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SUMMARY

The investigation of the dynamics of global atmospheric disturbances

is essential for .the understanding and control of the earth's environment. A

theoretical model based on the kinetic theory for the perturbation of plasma

in the magnetosphere is proposed to study the observed disturbances which

are caused by both natural and artificial sources that generate wave-like

perturbations propagating around the globe. The proposed model covers the

wave propagation through a media of transitional (from collisional to

collisionless) fully ionized magnetoactive plasma. In the present study, we

have presented a systematic formulation of the problem and the method of

solution for the transitional model of magnetosphere is discussed. Finally,

the possible emission of hydromagnetic waves in the magnetosphere during

the quiet and disturbed time are also discussed.
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CHAPTER I

INTRODUCTION

The dynamical behavior of the magnetospheric disturbances is

essential for the understanding and control of the earth's environment.

In particular, accurate information about global atmospheric disturbances

is required for the design and operation of satellites, space shuttle and

space laboratory, for improved communications and weather prediction, and

for monitoring and controlling earth resources, all of which are closely

related to the improvement of our living conditions.

The observed disturbances are caused by both natural and

artificial sources which generate wave-like perturbations that propagate

through the magnetosphere. Wave-like phenomena caused by natural sources

refer to disturbances induced by non-man-made sources such as solar flares,

solar wind, and particle precipitations. The wave-like phenomena caused

by artificial sources refers to man-made disturbance such as nuclear

explosions, radio wave propagation, space vehicle, rocket launches, etc.

The purpose of the present research is to seek a systematic investigation

of the wave-like disturbances generated by either natural sources or

artificial sources which originate in the magnetosphere. In particular,

it is of considerable interest to study how waves are generated and behave

and how the wave-like disturbances are dissipated.

In general, propagation of waves or wave-like disturbances is

modified by transport phenomena due to Coulomb collisions. Collisional

effect can vary from region to region in the medium (i.e., fully ionized
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plasma) of interest. In particular, waves of a given period may see one

region of a medium as collisionless (in the sense that the wave period is

short compared with Coulomb collision time) and another region of the

medium as collision-dominated. When a wave propagates upward in the iono-

sphere, the Coulomb collision frequency decreases. Thus, for the wave or

wave-like disturbances of a given period, transition from collision to

collisionless behavior may take place.

Transport coefficients of Coulomb collisions are greatly modified

by magnetic fields. Thus, when the waves or wave-like disturbances propa-

gate in a magneto-active plasma, the following modification should be con-

sidered (Braginskii, [1]);

(1) Qi/ e  ion gyrofrequency )>> i1; strong magnetic
\electron collision frequency

field.

(a) For the case of waves propagating transverse to magnetic

field (B), the magnetic field strongly modifies thermal

conduction and viscosity.

(b) For the case of waves propagating parallel to the

magnetic field, there is no effect on transport

coefficients.

(2) Qi/ e < < 1; weak magnetic field

In this case, the magnetic field does not modify the transport

coefficients for waves propagating either transverse or

parallel to the magnetic field.
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(3) i/ e ~ 1

In this case, the modification of transport coefficients

is very complicated. It needs a full solution of the

kinetic equation with magnetic field effects.

In this investigation, we shall present a systematic transitional

model for the studying of propagation of waves or wave-like disturbances in

the magnetosphere. The model is based on the kinetic theory, and the method

of solution is followed by the work givenby Hung and Barnes [2], [3], and [4].
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CHAPTER II

FORMULATION OF THE PROBLEM

II-1 Basic Parameter

As we have discussed in Chapter I, the behavior of wave-like

disturbance propagation is modified by transport phenomena due to Coulomb

collisions, and the collision effects are determined by the ratio of the

collision-frequency to the wave-frequency (v/). Suppose that an observer

fixes his system of inertia coordinates with a wave of a given wave-

frequency w, and observes another moving coordinate system fixed with a

coordinate system with the collision frequency v. The observer in the

coordinate system w reaches the conclusions concerning the particles motion

as follows:

(1) when a << v, particle motion is a continuous motion,

(2) when w v, particle motion is in transition from continuum

to discrete motion,

(3) when w >> v, particle motion is resembling as discrete motion.

From the above mentioned facts, we may classify case (1) as being

collision-dominated; case (2) as being transitional from collisional to

collisionless; and case (3) as being collision-free. Thus, for studying

the dynamics of wave-like disturbances of a given period, it is obvious

that the selection of appropriate physical models depends on the ratio of

collision-frequency to wave-frequency (v/w). Therefore, the basic parameter

for studying such a problem will be v/w.
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In the magnetosphere, the collision time for electron and ion can

be calculated from

3.5 x 10s  Te 3/2
T 2 (sec) (1-1)e Z2 ni

~ m 1/2 T. 312
3.0 x 107 1/2 T 13/2

. p 4  (sec) (1-2)
S( 2mp Z ni

with mp and Z being the proton mass and atomic number of ion, n and X are

defined as

n = ne = Zni  (1-3)

and A is called Coulomb logarithm,

(23.4 - 1.15 £n n + 3.45 kn Te for Te < 50 ev.
A= (1-4)

25.3 - 1.15 kn n + 2.3 kn Te for Te > 50 ev.

As soon as we have decided the wave-frequency of our interest, the

v/w can be calculated, thus the mathematical model for a particular problem

can be followed. The details of this mathematical model are presented in

the next section.

II-2 Governing Equations

During the present study, we have been interested in the propagation

of ULF, ELF, and VLF waves in the magnetosphere. Their frequency ranges are

3 x 1 0-
3 Hz - 3 Hz, 3 Hz - 3 K Hz and 3 K Hz - 30 K Hz, respectively.

Most ULF waves can be identified as Pc 1, Pc 3, Pc 4, Pc 5 (quiet time

transverse); Pc 4, 5 (quiet time compressional); Pi 1 and Pi 2 (substorm

compressional); Pc 1 (storm transverse); Pc 4, 5 (storm compressional).

For this case, we can idealize the problem by treating the electrons as a
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fluid (collision-dominated case) and assume that the ions are adequately

described by the Boltzmann equation that neglects ion-ion, but not ion-

electron collision. The validity of this idealization has been discussed

by Hung, Wu and Smith [5]. Also, we have considered that the plasma and

magnetic fields are uniform, on the average, throughout an effectively

infinite volume, and there is no average electric current, and the

average electron pressure tensor is isotropic, but the ion pressure

tensor is not. Let n, v, T, p. q and r denote number density, velocity,

temperature, pressure, heat flux, and viscous stress tensor, respectively.

The superscripts and subscripts i and e denote electrons and ions. The

other symbols are: E, the electric field; B, the magnetic field; e, the

ion charge; m i the ion or electron mass; and c, the speed of light. Then,
(e)

the fluid equations for the electrons can be written as follows: [1]

ne + V- (ne ve) = 0 (2-1)
at

dv 1me ne de V P . e  ie (E + ve x B) + Re  (2-2)
dt ~ e e c

3 dTe3 n e - + Pe ve = _ . e -_ Te: Vve (2-3)

The kinetic equation for the ion velocity distribution f. is
1

i e 1 i-+ v V fi +-- (E + v x B) -
at ~ ~ m i  ~ c av

(2-4)

me D T e f 1 fi(vf + ) 1 R.
miT 3v mni m v m ni Die i1
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where

P = n Te P I n T II (2-5a)

d V

dt at -e ' (2-5b)

and T is the electron collision time, and R = -R. is the collisionale 'e 1
momentum transfer from ions to electrons. R is composed of a frictional

force Ru and a thermal force RT, in which

R = R + RT . (2-6)

The electron thermal flux qe is composed of analogous parts,

u T
e e + q it can be shown from the velocity moments. Finally, of course,

the electromagnetic fields must satisfy Maxwell's equation

V E 4= 4e(ni-n e )

aE
4 1 ~

VxB 4 J +-E
~ ~ c ~ c at

1 a (2-7)
Vx E + 0

~ ~ c at

VThese equations are in Gaussian units.=

These equations are in Gaussian units.



CHAPTER III

METHOD OF SOLUTION

III-1 General Procedure

In this section, we shall outline a general procedure to obtain a

solution for this set of governing equations, (2-1) through (2-7). Due to

the complexity of mathematics in nature, it is formidable to obtain an

analytical solution from this system. However, the physical characteristics

of this present problem process a wide range of variety. Before we obtain

a complete solution, it is still necessary to attract some important

physics from this complex system, such as the hydromagnetic instabilities,

dissipation rate, etc. Therefore, we shall proceed to examine those meaning-

ful parameters.

As discussed in Ref. (5), the time scale of interest in the present

theory of transitional model is that electrons are in transition from

collisional to collisionless and ions are in collisionless. Assuming that

ion and electron temperatures are in the same order of magnitude, it was

found that the ions become collision-dominated when the wave period

1/w _ (mi/me)1/2 Ti (where w, m, and Ti denote wave frequency, mass, and

ion collision time, respectively); and electrons become collision-free when

1/w < (me/mi)1/2 Te.  In the present theoretical model, the electron equation

breaks down when 1/w < Te (where electron-electron collisions become

insignificant); and the ion equations are invalid when 1/w > (m.i/m) /2

(where ion-ion collisions play a significant role). Therefore, the present

theoretical model is applicable only for the time scale (or wave period)

S1/2

e < i m (3-1)
e8
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As it stands, Eqs. (2-1) - (2-3) show the governing equations

of electrons, and Eq. (2-4) is the governing equation of ions. Eq. (2-2)

includes the collisional momentum transfer from ions to electrons, and

we have ignored collisional energy transfer ions to electrons in Eq. (2-3).

This is because the collisional ion-electron energy exchange, whose

characteristic time is on the order of or greater than (m./m )1/2 Ti

which is greater than the time scale of present interest.

has been neglected. The right-hand-side of Eq. (2-4) shows the ion-electron

collision term which is of the same form as the Fokker-Planck collisional

term that describes random motion of particles in a moving medium with

temperature Te . The first term of the collision terms describes the

collisional energy transfer from electrons to ions, and the second term

implies the collisional momentum transfer from electrons to ions. Again

we are going to neglect collisional energy transfer term because the time

scale of the collisional energy transfer which affects the evolution of

distribution function is on the order of or greater than Te(mi/me) or

Ti(mi/me) /2 that is long compared with the timescale of current problem

of interest.

In the present analysis, we are concerned with waves whose

circular frequency w is small compared with the ion gyrofrequency, and whose

wavelengths are long compared with the mean ion Larmor radius. Under such

circumstances, the momentum transfer due to collisions can be represented by

R = 0.71 ne V Te  (3-2)
~ e (3

*Here the unit of T is the erg.
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where the subscripts I, I refer to the magnetic field direction ez =B/

Similarly, the electron heat flux is

e = - e II Te  (3-3)

where Ke is the coefficient of electron heat conductivity. Furthermore,

the stress tensor after Braginskii [1] is

Te _e : e (3-4)

where the rate of strain tensor, we, is

ave ave ave
we a 2 a (3-5)
cB ~x x 3 x

and re is the tensor coefficient of electron viscosity, which is the
.e

function of Qe and Te and subscripts a and A represent the coordinates.

Under the present condition Se Te >> 1, the stress tensor Ue has the

following form in a coordinate system with z-axis parallel to the magnetic

field

ave ve ave ave

He = -2re z 1 v + ~ (3-6)
zz vo 3 x ay z/

[ave ge e ave ae

xx yy vo x ay - ax + z ( 3 - 7 )

e e e e e e ~ (i/e/Te)
xy yx xz zx yz zy
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where the zeroth-order coefficient of electron viscosity is

1e = 0.73 n T T (3-8)
vo e e e

For the convenience, we shall seek solutions for electrons and

ions separately. The details for these manipulations will be presented

as follows:

(i) Electron Dynamics

In order to solve the fluid-like electron equations, we assume

T <T> + 6T (x, t)

n <n> + 6n (x, t)

P <P> + 6P (x, t)

(3-9)

B <B> + 6B (x, t)

E sE (x, t)

ve 6 Ye (x, t)

where < > denotes, ensemble averaging. We consider the limit of small

amplitudes fluctuations, i6n/ <n>l << 1, etc. If the fluctuations are

sinusoidal, i.e., proportional to exp [i (k x - wt)] where i = J-,

Eqs. (2-1 through 2-3) become after linearization and neglecting

terms of order me/mi

w Sn = <n > (k 6ve + k 6ve) (3-10)
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e e 2 e
i6Pe k + vo k vx - k k v 6 + e <ne> 6Ex

(3-11)

+ m <n > 6ve =.0,
e e e y

e6E -m Q 6ve = 0 , (3-12)
y e e x

e (22 e e e

i6P e kll + 
2 o 3 k 6v - 6ivx + e <ne> 6E

(3-13)

+ 0.71 i <ne> kll T = 0,
e I e

<P > k 6v = W <n> + i k K 6T (3-14)
e e \2 e e e

Here, without loss of generality we have assumed k = (k, 0, k ). Combining

Eqs. (3-10) and (3-14), we have the following relation for pressure and

number density

6Pe = Fe <Te> 6 ne (3-15)

where

2
Fe 1 + 3 2 i TC (3-16)

k2 K
e = 

(3-17)
TC <ne>

To investigate the physical significance of Eq. (3-16), let us

examine the parameter r in the following way:

F = 5 while e 0 (3-18a)
3 e

F = i while - oo (3-18b)
e

12



This means that in the two extreme cases of zero and infinite thermal

conduction, the electrons fluctuate adiabatically and isothermally,

respectively.

The velocity fluctuation of electrons can be easily found in terms

of 6 E by using Eqs. (3-10) and (3-15) in Eqs. (3-11) through (3-13)

6ve 0 Me 0 6Exx xy

6ve c Me Me Me 6EY (3-19)
y <B> yx yy yz

6ve 0 Me Me 6E
Z zy zz z

where the components of the mobility tensor are

e  = -Me = i,y yx

e 2 a[ 1v 2 (3 re + i2Cv)

Y 2w Ote

e 2i e 4iv
M +zz (1.71 r -0.71) a2k2

e e i

zy k l
S "II

ki 3r + 21r
Me _ 1  e v
yz kl

where a = 3 (1.71 re - 0.71) - 4 1 v, and

e
vo

;v (W) = > 0.73 WTe (3-20)
<P13

13



is in general a complex function of w, and ae = (2 <Te >/m e)/2 is the

electron thermal speed. From Eqs. (3-20), (3-18a, b) and Braginskii's

expression for Ke, it follows that

m. B
1 e

S = 2.16 - - r  (3-21)
TC m u ve

where B = 8f <n> <T >/<B> 2 , u = c/Ikl Ic, and C = <B>/(4Tm. <n>)1/2
e e A A 1

Alfvn velocity. In deriving Eq. (3-19) we have exploited the fact that

w/ el << 1.

(ii) Ion Dynamics

Next, we consider the ion kinetic equation, with the object of

finding an expression analogous to Eq. (3-19), for ions. The first term

on the right hand side of Eq. (2-4) affects the evolution of the velocity

distribution on the time scale Te m./me ~ T (mi/me)/2 which is long

compared with time scales of importance for the wave, and may therefore

be neglected. As we pointed out earlier, the frictional force is also

negligible. Hence, from Eq. (3-2), the right hand side of Eq. (2-4) is

just

1 i 0.71 i
m. n. ~ v m. ~Te) av

1 1 - 1 ~

Linearizing Equation (2-4), we obtain

<f.>

(vx <B>)' - 0, (3-23)

whose solution is

<f> = fo (v 1 , v1 ) (3-24)

where fo is arbitrary, and

14



+ (v* V) + e (vx <B>) f
I t mi C  ~v i

S (6E + v x 6B) *
m c ~ ~ v (3-25)

D<f .>
0.71 i- i- k 6T *
m e av

Finally, the Faraday's law becomes

W 6B = k x 6E. (3-26)
c ~ ~ ~

Now, we have reduced the governing equation to a workable form (i.e.,

Eq. (3-10) through (3-26)). In the following section, we shall describe

the procedures to obtain a dispersion relation from this set of equations.

111-2 Derivation of Dispersion Relations

Eq. (3-10) through (3-26) permits us to write 6B and 6T as lineare

combinations of the fluctuating electric field components. The Eq. (3-25)

can be solved by standard techniques [ ] for giving an ion mobility tensor

analogous to the electron mobility tensor of Eq. (3-19). However, it is

simpler to exploit the fact that Eq. (3-25) is equivalent to the

linearized Vlasov equation with 6E replaced by 6E + i (0.71/e) k 6T e e.

Hence, if 6Te is expressed in terms of 6E, we may easily find the ion

mobility tensor from Vlasov mobility tensor.

From Equations (2-14) and (2-18) we have

(r - 1) <T >
e e c

T ~ k ( ) * 6Ee w <B> we -

By using the expression from (A-23) we can show

15



k * (Me ) " 6E

= (k,1 0, k) 0 1 0 6E

k a k

-1 iD - D 6E
Q 1 k 2 y

k

0 l i D 6E
kZ1 3 aeki 4 z

Q wD x
e 6E"D, -i D kD4 6E

where

2 3re + i 2Cv
1 e

D = e3? + i 2 
42 a

i66

i4 v
D4= 1+

and

6
D = 3(1.71 r - 0.71) - i4v

e v

Thus, we have

3i(F -1) ka e

6T 3 e 6) E - C e6E (3-27)
e a k z e v

16



Making use of Equations (3-9), (3-24) and (3-27), we rewrite

Equation (3-25)

[-iw + ik *v +0 (vx e ) *I 6f

-2 E 1- i
<f> / k1  e <fi >

e= - (6E+-vx 6B) -A E-

mi ~ C ~ 9e v 3 28 )

where A 3(re-l)/a. The coordinate system is chosen such that k = (kl, , k l)

and v = (v1 cos, vI sini, v I I). Then Eq. (3-28) is an ordinary differential

equation in 4,

d6f.

d - (kj v - iw + ki v cos ) 6f.

e v 6E k ek k a E

=-<f > cos + v sin I+A e v) < (3-29)

i <T > e >

6E
<T  >

The formal solution of the ion kinetic equation (3-29) can be solved in

terms of Green's function, i.e.,

6f v cos +v sin (l+A j v

i < > e <T >

(3-30)

6E
+ v (1-A) i <f.> G ();ip') dw'

<T 
>

where the Green's function satisfies the particle path along the non-

perturbed orbit, namely

G(; ') = exp [-w (ip - ') + kv 1 (sini- sin')

(3-31)
+ k v (4 - V)]

17



By using the relations

1 Jn (A)

Cos exp (-iA sin) [ Jn (A) exp(-inP) (3-32)

sin n= -oo i Jn (A)

Equations (3-30) and (3-31) give

6fi i exp {i (k i vi / i ) sin , - ni ] }

-n
= -  k 1 l vl - w+n .

x c 6E + -- vJ 6E <f.>(333

<B> n <B> n <B> 1

k 6E x <f2>

<B> E i v IJn <B>Ez 1

where J J (k v /.) and J are the Bessel functions of the first kind
n n 'I i n

and order n, and its first derivative.

Maxwell's equation gives the relation between electric current

density j and dielectric tensor K, i.e.,

J = (1 - K) 6E (3-34)

where the current density and dielectric tensor are

j = E e. v f. dv j = e and i (3-35)

and

4xi c
K = e <n> (M. - M ) + 1 (3-36)

w <B> i :e R%

18



respectively. Here M. is mobility tensor which satisfies the relation
ZJ

6v. = M 6E (3-37)
3 <B> ~j

where 6v. is defined

6v. Efv f.dv/ f.dv (3-38)

It is clear that in order to obtain dielectric tensor, we have

to calculate the current density from distribution function. In the

present stage, we have to calculate ion current density which follows

the formula

Ji e v f. dv = e <n> 6v. (3-39)

Substituting Eqs. (3-24) and (3-33) we have

6vx v cos"

ne

Si 1*exp (k v sin -n nQ 6E nJ n + 6E Y v J*

I I
e [(a (a

(ai )2 (3-40)

By using the relations

19



2Tw

1 +i (z sin x - nx) dx J z)
2-- e dx= Jn(z)

0

2Trr

Scos x e (z sin x dx=+-- J (z) (3-41)
2wr z n

0

27r

Ssn x e (zsin nx) dx=- i J' (z)
2Tr n

0

Equation (3-40) becomes

nQ.
Si I

J oo 0- 3
2n e kjv n

j = -i dB> v dv -iJ i
()/ 2 a (a i)2 <B> d dvI In

j i o - Jn

2 2  2. kk ae 2 .
* nJ , T i 1+A k - I lv (1A)

i 2 n2 n Q v T l

(a k (a e (a j)

SE

* (kv -vw+n.V 1 exp 2 6E (3-42)
S(kvl-+ni ) -  exp i 2  i Y

(a ) (allL S6E

Under the hydromagnetic assumption, the wave frequency w and bounce

frequency kll vII of typical particles (ions in this case) arewell below

the ion cyclotron harmonic frequencies, i.e.,

kl vl I-
k V w < <1 (3-43)

20i
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Let us expand the summation of ion cyclotron resonance denominators in

Eq. (3-42) into the following forms

n i + kl vII-
n= -oo

6no (1-6 kl l W (3-44)

n=-o

where

1 when 6= 0

no 1O when 6 0

By using the following relations

nJ (1 - no 2
nn n

n= -oo n= -

= n J J' = 0 (3-45)n n
n= --

n= -oo

we have the following expansions

21



_k 11 l - W
n 2 j2 (l-J2 )

' nJ J' 1 JJ
n n nQ. + k v -W Q o 1

S1 2
nJ (1-J )

Jn  . o

Making use of Eq. (3-46), Eq. (3-42) leads to

6v A A A

x o 0 xx xy xz

2n
6vi  =-i o c dvfv dv A A A

S(I) /2 a (a)j2 <B> yx yy yz

o -

6v A A A
z zx zy zz

6E

6E exp (3-47)
y i2 i 2

(al) (a

6Ez

where

XA = (k v - 0) (1- Jo )
xx (a k

Q2i. /, ki k1 l a 2

A = i (a) 2 k 1  + A C JJ l'

2Q.

A = VII (1-A) (l-J2 )
xz ii 0

aa I k2

2 iv

A = - i JJ

yx (ak o1

22



2 vi J2 k v -(l± kikla )
A ___ (1 - )yy i 2>' kl vl- I-w o

(a ) I v e

2Q. J J

A = i i (l-A) vl l i

2Q.

Yz a 2

A = (1 -J) v
zx i i o IZ i alal ki0 l

zyi i i |vka a l (k Ie

2Q. J
A = 1 (1-A) v2 o

(a kl Iv I-w

Let us introduce the plasma dispersion function 2(J) which is defined

[7]

Co

Sdx = Z() (3-48)

-Co

In our case, the following relations in terms of plasma dispersion functions

are most useful

0 v /aI

lt e dv = Z(k )

-00o

2 2

1vd 1 ,-Vl - /kv =  - -- all Z

23



-v2 /a I

v i e 1 waa 1

dv - Z
/ v I - /kII I I 2 ek

-cc

C -V/a

I = 1 a adv I=  a -o Z '

vll- Iakl 2

-00

0 vi - i 2 2 k

1 I F a 2 2
v-- w/k dv =  k a, a -

C v 5 ) e I I I 1 
4

-00

and

W 2il all '
ZkI aI 2w Z k a + 2]

Then we can include contour of integration into the plasma dispersion

function which makes Eq. (3-47) become

6v C B B B 6E
x xx xy xz x
i  2 c

6v =-i - B B B 6E
S(a) 2  <B> yx yy yz y

. O
6v B B B 6E

z zx zy zz z

S2 (3-49)

Sexp (al2 dv

where 24



2Q. Wv 2

B =(1 -J)
xx i2 2 o

2Q v2 k k a

(aI k, e

B = 0
xz

2Q.

Byx  i 2 o

(al) k vi

I2 a

yy i 2 1  2 0 IV
(a (a I k k e

yz i o(aI ) (al)kI I k01

B = 0
zx

2_ kikl ae

B i Q v J +Z' +A e

zy i o1

B =zz (-A) v j2 Z'

By using the following integrations
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AT i
1 1 (a)00 2-

vc 1(a)
- - 2 a

J 2 e (a2 d v (3-50)
o v ± __ (aI)3

0 1 i
2 (al)3

1 1 i4

I 1 (a)
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1v' 1 (a 2

v 2- (a1 )

i1)2 8 ki

o B 1 ) = y (3-52)

I  4 ii

0 3 -2 (a' 

6v M M M i SE
x xx xy xz x

6v M M Mi E
y <B> yx yy yz y (3-53)

6vi Mi Mi Mi 6E
z zx zy zz z
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where the mobility tensor with anisotropic ions are

i ___

M = i 1
xx. i

yy I  2y i  k I 2yi IlI 2 1
Mi  i '

= i. Z. (1-A)
ZZ &) 1 1

i j k
M =
zy 21 't k i

M - z' -Z (1 - A)
yz i(2,11, 

kI 1

xy yx T2

i

M ~ M W
xz zx

1/2

where A = 2.13 ( e- 1)/c, 2. = e <B>/m. c, ~)= (2 <Ti >/m.)

Yi = w/(Ikl la i), and Zi = Z(yi) and Z. are the plasma dispersion
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function and its first derivative (Fried and Conte 1961). In deriving

Eq. (3-53) we have neglected the terms proportional to A v Z. because
V -1

/m <T> (3-54)

A v i m <T >

For the limit of hydromagnetic waves, the displacement current

is always negligible. Then the electric current density may be written

as

J K * 6E (3-55)

where the dielectric tensor

4Ti c
K = e <n> (M.-M ) (3-56)

w <B> e

From Eqs. (3-19), (3-53) and (3-56) we have

K 0
xx

K = 0 K K (3-57)
yy yz

i zy zz

where the components of the dielectric tensor are
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k ae Wpe v 2(3Fe + i 2 V)

+i 1+
2 w 2 22

e

5 22 2

w Z. 2w
K (1 - A) p + pe

ZZ 2 2 a2 k2  a

I II e

w2  Z (1-A) 2
pi i ( ) pi 3e + i 2 v

yz 2k Qo . i k %

S k 2 Z 2 kI

pi Z1 w k i61v
z( = ik + i - + V)

i 2k- D.1 |

2 4 ~T <n> e2/m(.)

P( i )

The requirement that Eq. (3-55) be consistent with Maxwell's

equations gives the dispersion relation

det [(.) (k k- k 1) + K = 0 (3-58)

Substituting Eq. (3-57) in Eq. (3-58) gives

.- K- - 2K K = 0 (3-59)
xx _ yy W2 zz W2 yz zy

Eq. (3-59) is given at the lowest order in w/Q.. The first factor in1

Eq. (3-59) is the usual Alfven wave dispersion relation
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= 1 + ( - i) (3-60)

and the second factor, which gives the magneto-acoustic dispersion relation,

is

K k2 c2  K K K = 0 (3-61)
YY W2 zz zy yz

since IK > > kc/,I 2 .

By using Eq. (3-57), we can rearrange Eq. (3-60) by straightforward

calculation to give

[i + - C ) - u 2 1  cot 2 6 = S(u, w Te) (3-62)

where

j 2

1 ( v 2(3r + i2C5)
-S(u, W T ) = +8 + Z. - i + L)

i i -- 2 - -
ee e 3 v e 3ve I zi (+ v

S4 (3-63)
e (re - i- ) Z. -2 ( 3
e e 3 v

a = 3 (1.71 re - 0.71) - 4 ir, (3-64)

v = 0.73 w Te , (3-65)

re = 1 + 2/(3 + 2inTC ), TC = 2.16 ( ) e (3-66)
e TC TC m 2 v

e u

8 <p > 8 > (3-67)
e <B>2 e '<B>2

0 = < (k, <B>)> (3-68)
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and u = w/(Ik I CA). (3-69)

We notice that if dispersion relation (3-62) is satisfied for a

wave (w, k), it is also satisfied for a wave propagating in the opposite

direction, i.e., for the waves (w, -k) and (-w*, k). This is so first,

because (3-62) is invariant to the transformation (w, k) - (w. -k) and

secondly, because the transformation (w, k) -(-w*, k) causes + _*

Cv * - v' F* , Z _ Z'*, u2  (u*)2 , so that Eq. (3-62) is
V V e e i i

transformed into complex conjugate. Hence, in particular, we may always

choose Re TC >0 and Re > 0.

Note the superscript * indicates the complex conjugate.
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CHAPTER IV

MAGNETOSPHERIC HYDROMAGNETIC INSTABILITIES

IV-1 Introduction

Observations from Explorer 12, 14, and 15 indicate a large amount

of proton precipitation in the magnetosphere with energies 100 KeV to

10 MeV [7]. In the meanwhile, data from Explorer 12 confirms a large

flux of trapped protons in the energy range 100 KeV to 4.5 MeV with

peak intensity near geomagnetic shell L - 3.5 [8]. By using the

parameter at L = 3.5 (intensity of geomagnetic field ~ 10- 2 gauss, proton

number density -20 cm- 3 , energy of protons -200 KeV), the ratio of

plasma pressure to magnetic pressure 5 becomes to the order of unity.

Therefore, it is interesting to investigate the emission of hydro-

magnetic waves due to possible plasma instabilities, the dissipation

of hydromagnetic waves and how it may correlate to the modification

of heating mechanism as 5 approaches unity in the magnetosphere.

Experimentally, several authors,[9], [10], have observed that

hydromagnetic waves in the frequency range of Pc-l pulsations can

be generated by proton beams traveling faster than the Alfven velocity,

if the beam has a certain anisotropy in pitch angle. This implies that

(a. 2T./m.
( a E B2 n = i  (4-la)

CA B 2/4m.n
1

where a i is the proton thermal velocity; CA, the Alfven velocity; and

n, the total number density. Jacobs [11] estimates the hydromagnetic

wave with experimentally observed characteristics can be generated at

geomagnetic shell L ~ 4.0 by protons with energies 200 to 500 KeV. As

32



we have mentioned earlier, the observations based on Explorer 12, 14

and 15 confirm the estimation. The hydromagnetic waves can also be

generated at L = 5-7 by protons with lower energies (several tens of

KeV). At L = 3.5 and L = 7.0 the proton gyrofrequency, i., is 96

and 8.6 Hz, respectively. As has been discussed by Hunt, Wu and

Smith [5], the time scale of interest for the study of hydromagnetic

waves is chosen to be 0.2 to 10 seconds. By using this time scale,

the ratio of hydromagnetic wave frequency to the proton gyrofrequency,

w/Qi' is much less than unity at L < 5, and on the order of or greater

than unity at L > 5. In the present study, we limit ourselves to

investigating the hydromagnetic instabilities which could be relevant

to the emission of hydromagnetic waves in the magnetosphere at a

distance L < 5, while ion cyclotron instability could be responsible

for the emission of waves in the periods of 0.2 to 10 seconds at

a distance L > 5. The model of ion cyclotron instability in the

magnetosphere has been investigated by Cornwall [9], Feygin and

Yakimenko [12] and Gendrin,et al. [13].

As has been mentioned in Ref. [5], the propagation of hydromagnetic

waves is modified by transport phenomena due to Coulomb collisions.

Collisional effects can vary from region to region in the plasma of

interest. At L = 3.5 the electron collision time is on the order of a

second, while the ion collision time is on the order of a minute in

the magnetosphere. Thus, for wave periods of 0.2 to 10 seconds, magneto-

spheric electrons are in a transitional regime between collisional and

collisionless conditions while ions are in a collisionless regime.
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IV-2 Criteria for Mirror and Fire-Hose Instabilities

Most of the known plasma instabilities, which are thermal over-

stability, are a kind in which w is the complex rather than pure

imaginary [14]. The non-occurrence of overstable solutions has been

studied by Vedenov and Segdeev [15], Chandrasekhar, et al. [16], and

Barnes [17] for the case of collisionless plasma. The significance

of the nonexistance of overstable solution is simply that the con-

dition of marginal stability for the plasma is given by the dispersion

relation with w= 0. This conclusion remains valid for the case of

collisional electrons and collisionless ions.

Let us rewrite dispersion relation, Eq. (3-62), in the following

form:

D (u, 0, ere) = 1i+ (6- j) - u 2 cos 2 6

(4-1)

- S(u, WT e ) sin
26

Assume that & and 6, or u and 0 are an overstable solution of Eq. (4-1).

Then

Im [D (u, 6, a )]

' 2

= - sin20 Im [z' i - e Re+
2 2 I 2 [v --

BS 1 e + 1ie 1 [ r +2 +2

- ---- Im --

Se 7ez' - 28i

(4-2)

34



with z. = z(Yi), and z' being the plasma dispersion function and its

first derivative [18] respectively. The yi is given by

yi i
Ikl I all

with

I
2<T >

i
a -

mi

Now

Sgn [Im (z!)] = - Sgn (u),

Sgn [C ] = Sgn [ITC] = Sgn (u),

where Sgn [x] = x/xl

so that i 2

Sgn [Im D( 0 , Te)] = sin2  2 Im (Z i)

1 6r . ii
+ e +e + 4

2 a 4 e e

+ Be 2  -.2 Ze Im Z. Sgn (J) (4-3)e e i .

Hence, if sin e / 0, Im (D) cannot vanish unless = 0, so that Eq. (3-62)

has no overstable solution unless sin = 0. If sin e = 0, the dispersion

relation reduces to Eq. (3-60).
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The nonexistance of overstable solutions recovers the familiar

fire-hose and mirror instabilities for collisional electrons (isotropic

pressure tensor) and collisionless ions (anisotropic pressure tensor).

The criteria of the instabilities in the present case can be expressed

as follows:

i i
1 i - 5 i < -2 (4-4)

(1 i
1++ < : (4-5)

Equation (4-4) is the Alfven fire-hose instability to which Equation (3-60)

is relevant, and Equation (4-5) is the magneto-acoustic fire-hose

instability to which Equation (3-62) is relevant. In both cases, there is

an angle 00 at which the stability is marginal. For the magneto-acoustic

fire-hose instability unstable waves propagate at angles 0 such that

0 < 0 < o or r - 00 < 0 <iN, (4-6)

and for the mirror instability unstable waves propagate at angles 0 such

that

OO < < or 2 < 0 < 7 - 0 (4-7)

The equation for 00 is just D (0, 00, 0) = 0, which may be rewritten as
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2 Cot2 0 1+ e1 2

(4-8)

This angle 80 is real only if one of the instability criteria (4-4) and

(4-5) holds.

IV-3 Instabilities Under the Magnetospheric Conditions

Numerical analysis of the dispersion relation (3-62), which is

relevant to the propagation of hydromagnetic waves, has been analyzed

under ionospheric conditions by Hung, Wu and Smith [5]. In the present

study, we limit ourselves to the investigation of hydromagnetic

instabilities which could be relevant to the possible magnetospheric

disturbances.

For the plasma with anisotropic ions, <T' > # <T>, we have

shown that the mirror and/or firehose instabilities might occur based

on the instability criteria (4.4) and (4.5). The former is the Alfven

firehose instability in which the triggering mechanism is

> (4-7)

and the latter is the magneto-acoustic firehose instability in which the

setting up mechanism is

8 > (4-8)*

*In order to satisfy the criteria (4-5), the second term of the equation shall
be negative. Since the square-bracket is always positive, we have to make semi-
circular bracket to be negative.
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provided that i is on the order of unity for both cases. In other words,

the instability criteria shown in (4-4) and (4-5) indicates that for the

case with cold electrons and hot ions, which is typical in the magneto-

sphere, the instabilities can be triggered for anisotropic particle

distributions when either Si> f or r > iprovided that a strong

diamagnetic effect for ions (indicating i ~ 1) exists.

The energetic particle velocity distribution in the magnetosphere

is, in general, anisotropic. This anisotropy may be caused, for example,

by charged particle trapped within the magnetic mirrors. The mean energy

of movement of the charged particles which remain in the trap across the

lines of force of the geomagnetic field should be higher than the mean

energy of particle movement along these lines. The experimental data [19]

indicates that such an anisotropy of proton velocity distribution in the

magnetosphere does exist. The observations made by Explorer 26 [20] also

show that B /BI ~ 2 and Bi ~1 in the magnetosphere. These observations

show that the magnetoacoustic firehose or mirror instability is one of the

candidates for triggering hydromagnetic waves.

On the other hand, the Alfv'en firehose instability shown in (4-4)

also is a strong candidate for exciting hydromagnetic waves. This is

because the dynamics of energetic ions overwhelms the cold electrons,

and the ions are so nearly collision-free that the ion dynamics are mainly

governed by Landau damping in which the wave-particle resonant interaction

changes only the logitudinal component of the particle energy while

leaving the transverse component unchanged [21]. In other words, 8

is always greater than S under ion Landau damping conditions when the

interaction starts with 8 ~ . This means that the Alfven firehose

instability must be considered in the present study.
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The triggering of hydromagnetic waves in the magnetosphere depends

on two conditions, i.e., (1) strong diamagnetic effect Bi ~ , and (2)

1 i 1 i
anisotropic properties, either 8 > or li > a. The latter con-

dition can be easily satisfied through either the magnetic mirror effect

or ion Landau damping. This means that the key point for triggering

hydromagnetic waves depends strictly on satisfying the strong diamagnetic

effect condition, i.e., Bi shall be on the order of unity. Physically,

this means that in order to trigger hydromagnetic waves, the pressure

of the energetic particles in the magnetosphere shall be at least on the

order of the local geomagnetic pressure.

It is interesting to compare our proposed triggering mechanism

with recent hydromagnetic waves observations. Triotskaya and Gul'elmi [22]

and Jacobs [11] indicate that the propagation of hydromagnetic waves

become active 1-2 hours before, and 4-7 days after a geomagnetic storm.

In the meanwhile, more than 50% of hydromagnetic waves are observed when

the geomagnetic index Kp is less than 2. To correlate these observation

facts in terms of our model, let us recall the inter-relation between

geomagnetic storms and solar wind disturbances. It is known that the

magnetosphere transforms the energy carried away by the disturbed solar

plasma from the sun into the energy of geomagnetic storms [23]. When

the enhanced solar wind interacts with the magnetosphere, the plasma

pressure of the energetic particles in the magnetosphere increases

dramatically in order to balance the impact from the disturbed solar wind,

and then the magnetosphere converts the momentum and energy from the

enhanced solar wind into geomagnetic storms. In other words, the plasma

pressure is on the order of or greater than the geomagnetic pressure when

the enhanced solar wind interacts with the magnetosphere, and the plasma
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pressure becomes smaller than the geomagnetic pressure when the geo-

magnetic storm develops. The most significant reasons to explain why

8 is decreasing in the period of geomagnetic storms are as follows:

(1) the amplitude of geomagnetic disturbances increase drastically,

and (2) the observations show that the number density of plasma particles

decrease dramatically in the magnetosphere [24], [25], [26]. After the

geomagnetic storms, observations also indicate that a recovery from a

storm time depletion of magnetospheric concentration takes 4-7 days

[26]. In the meanwhile, during these recovering periods, the storm energy

is gradually transformed into Landau damping which heats up the ion

particles. This dissipation of storm energy into particle energy and the

balancing of the plasma pressure and the magnetic pressure could take

several days. This explains why the observed activity of hydromagnetic

waves increase 1-2 hours before, and 4-7 days after a geomagnetic storm.

Furthermore, the K index is a measure of geomagnetic conditions. This
P

means that the geomagnetic pressure is greater than the plasma pressure

(8< 1) when the K index is high; thus, most of the hydromagnetic waves

are observed when the K index is low.
p

The attenuation rate of hydromagnetic waves propagating in the

magnetosphere and ionosphere has been calculated numerically based on

the dispersion relation (3-62). To match the conditions in magnetosphere

and ionosphere, Bis chosen from the order of unity to the order of 10- 4 .

Thus, the dissipation rate of hydromagnetic waves in ionosphere is 10- 5

(with Bi =10-"), and jumps to 10- 2 (with i = 1) in the magnetosphere

(see Figure 1). During the periods of higher solar activity with large

amounts of precipitated energetic particles, 3. in the ionosphere could

increase to 10- 3 which makes the dissipation rate of hydromagnetic waves
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become 10-'. In such a case, the ionospheric heating rate through the

damping of waves is on the order of 10-7erg-cm-2sec-1 which is less

than one percent of the heating rate due to the incident flux of extreme

ultraviolet (EUV) solar radiation, since the amplitude of the hydro-

magnetic waves in the ionosphere is only on the order of 1 gamma., Con-

sequently, we have to conclude that the dissipation of hydromagnetic

waves in insufficient to modify the heating of ionosphere even during

an active solar cycle with large amounts of precipitated energetic parti-

cles. These results agree with recent observations made by Sorenson [27].

On the other hand, the plasma pressure becomes on the order of

magnetic pressure in the magnetosphere. This makes Landau damping of

hydromagnetic waves increase drastically. Our result shows that the

dissipation of hydromagnetic waves with amplitudes of 10 gamma, which

contributes to the magnetospheric heating rate through the wave damping,

to be on the order of 10-4 to 10- s erg-cm-2-sec-1 which is on the same

order as the heating due to EUV solar radiation. Hence, we may.con-

clude that the dissipation of hydromagnetic waves could contribute to

the magnetospheric heating but not to the ionospheric heating.

In conclusion, we propose that the Alfven firehose and magneto-

acoustic firehose instabilities could be relevant to the emission of

hydromagnetic waves in the magnetosphere at locations at a distance of

L < 5. Our justification is that for a distance of L < 5 the wave

frequency of hydromagnetic waves is much less than the proton gyro-

frequency (for L> 5, wave frequency is on the order of or greater than

proton gyrofrequency) and should be mostly governed by hydromagnetic

instabilities.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This study suggests that a theoretical model be used to investigate

the dynamical characteristics of the wave-particle interaction in space

plasma. The formalism of this model is based on the Boltzmann kinetic

equation. More specifically, the present model dealt only with the

medium which is in a translational region (i.e., from collisional to

collisionless regions), namely, the electron equation can be represented

by fluid equation and ion equation governed by Boltzmann equation. The

criteria for the validity of this approach is based on the ratio of wave

frequency and collision frequency. A detailed account of this discussion

is included in Chapter II.

This theoretical model has been applied to study the hydromagnetic

instabilities in the magnetosphere, in which the instability criteria for

hydromagnetic wave is established in the transitional region of the

magnetosphere.

Possible mechanisms for the firehose instabilities based on magneto-

spheric conditions for both quiet and disturbed cases are discussed. It

is found that the 8 can be reached to the order of unity in the magneto-

sphere, then the dissipation rate of hydromagnetic waves jumps to 10- 2 .

This gives a magnetospheric heating rate through the damping of hydromagnetic

waves with amplitude of 10 gamma to be on the order between 10-4 and 10- s

erg-cm-2-sec-1, which is on the same order of EUV solar radiation. Hence,

we may conclude that the dissipation of hydromagnetic waves can contribute

to the magnetospheric heating.
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Further applications of this model will be on the numerical studies

of various solutions corresponding to those- magnetospheric observations,

and to investigate the region of validity of the present theoretical model.
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FIGURE CAPTION

Figure i Dumping rate of hydromagnetic wave for i =- 1.0 (magneto-

sphere and Bi = 10-' (ionosphere) at wTe (the ratio of

collision time to wave period) = 0.5 with <Ti> = <Te>.
This damping rate plotted is based on the numerical results

of dispersion relation (2-7).
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