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Development of a Global Pollution Model for

CO, CH4, and CH20

by

L. K. Peters

ABSTRACT

The remote sensing of atmospheric pollutants from satellites will be

feasible within the next few years. To effectively interpret these data,

global pollution models that describe the transport and the physical and

chemical processes occurring between sources and sinks of pollution are

essential. This report describes the current status of a global pollution

model for carbon monoxide, methane, and formaldehyde.

The study considers the physico-chemical action of these three pollutants

in the troposphere. This geographic restriction is convenient since the tropo-

pause provides a natural boundary across which little transport occurs. The

data on sources and sinks for these pollutants is based on available informa-

tion and assumptions relative to the major man-made and natural contributions.

The distributions and concentrations of methane, formaldehyde, and carbon monoxide

in the atmosphere are interrelated by the chemical reactions in which they par-

ticipate. A chemical kinetic model based on the pseudo-steady state approxima-

tion for the intermediate species has been developed to account for these reactions.

The numerical procedure being used to mathematically describe the pollution.

transport is a mass conservative scheme employing an integral flux approach.

It is fourth-order accurate in space which is desirable in simulating convective



2

processes in three space dimensions. Since computer storage places restric-

tions on the scale of transport processes that are explicitly calculated,

smaller scalp mixing is described using an artificial diffusivity.

At the present, the computer model is successfully functioning for short

time integrations. Some additional work remains to develop a plotting routine

and to generate a realistic modeling parameter data tape.
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INTRODUCTION

In the MAPS (Measurement of Air Pollution from Satellites) experiment

proposed for.NIMBUS G by,.Reichle(1), the global distributions of carbon

monoxide, sulfur dioxide, nitrogen dioxide, methane, ammonia, and aerosols

would be measured over a two year period. The utility of satellite remote

sensing data of pollutants will be greatly enhanced if meaningful global

models of pollution are developed. These models will be required to realis-

tically analyze the atmospheric transport of pollution from its sources to

sinks. Furthermore, these models can be significant in placing anthropogenic

sources in proper perspective on a global scale. This report briefly describes

the development and current status of a tropospheric global model for carbon

monoxide (CO), methane, (CH4), and formaldehyde (CH20).

The analysis is accomplished by geographically distributing the sources

and sinks of CO, CH4, and CH20, and simulating their convective and diffusive

transport by a numerical solution on the computer of the turbulent diffusion

equation. The atmospheric phenomena of these three species are coupled through

atmospheric chemical reactions that occur. Thus, the three species must be

considered simultaneously. Generally speaking, the oxidation of methane pro-

duces formaldehyde which decomposes to carbon monoxide. Other sources and

sinks of these pollutants are also operating.

Other analyses to the present have utilized a global residence time

approach (2,3,4,5,6,e.g.) . Models incorporating a multiplicity of sources and

sinks have not, to the author's knowledge, been attempted. The model outlined
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in this study employs known source and sink strength data, the atmospheric

chemistry of the pollutants in question, monthly averaged climatological data,

and the turbulent diffusion equation for each species to establish global

concentration distributions.

GENERAL MODEL DESCRIPTION

The model development is restricted to the troposphere. This is a logical

boundary since the tropopause provides a natural surface thru which the rate

of mass transfer is relatively low. Furthermore, the photolytic decomposition

of CO2 appears to be unimportant as a source of CO in the troposphere (7), and

this enables one to decouple the CO transport from the CO2 transport.

Sources and Sinks of CH4

The sources and sinks of methane appear to be reasonably well understood

at the present. The anthropogenic sources are largely the result of internal

combustion engines and oil drilling and refinery operations. These emissions

can be fairly well mapped based on automobile density and industrial activities.

The natural sources apparently far out strip the man made sources - the

principal ones being decaying vegetation and other biological action. Some

of this biological action occurs within marine environments, and as a result

the surface waters of the oceans, bays, and rivers appear to be supersaturated

with methane. Lamontagne, Swinnerton, Linnenbom, and Smith(8) have reported

equivalent surface ocean and sea water concentrations about 1.2 to 1.7 times

the corresponding atmospheric concentrations. Specifically in open tropical
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ocean waters, the surface concentrations (4.7 x 10-5 ml/1) corresponded to an

equilibrium atmospheric concentration of 1.80 ppm whereas the measured atmos-

pheric concentrations averaged 1.38 ppm. Bay and river waters appear to be

even more heavily supersaturated. Their results specifically cited the following

supersaturation ratios: Chesapeake Bay --14.3, York River - 21.2, Mississippi

River - 5.67, Potomac River - 36.0. _These values may also be-affected by

local pollution problems. The data of Brooks and Sackett (9) on the coastal

waters of the Gulf of Mexico generally support Lamontagne et al's results.

However, they report that in the Yucutan area, where there is a major upwelling

of deep water with low hydrocarbon concentration, the Gulf of Mexico acts as a

sink for methane.

The principal sink mechanism for methane appears to be in the homogeneous

gas phase reaction of methane with hydroxyl radicals.

CH4 + OH CH3  + H20 (1)

The methyl radical can subsequently undergo reactions which results in for-

maldehyde and ultimately in CO formation. Thus, this sink for methane provides

one natural source for formaldehyde and carbon monoxide. The following sequence

of reactions is responsible for producing the hydroxyl radical (3)

03 + hv -+ O(D) + 02 (2)

0(1) + H20 - 20H (3)

0(1D) + M 0 + M (4)

0 + 02 + M -* 03 + M (5)

It will be noted later that the hydroxyl and atomic oxygen (0) are also impor-

tant in reactions with CO.
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Sources and Sinks of CH20

The anthropogenic sources of formaldehyde appear to be relatively small -

the main onbs being direct emission from automobile exhaust and formation

during photochemical smog episodes. These estimates can be fairly reliably

based on past auto exhaust emission estimates and studies.

The only apparent natural source for CH20 is from the methane oxidation

just cited. Levy(10,11) and McConnell,'McElroy, and Wofsy(12) have suggested

the following steps in the formation of formaldehyde by this mechanism.

CH4  + OH CH3  + H20 (1)

CH3  + 02 + M + CH302  + M (6)

CH302 + NO CH30 + NO2  (7)

CH302  + CH302 - 2CH30 + 02 (8)

CH30 + 02 4 CH20 + HO2  (9)

Thus, the formaldehyde formation and concentration is directly coupled to the

methane distribution.

The main sink of formaldehyde is in photochemical decomposit'ion and the

reaction with hydroxyl radicals. The following reactions appear to be impor-

tant(10,11,12)

CH20 + h v + CHO + H (10)

CH20 + hv + H2 + CO (11)

CH20 + OH + CHO + H20 (12)
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The production of CHO also leads to carbon monoxide formation via (13'14)

CHO + 02 + CO + HO2  (13).

Therefore, the source and sipk distribution of formaldehyde is primarily due

to homogeneous gas phase reactions and is coupled to the methane and carbo

monoxide distributions.

Sources and Sinks of CO

The sources, sinks, and concentrations of carbon monoxide have been

summarized by Bortner, Kummler, and Jaffe(3). The world-wide anthropogenic

sources are estimated to be slightly in excess of 300 million tons/year with

nearly two-thirds resulting from motor vehicle emissions. The remainder is

distributed between stationary combustion sources, industrial- processing, and

incineration. Therefore, these sources would be distributed largely according

to motor vehicle density.

The major natural sources of carbon monoxide appear to be the oceans,

forest fires, terpene photochemistry, and gas phase reactions. The studies of

Junge, Seiler, and Warneck (5), Seiler and Junge (15), Swinnerton, Linnenbom, and

(16) (17)Check (16), and Lamontagne, Swinnerton, and Linnenbom indicate that the

level of excess CO in the ocean corresponds to an equilibrium air phase concen-

tration of about 3.5 ppm. These data were obtained during ocean cruises. It

is, of course, reasonable to expect that the river, lake, or ocean regions near

urban areas, where the CO concentrations may be considerably larger than 3.5 ppm,

may act as a sink for CO. Furthermore, it is possible that the oceans at the
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high latitudes serve as a sink for CO produced by oceans at the low latitudes

since the warmer tropical waters would likely have a higher biological activity

producing more CO. With the warmer water, the solubility of CO is reduced.

Transport over colder waters with greater CO solubility capacity then creates

the possibility of these sections acting as a sink for CO. Thus, it is plausible

that the oceans act as both a source and sink for CO. Similar arguments could

be made for methane.

In addition to terpene photochemistry and forest fires (combined sources

are estimated at 23 x 106 ton/year(18)), the other principal natural source of

CO appears to be the gas phase reactions cited earlier. However, these cannot

be divorced from the reactions which consume CO, of which the following seem to

be important (3)

CO + OH - CO2 + H (14)

CO + 0 + M CO2 + M (15)

CO + N20 Surface CO2 + N2  (16)

CO + H02 - CO2 + OH (17)

Reaction (16)( 19 20, 21,2223) is reportedly first order in CO but zeroth order

in N20. This is a surface catalyzed reaction and requires, for complete

accuracy, detailed information on the atmospheric aerosol as to size distribution

and chemical composition. Reaction (17) has been suggested by Westenberg(24)

to be important in atmospheric pollution problems. However, the results of

Davis, Wong, Payne, and Stief (25) indicate that it is unimportant in the overall

oxidation processes of CO. As a result, the current model ignores Reaction (17).
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Another natural sink of CO of seemingly large significance is the soil.
The recent work of Inman(26) (27)
Therecent work of Inman (26) Inman, Ingersoll, and Levy (27), and Ingersoll

and Inman (28) point up this significance. Recent field studies in which soils

were-exposed.in situ to test atmospheres containing 115 mg m-3 CO (100 ppm) .

showed average uptake rates that varied from 3.5 pg s- m-2 for desert areas to

16.5 pg s-1m -2 for tropical deciduous forest areas. By using an average con-

centration driving force of 57 mg m-3 CO (50 ppm) and assuming conditions of

atmospheric pressure and 293 K, the mass transfer coefficient at the surface

corresponds to 0.594 x 10- m s- and 2.38 x 10- m s-1, respectively. These

values are probably indicative of the rate of the biological reaction that is

occumnng near the surface of the soil and may simply be representative of the

type and concentration of the soil microorganisms utilizing CO. One of the big

uncertainties relative to soil scavenging is the determination of which fraction

of these microorganisms are anaerobic methane-producing(29) and what fraction

are aerobic CO2 producing. Furthermore, Seiler and Junge(15) have suggested

that at low concentrations (around 0.23 mg m-3 at 298 K) a temperature depen-

dent equilibrium of CO.above soils occurs. If this is truly the case, then

the soils can act as either sinks or sources for carbon monoxide in much the

same manner as do the oceans.

A source and/or sink common to all three species is leakage from and/or

to the stratosphere. Since the initial model is restricted to the troposphere,

this leakage is considered as sources and/or sinks. In the specific case of CO,

leakage from the troposphere to the stratosphere is reasonable to expect since

the CO that escapes thru the tropopause will typically undergo chemical reactions
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and not return to the troposphere as CO. This is substantiated by the vertical

-profiles of CO which show a.decrease of CO mixing ratio.with height above the

tropopause.(30)

The leakage of CH4 thru the tropopause would be similar to that for CO

since vertical profiles of CH4 also show a decrease with increasing altitude

above the tropopause (13 '31). This type of information has not as yet been

found for formaldehyde.

CURRENT STATE OF MODEL DEVELOPMENT

The general approach in simulation of the CH4 - CH20 - CO cycle consists

of the following steps:

a. Initialize the CH4, CH20 and CO concentrations in the troposphere.

In order to conserve computer time, the initial concentrations

selected are approximately that expected in the atmosphere. This

should not affect the final results but simply the time required

to reach steady state.

b. Distribute the sources and sinks of the various species on the

Earth's surface and at the tropopause consistent with the

physico-chemical considerations. This involves proper interpre-

tation of oceans and lands as sources and/or sinks of the par-

ticular species. As a first approximation, the tropopause is

being considered as a zero flux boundary. Thus, all pollutant

generation and consumption is entirely within the troposphere.



c. Solve the three coupled unsteady state turbulent diffusion

equations for CH4, CH20, and CO with the boundary conditions

established by b. The appropriate climatological data (32)

is used to establish the wind field, temperature field, and

water vapor field. The coupling of the diffusion equations results

from the gas phase reactions creating homogeneous generation terms.

This, therefore, accounts for the chemical sources and sinks present.

A simplified chemical kinetic model based on the pseudo-steady

state approximation for the intermediate species has been developed

to account for these reactions.

d. Continue the integration in time until reasonably steady concen-

tration distributions exist.

The inherent advantage to using this procedure is that one does not

presuppose the atmospheric concentrations of the three pollutant species

being studied. This, therefore, provides a meaningful test of the distri-

bution of sources and sinks. This should not imply however, that there are

not uncertainties present. But these uncertainties are mostly associated

with the strengths of the sources and sinks, and a primary goal of satellite

remote sensing is to establish the magnitude of these source and sink strengths.

At the present time, the computer program to describe the physico-chemical

behavior of the three species is successfully functioning on the computer

system at NASA Langley Research Center for short time integrations using res-

tricted modeling parameters. Since the space length scales in the numerical

calculation are quite large, the simulation must be continued for relatively
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long periods of time. Current results indicate that real time simulation on

the order of ten to thirty days is required. Furthermore, computer time to

simulation time appears to be on the order of 1:10 to 1:20. Therefore, simu-

lation with one set of modeling parameters will likely require twenty to thirty

hours of CDC6600 time. As a result, the possibility of using the NCAR CDC7600,

which is approximately five times faster, is being investigated.

To supplement the main calculating program, a data tape incorporating

realistic modeling parameters and a computer routine for plotting isopleths of

the calculated concentrations are being developed. The successful coordination

of the three separate phases should be established before any long term numeri--"

cal integration is attempted. It is hoped that these studies can be con-

tinued.
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