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ANALYSIS OF SONIC BOOM MEASUREMENTS NEAR
SHOCK WAVE EXTREMITIES FOR FLIGHT NEAR '
MACH 1.0 AND FOR AIRPLANE ACCELERATIONS

- George T. Haglund and Edward J. Kane
Boeing Commercial Airplane Company

SUMMARY

The initial analysis of the sonic boom measurements obtained by NASA Langley Research
- Center during the 1970 BREN tower flight test program indicated that unique data had been
measured near the shock wave extremity. This report presents the results of a more detailed study
of selected flights. The analysis of the 14 low-altitude transonic flights showed that the prevailing
meteorological conditions influence the vertical extent of attached shock waves during near-sonic
flight (M < 1.0). At Mach 0.98, the lower extremity of the shock wave on one flight extended to
480 m (1600 ft) beneath the airplane, while under different meteorological conditions it extended
to only about 170 m (560 ft). Consideration of the acoustic disturbances below the cutoff altitude
during threshold Mach number flight has shown that a theoretical safe altitude appears to be valid
over a wide range of meteorological conditions and provides a reasonable estimate of the airplane
ground speed reduction to avoid sonic boom noise during threshold Mach number flight. Recent
theoretical results for the acoustic pressure waves below the threshold Mach number caustic showed
excellent agreement with observations near the caustic, but the predicted overpressure levels were
significantly lower than those observed far from the caustic. The analysis of caustics produced by
inadvertent low-magnitude accelerations during flight at Mach numbers slightly greater than the
threshold Mach number showed that folds and associated caustics were produced by slight changes
in the airplane ground speed. These caustic intensities ranged from one to three times the nominal
steady, level flight intensity.

A consideration of the effect of acceleration magnitude on caustic intensity for the
longitudinal accelerat’ion flights and the inadvertent low-magnitude accelerations during flight near
the threshold Mach number indicates that stronger caustics were produced by the higher
acceleration magnitudes.~ 'The maximum caustic intensity measured was about five times the
nominal, steady, level overpressure and was produced by an acceleration magnitude of about 1.5
m/sec2 (4.9 ft/secz).' An amplification of about 2 is suggested for acceleration magnitude of about
03 m/sec2 (1.0 ft/secz). This result suggests that a method to alleviate the caustic produced during
acceleration from subsonic to supersonic speeds is to accelerate slowly through the threshold Mach
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number. A maneuver designed to eliminate the transonic acceleration caustic was also investigated.
Although the maneuver shows promise, further study is needed.

INTRODUCTION S

The sonic boom flight test program conducted by the NASA Langley Research Center over the
instrumented BREN tower during the summer and fall of 1970 has provided unique data on sonic
boom characteristics near the shock wave extremity. Initial analyses of these data were conducted
by NASA personnel (refs. 1 and 2), and a more detailed analysis is given in reference 3. This report
‘pr‘esen'té'th‘e results of a further in-depth study of selected flights. The goals of this analysis were to
define more exactly the sonic boom characteristics for each flight condition and to.provide
information that may be necessary to avoid objectionable sonic.boom noise during future airplane
operations: ‘ '

" During the BREN tower flight test program, measurements near the shock wave, extremity
were obtained by four types of flights. Seventy-nine of the 121 flights were made near the threshold
Mach number to investigate sonic boom phenomena associated with low Mach number supersonic
flight where the sonic booms do not reach the ground because they are cut off by atmospheric
temperature and wind gradients. The test results for these flights are given in references 1.and 3.
Nineteen flights were longitudinal accelerations from subsonic to supersonic speeds which produced
caustics at the shock wave extremity. These resuits are reported in reference 3. Measurements near
the lateral cutoff location of the sonic boom carpet were provided by nine flights at Mach 1.3 and
are summarized in references 2 and 3. In addition, 14 flights were conducted at speeds close to
Mach 1.0 at about 1 km (3000 ft) above the ground to provide measurements of the vertical extent
of attached shock waves. The data from these low-altitude transonic flights. had. not been
‘completely analyzed and reported previously.

The analysis given in this report focused on several aspects of the measurements, including:

e Analysis of the low-altitude transonic flight test da'ta', with emphasis on the effect of
meteorological conditions on the propagation of attached shock waves .-

e Determination of an empirical “safety factor” or safe sonic boom cutoff altitude during
" steady threshold Mach number flight

~ ‘o - ldentification of the effects of low-magnitude accelerations near the threshold Mach

number ’ . - ’ ) : Con e N BOEEEER ANY



e More detailed study of the caustics formed during acceleration from subsonic to
‘supersonic-speeds.

Since the low-altitude transonic flight test data had not been completely analyzed and
reported previously, these data deserved detailed analysis. The objective of these flights was to
determine the vertical extent and nature of the attached shock waves and whether these shock
waves extend many body lengths to the ground. The flight Mach number ranged from Mach 0.95 to
1.00; with one flight at Mach 1.05. Five of these flights produced sonic booms on the ground.

- Two different aspects of the threshold Mach number flight test data appeared to merit
-additional study. The analysis of reference 3 showed that a theoretical safety factor for specifying
‘an airplane ground speed sufficient to control sonic boom noise on the ground during t_hreshdld
Mach.number operation was valid and warranted further study. The nature of the acoustic noise
below the cutoff altitude during threshold Mach number flight was analyzed and is compared with -_a
recent theoretical result. The other aspect studied was the effect of slight accelerations during flight
near the threshold Mach number. The preliminary analysis of reference 3 indicated that, in several
cases, ‘caustics were produced by low-magnitude accelerations or variations in. the airplane.ground
speed. -

- Several aspects of the longitudinal acceleration flight test data were also particularly
interesting. Since six of the 19 flights produced caustics on the microphone array, very val_uéble
information on shock wave characteristics near caustics was obtained.. Identification-of pressure
sighature changes and characteristics just before, at, and beyond the caustic are of particular interest
‘since 'they “may help in defining the physical processes associated with caustic phenomena. The
analysis indicated that the effect of acceleration magnitude is an important consideration.

In. conjunction with the analysis of the measured data near caustics produced by accelerations,
several theoretical analyses were conducted to determine methods for alleviating these_caustics_..The
acceleration phase of supersonic flight from subsonic to supersonic speeds is particularly important
in terms of sonic boom, since the caustic results in magnified sonic boom intensity over a small
ground area. The fact that the caustics produced by low-magnitude accelerations wére weaker than
'‘those .produced by higher magnitude accelerations suggested.that a method for alleviating these
caustics was to accelerate relatively slowly through the past the threshold Mach number. A maneuver
suggested for completely eliminating the transonic acceleration caustic was also investigated.

The presentation of the test results and analysis in this report begins with the near-sonic test
data analysis. This is followed by an analysis of the safety factor during threshold Mach number
“flight and the analysis of low-magnitude. acceleration effects during flight near the threshold Mach
number. The longitudinal acceleration caustic data analysis is then given, followed by the

3



theoretical study of methods for alleviating the transonic acceleration caustic. Appendix A contains
a discussion of the possibility of sonic boom generation during cruise slightly below Mach 1.0.
Appendix B was written by Mr. K.-Y. Fung and Dr. A. R. Seebass of Cornell University and contains
the application of a theoretical method for calculating the acoustic pressure field below the
threshold Mach number caustic for the BREN tower flight test conditions.



SYMBOLS

airplane acceleration

sound speed

sound speed using virtual temperature, T,

Snell’s law invariant

pressure coefficient, AP/q

drag, distance

acceleration vof gravity

airplane altitude above mean sea level

ground reflection coefficient

sonic boom signature wavelength

airplane Mach number = V/a

pilot-read Mach number

Mach number increment associated with perturbation velocity (eq. 8)
local shock Mach number (eq. 9)

lowest Mach number for subsonic sonic boom (eqs. A3 through A5)
threshold Mach number (eq. 17)

Mach number associated with gradients of temperature and wind (egs. 4 and 5)

unit vector normal to wave front
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lift (normgl)_ lpad_ f>ac.t(‘)ur‘

thrust (axial) lead factor

accelerat?on veeter nprmql_to Mgch cone (eq/. 23)

nondimensionalized theoretical sound fulsctior'x belew threshold Me’c.h’nu._mber caustic

pressure

s

dynamlc pressure also perturbatlon ve1001ty assomated w1th the perturbatlon pressure AP

. 1n a plane—wave shock system

relative curvature of caustic relative to ray (eq. 13); also gas eonstépt

separation distance between leading and trailing shecks produced by acceleraﬁgn
time along airplane trejectory

air temperature; also thrust

reference time used for shock wave profile calculations

shock wave arrival time

horizontal wind speed. )

component of horizontal wind in plane of the normal to the shock wave = u cos(y -n)
airplane velocity relative to atmosphere, Ma,

airplane ground speed, (Maj-u,)

shock propagation velocity, (a-u,,)

shock -propagation. speed determined from shock- wave arrival  times over ground
microphone array (eq. 11)

shock propagation speed normal to the shock wave surface



aG

shock propagation velocity with increase because of wat.er vbapor', (é*-un)
airplane weight

reference coordinate system: east, north, and above ground, respectively
vertical distance below cutoff altitude

sonic boom cutoff altitude during threshold Mach number flight

theoretical minimum altitude above the ground for which cutoff can occur to obtain
low-intensity acoustic-like disturbances at ground during threshold Mach number flight

shock wave angle of iﬁcidenc;

grtg)‘urid slope |

Prandtl-Glauert parameter, (M2 - 1)1/ 2

ratio of specific heats; also airplane climb angle
perturbation from undisturbed value

direction from which wind blows

inclination angle of wave normal Tt below horizontal (eq. 1)

‘sonic boom‘ signature half wavelength -

Mach angle, sin”] (1/M)

heading angle of wave normal i’

atmospheric density

azimuth angle of wave normal from vertical plane; also velocity potential .

airplane heading angle
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ANALYSIS OF NEAR-SONIC FLIGHT TEST DATA

This section contains the results of the analysis of sonic boom measurements -obtained from
the 14 low-altitude flights at near-sonic speeds. During several of these flights, the attached shocks
associated with flight at speeds close to the speed of sound were recorded on the BREN tower.
These flights were given particular emphasis in the analysis and discussion.

BACKGROUND

During the early 1960s there were a number of “accidental” sonic booms produced by
airplanes that appeared to be flying at subsonic speeds. Shortly after that, Barger (ref. 4) proposed a
mechanism for ‘‘subsonic sonic boom” in an effort to explain these inadvertent boom occurrences.
(This is evaluated in appendix A.) Airplanes flying near Mach 1.0 have shock waves attached to
them, and the purpose of this test was to determine how far these shock waves extend from the
airplane in the real atmosphere and to determine under what conditions they may continue to exist
long distances away from it. A recent study has indicated that cruise Mach numbers as high as Mach
0.98 can be flown with fairly reasonable lift-to-drag ratios by use of the supercntlcal airfoil and
refined area ruling techniques (ref. 5).

-~

Since the objective of the near-sonic flights was to determine the vertical extent and nature of
the attached shock waves during near-sonic flight, the test airplanes were flown at an altitude of
about 850 m (2800 ft) above the ground at Mach numbers ranging from 0.95 to 1.00. An additional
flight was made at Mach 1.05. Table 1 summarizes the airplane flight conditions and observed sonic
booxh characteristics. The airplanes were beacon equipped and tracked by radar. The airplane
altitude, Mach number, and weight (obtained from the fuel on board) are given in table 1, along
with the boom time at tower microphone T-1 and the maximum observed overpressure recorded by
any of the tower and ground microphones. Two different F-104 airplanes were used in the tests, as
indicated in table 1. The airplane heading for these flights was 035 true and the ‘“‘steady point” was
about 8 km (5 st mi) from the tower. .

The distinguishing feature of the data given in table 1 is the large difference in the observed
sonic booms on the BREN tower for similar flight conditions. For example, of the three flights at
Mach 0.98 only two produced booms and only one of the two flights at Mach 0.99 produced a
sonic boom on the tower. Much of the analysis was concerned with this apparent dlscrepancy

During the near-sonic tests several changes were made from the basic microphone setup as
given in figure 3 of reference 2. Ground microphones G-5 and G-10 were positioned 242 m (800 ft)
from the tower on a line normal to the flight path in line with microphones G-15 and G-16. In

9
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TABLE 1.—SUMMARY OF TRANSONIC FLIGHTS, SEPTEMBER 1, 1970

! Airplane Airplane ('.;altmé- Pii d| Airplane Boom timé :'Maximu bserved SR Y
Bongo: | p. altitu:e MSL, grour:;! speed, I\Zaf:h '“‘A’;:ﬁa weig%t,w Cat ' over;:'eZsjfz Subjective boom ?;;‘e
pgss‘_; g_ number, | number microphong > S charagter : pno.

m ft m/sec | ft/sec Mg | Mo kg | b T-1PDT N/m* | Ib/ft® | Microphone - .
11 .| 067 [1980 |26500 | 334.1 | 1096 | P0.959 | 0.95 857518 900 | 0845 - - - - Engine noise only | 1
-2 | 068 | 1950 | 6400 | 3383 {1110 | 0.971 [096 = | 8230/18 150 0853 - - - Engine noise only | 1
1-3 069 | 1980 | 6500 | 341.7 |1121 | 0981 | 0.97 - 789517 400 COQO - - C— Engine noise only | 1
14 | 070 | 1965 | 6450 | 371.9 |1220 | 1.069 | 1.05 | 7485/16500| 0906:50.27 |596.6 | 12.46 | .G-1 - Heavy double 1

. ; . ) : : - ‘boom
21 .| 071 | 1930 | 6330 | 350.5 |1150 | 1.006 |0.98 | 8435)18 600 0920:32.69 |293.6 | 6.133| T-156  |:Boom , 2
2:2 5| 072 | 1890 | 6200 | 345.0 {1132 | 0.990 [0.97 | 7940|17 500 0928:22.51 | — - 1 - _Rumble plus 2

S s : I o : . : . } -engine noise .
23 | 073 1875 6150 | 349.9 | 1148 | 1.003 |0.98 | 7485(16500| 0936:24.33 | 68,7 | 1.435|T-13,G3 | Boom © 2
31| 074 | 1980 | 6500 | 347.8 |1141 | 0997 |0.99 | 8460}18 650 1037:38.39 {134.0 | 2798 | T-15 Boom 1
32| 075 | 1995 | 6550 | 3426 |1124 | 0982 |0.98 * | 7895|17 400| 1046:53. 9| - | — i Englne noise 1
3}'_3 .| 076 | 1890 | 6200 | 351.4 1153 | 1.007 |1.00 - | 730516 100| 1055: 03 64 464.0 | 9.691| G-1_ Sharp boom, -1
VTR i _ - - -rumble

41 < | 077.] 2010 | 6600 | 331.9 [1089 | 0.953 |0.96 - | 8620[19 000 | 1240 - - - Engine noise and | 1
42 "| 0782010 | 6600 | 3365 |1104 | 0965 (0965 |8210/18100( 1288 . * | —. | = - oA I
43 *| 079 | 2010 | 6600 | 340.8 |1118 | 0980 |0.99 : | 7800(17200|%1266 - ~ | — ' | - - R 1
44 ::| 080 | 1980 | 6500 | 345.0 1132" 0.993 [1.00 > | 735016 200 | ©1303 - = - \ 1

a'The ground level at the BREN tower is 1112, 5 m (3650 ft) MSL

bThe error in this calcutation is about +0. 01 Mach number due to maccuracnes in radar ground speed and wmd speed s

cApprommate time of a|rp|ane passage over BREN tower.

o
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addition, only tower miérophones T-1, T-3, T-5, T-7, T-9, T-11, T-13, and T-15 were used for these
flights, and in many caseé the pressure signatures observed by tower microphones T-9 and T-13 were
unusable due to excess background noise. Figure 1 gives the microphone chationS'schematically for
reference. o ' '

DATA ANALYSIS METHODS

The techniques used in analyzing the near-sonic flight test data are given in this section for
reference. These include the conversion of gradients of temperature and wind into a Mach number
gradient, the calculation of the Mach number gradient associated with the shock v'vave. strength,-_zind
the calculation of shock wave profiles. ’ " '

Conversion of Temperature and Wind Gradients to a Mach Number Gradient

In determining the effect of temperature and wind gradients it is convenient to convert them
into a Mach number gradient. This can be accomplished by beginning with the equation describing
the inclination angle of the shock wave with the horizontal. In the notation of references 3 and 6,
this is: ' ' ’

___a2) o .
U erem O
For steady, level flight arid the ¢ = 0 ray (directly beneath the airplane) this becomes::

a(z) S _
Mg ag-up )7 Un@ . 2

cos @ =

where M, is the airplane Mach number. The angle § can be converted to a Mach number directly
related to the gradients of temperature and wind by use of the}_sim:ple relationship

- cosg= I/MTW . - o - | (3)
Equation (2) theh gives>
‘ r'- 7 (Mo a'o - Uno) + un(z) . 'f - ’ )
MTW = a(z) | - N . ce 4)

where My is- the required Mach number that includes the effect of temperature and wind
variations beneath the-airplane. A slightly different form of equation is also useful ;.

11



[a -a(z)] [un(z) u 0], oo
(Myy-Mg)= AMTw =Mo| Ty 1L _a(z)' E 55(5')

< e

AAAAAA

the ground the shock wave will be refracted toward the ground. In’this case cutoff due to’
'atmosphenc refraction cannot occur. This condition occurs when a >a(z) and/or u (z) > uno (in’
more common terms, when a temperature inversion exists, when a tallwmd decreases toward the
ground or when a headwmd increases toward the ground). ' e

Perturbation Mach Number

At high subsonic Mach numbers, shock waves are produced locally as the airflow becomes’
supersonic over certain portions of the airplane. These shock waves extend beneath the airplane but
normally die out rather quickly with altitude. Thus, a Mach number gradient is produced locally
around the airplane and can be estimated from the maximum strength of the local shock wave
overpressure, AP, . For a plane-wave system the overpressure is given (ref. 6) as: '

OPax = PAOmay SR m‘ (6)

......

where p = density, a = sound speed, and (q,,, ax)" is the maximum perturbatlon VCIO\,lty normal to
the wave front. The Mach number change, AMq, associated with this perturbation velocity is

AP
aAM = Amax/2 = ___p':;x 7 | (7

- Using the equation of state and a = (‘YRT)I/ 2 this becomes

L G, -

AM. = APmax

q% P ®)

which is the desired relationship. Values of AM are given in a later figure, calculated for a Mach
105 flight. The variation of AM with airplane Mach number was not accounted for. '

Local Shock Mach Number and Subsonic Sonic Boom

In determining the effect of temperature and wind gradientsA and the airplane-induced Mach
number gradient it is convenient to think in terms of a local shock Mach number, Mg. ThlS is
defined as

12 Mg =M, + AMpy + AM, _ )



In the case when Mg increases from the airplane toward the ground it is expected that the
shocks produced during high subsonic flight may penetrate further below the airplane or even
extend to the ground, since cutoff due to atmospheric refraction cannot occur. Figure 2 shows the
effect of the wind gradients (a tailwind decreasing toward the ground or a headwind increasing
" toward th;a ground) that may cause attached shock waves from subsonic aircraft to extend to the
ground. The local shock Mach number, Mg, is also indicated schematically for these wind gradients.
ngq.tlme; ago, in an effort to explain *“‘accidental” booms produced by apparently. subsonic
afrplanes, 'Bﬁrger (ref. 4) proposed that this meteorological condition may actually produce sonic
booms'during flight near the speed of sound. A much more likely mechanism is the propagation of
existing shock waves (due to local supersonic flow over portions of near-sonic airplanes) to lower
altitudes by these meteorological conditions. Appendix A contains a more detailed discussion of the
generation of sonic boom by subsonic airplanes.

Shock Wave Profiles

The sonic boom measurein,ents on the tower provided the capability to calculate the shock
wave shapes and locations at a reference time in the vertical plane. This required a conversion from
‘time to distance, since the shock wave front swept past the fixed tower at a given velocity, melc
The shift in distance from the tower, AX, correspondmg to differences in shock arrival time, t,
from a referencg }tlme, trefs is:

BX = (trer-ty) V (10)

Pmic
The reference time, t.¢, was taken as the arrival time at tower microphone T-1.

The shock wave propagation velocity, Vp o can be calculated from the shock wave arnval
times on the ground microphone array from the followmg equation:

Vomic ~ tg (G-14$)§ eny) (H)
wﬁeré: )
AX = 975.4 m (3200 ft).
... t5( ). .= shock wave arrival time at microphone ( ).

13



" An- associated calculation is the conversion of the observed pressure signatures (overpressure
versus time) from the time scale to a distance scale (overpressure versus distance). By makmg thrs
convers10n shock wave profiles and observed pressure 51gnatures could be placed on the same graph

usmg a common distance scale.

METEOROLOGICAL CONDITIONS e

During the transonic flights the meteorological conditions were very’ important for
understandlng the boom exposures on the BREN tower. During the early morning hours the winds
observed on the BREN tower were light and variable, with speeds generally less than 2 m/sec (6.6
_ft/sec). At the airplane altitude a 4 m/sec (13 ft/sec) tailwind prevailed. Since the temperature
gradient between the airplane and the tower top was small, the wind gradient was the predorn'i-‘riant
meteorologlcal factor. The tailwind decreasing toward the ground is favorable’ for somc boom
propagatlon to the ground and existed during passes 067 through 073. B '

At about 1000 PDT a transition took place in the meteorological conditions that 'm'a-c.le sonic
boom propagation to the ground unfavorable. Changes occurred in both thé temperatiire ‘and wmd .
:condltlons Since clear skies prevailed the temperature near the ground increased w1th time, which
made the temperature lapse rate of greater magnitude (and less favorable for sonic ‘boom
propagation). Associated with the steepening tempcrature lapse rate in the kilometer nearest the
groimd was the breakdown of the nocturnal wind flow and the establishment of a southerly to
southwesterly wind regime that prevailed through the remainder of the day. During passe‘s' 074, 075,
and 076 the wind speeds on the tower were about 4 m/sec (13 ft/sec), and during passes 077
through 080 the wind speeds had increased further to over 6 m/sec (20 ft/sec). Thus, very little, if
any, wind gradient existed between the airplane and the tower top. This condition, combined with
the relatively steep temperature lapse rate, will produce early cutoff of attached shock waves on

near-sonic aircraft.

ANALYSIS OF THE MACH 1.05 FLIGHT

The one low-altitude flight made at Mach 1.05 produced an mterestmg set of data, Wthh lS
summarlzed in this section and compared with theoretical calculations. Smee the airplane’ altltude
was 853 m (2800 ft) above the ground or 396 m (1300 ft) above the top of the BREN towcr the
observed pressure signatures are near- -field srgnatures that have not yet reached then' asymptotle
far treld shape. For thrs reason they are of valuc and mterest
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_Figure 3 shows the shock wave profile and tower pressure signatures to the same distance scale
'for this flight. The observed shock wave front was determined by analysis of the shock wave arrival
‘:tlmes at the tower. A theoretical shock front shape is also given for the alrplane ground speed as
calculated from the shock arrival times along the ground microphone array

Figure 4 gives a detailed comparison of the observed and calculated pressure signatures. In
general, there is good agreement between theory and experiment for both overpressure and
signature length. The reflected theoretical signatures were calculated using a “‘mirror-image”
atmosphe_re below ground level.

The sngnatures in ﬁgures 3 and 4 illustrate the “aging” process rather well. The merging of the
:two mtermedlate shocks, the signature lengthening, and the rapld overpressure decay with distance
from the anrplane are all aging processes. Such good agreement between theory and experlment
woul_d not normally be expected so close to the airplane. The good agreement over thls altitude
range in the near field is probably due to the slenderness of the F-104 airplane. Figure S gives a
more detailed comparison of the observed and theoretical maximum bow overpressure. In several
_ splkes were observed due to small-scale atmospheric turbulence; for these cases a more
Arepresentatlve maximum overpressure is also given. For convenience, the ground~reflected values are
.given below ground level. The parameter AM as calculated from the theoretical APmax values is
ialso shown in ﬁgure 5. This was used in the analysns of the remammg transonic data.

. The _pressure s1gnatures measured on the ground are presented in ﬁgure 6 These are snmllar 1n
shape to those measured near the tower base, except that the overpressures are stronger by a factor
of about 1.85 due to ground reﬂectlon.

* ANALYSIS OF THE TWO MACH 1.00 FLIGHTS

As shown in table 1, passes 076 and 080 were at Mach 1.00. In spite of the fact that the flight
conditions were almost identical for these two flights, pass 080 produced no sonic boom on the
BREN tower, while the other flight produced well-defined incident and reflected shock waves. This
apparent discrepancy can be explained by the difference in the rheteorological conditions for these
two flights. Figure 7 shows the local shock Mach number profiles for these two cases and the
observed maximum overpressure of the incident bow shock Durmg pass 076 the meteorologlcal
'Vcondltlons were such that the local shock Mach number, MS, was above 1.0 except near the tower
'basc, Lower Mg values prevailed during pass 080 due to the slightly different meteorologlcal
conditions, which apparently caused cutoff of the shock wave above the tower. It may also be
significant that pass 076 was at a 90 m (300 ft) lower altitude than pass 080. This is reflected in
higher AMq values for pass 076.
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The measured pressure signatures and shock wave profile for pass 076 are given-in:figure-8.:The -
pressure signatures and shock front are to the same distance scale; a correspo‘ndiné time scale-is:also : /
given with the intensity scale for the pressure signatures. The pressure signatures show considerable |
variability due to the effects of small-scale atmospheric turbulence. Airplane accelerations are.also
evident since the incident shock front has an opposite curvature from what the prevailing wind.and,
temperature effects alone would produce. Over the depth of the tower, Mg decreases,:which;
corresponds to -a condition where the shock wave should be more vertical at the tower base than at..

R

the tower top—the opposite is true, however. : : B S R £ SO T
The measured pressure signatures on the ground for pass 076 are displayed in figure.9.:The -
significant feature of these signatures is the relatively long duration (in excess of 0:1.sec) compared *
to those measured during pass 070 (0.07 to 0.08 sec). Another significant feature is the relatively-,

ill-defined tail shock. . P e e e

ANALYSIS OF THE SUBSONIC FLIGHTS

In addition to the two flights at Mach 1.00 discussed in the previous section, there were five
flights at subsonic Mach numbers that are of particular interest. For similar flight conditions quite -
different sonic boom characteristics were observed on the BREN tower, depending-on the:prevailing
meteorological conditions. The, two flights at Mach 0.99 will be discussed first, followed :-by the -
three Mach 0.98 flights. ‘ : :

The shock Mach number profile is shown in figure 10 for passes 074 and 079. Both of these
passes were made by test airplane number 1 at a pilot-read Mach number of 0.99:and at essentially
the same altitude. Pass.074 produced an interesting, fairly intense pressure signature at the tower.
top, shown in figure 11 with the shock front profile. On the other hand, no signiﬁcant; disturbances -.
were produced during pass 079. The shock Mach number profiles in figure 10 indicate -that
meteorological conditions were more favorable for shock wave propagation during pass 074, which
produced shocks at the tower top but low-intensity acoustic-like disturbances at the ground.
Observers at the ground rated the disturbance as a “boom,” however. .

Three flights were made at Mach 0.98. Passes 071 and 073 were made .by tes_t-a_ir;;lapq;
number 1 at airplane altitudes above the ground of 817 m (2680 ft) -and 762 m (2500 ft),..
respectively. Pass 075 was made by airplane number 2 at an altitude. of 884 m (2900 ft).. Despite
these similar flight conditions, quite different boom characteristics were produced on the. BREN .
tower. The shock Mach number profiles and observed maximum overpressures are given in figure. -
12. The most favorable conditions for shock wave propagation existed during pass 071 (Mg > M,;)
and a strong shock wave occurred at the tower top, while least favorable conditions existed during
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pass 075 (Mg < M), and a very low-intensity pressure wave occurred. The observed sonic boom on
the.tower again appears to be determined by the meteorological conditions.

- :The observed pressure signatures and shock wave profiles are given in figures 13 and 14 for -
passes 071 and 073, respectively. The pressure signature at microphone T-15 in figure 13 is very .
similar: to signatures produced during supersonic flight. This suggests that shock waves are produced
near the airplane nose (canopy) and tail during slightly subsonic flight (or the airplane could have
been slightly supersonic during part of its flight). Shock waves are still present at microphone T-11,
but below that altitude the signature deteriorates rapidly to a rounded, low-intensity, acoustic-like
disturbance. The pressure signatures in figure 14 for pass 073 are fairly low’ in‘intensity (about
50 N/m24 1.0 lb/ftz)) and exhibit the characteristics of acoustic noise. The lower extremity of the
shock ‘wave in this casé appears to have been above the tower top, but conditions may have been
more favorable for the propagation of the acoustic disturbances. ‘

The shock wave profiles in figures 11, 13, and 14 are somewhat surprising in that the lower
extremities of the shock waves do not seem to be associated with the cutoff phenomena. During '
cutoff the shock wave becomes vertical (§ = Q) at some altitude. Several hundred feet below cutoff
the signals become acoustic in nature and can propagate for some distance (ref. 2). For these cases,
however, the shock wave at its lower extremity has an appreciable angle to the vertical (¢ > 0) and*
cutoff has not been reached. Thus, it would appear that the shock wave deterioration is associated
with the local Mach number gradient produced by the local supersonic flow over the. near-sonic-
airplane. Meteorological conditions can extend the lower extremity of the shock waves, but for’
these cases the lower extremity occurs before cutoff.

Six additional subsonic passes were made at Mach numbers ranging from 0.95 to 0.97. These'
passes produced engine noise only, or very slight rumbles associated with low-intensity, acoustic-like
disturbances. The supersonic flow and attached shock waves were probably not strong enough to °
persist for ‘any appreciable distance below the airplane at these lower Mach numbers. ‘

“The major conclusion of this section is that the meteorological conditions determine the
vertical extent of attached shock waves during near-sonic flight. This conclusion is supported by the"
data given in figures 15 and 16. Figure 15 shows the observed boom characteristics at the tower top
as-a function of the airplane Mach number M and the local shock Mach number, Mg, at the tower
top. In all cases when Mg <M, (an unfavorable meteorological condition for shock wave
propagation) no disturbances were observed. On the other hand, for Mg > M, strong shock waves -
were observed when M, > 0.985, acoustic-like disturbances occurred for 0.975 <M, < 0.985; and
no disturbances were observed for M, <0.975. '
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Figure 16 indicates the effect of meteorological conditions (AMty) on the vertical extent of
the shock waves for several airplane Mach numbers. The altitude of the shock wave lower extremity
was estimated from the Mg profile for four of the six cases since it occurred above the BREN: tower.
For this reason these data should be considered to be schematic, but they illustrate the effect rather
well. An “equivalent wind speed change” is given for AMpyy to indicate the actual wind-increment
required between the airplane and the tower top. This was calculated by assuming that-all of the
AMpy was due to a wind gradient alone. For no gradient (AMTw=0) the shock wave extremities
are 185 m (600 ft) and 400 m (1300 ft) for Mach 0.98 and 0.99, respectively. At Mach 0.98 the
shock wave extremity varied from about 170 m (560 ft) to 480 m (1600 ft) due to the different
meteorological conditions, and thus both airplane Mach number and meteorological conditions are
important influences on the altitude extension of the attached shock waves. It is not clear, however,
how much farther the shock waves would have propagated under more favorable meteorological

conditions.
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teeso - ANALYSIS OF SAFETY FACTOR DURING - -
- THRESHOLD MACH NUMBER FLIGHT =~
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15 +This section contains the results of a detailed study of 29 threshold Mach number flights for
which: rumbles or-low booms were observed. For these flights, cutoff occurred above the BREN
tower:-The results presented in this section include the determination of the validity of a theoretical
safe altitude for sonic boom cutoff to avoid objectionable noise at the ground, and a discusSion of
the natiire .of the acoustic disturbances measured below the cutoff altitude. ‘

T ~ BACKGROUND

The attractiveness. of commercial operation at speeds slightly below the threshold Mach
number is primarily due to the avoidance of sonic boom noise at the ground. Such flights produce a
caustic at some altitude above the ground, however, and significant acoustic noise perceived as
heavy rumbles or low booms can propagate to the ground. Thus, if objectioriable noise is to be
avoided with a high degree of assurance, some method is needed to determine the allowable “safe”
airplane ground speed in terms of the known prevailing meteorological conditions. A theoretical
‘“safe altitude” for sonic boom cutoff ‘has been derived for this purpose. The 1970 BREN tower
tests provide an excellent set of data for verifying this theoretical safe cutoff altitude under a
variety of meteorological conditions. ' )

Preliminary results of the analysis of the safety factor during threshold Mach number flight for
these data was given in reference 3. That analysis showed that low rumbles were produced on the
ground when the airplane ground speed was at least 6 m/sec (19.7 ft/sec) lower than the maximum
shock propagation speed. In addition, it was shown that the theoretical safe altitude for sonic boom
cutoff agreed fairly well with the observations, although the safe altitude was underestimated

\

somewhat.
In the present analysis several changes were made in the method used in reference 3 for

determining the safe cutoff altitude. These are detailed in the following paragraphs, along with the
definition of the theoretical safe altitude.
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ANALYSIS OF SAFE CUTOFF ALTITUDE AND SPEED SAFETY FACTOR
Theory
Since amplified shock waves occur at the cutoff altitude, cutoff must occur at some distance
above the ground to avoid objectionable disturbances at the ground. The safe cutoff altitude has
been defined to be the lowest altitude reached by the shock wave; a buffer zone between there and

the ground is required to attenuate the acoustic signal propagating from the shock to a relatively
small intensity. The depth of this buffer zone below the cutoff altitude is given as

azy=(R)!/3 )23 a ©a

where L is the signal length and R depends on the meteorological conditions.

_ a_____-a
R=3G-upz 3V, /a2 . (13)
where
a =  sound speed
u, =  wind speed along flight path for ray directly beneath airplane (tailwind negative) =
ucos (¥-n)
u = horizontal wind speed

(a-uy)= Vp = shock propagation speed

The parameter R is the relative curvature of the caustic relative to. the ray and is inversely
proportional to the lapse rate of the shock propagation speed. h

Since cutoff at the safe altitude is produced by a reduction in the airplane ground speed, it is
convenient to convert the buffer zone depth into an increment of propagation speed (airplane
ground speed) to obtain '

ave=@!'3 fL@vy e} 23 | (14)
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Thus, the theoretical requirement for acceptable sonic boom noise at the ground can be
expressed as

Vv = - AV
Gsafe (meax a s) _ s

where meax is' the maximum shock propagation speed (a- u,) between the airplane and the
ground. Normally, this maximum occurs at or near the ground, but occasionally it occurs well above
the ground (an inversion). In the latter case the “buffer zone” and safe altitude must be calculated
with respect to the altitude where the maximum Vp occurs. This is illustrated in figure 17. In the
case when an inversion exists, use of the propagation speed at the ground, VPG’ is conservative (that
is, a higher ground speed could be flown) but has several operational advantages. These include:

o It is easy to monitor and to measure.
© The resulting block time reduction is insignificant .
® It can be obtained with currently available meteorological data-gathering methods.

Figure 17 also illustrates the relationship between AZ  and AV. The safe cutoff altitude is
expressed as

Zy=2(V, )+AZg (16)

Theoretical buffer zone depths and corresponding ground speed decrements are given in figure
18 for various values of lapse rate, -an/aZ. These data are given for several signal lengths, including
91.4 m (300 ft), 61 m (200 ft), 30.5 m (100 ft), and 47.85 m (157 ft). The signal length of 47.85 m
(157 ft) is typical of pressure signatures measured on the BREN tower near caustics produced by
threshold Mach number flight. As noted in reference 3 a characteristic feature of pressure
signatures near caustics is a significant lengthening (as well as amplification). Since the caustic
pressure signature is the one that determines the acoustic field below cutoff, its characteristic length
should be used. In previous work (ref. 3) a length of 39.6 m (130 ft) was used and is more
representative of measured signatures at the ground away from caustics for an airplane Mach
number of about 1.2.

It should be noted that the buffer zone depth, AZ, is inversely related to the lapse rate while
the speed safety factor is directly related to the lapse rate. As the lapse rate approaches zero, the
safety factor approaches zero, and the safe altitude approaches infinity.
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The theory is valid -over a wide range of meteorological conditions, but fails for several special
conditions. For the theory to be valid the ratio L/R must be small. For small R (of the order of
several thousand meters) the theory fails since L/R is “large” and AZ  will be underestimated. Small
R corresponds meteorologically to a very large value of -an/az (of the order 0.05) and is not
possible in the real atmosphere. This corresponds to a very large AV and'a small AZ (see fig. 18).
Another requlrement is that'R must be positive (aV /8 z negative). Under normal condltlons this
-requirement is met. In the case when a temperature inversion exists, however ora tarlwmd increases
in strength above the-ground, R'may be negative. Under these conditions cutoff must occur above
the inversion. For this reesoh the 'éafe altitude must be calculated with respect to the altitude where
the maximum Vp occurs. A’ third requirement is that an/a z and R should be approximately
constant with altitude.” In some cases this requirement is not strictly met. In calculating the
theoretical safe altitude, however, an average or “effective” R was calculated by an iteration
technique. The observed meteorological conditions were used in calculating R, AZS,,and_ AVS. The
results of the ‘AZ; and AV, theoretical calculations are given in table 2. A . wide range of
‘meteorological condrtlons occurred during these flights, with average aV /@ z values in the lower
atmosphere ranging from -0. 001 to -0.017. The eight flights on October 23 and 30 were not
considered in this analysis smce a significant inversion existed, and the upper-level meteorologrcal

ke

conditions were not known accurately -enough.
‘Comparison of Theory With Experiment

Table 2 cohtai_ns" a summary of the important calculated and observed parameters. The
theoretical safe altitude increment for “no boom,” AZS, is given, along. with. AVS, the
corresponding airplane ground speed decrement with respect to the maximum propagation speed,
vV, * ax” The safe altitude is calculated with respect to the altitude where the maximum shock
propagation speed occurs. The approximate actual sonic boom cutoff altitude, Z,, and the airplane
ground speed decrement, AV, = (me -Vg), were calculated from the observed airplane ground
speed. Two nondimensionalized parameters are also glven in table 2. They are the observed fractions
of the safe altitude and ground speed decrement, (Z - Zs)/AZs and (AV,- .AVS)/AVS. The
quantity (AV - AV,) is-simply V;(“safe”’) - V. Other information in table 2 includes the average

p/ 0z within  Z below the cutoff altitude, the observed sonic boom characteristics, and average
maximum sonic boom intensities on the tower and on the ground.

Figure 19 shows the variation of the average tower maximum overpressure with the parameter
.- Zs)/AZ The safe altitude as defined earlier does appear to ‘be a useful crntenon since a
transition occurs from low ninibles to moderate rumbles and low booms for cutoff near the safe
altitude (Z =7 ) In addltlon the overpressures increase rather sharp]y closer to the caustrc These
data also mdlcate that low-intensity disturbances (less than 5 N/m (0. 10 lb/ftz)) can propagate to
the ground even though cutoff occurs well above the “safe” cutoff altitude. For cutoff near the safe
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TABLE 2.-SUMMARY OF RUMBLE AND LOW BOOM CASES, THRESHOLD MACH NUMBER FLIGHT NON/NVERSION CASES
A.METRIC UNITS

Antitude of | Average Safe altitude Speed Airplane Average .
3 Ver; — — h
g VB v increment, safety ground AV 22 (Z2+2.) . E v‘/ 3z aPg &Py
- P, R o ' s
[Oste go”r?o Pass max az, hctor,A\/s speed. Vo Z:2,) (A\é_ av cutoft max max Category®
- A a
m/sec m MSL m m m/sec m/sec m/sec m MSL m sec ! N/(n2 N/m2-
8.2a| 1 001 3483 1138 54 980 501 318 14 6.94 2931 2292 456 118 -0.0031 0.0 0.0 Rt
-3 003 350.9 1138 67 820 538 277 345.0 5.01 3109 1433 2.66 113 -0.0028 282 &) R2
22 005 350.7 1m3 32890 423 4.49 3429 7.83 3689 2183 5.10 0.74 0.0044 3.26 -2.50 R2
31 007 352.6 1245 54 620 500 3.20 348.4 418 2164 419 082 0.3t 0.0022 340 240 R2
32 008 353.0 1245 40810 454 3.89 3475 5.52 2469 770 1.70 0.42 0.0021 298 2.98 R2
33 | 009 352.3 1288 41270 455 3.86 . 348.7 3.66 1645 -98 0.21 0.08 0.0103 6.03 6.96 R3
825| 11 014 385.7 1331 18610 349 6.52 349.3 6.43 1646 -34 0.10 0.01 0.0180 9.67 8.93 R3
23 019 353.4 128 65 860 532 282 346.3 7.13 2408 748 1.41 153 -0.0051 7.43 275 R2
1 32 022 | 347 113 48 060 479 3.49 348.4 6.28 2012 420 0.88 0.80 0.0064 5.22 3.19 R2
- 33 | o023 356.2 1128 26 780 395 5.12 351.1 5.09 1525 2 0.00 -0.01 0.0130 10.61 1185 R4
41 025 3568 138 75120 §56 2.58 349.6 7.19 2118 424 0.76 179 0.0107 9.58 7.76 R2
43 | 027 .| 3558 113 32960 423 4.49 35.1 0.67 128 - 408 087 -0.85 - 16.61 1383 R3
83| 13 -] o083 352.2 1ms3 103 160 618 2.09 349.0 3.7 2058 327 053 -0.08 -0.0031 6.94 487 R2
21 065 352.6 3 75 320 557 258 349.9 n 1603 23 0.04 0.06 0.0045 10.66 5.10 R4
22 056 362.7 1160 64 070 527 287 349.9 2.74 1646 -4 0.08 0.06 0.0067 18.75 8.9 Re
31 | os9 3635 1160 80 320 569 2.47 3624 113 1204 -525 0.92 054 - 7.42 1084 R4
R 42 064 357.0 1160 48 070 478 3.48 3539 2.99 1524 -118 .24 0.94 0.0080 14.48 16.61 R4
1027] 2t | 089 | 3297 128 24 420 383 527 352.2 445 1416 o 0.2% 0.16 0.0105 8.38 15.38 R3
' 22 | 0s0 3208 1m3 31840 a8 4.43 321.6 8.23 1830 299 0.7 085 0.0128 1355 9.60 R2
23 | on 3302 1202 30 940 a4 4.49 328.0 2.16 1341 -275 0.67 052 0.0114 18.98 1557 R4
1028f i2 | 096 305 13 75870 | ° 568 248 327.4 5.12 3323 1662 2.96 1.06 0.0043 - 7.80 3.0 R2
13 | 097 -| 3339 113 106 720 623 1.99 3310 2.07 1768 32 0.06 0.04 -0.0037 10.68 14.34 R3
21 | 088 | 3342 13 220 | 420 4.39 3277 658 323 | 1688 406 050 0.0043 ot 4.0 R2
22 | 098 | 332 1128 36520 a7 404 327.7 6.74 23 | 1666 381 0.67 2.0043 o0 g'g o
) 23 100 336.3 113 62770 494 317 327.7 8.60 3231 1624 3.8 . 0043 ’ :
: g 13 ; R4
w2 14 | w | aws M3 306070 880 098 3368 0.79 1708 | -204 0.33 0.20 3‘2‘1’;: ': :: : ;’; e
24 1m 346.9 1m3 19560 385 6.23 339.9 7.04 1555 87 0.24 0.13 00120 752 “'w ad
25 12 3443 1245 36 360 433 4.18 3408 351 1524 - 154 0.36 0.16 o'ozoo 6.66 ) ‘" R2
33 15 | 3472 1288 18410 347 6.49 339.2 192 1678 43 0.12 0.22 - ) :

3 Altitude of wound is 1112.5 m (3650 ft) MSL

bcnqorm Rl = no rumble; R2 = fow rumble; R3 = moderate
to heavy rumbie; R4 = hyn boom




R TABLE 2-SUMMARY OF RUMBLE AND LOW BOOM CASES, THRESHOLD MACH NUMBER FLIGHT, NONINVERSION CASES

5

B. ENGLISH,UNITS ' : E ’
. . . Safe altitude Speed Airplane . - Average
: v Aftitude of | A increment , saf und \' Z AP AP 1
Date | B0 |pass | - Pmax VPrax :m‘ Az - fact?.AV, ,,::,_VG o ‘ ZeZ (ﬁ) avy-av, | 502 ks mox | % T | Category®
. .pass - Az AV cutoff
: fusec | fEMSL ft ft sec fusec tusee [ mMSL | R s N o/l /il

824 11 Joor | 11427 3735 180 400 1644 10.44 1120 227 | 12900 | 7520 456 . 118 0.0031 ~0.0 ~00 R1
13 'Joo3 | 11514 3735 222 500 1764 9.08 132 19.4 10200 | 4700 . 266 113 0.0029 0.059 0.067 A2
22 005 | 11507 3650 | 107.900 1386 14.72 1125 257 |. 12100 | 7065 5.10 074 - | 0.0088 0.068 0.052 R2
! 319 007 | 11867 4085 179 200 1841 1050 1143 137 7100 | 1375 082 03 0.0022 0.071 0050 . R2
| 32 008 | 11882 4085 133 900 1489 1275 1140 182 8100 | 2525 1.70 042 0.0021 0.062 0062 R2
|33 009 | 11560 | 4225 136 400 1494 - 1266 1144 120 5400 | -320 021 © 005 0.0103 0126 | o.as R3
825 .14 01s | w167 4365 61 060 1146 21.38 1146 211 5400 | -110 0.10 0.01 00180 | 0202 0.186 /3
123 019 | 11595 3700 216 100 1746 9.24 1136 234 |- 7900 | 2485 1.41 153 | 0.0061 0.149 0.057 R2
32 022 | 11636 3650 157 600 1572 11.44 1143 206 6600 | 1380 088 080 0.0064 0.109 0.066 R2
33 023 | 11687 3700 87 850 1295 16580 1ns2 167 5 000 5 0.0 0.0 0.0130 0225 0.247 R4
41 025 | 11706 3735 246 450 1825 8.48 1147 236 |. 6950 | 1390 0.76 179 00107 0.200 0.162 R2
4.3 027 | 1167.2 3850 108 200 1387 14.72 1M1 | .22 3700 | -1340 097 085 — 0.347 0.289 R3
831 |13, [083 | 11554 3650 338 450 2028 686 1145 104 6750 | 1072 053 052 0.0031 0.147 0.097 R2
2.1 055 | 11569 3650 247 100 1826 8.46 1148 8.9 5550 75 0.04 005 0.0045 0.226 0.107 R4
22 |ose | 11570 3805 210200°| 1730 9.40 1148 9.0 5400 | -135 008 0.06 0.0067 0.398 0.186 R4
‘31 059 | 11597 3805 263 500 1866 8.10 1156 37 3950 | 9721 092 -0.54 — 0.158 0.226 R4
42 064 | 11712 3805 157 700 1572 1141 | ne 10.2 5 000 377 024 0.14 0.0080 0.308 0.347 R4
1027 |21 |oso | 10816 3700 80 000 1255 17.28 1067 146 4650 | -305 025 0.16 0.0105 0175 0.321 R3
22 020 | 10820 3650 104 450 3N 1452 1065 270 |- 6000 { 88O on 085 00128 0283 |- 0200 - R2
23 . | o9t | .10832 3945 101500 | 1387 14.75 1076 72 4400 | -900 067 052 0.0144 0.403 0.325 R4
o |2 096 | 10908 36850 248 900 1831 8.13 1078 168 10900 | sa20 296 1.06 00043 | o0.163 0.08 R2
13 097 | 10928 3650 346 850 2045 652 1086 68 5800 105 0.05 0.04 0.0037 0.223 0.299 A3
2.1 098 | 1096.6 3650 ..| 105950 1377 14.40 1075 2.6 10600 | 5575 405 0.50 0.0043 0.179 0.13 R2
22 o099 |, 1097 3700 119 800 1435 1326 w1s | 221 10600 | s46s 381 0.67 0.0043 0.0 0.0 R1
2.3 100 | 10939 3650 173 150 1622 10.40 1075 189 10600 | 5330 328 0.82 0.0043 0.0 0.0 R
1029 |14 107 | 11076 3650 . |1 004 150 2017 324 ! 1108 26 5600 | -970 033 020 0.0013  0.283 0.183 R4
24 11 | 1138.1 3650 64 150 1165 20.43 ms 233 5 100 285 024 0.13 00158 ° 0.219 0.192 R2
25 12 | 11295 4085 116 000 1420 1370 1118 1ns 5000 | -505 0.36 0.16 0.0120 0.160 0.294 ‘R4
" |3 15 | 11390 4225 60 400 1140 21.30 113 260 5500 135 042 0.22 -0.0200 2.139 - 0162 | R2

#Attitude of ground is 1112.5m (3650 ft) MSL

bC«lnwies: R1 = no rumble; R2 = low rumble;
R3 = maderate to heavy rumbie: R4 = light boom
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altitude (airplane grouhd speed’near “safe” ground speed) overpressure intensities less than
10 N/m2 (0.21 lb/ftz) were observed. Table 3 summarizes these conclusions, and compares the
average maximum overpressures with steady; level flight and those observed at the caustic.

TABLE 3.-SUMMARY OF OBSERVED FREE-AIR SONIC BOOM INTENSITIES
‘ FOR CUTOFF ABOVE THE GROUND

2.-2) Range of average ]
Cutoff location . ¢ $ Apmax on tower Boom character
. AZs 2 2
o N/m Ib/ft
Cutoff well above safe >1.0 Otod 0.0 t0 0.08 No rumble to low rumble
altitude o C o
Cutoff between one aiid 00to 1.0 2t0 10 | 0.04 t00.21 Low rumble
two A Z, above ground .
Cutoff below safe alt:itude. 08 to 00 . 5t0 17 0.10 t0 0.35 Moderate rumble to
but above ground low boom
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) In earlier work (ref 3) it was determined that the maximum overpressure observed at cutoff
during threshold Mach number flight was 50.8 N/m (1.06 lb/ftz) during the BREN tower tests.

Higher intensities were observed ‘but were associated with slight accelerations (and in one case

atmospheric turbulence).-During steady, level fllght well above the threshold Mach number, the
nominal maximum mtensnty is about 28.7 N/m (0.60 lb/ftz) :

The effect of propagation lapse rate is given in figure 20. These data do not indicate a clear-cut
effect except at the small valués of - 3Vp/ dz. Thus, the theory appears to be valid for a relatively
large range of propagation speed lapse rate. A more accurate analysis of this effect is not possible
due to the inaccuracies in the observed airplane ground speed and the meteorological data. The data
in figures 19 and 20, however, indicate that the concept of a safe cutoff altitude based on the
prevailing metejorological"condjtions and signature length does have merit.

‘_ PREssU'Rl}: SICNATURE'CHA_RAC'I‘ERISTICS BELOW CUTOFF
The psychoacoustnc response to somc boom dlsturbances in the free field is determined
primarily by the detalled pressure wave- -observed. Below cutoff the pressure waves are cons1derably
different from those observed at or above the cutoff altitude; pressure waves below cutoff are
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-generally rounded and frequently -without. true- shocks, are of relatively low magnitude and are
perceived as. rumbles similar to distant thunder. In this section maximum overpressures and detalled
_pressure slgnatures for several ﬂlghts are presented and discussed, and recent theoretical results are

comp‘are_d with these observations.

Maximum Overpressure

One of the most convenient and significant pressure signature characteristics is the maximum
'overpressure: ‘For several flights, caustics were observed near the top’of the BREN ‘tower and
‘measurements were obtained just below the caustic. These observations ‘of maximum overpfessure
are given in figure 21. Similar data are given in figure 22 for flights on August24, when
measurements were obtained over a large range of y/A Z. The maximum overpressure predicted by
linear acoustic theory (see appendix B) is also given for comparison. The theoretical values agree
well just below the caustic but predict srgmﬁcantly lower values than those observed far from the
caustic. Figure 23 gives the range of overpressures observed ‘for all cases. It appears that
low-intensity acoustic waves can propagate considerable distances in certain cases cven when cutoff

has occurred séveral kilometers above the ground.
Detailed Pressure Signatures

For six fhghts caustrcs due to shock wave cutoff were produced on the tower The pressure
31gnatures observed near ‘the caustic altitude are given in ﬂgure 24. A theoretlcal N-wave pressure
srgnature (see appendix B) was also calculated at a distance of about 15 m (50 ft) below the caustlc
This theoretical signature is an excellent representation of srgnatures observed near the caustrc A
theoretical sonic boom pressure signature that applies above the caustic is also grven in ﬁgure 24.
The caustic observed during pass 063 appears to have been affected by. atmospheric turbulence B ,

Theoretrcal and observed pressure srgnatures are compared below the caustrc for two cases in
ﬁgure 25. The theoretical signatures have been matched with the appropriate observed 81gnature at
the approxrmate distance from the caustic. As noted in the previous section, the predrcted
maximum overpressure damps very quickly with increasing distance from the caustic compared to
the observed data.

Measured pressure signatures below cutoff observed on the BREN tower are given.in ﬁgures 26
through 30. Flgure 26 gives s1gnatures measured during pass 111. The srgnatures have a shape srmllar
to that. of a caustic but with low _intensity; the pressure peaks are rounded and no: shocks are
ev1dent The onset of .the pressure rise occurs almost simultaneously over the depth of the tower
and there is very little ground reflection. Figure 27 shows signatures for a srmrlar case, except that
an inversion existed in the shock propagation speed profile so that the acoustic wave was oriented
like a shock wave, occurring at the tower top first. _
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The pressure signatures observed during pass 090 are given in figure 28. Several incident
fpresSure waves, and also reflected waves, can be seen. The incident wave occurred first at the tower
base. Pressure signatures in figures 29 and 30 for passes 097 and 122, respectlvely, are similar except
'that an inversion existed. Since the angle of incidence of the acoustic wave was relatively large for
these two cases, the reflected waves are more evident. During pass 097, figure 29, it appears that the
airplane ground speed was higher uptrack of the tower, which produced the caustic closer to the
ground there. After ground reflection these more caustic-like signatures then intercepted the tower.
JIn figure 30 three incident and reflected pressure waves are evident, produced by variations in the
airplane ground speed.. These last two cases indicate the complexity of the shock pattern produced
during- flight near the threshold Mach number when the airplane ground speed varies slightly.
Similar maneuver effects are presented in more detail in a later section for cases when shock waves
occurred on the ground. . '

OPERATIONAL ASPECTS OF THRESHOLD MACH NUMBER FLIGHT

The 1970 BREN tower tests have demonstrated the ability to predict with reasonable accuraey
the airplane speed required for shock wave cutoff near the ground during threshold Mach number
flight, have helped to define more exactly the behavior of shock waves near cutoff, and have helped
’ ldentlfy the nature of the associated sonic boom noise. Sustained flight near the threshold Mach
number is a much more complex problem, however, since the airplane speed must be specified
accurately in terms of the refractive properties of the atmosphere at each point along the flight path
to avord objectlonable noise at the ground Methods for assuring “boom-safe” operation are
dlscussed in this sectlon These include (1) using airplane ground speed and the shock propagatlon
speed' instead of airplane Mach number and threshold Mach number to specify the allowable
airplane speed (2) using ground meteorological data only, (3) accounting for the shock propagation
dlstance and (4) the effects of meteorological variations. In addition, a few comments are given
with respect to airplane systems and a “total” speed safety factor. Finally, methods are summarized

‘for calculatmg the speed safety factor for adequate sonic boom attenuation based on the results of

.th'e data analysis of earlier sections.
Speed Specification

In specifying the airplane speed for shock wave cutoff, two approaches can be taken. One is to
use the airplane Mach number, and the other is to use the alrplane ground speed. The threshold
Mach number MT, has been defined to be the maximum alrplane Mach number for which complete
shock wave refraction can occur at or above the ground For cutoff directly beneath the alrplane
the equatlon defining the threshold Mach number is, in the notation of refs. 3 and 6:

27



MT=;—|} a(z) u, (z)$ max*unoA] - - , ; -(11:7)—

Alternately, equation (17) can be rewritten as: ' : 4

Vg={a@-uy @ max =V - (18)

Pmax
where

airplane ground speed for flight at the threshold Mach number

&
I

. (MT) (ao) - uno

Equation (18) simply states that for flight at the threshold Mach number, defined by equation '
(17), the airplane ground speed, Vg, is equal to the maximum shock propagation in the direction of
flight speed, Vp , beneath the airplane. Comparison of these two equations indicates the reason
~ that specification of the allowable airplane ground speed is a more practical speed control method.
The allowable airplane Mach number is dependent on the temperature and: wmd at. both the. alrplane
altitude and the cutoff altitude, while the allowable alrplane ground speed is dependent only on the -
conditions at the cutoff altitude. Since the threshold Mach number is dependent on the sound and

" -wind speeds at both the airplane and cutoff altitudes, these data would be requxred to calculate it.

Wind and ambient temperature at the airplane altitude would be difficult to measury continuously.
In addition, significant variations of wind at the airplane altitude can occur over ‘relatively. s_hort
“flight path distances, with corresponding variations in the threshold Mach number. Since it is
desired to achieve cutoff near the ground, only the ground conditions would have to be monitored
to specify the allowable airplane ground speed, and this value would be flown. The alrplane Mach
number would be allowed to vary as a function of the local conditions at altltude s

Another associated consideration is the comparative accuracy of a Machmeter versus inertial
mnavigation systems. An inertial navigation system provides an accurate measure of alrplane ground
| speed. It is highly unlikely that a Machmeter could ever approach the accuracy of an inertial
navigation system due to inherent measurement and calibration errors at speeds near Mach 1.0.
Since the ground speed safety factor required for noise attenuation below cutoff’is 6.7 kt (11.3
ft/sec) under standard day conditions (signal length of 91.4 m (300 ft)), the speed accuracy must be
at least within that accuracy. In terms of airplane Mach number the 6.7 kt (11.3 ft/sec) is only a
Mach number increment of about 0 012.



Use Of Ground Meteorological Data

.Of primary importance is the determination of the meteorological conditions along the flight
path and the resulting allowable airplane ground speed. Use of ground meteorological data alone is
thve' most. practical method since hourly observations of ground meteorological data (temperature
and wind) are available at over 500 locations in the continental United States on a routine basis.
These data are available in real time over the National Weather Service teletype communications
facilities-and could be used for preflight planning as well as duﬁng flight. Upper air rawinsonde data

, could also be used, but these-are only available at 12-hour intervals at about 68 locations. Variations
in the upper level winds in space and time, however, can be considerable and are difficult to predict.

Use ,of ground meteorological data means that in some cases a slight ground speed penalty wilt
occur (i.e:, the airplane could be flown faster than the ground meteorological conditions alone
would indicate with no boom on the ground). This situation occurs when there is an inversion in the
Vp profile because of a temperature inversion and/or strong tailwinds aloft. Normally only a
relatively - small airplane ground speed penalty will result from using ground meteorological
data alone:

In terms of the meteorological condition at the ground, the allowable airplane ground speed is

VG=(VpG-AV)é(aG;unG)-AV B | (19)
’where
ag = ambienf sound speed near ground
u“G =  wind speed component along flfght path (tailwind negative) near ground |
AV_ =  ground speed safety factor

For calculation purposes this can be expressed as
Vg = 29.04 {T (R} % - u cos (y-n) - AV (20)
where T(°R) = ambient air teméér‘ét'ure in degrees Rankine near the ground, and u, AV, and Vg are

in knots.
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Necessity for Anticipating"Meteorological Variations

During threshold Mach number flight the shock waves produced at flight altitude travel a
considerable distance through the atmosphere before being cutoff in the lower atmosphere. This
means that variations: in the shock propagation speed at-the ground must be “anticipated” by
appropriate changes in the airplane ground speed by at least this propagation distance. Changes in
topography would also have to be anticipated “in the same manner. For example, during a
westbound flight it may be necessary to decrease the airplane ground speed as the east slope of the
Rocky Mountains is approached to avoid placing sonic booms on the ground. Figure 31 shows the
variation of the shock wave propagation distance and threshold Mach number for various wind
conditions at the airplane altitude. For these. flight and atmospheric conditio_ns the propagation
distance varies from about 20 miles to over 50 miles. Adjustments to the airplane groﬁnd speed
would be made at distances of this order prior to passing over the point of interest.

Other Meteorological Effects

- Important micrometeorological variations are due to wind gusts caused by  topographical
‘ features and. meso-scale meteorological disturbances. Figure 32 shows the effect of .Wigd gusts on .
the allowable ground speed, where gusts are considered to be variations from the mean wind speed.
"From this analysis it can- be seen that this effect can be important, particularly. when .ground
and AVg. . . -

i.

meteorological data are used. These variations can affect both;me
. ax

Airplane Systems

An additional ground speed decremént, AV, to allow for airplane ground speed variations
induced by the pilot and/or throttle setting may be necessary. The accuracy of the inertial
navigation system (Vg sensors) may also be significant.

Total Speed Safety Factor

, .
During threshold Mach number operation it will be necessary to determine a total ground
speed safety factor (AV in equation 20) to assure boom-safe operation. This total safety factor

would consist of several factors and could be expressed as

VG (safe) = VpG - AV B oo ,(21)
VpG = shock propagation speed near ground
AV = AV + AV + AV,
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where
- AV = - total speed safety factor decrement

AV. = - speed safety factor decrement required for cutoff at safe altitude above ground.
’ " for adequate noise attenuation

AVG = ' speed safety factor decrement required to account for wind gusts and meso-scale
o "meteorological variations - - ' e ———

. AVA =  speed safety factor decrement required to account for variations in the speed
T ' ‘spec1ﬁcat10n system and ground speed accuracy

Methods for Calculating the Speed
Safety Factor for Adequate Noise Attenuation Below Cutoff

The analysis in previous sections has shown that the theoretical ‘“safe” altitude is a useful
method for determining the airplane ground reduction for safe sonic boom cutoff. The method used
to determine it, however, is dependent to a large degree on the available meteorological data.
Ideally, tower miéasurements of temperature and wind would be available in real time. An average
gradient of shock propagation speed should be calculated above the altitude of the maximum shock
propatation speed. The allowable airplane ground speed is then calculated as '

VG (safg) = vamax - AVs - AVG - AV A : B (22)
where

AVS= (R)1/3 (L)2/3

R = —32_
o an/ oz
L = signal length

In the absence of tower meteorological data, upper air meteorological data must be used to
obtain the propagation speed lapse rate. As a last resort a conservative value of about 6 m/sec
(12 kt) can be used.

31



ANALYSIS OF LOW-MAGNITUDE ACCELERATION |
EFFECTS DURING THRESHOLD MACH NUMBER FLIGHT ;

BACKGROUND L S

During the 1970 BREN tower program there were 31 threshold Mach number flights which
were at sufficiently high Mach numbers to produce well-defined sonic booms on the ground. These
are listed in table 9 of reference 3. The initial analysis of these data in.reference 3 indicated
that about half of these flights resulted in caustics that were produced by variations in the airplane
ground speed rather than by cutoff. In' most of these cases, the shock waves were within. several
degrees of cutoff so that it was clear that the caustics were not associated with the cutoff condition.
Some of these caustics produced by low-magnitude accelerations are analyzed in this section. This
analysis indicates the sensitivity of shock wave propagation and intensities to slight variations in
ground speed near the cutoff condition, and it provides insight into the caustic mechanism for
these flights. '

METHOD OF CALCULATION

To provide a sound basis for a study of the maneuver effects and to aid in the interpretation of
the test data, calculations were made of shock wave vertical profiles. Shock wave locations in the
vertical plane can be determined after a relatively large number of ray trajectories have been
calculated. The method of geometrical acoustics (as in ref.6) was used to calculate-the ray
trajectories from the known airplane trajectory and meteorological conditions. In the method of
geometrical acoustics the sonic boom signal is propagated along rays, each ray being the_,traje‘étory
-of a point on the wave front. Since steady ray geometry is assumed, only the wavefront emanating
from the nose of the airplane is considered (the wavefront associated with the tail shock, for
example, will have nearly the same shape and location as the wavefront from the airplane nose).

The shock front location and vertical profile can be calculated from the ray trajectory data by
interpolating in time for the shock location at a reference time. For convenience the reference time
was taken as the observed sonic boom arrival time at tower microphone T-1. This provided a
comparison between theory and experiment for both the shock location-(and arrival time) and the
shock front shape at the reference time. Observed shock wave profiles are provided by the observed
tower pressure signatures. In comparing theory4 and experiment, only the onset of bow. shocks is
considered. ‘ '
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In several cases caustics were produced on the part of the shock wave that had been reflected
from the ground uptrack of the tower and then intercepted the tower. To calculate theoretical
shock wave profiles for these cases required the use of a “mirror-image” atmosphere below ground
level. The calculated shock front below ground level was then rotated 180° with respect to the
ground plane to place it above the ground. In addition, it was necessary to rotate the shock wave
backward about 2°in the plane of the tower due to the effect of the 1° terrain slope uptrack of the
tower (see ref. 3).

The analysis of these data was restricted to flights for which detailed radar data were available.
Since airplane ground speed has a significant effect on sonic boom propagation at low supersonic
Mach  numbers, the unsmoothed radar data were used. Constant airplane altitude and zero climb
angle were assumed, however, since they vary only slightly and have a negligible effect compared to
ground speed changes. The cases analyzed included 10 of the 14 flights classified as “B3”
(indicating that acceleration effects were evident) in table 9 of reference 3. In addition, three “B2”
category flights (indicating no-acceleration flights) were analyzed (passes 018, 028, and 116). Thus,
13 flights are included in this section and are summarized in table 4. The results of the data analysis
are given in the next two subsections; detailed tower pressure signatures are included for

seven cases.

ACCELERATION MAGNITUDE AND CAUSTIC INTENSITY

‘In this section observed and calculated caustic locations and shock wave profiles are compared. -
The calculated shock wave profiles permit the correlation of the observed shock wave characteristics :
and caustics with the portion of the airplane trajectory which produced them. For six flights it was -
possible to relate an acceleration magnitude with an observed caustic on the BREN tower. These six
flights are summarized in table 4. Calculated shock wave profiles and observed tower pressure
signatures are given for four of these cases in figures 33 through 36 (passes 017, 018, 106 and 116,
respectively).

Table 4 also gives the error in the calculated shock location at the reference time (arrival time
at tower microphone T-1). This was converted to an error in. time by using the airplane ground
speed. These times differ slightly from those given in table 9 of reference 3, because unsmoothed
radar data were used in the present study, whereas smoothed radar data were uséd in reference. 3. In
addition, the integration step size for the numerical calculations was larger for the present analysis.
In most of the shock profile plots the calculated shock profile was positioned to‘agree with the
observed shock profile (generally at microphone T-1) so that shock profile shapes could be
compared easily.
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TABLE 4.—SUMMARY OF LOW-MAGNITUDE ACCELERA TION THRESHOLD MACH NUMBER FLIGHTS

. Error in calcutated
Average APm" Maximum AP"‘“ obser ved Acosieration, A tocation
Bongo- Shock arrival time ont on towe Observed shock wave Chaeracteristics of catculated ot retecence time
Dsta | pess Pass | .at mic. T-1, PDT characteristics shock protile "t
nim? wh? N/m? /4?2 | Mic.ro. | msec? fusec? B Oistance, Time,
m{ft} e
A. CASES FOR WHICH ACCELERATION RATE COULD BE CALCULATED
8-25 21 017 0937:38.928 2.1 0.680 824 1.72 T-14 0.66 212 Caustic at tower 100 preceded | Excelient sgreement with obwervation; | 136(446) 0.8
by another shock wave * | coustic st tower 10D with snother
incident wave
22 018 0948:50.403 297 0.620 6.0 1295 T8 055 180 Three incident shocks, Caustic on both incident snd 94(308) 0.26
: caustics 5t T8 and on refiected weves
refiected shock
34 024 1112:02.955 332 0.684 832 1.32 T6 0.44 1.4 Caustic between 75, 6 Caustic ot 100 m (330 tt) 36 (1154 Q.10
831 4 066 1143:§7.200 301 0.628 70.4 1.47 T12 088 2.255 Coustic 1 7-12 Two incident weves that crosm 84(276) 023
neer midtowse ; caustic above tower
1029 | 13 -106 0856:36.848 310 0.647 1406 0.847 77 025 081 At laast three incident shocks; | Two incident weves that crom st 180 m | .756(.2480) 219
CauStiC Nelr midtower (600 t1); caustics above snd betow
tower
10-30 11 116 0908:23.564 2.6 0535 a0 0.981 T1 0.30 0.98 Caustic #t tower bese Caustic near tower bass snd 176 m 837(-2746) 24
(676 1)
8. OTHER CASES
8.24 241 004 0037:17832 238 0.766 36.6 0.766 T8 - At lsast three incident shacks Five incident shocks snd two ) - 064213 0.18
but no caustic coustics
8-25 24 020 10008:30 824 204 0.614 449 0837 T4 - , { Seversl incident shocks; week Four inciderst shocks and several 0191 0.17
caustic ot T4, wesk caustics
reflection
“~“ 028 1148:56.207 482 - 1.007 780 1.66 T4 - Severst incident shocks: caustic| One incident wave with L 245(804) 0.68
at T4; wesk reftects tocusing st 220 m (700 tt)
8.3t 33 081 1068:28 566 403 0842 56.6 1.183 T-10 - Several incident shocks; caustic| Two incident shocks; caustic I (1079) 088
#t T-7 and aiso on refiected
wave
10-30 43 068 1133:42590 408 0852 676 1203 T-12 - Several incident waves; caustic |  Two incident shocks; two 140(450) 33
on reflected wave st T-12 sbove and below tower
12 " 0019:00.237 kv 0.662 74 0.782 T6 - Caustic st T8 Complex shock profile -392(-2926) 257
14 1 119 0939:30.381 185 0.408 »6 O, 43 T4 |- - Weak incident shock; caustic- | One incident shock wave 898(-2046) 258
) ' like signa on refiection st T-151
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Shock wave profiles are given in figure 33 for pass 017. The onset of each calculated incident
shock wave is given by a dashed line. The shock wave onset is defined as the location of the bow
shock at the reference time. No ground-reflected shock waves were calculated for this case.
Excellent agreement is indicated at the tower top since a caustic is preceded by another shock wave
for both the calculated and the observed profiles. On the lower part of the tower, agreement is not
as good since the first incident wave at the tower top is calculated to have a much higher angle of
incidence that that observed, and thus trails behind the other incident waves on the bottom part of
" the tower. The airplane ground speed variation for this case is given in the insert. Note the ground
speed increase over the flight time for which the caustic was produced (67 to 70 sec). The caustic in
this case was produced by the decreasing, then increasing ground speed which results in a foldover
of the shock front. The insert diagram of the airplane ground speed. variation in figure 33 also gives
the airplane ground speed corresponding to the threshold Mach number, which is noted as the
“threshold V.” | |

The shock wave profiles shown in figure 34 for pass 018 are particularly interesting since a
double’ caustic (or double foldover) is predicted on the incident shock wave. Evidence of multiple
shocks can be seen on the observed pressure signatures and the signature at microphone T-8 is
caustic-like. The first foldover was caused by an airplane ground speed decrease and the subsequent
increase between 70 and 75 seconds, and the second foldover was caused by the increasing ground
speed followed by the decreasing ground speed between 75 and 80 seconds. For this case,
ground-reflected shock waves were also calculated by using a mirror-image atmosphere below
ground level. Several caustics are predicted due to airplane ground speed increases beginning at
flight times of '50 and 62 seconds. Interestingly, caustic-like pressure signatures did occur on the
reflected wave near the calculated locations.

The caustic produced during pass 106, shown in figure 35, is less complex. Two pressure
signatures are evident near the tower top. This is particularly evident at T-14 (note tail shocks also).
These two signatures progressively merge toward midtower with a caustic-like signature at
microphones T-7 and T-8. Two incident shock waves were calculated with caustics both above and
below the tower (i.e., on reflected wave). Since the shock wave arrival time predicted by theofy was
over 2 seconds too late (see table 4) compared to the observed arrival time, ’it appears that the
caustic predicted to be below the tower corresponds to the one that actually occurred at midtower.
This was produced by the ground speed variation near 40 seconds. Slight inaccuracies in the
meteofological conditions can have a large effect on the calculated wavefront shapes and locations.
The 2-second error in the predicted arrival times for the cases on October 29 and 30 (see table 4)
indicates that for these cases the observed meteorological conditions may not have been
representative of the actual propagation conditions along the boom path. The calculated shock
profiles are still valid, however, and indicate the portion of flight track which produced the caustic.

35



Shock profiles for another caustic case, pass 116, are given in figure 36. The decreasing
airplane speed followed by the increasing speed after the flight time of 26 seconds produced a
predicted caustic at tower microphone T-6, and a second caustic is predicted (but not shown) on
the ground-reflected wave near the tower base due to the ground speed change near 50 seconds. The
signatures near the tower top are also interesting since "two incident signatures are evident (note
particularly the tail shocks}. As for the previous case, pass 106, these two signatures merge to form
the caustic, and the caustic predicted to occur below the tower (produced near a flight time of .

40 seconds) correlates with it.

s

Two other caustic cases, passes 024 and 026, are summarized in table 4. In each of these cases
the predicted caustic location agreed reasonably well with the caustic location observed on the
tower, and it was possible to calculate an acceleration magnitude associated with the caustic. These
results are given in table 4 and figure 37 for the available six cases. A rather significant increase in
caustic intensity with increasing acceleration magnitude is indicated by these data. In each case the
acceleration magnitude was calculated over a 3-second interval over which the airplane ground speed
was increasing. With current methods it is not possible to predict the intensity at a caustic, but these -
experimental results may prove helpful in evaluating future methods. The effect of acceleration
magnitude is discussed in a later section in the context of using a slow acceleration to alleviate the

caustic produced during transonic acceleration.

OTHER MANEUVER EFFECTS

Additional results of the comparison of observed and calculated caustic locations and shock
wave profiles are presented in this section. For these cases it was not possible to determine an
" acceleration magnitude associated with the observed caustics due to uncertainties in correlating the
observed caustics with the airplane maneuvers, but the maneuver effects are of interest. These seven
cases are summarized in table 4; calculated shock wave profiles and observed pressure sighatures are
given in figures 38 through 41 for passes 004, 028, 117, and 119.

Maneuver effects were particularly evident during pass 004 since a ‘‘triple boom™ was
observed. The calculated and observed shock wave profiles are given in figure 38 for this case; an |
observed pressure signature at ground microphone G-7 near the tower base is also given. Although
two caustics were predicted on the tower, none were evident. (Tower pressure signatures for this
case were not of sufficient quality for presentation). The ground speed variation shown in figure 38
shows that the caustics were produced by ground speed variations near 42 and 53 seconds. Since the
ground speed at 42 seconds is below the “threshold” value, this caustic would be cut off before
reaching the ground. In spite of the two predicted caustics, the observed and calculated shock fronts
agree reasonably well. The acoustic wave ahead of the shock waves was probably a precursor or an
acoustic signal propagating from a cutoff shock wave produced at an earlier flight time.
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The calculated shock wavefront for pass 028, shown in figure 38 along with the observed
pressure signatures, is somewhat unusual. Noncaustic focusing is predicted between tower
microphones T-6 and T-8 because of the slowly increasing ground speed between 66-and 70
seconds. Focused waves did occur between 'microphones T-3 and T-9. The observed pressure waves
are very complex, however, and correlation with the calculated shock wave is difficult.

The calculations and observations for pass 117 in figure 40 are similar to those for passes 106
and 116. At the tower top three incident shock waves can be seen (again note the tail shocks, as
well). Two of these shock waves are fairly weak initially, but they merge to form the caustic near
microphones T-6 and T-S. The calculated shock fronts agree reasonably well, and a caustic is
predicted below the tower due to the ground speed variation at 23 seconds. A second caustic is
predicted above the tower (produced near a flight time of 28 seconds), and a third one is predicted
below ground level by the maneuver near 36 seconds. It is not clear in this case which of the three
predicted caustics correlates with the observed caustic. As for passes 106 and 116 it is probably one
of the caustics predicted to occur below the tower.

The case shown in figure 41 is interesting because it shows the effect of a deceleration near the
threshold Mach number. The reflected shock wave is fairly strong near the tower top and decreases
in strength progressively to the ground and then upward on the incident wave. The calculated shock
front agrees reasonably well with the observed shock front, and the airplane speeds associated with
the calculated shock wave show that the airplane was decelerating near the threshold Mach number.
It appears likely, however, that actual cutoff occurred above the tower and that the actual threshold
VG was about 347.5 m/sec (1140 ft/sec). An inversion existed in this case so that cutoff would
occur above the tower. Since the shock propagation speed decreases toward the ground, the
acoustic wave is oriented like a shock wave. As the airplane speed decreased, cutoff occurred at
higher altitudes above the ground resulting in the lower intensities for the later flight times.

Calculations were also made for passes 020, 161, and 065. These results are summarized in

table 4 and are similar to results for other cases.

The cases considered in this section, except for pass 119 (fig. 41), were those for which the
airplane ground speeds were greater than the threshold value. The ground speed variations that
produced the caustics ranged from about 3 to 10 m/sec (10 to 30 ft/sec). Such variations in ground
speed are not unusual for lightweight, high thrust-to-weight ratio airplanes since slight changes in
throttle setting (in an effort to fly constant Mach number) produce relatively large speed changes.
Wind and temperature variations at the airplane altitude may also cause speed variations.
Commercial airplanes with much greater inertia and a lower thrust-to-weight ratio would probably
exhibit less speed variation than the F-104 airplanes used in these tests.
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The analysis of those selected cases for which the airplane Mach number was greater than the
threshold value has shown that very slight changes in the airplane ground speed can produce folds
and assomated caustics. In general, a fold on the wavefront during flight near the threshold Mach
number may be produced whenever the airplane acceleration changes 31gn, i.e., from mcreasmg
speed to decreasing speed or from decreasing to increasing speed. In several cases it was possible to
correlate the acceleration magnitude with the measured caustic on the BREN tower. These data
indicate an increase in caustic intensity with increasihg acceleration magnitude. The wave folding
produced by slight airplane ground speed changes in most cases explained the multiple shoc;k waves
obsefved on the BREN tower. ‘

. These experimental observations of the wave-folding mechanism for caustic formation tend to
venfy qualitatively a recent theoretical study of the flow field associated with a sonic boom focus "
(ref 7). In that study it was found that wave folding occurs for weak shocks accordmg to X
geometrical accoustics but does not occur for strong shocks with relative overpressm_'es, AP/P of the
order of unity or higher. Whitham (ref. 8) hypothesized that a shock will straighten' out withouf
foldover, which appears to be true for strong shocks only. ’
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ANALYSIS OF LONGITUDINAL ACCELERATION FLIGHT TEST DATA

"In this section the results are given of a detailed study of the seven flights for which
measurements were obtained near caustics produced by longitudinal accelerations.

BACKGROUND

EXperimental flight test programs have been very helpful in defining the nature of sonic boom

near caustics produced by longitudinal accelerations. The initial analysis of the 19 BREN tower
acceleration flights in reference 3 indicated that measurements had been obtained very close to the

caustic. These measurements showed that nonlinear effects become important within about 400 m
(1300 ft) downtrack of the caustic—ground intersection and within 150 m (500 ft) vertically above
the caustic. Within 30 m (100 ft) of the caustic itself, nonlinear effects predominate and transform
the incoming N-wave into a U-wave. Measurements were also obtained well uptrack and downtrack
of the caustic—g’roi_md intersection, but the measurements close to the caustic are particularly
interestfng since éfirrent theoretical methods are invalid there. In the last several years significant’
advances have been made in theoretically describing the pressure field in the vicinity of a caustic
(refs. 7 and 9 through 12). These methods, however, need further refinement before specific results

can be obtained.

In the analysis of these data, essentially the same methods were used as in the analysis of the
low-magnitude acceleration threshold Mach number flights. Shock wave profiles were calculated
using the unsmoothed radar airplane trajectory data and the observed meteorological conditions.
These calculated shock wave profiles aid in the interpretation of the test results and make it possible
to calculate airplane acceleration magnitudes associated with the measured caustics. A discussion of -
the shock wave characteristics near caustics and detailed documentation of the observed pressure
signatures are given to aid theoreticians in their attempts to provide realistic theoretical results near
caustics.

SHOCK WAVE PROFILES—THEORY AND EXPERIMENT

Observed and calculated shock wave profiles are given in figures 42 through 47 for passes 045,
046, 088, 092, 093, and 094, respectively. A comparison of these results is given in table 5;
observed and calculated shock wave characteristics are summarized and the errors in the arrival time
at microphone T-1 are also given. It was not possible to calculate a shock wave profile for pass 047
due to unacceptable radar data.

The results for passes 045 and 046 are very similar. In each case the calculated caustic is
predicted to occur uptrack of the tower on the ground and to pass over the tower, while the actual
caustic occurred on the lower part of the tower. This discrepancy is due to the fact that the
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TABLE 5.—~COMPARISON OF THEORETICAL AND EXPERIMENTAL .

SHOCK WAVE PROFILES FOR LONGITUDINAL ACCELERATIONS

Error in calculated shock

. . - Agreement location at reference time atT-1
Date Bongo- P Reference time Observed shock wave between Calculated shock front
pass |' 2% [(boom time at mic. characteristics theory and characteristics ‘Distance Time
T-1),PDT experiment
. P error, mift) error, sec
8-28 |3-2 745 | 1043:48.723 Caustic incident on tower at | Poor Caustic predicted to occur uptrack +147 04
' microphone T-3 of tower on ground and pass over (482)
tower after reflection
8-28 |3-3 046 | 1055:28.108 - Caustic incident on tower at | Poor Caustic predicted to occur uptrack +184 05
microphone T-1; relatively of tower on ground and intercept (604)
large acceleration magnitude tower after ground reflection
apparently produced a
stronger caustic
10-27 |1-3 088 | 0904:13.733 Anomalous extra shock frontj Poor Caustic predicted at about 100 m -1156 +3.2
precedes caustic; caustic (300 ft) lower altitude than {-3793)
incident on tower at micro- observed
phone T-2
10-27 {3-1 092 | 1146:53.628 Weak caustic reflected from | Excellent | Caustic predicted to occur on 88 +0.25
ground uptrack of tower and tower after ground reflection (-289)
observed on tower at micro- about 30 m (100 ft) higher than
phone T-9 observed
10-27 |3-2 093 | 1158:34.954 Caustic incident on tower at | Excellent | Caustic predicted to occur at 65 +0.15
microphone T-5, -6 about 100 m (300 ft) lower (-180)
altitude than observed
10-27 133 094 | 1210:49.308 1 Caustic incident on tower at | Excellent | Caustic predicted to occur at -101 +0.3
| microphone T-6 1150 m (500 ft) lower altitude than

[

observed

(-331)




observed upper level winds were not representative of the conditions along the boom propagation -
path. Only a slight decrease in the tailwind component at the airplane altitude would cause the
calculated caustic location to agree better with the observed location. A reduction in the tailwind
component woqld also give better agreement for the arrival times at microphone T-1 (see table 5).

A:major and significant difference between the observed shock waves for passes 045 and 046
in figures 42 and 43 is the angle between the leading and trailing shock waves just above the caustic
where they merge to form the caustic. The angle for pass 046 is significantly greater than for pass
045, suggesting a “higher airplane acceleration magnitude and caustic intensity. The effect of
acceleration magnitude on caustic intensity is considered in more detail in a later section. )

The results_ for .pass 088 are given in figure 44. During this pass an extra shock wave precedes
the caustic. This extra shock wave, however, was not predicted from the available flight track and
meteorological data. Another caustic must have occurred uptrack of the tower (negative distance,
D, froxﬁ tower). Passes 092 and 094 in figures 45 and 47, respectively, also exhibited extra shock
waves. In each case these extra shock waves and caustics were not predicted by the theoretical
calculations. In the experimental flight test program “Jericho-Carton” (ref."13) similar results were
noted. For one case of a relatively slow acceleration, four caustics were observed and it was
concluded that they are due to slight variations in the acceleration magnitude and undulations in
the airplane flight path. :

For comparison of the calculated and observed shock wave profiles for pass 092, it was
necessary to consider the effect of ground reflection. Since the caustic occurred on the tower after
ground reflection, the observed shock wave profile was ‘‘unreflected” (placing the caustic below
ground level). To obtain the corresponding theoretical calculations a mirror-image atmosphere
below ground level was used. The results are shown in figure 45. The agreemenf between theory and
experiment 1s excellent; the error in arrival time is only 0.25 seconds, or an 88 m (289 ff) distance
error at the reference time at microphone T-1. The caustic locations also agree very closely, with the
predicted céustic 30 m (100 ft) above the observed caustic. Similar results were obtained for passes
093 and 094 in figures 46 and 47, respectively. The caustics were predicted to occur slightly behind
and below th‘re observed caustics. In some cases the trailing shock was predicted to occur ahead of
the leading shock wave. This did not occur in actuality for these flights and is due to the calculation
method. The focusing effect produced by the accelerations is clearly evident in the theoretical
calculations near the caustic, however, with rriany rays converging there. The caustic-forming
mechanism is illustrated very well by these calculations. A fold is produced as a direct result of the
acceleration, with the caustic occurring at the lowest extension of the shock wave at the tip of
the fold.
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SHOCK WAVE CHARACTERISTICS NEAR CAUSTICS

Observed pressure signatures are given in figures 48 through 54 for the seven longitudinal
accelerations that produced caustics on the microphone network. Pressure signatures oliserved"on
both the tower and the ground are plotted on the figures; the ground pressure signatures have been
positioned at the approximate altitude at which that part of the shock wave intercepted the fower.
In addition, for clarity the effect of ground reflection was eliminated in some cases by positioning
the signatures below ground level. The horizontal and vertical scales aré the same ini thesé figures so
that angles of incidence can be read directly; the pressure signatures are to this same distance scale.
A time scale and the maximum overpressure for each signature are also given. The onset of each
bow shock wave has been drawn in on these figures to aid in interpfeting‘ them. '

The pressure signatures observed during pass 045 in figure 48 are typical of those observed
near caustics. The leading N-wave and trailing U-wave (that has passed through the caustxc) are fairly
close together at the tower top and merge to form the caustic near the tower basé. The
ground-observed pressure signatures, G-8 through G-14, give much the same picture as the tower
signatures. Below the caustic in the * shadow region the sonic boom disturbances degenerate into
low-magnitude acoustic disturbances. It appears that the leading and trailing SIgnatures ‘each produce
a corresponding acoustic counterpart below the caustic; the shock waves have been drawn below the

caustic to illustrate this effect.

The data for pass 046 are given in figure 49, where again the caustic was produced near the
tower base. In contrast to pass 045, however, the leading and trailing shocks are separated by a
much larger distance near the tower top. This caustic was the most intense that was observed. A
secondary caustic apparently also occurred on the leading shock wave. The focusmg of both the
N-wave and the U-wave is evident as the caustic is approached '

The pressure signatures given in figure 50 for pass 047 are similar to those for péés 045, except
that near the caustic the signatures exhibit more of the N-wave shape than the U-wave shape. Below
the caustic the disturbances attenuate rapidly with distance.

Pass 088 produced an interesting shock wave profile, as shown in figure S1. Caustics were
produced on the incident shock wave near the tower top and on the trailing shock waves near the
tower base. The caustic on the trailing shock waves appears to result from the merging of three
low-intensity pressure signatures. This uomplex shock wave pattern was apparently produced by an
undulation in the flight path (see the previous subsection). The reﬂected waves observed on the

tower (not shown in figure 51) were acoustic in nature.
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The caustic observed during pass 092 occurred on the ground just before microphone G-1 and

. on_the tower after ground reflection. In figure 52 the shock waves have been positioned below

ground level for clarlty and for ease of comparison with prev10us cases. This was the weakest caustic

observed ground reflection may have affected the magmtude A second leading shock, although

weak appears on the lower part of the tower. The data for pass 093 in figure 53 also show three

1n01dent shock waves which interact in a complex manner near mrdtower The pressure srgnatures
for pass 094 in ﬁgure 54 show a less complex caustic formed by the merglng of two shock waves _

The pressure srgnatures grven in detail in ﬁgures 48 through 54 suggest several significant
. features typlcal of caustlc phenomena These can be convemently separated into characteristics
above the caustic, at the caustic, and below the caustic. Above the caustic at least two shock waves
. exist; one is the leading N-wave and the other is the trailing U-wave which passed through the
caustlc earher and was transformed from N- -wave to U-wave by the nonlinear effects which
predommate at the caustic. As the caustic is approached these two shock waves begin to merge and
- eventually are supenmposed. Simultaneously, however, both the N-wave and U-wave are focused as
the caustic is approached. The calculated shock wave profiles in the previous subsection illustrated
‘that both shock waves are focused. These focused shock waves are super'imposed in a linear manner
up to at least within 30 m (100 ft) of the caustic (ref. 3). Thus, the basic nonlinearity appears to be
associated with the effect of focusing on the initial N-wave, which results in the transformatlon to
the U-wave. To obtain realistic pressure signatures above the caustic it will be necessary to consider
both the incoming N-wave and the outgoing U-wave. It appears that these could be calculated

_ separately, however and supenmposed linearly.

Below the caustlc the disturbance attenuates rapldly to an acoustic disturbance. This occurs .

\ because the caustic is the lowest extremity of the shock wave. Acoustic disturbances propagate

from the caustic, however, into the “‘shadow” region. In many cases acoustic pressure waves can be
seen which c{orrespond to both the incoming N-wave and the outgolng U-wave.

EFFECT OF ACCELERATION MAGNITUDE

The acceleration rnag_nitude for each flight was calculated over a 6-second flight time interval
during which the measured caustic was produced. These data are given in table 6, along with the
maximum observed overpressure on the tower near the caustic. Another measure of the acceleration
magnitude is the drfference in the angles of incidence of the leadmg and trailing shocks. In
reference 3 the drstance S was calculated between the leading and trailing shocks at a distance of
300 m (1000 ft) above the caustic, and these correlated well with the calculated acceleration
magnitude. A more general measure of the shock separation is the difference in the angles of
incidence of the leading and trailing shocks (bow shocks). These are also given in table 6 and are
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¢ . TABLE 6.—EFFECT OF ACCELERATION MAGNITUDE ON CAUSTIC STRENGTH

i
. Difference inangles- - {-~ = 2~ .gis
B Maximum overpressure on of incidence of leading | Calculated airplane
Date ";:sgo- Pass tower near caustic and trailing shocks,A § | acceleration, A
o N/m2 Ib/ft2 Mic no. . Rad - Deg..| ‘rn/seczi ..:,'lft!_'s_egz

. — . : -

828 | '32 | 045 | 1006 | 229 T2 0.03491 20 | i27 |42
ool 33 | 046 | 1345 | 281 T2 0.12741 73 | 148 |49
.. 34 047 93.4 1.95 T4 0.03840 22 | 125 |4

1027 | 13 | 088 | 1120 [ 23¢ | T2 | 009306 53 |13 | aa

31 | 092 | se9 | 112 | 319 0.04538 26 123 | 405
32 | 093 | 1073 | 224 T7 009948 | 57 ["136° | 45
33 | 094 | 800 | 167 T5 0.07156 a1 | 126 | ar

" 3The caustic occtirred on the tower after ground reflection . o

e e s

plotted in figure 55. A general trend toward increasing caustic intensity with _incfeaéing a_céel'ér_at:iqn
magnitude is indicated by these results. Some scatter due to atmospheric effects is to be exﬁécféd.

These results for the effect of acceleration magnitude are compared in figure 56 with the
results obtained from the analysis of low-magnitude accelerations near the threshold Mach number
(see the previous section and figure 37 for those results). These data together also suggest a genefal
increase of caustic intensity with increasing acceleration. A band of intensities is indicated in
figure 56. This suggests an upper bound for the magnification at the caustic produced by
longitudinal acceleration as three to five times the nominal steady, level overpressure. In view of the
small number of data poin‘ts,however, further flight tests would be needed to establish the

maximum intensity with certainty.

The results of the extensive French experimental program ‘“‘Jericho-Carton” are reported in
reference 13. One of the major goals of that program was to determine the effect of acceleration
magnitude and lateral spread on the caustic intensity producéd by rectilinear acceleration. Although
experimental results were obtained for 26 flights, there was no conclusive evidence that acceleration
magnitude influenced the caustic intensity (see fig. 26 of ref. 13). This is in contrast to the results
given here, where it appears that there is an effect. There may be several reasons for the different
conclusions from these two studies. No description is givén in reference 13 of the method used to
calculate the acceleration magnitudes. In this study, theoretical ray calculations were used to
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determine the portion of the flight path which produced the observed caustic, and the acceleration
magnitude was calculated over a 6-second interval from detailed radar ground speed observations.
These acceleration magnitudes correlate well with the observed separatlons of the leading and
trallmg shock waves (see fig. 49). :

SIS Another difference is the measurement of the caustic intensity. During exercise Jericho-
Carton 48 microphones were positioned along a single line 4890 m (16 000 ft) long. This long line
of microphones was required to ensure that the portion of the shock ‘wave of interest was observed,
but meant that the distance between microphones had to be compromised to from 100 m (330 ft)
to...120 m (3A94 ft). In most cases, then, the caustic occurred between two microphones. During the
BREN tower test program, on the other hand, a much shorter line of microphones was used (975 m
(3200 ft)), with a distance between microphones of 61 m (200 ft). This relatively short line on the
'gqund was .po§sible because of the use of the BREN tower with microphones spaced 30.5 m
(100 ft) apart on the tower. In all cases the caustic intensity was taken from the tower
‘measurements, which prdvide a more accurate measure of caustic intensity for two reasons, First of
all, the 31.5 m (100 ft) microphone spacing on the tower ensures that an observation is obtained
near the caustic. Secondly, the effects of ground reflection are eliminated by using tower
observations. These differences in the determination of acceleration magnitude and measurement of
the caustic intensity- may account for the different conclusions for the effect of acceleration
magnitude on caustic intensity. Further flight tests are needed, however, to provxde more definitive
information.
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STUDY OF METHODS FOR ALLEVIATING
THE TRANSONIC ACCELERATION CAUSTIC

BACKGROUND
The normal transonic acceleration of supersonic airplanes produces a relatively small region'{cz')‘n
_the ground where a caustic occurs. The pressure signature data given in the previous section'{'were
measured in_ this caustic region. The large-scale shock wave patterns in the vertical plane of the
;axrplane and the horizontal ground plane are given in figures 57 and 58, respectlvely, for constant
accelerations of 0.04 and 0.10 g at 10 670 m (35 000 ft) in the standard atmosphere. The caustic
occurs at the extremity of the fold or cusp and is a direct result of the acceleration. Several ray
_ trajectorles have been given in figure 57 to aid in understanding the formation of the caustic. Within
_several pressure signature wavelengths of the caustic, magnified sonic boom intensities occur and
within one wavelength the magnification is several-fold. o

The effects of maneuvers on sonic boom have been studied by several investigators during the
last several years. A comprehensive study of maneuvers typical of large SST-type airplanes"('r'ef. i4)
showed that it is possible to perform normal SST flight operations without producing caustics,
except during the transonic acceleration phase of flight. Ribner (ref. 15) discussed the procedure of
decelerating during supersonic turns to eliminate the caustic. Others (refs. 16.and 17) have
considered the pullup-pushover maneuver to produce local reduction of sonic boom intensity.

- The data analyses of the effects of accelerations during threshold Mach number flight and
'longitudinal accelerations given in previous sections suggest that a method to alleviate the‘transonic
‘acceleration caustic is to accelerate rather slowly. This possibility is discussed in this section. In
addition, a transition maneuver suggested by Hayes (ref. 18) was studied to determine if it is
possible to eliminate the caustic completely. ’

LOW-MAGNITUDE ACCELERATION

The variation of caustic intensity with acceleration magnitude for the longitudinal acceleration
'. ﬂjgﬁts (see fig. 55) and the threshold Mach number flights (see fig. 37) have been combined in
‘ﬁ'gu're56. These two sets of data indicate that a slower acceleration produces a less intense caustic.
~ This suggests that a method to alleviate the transonic acceleration caustic is to accelerate slowa
through and past the threshold Mach number.
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In comparing the shock wave patterns in figures 57 and 58 for the two acceleration rates,
several features are evident that indicate a lower caustic intensity for the lower acceleration
magnitude. For the slower acceleration the “double boom™ and area of magnified sonic boom is
spread over a larger ground area; in the vertical plane .the leading and trailing shocks are closér
together near the caustic, suggesting that the magnification is spread over a larger depth of the
atmosphere. In addition, the distance of propagation is significantly longer for the portions of the
shock wave which form the caustic at the ground for the slower acceleration case. Thus a weaker
siénature produced at a Mach number near the threshold value is amplified at the caustic. This
suggests that the lower limit for the magnification of the acceleration caustic (finite acceleration
mégnitude) is the same as the magnification at the threshold Mach number caustic (about 2). The
data in figure 56 also suggest this conclusion. An acceleration magnitude of about 0.3 m/sec2
Q1 0 ft/secz’or less would appear to give an amplification of about 2.

With current prediction methods it is not possible to deal with sonic beom intensities close to
caustiés, so that no method is available for ‘calculating the variation of caustic intensity with
acceleration magnitude. More experimental data would be helpful in establishing this variation. The
limited experimental data and an investigation of the shock wave patterns produced by different
acceleration . magnitudes, however, do suggest a pronounced effect of acceleration magnitude on
caustic intensity.

CAUSTIC-ELIMINATION MANEUVER

The caustic-elimination maneuver during transonic acceleration that is the topic of this section
was first suggested by Hayes (ref. 18). The basic concept is to use a vertical acceleration (pullup -
maneuver) to cancel out the focusing caused by the forward acceleration. The maneuver as
envisioned by Hayes, however, appears to be reversed. A pushover followed by a phllup was
specified in reference 18 as sufficient to eliminate the caustic. A caustic is produced, however, 'by
focusing when the pullup is terminated. A pullup followed by a pushover is required to eliminate
‘the caustic. The preliminary results of a study of this maneuver are given in this section. The
mechanism of caustic elimination is described and some indication of its feasibility is given for
commercial SST operation.

A convenient starting point for considering the elimination of the caustic produced during
transonic acceleration is to consider the acceleration vector normal to the Mach cone directly
beneath the airplane (¢= 0). In terms of the axial and lift load factors, nT and ny , respectively, this
is

nN=ﬁ [nT-[i(nL- l)] (23)
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In terms of rates of change of Mach number and climb angle, it is

Lo

_2 M . T
=g 3BT (24)

To eliminate the caustic (no focusing) the vertical acceleration component must balance the
forward acceleration component (ny = 0). Solving equation 24 with np = 0 gives B

37/aM £ 1/ (BM). S '(-25)

This convenient result specifies how climb angle must vary with Mach number SO that no focusmg is
produced. :

To understand the meaning of equation 25 more fully it is necessary to consider the criterion
for cutoff of shock waves above the ground. For the case of no wind, directly beneath the alrplane

and climb angle not zero, it is

sin (M+7) =agla@). o (26)

For 7= 0 and steady flight this gives the well-known result for the threshold Mach number, M, as

sin k=a_fa(z) = /My en

In our case, however, Y is not zero and we want to solve for the relationship between ¥ and M
implied by equation 26. Solving for ¥ gives

7= sin’] (ap/a(z)) - sin"l (1/M). : ; v t28)

Taking the derivative with respect to M and assuming that a, is constant and cutoff occurs at a
constant altitude (constant a(z)), gives

3 7/aM = 1/ (BM).

This last result is significant since it is the same result derived. for ny = 0 (see eq. 25). This means
that cutoff of the shock wave at some constant altitude above the ground is produced when 7 is
varied according to equation 25 such that no focusing is produced. The pullup cancels the focusing
caused by the forward aceeleration, producing cutoff at a constant altitude as if the airplane were .
flying at a lower constant Mach number. The caustic is kept up off the ground by an increase in
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climb angle with increasing Mach number. Figure 59 gives the required variation of climb angle with
Mach number (ny; = 0) for cutoff at several constant altitudes above the ground for an airplane
above 11 km (36 000 ft) in the 1962 U.S. Standard Atmosphere. Mach numbers and climb angles
for cutoff at various altitudes above ground can also be determined from these data. .

The first part of the maneuver should now be clear. At some Mach number below the
threshold value a pullup is initiated to keep the caustic up off the ground and to allow acceleration
past the threshold Mach number. At some point, however, the pullup must be terminated. The
manner in which it is terminated is crucial; a simple termination of the pullup is not sufficient since
a caustic will be produced by the subsequent focusing. The pullup must be followed by a sudden
pushover, which produces a sudden decrease in climb angle. The shock wave will thus occur
suddenly at the ground and no caustic will form if the pushover and reduction in climb angle are
sudden enough (according to Hayes (ref. 18) no caustic will form if the velocity of the caustic over
the ground is made to be faster than the speed of sound at ground level).

A specific maneuver was considered to gain insight into the nature of the shock wave when it
first appears at the ground due to the sudden pushover. For simplicity, an airplane accelerating from
Mach 1.0 in level flight at 11 278 m (37 000 ft) in the standard atmosphere was considered. Before
the threshold Mach number of 1.153 is reached, a pullup is initiated to promote cutoff and to allow
acceleration to about Mach 1.18. The sudden pushover then produces a lower climb angle and the
first boom on the ground. The forward acceleration is also reduced s>oA that it is low enough for no
caustic to form at the higher Mach numbers. The Mach number, climb angle profile for this
maneuver is given in figure 59. The resulting shock wave patterns in the vertical plane and
horizontal (ground) plane are given in figure 60 for the region where the shock wave first reaches
the ground. This should be compared with the case of a normal acceleration in figures 57 and 58. A
detailed comparison of the shock fronts for a normal 0.04 g acceleration and the caustic-elimination
maneuver is given in figure 61. Note that the 0.04 g acceleration caustic is formed by the focusing
produced over a significant portion of ‘the flight path. On the other hand, the shock waves for the
caustic-elimination maneuver must be very weak since they are produced over a short flight path
interval and stretched over a large depth of the atmosphere.

In considering this maneuver for commercial SST operation, several problems are evident. First
is the consideration of the thrust required to perform the transition maneuver. For the maneuver as
given in figure 52, the maximum (T-D)/W is about 0.07 at about Mach 1.175. This thrust margin is
probably excessive for a production model of a commercial SST. On the other hand, the
caustic-elimination maneuver of figure 52 has not been optimized for minimum thrust margin. A
related consideration is the procedure and methods for performing the maneuver and correlating the
chaxiges in. forward acceleration and climb angle. As suggested by Hayes in ref. 18 this will probably
have to be done by use- of a simple computer using information on airplane altitude, Mach number,
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climb angle, and acceleration vector. Probably the most crucial problem is the fact that the pullup
must be initiated just before the threshold Mach number is reached. Since the threshold Mach
number can vary from 1.0 to over 1.3, depending on the particular meteorological conditions
between the airplane and the ground, the beginning of the transition maneuver must vary
accordingly. The “suddenness” of the change in climb angle dixring the pushover that is required to
produce no caustic also needs to be defined. Thus, more study is required to assess the feasibility of
the transition maneuver for commercial SST operation.
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ST, CONCLUSIONS
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..:+ . Sonic boom characteristics near the shock wave extremity for several types of flight conditions
have been more clearly defined by the detailed analysis of the 1970 BREN tower test program. The.
major results of the analysis are summarized in this section for the low-altitude near-sonic flights,
the threshold Mach number flights, and the longitudinal acceleration flights. The lateral cutoff:.
flight test data were not considered in the present study; those results can be found in references 2

and 3.

The detailed analysis of the low-altitude fran_sonic flight test data has indicated that the
prevailing meteorological conditions influence the vertical extent of attached shock waves produced
during near-sonic flight. At Mach 0.98, the lower extremity of the shock wave on one flight
extended to 480 m (1600 ft) beneath the airplane, while under different meteorological conditions
it extended to only about 170 m (560 ft). The airplane Mach number has a direct influence on the
vertical extent of attached shock waves; for airplane Mach numbers less than 0.98, the shock waves
probably did not extend much more than about 100 m (300 ft) beneath the airplane. The extension
of attached shock waves to lower altitudes may explain several “accidental’ sonic booms produced
by low-altitude, marginally subsonic airplanes (although Machmeter and altimeter errors may also
be responsible).

A theoretical safe altitude for sonic boom cutoff during threshold Mach number flight has
been shown to be valid within experimental accuracy over a wide range of meteorological
conditions. Thus, it should be possible to estimate reasonably well the buffer zone depth (or ground
speed reduction) for any airplane and meteorological condition. For cutoff at or above the safe
altitude, average maximum free air overpressures of the pressure waves were less than 10 N/m2
(0.2 lb/ftz). In some cases, very low intensity acoustic waves (< 4.0 N/m2 (0.1 lb/ft2)) propagated
to the ground, even though cutoff apparently occurred several kilometers above the ground.
Pressure signatures in the vicinity of the caustic exhibit the U-wave rather the N-wave shape. Below
cutoff, rounded, low-magnitude acoustic waves occurred. Comparison of a recent theoretical
method for calculating the acoustic pressure waves below the threshold Mach number caustic
showed excellent agreement with observation near the caustic. Various operational aspects of
.threshold Mach number operation were considered and problem areas were discussed. These
included the use of airplane ground speed for speed specification (instead of Mach number), various
meteorological effects, airplane systems, and methods for calculating the speed safety factor.

The analysis of caustics produced by low-magnitude accelerations during flight at Mach
numbers slightly greater than the threshold Mach number showed that folds and associated caustics
were produced by slight changes in the airplane ground speed. Changes in airplane ground speed
were of the order of 3 to 10 m/sec (10 to 30 ft/sec), most likely due to changes in throttle setting as
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the pilot attempted to maintain constant Mach number. For these cases, the Mach numbers flown
were generally greater than the threshold Mach number. In several cases, it was possible to correlate
the airplane accele:ration magnitude with the measured caustic on the tower. These results indicate
an increase in caustic intensity with increasing acceleration. Caustic intensities ranged from one to
three times the nominal, steady, level flight intensity. The wave folding produced by airplane
ground speed changes explains the observed multiple shock waves on the BREN tower for the cases
considered and tends to verify recent theoretical work which has shown that wave folding occurs

for weak shocks.

The analysis of caustics produced by longitudinal accelerations from subsonic to supersonic
speeds has shown that, for these cases, acceleration magnitude appears to have an effect on caustic
intensity. The maximum caustic intensity observed was about five times the nominal, steady, level
overpressure and was produced by an acceleration of 1.5 m/sec2 4.9 ft/secz). Calculated
theoretical shock wave profiles agree reasonably well with the observed shock wave locations and
help to illustrate the focusing effect near caustics. The observed pressure signatures are documented

in detail.

In conjunction with the analysis of the experimental data, methods to alleviate the caustic
produced during the acceleration from subsonic to supersonic speeds were considered. Caustic
strength seems to be a function of acceleration magnitude, therefore, low-magnitude acceleration
may provide some alleviation of caustic intensity. The limited experimental data suggest an
amplification of about 2 for an acceleration magnitude of about 0.3 m/sec2 (1.0 ft/secz), about 1/5
the normal values. In addition, a maneuver was investigated that was designed to eliminate the
caustic produced during the acceleration from subsonic to supersonic speeds. Although the
maneuver shows promise, further study is needed to determine its feasibility for commercial SST

operation.
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-~ APPENDIX A

SONIC BOOM GENERATION
DURING CRUISE SLIGHTLY BELOW MACH 1.0

This appendix contains a discussion of the possibility of sonic boom generation during cruise
slightly below Mach 1.0. Barger (ref. 4) has theorized that it may be possible for a slightly- subsonic
airplane to generate a sonic boom if certain meteorological conditions exist below the airplane. It
would appear to be highly unlikely, however, that meteorological conditions alone could produce
shock waves. A necessary condition is that there must be local shock waves present due to local
supersonic flow over portions of the subsonic airplane. The criterion for subsonic sonic boom is
developed in this appendix from the definition of the threshold Mach number. This criterion is
more general and simpler than the one developed in reference 4. The possibility of subsonic sonic
boom is then evaluated in relation to the 1970 low-altitude near-sonic flight tests over the BREN
tower.

The threshold Mach number has been defined to be the maximum airplane Mach number for
which complete shock wave refraction can occur at or above the ground. For cutoff directly
beneath the airplane, the equation defining the threshold Mach number is:

Mr=(1 - + ' Al
T = (1/ay) | [a(z) - uy(2)] max T o | (A1)
where
My , = threshold Mach number

z = altitude

a(z) = speed of sound at altitude z

un,(z) | = wind component of altitude z parallel to flight path (tailwind is

negative)

’

VPmax = maximum shock propagation speed between the airplane and
the ground in the direction of flight, with a(z) and u(z) taken at the
same altitude

[a(2).-up(2)] max

a, = sound speed at airplane

= wind speed at airplane (tailwind is negative)
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Equation (A1) can be rewritten as

VG = Myag) -up_=[a@ -up@] (A2)

A sonic boom is obsefved at the ground when the airplane ground speed is greater than the
maximum shock wave pro’pagatien speed. A solution eiis"ts_to equation (A2), however, when the
‘Mach number, M, is less than 1.0. This occurs when Ung, and a, are large enough so that the
airplane ground speed 1s equal to [a(z) + un(z)] although Mr is less than 1.0. This can occur
with a strong tailwind at the airplane (negatlve url ). The criterion for subsomc sonic boom
is simply

(lag) [a@) -up(@) +up 1 < Mgg <1.0 « (A3)

. where Mqp is the lowest Mach number for which subsonic sonic boom can occur.

Since sound speed gradient's" associated with temperature inversions are normally small, wind
gradients are most important. Under constant (or nearly constant) temperature conditions equation
(A3) reduces to ‘ '

MSB” >1+ [vuno -uy(@)]/a, (A4)
or ' E o
(1-Mgp) < [up(2) - uno]/ao : : (A5)

Equation (AS5) is slightly different from equation (4) of reference 4. In the. notation used here,
equatlon (4) of reference 4 1s (1-Mgp) < [un(z) Un, ]/(2 ay). This result is- in error since cos
was assumed - constant and should have been. treated as a vanable with altltude When this correction
is made in the analy51s of reference 4 the results then agree.

For M less than 1.0, equatlon (A5) glves u,(z) > Un,- Since a positive un is a headwind this
criterion physwally means that -the headwind ‘must increase with decreasing altitude from the
airplane to the ground, or alternatively, a tailwind must decrease from the airplane toward the
- ground. For.a no-wind ¢ondition equation (A3) becomes mmply a(z)/ao Mgg <1.0ora(z)< a,.

This condltlon is called a temperature inversion. ’
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TABLE 7.—COMPARISON OF THEORETICAL MACH NUMBER AND WIND GRADIENT
- REQUIRED FOR SUBSONIC BOOM WITH OBSERVATION

Theoretical wind change Theoretical

required for subsonic boom Observed wind change from lowest Mackh Pilot-read Character

in presence of temperature airplane to tower top, number for mach number, of
Pass gradient, (2 subsonic boom, observed

Un'top ~Un M boom
un(z) U, o MSB o
o

m/sec ft/sec m/sec ft/sec
o7 | 274 324.1 29 95 o993 0.98 Boom
072 1141 36.4 2.1 6.9 0.996 0.97 Rumble
073 7.4 24.1 0.1 03 1.0018 0.98 Boom .
074 44 145 09 3.0 1.0003 0.99 Boom
075 78 255 0.3 1.0 1.0035 0.98 Engine Noise
076 1.0 3.3 0.1 0.3 1.0026 1.00 Boom
3Theoretical wind change calculated from u (z)-u, =al(2)- a M,

B Theoretical MSB calculated from MSB> (llao) [a(z) -up(z)+ u“o]




The above criterion does not necessarily mean that shock waves can be produced for all
subsonic Mach numbers even if correct temperature and wind conditions occur. To determine the
vaﬁdity 6f this hiechanisni for_ producing sonic boom, the data from the 1970 ‘BREN tower
transonic tests were evaluated. The calculated required Mach number and wind increments are given
in table 7. For passes 071 and 072, comparison with the observed Mach number and wind
increments show that by this criterion sonic booms should not have been observed since the
airplane Mach numbers were too lbw. Fof passes 073 through 076, the atmospheric gradients were
not favorable so again boorhs should not have'occ-urred, yet booms v've;re observed in three Qf ‘the
four cases. It must be concluded that this mechanism was not important during these tests but that
the local shock waves produced by local regions of supersonic flow over the airplane are much more
important. It appears to be highly unlikely that atmospheric gradients.alone can produce.shock
waves. If shock .waves are present, however (due to local supersonic flow over portions of a subsonic
airplane), the shock waves may be refracted and propagated toward the ground by these special
meteorological conditions. The meteorological conditions specified by the above criterion are
precisely those that will refract shock waves toward the ground once they have been produced
during near-sonic flight. This refraction of local shock waves (rather than production of shock waves
by the atmospheric gradients) may account for inadvertent sonic booms that have occurred in the
past where the pilots have believed that they were flying at a low enough Mach number to avoid
sonic booms on the ground (Machmeter and/or altimeter inaccuracy could also explain some of the

‘“accidental’ boom occurrences).
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APPENDIX B

.ACO‘US.TIC BEHAVIOR OF A DISCONTINUOUS SIGNAL NEAR A CAUSTIC

K.-Y. Fung and A. R. Seebass

A recently developed theoretical method for calculating the acoustic pressure field below the
threshold Mach number caustic is presented in this appendix. Results are given for an incoming
N-wave for the BREN tower flight test conditions.

The equation that describes the behavior of a weak, discontinuous pressure signal near a
caustic has been formulated by Guiraud (ref. 9) and Hayes(ref. 10).This equation is nonlinear and
consequently difficult to solve. While the linear version of this equation can be solved by Fourier
transforms as well as by other means, the resulting solution, while physically simple, is represented
by a complicated combination of hypergeometric functions. This linear solution becomes
algebraically singular as the signal approaches the caustic and gives rise to a reflected signal that is
logarithmically singular. ‘ '

Because the signal amplifies without limit as it approaches the caustic in the linear theory, it is
clear that a nonlinear description is essential. Efforts to determine this nonlinear behavior have met
with only partial success (refs. 11, 12, and 19). From these results we can deduce that a shock wave
terminates in a weak compression that is formed by coalescing compression waves emanating from a
distorted ““sonic” line. The sonic line itself runs into this compression; above the junction with the
sonic line, the shock becomes stronger and nearly normal; behind this normal portion of the shock
the flow is subsonic and a coordinate system fixed to the shock. This normal shock presumably

-joins the incoming and reflected wave at a single point. The variation of the jump in pressure
coefficient through the reflected shock, estimated by Gill (ref. 19), is depicted in figure 62.

It has not been possible to determine the precise details of this nonlinear behavior from field -
measurements, such as those given in this report or those by Wanner, et al. (refs. 13 and 20), because
of practical limits on the spatial resolution obtainable in such tests. Indeed, even laboratory tests
(refs. 21 and 22) have not yet achieved the resolution necessary to delineate this structure clearly.
Nonlinear effects are, of course, noticeable in the measurements. For example, in the French flight
tests, the asymmetry in the reflected wave due to nonlinear steepening can easily be discerned. The
linear solution appropriate to the incoming signal usually gives a good representation of the signal
on the scales used in experimental measurements, even for the reflected wave, which the linear
theory says is -logaﬁthmically singular. (Because a logarithmic singularity is a weak one, it appears

The research upon which this appendix is based was supported by the NASA through Grant.
NGR-33-010-054.
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finite when plotted at the spatial or temporal resolution typical of experiments.) In addition, below
the caustic the signal strength decays rapidly and the signal’s evolution may be described by linear
equations. Consequently, in this appendix we record the linear solution when the incoming wave is
an N-wave.

In dimensional variables the linear solution for threshold operation, in coordinates such that
the aircraft’s motion is steady, is governed by

2’ -
M y¢xx - ¢yy - 0

(B1)

¢ a‘cpN (y/yN)'l/4 N(x +2/3 M2'y3/2) on x -2/3 M2'y3/2*°°

p
where ¢ is the velocity potential, x the horizontal coordinate decreasing in the direction of
flight, y the vertical coordinate, p the pressure coefficient, and M2’ the vertical gradient of the
square of the Mach number, assumed constant. The quantity M is the airplane Mach number based
on its ground speed and the ambient sound speed, M = V/a(z). N(t) is the unit N-wave function:

0, t<-A
N(t) = 4N, A<t <A | (B2)
0, t>A

where )\ is the half wavelength of the N-wave. The incoming N-wave signal has pressure jumps of

magnitude CpN at
x+2/3M2Y/2y312 = 1) fory = yy,.

The solution can be given in terms of hypergeometric functions. This SOlutIOIl in the
nondimensional coordinates x/A and y/)\, depends upon the single parameter M2 A; this is, of
course, clear from the above formulation. Typical signatures for three cases are shown (in physical
coordinates) in figures 63 through 65. They correspond to M2)\= 6 x 10‘4, 11.6 x 10‘4, and
7.8 x 10™4. For standard day.conditions and X\ = 23.8 m (78 ft), M2)\ is about 6 x 107

Below the caustic the acoustic signal attenuates both in amplitude and frequency. An observer
fixed relative to the ground and situated below the caustic will experience a pressure field given by

'] 4 [
cpcmﬁ / N(Vt/x, 2/3 (M2|y}3)'/2/x) (B3)
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‘Where the nondimensionalized “sound” function N is depicted in figure 66. The maximum
pressure that occurs in these signatures is delineated in figure 67 for three values of M2 A. Far below
the caustlc an asymptotic expansion obtams and the pressure decays as (y/A) 13/ 4,
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Note:  During the transonic flights microphones
G-5 and G-10 were repositioned in:line
with microphones G-15 and G-16.as shown

T o‘T-15
e T-14
1oT-13
o T -12
o T-11
eT-10
o e T-9

e T-8

BREN tower

(1785 ft)

2438 m
(800 ft)

. : FIGURE 1.—BREN TOWER MICROPHONE ARRAY
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