan-

gential velocity component on the probe, for the probe so

positioned, was negligible. Rotation of the probe in an

longitudinal direction then accounted for the tangential

velocity component. As the hot wire probe was rotated in the

longitudinal direction a- maximum reading on the anemometer

was ultimately observed. This reading is the resultant air

velocity at that particular location. The hot wire probe

holder mechanism was designed to enable the measurement

of the longitudinal angle (e).

In a manner similar to the above the hot wire probe was

introduced into the air stream, within the sink tube, such

that the wire itself was in a vertical position. Simultan-

eously the probe support was secured in position to only per-

mit the hot wire movement in a longitudinal direction within

the vertical plane. The hot wire probe thuspositioned,
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only sensed a velocity due to the axial snd tangential

components. The effect of the radtal velocity component on

the probe, for the probe so positioned, was negligible.

Rotation of the profre in a longitudinal direction then

accounted for the radial component. As the hot wire probe

was rotated In the longitudinal direction, a maximum reading

was ultimately observed. This reading is the resultant air

velocity at that particular location. The hot wire probe

holder mechanism had been so designed that the longitudinal

angle <J> was also measurable. In all measurements using the

hot wtre probe, the probe holder axis was, at all times,

parallel to the sink tube axis. This technique made certain

tfiat the air velocity was perpendicular to the hot wire and

also that the air velocity measured was the resultant velocity.

Having, at a particular location, measured the resultant

velocity and the angles <)> and e the radial, axial and tan-

gential velocity components could then be calculated as in-

dicated in Appendix C.

The experimental investigation began with the case of

constant air flow of 3.93 cubic feet per minute, sensor

rotations of 0, 5, 10 and 20 revolutions per minute

respectively, and maintaining throughout a unity slenderness

ratio, p-n the. sink tule, the experimental data :were taken,

at 6 te 10 prescrtbed axtal stations, depending en the length

of eachsstnk tube.

At each station along the sink tube from 5 to 7 static

pressure readings were taken as the radius was traversed.
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The static pressures were measured by a static pressure probe

used in conjunction with a transducer. The static pressure

probe was first located at the innermost station in a manner

such that the static pressure probe and probe holder axis

coincided with the sink tube axis. Once the static pressure

at this location was recorded, the probe was then successively

positioned and the pressures were recorded at the other pre-

scribed sink tube stations along the sink tube axis. Thus

at each sink tube station 5 to 7 static pressure readings

were recorded as the probe was traversed along the radius.

In addition to measuring the static pressure at each sink

tube station the resultant velocity as well as the longitudinal

angles <f> and e were also measured. The manner in which these

readings were taken is similar to that discussed previously.

In view of the fact that the radial velocity u, within

the sink tube (except at its entrance section) is everywhere

approximately zero, a simplified technique was also used to

measure the axial and tangential velocities. This measure-

ment technique was also used to check the results of pre-

vious experimentators and has been found to be most

satisfactory.

A previous technique used for the velocity measurements

was found to be far too time consuming and on occasions

difficulties were encountered due to the fluctuations in the

meter readings. The time required particularly to measure

the longitudinal angles 6 and <}>, was considerable and there-

fore a simplified but accurate method was desirable.

Therefore, another technique which was reliable as well as
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accurate was employed and is. briefly described here. A con-

stant temperature hot wire anemometer was used for the velocity

measurements. The same apparatus used for making the velocity

measurements is described under the description of apparatus.

In making the velocity measurements at any location two hot

wire readings were taken. The first reading was taken with the

hot wire maintained in a horizontal position, while the hot

wire probe axis was maintained parallel to the sink tube axis

as well as in the central vertical plane of the sink tube. It

was then possible by this arrangement to have the hot wire, at

a given station, traverse along the radius. With the hot wire

located at a given radius, by means of the rack and pinion

device the hot wire could then be moved along the axial length

of the sink tube. Thus with the hot wire maintained in the

horizontal position, as described, one reading V^ was recorded

for each position.

The second reading, at a given position, was taken

with the hot wire maintained in a vertical position, while

the hot wire probe axis was maintained parallel to the sink

tube. The hot wire was changed to its vertical position

by means of a rotary disk that was turned 90° degrees. As

discussed above a second reading Vv was then recorded for

each position.

The VM and V» values were then used to calculate the

tangential and axial velocity components. This was accomplished

in the following manner:
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The equations obtained from Fig. (6.12) are

Tan a = J~2 J , and C6-2)
•*> 11 + w

Tan a« = /~o T C.6-3)i v + vT

where cu is the angle made by resultant velocity with the

pla^ne perpendicular to the hot wire, when the hot wire was

horizontal and a2 is the angle made by resultant velocity

with the plane perpendicular to the hot wire, when the hot

wtre was vertical .

Since 'the radial^ velocity u is considered negligible,

the above two equations reduce to

Tan a, v , (6-4)
1 = w ' and

Tan « = 0 or a = 0 . (6-5)

Now b> fnvoktng the hot wire t&jeory-jê  ., .the^ela^tion between

the resultant velocity V*, VH and Vy can be written as

(cos2a1 + K0

(cos^a2 + K(
C6-6,

where KQ is a constant and equal to 0.2 for low velocity flow,

In view of the fact that a2 is zero, V* then becomes Vv and

/•V-H\2
CV*)2 = I HJ 2 rr- (6-7)LV ' cos2ai + K,/ sin

za-,j. o J- •
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Thus,
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1 + Tan2ai 1 + Tan2ax . C6-8)

•« * fv- V \

—— :.,* —JL (6-9)

fV*1
2 = CVH)2 (v2 + w2) (6-10)

1 ' o u 7 2W2 + V V^

Since v2 + w2 = (v*)2, then the above equation reduces to

V 2 = w2 + K v2 (6-11)
n 0

and

Vy
2 = V*2 = w2 + v2 . (6-12)

The .above equations were are solved for the velocity com-

ponents and there is obtained
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v '

0

2 2 2- v-y
C6-14)

0

Thus the tangential velocity v, and the axial velocity w

are calculated from the measured values of Vu and V .
H \;



1.31

6.3 Experimental Results

An experimental investigation was undertaken to determine

the flow pattern existing in a steady state weak vortex.

The vortex sink rate sensor is shown in Fig. (6.1). The

measurements were only taken within the sink tube and air was

the only working fluid used. A constant temperature hot wire

anemometer was used for the velocity measurements while a

pressure transducer was used in conjunction with a pitot tube

for the pressure measurements. The radial Reynolds numbers

were approximately maintained at values of 524.5, 629 and 767

for a flow rate of 3.93 cubic feet per minute while the

characteristic vortex chamber spacing height h was fixed at

1-1/2", 1-1/4" and 1" respectively. The tangential Reynolds

numbers were successively maintained at valued of 0.0, 2272.5»

4545 and 9090 based on the vortex chamber radius of 10 inches

and the respective speeds of 0, 5, 10 and 20 rpm.

The fact that the radial velocity within the sink tube

was approximately zero everywhere, with the exception of the

sink tube entrance section, revealed that the flow was helical.

The flow helical angle within the sink tube decreased as the

rate of rotation increased. This was supported by the fact

that the tangential velocity was found to be approximately

proportional to the rate of rotation.

No appreciable variation of the axial velocity within the

sink tube was observed. The axial velocity in the vicinity of

the sink tube geometric axis, however, was found to be slightly

lower than neighboring points. Throughout the remaining
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portion of the sink tube (with the exception of the region near

the sink tube wall) and for a given radius, the axial velocity

was approximately constant. In the immediate vicinity of the

sink tube wall the axial velocity decreased rapidly.

The external effect on static pressure measurements became

observable at a distance 9 inches into the sink tube for the

short tube whereas the same observation was noted at a distance

of 21 inches for the longer tube. When a comparison was made

for the two tubes at a given r value, a step increase in static

pressure was observed in going from the longer tube to the

shorter tube.

The result of static pressure measurements within the

sink tube are shown in Figs. (6.13) and (6.14). They reveal

that a minimum value below atmospheric occurs in the immediate

vicinity of the sink tube geometrical axis. Slightly higher

values of static pressure are observed along the geometrical

axis. The variation of static pressure along axial length,

with R as a parameter, is shown in Fig. (6.15) for a flow rate

of 3.93 cubic feet per minute and a speed of 20 revolutions

per minute.

Along a given axial location and beyond the radius

mentioned above, the static pressure increases continuously

as the static pressure probe is moved toward the sink tube wall.

At a given radius and along the axial length the static pressure

increases continuously from the sink tube entrance and ultimately

becomes atmospheric near the sink tube exit. An exception to

the above is noted in the vicinity of the sink tube wall. Every-
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where along the sink tube wal'l the static pressure values are

above atmospheric. As the static pressure probe is moved

toward the sink tube exit the static pressure values decrease

continuously and ultimately become atmospheric at the exit

section. This characteristic of static pressure is obtained

as a result of a vortex imposed on the fluid due to the

rotation of the sensor.



VII. CORRELATION OF RESULTS

A1r is supplied to the vortex chamber through a porous

coupling by means of six circumferentially placed equispaced

tubes. Therefore, analytically it is difficult to conclude

whether the flow in the vortex chamber is axisymmetric or not.

This remains to be proven. The symmetry assumed in this

case, however, merely refers to the symmetries with respect

to the sink tube axis. This assumption is particularly

valid for the sink tube, is not also for the vortex chamber.

Numerical and experimental results, for the radial

velocity variation in the sink tube, are illustrated in

Fig. (7.1). The radial velocity measurements for the en-

trance length of four inches into the sink tube are not only

accurately and easily measurable but they also seem to

correlate well with the numerical results. However, farther

into the sink tube the radial velocity values are negligible

and are difficult to measure.

As shown in Fig. (7.2), for the case of zero rotation,

of the sensor, the axial velocity profile at the downstream

section of the sink tube is not parabolic in shape. For r

values less than 0.6 r^, the axial velocity appears approxi-

mately constant. This indicates that either the flow is not

fully developed or that it has indeed become purely turbulent.

As the speed of rotation is increased, the fluctuations,

evident at the lower speeds, virtually disappeared. Thus at

the higher speeds the experimental results should be considered

more reliable than at the lower speeds. At a speed of

137
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rotation of 20 revolutions p-er minute, for example, the

correlation of the experimental results with the numerical

results proves to be most satisfactory. It is also observed

that the experimental axial velocity values correlate very

well with the numerical results for the larger r values.

Closer to the sink tube geometrical axis, however, the axial

velocity values do not correlate that well with the numerical

results. This is attributed to the existence of a core region.

Experimental and numerical results for the tangential

velocities, in the sink tube, are illustrated in Fig. (7.3)

and (7.4). These results reveal that the tangential velocity

is consistently higher near the sink tube entrance and it

decreases continuously as the flow progresses into the sink

tube. Throughout the sink tube, and within the region

between the sink tube wall and the sink tube geometric axis

(i.e., 0 <_ r £ r.), the tangential velocity is observed to

be positive everywhere and its magnitude is found to be

greater there than at the wall. Within the sink tube, the

tangential velocity profile, which may be characterized by

a parabolic profile, has two peaks, one at r = 0.2r^ and the

other at approximately r = 0.75r^. For the location Z = 0.2,-^

a depression in the velocity profile is noticed, in Fig. (7.4),

around midway between the axis and the wall. The data

collected further reveals that the maximum tangential com-

ponent of velocity over the entire range of r/r- approximately

occurs between 0.25 and 0.55.

As discussed previously nonlinearity effects are taken

into account in the theoretical analysis and the nonlinear
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TANGENTIAL VELOCITY, V - v/(oiro)
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equations are solved by numerical techniques. The experimental

results as shown in Fig. (7.4) also reveal the presence of

nonlinear effects and these nonlinearities were similar to

those in the theoretical analysis.

In the process of comparing the experimental results

with those in the theoretical analysis, it iscnecessary to

recall that the axial length differed by the vortex chamber

spacing height h. This is because the axial length in the

theoretical analysis is measured from the outer plate of the

vortex chamber, whereas for the experimental investigation

it is measured from the sink tube entrance. A similar

characteristic is noted from the experimental results reported

by Lu [32].

As shown in Appendix E, an error analysis has been under-

taken for both the numerical and experimental aspects of the

Investigation. The curves of Figs. (7.1), (7.2) and (7.3)

show the comparison of experimental and numerical results of

velocity components. The numerical results are seen to be in

good agreement with the experimental results.

The scatter of data in the experimental results in

slightly greater than the limits of error estimated in Appendix E.



VIII. CONCLUSIONS AND RECOMMENDATIONS

The objective of this study was to investigate the flow

phenomenon numerically as well as experimentally within a

vortex sink rate sensor. The conclusions deduced from both

the theoretical and experimental results are as follows.

The theoretical and experimental results are in good

agreement particularly for the 20 revolutions per minute

rotational speed of the sensor, flow rate of 3.93 cubic feet

per minute and for a sink tube diameter of 1-1/2 inches.

The results reveal that the tangential velocity near

the sink tube entrance is higher for the higher flow rates.

An unstable situation is noted within the numerical

as well as experimental results for the rotational speeds of

5 and 10 revolutions per minute, with a flow rate of 3.93

cubic feet per minute. However, stability is indeed observed

at 20 revolutions per minute speed for the sensor.

At the higher radial Reynolds numbers, the angular and

radial momentum within the vortex chamber are approximately

conserved.

Due to the exclusion of the entrance energy losses

occurring in the sink tube and also partly due to interference

introduced by the presence of the probes within the sink tube,

the experimental values of the tangential velocity are slightly

lower than the theoretical values.

As NRe-e 1>s increased» tne tangential vorticity n de-

creases, thus it appears that an increase in speed of rotation

brings about a more stable flow.
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As a consequence of these observations for a vortex

sink rate sensor to have maximum signal amplifications, it

is suggested that the sensor be operated at the high flow

rate condition.

As a direct consequence of this investigation, a number

of recommendations are suggested here for future studies.

In general, these recommendations suggest a correlation of

existing data, conducting additional tests and/or analyses

as well as s.ummarizing the information in a form suitable for

design purposes.

Specific recommendations for future investigations are

a s follows: . . .

1) study of the viscous core area.

2) study the noise generation.

3) investigate the non-conventional boundary

conditions for the sensor.

4) theoretical and experimental flow phenomena >

studies within a sensor with symmetric sink tube,

and consideration of proper location for pick off

points.

5) study the temperature, density and viscosity

variation.

6) investigate the unresolved problem of rapid

fluctuations and wondering of the stagnation

point within the core region of the sink tube.
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BOUNDARY CONDITIONS

The boundary conditions for the systems shown in Fig.

(24) are as follows:

On the top and bottom plates of the vortex chamber and

along the sink tube wall, the no slip condition must be

satisfied (i.e. the fluid must move with these surfaces).

Thus, for the sensor rotating with an angular velocity, w,

this requirement mandates that

a) at z = 0

(A-l)- -
f(v,0) = A )

b) at z = h

(A- 2)

c) at r =

(A-3)

d) at r = r0 v(rQ,z) = rw ^ 0 < z < h (A-4)

f(r0,z) =

where h is the vortex chamber height and r^ is the

sink tube radius.

In view of the fact that both plates of the vortex

chamber as well as the sink tube wall are non porous, they

are considered as stream surfaces. The bottom plate of the

vortex chamber and the sink tube wall are considered the same

stream surface. Thus the boundary conditions for these sur-

faces are
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e) at z = 0 w ( r , 0 ) = 0, 0 <_ r <_ r0 (A-5)

f) at z = h w ( r , h ) = 0, " r^ <_ r <_ rQ ( A - 6 )

g ) a t r = r j u C r . z ) = 0 , x h £ Z £ £ ( A - 7 )

where C^ and C2 are constants.

At the periphery of the vortex chamber (r = r0), the

fluid enters in a uniformly radial manner (relative to sensor).

Hence the boundary condition is

h) at r = r0 w(r0.z) =0

u(r ,z) = u 0
?=' Qo\ 0 < z < h (A-8)
H7~F .

The axis of symmetry for the sensor is considered a

streamline which is the same streamline as for the top plate

of the vortex chamber. This is so because, along the axis

of symmetry, both the radial and tangential velocity components

vanish. Thus at r = 0,

4>(0,z) = G!

u(0,z) = 0, ( 0 < z < 5, (A-9)

v(0,z) = 0,

f(0,z) = 0.

Along the axis of symmetry, a minor difficulty is en-

countered with respect to the definition of the radial velocity

which is expressed in the terms of the stream function. For

instant, at r = 0, the velocity w(0,z) is expressed as

w(0,z) = jlim _
r+0 I " r Tfr
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By applying the L'Hospital rule, this can be written as

atr = 0 w(0,z) = _ 0 < z < a , (A-10)

r = 0
and since the limit does exist, it indicates that

at r = 0 aJJ =0 (A-ll)

r = 0 .

Also, on the axis of symmetry, the boundary condition

for the tangential vorticity component is written as

at r = 0 n(0,z) = Aim \ 3w 1 0 _< z £ £ (A-12)
r-0 | " Tr J

stnce the radial velocity at the location is zero. Thus at

r - 0, the axial gradient of radial velocity is zero. If'3w

is not zero at r = 0, then the velocity profile would

have a cusp at the axis of symmetry resulting in a discontinuity

1n the value of the derivative as one crossed the axis of

symmetry. This would result in a shear stress, which is pro-

portional to the first derivative of the velocity, being dis-

continuous. This condition can not occur in a physical

system. Thus, an additional necessary requirement is that

at r = 0 3w _ n • (A-13)

This, therefore, results in the tangential vorticity being

zero on the axis of symmetry, i.e.

at r = 0 n(0,z) =0 0 <_ z < a . (A-14)

At the periphery of the vortex chamber, the entering

fluid is assumed uniform as well as purely radial, hence

at r = r 3u _ Q 3w _ n (A-15)
0 Jz ~ u • W ~ u
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Thus, the tangential vorticity is considered zero at r = rQ.

i.e.

at r = rQ nCr0,z) =0 0 < z < h . CA-16)

The difference between the value of the stream function

on the top plate of the vortex chamber (or the sensor geo-

metrical axis) and the stream function value on the bottom

plate of vortex chamber (or the sink tube wall) is proportional

to the flow discharge rate QQ. This is shown to be so in

the following manner. The continuity equation requires that at

-Q = 2TrrQ / udz (A-17)
o

By using the definition of u, this is written as

-v
o

This equation is then used to show that at r, ^ is a functiQ on

J ,

of z only. Since at r = rQ, u = u = constant, then 3$ =
"Sz

constant. Thus, at r = r_, $ is a linear function of
U

z and the integral is an exact differential. Thus, Q can

be expressed as

-Q0
 = 27r

where ij;(0) is a constant and is assigned the stream function

value for the top plate, i.e., iJJ(O) = C^ = 0. Consequently,

the stream function for the bottom plate, i£(h), is given by

the relation

*th) = - 5 o - const. = C2
 (A-20)
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The tangential vorticity values on the top and bottom

plates of the vortex chamber as well as on the sink tube wall

are calculated from the stream function by use of the Taylor

Series. The general value of tangential vorticity n, as

expressed in terms of the stream function $, is

= _ 3u _ 9w _ !_ 22j>
r 7 '£ £r 7
I rv y, £ y* Ci 7

Specifically then along top and bottom plates of the

vortex chamber, one can state that, at z = 0 and z = h

u(r,0) = u(r,h) = 0

w(r,0) = w(r,h) = 0

and with

tr.O) = |£'Cr,h) = 0 ,

the tangential vorticity fi is reduced to

n s "

I.e.,

at z = 0

at z = h

n(r.O) =

riCr.h) =

0 1 r 1 r0
z = 0

ri 1 r 1 ro

z = h

Along the sink tube wall at r = r. with

u(ritz) = wt^.z) = 0
and

_
3z = 0 h < z <

the tangential vorticity is reduced to

h < z <n(r ,

(A-22)

CA-23)

(A-24)

(A-25)

(A-26)

(A-27)

(A-28)

(A-29)

r = r1
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In the downstream section of the sink tube the charac-

teristics of stream function, circulation and tangential

vorticity are assumed such that the slope of streamline,

circulation line and tangential vorticity lines are zero

along the z-direction. In addition to the above, the radial

Velocity is also assumed to be zero at the downstream

section of the sink tube. Thus, the boundary conditions at

downstream section of the sink tube are given by

at z = H 3$ 8v= ° > yz = °
sr _ „ aw

< r < r. (A-30)

•'"'•''u = 0 J!
Jz
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DETAILS OF THE
NUMERICAL FORMULATION

In view of the axial symmetry of the sensor, only the

flow in the region D = {(R,Z)}, as shown in Fig.. (2.2) has

to be considered. Within a region D, a network of uniformly

spaced grid lines is constructed. At each interior mesh

point (the intersection of two grid lines), the derivatives

tKat appear in Eqs. (2-28) through Eqs. (2-30) are approxi-

mated by the central difference technique.

For example, if A be any dependent variable and R and Z

, be independent variables in the i and j direction respectively

: then 3A , 9A ,' '5 A ''' , and 3 /A-'""̂ ' c!M< be written ;as

2AR

2AZ

. (B-3)
aR2

(AR)2

_ A. ..- - 2A. . + A. . , .
~ _Il̂ i _ ^J ^J"1 + 0(AZ)

2 . CB-0

where AR represents the grid size along R (or t) direction

and AZ along Z (or j) direction. Furthermore, higher orders
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than the second order of grid size are neglected, and U a.nd

W can be eliminated from the governing equations, by employ-

ing the definition of the stream function as

U. . _ 1 Sty
T'J K" IT

W. . 1
1jJ IT

2tt-l) ARAZ

l . j - • • Hl.j CB.6)

2Ci-D CAR).2

The following formulation illustrates how the various

equations are approximated by the central difference technique.

1. Stream Function Equation.

The equation for the stream function is written as

32i|j 1 3^ . 82ip D (B-7)
T $ J% 2 ~ Kn •

SR^ 8Z

By employing the central difference technique and by choosing

equal grid size along R and Z (i.e., AR = AZ = a), the above

equation is written as

1+1.j

a2 2aR

\ \> . - 2ijj. . + i|>. . (B-8)

i»j

In the above equation the subscripts i and j correspond to the

R and Z coordinates respectively, since R is the instantaneous
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radius, thus R = C-t-lla.

, which results in

Equation (B-8). is then solved for

.
7 5 J

lj» =1
t.J T

'"Sir(2R ani.j +
where R - (t-l)a.:

2. Steady State Equations

2.1 Circulation Equation

The circulation equation is written as

(B-9)

U a i

a i. NRe-6
l ar

9R 8Z2
(B-10)

By expressing the velocities in terms of the stream

function, the above equation is written as

R 37 1TR~ R ITK" 17 Re_(

3^r 1
R

a r
19R

(B-ll)

In the difference form, this is expressed as

R
i.j-1

2a

2a

r - r
i+l.j i-l.j

2a

r - r
i.j+l

2a
"Re-i

T -2r +r • r' - r1+1. j 1 »-J i-l»j i 1 + 1,j 1-1, j
2a

" 2r i,j + ri',j-l
,.2

(B-12)
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Equation (.B-.12) is then solved for r. ., which results in
i »J

- NRe-9
16.R 'Re-6

2.2 Tangential Vorticity Equation

The equation for the tangential vorticity is written as

W
ari 3ri Ur\ 2r 3F _ 1

77 ~ TT^ ~5^ R R3 Re-6

n_

R'
(B-14)

Upon eliminating U and W by use of the stream function 4), this

is expressed as

_ 1

'Re-<

2r
".~3
K

3 n + 1 3'n _ n j . 3 n
~—o" D -!r"" —r
r\r>2 K

(B-15)

The above equation is now written in the difference form as

2a

2a

i+l.j i-l.j
2a

2a

2a
- r

2a
t,J-l
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+ T)1.J-l-*n1.3J/aMVl.J-n1-l.j)/t2aR»
J *

(B-16)

Equation (B-16) is then solved for n. . which results in
* »J

RB-.e.

16R

(n. . „ - n ) 4a r • rr - r
l,J+l i,3-l - — i,3 { i.J-

R

,2 aN Re-
4R' , CB-17)

8R

where R = (i-l)a, with subscripts i and j are along R and Z

direction respectively.

3. Transient Case

3.1 Circulation Equation

In the circulation equation,

FT Re-(
32r
7T2 , (B-18)

U and W are eliminated by the stream function ij> and one obtains
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ar + I 3f ar 1
R 17 "9~R R 'Re-e

1 9r + a r
FTC 8Z2

(-B-19)

The difference equation is then rewritten by use of the

central time and central space technique. Consequently,

Eq. (B-19) becomes

/ f k kk+1 k-1
r - r (2AT)

,
(4Ra)

k k k
., -^
1+1. j 1-1, j

(4Ra

_ 1
N Re-i

k
- 4r

k k
r - r
1+1.j . i (2aR)

(B-20)

k
In the first term of right hand side, 4r. . is written as;

(B-21)
k k+1 k-1

4r. . - 2r. . + 2r. . ,

k+1
and then the equation is solved for r. . to give
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k+1 k-1
r. . + AT
i »j —

2a2R

- r

(r - r
k , k k * /) - 2a (r - r )
1-1,j 1+1J 1-1,j /

is is is \.
+ 4R (r. , . + r + r + rv 1+1,j 1-1,j ij+l i,j_i

N. 1 + 4AT Re-6

Re-6

rj-j)

(B-22)
Re-9)J/

where R = (i-l)a.

3.2 Tangential Vorticity

The equation for the tangential vorticity is written as

"57
n_ ̂  2r ar

"57

Re-9 I 3R2
, 23 n

R' (B-24)

Through the use of the central time and central space technique,

the above equation is written in the difference form and

there resul ts

k+1 k-l
n, _. - n, ,

(
(2AT) + \ ip. .
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k f k
- n . .•

-r

(2aR2)

k k •) /

'l.J+I-YjW'

,
aRJ) =

( k k k k k | /
<i n. , . + n + n +n -4n (/<
I i+l.o i-l,j i.o+l i,j-i i,jj/

(• k k ^
. - n \ / C2aR) - n
J i-l.j)/

. (B-25)

In the first term of right hand side 4ru . is rewritten as
i > J

k+1 k-1
. = 2n + 2n. .
J i, j i. J

(B-26)

k+1
and then the equation is solved for n. . to obtain

i »J

k+1
n. . =

k-1
n + AT
i i j ?

2a R

(n. .v i.J +1
- n.

k k
-j.! . - n . , . ) + 2an . .
i+l, J 1-1. j' i,J

2a

k k
- 1 - + nii-l, J i

k
- • 1i ,0-1

k-!\ /M
'ujVV.

1 + 4AT/ /N
Re-e

(B-27)
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Equations (B-5)', (B-9) and (B--13) constitute the govern-

ing difference equations for the steady state case and

Eqs. (B-5), (B-20) and (B-27) for the transient case.
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VELOCITY COMPONENT
CALCULATION PROCEDURE

As discussed under the test procedure, (Section (6.2))

the resultant velocity V* as well as the longitudinal angles

0 and $ are measured at a particular location in the sink

tube by a constant temperature hot wire anemometer. The angle

0 is the longitudinal angle made by the probe with the sink

tube axis in a horizontal plane, whereas <j> is the longitudinal

angle made by the probe with the sink tube axis in a vertical

plane.

The measured values of V*, 0 and cj> are used to calculate

the radial (u), axial (w) and tangential (v) velocity com-

ponents. The resultant velocity is defined as

V* = V + V2 + W2 - (C-D

Since 0 is measured in a tangential direction then

v = w tan 0 . CC-2)

Similarly since <J> is measured in a radial direction then

u = w tan •((>• . (C-3)

Thus the square of the resultant velocity becomes

V*2 = w
2 [1 + tan2 0 + tan2 <j>]

or V*

w = "l + tan* 0 + tan
2 * . (C"4)

The axial velocity component w is calculated first by

use of Eq. (C-4), and then the tangential and radial velocity

components are calculated by use of Eqs. (C-2) and (C-3)

respectively.
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PROBE MECHANISM FOR RESULTANT
VELOCITY MEASUREMENT

The probe holder and mechanism used, for measurement of

the resultant velocity within the sink tube is shown in

Fig. C6.6). This Appendix is devoted to a discussion as

to h:ow the probe is positioned to measure the resultant

velocity.

The distance between the center of the probe wire and

th_e probe rotating axis (probe longitudinal rotating axis)

Is denoted by r^. The instantaneous vertical movement

Cradius) of the probe support axis from the sink tube axis is

denoted by S., when probe wire is horizontal, and S^ when the

probe wire is vertical. Thus the instantaneous radius made

by the probe wire in its movement, for the case when the

probe wire is horizontal, is given by

r = 's,2 + Cri sin 9)2 • (-D-1)
1 •*•

Similarly the instantaneous radius made by the probe wire in

its movement, for the case when the probe wire is vertical,

is given by

r = S2 + r1 sin $ . (D-2)

As the probe wire is positioned at a particular location

for measurement of the resultant velocity both radii, as

given by Eqs.(D-l) and (D-2), have to be equal. This results

in

r = *2 + i r s i n e)2 = s? + rj S1n *' (D"3)
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within the sink tube the radial velocity u is negligible and

the measured value of <j> 1s rather small, therefore, the value

of r, sin <j> is also very small. However, the tangential

velocity v is of appreciable value, so the measured value of

9, and thus r^ sin 6 is of an appreciable magnitude. Hence

from Eq. (D-3), it is concluded that S2 is greater than S.

and that the difference between r and S« is negligible.

In the process of measurement of the resultant velocity,

the probe and probe support are first positioned at a

particular z location. The probe support is then moved

vertically making a radius S. with respect to the sink tube

axis. By use of the roller-string arrangement the horizontally

mounted probe wire is then rotated about its axis to obtain

the location at which the anemometer voltmeter reading is

maximum. This procedure determines the distance r.,, between

the center of the probe wire and the probe rotating axis.

At that particular location, the longitudinal angle 6 is then

measured. Thus with the values of S. , r. and e, the

instantaneous radius r is calculated through use of Eq. CD-I).

The maximum anemometer voltmeter reading is the resultant

velocity at that location.

In a similar manner and with the vertically mounted hot

wire probe, S is adjusted equal to r, and then the probe

wire is rotated to obtain the longitudinal angle <j>. The re-

sultant velocity is then checked and corrected for Sg* since

u « v in the sink tube, and <J> « 6. Also, since 4> is small,

and r > S,,, then r-S2 is very small. Thus r can be approxi-

mated by S.
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In a similar manner to tKe method used in calculating

the radial distancej the correction for z is accounted for

and results in the expression

2 = zl -rl cos e ° 22 ~rl cos * tD-4)

where z is the instantaneous location of probe wire. In this

equation, z. and z~ are the axial distances of the longitudi-

nal rotation of the probe axil measured from the sink tube

entrance, when hot wire is in a horizontal and a vertical

position respectively.
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ERROR ANALYSIS

The possible sources of error throughout this study may

be due to either experimental or numerical errors. The

experimental error may be subdivided into the static pressure

measurement error and the velocity measurement error resulting

from use of both velocity calculation methods.

Experimental Error Analysis

In an experiment requiring measurements of several

quantities, each of which has an error associated with it,

the total error that propagates into the final result may be

estimated by the expression [66]

? i o
e = I ,8F)2 e / (E-l)
E n=l (W n

where F is a function of n independent variables having errors

en. For repeated measurements of the variables, it is assumed

that errors are normally distributed about the true value.

The possibilities of errors in velocity measurements may

be attributed to several factors; (i) exact positioning of

probe holder in sink tube for either a radial or axial position,

(1i) longitudinal rotation of the probe in either a horizontal

or vertical direction through use of the roller-string arrange-

ment, (iii) calibration of hot wire anemometer (specifically

the linearizer for gain and exponent adjustment), and (iv)

human error in reading the scales.

The error in positioning the probe holder is fixed and

1s considered as e^ , for the radial location and e, for the
rl zl
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axial location.

The error due to the longitudinal rotation of the probe

in a horizontal plane is obtained as follows. The quantity

r is defined in Equation (D-l), and by applying Equation (E-l),

the expression for error becomes

2 2 2 2 2er = (8r ) es
 + (8r) e . (E-2)

The partial der iva t ives in this equat ion are obta ined from

Equation (D-l) and are found to be

8r - Sl (E-3)
3s7 - • 2 + 2 . _

1 5i ' i 51M o

2
r , s i n 9 c o s e

9_r __________ (E-4)
3 6 / ~ ~ ~ 2 2 _ < n z

5j 4- rj sin e

By subst i tu t ing Equat ion (E -3 ) and (E-4) into Equat ion (E -2 ) ,

the express ion for error is ob ta ined as

S 2 e 2 + 4 ^ - - « 2

2 ! Sl ;
sin 6 cos e eQ

e. 2 2 2
s, + r sin e . (E-5)
1 1

In a similar manner the error equation for location of

axial length, due to the longitudinal rotation of the probe

in a horizontal plane, is determined by using Equation (D-4)

ez
2 = ez

 2 + r^ sin2e eQ
2 . (E-6)

The error equation due to the longitudinal rotation of

the probe in a vertical plane is obtained in a similar manner
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As the radial velocity in th-e sink tube is n e g l i g i b l e , the

longitudinal rotation of the probe in the vertical plane is

also negligible. Thus, no additional discussion is necessary

in arriving at the error equations given below

e 2 = e 2 + r 2 cos 2<j) etj)2 ( E - 7 )
2 2 1

and

e = e' + r sin <j> e<j> . (E -8 )

The calibration errors are fixed and are denoted by e.
cl

and e . The quantity e denotes the error for probec2 c1

longitudinal rotation calibration and e denotes the error
C2

of calibration of the hot wire anemometer combined with

1Inearizer.

The error in velocity measurement is obtained by de-

riving an error equation for each component of velocity. The

error equations are obtained through use of Equation (E-l)

and the fundamental definition of the velocity components,

(C-2), (C-3) and (C-4), and are found to be

2 = e
2 + V*^tan2e sec49-ee2 + tan2<j> sec%ye

(1 + tan e + tan <(>)

2 2
(.1 + tan 6 + tan <f>) (E-9)

2 2 2 2 4 2
e,. = tan d> e + w sec <t> e. (E -10 )

U W w

2 2 2 2 4 2
ew = tan e e + w sec 9 e . ( E - l l )v e e
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To estimate the relative magnitudes of errors associated

with the uncertainties in the measurements, numerical values

from a typical test condition are substituted in the above

equations.

The following values are taken from a typical test run

from which the velocity components are determined

Radial location of pin bearing

from the sink tube axis ' Sj = 0.5 inch,

Length of rotating arm of probe

(hot wire) r-L = 0.546 inch,

Axial location of pin bearing

from sink tube entrance z. = 6 inches,

Horizontal longitudinal angle 6 = 38.7 degrees,

Vertical longitudinal angle <J> = 0.0 degree,

Resultant velocity V* = 6.95 ft/sec.,

Speed of sensor N = 20 rpm,y

and Radius of vortex chamber rQ = 10 inches.

By using V*, 6 and <J>, the axial, tangential and radial velocity

components are calculated and found to be 5.45, 4.36 and 0.0

feet-per see. respectively.

The following errors or uncertainties are assumed, taking

into account instrumentation accuracy errors due to lack of

resolution, human errors in reading instruments and general

velocity losses, etc.
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Name of Error

Resultant velocity
horizontal

Longitudinal angle
vertical

Longitudinal angle

Calibration of
longitudinal angle

Calibration of
anemometer

Radial distance

Axial location

Errors in
Percentage

+ 1%

+ 1%

+ 11

+ 1%

+ 0.5%

±i»
+ 0.2%

Error
Symbols

V
ee

%
e
Cl

ec2

e
sl

ezj

Magnitude
of Errors

0.0695 ft/sec

0.387 degrees

0.0 degrees

-

0.03475 ft/sec

0.005 inch

0.012 inch

The error in measuring the radius r in the horizontal plane

position is calculated by using Equation (E-5). By using the

values given in the Table above, the error is found to be

= 0.006438 inch. (E-12)

The error in measuring the radius r in the vertical plane

position is calculated by using Equation (E-7). By using the

values given in the Table above, the error er is calculated

and found to be

= 0.005 inch. (E-13)

Comparing (E-12) and (E-13), the larger value is chosen for

the total error calculation. The magnitude of error in measur-

ing the radial distance s, (given in Table) is ec = 0.005 inch.
]Thus the total error in measuring the radius is given by
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2 2 0.5
er =• (e + er )sl r2

9 2 °.5
= (0.005̂  + 0.006438 )

= 0.008152 inch. (E-14)

The magnitude of error in measuring the axial length z.,

1s (from Table) e, = 0.012 inch. This error in axial length
21

is calculated from Equation (E-6) and is found to be very

small (i.e., ez = 0.00003), and therefore is neglected.

Similarly the error e_ obtained from Equation (E-8) is alsoZ2
neglected.

The error in axial velocity is calculated as follows.

The error in measuring the axial velocity is a result of

human error, error due to positioning of the probe in either

the axial or radial location and the error arising from

calibration of the anemometer.

The value of the human error in reading of the meter is

used in Equation (E-9) to determine its portion of the error

occurring in the measuring of the axial velocity. This value

is found to be e.. h = 0.1459 feet per second.w j n

The value of the error resulting from positioning the

probe in either the radial or axial location is obtained

through use of numerical data. The magnitude of error for

positioning the probe in the radial location is taken from

Equation (E-14). This value is ep = 0.008152 inches. The

portion of the error occurring in measuring the axial velocity

due to this positioning error is then calculated and found to

be e.. „ = 0.0043 feet per second. In a similar manner the
W , I .

calculated error in axial velocity due to positioning of the
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probe in the axial location i-s found to be e,, = 0.0036w , z
feet per second.

The portion of the error in measuring the axial velocity

that is due to the calibration of the hot wire anemometer must

also be accounted for. This value is found to be er = 0.03475C2
feet per second.

The total error in measuring the axial velocity is then

determined by use of the equation

and is found to be 0.15 feet per second. The percent error

therefore is 2.75.

In a procedure similar to the above, the error in

measuring the tangential velocity is also obtained. The estimate

of the human error e , found from Equation (E-ll) is 0.1316

feet per second. The magnitude of the error for probe

positioning in the radial direction is e = 0.008152 inch which

results in a value of e = 0.0124 feet per second. Then

from the value of ez = 0.012 inches the value of e becomes

0.014 feet per second. These component values then result in

a total error of 0.1374 feet per second and a percentage error

or 3.15.

In a manner similar to the above, the error in measuring

the radial velocity is shown to be zero since the radial

velocity is zero for this location.

The same procedure is adopted for obtaining the error

analysis in the second method of velocity measurement.

In this method the radial velocity is assumed to be zero. •
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The tangential and axial velocities are given by Equations

(6-13) and (6-14) respectively. By using the same technique

as before, these equations are transformed to the error

equations.

(E-16)

and
2 2 4 2 2

9 Vu e.. + K V,, e.,
2 H VH o V Vv (E.17)

e
2
V

V V
2

ev

2

V
2

V
2
H

2
ev
o

H
2

U - Ko ) <VH - Ko V
V
 )

After combining all errors as discussed previously the

resultant total error in tangential and axial velocities are

found to be respectively 0.1455 and 0.157 feet per second,

while on a percentage basis these values are 3.34 and 2.88

respectively.

In addition to accounting for the errors in measuring

the component velocities it is also necessary to account for

the error in measuring the static pressure.

The static pressure is measured by a specially designed

static pressure probe. The probe consists of two concentric

tubes. Very small holes were drilled through the outer tube

so as to eliminate the dynamic pressure head. The static

pressure then is directly measured by means of the inner tube

which is connected to a pressure transducer. Since the

transducer directly measures the pressure, the possibilities

of error are minimal. Nevertheless, a discussion pertaining

to any error, thus resulting, follows.
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An error could result from not properly positioning the

static pressure probe in either the radial or axial directions.

The probe is located at a given radial position through means

of a precision mechanism having a measuring scale whose

smallest graduation is 0.001 inches. Thus any error arising

is indeed negligible. Similarly the rack and pinion mechanism

used to position the probe at a given axial location has a

measuring scale with its smallest graduation being 0.05 inches.

Again, any error occurring would indeed be minimal. The error

arising due to the boundary layer growth effects are minimized

due to the tapered tip of the probe. Another possible error

could result from the flow being at an angle to the sink tube

geometric axis and thus to the probe. This effect experi-

mentally is observed to be n e g l i g i b l e up to angles of forty

degrees. Beyond this angle a deviation of 3 to 4 percent is

noted in the readings. As observed from the experimental

data the axial velocity is higher than the tangential velocity.

Also it is noted that the radial velocities are negligible.

Therefore, the flow angle encountered throughout the experiment

never exceeded 35 degrees and hence the error is negligible.

Any error resulting from use of the transducer is also

minimal as it is calibrated and checked by means of a standard

resistance.

The probable human error arising from rea,d{ng of the trans-

ducer s^cale t s estimated -to 6e 1 ess- tfran one percent. The smal lest

division on the transducer scale has a 0.0005 mm of mercury

head and this is sufficiently small for the pressure range

encountered within the sink tube.



185

Error Analysis Pertinent to the Numerical Results

The steady state and transient governing equations con-

sist of first and second order derivatives in R and Z. When

these differential equations are written in the difference

form a truncation error results. The evaluation of this

error is determined for any dependent variable as here

described.

Let A be any dependent variable, x be any independent

variable and a be assigned the grid size, then A can be

expressed as function of x and a, A = A(x,a). By use of the

Taylor series expansion A(x+a) and A(x-a) become respectively

A(x+a) = A(x) + aA'(x) + a2 A" (x) + a3 A'"(x)
FT JT

+ a4 A1V(x) + . . . (E-18)

A(x-a) = A(x) - aA'(x) + a2 A" (x) + a3 A'"(x)
FT 3T

+ a4 AlV(x) + . . . (E-19)

The subtraction of these equations gives the first order

derivative of A with respect to x, and is shown in Equation

(E-20). The addition of these equations, however, gives the

second order derivative of A with respect of x, and is shown

in Equation (E-21)

9A _ A(x+a) - A(x-a) n, 2x (E-20)
_ -- 2* + °U '

and
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2
8 A A(x+a) - 2A(x) + A(x-a) + Q /2v (E-21]

3x a

It becomes evident that the central difference technique
2contains the truncation error of order a for both the first

and second order derivatives. In this analysis a is chosen

to be <_ 0.02 and, therefore, the truncation error is of order

(0.02)2 or 0.0004.
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APPENDIX F

COMPUTER PROGRAM - TRANSIENT CASE

READ
READ
READ
XNEU
RE =
ROSB
VO =
GEM.AO
UO =
REU =
R = 1
Nl =
XN1 =
Ml =
MP =
XM1 =
NN1 =
NNP =
XNN =
XNN1
MM1 =
MM3 =
MM4 =
A = R
DELR
DELZ
DT =
RI =
REI =
R3 =
CA =
CB =
DENO
WRITE
WRITE
WRITE
T = 0
MMT =

N,M 5NN,MM
QO, OMEGA, RO, H, TOL
XLL, LL1, LL2, LL3, LLX

2,500
2,550
2,600

= 0.00016
OMEGA * RO * RO/ XNEU
= QO / (2.*3.14159*OMEGA * RO **3 )
RO * OMEGA
= OMEGA * RO ** 2

QO / (2. * 3.14:l-5'93\* R08H )
UO * RO / XNEU
.0
N - 1
Nl

M - 1
M + 1
Ml
NN - 1
NN + 1
NN

= NN1
MM - 1
MM - 3
MM - 4
/ XN1

= A
= A
XLL
A * XNN1
1. / RE

1. / ( A * A )
4. * DT * REI * R3
2.0 * A * REI
= 1. + CA
(3,700) QO, OMEGA, H, RO, RE, GEMAO, ROSB
(3,710) UO, REU, VO
(3,720) N, M, NN, MM

DO
XI
RA
DO
PA
GA
GB
SA
SB

I = 1, N
I - 1
XI * A
J = 1, MMT
,J) = 0.
,J) = RA * RA
,J) = GA (I,J)
,0) = 0.0
.J) = 0.

CONTINUE

1
(I
(I
(I
I
I
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2
3

4

5

6
C
C
C
C
C

IF ( I -
MMT = M
CONTINUE
DO 4 0 =
X2 = J -
PA (N,0)
CONTINUE
DO 5 I =
PA (I,M)
CONTINUE
DO 6> 0 =
PA (NN,O;
CONTINUE
**********

NN)

1,
1
= -

NN,
= -

M,
j n

IT***

STREAM FUNCT

********^t***

3,2,2

M

ROSB * X2 /

N
ROSB

MM
- ROSB

•^^^^^f^^^f^f^f^^f-ff

ION CALCULATI

•jf̂ ^̂ ^̂ ,̂̂ ^̂ ^̂ ^

XM1

***

ON

"ic ~f( ~k

WITH ZERO VORTICITY TERM

K2 = 0
DO 15 15 = 1, LL1
K2 = K2 + 1
MMT = MM

7

8
9

DO 9
DO 7
PB (
CONT
IF (
MMT
CONT

'l
I

=
I

I
0
,0

=
=
)

1
1
,
,

N
MMT

=• PA (I.,0)
NUE
I - NN
M

NU E
DEVMP =
MMT1
DO 1
XI =
RA =
DO 1
TEMP
PA (

0•0

) 9,8, 8

= MM1
3

1

I
X

I

1
0

_ =

*
=

1

= PB
I ,0) =

2

A
2
(

,

,
I
0

Nl

MMT1
,0)
.25*( PB

-U.Jht- IPA
,TPU Va-U.U-'™ *ft:EV/+DAPrt^ -1

DEV = ABS(
IF (DEV - DEVMP)

10 DEVMP = DEV
11 CONTINUE

IF (I - NN1) '13,12,12
12 MMT1 = Ml
13 . CONTINUE

DO 14 I = 2 NN1
14 PA(I,MM) = PA(I,MM4) - 2.* PA(I,MM3) + 2.* PA(I,MM1)
15 CONTINUE

WRITE (3,730)
WRITE (3,740) K2
WRITE (3,750) DEVMP, TOL
WRITE (3,760) (J, 0 = 1, M)
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DO 16 I = 1, N
WRITE (3,770) I, (PA(I,J), J = 1, M )

16 CONTINUE
WRITE (3,780) (I, I = 1, NN )
DO 17 J = M, MM
WRITE (3, 770) J, (PA(l,J), I = 1, NN )

17 CONTINUE
MX = LL3
DO 53 KX = 1. LLX
T = T + DT

£ ***************************************************

c
C STREAM FUNCTION CALCULATION WITH NEW VORTICITY TERM
C
Q

DO 26 16 = 1, LL2
MMT = MM
DO 20 I = 1, N
DO 18 J = 1, MMT
PB (I,J) = PA (I,J)

18 CONTINUE
IF ( I - NN) 20,19,19

19 MMT = M
20 CONTINUE

DEVMP = 0.0
MMT1 = MM1
DO 24 I = 2, Nl
XI = I - 1
RA = XI * A
DO 22 J = 2, MMT1
TEMP = PB (I,J)
PA(I,J) = 0.25*(PB(I+1,J)

1+PB(I,J-1) - A* (A * RA * SA (I,J) + (PB (l+l.J)
2- PB (I-l.J)) * 0.5 / RA ))
DEV = ABS( PA(I,J) - TEMP)
IF (DEV - DEVMP) 22,21,21

21 DEVMP = DEV
22 CONTINUE

IF ( I - NN1) 2.4,23,23
23 MMT1 = Ml
24 ' CONTINUE

DO 25 I = 2, NN1
25 PA(I,MM) = PA(I,MM4) - 2.* PA(I,MM3) + 2.* PA(I.MMl)
26 CONTINUE

Q *****************************************************1

C
C CIRCULATION CALCULATION BY ITERATION TECHNIC 'PB1 IS
C USED FOR STORING THE PREVIOUS VALUE OF 'GB 1

C
C

MMT = MM
DO 29 I = 1, N
DO 27 J = 1, MMT
PB (I,J) = GB (I,J)
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GB (I,J) = GA (I,J)
27 CONTINUE

IF (I - NN) 29,28,28
28 MMT = M
29 CONTINUE

DEVMG = 0.0
MMT1 = MM1
DO 33 I = 2, Nl
XI = I - 1
RA = XI * A
DO 31 0 = 2, MMT1
TEMP = GB (1,0)
VA = 0.5 * DT * R3 / RA
VB = 4.0 * REI * RA
VC = 2.0 * A / RA
GA (1,0) = (PB (1,0) + VA * ( (PACl+1,0) - PA(I-I.O))
1*(GB(I,0+1) - GB(I,0)) - (PA(I,0+1) - PA(I,0-1))*
2(GB(I+1,0) -GB(I-1,0)) + VB* (GB(I+1,0) + GB(l-l.O)
3+GB(Ifrl~.a) + GB:(l;;:0-l) - 2.* PB(I,J)) - CB * ( GB(I=1,0)>
4-GB(I-l,0)))) / DENO
GA (1,0) = ( GA (1,0) + GB (1,0)) / 2.0
DEV = ABS( GA(I,0) - TEMP)
IF (DEV - DEVMG) 31,31,30

30 DEVMG = DEV
31 CONTINUE

IF (I - NN1) 33,32,32
32 MMT1 = Ml
33 CONTINUE

DO 34 I = 2, NN1
GA (I,MM) = GA (I,MM4) -- 2.* GA(I,MM3) + 2.* GA(I,MM1)

34 CONTINUE
u
c
C BOUNDARY CONDITIONS FOR TANGENTIAL VORTICITY CALCULATION
C

DO 35 J = MP, MM
SA (NN,J) = 3.* (PA(NNl.J) - PA(NN,J)) / (A*A*RI)

1-SA (NNl,0)/2.
35 CONTINUE

0 = 1
DO 36 I = 2, N
XI = I
RN = (XI - 1.) * A
SA (1,0) = 3. * PA (1,0+1) - PA (1,0)) / 4A*A*RN)

1- SA (l,0+l)/2.
36 CONTINUE

0 • M
DO 37 I = NN, N
XI = I
RN = (XI - 1.) * A
SA (1,0) = 3. * (PA (1,0-1) - PA (1,0)) / (A*A*RN)

1- SA (I,0-l)/2.
37 CONTINUE
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SA (NN,M) =.1.5 *( PA(NN1,M) + PA(NN,M1) - 2. * PA(NN.M))
1/.(A*A*RI) - ( SA(NNl.M) + SA(NN.Ml)) / 4.0

C
C TANGENTIAL VORTICITY CALCULATION BY ITERATION TECHNIC
C 'PB1 IS USED FOR STORING THE PREVIOUS VALUE OF 'SB'
C

MMT = MM
DO 40 I = 1, N
DO 38 J = 1, MMT
PB (I,J) = SB (I,J)
SB (I.J) = SA (I,j)

38 CONTINUE
IF (I - NN) 40,39,39

39 MMT = M
40 CONTINUE

DEVME = 0.0
MMT1 = MM1
DO 44 I = 2, Nl
XI = I - 1
RA = XI * A
DO 42 J = 2, MMT1
TEMP = SB (I,J)
VA = 0.5 * DT * R3 / RA
VB = 4.0 * REI * RA
VC = 2.0 * A / RA
VD = 2.0 * VC / RA
SA tl.J) = (PB (I,J) + VA * ((PAtI+1,0) - PA(I-liJ))*

2( SB(I+1,J) - SB'(i-l,J)) + VC *'SB(I,J)*(PA(I,J+1)
3- PA(I.J-I) - CB) + VD * GB(I,J)*( GB (I.J+1) - GB(I.J-l))

--4+ CB *;(2.0 * X.I * ( SB(I + 1,J) + SB(I-1,J) + SB(I,J + 1).
5+ SB(I.J-l) - 2.0 * PB(I,J) + (SB(I+1,J) - SB(I-r.J)))))
6̂')') 7 DENQ .
SA(I.J) = ( SA (I,J) + SB (I,J)) / 2.0
DEV = ABS( SA(I,J) - TEMP)
IF (DEV - DEVME) 42,42,41

41 DEVME = DEV
42 CONTINUE

IF (I - NN1) 44,43,43
43 MMT1 = Ml
44 CONTINUE

DO 45 I = 2, NN .
SA (I,MM) = SA (I,MM4) - 2.* SA(I,MM3) + 2. * SA(I.MMl)

45 CONTINUE
IF (KX - MX)53,46,46

46 WRITE (3,790) MX
MX = MX + LL3
WRITE (3,810) T
WRITE (3,800)
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Q *******************************************************:

C

C PRINTOUT OF STREAM FUNCTION, CIRCULATION AND TANGENTIAL
C VORTICITY
C
Q

WRITE (3,730)
WRITE (3,750 DEVMP, TOL
WRITE (3,760) (J, J = 1, M )
DO 47 I = 1, N
WRITE (3,770) 3, ( PA (I,J), 3 = 1,

47 CONTINUE
WRITE (3,780) (I, I = 1, NN)
DO 48 J = M,MM
WRITE (3,770) J, ( PA (I,J), I = 1, NN )

48 CONTINUE
WRITE (3,820)
WRITE (3,273) DEVMG, TOL
WRITE (3,760) (J, J = 1, M )
DO 49 I = 1, N
WRITE (3,770) I, ( GA (I,J), 3 = 1, ml"

49 CONTINUE
WRITE (3,780) ( I , I = 1 , NN )
DO 50 J = M, MM
WRITE (3,770) J, ( GA (I,J), I = 1, NN)

50 CONTINUE
WRITE (3,830)
WRITE (3,750) ) DEVME, TOL
WRITE (3,760) ( J, J = 1, M )
DO 51 I = 1, N
WRITE (3,770) I, ( SA (I,J), J = 1, M )

51 CONTINUE
WRITE (3,780) (I, I = 1, NN )
DO 52 J = M, MM x

WRITE (3,770) J, ( SA (I,J), I = 1, NN )
52 CONTINUE
53 CONTINUE

Q ******************************************************

C
C RADIAL VELOCITY IS CALCULATED FROM STREAM FUNCTION
C DEFINITION ,'SA1 IS USED FOR 'U' CALCULATION FOR SAVING
C STORAGE CAPACITY..
C
C

MMT = MM
DO 56 I = 1, N
DO 54 J = 1, MMT
SA (1,0) = 0.0 .
SB (I,J) = 0.0

54 CONTINUE
IF ( I - NR)1' 56,55,55

55 MMT = M
56 CONTINUE

MMT1 = MM1
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DO 59 I = 1. N
XI = I - 1
RA = XI * A
DO 57 J = 2, MMT1
SA(I,J) = ( PA(I,J+1) - PACl.J-1)) / (2.* RA * A)

57 CONTINUE
IF (I - NN1) 59,58,58

58 MMT1 = Ml
59 CONTINUE

WRITE (3,840)
WRITE (3,760) ( J, J = 1, M )
DO 60 I = 1, N
WRITE (3,770) I,( SA (I,J), J = 1, M)

60 CONTINUE
WRITE (3,780) ( I, I = 1, NN )
DO 61 J = M, MM
WRITE (3,770) J,( SA (I,J), I = 1, NN )

61 CONTINUE
r ******************************************************!/

c
C AXIAL VELOCITY IS CALCULATED FROM STREAM FUNCTION
C DEFINITION 'SB1 IS USED FOR 'W1 CALCULATION FOR SAVING
C STORAGE CAPACITY
C
r ******************************************************V

MMT1 = MM1
DO 64 I = 2, Nl
XI = I - 1
RA = XI * A
DO 62 J = 2, MMT1
SB(I,J) = ( PA(I-I.J) - PA(I+1,J)) / (2. * RA * A)

62 CONTINUE
IF (I - NN1) 64,63,63

63 MMT1 = Ml
64 CONTINUE

DO 65 J =.2, MM
SB(1,J) =(PA(4,J) - 2.*PA(3,J) - 11.*PA(2,J)) / (5.*

1A ** 2)
65 CONTINUE

DO 65 I = 2, NN1
SB(I,MM) = SB(I,MM4) - 2.0* SB(I,MM3) + 2.0* SBtl

66 CONTINUE
WRITE (3,850)
WRITE (3,760) ( J, J = 1, M )
DO 67 I = 1, N
WRITE (3,770) I, ( SB (I,J), J=1,M)

67 CONTINUE
WRITE (3,780) (I, I = 1, NN )
DO 68 J = M, MM
WRITE (3,770) J,(SB (I,J), I = 1, NN )

68 CONTINUE
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C
C
C
C
C
C

69

70

71
72

73

74

500
550
600
700

710

720

730
740
750

760
770
780
790
800
810
820
830
840

TANGENTIAL VELOCITY
'PB' IS USED FOR 'V
CAPACITY

IS CALCULATED FROM CIRCULATION
CALCULATION FOR SAVING STORAGE

DO 69 J = 1, MM
PB(1,J) 0.0
CONTINUE
MMT = MM
DO 72 I = 2, N
XI = I - 1
RA = XI * A
DO 70 J = 1, MMT
'PB(I.O) = GA (1,0) / RA
CONTINUE
IF (I - NN ) 72,71,71
MMT = M
CONTINUE
WRITE (3,860)
WRITE (3,760) ( J, J = 1, M )
DO 73 I = 1, N
WRITE (3,770) I,(PB (I,J), J=1,M)
CONTINUE
WRITE (3,780) ( 1 , 1 = 1, NN )
DO 74 0 = M, MM
WRITE (3,770) J, ( PB (1,0), I = 1, NN)
CONTINUE

FORMAT (416)
FORMAT (5F12.7 )
FORMAT F10.5, 4110)
FORMAT (//' QO = ' E16.7 '/ OMEGA =', E16.7/ H =

1El667 /' RO = E16.7/ 10X, 'TANGENTIAL REYNOLDS NUMBER
2= ',E16.7 / 10X, ' INLET CIRCULATION =
3ROSSBY NUMBER = ', E17.7 )
FORMAT (/ 10X,' RADIAL INLET VELOCITY =

E16.7 / 10X,

, E18.7 / 10X,
1RADIAL REYNOLDS NUMBER =
2INLET VELOCITY = ' E18.7/ )
FORMAT ( /5X, 'N = ' ,I3,5X, 'M = '

I 1 M M = ' , 13. ).
FORMAT (/' STREAM FUNCTION TABLE
FORMAT (// 17,
FORMAT ( ' MAXIMUM DEVIATION =

1TOLERANCE = ', E18.7 )

E18.7 / 10X,1 TANGENTIAL

13,5X, 'NN =', 13,5X,

' ITERATIONS WERE USED ' / )
// )

E18.7 / ASSUMED

FORMAT
FORMAT
FORMAT

7( 12, 15X ) / )/ 8X, ' I / J = '
110, 6E17.7 )
/ 8X, ' J / I = ',7( 12, 15X ) / )

FORMAT (/8X, ' NUMBER OF ITERATIONS ARE ' , 15 / )
FORMAT (8X ' ******************************* ' / )
'FORMAT C / 5X, 7H TIME = F10.5 )
FORMAT (// ' CIRCULATION DISTRIBUTION ' / )
FORMAT ( // ' TANGENTIAL VORTICITY DISTRIBUTION l / )
FORMAT ( / 10X, ' RADIAL VELOCITY DISTRIBUTION ' / )
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850 FORMAT ( / 10X, ' AXIAL VELOCITY DISTRIBUTION ' / )
860 FORMAT ( / 10X, ' TANGENTIAL VELOCITY DISTRIBUTION ' / )

STOP
END
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APPEND^ :f

COMPUTER PROGRAM - STEAD? STATE CASE

PROGRAM PATEL
rMPLTCFT REAL *8CA-H,0-Z)
DIMENSION PST (51,51), GEMA(51,51), ETA(_51,51), U (.51,51)
READ(2,82) N, M, NN, MM
READ (2,90)LA,LB,LC,LX
XNEU = 160.E-6
R = 1.
Nl = N-l
XN = N
Ml = M-l
MP F M + 1
XM <= M
NN1 =NN-1

^NNP = NN + 1
XNN = NN
MM1 = MM - 1
MM3 = MM - 3 .?«!». - '3" .
^M4 = MM - 4
DELR = R / (XN - 1. )
DELZ = DELR
A * DELR
RI = R *(XNN - 1. ) / ( XN - 1. )
MMT = MM
DO 3 I = 1,N
RN = (XI - 1. ) *A
DO 1 J = 1, MMT
psr (i,j) = o.
ETA Cr.J) = o.
(3EMA tl.J) = RN**2
U(I,J) = 0

1 CONTINUE
TF(I -.NN ) 3,2,2

2 MMT = M
3 CONTINUE

READ (2,81) QO, OMEGA, RO, H, TOL
VO = RO * OMEGA
UO = QO / ( 2. * 3.14159 * RO * H )
REU = UO * RO / XNEU
ROSB = QO / ( 2. * 3.14159 * OMEGA * RO ** 3 )
RE = OMEGA * RO ** 2 / XNEU
GEMAO = OMEGA * RO ** 2
RX = 2. * DELR / RE
DO 4 I = NNP,N

4 PSY(I.M) = - ROSB
DO 5 J = M, MM
PST (NN,J) = - ROSB

5 CONTINUE
DO 6 J = 2,Ml
XJ = J



PSYXN.O) = -ROSB * t*0 - -1.) / CXM - 1 . )
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WRITE C 3 . 8 5 ] QO OflE^A-, H, RO, RE, GEHAO, ROSB
WRITE C3.89) N, fl, NN, 'MM
DO 14 15 =1, LA

C *******************************************************
C
C STREAM FUNCTION CALCULATION WITH ZERO VORTICITY TERM
C 'U1 IS USED fOR TEMPORARY STORAGE Of STREAM FUNCTION
C

mil » MMI
DO 9 I = 2, Nl
XI = I
RN = (XI-1.) * A
DO 7.0 = 2, MMT1
PI = 0.25 * ( PSY (1+1,0) + PSY (1-1,0) + PSY (1,0 + 1)
1 + (PSY(I.O-I))
P2 = 2. * ETA(r.O) * RN **2 * DELR + PSY(I+1,0)

1 - PSY(I-l.O)
U (1,0) = PI - P2 *A/(8.*RN)

7 CONTINUE
IF ( I - NN1 ) 9,8,8

8 MMT1 = MMI
9 CONTINUE

MMT1 = MMI
DO 12 I = 2, Nl
DO 10 0 =2, MMT1
PSY (1,0) = 0.2 * PSY(I,0) + 0.8 * U(r,0)

10 CONTINUE-
IF (I - NN1) 12,11,11

11 MMT1 = Ml
12 CONTINUE

DO 13 I = 2, NN1
PSY(I.MM) = PSY(I-,MM4) - 2 .*PSY(I ,MM3) + 2.* PSY(I.MMl)

13 CONTINUE
14 CONTINUE

MX = LB
DO 52 KX = 1, LX

C
C
C STREAM FUNCTION CALCULATION WITH NEW TANGENTIAL VORTICITY
C TERM 'U' IS USED FOR TEMPORARY STORAGE OF STREAM FUNCTION
C

DO 23 14 = 1. LC
DEVMP = 0.
MMT1 = MMI
DO 18 I = 2, Nl
XI = I
RN = A * (XI - 1.)
DO 16 J = 2.MMT1
TEMP = PSY(I.O)
PI = 0.25 *•( PSY (1+1,0) + PSY (1-1,0) + PSY (1,0+1)
1 + PSYCl.0-1))



199

P2 = 2. * ETA(I,0) * RN **2 * DELR + PSYtl+1,0)
1 - PSY U-1,0)
U U.J): * PI - P2 *A/8,*'RN)
DE-V F. ABSC U Cl.J)'- TEMP)
If CDEV - DEW) 16,46,15

15 DEW = DEV
16 CONTINUE

If C I - NN1 ) 18,17,17
17 MMT1 = Ml
18 CONTINUE

MMT1 = MM1
DO 21 I = 2, Nl
DO 19 J = 2, MMT1
PSY (1,0) = ( PSY (1,0) + U (I,J) ) / 2.0

19 CONTINUE
If (I - NN1) 21, 20,20

20 MMT1 = Ml
21 CONTINUE

DO 22 I = 2, NN1
PSY(I.MM) = PSY(I,MM4) - 2.* PSYU.MM3) + 2.* PSY'Cl.MMl)

22 CONTINUE
23 CONTINUE

U

c
C CIRCULATION CALCULATION BY ITERATION TECHNIQUE
C 'U1 IS USED FOR TEMPORARY STORAGE OF CIRCULATION
C

DEYMG = 0.
MMT1 *.-MMl
DO 27 I = 2,N1
XI = I
RN = A * (XI - 1.)
RRX = RE / (16.0 * RN)
DO 25 J = 2, MMT1
TEMP = giWA tr.Ji gema 91-1,0)
64 = GEMA(I+1,0) +'GEMA(I-1,0) + GEMA(I,0+1) + GEMA(I,0-1)
G5 = ( PSY(I,0+1) - PSY(I,0-1) + RX )*( GEMA(I+1,0)
1 - GEMA(I-l.J))
66 = ( PSY(I+1,0) - PSY(I--1,0))*( GEMA(I,0+1) -
G7 = RRX * ( 65 - 66 )
U (1,0) = 0.25 * G4 - 67
DEV = ABS( U (1,0) - TEMP)
IF (DEV - DEVMG) 25,25,24

24 DEVM6 = DEV
25 CONTINUE

IF ( I - NN1) 27,26,26
26 MMT1 = Ml
27 CONTINUE

MMT1 = MM1
DO 30 I = 2, Nl
DO 28 0 = 2, MMT1
GEMA(I,0) = 0.7*U Cl.O) + 0.3 * GEMACl.O)

28 CONTINUE
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IF Cl - NN1) 3 0 , 2 9 , 2 9
29 HMTJ. R Til
30 CONTINUE

DO 31 r p 2, NN1
5 E W A C l , W M ) = G E M A U , ' M M 4 ) - 2 . * G E M A ( I , M M 3 ) + 2 . * G E M A ( I , M M 1 )

31C-&N C O N T I N U E
L
c
C TANGENTIAL VORTICHY CALCULATIONS BY ITERATION TECHNIQUE
C 'U' IS USED FOR TEMPORARY STORAGE OF TANGENTIAL VORTICITY
C
C

DEVME = 0.
MMT1 = MM1
DO 35 I = 2,N1
XI = I
RN = A * CXI - 1.)
RRX = RE / (16.0 * RN)
VX = 1.0 / (4.0 * (XI-1.)**2)
VY = 1.0 / (( XI-.1. ) ) * RN
VZ = RE / ( 8.0 * RN * (XI-1.))
DO 111 J = 2, MMT1
TEMP = ETA (ISJ)
ET4 = ETA(I+1,J) + ETA(r-l.J) + ETA(J,J+1) + ETA(I,J-1)
ET5 = ( PSY(I,J+1) - PSYtr.J-1) - RX ) * (ETA(I+1,J)

1 - ETA(I-I.J))
ET6 = ( psY(i+i,J) - PSY(I-I,J))*CETA(I,J+I) - ETA(I,J-I))
ET7 = 4.*GEMA(I,J)* (GEMAU.J+l) - GEMA(I, J-l) )*VY
DENO * 1.0 + VX + (PSY(I.J-I) - PSYCr,J+l)) * VZ
U (I,J) = (.°-25*ET4 - CET5 - ET6 - ET7) * RRX ) / DENO
DEV = ABS (U (I,J) - TEMP)
IF (DEV - DEVME) 33,33,32

32 DEVME = DEV
33 CONTINUE .

IF ( I - NN1 ) 35,34,34
34 MMT1 - Ml
35 CONTINUE

MMT1 = MM1
DO 39 I = 2, Nl
DO 37 0 = 2, MMT1

36 ETA (I,J) = 0.2 * U (l,J) + 0.8 * ETA Cl.J)
37 CONTINUE

IF (I - NN1) 39,38,38
38 MMT1 = Ml
39 CONTINUE

C
C
C BOUNDARY CONDITIONS FOR TANGENTIAL VORTICITY
C

DO 40 I = 2, NN
ETA(I,MM) = ETA(I,MM4) - 2.*ETA(I,MM3) + 2.*ETA(I,MM1)

40 CONTINUE
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DO 41 J = 2, Ml
ETA C N , J ) F 0.

41 C O N T I N U E
DO 42 r = 2, N
xr ° r
RM = A * Cxr - i.)
ETA tr.D = 2. * tPsUr ,2 ) - p s Y l r . i ) ) / CRN * D E L Z ** 2 )

4 2 C O N T I N U E
DO 43 I = N N P , N
XI = 1
RN = A * (XI - 1. )
ETA ( I , M ) = 2. * t P S Y l l . M l ) - P S Y U . M ) ) / I RN * D E L Z ** 2 )

4 3 C O N T I N U E
DO 44 J = MP, MM
ETA ( N N , J ) = 2. * ( . P S Y t N N l . J ) -. P S Y / C N N . J ) ) / (RI * D E L R ** 2 )

44 CONTINUE
ETA CNN.M) = (PSY(NN,M1) - PSYtNN.M)) / (RI * DELZ ** 2 )
1 + HPSY(NN1,M) - PSYtNN.M)) / (RI * DELR ** 2)
IF (KX - MX ) 52,45,45

45 WRITE (3,93) MX
WRITE (.3,91)
MX = MX + LB

L
c
C PRINTOUT OF STREAM FUNCTION, CIRCULATION AND TANGENTIAL
C -yORTICITY
C
C

WRITE (3,95
WRITE (2,94
WRITE (3,84

(2,!
(3,:

DEVMP, TOL
(J, J = 1, M)

DO 46 I = 1,N
WRITE (3,88) I, CPSY(I,J), J = 1, M )

46 CONTINUE
WRITE (.3,93) ( 1,1 = 1, NN )
DO 47 J = M,MM
WRITE (3.88) J, (PSY(I,J), I = l.NN )

47 CONTINUE
WRITE (3,86)
WRITE (3, 94) DEVMG, TOL
WRITE (3,84) ( J, J = 1, M )
DO 48 I = 1, N
WRITE (3,88) I, (GEMA(I,J), J=1,M)

48 CONTINUE
WRITE (3,93) (1,1 = 1, NN )
DO 49 J = M,MM
WRITE (3,88) J, ( GEMA(I,J), I = 1, NN )

49 CONTINUE
WRITE (3,87)
WRITE (3,94) DEVME, TOL
WRITE (3,84) (J, J = 1, M )
DO 50 I = 1, N
WRITE C3.88) I, C ETA(I.J), J=1,M)
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50 CONTINUE
W R H E C3.931 C I,t * -1.NN I
DO 51 3 * W, m
WRITE C3.881-J , C ETA Cr.Jl, T p 4, NN i

51 C O N T I N U E
52 CONTINUE

U

c
C RADIAL VELOCITY - U C A L C U L A T I O N 'FROM STREAM FUNCTION
C

DO 53 J = 2, Ml
U (N,J) = -UO / C RO * OMEGA).

53 CONTINUE
MMT1 = MM1
DO 56 I = 2, N
I = I
RN = CXI - 1.) * A
DO 54 J = 2, MMT1
u (j,o) = tPSYU.j+i) -- psYti,J-i)l / C2. * RN * DELZ l

54 CONTINUE
IF C I - NN1 ) 56,55,55

56 CONTINUE
WRITE C3.96)
WRITE (3,84) CJ.J = -l.M)
DO I = 1, N
WRITE C3.88) I, C U Cl,J), J=l,f!)

57 CONTINUE
WRITE (3,93) (.1, I = 1, NN )
DO 58 6 = M,MM
WRITE C3.88) J, C Utl.Jh I p 1, NN }

58 CONTINUE
L
c
C AXIAL VELOCITY CALCULATION 'FROM STREAM FUNCTION 'U' IS
C USED FOR AXIAL VELOCITY CALCULATION FOR SAVING STORAGE
C CAPACITY
C

DO 59 J = 1, M
U (N,J) = 0.

59 CONTINUE
DO 60 J = 2, MM
U (I,J) = -(-PSY(4,J) + 2. * PSY13.J) + ll.*PSYt2,J))f./

1 C5.*DELR 1 ** 2 )
60 CONTINUE

MMT1 = MM1
DO 63 I = 2, Nl
XI = I
RN = A * (XI - 1.)
D0;61 J = 2, MMT1
U Cl.J) = C PSYCl-l.J) - PSY-tl+l.J) 1 / C2. * RN * DELR )

61 CONTINUE
IF C I - NN1 ) 63,62,62
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62 MMT1 = Ml
63 CONTINUE

DO 64 I = 2, NN1
U (I,MM) = 0(1,MM4) - 2.* U (I.MM3) + 2.*U (I,MM1)

64 CONTINUE
WRITE (3,97)
WRITE (3,84) (J.J' = 1, M)
DO 65 I = 1, N
WRITE (3,88) I, ( U(I,J), J=1,M)

65 CONTINUE
WRITE (3,93) (I, I = 1, NN )
DO 66 J = M, MM
WRITE (3,88) J, ( U (I,J), I = 1, NN )

66 CONTINUE
Q ******************************************************

c
C TANGENTIAL VELOCITY CALCULATION FROM CIRCULATION 'U1

C IS USED FOR TANGENTIAL VELOCITY CALCULATION FRO SAVING
C STORAGE CAPACITY
C
C

DO 67 J = 1, MM
U (I,J) =0.0

67 CONTINUE
MMT = MM
DO 70 I = 2, N
XI = I

• RN = (XI-1.) * A
DO 68 J = 1, MMT
U (I,J) = GEMA (I,J) / RN

68 CONTINUE
IF (I - NN) 70,69,69

69 MMT = M
70 CONTINUE

WRITE (3,98)
WRITE (3,84) (J,J = 1, M )
DO 71 I = 1, N
WRITE (3,88) I, ( U (I, J ) , :J = 1 ,M) NN.)

71 CONTINUE
WRITE (3,93) ( 1,1 = 1, NN )
DO 72 (J = M, MM
WRITE (3,88) J, ( U (I,J), I = 1, NN )

72 CONTINUE

81 FORMAT
82 FORMAT
83 FORMAT

5F12.7 )
416 )

/ 10X,1 RADIAL INLET VELOCITY = ', E18.7 / 10X,
1' RADIAL REYNOLDS NUMBER =', E18.7 / 10X,1 TANGENTIAL
2INLET VELOCITY =', E18.7 )

84 FORMAT ( / 7 X , ' J = ', 5X, 7( 12, 14X) / )
85 FORMAT (// ' QO = ', E16.7 / 'OMEGA ' ,E16.7/ ' H = ',

1E16.7 /' RO = ' , E 1 6 . 7 / 10X, ' TANGENirAlW^NQpSr NUMBER
2= ' .E16.7 / 10X, ' INLET C I R C U L A T I O N = ', E16."7 r lOX, '
3ROSSBY NUMBER = ' ,E17.7 )
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86
87
88
89

90
91
92
93
94

95
96
97
98

FORMAT
FORMAT
FORMAT
FORMAT

DISTRIBUTION ' / )
VORTICITY DISTRIBUTION

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

1TOLERAMCE
FORMAT (/
FORMAT
FORMAT
FORMAT
STOP
END

// ' CIRCULATION
// ' TANGENTIAL

( 110.6E16.7 )
( /5X, 'N =',I3,5X

'MM =
(416)

/ gx. • ****************************
(/8X* ' NUMBER OF ITERATIONS ARE ',
( /7X, ' I = ', 5X, 7( 12, 14X ) / )

= ',13
,13 )

13, 5X

15 '/

( ' MAXIMUM DEVIATION =
= ' )

E18.7 / ' ASSUMED
, E18.7
STREAM FUNCTION TABLE

/ 5X, ' RADIAL VELOCITY DISTRIBUTION ' / )
/ 5X, ' AXIAL VELOCITY DISTRIBUTION ' / )
/ 10X, ' TANGENTIAL VELOCITY DISTRIBUTION / )


