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NOTATION

A,B,C,D system coefficient matrices

C aircraft handling qualities quantity; a linear

combination of pitch rate and load factor

(or specific force) expressed in g's.

G() (p) transfer function of component ( )

I identity matrix

J alternate notation for performance index

(PI) alternate notation for performance index

S( ) [qiq 0) static sensitivity of component ( ); the

steady-state ratio of the incremental change

in the output quantity, q0 ,for a incremental

change in input quantity, qgi where there is

only one input and one output,the bracketed

subscripts can be omitted.

T sampling period in seconds

( )T transpose of quantity ( )

X see equation 2.49

a coefficient of denominator polynomial of

the system transfer function.

a specific force component along the aircraft

z-body axis.

b coefficient of numerator polynomial of the

system transfer function.

e error signal

g acceleration of gravity

i(t) system input quantity as a function of time
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p Laplace operator

q general notation for a signal quantity

t time

u input signal to the continuous section of the

control system.

x state variable

Ax difference between model and system states

y output signal of the continuous section of the

control system

z Z-transform variable, ePT

a coefficient of denominator polynomial of the

model transfer function

coefficient of the numerator polynomial of

the model transfer function

6e elevator deflection, radians, positive trailing

edge down.

' convolution integral in state variable form,

a column vector

V element of the convolution column vector

system state transition matrix

A( difference between system and model state

transition matrices

8 airplane pitch angle; rotation about the air-

plane Y-axis; positive nose up.

underline denotes a vector quantity
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CHAPTER 1

Summary

The purpose of this report is to summarize the work

performed under this grant for the period 1 September 1972

to 1 September 1973. Chapter 2 describes the theoretical

development of the parameter optimization design technique

needed for digital flight control system design. Chapter 3

presents the results of an example case study applying the

previously developed optimization technique for continuous

systems to an F-8 aircraft C* control system. It illustrates

the concept of evolving the simplest system configuration

that is capable of meeting a specified set of performance

requirements.
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CHAPTER 2

Theoretical Development of a Parameter Optimization Design
Technique for Digital Flight Control Systems.

The automatic control system design techniques that are

being investigated are applicable to systems whose configura-

tion is suggested generally by the block diagram of Figure 2.1.

That diagram omits the detailed arrangement corresponding to

any specific system, and although there is no restriction

intended thereby, the consideration of such a configuration is

motivated by interest in flight control systems for aircraft,

spacecraft, or missiles. In these systems there is a physical

body whose linear and angular motions are to be controlled by

applying appropriate control forces and moments. This body is

usually the vehicle, and on the diagram it is termed the con-

trolled member. The control forces are generated by various

control surface displacements or other devices which may be

actuated in turn by any of the many different types of actuators,

servo systems, and drive mechanisms. The controlled member

motions are continuous, and in most manned vehicle applications

the control forces are continuous although they may be actuated

in a discontinuous manner. The control force generating system

is actuated by signals transmitted by an information processing

system. The latter combines and modifies signal inputs to the

system in various ways as well as the available information as

to the output motions of the vehicle indicated by whatever sensor

system is used.

For the design technique to be useful in the many different

possible design situations, no conceptual restrictions are made

upon the system configuration either in the number of devices,

feedback paths, inner loop paths, nor interconnection of the

various signals and devices. There is the restriction that
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the system be linear however. In practice computer program-

ming considerations also impose restrictions in the form of

available storage, computer time, and numerical accuracy.

The design procedure involves definition of performance

specifications, interpretation of the specifications in terms

of the response of a model of the system, establishing a fixed

configuration for the system and specifying thereby those para-

meters considered to be variables under the designer's control,

and then performing a parameter optimization to select parameter

values which cause the system to meet its performance require-

ments.

Previous work has developed such a procedure for contin-
1,2

uous systems. The present work extends that to the case for which

part of the information processing is digital in nature. In

Figure 2.1 therefore the information processing system which

connects the sensor system to the control force generating

system includes both analog and digital processing sections.

To suggest further the functional nature of the various devices,

Figure 2.2 provides a somewhat more detailed elaboration of

Figure 2.1. Various filters are indicated to denote signal pro-

cessing and summation which can occur in either the analog or

the digital sections although there may not be the physical

separation of equipment shown by the diagram.

From a mathematical modelling standpoint the system is

described by the relationship of various continuous state vari-

ables and various discrete state variables. Symbolically the

mathematical block diagram of Figure 2.3 suggests this,although

the correlation with the physical devices is thereby obscured.

The continuous system elements are represented by an n -dimensionc
state vector x , and the discrete system elements by an nd-

dimension state vector xd. The input to the system enters the

digital section, and the input to the continuous element section

is considered to be the output of zero-order hold devices at the

digital to analog interface. The continuous section is described

by the differential equation
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dx

-c) = Ax + B u (2-1)
dt C--C c--

with initial condition x (0) = x
-c -co

u = rth - dimension vector input to the continuous
section.

x = n th - dimension vector of state variables of the

continuous section.

A = n x n - matrix of coefficients
c c c

B = n x r - matrix of coefficients
c c

Since u is the output of the zero order holds,

u(t) = u(k), for kT < t <(k+l)T (2-2)

where T is the sampling period of the digital section and

the simplification in notation, u(kT) E u(k), has been used.

The various signal paths are given by

c = C x + Du (2-3)

where the matrices are appropriately dimensioned depending

upon the number of y signals that are of interest. The

digital section is described by the difference equations

x (k+l) = A x d (k) + Bd i(k) + Bd2y (k) (2-4)

u(k) = Cdxd(k) + Dd i(k) + Dd2 Y(k) (2-5)
1 2

where xd = nd-th dimension vector of state variables of the

digital section

u(k) = output signal vector of the digital section

which is the input to the zero order holds

at the digital-analog intertace
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The D matrix represents those output feedback paths which

are processed in the digital information section 
and modified

only in magnitude but not in phase. Those which also receive

dynamic compensation are represented in the Bd2 
matrix. The

The input signal, i(t), is chosen to be a step function so

that

i(t) = 0  , t<o (2-6)
1.0 , t>0

It is convenient in analyzing this overall system to

obtain a discrete representation of the continuous section

giving the state variable values at the sampling time of the

digital section. Making use of the state transition matrix.

x (k+l) = ( x (k) + r u(k) (2-7)
-c c-c c-

where
AT

S= ec (2-8)
c

c = ec .dt (2-9)
0

Letting x denote the combined state vector

x = -j (2-10)

the complete system can be described as

x(k+ -c c c c 2 dlik

-dd(k+ 1) B2 , Ad  xd (k) Bd

(2-11)
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or in shortened notation

x(k+l) = Qx(k) + r i(k)
- (2-12)

y(k) = Cx(k) + D i(k)

The state variables, x, and the signal quantities, y,of equation

(2-12) may or may not be directly observable physical quanti-

ties. This depends upon the particular mathematical modelling

which is employed, and that is often chosen on the basis of

expediting the mathematical analysis. The system output quanti-

ties of interest to the designer therefore may be some of the

yi signal points or may be combinations of them. In any event

the output quantities will be linear combinations of the state

variables and of the input to the system.

The Performance Index

The designer desires to select values of those parameters

which have not been specified by other design requirements.

The available parameters may be located in either the discrete

or the continuous sections of the system. The technique des-

cribed here is very similar to that developed for continuous

systems in references 1 and 2 . A system configura-

tion is specified, the design parameters are designated, and a

parameter optimization is performed.

The assumption is made that one can interpret the system

operational requirements in terms of a desired time response

of the system to a step function input. It is further assumed

that the time response is equivalent to the step function re-

sponse of a model whose transfer function can be selected by the

designer from his knowledge of the desired operating character-

istics. Following the work of Rediess and Palsson, this can

lead one to the definition of a performance index which is a

measure of the degree to which the system response can be made

to approximate the response of the model and accordingly to

meet the operational specifications. For the case of digital
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control systems the development is very similar except for a

discrete representation of the system performance.

One method of examining the behavior of the complete

system is to make use of the Z-transform

m m-i
ql(z) b z + b z + . + bq ) m m-l 0 " m<n (2-13)
i(z) n n-1z + an_ z +. . . + a 0

This is equivalent to the time domain representation

g(k+l) = @q(k) + r i(k), q(O) = 0 (2-14)

where

q = n - dimension vector of state variables

0 1 0 . .. 0

0 0 1 . .. 0

(2-15)

0 0 0 ... 1

-a0 , -al, -a 2, - . . . -an-1-

2n-

= 2 an n - dimensioned input coefficient
vector, n>m

(2-16)
SYn
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and 0 if (n-m)>l and 1 < i <(n-m)
(2-17)

Yi i-l
b n- an- Ya if (n-m) < i < n

i(k) = scaler input which in this case is taken to

be a step function sampled at the times

t=kT

The restriction, n>m, states that the input does not directly

change the output until after at least one sampling delay.

In this choice of state variables, the successive

qi represent the past values of the output at the sampling

instants.

q(k)

q(k-l)

(2-18)

Sq(k-n+l)j

Equation (2-14) is a set of difference equations which

could be simulated using ideal unit delay elements as in

Figure 2.4. The systems of interest are such that the output

ql reaches a predictable steady state level, ql as time be-
ss

comes larger. The static sensitivity of the system is the

ratio of the output to the input in steady state. For a unit

step input the final value theorem applied to equation 2-13

yields m
Fb
i=O S

q S (2-19)1 n-l cs (2-19)
ss 1 + C a

1=0

If one subtracts the steady state value fromthe state vector

one can consider the system's transient time response to a unit

step input to be equivalent to that of an autonomous system in

response to an appropriate set of initial conditions.
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The steady state value for the state vector then is ob-

tained from equation (2-14) by letting k become large. Then for

a unit step input

qs = S + (2-20)

since in steady state no change in the state occurs from one

sample time to another. Hence

= (-) (2-21)

where I is the identity matrix.

n-r n-l n-l

1+ a. a 1+ la 1+ a .. 1 Y1
i=l , =2 i=3

n-l n-l

-a 0  1+ F a.a . ... 1 2 (2-22)
i=2 i=3

_1 n-1
qss Y

ss n-l -a 0  -a0-a l+ a. ... 1 3
i+ a i=3

i=0O

-a 0  -a0-al -a0-al-a 2 ... 1

-a -a -a -a -a -a ... 1 Y
0  0 1 0 1 2 n

Equation (2-17) shows that (n-m-l) of the first yi are

zero. In steady state the output state variable ql will remain

at its steady state value, ql , for a time greater than n
ss

delay times. Figure 2.4 thus shows that the outputs of

(n-m) of the delay units on the output side of the system will

eventually all be equal to q1  . Note that for a typical flight

control system the state ss variables associated with these

lower numbered delay units correspond to the difference equation

representation of continuous state variables of the controlled

member. Since these relate to the output motion of the controll-

ed member and the time derivatives of that motion, these state
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variables will not be equal. This is equivalent to noting

that for these control systems (n-m) can be expected to be 1.

The Z-transform of equation 2-13, which is analogous to the

transfer function of the continuous systems, can be expected

to have zeroes as well as poles, and these will differ from

those of the model. This is an added complexity of the digital

control system in comparison with the continuous control system.

It is convenient to develop the performance index consider-

ing first the case for a model whose Z transform has no zeroes.

Using the symbol ^ for model quantities, the Z transforms

then are
O Y0 

( z )

Model : G(z) = -i = i(z) (2-23)
r -1 i(z)

z +a rz + ... + al z + a 0

b zm + bm_ + ... + b z + b 0  ql(z)
System : G(z) =za - (2-24)

z +an_lz + ... + alz + a

The transient responses for a unit step input are obtained by

subtracting the steady state value. Let

:(z) = $1(k)- -lss 
(2-25)

SS (2-25)

x(z) = q 1 (k) - ql
ss

Both the system and the model are initially at rest with zero

initial conditions.

The equivalent time domain"representation of the model's

transient response then is

q(k+l) = 0 q(k) + Fi(k) (2-26)

where 0

A 0
F = since m=0

L-O 16



q(0) = 0

In steady-state all of the qi are equal since there 
is no

change in the output from sample to sample. The correspond-

ing transient response then is

x(k) = q(k) - qss. (2-27)

The model transient response can be represented by

x1 (k+l) 0 1 0 0 0 0 l(k)

x2 (k+l) 0 0 1 0 0 0 x2 (k)

S (2-28)

xr (k+l) -c 0 -o -2 . n-1 0 . . 0 r (k)

0 0 0 . . 0

n (k+l ) 0 . . . . . . . . . 0 . (k)

with a set of initial conditions

x_(0)

The transient response to the initial condition will be the

same as the transient response obtained with the step input if

x l(0) -ql
x2 (0) -qlssss

0 0* = where q (2-29)

r(0) -q1  ss

ss

in(0) 0

17



The corresponding state-space representation of the

system is

x(k+l) = Px(k) (2-30)

x (k+l) 0 1 0 0 0 0 x (k)

x 2 (k+l) 0 0 1 0 0 0 x2 (k)

x r (k+l) 0 0 0 1 0 0 x r (k)

x r+ 1 (k+l) 0 0 0 0 1 0 x r+ 1 (k)

x n (k+) -a -a -a 2  . -a 1 -a . . -a x (k)
r-1 r n-i n

(2-31)

x(0) = (0) - = - ss

The steady-state values are given by equation 2-22

By examining this equation one notes that if (n-m)>r, the

first r initial condition for the system response are the same

which is shown in the following manner. From the definition of

X,

Sx1 (0) = - 1  (2-32)
ss

x 2 (0) = - q2
ss

If one examines the difference between x1 (0) and x2(0),

equation (2-22)shows that

x (0) - x (0) = q - q2

2 ss ss

1+ i ai

- 1 -Y
1+ i a.

18 (2-33)



If (n-m)>l, Y1 = 0 and hence x1 (0) = x 2 (0). Similarly if

(n-m)>2, y 2 = 0 and

x3 (0) - x2 (0) = - 2 = 0

Continuing if (n-m)> r-1 or (n-m)>r

Xr(0) - Xr- 1 (0) =-Yr-1 = 0

Consequently

-91ql
ss

-ql91
ss

x(0) = -q1  rth component
ss

+ Y
-qIss n-m

n-m+l

-qlss + Yi (2-34)
i=n-m

n-1
-q + Yi

ss 1=n-m

Define the error state to be the difference between the

system and the model states

Ax(k) = x(k) - _(k) (2-35)
and

(n-m) > r

19



then

0 1 0 ... 0 0... 0

0 0 1 . .. 0.. . 0

Ax(k+l)= -a 0 -a -a, 2  . . -r 0 . 0. O Ax(k)

0 0 0 . . . 0 0 ... . 0

0 0 0 ... 0 0 ... .

0 0 0 . . . 0 0 ... 0
0 0 0 . .. 0 0... 0

+ 0 a .r-i 1 . . 0 x(k)

0 0 0 . . 0 0 .. . 0

(2-36)

-a 0  -a I  -a 2 . . . -a -a .- a0 a1 -2 r-l r n-1

T
x(0) = [0 , 0,. . 0, Xr+l(0) . x (0)] (2-37)r+1 n

where the system and model static sensitivities have been

set equal to each other. Equation (2-36) has the form

Ax(k+l) = Ax(k) +- Ax(k).

It can be modelled by the diagram of Figure 2.5. If there

were no input excitation of the error model, Ax would be zero,

and the system would match the model. It can be seen from the

homogeneous part of equation (2-36) that the higher order

states do not affect the lower order error response states.

The only excitation of the first r error states is the scalar

input

20
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e(k) = x i+l(k) + x r+ l (k) (2-38)

= (2-39)

~T
if a is defined as the n-dimension vector

& T [o , ... a , 1, 0, ... 0] (2-40)

Minimizing the square of the error excitation leads to a

performance index

(PI) = e 2 (k) (2-41)
k=0

oo

= k0 x (k) Q x(k) where Q = (242)

Consider then the case for which the model has zeros.

8 z + ... + 0  ql(z)
G(z) = = - (2-43)

r i(z)z + ... + 0

The error response can be defined as

Aql(z) = ql(z) - ql(z)
A A

= (xl(z) + q 1  ) - (xl(Z) +

= Ax 1 (z)

since qss = qss

A diagram for the error response is shown in Figure'2.6a. If

the model zeroes are cascaded as the poles of an added compon-

ent, the diagram of Figure 2.6b results with the error output
Ax'
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G (z)

i(z) x l(z)

G(z)

(a)

G(z)

i(z) x( ) Ax Z)

B+z +...+Bo

S G(z)

(b)

(G(z))
i(z) +x i(z)

G(z) 1

. z +. .+Bo

(c)

SG (-) '

i(2) Ax (z)
G S(z)'

(d)

FIG. 2.6 EQUIVILANT REPRESENTATIONS FOR THE

CASE OF MODEL ZEROS
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By block diagram algebra one obtains Figures 2.6c and 2.6d.

The final figure has a new system, G(z)' , of order (n+£)

since the model zeroes have been cascaded as system poles.

The new model G(z)' has no zeroes. Following the same

development as before, one arrives at a performance index
00

(PI) = xT(k) Q x(k) (2-44)

where x is a state vector of order (n+k)

Q = a a (2-45)

- = NO, al , r-'1 , 1, 0, ...0] (2-46)

and

n+Z - m > r

or

(n-m) > (r-Z)

The latter restriction states that the transport lag of the

model can not be greater than that of the system for this

representation to be valid.

Equation Q-44)then is the expression for the performance

index to be used for the digital flight control system optimi-

zation. Instead of an integration there is a summation of

state variable values at the sampling instants. For purposes

of discussing the evaluation of the performance index, let

J xT(k) Q x(k) (2-47)

= tr(QX) (2-48)

where X = k0 x(k) x(k)T (2-49)

and tr denotes trace

The difference equation for the state variables is

x(k+l) = Fx(k) , x(0) = x 0  (2-50)

24



If one premultiplies equation (2-51) by 4 , postmultiplies by OT

and makes use of equation (2-50),

SXDT= x(k) xT(k) T (2-51)

= x(k+1) xT(k+l) (2-52)

The right hand side of this equation is equal to X except

for the very first term. Thus

T T
QX T = X - x xT  (2-53)

or

T X -X x T (2-54)
-0 -0

which can be solved for X and the performance index obtained

from equation (2-48). The numerical method of solving

equation(2-54)can be that used for a similar equation for the

continuous systems described in reference 2. As noted

in the discussion of the example control system design of

Chapter 3 of this report, the numerical accuracy of that tech-

nique is under investigation. Further description will there-

fore be postponed until the outcome of that effort is available.

Equation (2-54) involves the computation of the state trans-

ition matrix over the sampling period. A computer program has

been written for calculating 0 by a series expansion.

Additional subroutines permit one to specify the input data

for the digital section in a manner similar to that of

reference 3 for continuous systems. The continuous section

and the discrete section can be described in terms of elemental

sub-units with suitable signal summation points. These will be

more fully described in future reports.

25



CHAPTER 3

Design Example

The parameter optimization techniques developed under

this grant have been applied to the design of a pitch control

system for a F-8 fighter airplane. The control system is a

fly-by-wire system, and the purpose of the system is to pro-

vide a controlled response of the quantity, C , for pilot

stick inputs. C is a linear mixture of the load factor and

the pitch angular velocity responses of the airplane. It was

first proposed by the Boeing Company4 as a criterion for

insuring acceptable handling qualities. A block diagram of

the system is presented in Figure 3.1. In this figure the

feedback configuration has been left undefined at this point

since the objective of the design procedure is to specify an

acceptable feedback structure and the values of the design

variables. The input to the system is a C command signal

obtained from a suitable pilot hand controller in the cockpit.

The C mixture used for this analysis was

C = -0.031 a + 12.43 0 (3-1)
z

where units of C are g's.

a = component of the resultant nonfield (specific)

force along the aircraft body z axis in ft./sec

= component of aircraft angular velocity with

respect to inertial space along the aircraft

body Y axis in radian/second.

26
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FIG. 3.1 PRELIMINARY FUCTIONAL BLOCK DIAGRAM
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Airplane data is summarized in Appendix A. Flight

condition 4 corresponding to Mach 1.1 at 45000 feet (13,700

meters) was used as a reference condition for preliminary de-

sign. The performance specification used was that the C

response of the airplane for a step function C command should

be approximately the same as the step function response of

the C model within the tolerance boundaries given in

Figure 3.2. The transfer function of the C model was

G () (+p/2.9) (1+p/61.1) (3-2)
m 2

m +2( 0.94) p P 2 )(+p/1o)
( 54 P)

The elevator servo actuator was modelled as a first order com-

ponent with a pole at -12 radian/sec. The input to the system

is a signal proportional to the angular movement of the pilot's

control stick. Considering C to be the primary system output,

inspection of the aircraft transfer functions reveals that

there is no integration in the aircraft C response. Therefore

the closed-loop static sensitivity relating C to pilot input

of such a control system would vary with flight condition.

Since a force feel system is assumed to be present, the units

of this sensitivity can be expressed in g's per pound of stick

force. An additional performance specification was imposed

by requiring a constant stick force per g characteristic at

all flight conditions. This required the addition of integral

compensation for the final design configuration.

Design procedure

The design technique being utilized assumes that a reason-

able preliminary system configuration can be specified on the

basis of knowledge of the operational requirements, availability

of practical sensors, and limiations upon system complexity.

The parameter optimization computer program then is used to

select the design parameters which permit the closest approxima-

tion of the system reponse to the model response in the sense
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proposed in reference 1 by minimizing the Model Performance

Index. If the resultant design fails to satisfy the specifica-

tions, added compensation must be investigated at the price

of additional complexity. The intent is to proceed from the

simplest design to the simplest acceptable design letting the

design process reveal the need for the additional complexity.

Note that in all cases the model used is one for C output,

although it is not necessary to feed back C

The Model Performance Index is a quadratic function of

the phase variables representing the transient response of the

system to a step input. The weighting factors used for the

various variables are specified by the reference model chosen.

Geometrically the minimization process is one of minimizing

the projection distance of the system trajectory onto the

model's characteristic hyperplane. One can thus interpret the

magnitude of the index as a fraction of the initial output

error, which is in turn equal to the input step magnitude. If

only one state variable were used, the index could be interpret-

ed as the average (RMS) value of error between model and system.

The higher order state variables add to this index, but it is

useful to express the index value as a percentage of the

steady state level for purposes of interpreting the meaning of

a given minimum value that results from the optimization search

procedure. Thus if the minimum index were 10%, one would

expect the output of the system to deviate from the model's

response on the average less than 10% of the steady-state value.

For specifying the time average, 1.6 seconds was used since the

torrance envelope permits variation of the response over approxi-

mately that time interval.

In all of the cases described then, the data presented

are those which the computer program selected as corresponding

to the approximate minimum value of the performance index.

The program permits one to specify which parameters are fixed

and which can be used for optimization. Similarly design

limits can be imposed upon the parameters if desired.

30



Simple pitch rate loop

Since it is desirable to design the simplest possible

control system,it is informative to examine an idealized system

first and to add complexity as it is required. The airplane's

longitudinal short period mode is rather poorly damped,

= 0.074. If a single sensor feedback loop were to be con-

sidered, the airplane transfer functions show that az feedback

would not improve damping. Accordingly a pitch rate feedback

offers the possibility of the simplest system.

To obtain first a feel for the basic control problem, the

system was further idealized by neglecting the servo dynamics

and the need for integral compensation. The result of the

parameter optimization was a value of feedback static sensi-

tivity

(6 e/) = 0.52 sec. (3-3)

and the resultant performance index value was 83 per cent of

the steady-state value of C . The step function response is

presented as curve A in Figure 3.3. The C response lies

just barely within the tolerance boundary and the damping

ratio of the short period mode has been increased to 0.7 with

a natural frequency of 5.0 rad/sec. So while a close model

match is not possible, the idealized simple pitch rate control

system does neet the C envelope specification.

Including the servo actuator dynamics, the optimization

selected

(6 e/ ) = 0.93 sec. (3-4)

The short period mode characteristics which then resulted were

a higher natural frequency, 11,8 rad/sec, to overcome the in-

creased lag associated with the additonal closed-loop real

mode (pole at -2.33 rad/sec), and the damping ratio decreased

to 0.46. The response shown as curve B of Figure 3.3 lies

further within the tolerance boundary, although the velocity
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response may be more objectionable due to the lowered damping

ratio. In any event the pitch rate system presents difficulties

from the standpoint of meeting the requirement for a constant

steady-state stick force per g characteristic. Since normal

acceleration and pitch rate are interrelated by a factor of

true airspeed, one would need to vary the pilot input command

sensitivity with airspeed.

State variable feedback

Since the aircraft is second order, complete state vari-

able feedback is achieved by using two sensors, the pitch rate

gyro and a normal accelerometer giving the system of Figure 3.4.

The parameter optimization for the idealized case selected

the following sensitivities.

S , 6 ] = (6e/) = 0.23 sec. (3-5)
e

Sc[a , ] = (6 /az) = 4.7 deg./g (3-6)

The resultant C response is shown in Figure 3.5. Here the

performance index has a value of 17.9 per cent. The initial

response is well within the tolerance envelope, but the tail

of the response approaches the boundary. The positive value-

for the accelerometer feedback indicates that a better model

match is achieved by using this feedback to reduce Me of the

aircraft so as to reduce the natural frequency of the short

period mode. The latter mode ends up with a natural frequency

of 2.72 rad/sec and damping ratio of 0.8. The closed-loop

poles do not coincide with the model poles even though state

variable feedback is used because the aircraft zeroes differ

from the model zeros.
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C feedback

The performance specification calls for a desired C

step function response. Since C is a linear combination of

pitch rate and normal acceleration, a control system which

used C as the feedback signal to be summed with a C command

input is equivalent to feeding back pitch rate and normal

acceleration in a specified ratio of the feedback gains.

However the previous results indicate that the desired C ratio

of acceleration to rate signals does not provide an optimum

feedback signal at this flight condition, and one would not

expect to obtain as good performance. For completeness however

an idealized C feedback loop was investigated of the form

of Figure 3.6. The optimization resulted in the static sensi-

tivity

Sc[C* = (6 /C) = 1.5 degree/g (3-7)

The response exhibits excessive overshoot and fails to meet

the specifications as shown by the response of Figure 3.7.

The previous results indicate that one should not attempt

to add compensation to improve the response of the C loop

since that would have to be more complicated than just using

a different ratio of the acceleration and rate information in

the feedback structure.

Final design

In the block diagram of Figure 3.4 the input was labelled

a C command signal even though there is no C comparision

point in the system. The reason for this is that in steady-

state C is proportional to the input command so that the

input could be calibrated in terms of units of desired C

response. However, the figure also shows that the input could

just as easily be termed either a pitch rate command or an

acceleration command. Since there is no integration in the

open loop, these calibrations would vary with flight condition.

In order to meet the added requirement of a constant stick
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force per g characteristic, additional complication is required.

Since C is the output whose dynamic response is modelled

by the specification, comparing C with a C command is a

straightforward proposal for a control loop configuration.

Since Figure 3.7 indicates that a simple C feedback would

not meet the specification envelope, one could postulate a C

feedback loop closed around the inner acceleration and pitch

rate loops of Figure 3.4 in order to provide a C comparison

point. For the reasons given in the next paragraph, this con-

figuration was not proposed, but it motivates the discussion

of the final system configuration.

Since the steady state pitch rate is proportional to normal

acceleration and inversely proportional to true airspeed, a

constant C per unit command is not a constant acceleration

per unit command over the flight envelope of the airplane.

Therefore if one considers integral compensation to provide

the open-loop integration required to give a constant closed-

loop static sensitivity, such compensation cannot be used

following a C comparison point. Rather it must be compensa-

tion applied to an acceleration error signal. However the

result of the previously discussed studies show that the opti-

mization resulted in an acceleration feedback which was re-

generative in order to decrease the aircraft's inherent static

stability margin. Therefore integral compensation would not

be usable on the acceleration error signal.

To deal with this added complication, one could postulate

a C feedback in which the individual acceleration and rate

signals are fed back separately to two summation points as

shown by the block diagram of Figure 3.8. The total feedback

portion of the second summation point is then C . This con-

figuration however permits one to place integral compensation

following the acceleration error summation point so as to main-

tain the desired constant closed-loop static sensitivty.
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The gain of the integration path could be selected as

a design variable also. When this configuration was optimized,

the following design parameters were selected:

(6e/0)total = 0.44 sec. (3-8)

(6e/az) inner= 4.9 deg./g Effective gain

(3-9)

(6 e/C*) = -3.0 deg/g of 1.9 deg/g
-1

S. = 0.95 sec
1

From noise considerations, there was interest in a further

restriction upon the allowable integral compensation static
-1

sensitivity of S = 0.75 sec . The optimization
i (max)

including this restriction gave a system defined by

(6 e/O)total = 0.73 sec (3-10)

(6e/az)inner = 5.4 deg/g Effective gain

(3-11)
* of 2.0 deg/g(6 /C ) = -3.4 deg/g of 2.0 deg/g

e

The time responses of these two systems are presented in

Figure 3.9. Both responses lie within the tolerance envelope.

The unrestricted integral gain gives a better model match

with an average performance index value of (PI) = 5.3%.

T.he short period mode has an undamped natural frequency of

8.1 rad/sec and damping ratio of 0.54. Restricting the in-

tegral gain yielded an average index of 12%, a natural

frequency of 10.6 rad/sec, with a damping ratio of 0.46. The

value of the unrestricted integral compensation gain was only

26 per cent higher than the restricted one, and the short

period mode characteristics which resulted may be preferable.
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The configuratin of Figure 3.8 obviously shows two pitch

rate feedback paths. By block diagram rearrangement these

can be reduced to a single pitch rate feedback path with a

different sensitivity definition.

Continuation of the design procedure

At this period a possible control system configuration

has been established. The next step would be to investigate

the configuraticn for other flight conditions and investigate

design parameter sensitivty. This was not accomplished in

this reporting period due to encountering numerical accuracy

problems as noted subsequently. It is interesting that the

parameter optimization design method automatically suggested

the regenerative acceleration feedback path. This is a design

possibility that one probably would have overlooked if one

had used more conventional design iterations. (The total

acceleration feedback, that is, including the component of

the effective C feedback,is less regenerative.) This is

undoubtedly the simplest configuration. If one were concerned

however that a possible failure mode existed in which the

outer acceleration feedback signal was opened, one could

impose a restraint upon the sign of the inner loop and pro-

ceed to add compensation as needed to achieve as good perfor-

mance as this system exhibited. Some of the cases studied,

but not included in the above summary, indicated that much

higher values of the integrator sensitivity would be required,

and that that would be objectionable for practical considera-

tions. Proper redundancy design should provide an acceptable

fail-safe configuration. On the other hand, the high inte-

grator sensitivity systems were less sensitive to flight con-

dition change than a preliminary examination of this system

seems to indicate. Thus the design procedure has brought the

engineer to a design point at which he can evaluate his

alternatives on the basis of other operational requirements

than performance and can do so knowing the performance capability

of his present design.
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Numerical accuracy of the computations

In the investigation of the previously described design

example, numerical accuracy difficulties were encountered

from time to time. These are serious enough to make the

technique of limited usefulness unless they can be overcome.

Accordingly the design example was interrupted, and effort

was expended to understand the source of the trouble. The

general cause is the numerical rounding-off due to a finite

word length of the digital computer in the matrix operations

being employed. It shows up partly as errors in a matrix

inversion that is required, but that alone may not be the

complete source of the difficulty. A Master of Science thesis

is attempting to delineate these troubles more clearly and

to explore ways to overcoming them.

The indication of inaccuracy is the generation of in-

accurate or even impossible performance index values for some

combinations of design parameter values. An independent check

of the performance index by numerical integration was performed

for each of the cases reported above so that confidence is high

that these results are valid. Unfortunately such an evaluation

is more expensive in computer costs, and hence it is not an

attractive alternative as a permanent fix.
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APPENDIX A

Airplane Data

The longitudinal aerodynamic stability derivative data

for the F-8 airplane are tabulated in Table A-1. This

table also serves to define the flight conditions to be in-

vestigated. The mass and dimensional data are as follows:

Tail length: 15.7 feet (4.8m)

Chord: 11.8 feet (3.59m)

Wing area: 374.9 (ft.) 2 (34.87 m2 )

Mass : 648.8 slug (9993.7 kg)

Pitch moment of inertia: 87492 slug-ft2(118640 kg-m 2 )

The results presented in this report were all for flight

Condition 4. The corresponding transfer function for the

airplane are presented below. These relate the pitch angular

velocity,6, the Z-axis component of specific force, az , and

the quantity, C , to the elevator motion, 6

e G -0.2973(1+p/Q.518 7 ) -1 (A-1)
6 [6,e] - D(p)e

az + 316.7 (l-p/z 1l)(l-p/z ) (ft./sec.2)
6 - [6, a.] D

e , a(p) radian

z I = - 0.4813 + 8.244j

C = G * -13.51 (1+p/1.935) (l+p/48.51) (g)
6 A[6,C ] D(p) (radian)

e

2(0.0736) + p 2

4. 50 (4.50)

The matrix equations of the airplane are: (F.C.4)

S-0.653, 1065. w -82.0 6

S+ (A-2)
S-0.019, -0.01o 116
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TABLE A-i Aerodynamic Data for the F-8 Airplane, Longitudinal Axis

F8 NON DIMENSIONAL LONGITUDINAL STABILITY DERIVATIVES

F.C. 1 2 3 4 5 6 7 8 9

CDM 0.115 0.116 0.116 0.116 -0.0167 -0.0175 -0.018 0.115 0.115

aT/au 0.649 -0.1 1.47 0.649 0.50 -0.67 0.3 3.68 1.47

CL  0.284 0.0775 0.143 0.224 0.452 0.11 0.240 0.11 0.23

CLM 0.120 0.117 0.116 0.116 0.144 0.109 0.109 0.08 0.123

CD 0.328 0.106 0.217 0.335 0.29 0.29 0.29 0.072 0.210

CL 4.864 4.866 4.866 4.866 3.80 3.80 3.81 4.30 4.30

C -0.145 0.068 -0.002 -0.144 -0.077 -0.07 -0.002 0.01 -0.145
M

C -0.745 -1.55 -1.55 -1.55 -0.715 -0.492 -0.477 -0.525 -0.59m

CL 0.573 0.58 0.58 0.58 0.55 0.55 0.550 0.604 0.532

e

C -0.967 -0.882 -0.84 -0.89 -0.895 -0.88 -0.87 -0.96 -0.964

e

Cm  1.16 2.7 2.7 2.7 -0.283 -0.233 -0.200 -0.070 -0.070

C -3.45 -2.85 -2.85 -2.85 -3.50 -3.47 -3.45 -4.1 -4.1
mq

Altitude /45 17 35 45 25 4 20 20 35
(1000 ft)

Mach No. 0.94 1.1 1.1 1.1 0.5 0.56 0.6 0.85 0.85

0O(deg) 4.7 1.5 2.4 3.7 7.7 2.7 4.6 2.3 3.9

6 -4.5 -1.26 -2.9 -5.0 -4.68 -2.22 -2.6 -1.93 -2.6e
0

V(fps) 910 1154. 1070 1065 508 617 622 881 827

q(lb/ft2 ) 101 932 423 262 137 401 245 492 252
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