
Research Conducted Under

E'~AA GRANT NO. NGR 11-002-179

DETERMINATION OF THE EFFECTS OF NOZZLE NONLINEARITIES UPON

NONLINEAR STABILITY OF LIQUID PROPELLANT ROCKET MOTORS

S(NASA-CR-139
6 3 4 ) DETERMINATION OF THE N74-322 14

EFFECTS OF NOZZLE NONLINEARITIES UPON

NONLINEAR STABILITY OF LIQUID PROPELLANT Uncls
ROCKET MOTORS Annual Report, 1 (Georgia Unclas
\Inst. of Tech.) 30 p HC $4.50 CSCL 2 11 . . 46998

ANNUAL REPORT COVERING PERIOD

August 1, 1973 - July 31, 1974

Prepared by

Ben T. Zinn, Regents' Professor

Eugene A. Powell, Assistant Professor

M. S. Padmanabhan, Graduate Research Assistant

GEORGIA INSTITUTE OF TECHNOLOGY

SCHOOL OF AEROSPACE ENGINEERING

ATLANTA, GEORGIA

Project Monitor: Dr. Richard J. Priem

https://ntrs.nasa.gov/search.jsp?R=19740024101 2020-03-23T04:02:32+00:00Z



INTRODUCTION

Th .iS report is a summary of work completed under NASA grant NGR 11-

002-179 entitlled "Determination of the Effects of Nozzle Nonlinearities

Upon the Nonlinear Stability of Liquid Propellant Rocket Motors". Research

activities supported by this grant were begun in August 1973, and satis-

factory progress has been made toward meeting the research objectives dur-

ing the first year of effort. Before giving a description of this progress,

the motivations and objectives of this research project will be briefly

reviewed.

: .Various aerospace propulsion devices, such as liquid and solid pro- .

pellant rocket motors and air breathing jet engines, are often subject

to combustion instabilities which are detrimental to the performance and

safety of operation of these devices. In order to design stable engines,

capabilities for a.priori determination of the linear and nonlinear

characteristics of the instability and the range of operating conditions

for which these engines are dynamically stable must be acquired. In

order to perform such an analysis, the behavior of the exhaust nozzle

under oscillatory flow conditions must be understood. In particular, it

is necessary to know how a wave generated in the combustion chamber is

partially transmitted and partially reflected at the nozzle entrance.

This information is usually expressed as a boundary condition (usually

referred to as a Nozzle Admittance Relation) .that must be satisfied at the

nozzle entrance.

Before such a boundary condition can be derived, the nature of the

wave motion inside the nozzle must be investigated. The behavior of

oscillations in a converging-diverging supercritical nozzle was first

treated by Tsienl who considered the case in which the oscillation of
the incoming flow is one-dimensional and isothermal. Crocco2,3 extended

Tsien's work to cover the more general cases of non-isothermal one- and

three-dimensional oscillations. The analyses of Tsien and Crocco are

both restricted to small-amplitude (i.e., linear) oscillations. More

recently, a nonlinear nozzle theory has been developed by Zinn and Crocco

who extended the previous linear theories to the investigation of the



2

behavior of finite-amplitude waves.

In recent studies (supported under NASA grant NGL 11-002-083) con-

ducted by Zinn, Powell, and Lores, theories were developed which describe

7,8 9,10
the nonlinea.r behavior of longitudinal and transverse instabili-

ties in liquid-propellant rocket chambers with quasi-steady nozzles. These

theories have now been extended to situations in which the instabilities

are three-dimensional and the rocket combustors are attached to conven-

tional nozzlesl . All of these theories have successfully predicted the

transient behavior, nonlinear waveforms, and limit-cycle amplitudes of

longitudinal and tangential instabilities in unstable motors.

A new nonlinear nozzle theory is needed for the following reasons.

First, the nonlinear analysis of Zinn5,6 is mathematically complicated

and requires considerable computer time. For this reason, Zinn's analysis

has never been used to perform actual computations of the wave structure

in the nozzle or the nonlinear nozzle response. Secondly, the nonlinear

nozzle admittance relation developed by Zinn is not compatible with the

recently developed nonlinear combustion theories (see References 7 through

11). Consequently, a linear nozzle boundary condition or short nozzle

(quasi-steady) assumption had to be used in all of the combustion in-

stability theories developed to date. With the exception of a few special.

cases, where the amplitude of the instability is assumed to be moderate

and the mean flow Mach number is small (e.g., see Reference 9), the use of

a linear nozzle admittance relation in a nonlinear stability analysis is

obviously inconsistent. Furthermore, in the case of transverse insta-

bilities the "linear" nozzle has been known to exert a destabilizing

effect; in these cases it is especially important to know how nonlinearities

affect the nozzle behavior.

The objective of this research program is to develop a three-

dimensional, nonlinear nozzle admittance relation to be used as a

boundary condition in the recently-developed nonlinear combustion insta-

bility theories. This objective will be accomplished by performing the

following four tasks:

Task I: Development of the theory

Task II: Calculation of the nozzle response

rTask III: Application of the nozzle theory to combustion

instability problems
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Task IV: Preparation of the final technical report

TDuring the first six months of this project, considerable progress

was made toward completing the first iof the above tasks. However, un-

-fcTrseeL difficulties in the mathematical formulation of the problem arose

in December, and most of the first year was needed to complete Task I.

Once the theory and computer programs were developed, Task II was com-

pletecd during the remaining time. A one-year extension of support has

been granted by NASA to complete Tasks III and IV. A summary of the work

completed on Tasks I and II is given in the remainder of this report.

TASK I: DEVELOP4ENT OF THEORY

Derivation of the Nozzle Wave Equation

S..As in the Zinn-Crocco analysis, finite-amplitude, periodic oscil-

lations inside the slowly convergent, subsonic portion ofran axisym-

metric nozzle operating in the supercritical range.were investigated.

The flow in the nozzle was assumed to be adiabatic and inviscid and to

have no body forces or chemical reactions. The fluid was also assumed to

be calorically perfect.

The nondimensional equations describing the gas motion in the nozzle

were written in the following form:

bV

+(p =0 (1)

~-+ 1 ( V) +(VxY)x.V+-Vp=O (2)
-t 2 YP P = (2)

3St- + V = 0 (3)

S = np - Inp + constant (4)



where -y is the specific heat ratio; V, p, p, and S are the dimension-

less vel.ocity, pressure, density and entropy respectively and t is the

dimensioLLess time.

It was also assumed that the nozzle flow is isentropic and irro-

tational.. Under these conditions the energy equation (i.e., Equation

(3))is no longer needed, the state equation (i.e., Equation (4))reduces

to the isentropic flow relation, p = p , and a velocity potential exists

such that v = V. The continuity and momentum equations were combined,

with the aid of the isentropic relation, to yield the following equation

which describes the behavior of the velocity potential:

V2 - = 2V~'Vt + (Y - 1) t v 2  (5)

+ (v-v) + v .v(v0.v)
2 2

This equation is consistent with the wave equation used in the second-order

nonlinear combustion instability theory developed by Powell, Zinn, and

Lores (see References 7 and 10).

In the nonlinear combustion instability theories developed by Powell.

and Zinn, each variable was expressed as the sum of a space-dependent

steady state quantity and a time- and space-dependent perturbation quantity.

In order to obtain a nozzle admittance relation compatible with these theo-

ries, the velocity potential was expressed as follows:

= (6)

where the prime denotes the perturbation quantity and the bar denotes

the steady-state quantity. Using the relation V = V, Equation (6) was

substituted into Equation (5) to obtain the following wave equation for the

nozzle:

1 - j2 v2 - @, = 2 V t-' 1 VV')] + (7)
2 tt t 2
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+ (y - 1)(v9 [' + V"' + V(2) .'

+- 2 oa' - vt j

+ (Y l)2Vf L +~ ' +

t 2 2

+ (y 1)+2 ,

.-Before.proceeding with.the analysis, a coordinate system, appro-

priate for the introduction of the boundary condition at the nozzle
5,6

walls, was chosen. °'FOlowing the. approach used by Zinn and Crocco

for an axi-symmetric nozzle, the axial variable z was replaced by the

steady-state potential function ~, and the radial variable r was re-

placed by the steady-state stream function T. The potential and stream

functions are defined by:

rpu = dp - (8)r n 6s

where 8s and 6n respectively represent elementary (non-dimensional)

lengths in the directions of the unperturbed streamlines and of their

normals on the meridional planes (see Figure 1) and u is the steady-

state velocity. A third independent variable, 8, measures the azimuthal

variation. In the new coordinate system, the perturbation velocity is

expressed in terms of its components along the coordinate directions as:

V =u'e + ve +w'e (9)

where the e's are unit vectors.

The transformation of Equation (7) to (cp ,8) coordinates was greatly

simplified by assuming that the steady-state flow is one-dimensional, which
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c = constant

/----- = constant

Flow direction

L Nozzle throat

L Nozzle entrance

Figure 1. Coordinate System used for the Solution of the Oscillatory Nozzle Flow.
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is a good approximation for slowly convergent nozzles. Under these con-

ditions the dependence of p and u on * and 9 can be neglected, so that

they are considered to be practically uniform on each surface p = constant.

Also the angle of obliquity of the stream-lines to the axis of symmetry

is sufficienitly small so that its .. cosine is practically 1 and the element

of normal 6n along the surface cp = constant can be identified with dr.

Hence the first of Equations (8) was integrated to obtain:

2 2
r - . (10)

pu

In addition the mean.flow.velocity ivector appearing in Equation (7) is

given by:

S= () e (11)
ep.

With the aid of Equations (10) and (11) and the expressions for the

Laplacian, divergence,- and gradient in a (cp,,98) coordinate system,

Equation (7) was transformed to the following equation:

f1() f 2 (CP) + f3 
( P) [L2(~' + + 2 e'0 (12)

- 2 4' + f(W) _ - -,
(t 4 t -2 tt

22 +4 , ,

+ (Y +)u +2 pu I

+ + f+ (c ) (0 )2

, 2 1 ( 2+ f ( I) + f6 ((P) " + (y - 1) q' -6 6XPt



f- iW() °' + -(Y 1)+ )
U

+ -- ] ~ + (y - 1)[2 +, + '

where

-2 -2
fl(9) =-c - u

1 du
f2() -2 -1g

c

--2

(13)
-2

f4(p) =-( - ) dc
2u cc

-2 1 - -2 (14)

f() y)- 1 L2 du2
22 Li 2 9

2u c

In Equations (13) c is the steady-state sonic velocity given by:

-2 y-1-
C 2 u (14)

In deriving Equation (12) the third-order terms in Equation (7) (i.e.,

the last two terms on the right-hand side) have been neglected, thus

Equation (12) is correct to second order.

Application of the Galerkin Method

The equations obtained by the above procedure have no known closed-

form mathematical solutions. Consequently, it is necessary to resort to



the use of either numerical solution techniques or approximate analytical

techniques. Since the numerical solution techniques generally require

excessive computer time, the latter approach was used. In the nonlinear

comnbustiion instability theories developed by Powell and Zinn (see Refer-

ences 7 1- 1) the governing equations were solved by means of an approxi-

mate solution technique known as the Galerkin Method, which is a special

case of the Method of Weighted Residuals1 2 ',13 . In these investigations

it was shown that the Galerkin Method could be successfully applied in the

solution of nonlinear combustion instability problems; its application

was straightforward and it required relatively little computation time.

Thus the Galerkin Method was also used in the present analysis to de-

termine the nonlinear nozzle admittance relation.

In order to employ the Galerkin Method in the solution of the wave

equation (i.e., Equation (12), it was first necessary to express the ve-

locity potential, m', as an approximating series expansion. The struc-

ture of this series expansion was guided by the experience gained in

the nonlinear nozzle admittance studies performed by Zinn and Crocco

(see Reference 5) as well as in the nonlinear combustion instability

analyses of Powell and Zinn (see Reference 10). Thus the velocity po-

tential was expressed as follows:

M N
r' C F : ( w m ik wt (15

S= Amn() cos m m e mn (15)
m=O n=l

In Equation (15), the functions A (w) are unknown complex functions
mn

of the axial variable c. The 0- and *-dependent eigenfunctions were de-

termined from the first-order (i.e., linear) solutions by Zinn5 . In these

functions m is the transverse mode number, n is the radial mode number, J
m

is a Bessel function of order m, w is the value of the steady-state stream

function evaluated at the nozzle wall, and S is a root of the equationmn
dJ (x)/dx = 0. The expansions given above describe standing wave motion;

they can be easily modified to describe spinning wave motion. In the time-

dependence, w is the fundamental frequency which must be specified and the

integer k gives the frequency of the higher harmonics. The values of k
rn mn

for the various modes appearing in Equation (15) must be determined from
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the results of the nonlinear combustion instability analysis of Powell

and Zinn1 0. For example it was found that, due to nonlinear coupling be-

tween modes, the second tangential (m = 2, n = 1) and first radial (m = 0,

n = 1) modes oscillated with twice the frequency of the first tangential

(m 1, n = 1) mode.- Thus in Equation (15) kll = 1 for the first tan-

gential mode and km = 2 for the second tangential and the first radial

modes. The amrplitudes and phases of the various modes depend on the

axial location (i.e., cp) in the nozzle through the unknown functions

In order to simplify the algebra involved in the application of the

Galerkin Method, the approximating series expansion for i' is written as

a single summation as follows:

ik wt
A' = A(cp) E (G) ( ) e P (16)

p=l

where to each value of the index p, there corresponds the mode numbers

m(p) and n(p), which determine the value of k . In Eq. (16) 0 (e) and
p p

Y (-) are the 0-and 9-dependent functions while N is the number of terms

in the series expansion. In the present analysis, a three-term expan-

sion consisting of the first tangential ( p = 1; m = 1, n = 1), second tan-

gential (p = 2; m = 2, n = 1) and first radial (p = 3; m = 0, n = 1) modes

was used, but the theory is applicable to any number of modes.

In order to obtain the solution, the unknown y-dependent functions,

A (cp), were determined by the Galerkin Method as follows. The assumed
P

series expansion for the velocity potential (i.e., Eq. (16))was sub-

stituted into the wave equation to form the residual, E (7'). In the

event that this residual is identically zero, the assumed solution is

an exact solution. The residual, therefore, represents the error in-

curred by using the approximate solutions given by Eq. (16). The Galer-

kin Method determines the amplitudes A (o) that minimizes the residual

E(').

Applying the.Galerkin Method, the residual E(T') was required to

satisfy the following Galerkin orthogonality conditions:

T

I F E(Z') T.(t) .(O) Tj(t) dS dt = 0 j = 1,2, ....N (17)oJ



The weight ing functions T (t), j(e) and j(4) correspond to the terms

that appear in the assumed series expansion. The temporal weighting

-unhction, T(t) , is the:.complex conjugate -of the assumed time dependence.

-hus

-ik wt

T (t) =e P (18)

The azimuthal weighting functions, j.(), are given by

(8) c= os me (19)
J

while the radial-weighting functions, .( ), are given by

Y()= nS ( ) 2] (20)

The time integration-is performed over one period of oscillation,

T , while the spatial integration is performed over any surface

of c = constant in the nozzle (in Eq. (17) dS indicates an incremental

area on this surface).

Evaluating the spatial and temporal integrals in Eq. (17) yields

the following system of N nonlinear, second order, coupled, complex

ordinary differential equations to be-solved for the complex amplitude

functions, A ():
p

N 2d2 ( dA p)z { j + C  + C A ()

N N D 2 2dp 3
p=1

r d ( ) dA (cp) dA (co)
+ D 2 Aq(P) + D2

& d 2 q 2 dc

p=1 q=l

A (D d ) dA ) + DA +D ) A ()

+- D PL + D4A( -D)  
9  -h-(() AqG ()}

± Q=o , =1,2, ... . (21)
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In the above equations, Q represents the additional nonlinear terms

that arise when a complex solution (i.e. Eq. (16)) is used to solve the

nonlinear wave equation (i.e. Eq. (12)). These terms are similar in

form to the nonlinear terms shown, but they involve the complex con-

*_jugates of the .aplitude functions. The procedure for deriving these

terms is given in Appendix B of Ref. 11. The coefficients Ck and Dk are

functions of the axial variable c as well as the indices j,p and q.

Analytical expressions for these coefficients contain integrals involv-

ing trigonometric and Bessel functions. In the absence of closed-

form expressions for the integrals of Bessel functions, these integrals

were computed numerically.

As a check on the above analysis, a single mode series consisting

of the first tangential mode was used in deriving Eq. (21). For this

case, all the coefficients-of the nonlinear terms vanish and the re-

sulting linear equation is:

2 -2
-2 -2 -2 dA -2 r du +2i dA
u (c u ) u + 2i

dtp c

(22)

S 2 -2 2
11 --- 2 y - 1. u du +w2 A() = 0

21 puc 2 -2 A)

which is identical to Crocco and Sirignano's equation for the isentropic

and irrotational case.

Dominance of the IT Mode

The well known fact that most transverse instabilities behave like

the first tangential (lT) mode was used to further simplify Eq. (21).

Based on the results of the recent combustion instability theory, it

was assumed that the amplitude of the IT mode was considerably larger

than the amplitudes of the remaining modes in the series solution.

Through an order of magnitude analysis, correct to the second order,

Eq. (21) reduced to the following system of equations:
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2A -2 dA-2 -2 -2 -2 r1 du I
- -) iu 2 d  + 2iw -S(C2 2 d d-2

dcp c

S -2 -2

S 1 - - - 2  y -' u du j Al(cp) =0 (23a)2 w  2 -2 dep

d2A 2 dA
-2 2 -2 -2 du + 2i

u u +2ik

2 -2 -2
..- 2 - ik u du + k2w2]A(C)
2*w  2 p -2 co p p
w C

d2Al d2Al dA1

A2 dAl 2
D3 (pp) - (, A ->p Al D(cop) A2

(23b)

p = 2,3, ,. N

The above equations can be written concisely as follows:

d2A (cp) dA (cp)
H P + M ((P) + N (cp) A (co) =I (cp) (24)
p d2 p dcp p p

p = 1,2 , - .... . ,

where Il() = 0 .

It can be seen that the above equations are decoupled with respect

to the IT mode; that is, the solution for Al can be obtained indepen-

dently of the amplitudes of the other modes. Thus, to second order, the

nonlinearities of the problem do not affect the IT mode. On the other

haJ dthe nonlinearities influence the amplitudes of the higher modes



(i.e., A2 A 3...) by means of the inhomogeneous terms in the equations

for the othter modes.

Homoeneous and Particular Solutions-

Equ.ation (24.) is. a second order, linear ordinary differential

equation and its general solution is a combination of the homogeneous

solution that satisfies the homogeneous part of Eq. (24), i.e.,

d2A(h) dA(h)
LA h =H + M -+ N h) (25)

P 2 p dcp 2 pp

and the particular solution that satisfies Eq. (24). The general so-

lution can be written in the following form:

(h) + (h) (i)
AP =K 1 A + K2 A + A

P P P P

here A ( h ) and Ah) are two independent solutions of Eq. (25), Kl and
P P (i)

K2 are arbitrary constants, and A
) is a particular solution of the in-

P
homogeneous equation.

Examination of the coefficients of Eq. (24) show that this equation

has the following singular points:

u=O

u = c = + 1/ = Cthroat

For a supercritical nozzle with a finite area entrance, only the singu-

larity at the throat is of concern to us. Assuming that the singularity

of the solution appears in A(h) , the condition requiring the regularity
p

of the solution at the throat can be expressed by requiring K2 = 0.

Consequently, the required solution of Eq. (24) is of the form

A () = KA ( h )  ) + A (i) (26)
P p p
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Deri iation of Admittance Relations

Using the above result, a nonlinear admittance relation to be used

as a boumdary condition in nonlinear combustion instability analyses can

be derived.. Denoting the terms of Eq. (16) by

ik wt
' = Ap (m) (e)Y (T ) e , (27)
P P P p

taking partial derivatives with respect to z and t, and using Eq. (26)

gives

1' ik wt dA (i)
-- - ()Y() e P

Sz p p dc

ik wt LA (h)
K1 8 (0) () e (28)

b ik k 9 (0) ~(() e P (

ik wt
K ik u 8 (0) T() e w A(h) (29)1 p p p p

Eliminating K1 between Eqs.(28) and (29) and defining

dA(h)/dp

p =  (h) (30)

CA (h) (i)

S = 1 A) ___ -A(h) --- (31)
P 2A(h) Lp dcp p dco

U =12. (32)

,~ aa ik wt
6z p at =  c E - (0) T () e p  P (33)p

p=1,2,...N
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Equation (33) is the non-i.:uear nozzle admittance :elation, Lo be

used as the boundary condition at the nozzle entrance in nonlinea.r com-

bustion insbtability analyses. The right-hand-side of this equation

arises from the nonlinear terms in the nozzle wave equation. The quan-

tities Y and F are. respectively the linear and nonlinear admittance
P P th

coefficients for the p mode. The nonlinear admittance,F , represents

the effect of nozzle nonlinearities upon the nozzle admittance and it is

identically zero when nonlinearities are not present.

It can easily be shown that Eq. (33) can be written in terms of the

pressure. and axial velocity perturbations as:

-2
U - YP =- p = 1,2,... (34)

where U and P are the amplitudes of the axial velocity and pressure
p p

perturbations respectively as given by:

N ik wt

p P (rp) (0) Y() e P  (35)

p=l

ik wt

u' U 0 (e) Yp()e p (36)

p=l

Equation (34) is equivalent to Eq. (33) to second order only when the

Mach number at the nozzle entrance, ue, is small.

In order to use the admittance relation (Eq. (33) or (34)) in the

combustion instability theories, the admittance coefficients Yp (or p )

and F must be determined for a given nozzle. The equations governing
p

these quantities are readily derived from Eq. (24) using the definitions

for p (i.e., Eqs.(30) and (31)). The resulting equations are:

H =-M -N -H 2  (37)
p da pp p pp
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Ii 2  I
ITd H y - d 2  (38)

p p p 2c 2  dp P 2

p = 1,2, ... N

TASK II: CALCULATION OF THE NOZZLE RESPONSE

To obtain the nozzle response for any specified nozzle, Eqs. (37)

and (38) are solved in the following manner. As pointed out earlier,

the nonlinear terms vanish for the IT mode (i.e., F1 = O, II = 0) and

it is only necessary to solve Eq. (37) to obtain q1 (and hence Y1 ) at

the nozzle entrance. Since Eq. (37) does not depend on the higher modes,

it can be solved ihdependently for C1. Once j1 has been determined, both

Eqs. (37) and (38) must be solved for the other modes. In order to do

this, the amplitude Al (1 p) must be determined since Eq. (38) depends on

Al(cp) and its derivatives through I p(c) . Once CI1(P ) is known, Al(p) is

determined by numerically integrating Eq. (30) where the constant of in-

tegration is determined by the specified value of the pressure ampli-

tude Pl (of the IT mode) at the nozzle entrance. The value of Al thus

found is introduced into Eq. (38) which is then solved for F .

It may be observed that Eq. (37) and (38) have singularities at

the same points as Eq. (24). As before, the only singularity of interest

is the throat. Since Eqs. (37) and (38) are first order ordinary differ-

ential equations, the numerical integration of these equations must start

at some initial point where the initial conditions are known, and termi-

nate at the nozzle entrance where the admittance coefficients Y and F
p p

are needed. Since the equations are singular at the throat, the inte-

gration is initiated at a point that is located a short distance up-

stream of the throat. The needed initial conditions are obtained by ex-

panding the dependent variables in a Taylor series about the throat

(0 = 0); thus,

W () = (O) + C4p(0) + ... (39a)

r (p) = r (0) + () + ... (39b)
p p P
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The coefficients Cp () and C(0o) can be determined by substituting

Eq. (39a) in Eq. (37),and takingthe limit as .- 0. The results are:

N (0)
(0) = - (40a)

-M'(0) (0) - H'(0) (0) -N 1(0)
('(0) = P (o (4ob)

-P H'(0) + M (0)
p p

p = 1,2, ... N

Similarly, k(0O) and 17(0) can be determined by substituting Eq. (39b)

in Eq. (38), and taking the limit as c - O. The results are:

I (0)
r (0) = P (41a)

c 2() M (O)

(0) = -c2(0) H'(0) (o) r (0) + - .- (0) H(0) r (0)

-2
-c2(o) M'(0) r (0) + - 1 duT( 0) M (0) r (0)p p 2 dgp p

- '(0) /c2(0) H'(0) + c2(0) M (0) (k41b)
p p

In Eqs..(37) and (38) , the quantities H , Mp, N and I are functions

of the steady-state flow variables in the nozzle and these must be com-

puted before performing the numerical integration to obtain p and p.

For a specified nozzle profile, the steady-state quantities are computed

by solving the quasi-one-dimensional isentropic steady-state equations

for nozzle flow. Figure 2 shows the nozzle profile used in our compu-

tations. All of the length variables have been non-dimensionalized with

respect to the radius of the combustion chamber, to which the nozzle is

attached, and hence re = 1. At the throat rth is fixed by the Mach num-

ber at the nozzle entrance plane. The nozzle profile is smooth and is
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re r

rth
Section Section Section

I i mI

Figure 2. Nozzle Profile Used in Calculating Admittances.
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completely specified by rcc, rct and '1, which are respectively the radius

of curvatutire at the chamber, radius of curvature at the throat and slope

of the central conical section. The steady-state equations are inte-

grated using equal steps in steady-state potential c by beginning at the

tharoat and continuing to the nozzle entrance where the radius of the wall

equals 1.

Computations of the admittance coefficients have been performed using

a three-term series expansion consisting of the first tangential, second

tangential and first radial modes. An Adam-Bashforth predictor-corrector

scheme was used to perform the numerical integration, while the starting

values needed to apply this method were obtained using a fourth order

Runge-Kutta integration scheme. The integration computer program has

been written so that the integration can be performed up to the nozzle

entrance and also inside the combustion chamber for any desired distance.

Thus, the admittance relation is obtained at the nozzle entrance section

or at any station inside the chamber. Computations have been performed for

several nozzles, at different frequencies and pressure amplitudes of the

first tangential mode.

Figures 3 and 4 show the frequency dependence of the linear ad-

mittance coefficients for the IT, 2T, and 1R modes for a typical nozzle

(e = 200, rcc = 1.0, rct = 0.9234; M = 0.2) . Here, w is the frequency

of the IT mode, while the frequency of the 2T and IR modes is 2w due to

nonlinear coupling. Hence the real parts of the linear admittance coef-

ficients for the 2T and 1R modes attain their peak values at a higher

frequency than that for the IT mode. The linear admittance coefficients

for the IT mode are in complete agreement with those calculated previously
14

by Bell and Zinn as expected from Eq. (22).

The frequency dependence of the nonlinear admittance coefficient

for the 2T mode is plotted in Fig. 5 with pressure amplitude of the IT

mode as a parameter. While the behavior of the linear admittance co-

efficient depends only upon the frequency of oscillations, the behavior

of the nonlinear admittance coefficient is seen to depend on the ampli-

tude of the IT mode. This result is expected, since in Eq. (38), I is

a function of the amplitude of the IT mode. As expected the absolute

values of both Fr and F. increase with increasing pressure amplitude ofr 1
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the 1T mode, which acts as a driving force. It is observed that the

absolute values of 1. .and F. vary similarly with frequency as the ab-
r 1

solute values of Y and Y.. The frequency dependence of the nonlinear
r 1

admittance coefficient for the IR mode is plotted in Fig. 6 with pressure

amplitude of the IT mode as a parameter.

Figures 7 and 8 show the effect of pressure amplitude upon the

magnitude of the ratio of nonlinear admittance coefficient to the linear

admittance coefficient for the 2T and 1R modes respectively. These re-

sults clearly indicate that the nonlinear contribution to the nozzle

admittance is significant and should be included in nonlinear combustion

stability analyses.
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