Final Report'

ADVANCED CONTROL CONCEPTS
By Maurice F. Hutton and Bernard Friediand

November 1973

Prepared under Contract NAS 8-29192
by

THE SINGER COMPANY, KEARFOTT DIVISION LITTLE FALLS, NEW JERSEY

for

GEORGE C. MARSHALL SPACE FLIGHT CENTER

TABLE OF CON IENTS

1. INTRODUCTION AND SUMMARY 1
2. PROBLEM DESCRIPTION 2
2.1 TRIM PROBLEM 2
2.2 GENERAL CONTROL PROBLEM 7
3. ANALYTICAL METHODS 11
3.1 ITERATIVE SOLUTION OF NONLINEAR TRIM PROBLEM 11
3.1.1 Lagrange Multipliers 11
3.1.2 Numerical Solution by Steepest Descent Method 13
3.1.3 Numerical Solution by Newton-Raphson Method 15
3.2 SOLUTION OF LINEAR TRIM PROBLEM 20
3.2.1 Explicit Formulas 20
3.2.2 Performance Criterion Selection 25
3.3 CONTROLLABILITY AND DYNAMIC RESPONSE 31
3.3.1 Controllability Grammian 31
3.3.2 Index of Controllability 38
3.4 OPTIMUM CONTROL APPROACH 50
3.4.1 Optimum Control Computation 50
3.4.2 Correlation Between Trim Solution and Optimum Control Solution 54
4. APPLICATION TO SPACE SHUTTLE CONTROL 58
4.1 SPACE SHUTTLE DYNAMICS 58
4.2 TRIM PROBLEM AND SOLUTION 72
4.3 OPTIMUM FEEDBACK CONTROL AND PERFORMANCE 82
5. CONCLUSIONS AND FUTURE WORK 99
A. VECTOR NOTATION AND DIFFERENTIATION 102
B. PARAMETERS OF SPACE SHUTTLE DYNAMICS 104
C. TRIMS COMPUTER PROGRAM 112
D. PROCEDURE FOR ELIMINATING CONSTRAINT EQUATIONS IN TRIM PROBLEM 179
E. VERIFICATION OF TRIMS PROGRAM 182
REFERENCES 187

1. INTRODUCTION AND SUMMARY

Because of the possible launch configurations required to boost a space shuttle into orbit, it is anticipated that a large number of control effectors, including both aerodynamic surfaces and gimballed rocket engines, will be required to control the vehicle during ascent through the atmosphere. One objective in controlling the vehicle is to determine the deflection angle settings of the control effectors required to trim the vehicle for headwind and sidewind disturbances, and for bias torques due to solid rocket motor misalignments. Because of the launch configuration and the large number of controls, the control engineer is faced with two challenging problems. First, to compute the trim solution may entail solving a system of coupled, nonlinear equations. Second, if the number of control variables exceeds the number of independent trim equations to be satisfied, the trim solution is not unique.

To solve the uniqueness problem, additional constraints must be imposed. A logical choice for the additional constraints is the minimization of a performance criterion that penalizes the degradation in vehicle performance caused by large trim deflection angles. The performance criterion used in this investigation penalizes the following effects:

- Thrust loss (gain) by gimballing the engines away from their nominal condition.
- Thrust loss due to drag caused by deflecting aerodynamic surfaces.
- Excessive hinge moments on aerodynamic surfaces.
- Large movement of the actuators for trim which hampers the flexibility needed for dynamic response.

The inclusion of a performance criterion in the problem formulation results in an optimization problem with equality constraints to be solved for the trim solution. This formulation eliminates the uniqueness problem but the control engineer is still faced with: the problem of explicitly solving the equations for the trim solution. Furthermore, the control engineer is likely to want to perform the trim computations many times in order to consider changes in the following:

- Flight regime (dynamic pressure)
- Desired trim conditions
- Launch vehicle configúration
- Set of control effectors
- Steady-state wind disturbances
- Performance criterion.

To serve this need, a computer program entitled TRIMS was developed to solve the trim problem numerically. The equations for the trim solution are based on the method of Lagrange multipliers and in general are nonlinear. Two standard numerical metnods, steepest-descent and Newton-Raphson, are available for solving the nonlinear equations. Application of these methods yields a pair of iterative algorithms for computing the trim solution that are included in the TRIMS program. The program user canselect the desired method at the time of program execution. The Newton-Raphson method is more efficient for linear or nearlylinear equations, but may fail to converge in severely nonlinear problems unless started near the optimum solution. If the trim equations are linear and the performance criterion is quadratic, then the trim problem can be solved explicitly. For this case the NewtonRaphson method converges to the exact solution in one iteration. The current version of the TRIMS program for a Space Shuttle during ascent (described in Appendix C) solves the lateral trim problem. The lateral-directional dynamics are in the program and the required data (stability derivatives, moments of inertia, and etc.) supplied by MSFC are stored internally in the block data subroutine. The program permits multiple-case runs and the cost of computing a trim solution is minimal. The program is in a modular form that facilitates changes in the data and/or the equations defining the trim problem.

In computing the trim solution, the control engineer must specify the particular performance criterion to be used. There is no rule or theory for determining a unique performance criterion. The usual procedure is to vary the performance criterion and examine the different trim solutions that result. In the TRIMS program there are fourteen relative weighting factors in the input data that can be varied in the performance criterion. By varying these a family of acceptable trim solutions can be obtained for more detailed examination.

Two methods for determining which of the acceptable trim solutions is preferable were considered.

One possible method for selecting from among several trim solutions is based on controllability. If the trim problem is nonlinear, then the controllability of the linear vehicle dynamics about trim will depend on the particular trim solution. In this case, the trim solution that results in the most controllable system could be used. The notion of a controllability index is developed. This index provides a criterion for ranking the trim solutions according to the degree of controllability. The controllability index is computed
from a symmetric, positive semi-definite controllability matrix and is defined as the ratio of the maximum eigenvalue to the minimum eigenvalue of the matrix. This ratio has a minimum value of unity for an orthogonal matrix. For an uncontrollable system, the controllability matrix is singular and the value of the controllability index is infinite. A difficulty with using the controllability index is that the controllability matrix is not unique and the value of the controllability index varies with the choice of this matrix. The controllability Grammain is one possible choice for this matrix. Other controllability matrices are also considered in the development of the controllability index. A second method for selecting a trim solution is based on comparing the trim solution to the maximum allowable deflections. The rocket engines and aerodynamic control surfaces can only rotate a certain maximum angle. For particular flight times, a maximum hinge moment requirement can reduce the maximum deflection angle of an aerodynamic control surface below its physical limit. Obviously, the trim solution must be within these deflection limits. Moreover, to permit freedom of movement, a control deflection should not be too close to its angular limit. Hence, the requirement that all deflection angles be within their limits by a specified margin could be used to select the trim solution. For linear trim equations, a quadratic performance criterion with a diagonal weighting matrix can always be found for which the trim solution meets this requirement if such a solution exists at all. (This property of a diagonal weighting matrix might extend to nonlinear trim equations, but the more general case has not been studied.) The search for a trim solution satisfying this requirement can be accomplished by varying the diagonal elements of the weighting matrix using the penalty function method discussed in Section 3.2.

For the lateral trim problem of the Space Shuttle, there are two aerodynamic control surfaces (aileron and rudder) and five rocket engines (three orbiter engines and two solid rocket motors). The physical or hard limits on the aileron and rudder deflection are

$$
\begin{array}{ll}
\text { aileron } & \left\{\begin{array}{l}
+15^{\circ} \\
-40^{\circ}
\end{array}\right. \\
\text { rudder } & \pm 30^{\circ}
\end{array}
$$

and, as noted earlier, maximum allowable deflections can be less than these limits due to hinge moment restrictions which vary with flight time. The physical limits on the rocket
 by the TRIMS program for the lateral trim problem exceeded the limits when the solid rocket motors are not gimballed. In numerous instances, a deflection angle exceeded 100 degrees. When the trim constraint of zero net side force is removed, the maximum deflection angles decrease by an order of magnitude and are within the limits.

In addition to the trim problem, the capability of the control system to damp out perturbations about trim must be considered. This can be identified as the dynamic response problem. In order to solve the dynamic response problem, it must be determined if the vehicle has sufficient dynamic control authority after trim conditions have been achieved. An approach to this problem based on the controllability Grammain used in defining the controllability index mention previously is studied. The controllability Grammain is used to compute the energy expended by each control in damping out errors from the trim conditions. This approach is limited, however, since it does not directly examine the peak deflection angles nor does it consider the realization of the feedback control system.

It is advantageous to have a single method for solving both the trim problem and the dynamic response problem. The method should minimize the total control deflection required both to trim the vehicle and to damp out initial errors and random disturbances. If the vehicle dynamics are linear, optimum control theory provides the desired method. In Section 3.4 the equations for the solution of the optimum control problem are derived for the case of bias inputs (trim problem) and random inputs (dynamic response problem). In Section 4.3, this theory is used to design an optimum feedback system for the lateral control of the Space Shuttle, and the closed-loop performance is simulated for a step change in side-slip angle. The computations for this example of the optimum control approach were performed with the aid of the Linear Systems Design (LSD) program developed at Singer-Kearfott under its Independent Research and Development program concurrent with this investigation.

It is recommended that further investigation of the trim problem for the Space Shuttle be performed with the aid of the TRIMS program for different combinations of controls (i.e., gimbal solid rocket motors), performance criterion, and trim constraints. In addition, a more extensive design effort using the optimum control approach would merit further consideration.

The objective of this study is to determine how the control effectors for the Space Shuttle can be optimally used to achieve trim and dynamic control in the presence of wind disturbances and bias torques due to misalignment of rocket engines. Launch vehicles have in the past been primarily controlled by gimballing the rocket engines. Various Space Shuttle configurations now under investigation indicate that engine gimballing will not provide sufficient control to trim the vehicle for headwind and sidewind disturbances. Consequently, it may be necessary to use aerodynamic surfaces in conjunction with engine gimballing to achieve trim. Because of the severe cross-coupling problems encountered in the launch configurations, it appears that a large number of control effectors may be used. If the number of control effectors exceeds the number of quantities to be controlled, then the sef of deflection angles to achieve trim is not unique. Thus, the control engineer in this case has a family (most likely an infinite set) of possible trim solutions to choose from. However; different trim solutions will result in different levels of performance and dynamic control. Consequently, the objective of the control engineer is to select the trim solution that provides the highest level of performance and dynamic control. To achieve this a performance criterion, which ranks the trim solutions according to level of performance and dynamic control, is defined. The problem then becomes, "What is the unique trim solution which optimizes the performance criterion?"

The algebraic equations for computing the trim solution are derived from the differential equations describing the motion of the vehicle by substituting the desired trim conditions. If the number of control variables exceeds the number of (independent) algebraic equations, then the trim solution is not unique. By addition of the performance criterion mentioned above, a meaningful optimization problem which can be solved for a unique trim solution, is obtained. This section develops the general problem in greater detail showing how the trim equations are derived from the equations of motion and the mathematical form of the performance criterion. The general equations for studying the dynamic response about trim are also derived.

2.1 Trim Problem

In general the motion of the vehicle is governed by a set of nonlinear, time-varying, differential equations of the form

$$
\begin{equation*}
\dot{x}=a(x, t)+b(\delta, x, t)+c(x, z, t)+v(t) \tag{2.1}
\end{equation*}
$$

where $x(t)=n \times 1$ vector defining state of the vehicle motion at time t

$$
\delta(t)=m \times I \text { vector of control deflections }
$$

$z(\dagger)=\ell \times 1$ vector of bias disturbances
$v(t)=n \times 1$ vector of random disturbances
$a(x, t)=n \times 1$ vector function of x and +
$b(\delta, x, t)=n \times 1$ vector function of δ, x, and \dagger
$c(x, z, t)=n \times 1$ vector disturbance function of x, z, and t.
The trim problem is to find the set of control deflections δ_{d} that yield the desired steady state trim conditions x_{d} in the presence of bias disturbances z_{d}. The bias disturbances model the effects of a steady wind and misalignment torques. The trim problem ignores the random disturbances, i.e., $v(\dagger)=0$ is assumed. Therefore, the trim solution must satisfy

$$
\begin{equation*}
\dot{x}_{d}=0=a\left(x_{d^{\prime}}, t\right)+b\left(\delta_{d^{\prime}} x_{d^{\prime}} t\right)+c\left(x_{d}, z_{d^{\prime}} t\right) \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
0=\tilde{a}\left(x_{d^{\prime}}, t\right)+\tilde{b}\left(\delta_{d^{\prime}} x_{d^{\prime}}, t\right)+\tilde{c}\left(x_{d^{\prime}} z_{d^{\prime}}, t\right) \tag{2.3}
\end{equation*}
$$

represent the subset of (2) required to calculate the trim deflections δ_{d} where \tilde{a}, \hat{b}, and \tilde{c} are $\tilde{n} \times 1$ vector functions with $\tilde{n} \leq n$. In orther words, in obtaining the algebraic equations in (2.2) from the differential equations in (2.1), it is possible that some of the equations in (2.2) are satisfied by x_{d} independent of δ_{d}. These equations, although used in (2.1) for computing the dynamic response, are not used in computing δ_{d} and may be eliminated from (2.2). This elimination which results in (2.3) replacing (2.2) will be illustrated by the lateral control of the Space Shuttle in Section 4.

If $m<\tilde{n}$ then no set of control deflections δ_{d} exists that satisfy (2.3). If $m>\tilde{n}$ then a solution δ_{d} exists but is not unique. If $m=n$, there exist a unique solution, but unless b is a linear function of δ_{d} (i.e., $b\left(\delta_{d^{\prime}} x_{d^{\prime}} t\right)=B\left(x_{d^{\prime}} t\right) \delta_{d}$ it may be difficult to find.

For the case of infinitely mony possible trim solutions $(m>\tilde{n})$, certain solutions are preferable over others. An example of the latter is a solution in which each deflection angle is smaller in magnitude than for another trim solution. Trim solutions in which any of the deflection angles exceed the maximum allowable deflection should be excluded since such
solutions cannot be realized. Suppose additional constraints in the form of a performance criterion are included in the problem formulation. The solution that satisfies the trim conditions (2.3) and minimizes the performance criterion is unique. For this approach the trim design problem reduces to the appropriate selection of the performance criterion.

The performance criterion denoted by r is a scalar function of the control

$$
\begin{equation*}
r=r\left(\delta_{d}\right) \tag{2.4}
\end{equation*}
$$

In the case $m \geq \tilde{n}$ the trim problem is to find the set of control deflections

$$
\delta_{d}^{\prime}=\left[\delta_{1}, \delta_{2}, \cdots, \delta_{m}\right]
$$

that satisfy (2.3) and minimize the performance criterion (2.4). In general, (2.3) and (2.4) are nonlinear functions of δ_{d} and the resulting optimization problem with equality constraints can not be solved analytically. Numerical methods for solving the nonlinear trim problem are developed in Section 3.1.

If the trim equation (2.3) is a linear function of δ_{d}

$$
\begin{equation*}
0=\tilde{a}\left(x_{d^{\prime}}, t\right)+\widetilde{B}\left(x_{d^{\prime}}, t\right) \delta_{d}+\widetilde{c}\left(x_{d^{\prime}}, z, t\right) \tag{2.5}
\end{equation*}
$$

where \widetilde{B} is a \widetilde{n} by m matrix and if the performance criterion is a quadratic form

$$
\begin{equation*}
r\left(\delta_{d}\right)=1 / 2\left(\delta_{d}-\delta_{o}\right)^{\prime} R\left(\delta_{d}-\delta_{o}\right) \tag{2.6}
\end{equation*}
$$

where r is a positive definite matrix and where δ_{0} is the desired trim solution (in most instances $\delta_{0}=0$) then the trim problem is said to be linear. The linear trim problem can be solved analytically and the equations are derived in Section 3.2.

2.2 GENERAL CONTROL PROBLEM

The trim problem is only part of the vehicle control problem. In addition to bias disturbances, the control system must be able to damp out sudden deviations from trim and to sustain proper vehicle motion in presence of fluctuating disturbances. An example is a sudden change or rapid fluctuation in the side wind velocity or equivalently the sideslip angle β. The capability of the control system to handle rapid fluctuations in β, for example, is commonly determined by simulating the performance for a step change, impulsive change, or random noise with a specified frequency spectrum. The control system must be designed to maintain the control deflections within the physical limits and to return the vehicle
to trim within an acceptable setting time. This problem can be identified as the problem of dynamic response about trim. The first step in studying the dynamic response of the vehicle is to linearize the equations of motion about trim. Let $\Delta x, \Delta \delta, \Delta z$ denote deviations of the state, control deflections, and bias disturbances, respectively, from trim.

$$
\begin{align*}
& \Delta x=x-x_{d} \tag{2.7}\\
& \Delta \delta=\delta-\delta_{d} \\
& \Delta z=z-z_{d}
\end{align*}
$$

Expanding in a Taylor series the nonlinear functions a, b, and c in (2.1) about trim conditions results in the approximations

$$
\begin{align*}
& a(x, t) \cong a\left(x_{d^{\prime}}, t\right)+[\partial a / \partial x] \Delta x \\
& b(x, t) \cong b\left(x_{d^{\prime}} t\right)+[\partial b / \partial x] \Delta x+[\partial b / \partial \delta] \Delta \delta \tag{2.8}\\
& c(x, t) \cong c\left(x_{d^{\prime}}, t\right)+[\partial c / \partial x] \Delta x+[\partial c / \partial z] \Delta z
\end{align*}
$$

Substracting (2.2) and (2.1) and substituting (2.7) and (2.8) yields the linearized equations of motion

$$
\Delta \dot{x}=A \Delta x+B \Delta \delta+C \Delta z+v
$$

where

$$
\begin{align*}
& A=\partial a / \partial x+\partial b / \partial x+\partial c / \partial x \tag{2.9}\\
& B=\partial b / \partial \delta \tag{2.9}\\
& C=\partial c / \partial z
\end{align*}
$$

Note that the partial derivatives are evaluated about the trim conditions and that for particular values of $\delta_{d}, x_{d}, z_{d}, t$ the matrices A, B, and \mathbb{C} are constant.

If the total motion (trim + dynamic response) is governed by linear differential equations then (2.1) becomes

$$
\begin{equation*}
\dot{x}=A x+B \delta+C z+v \tag{2,10}
\end{equation*}
$$

which has the same form as (2.9). The matrices A, B, C in (2.10) are in general a function of time + . By considering only a number of fixed points along the trajectory the problem
reduces to a set of matrix equations of the form (2.10) with constant coefficients.
There are two general approaches for studying the general control problem including trim and dynamic response.

Approach 1: First solve the trim problem for a set of acceptable trim solutions by varying the performance criterion (2.4). From this set select the particular trim solution that leads to the best dynamic response. Methods for determining the particular trim solution are developed in Section 3.3.

Approach 2: Formulate a single performance criterion for the general control problem and solve for the optimum combination of trim solution plus dynamic response. This differs from the first approach in that two performance criteria are used in the former-one for the trim problem and one for the dynamic response problem.

Consider all possible combinations of forces and moments that can be generated by the controls of the Space Shuttle. This set defines the control authority of the vehicle. The restrictions on the control authority are of the form of bounds on the deflection angle, i.e.,

$$
\begin{equation*}
\delta_{i \min } \leq \delta_{i} \leq \delta_{i \max } \quad t=1, \ldots, m \tag{2.11}
\end{equation*}
$$

For most of the controls the maximum deflection and is the same in either direction

$$
\left\|\delta_{i}\right\| \leq \delta_{i_{\max }} \quad i=1, \ldots, m
$$

The primary problem is to find a control solution that satisfies the restrictions (2.11). The restrictions (2.11) are in terms of the total deflection angles resulting from both trim and dynamic response requirements. Hence, the second approach is preferable to the first approach. However, the second approach in general presents more difficult computation problems. If the equations governing the total vehicle motion are nonlinear then it may be necessary to use the first approach; the second may lead to an intractable problem. If, on the other hand, the equations for the total motion are linear, as is the case of the space shuttle dynamics in Section 4, then a design method in the category of the second approach results from the application of optimum control theory. The use of optimum control theory to solve the general control problem with both random and bias input disturbances is developed in Section 3.4 and the application to the lateral control of the Space Shuttle
is described in Section 4.3.
Even when the control design is to be performed using optimum control theory, there are advantages to first solving the trim problem. The trim solution is much easier to compute, and sufficient control authority must exist to handle at least the trim problem. Furthermore, the solution to the trim problem can aid in the formulation of the optimum control problem. The correlation between the trim solution and the optimum control solution is considered in Section 3.4.1.

3. ANALYTICAL METHODS

3.1 ITERATIVE SOLUTION OF NONLINEAR TRIM PROBLEM

3.1.1 Lagrange Multipliers

From (2.3) and (2.4) in Section 2 it was shown that the computation of the control deflections required to trim the vehicle for bias disturbances can be modeled as a problem of the following form:

Find the vector δ of dimension m which minimizes a scalar function of δ

$$
\begin{equation*}
\min _{\delta} r(\delta) \tag{3.1}
\end{equation*}
$$

subject to a set of n equality constraints

$$
\begin{equation*}
0=a+b(\delta) \tag{3.2}
\end{equation*}
$$

For simplicity, the subscript " d " has been dropped from δ_{d} and (2.3) has been rewritten as (3.2) where

$$
\begin{aligned}
& a \equiv \tilde{a}\left(x_{d}, t\right)+\tilde{c}\left(x_{d}, t\right) \\
& b \equiv \tilde{b}\left(\delta, x_{d}, t\right) \\
& n \equiv \tilde{n}
\end{aligned}
$$

For a particular point in time t along the trajectory and for a particular set of desired trim conditions x_{d} and bias disturbances z, the vector a in (3.2) is a constant and the vector b ia a function of δ only.

In order to achieve a well-defined optimization problem the performance criterion $r(\delta)$ is assumed to have the following properties: assume that r is differentiable and let δ^{*} be the value of δ that minimizes $r(\delta)$. (Here the subscript d has been dropped from δ_{d} since $j u s t$ the properties of the performance criterion r are of interest irrespective of the trim equation (3.2).)

$$
\begin{equation*}
\mathrm{r}(\delta) \geq \mathrm{r}\left(\delta^{*}\right) \geq 0 \tag{3.3}
\end{equation*}
$$

Then in some neighborhoods of δ^{*}, the performance citerion has the property that the grodient sotisfies

$$
\partial r / \partial \delta \begin{cases}=0 & \text { for } \delta=\delta^{*} \tag{3.4}\\ \neq 0 & \text { for } \delta \neq \delta^{*}\end{cases}
$$

where $\partial r / \partial \delta \equiv\left[\partial r / \partial \delta_{1}, \ldots, \partial r^{-} / \partial \delta_{m}\right]$. Furthermore the second partial derivative of the performance criterion or Hessian matrix satisfies \dagger

$$
\partial^{2} r / \partial \delta^{2} \begin{cases}>0 & \text { for } \delta=\delta^{*} \tag{3.5}\\ \geq 0 & \text { for } \delta \neq \delta^{*}\end{cases}
$$

where $\left(\partial^{2} r / \partial \delta^{2}\right)_{t j} \equiv \partial^{2} r / \partial \delta_{i} \partial \delta_{j}$
The basic approach for solving the nonlinear trim problem given by (3.1) and (3.2) is to apply the well-known method of Lagrange multipliers.

Define a new scalar function h (the Hamiltonian) by

$$
\begin{equation*}
h(\delta, \lambda)=r(\delta)+\lambda^{\prime}(a+b(\delta)) \tag{3.6}
\end{equation*}
$$

where λ is a vector of n unknown parameters, commonly referred to as the "Lagrange multipliers". The fundamental idea underlying the method of Lagrange multipliers is that if δ^{*}, λ^{*} is the solution that minimizes h then δ^{*} is the solution that minimizes r and satisfies (3.2).

Assuming that the functions $r(\delta)$ and $b(\delta)$ are differentiable, the equations for the minimal solution δ^{*}, λ^{*} can be obtained by differentiating h and setting the derivatives to zero. This gives

$$
\begin{align*}
\partial r / \partial \delta+\lambda^{\prime} \partial b / \partial \delta & =0 \tag{3.7}\\
a+b(\delta) & =0 \tag{3.8}
\end{align*}
$$

[^0]This is a system of $m+n$ equations in $m+n$ unknown δ and λ. Only in special cases can (3.7) and (3.8) be solved explicitly. In general, numerical methods must be used to solve (3.7) and (3.8). Iterative numerical methods for determining the solution δ^{*}, λ^{*} that minimizes h given by (3.6), start with an initial guess δ_{0}, λ_{0} and then proceed to compute a sequence of solutions

$$
\begin{aligned}
& \delta_{1}, \delta_{2}, \cdots, \delta_{k}, \cdots \\
& \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, \cdots
\end{aligned}
$$

which converge to the exact solution δ^{*}, λ *

$$
\begin{aligned}
& \delta_{k} \rightarrow \delta^{*} \\
& \lambda_{k} \rightarrow \lambda^{*}
\end{aligned}
$$

Two such numerical methods are described in Sections 3.1.2 and 3.1.3.

3.1.2 Numerical Solution by Steepest Descent Method

One numerical method, in common use for many years, for finding the minimum of a function is that of "steepest descent". The steepest descent method is a 1 st order gradient method and uses an iterative algorithm for improving the estimate of the solution so as to come closer to satisfying the zero slope conditions

$$
\partial h / \partial \delta=0 \text { and } \partial h / \partial \lambda=0
$$

The method computes $\delta_{k+1}, \lambda_{k+1}$ from δ_{k}; the value of λ_{k} is not used to continue the iteration. The method partitions the vector δ according to

$$
\delta^{\prime}=\underset{\mathrm{n} \text { m-n }}{[x \text { iu }} \mathrm{x}
$$

where the subvectors x and u are computed separately.
Application of the steepest descent method gives the following steps for computing x_{k+1}, u_{k+1} from x_{k}, u_{k}.

1) From x_{k}, u_{k} compute the column vector $b(\delta)$.
2) From x_{k}, u_{k} compute the matrices $\partial b / \partial x, \partial b / \partial u$.
3) Compute the new estimate of subvector x according to

$$
\begin{aligned}
& \Delta x_{k}=-(\partial b / \partial x)^{-1}(a+b(\delta)) \\
& x_{k+1}=x_{k}+\Delta x_{k}
\end{aligned}
$$

4) From x_{k+1}, u_{k} compute the row vectors. $\partial r / \partial x, \partial r / \partial u$.
5) Compute the vector of Lagrange multipliers according to

$$
\lambda_{k+1}^{\prime}=-(\partial r / \partial x)(\partial b / \partial x)^{-1}
$$

6) Compute the gradient of h with respect to u using

$$
\partial h / \partial u=\partial r / \partial u+\lambda_{k+1}^{\prime}(\partial b / \partial u)
$$

7) Compute the new estimate of subvector u according to

$$
\begin{aligned}
& \Delta u_{k}=-\sigma(\partial h / \partial u)^{\prime} \\
& u_{k+1}=u_{k}+\Delta u_{k}
\end{aligned}
$$

8) Repeat steps 1) through 8) with the updated solution x_{k+1}, u_{k+1} until the total error is very small

$$
\left\|\Delta x_{k}\right\|^{2}+\left\|\Delta u_{k}\right\|^{2}<\epsilon
$$

where the norms are given by

$$
\begin{aligned}
& \left\|\Delta x_{k}\right\|^{2}=\Delta x_{k}^{\prime} \Delta x_{k} \\
& \left\|\Delta u_{k}\right\|^{2}=\Delta u_{k}^{\prime} \Delta u_{k}
\end{aligned}
$$

A flow chart showing the basic steps required to implement the steepest descent method for solving the trim control problem on the computer is given in Figure 3.1. A graphical interpretation of first order gradient methods is given on p. 20 of [2].

First order gradient methods usually show substantial improvements in the first few iterations but have poor convergence characteristics as the optimal solution is approached. A second-order gradient method, which uses the "curvature" as well as the "slope" at the nominal point, is discussed in the next section. Second order gradient methods have excellent convergence characteristics as the optimal solution is approached but unless the initial guess is in the region of convergence then the method may not converge or may converge to the wrong solution.

3.1.3 Numerical Solution by Newton-Raphson Method

Newton-Raphson method (or second-order gradient method) for locating the minimum point of a function uses both the first and second derivative at the nominal point to extrapolate a new estimate of the solution. A detailed description of the Newton-Raphson method is given in [1].

Using the Newton-Raphson method to find the minimum solution of $h(\delta, \lambda)$ given by (3.6) yields an iterative algorithm for computing the trim solution. To obtain the equations for computing $\delta_{k+1}, \lambda_{k+1}$ from δ_{k}, λ_{k}, first expand $h(\delta, \lambda)$ in a Taylor series about δ_{k}, λ_{k}.

$$
h(\delta ; \lambda)=h\left(\delta_{k}, \lambda_{k}\right)+\left[h_{\delta}^{\prime} h_{\lambda}^{\prime}\right]\left[\begin{array}{c}
\Delta \delta \tag{3.9}\\
\hdashline \Delta \lambda
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
\Delta \delta \\
\hdashline \Delta \lambda
\end{array}\right],\left[\begin{array}{c:c}
h_{i}^{\prime} & h^{\delta} \\
-\delta_{i} & - \\
h_{\lambda \delta}^{\prime} & h_{\lambda \lambda}
\end{array}\right]\left[\begin{array}{c}
\Delta \delta \\
\hdashline \Delta \lambda
\end{array}\right]+\ldots
$$

where

$$
\begin{align*}
& \Delta \delta=\delta-\delta_{k} \tag{3.10}\\
& \Delta \lambda=\lambda-\lambda_{k}
\end{align*}
$$

Differentiating (3.6) gives the following set of equations for evaluating the derivatives in (3.9)

$$
\begin{align*}
& h_{\delta}=\partial h / \partial \delta=\partial r / \partial \delta+\lambda^{\prime}(\partial b / \partial \delta) \\
& h_{\lambda}=\partial h / \partial \lambda=a^{\prime}+b^{\prime}(\delta) \tag{3.11}
\end{align*}
$$

Figure 3.1 Flowchart of Steepest Descent Method for Solving the Trim Control Problem

$$
\begin{align*}
& h_{\delta \delta}=\partial^{2} h / \partial \delta^{2}=\partial^{2} r / \partial \delta^{2}+\lambda^{\prime}\left(\partial^{2} b / \partial \delta^{2}\right) \\
& h_{\delta \lambda}=\partial^{2} h / \partial \delta \partial \lambda=(\partial b / \partial \delta)^{\prime} \\
& h_{\lambda \partial}=\partial^{2} h / \partial \lambda \partial \delta=\partial b / \partial \delta \tag{3.12}\\
& h_{\lambda \lambda}=\partial^{2} h / \partial \lambda^{2}=0
\end{align*}
$$

From (3.9) the equations for computing the new estimate of the solution are:

$$
\begin{align*}
& \delta_{k+1}=\delta_{k}+\Delta \delta_{k} \\
& \lambda_{k+1}=\lambda_{k}+\Delta \lambda_{k} \tag{3.13}
\end{align*}
$$

where the incremental corrections $\Delta \delta_{k}, \Delta \lambda_{k}$ are the solution of a system of linear equations

$$
\left[\begin{array}{c:c}
{ }^{h}{ }_{\delta \delta} & { }^{h} \delta \lambda \tag{3.14}\\
\hdashline{ }^{h}{ }_{\lambda \delta} & { }^{h} \\
\lambda \lambda
\end{array}\right]\left[\begin{array}{c}
\Delta \delta_{k} \\
-\Delta \lambda_{k}
\end{array}\right]=-\left[\begin{array}{c}
h^{\prime} \\
\hdashline h_{\lambda}
\end{array}\right]
$$

Note that the derivatives are evaluated about the nominal point δ_{k}, λ_{k}.
To summarize, the steps in the Newton-Raphson method for computing δ_{k+1},
λ_{k+1} from δ_{k}, λ_{k} are as follows:

1) From δ_{k} compute the column vector $b(\delta)$.
2) From δ_{k} compute the matrix $a b / \partial \delta$.
3) From δ_{k} compute the tensor $\partial^{2} b / \partial \delta^{2}$.
4) From δ_{k} compute the row vector $\partial r / \partial \delta$.
5) From δ_{k} compute the symmetric matrix $\partial^{2} r / \partial \delta^{2}$.
6) Compute the first-order gradient terms h_{δ}, h_{λ} according to (3.11).
7) Compute the second-order gradient terms $h_{\delta \delta}, h_{\lambda \lambda}, h_{\lambda \delta}$ according to (3.12). (Note that $h_{\lambda \lambda}=0$.)
8) Compute the incremental correction to the solution by solving (3.14) which gives

$$
\begin{align*}
& \Delta \delta_{k}=-\left[R^{-1}-R^{-1} B^{\prime}\left(B R^{-1} B\right)^{-1} B R^{-1}\right] h_{\delta}^{\prime}-\left[R^{-1} B^{\prime}\left(B R^{-1} B^{\prime}\right)^{-1}\right] h_{\lambda}^{\prime} \\
& \Delta \lambda_{k}=-\left[\left(B R^{-1} B^{\prime}\right)^{-1} B R^{-1}\right] h_{\delta}^{\prime}+\left[\left(B R^{-1} B^{\prime}\right)^{-1}\right] h_{\lambda}^{\prime} \tag{3.15}
\end{align*}
$$

where the matrices R and B are defined by
$R=h_{\delta \delta}$
$B=h_{\lambda \delta}=h_{\delta \lambda}^{\prime}$
9) Update the solution according to (3.13).
10) Estimate the error in the solution by computing the norms

$$
\begin{aligned}
& \left\|\Delta \delta_{k}\right\|^{2}=\Delta \delta_{k}^{\prime} \Delta \delta_{k} \\
& \left\|\Delta \lambda_{k}\right\|^{2}=\Delta \lambda_{k}^{\prime} \Delta \lambda_{k}
\end{aligned}
$$

11) Repeat steps 1) through 11) with the updated solution $\delta_{k+1}, \lambda_{k+1}$ until the sum of the norms is very small as given by

$$
\left\|\Delta \delta_{k}\right\|^{2}+\left\|\Delta \lambda_{k}\right\|^{2}<\epsilon
$$

A flowchart showing the basic steps required to implement the Newton-Raphson method on the computer is given in Figure 3.2.

Figure 3.2 Flow Chart of Newton-Raphson Method for Solving the Trim Control Problem

INITIAL GUESS δ, λ
(1)

(3) $\partial^{2} b / \partial \delta{ }^{2}$
(2)
(3)

3.2 SOLUTION OF LINEAR TRIM PROBLEM

3.2.1 Explicit Formulas

In the previous section the general nonlinear trim problem defined by (3.1) and (3.2) was discussed. The case of a linear trim equation

$$
\begin{equation*}
a+B \delta=0 \tag{3.17}
\end{equation*}
$$

and a quadratic performance criterion

$$
\begin{equation*}
r(\delta)=1 / 2\left(\delta-\delta_{0}\right)^{\prime} R\left(\delta-\delta_{0}\right) \tag{3.18}
\end{equation*}
$$

is referred to as the linear trim problem and can be solved explicitly. The scalar Hamiltonian function corresponding to (3.17) and (3.18) is

$$
\begin{equation*}
h(\delta, \lambda)=1 / 2\left(\delta-\delta_{0}\right)^{\prime} R\left(\delta-\delta_{0}\right)+\lambda^{\prime}(a+B \delta) \tag{3.19}
\end{equation*}
$$

The vectors and matrices in the right-hand side of (3.19) are defined below
$\delta=m$ - vector of control deflections.
$\delta_{0}=m$ - vector of desired control deflections.
$\lambda=$ vector of Lagrange multipliers of dimension (m-n).
$a=$ constant vector of dimension n.
$B=$ constant matrix of dimension $n \times m$.
$R=$ constant positive definite matrix of dimension $m \times m$.
The trim solution is computed by determining the values of δ and λ that minimize the scalar function h. Differentiating (3.19) and setting the derivatives to zero gives

$$
\begin{align*}
& (\partial h / \partial \delta)^{\prime}=R\left(\delta-\delta_{0}\right)+B^{\prime} \lambda=0 \tag{3.20}\\
& (\partial h / \partial \lambda)^{\prime}=a+B \delta
\end{align*}
$$

The vector-matrix form of $(3,20)$ is

$$
\left[\begin{array}{ll}
R & B^{\prime} \tag{3.21}\\
B & 0
\end{array}\right]\left[\begin{array}{l}
\delta \\
\lambda
\end{array}\right]=\left[\begin{array}{r}
\delta_{0} \\
-a
\end{array}\right]
$$

Premultiplying both sides of (3.21) by the inverse of the square matrix on the right hand side
of (3.21) gives that the optimum trim solution is

$$
\begin{equation*}
\delta=\left[I-\mathrm{B}^{\# \mathrm{~B}}\right] \delta_{\mathrm{o}}-\mathrm{B}^{\# \mathrm{a}} \tag{3.22}
\end{equation*}
$$

where

$$
\begin{equation*}
B^{\#}=R^{-1} B^{\prime}\left(B R^{-1} B^{\prime}\right)^{-1} \tag{3.23}
\end{equation*}
$$

Note that $\mathrm{B}^{\#}$ is a right inverse of B (i.e., $\mathrm{BB}^{\#}=I$). Substituting (3.22) and (3.23) into (3.18) and (3.19) gives that the minimum values of performance criterion and Hamiltonian function are

$$
h=r=1 / 2\left(a+B \delta_{0}\right)^{\prime}\left(B R^{-1} B^{\prime}\right)^{-1}\left(a+B \delta_{0}\right)
$$

Consider the example of triming sidewind induced roll and yaw moments using aileron, rudder, and the yaw deflection of a single rocket engine. Setting the rolling and yawing moment coefficients to zero $\left(C_{l}=C_{n}=0\right)$ gives in vector form

$$
\left[\begin{array}{l}
C_{\ell Y} \tag{3.24}\\
C_{n Y}
\end{array}\right] \delta_{E Y}+\left[\begin{array}{c}
C_{\ell R} \\
C_{n R}
\end{array}\right] \delta_{R}+\left[\begin{array}{c}
C_{\ell A} \\
C_{n A}
\end{array}\right] \delta_{A}=\left[\begin{array}{l}
C_{\ell \beta} \\
C_{n \beta}
\end{array}\right] \beta
$$

or in slightly different form

$$
\left[\begin{array}{lll}
C_{l Y} & C_{l R} & C_{l A} \tag{3.25}\\
C_{n Y} & C_{n R} & C_{n A}
\end{array}\right]\left[\begin{array}{c}
\delta_{E Y} \\
\delta_{R} \\
\delta_{A}
\end{array}\right]=\left[\begin{array}{c}
C_{l \beta} \\
C_{n \beta}
\end{array}\right] \beta
$$

The trim equations given by (3.24) or (3.25) are a set of 2 linear equations in three unknowns $\delta_{E Y}, \delta_{R}, \delta_{A}$. Since there is one more unknown than equations, (3.24) has an infinite family of possible trim solutions.

A graphical representation of the possible trim solutions can be seen by depicting (3.24) in the yaw-roll moment coefficient plane as shown in Figure 3.3. The four vectors formed by the stability derivatives are represented by solid arrows where the following numerical values were chosen for the example

$$
\left[\begin{array}{l}
c_{\ell Y} \\
c_{n Y}
\end{array}\right]=\left[\begin{array}{c}
-0.20 \\
0.80
\end{array}\right] \quad\left[\begin{array}{l}
c_{\ell R} \\
c_{n R}
\end{array}\right]=\left[\begin{array}{c}
0.10 \\
-0.10
\end{array}\right] \quad\left[\begin{array}{l}
c_{\ell A} \\
c_{n A}
\end{array}\right]=\left[\begin{array}{c}
0.07 \\
0.08
\end{array}\right] \quad\left[\begin{array}{l}
c_{\ell \beta} \\
c_{n \beta}
\end{array}\right]=\left[\begin{array}{c}
-0.67 \\
0.35
\end{array}\right]
$$

The dotted curve in Figure 3.3 represents one of the trim solutions for the case, $\beta=1^{\circ}$, and is the vector diagram corresponding to the left hand side of (3.24). The values of the deflection angles are

$$
\delta_{E Y}=-0.5 \quad \delta_{R}=2.807 \quad \delta_{A}=4.133
$$

and are equal to the lengths of the dotted arrows divided by the lengths of the corresponding (parallel) solid arrows. The sign of the deflection angle is positive if the dotted arrow and the corresponding solid arrow point in the same direction, and the sign is negative if the directions are opposite.

The addition of a performance criterion to be minimized will yield a unique solution for (3.24). For illustration, one possible choice might be

$$
\begin{equation*}
r(\delta)=\left(\delta_{E Y} / 15^{\circ}\right)^{2}+\left(\delta_{R} / 20^{\circ}\right)^{2}+\left(\delta_{A} / 10^{\circ}\right)^{2} \tag{3.26}
\end{equation*}
$$

where $15^{\circ}, 20^{\circ}$, and 10° are the corresponding maximum deflections. From (3.25) it follows that for $\beta=1^{\circ}$

$$
B=\left[\begin{array}{rrr}
-0.20 & 0.10 & 0.07 \tag{3.27}\\
0.80 & -0.10 & 0.08
\end{array}\right] \quad a=\left[\begin{array}{r}
-0.67 \\
0.35
\end{array}\right]
$$

and from (3.26)

$$
R=\left[\begin{array}{lll}
1 / 225 & 0 & 0 \tag{3.28}\\
0 & 1 / 400 & 0 \\
0 & 0 & 1 / 100
\end{array}\right] \quad \delta_{0}=0
$$

Substituting (3.27) and (3.28) into (3.22) and (3.23) gives the solution

$$
\delta=\left[\begin{array}{c}
\delta_{E Y} \tag{3.29}\\
\delta_{R} \\
\delta_{A}
\end{array}\right]=\left[\begin{array}{c}
0.10^{\circ} \\
5.70^{\circ} \\
1.72^{\circ}
\end{array}\right]
$$

Figure 3.3 Yaw/Roll Coupling Characteristics

As an example of how changes in the performance criterion effect the minimal solution suppose in place of (3.26)

$$
r(\delta)=\left(\delta_{E Y} / 20^{\circ}\right)^{2}+\left(\delta_{\mathrm{R}} / 20^{\circ}\right)+\left(\delta_{\mathrm{A}} / 20^{\circ}\right)^{2}
$$

then

$$
\delta=\left[\begin{array}{c}
\delta_{\mathrm{EY}} \tag{3.30}\\
\delta_{\mathrm{R}} \\
\delta_{\mathrm{A}}
\end{array}\right]=\left[\begin{array}{c}
0.10^{\circ} \\
5.70^{\circ} \\
1.72^{\circ}
\end{array}\right]
$$

3.2.2 Performance Criterion Selection

When infinitely many trim solutions are possible, certain solutions definitely require more control authority than other solutions and should not be used. In particular, given a trim solution δ, if it is possible to find another trim solution δ^{*} such that for each control

$$
\begin{equation*}
\left|\delta_{i}^{*}\right| \leq\left|\delta_{i}\right| \quad t=1,2, \ldots, m \tag{3.31}
\end{equation*}
$$

where the strict inequality holds for some controls then δ should not be used. Property (3.31) partitions the possible trim solutions into two disjoint sets. If 6 satisfies (3.31) it will be referred to as an unfavorable trim solution and if δ does not satisfy (3.31) it will be referred to as a favorable trim solution. The problem of selecting a form of the performance criterion that guarantees a favorable trim solution has been solved.

At this point a simple example is helpful in studying the properties of the trim problem. Suppose there is a single trim equation

$$
\begin{equation*}
0=6-2 \delta_{1}+\delta_{2} \tag{3.32}
\end{equation*}
$$

with two controls δ_{1} and δ_{2}. The general form of the performance criterion for the case of two controls is

$$
\begin{equation*}
r=1 / 2 r_{1} \delta_{1}^{2}+1 / 2 r_{2} \delta_{2}^{2}+r_{3} \delta_{1} \delta_{2} \tag{3.33}
\end{equation*}
$$

where

$$
R=\left[\begin{array}{ll}
r_{1} & r_{3} \\
r_{3} & r_{2}
\end{array}\right]
$$

and

$$
r_{1}>0 \quad ; \quad r_{2}>0 \quad, \quad r_{3}^{2}<r_{1} r_{2}
$$

One approach for graphically representing the trim problem is to consider $\delta=\left[\delta_{1}, \ldots, \delta_{m}\right]^{\prime}$ as defining the coordinates of a point in an m-dimensional space which shall be referred to as the solution space. This approach is different from the graphical representation in Figure 3.3 where each coordinate corresponds to one of the scalar trim equations and hence
might be referred to as the equation space representation. For this example the loci of possible trim solutions in the solution space is the straight line defined by (3.32) and shown in Figure 3.4. The segment of the straight line between points P and Q defines the set of favorable trim solutions and the remaining two segments on either side of P and Q define the set of unfavorable trim solutions.

For each fixed value of the performance criterion, there corresponds a closed contour curve in the solution space. For (3.33), $r=$ constant defines an ellipse centered at the origin of the solution space. By parametrically increasing the value of r a family of concentric ellipses of increasing size is generated. One of these ellipses will be tangent to the straight line passing through P and Q. The point of tangency is the optimum solution. For example suppose $r_{1}=r_{2}=1$ and $r_{3}=0$ then the loci of constant performance, are circles as illustrated in Figure 3.4(a) for $r=0.5$ and $r=3.6$. The circle with $r=3.6$ intersects the straight line at the single point $\delta_{1}=2.4$ and $\delta_{2}=-1.2$. This is also the optimum solution obtained using the formulas (3.22) and (3.23). For the case $r_{1}=4, r_{2}=1$, and $r_{3}=0$ the optimum ellipse is

$$
18=4 \delta_{1}^{2}+\delta_{2}^{2}
$$

and is tangent to the straight line $P Q$ at $\delta_{1}=1.5$ and $\delta_{2}=-3.0$.
The above example illustrates how varying the weighting matrix R in the performance criterion leads to different trim solutions. However, there are more ways of varying R (degrees of freedom) than necessary. This means different choices of the R matrix can lead to the same optimum trim solution.

The redundancy in the selection of R suggests that R can be restricted to a diagonal matrix without disregarding a favorable trim solution. This assumption simplifies the selection of R. For the example illustrated in Figure 3.4, the principle axes of the ellipse will coincide with the coordinate axes in the solution space when and only when R is diagonal (i.e., $r_{3}=0$). As a consequence, the optimum trim solution for a diagonal R matrix will always lie on the line segment $P Q$ (region of favorable trim solutions). The optimum solution point in Figure 3.4 will move from point P to point Q as the ratio of the diagonal elements r_{1} / r_{2} increases from 0 to \approx. Thus increasing the weighting on δ_{1} relative to the
weighting on δ_{2} causes $\left|\delta_{1}\right|$ to decrease and $\left|\delta_{2}\right|$ to increase.
This example illustrates the following general properties of the weighting matrix in the performance criterion:

Property 1: The optimum trim solution for a diagonal R matrix is always a favorable trim solution.

Property 2: Any favorable trim solution is the optimum solution for some diagonal R matrix.

The general proof of the first property is not difficult. Let δ be the optimum trim solution for

$$
R=\operatorname{Diag}\left[r_{1}, \ldots, r_{m}\right]
$$

then the minimum value of the performance criterion is

$$
\begin{equation*}
r=1 / 2\left(r_{1} \delta_{1}^{2}+\ldots+r_{m} \delta_{m}^{2}\right) \tag{3.34}
\end{equation*}
$$

Suppose δ is an unfavorable trim solution, then there exists another trim solution δ^{*} satisfying (3.31) for which the value of the performance criterion is

$$
\begin{equation*}
r^{*}=1 / 2\left(r_{1} \delta{\underset{1}{2}}^{2}+\ldots+r_{m} \delta_{m}^{*^{2}}\right) \tag{3.35}
\end{equation*}
$$

Comparing (3.34) to (3.35) term by term, it follows from (3.31) and $r_{i}>0$ that

$$
r^{*}<r
$$

But r is the minimum value and hence a contradiction! Therefore, δ cannot be an unfavorable trim solution.

Given a favorable trim solution δ it should be possible to find a diagonal R matrix in the performance criterion for which the optimum solution is δ. A general method for constructing such an R matrix or equivalently, a general proof of the second property has not yet been found.

The formulation of trim control problem given by (3.17) and (3.18) is an optimization problem with equality constraints. However, as pointed out in Section 2, inequality constraints also exist due to the physical limitation on the control deflections. For a symmetric control, these will have the form

Figure 3.4 Example of Trim Problem and Solution Space Representation
(a) $r_{1}=1, r_{2}=1, r_{3}=0$

SOLUTION SPACE

(b) $r_{1}=4, r_{2}=1, r_{3}=0$

$$
\begin{gathered}
\left|\delta_{i}\right| \leq \delta_{i \max } \quad i=1, \ldots, m \\
\delta_{i \text { max }}=\text { maximum allowable deflection of the th control }
\end{gathered}
$$ The inequality constraints are not included explicitly in the problem formulation since an optimization problem with both equality and inequality constraints is difficult to solve. Instead, the inequality constraints are handled by the penalty function method.

The basic idea of the penalty function method is to repeat the computation of the optimum trim folution for different R matrices in the performance criterion until each ratio $\left|\delta_{i}\right| / \delta_{i \max }$ is less than one and the difference $\delta_{i_{\text {max }}}-\left|\delta_{i}\right|$ is sufficiently large to provide the additional control required to solve the dynamic response problem. The procedure for varying the elements of R is simplified if R is restricted to be a diagonal matrix. From the properties of a diagonal R matrix discussed previously, this restriction does not exclude any favorable trim solutions but does exclude all unfavorable trim solutions. As an illustration of how to vary the diagonal elements of R, suppose the optimum . solution for

$$
R=\operatorname{Diag}\left[r_{1}, \cdots, r_{m}\right]
$$

results in one of the deflections δ_{t} exceeding its limits. The next step is to increase the corresponding weighting factor r_{t} and solve the problem again. Repeat this procedure until δ_{t} is smaller than the maximum deflection. An increase in the weighting factor r_{i} will cause the magnitude of δ_{i} to decrease at the expense of increasing the magnitude of other deflection angles. If no adjustment of the weighting factors results in all the control deflections being within their corresponding limits then the launch configuration does not possess sufficient control authority. If the limits are exceeded for every control then from Properties I and 2, mentioned earlier, no acceptable trim solution exists.

The modification of the performance criterion to produce a more desirable trim solution can be facilitated by realizing that for small perturbations the change in the optimum trim solution is proportional to the change in the weighting factors of the performance criterion. Computing the differentials of (3.22) and (3.23) for the case $\delta_{0}=0$ gives

$$
\begin{align*}
d \delta & =-d B^{\#} \cdot a \tag{3.37}\\
-d B^{\#} & =\left(I-B^{\#} B\right) R^{-1} \cdot d R \cdot B^{\#} \tag{3.38}
\end{align*}
$$

The derivation of (3.38) makes use of the identity

$$
d\left(R^{-1}\right)=-R^{-1} \cdot d R \cdot R^{-1}
$$

From (3.23) and (3.38) it can be shown that

$$
B \cdot d \delta=0
$$

which also follows from computing the differential of (3.17). Equations (3.37) and (3.38) showthat for small perturbations $d \delta$ varies linearly with δR. Let $d \delta_{i}$ denote the change in the trim solution due to $d R_{i}, i_{i} e_{\text {. }}$

$$
d R_{i} \rightarrow d \delta_{i}
$$

Substituting

$$
\mathrm{dR}=\Sigma \mathrm{w}_{t} \mathrm{dR} \mathrm{R}_{t}
$$

into (a24) where w_{i} is an arbitrary scalar results in

$$
d \delta=\Sigma w_{i} d \delta_{i}
$$

Thus, replacing R by $R+d R$ causes the optimum trim solution to become $\delta+d \delta$.

3.3 CONTROLLABILITY AND DYNAMIC RESPONSE

3.3.1 Controllability Grammian

The use of the controllability Grammian for studying dynamic response about trim is developed below. The trim solution uses part of the control authority: If the vehicle deviates from trim due to random disturbance or a sudden wind gust then it must be determined if the control effectors have sufficient authority in reserve to return the vehicle, to trim. By using a different trim solution, better dynamic response performance could possibly be achieved with respect to the control limits. The problem of determining which controls are most effective in zeroing out deviations is also of interest. If there are more control effectors available than required it may be possible to disregard those controls whose effectiveness is small.

Basic Theory

In vector-matrix notation the linearized equations of motion about trim have the general form

$$
\begin{equation*}
\dot{x}=A x+B u \tag{3.39}
\end{equation*}
$$

where

$$
\begin{aligned}
& x=\text { state vector of dimension } n \\
& u=\text { control vector of dimension } m
\end{aligned}
$$

The equation for the solution is

$$
\begin{equation*}
x(t)=\Phi(t) \times(0)+\int_{0}^{t} \Phi(t-\tau) B u(\tau) d \tau \tag{3.40}
\end{equation*}
$$

where the transition matrix is

$$
\begin{equation*}
\Phi(t)=e^{A t} \tag{3.41}
\end{equation*}
$$

The control signal that will drive the error to zero at time T is

$$
\begin{equation*}
u(t)=-B^{\prime} \Phi^{\prime}(-t) W^{-1} \times(0) \tag{3.43}
\end{equation*}
$$

where

$$
\begin{equation*}
W \equiv W(T)=\int_{0}^{T} \Phi(-t) B B^{\prime} \Phi^{\prime}(-t) d t \tag{3.43}
\end{equation*}
$$

The matrix function $W(t)$ is referred to as the "controllability Grammian" [1]. Substituting (3.42) into (3.40) and using (3.43), it can be shown that $x(T)=0$.

A useful criterion for indicating the amount of control effort is given by the integral

$$
\begin{equation*}
E=\int_{0}^{T} u^{\prime} u d t \tag{3.44}
\end{equation*}
$$

which may be viewed as proportional to the total "energy" expended by the control effectors in returning the vehicle to trim. Substituting (3.42) into (3.44) and using (3.43) yields the result

$$
\begin{equation*}
E=x^{\prime}(0) W^{-1} x(0) \tag{3.45}
\end{equation*}
$$

Thus the controllability Grammian $W(t)$ provides a means for computing E.
Let E_{i} denote the "energy" expended by the t_{i} th control effector, then

$$
\begin{equation*}
E_{t}=\int_{0}^{T} u_{t}^{2} d t \quad i=1 \ldots, m \tag{3.46}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{t}(t)=B_{i}^{\prime} \Phi^{\prime}(-t) W^{-1} x(0) \tag{3.47}
\end{equation*}
$$

and B_{i} is the $i_{\text {th }}$ column of the B matrix. Substituting (3.47) into (3.46) results in

$$
\begin{equation*}
E_{i}=x^{\prime}(0) W^{-1} W_{t} W^{-1} x(0) \tag{3.48}
\end{equation*}
$$

with

$$
\begin{equation*}
W_{t}=\int_{0}^{T} \Phi(-t) B_{i} B_{i}^{\prime} \Phi^{\prime}(-t) d t \tag{3.49}
\end{equation*}
$$

The ratio E_{i} / E is a convenient measure for determining the relative effectiveness of the $t_{\text {th }}$ control effector. Upon substituting

$$
\begin{equation*}
B B^{\prime}=B_{1} B_{1}^{\prime}+B_{2} B_{2}^{\prime}+\ldots+B_{m} B_{m}^{\prime} \tag{3.50}
\end{equation*}
$$

into (3.43), it follows from (3.45), (3.48), and (3.49) that

$$
\begin{equation*}
W=W_{1}+W_{2}+\ldots+W_{m} \tag{3.51}
\end{equation*}
$$

and

$$
\begin{equation*}
E=E_{1}+E_{2}+\ldots+E_{n} \tag{3.52}
\end{equation*}
$$

Another approach for computing E and E_{i} is obtained by rewriting (3.44) as

$$
\begin{equation*}
E=\operatorname{trace}\left\{\int_{0}^{T} u u^{\prime} d t\right\} \tag{3.53}
\end{equation*}
$$

Substituting (3.42) into (3.53) gives

$$
\begin{equation*}
E=\operatorname{trace}\left\{B^{\prime} M B\right\} \tag{3.54}
\end{equation*}
$$

where

$$
\begin{equation*}
M=\int_{0}^{T} \Phi^{\prime}(-t) W^{-1} \times(0) \times^{\prime}(0) W^{-1} \Phi(-t) d t \tag{3.55}
\end{equation*}
$$

Repeating this approach for (3.46) and (3.47) leads to

$$
\begin{equation*}
E_{i}=B_{i}^{\prime} M B_{i} \quad t=1,2, \ldots, m \tag{3.56}
\end{equation*}
$$

The advantage of using (3.56) in place of (3.49) is that instead of computing $W_{1}, W_{2}, \ldots, W_{m}$ only have to compute M. The disadvantage is that if the initial state vector $\times(0)$ changes then M must be recomputed where as the matrices W_{ℓ} are not a function of $x(0)$ and hence do not change.

Computation of Controllability Grammian

Several methods for computing the matrix $W \equiv W(T)$ defined by (3.43) are discussed below

Eigenvector Transformation

Suppose a new set of state variables $q(t)$ are introduced that are related to $x(t)$ by

$$
\begin{equation*}
q=Q x \tag{3.57}
\end{equation*}
$$

where by assumption Q is a nonsingular matrix.
Substituting (19) into (1) gives

$$
\begin{equation*}
\dot{q}=\widetilde{A}_{q}+\widetilde{B}_{u} \tag{3.58}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{A}=Q A Q^{-1} \\
& \widetilde{B}=Q B
\end{aligned}
$$

Let $\tilde{W}(t)$ denote the controllability Grammian computed from (3.58) then defining $\widetilde{W} \equiv \widetilde{W}(T)$ and applying the definition (3.43) to (3.58) results in

$$
\begin{equation*}
\tilde{W}=Q W Q^{\prime} \quad \text { or } \quad W=Q^{-1} \tilde{W} Q^{-1^{\prime}} \tag{3.59}
\end{equation*}
$$

If

$$
\tilde{A}=\operatorname{Diag}\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]
$$

where λ_{t} are the eigenvalues of A then the columns of Q^{-1} form the corresponding set of eigenvectors. In this development it is assumed that the eigenvalues are real and distinct. The method can still be applied to the complex and the multiple eigenvalue case but the computations are more complicated. This method will not be generalized because it is intended only for illustration purposes and as a means for checking the other methods. If \widetilde{A} is a diagonal matrix then the transition matrix is a diagonal matrix with diagonal elements.

$$
\tilde{\Phi}_{i t}(t)=e^{\lambda_{i} t} \quad i=1, \ldots, n
$$

which upon substitution into the definition of the controllability Grammian (3.43) gives that the element of matrix \widetilde{W} in row i and column j is

$$
\begin{equation*}
\tilde{W}_{i j}=\tilde{b}_{i}^{\prime} \tilde{b}_{j} \int_{0}^{T} e^{-\left(\lambda_{i}+\lambda_{j}\right) t} d t \tag{3.60}
\end{equation*}
$$

where \tilde{b}_{i} is the vector of dimension m formed by the $t_{t h}$ row of \widetilde{B}; i.e.,

$$
\tilde{b}_{i}^{\prime}=\left[\tilde{b}_{t 1}, \ldots, \tilde{b}_{t m}\right]
$$

Integrating (3.60) gives

$$
\begin{equation*}
\widetilde{w}_{i j}=\widetilde{b}_{i} \widetilde{b}_{j}\left[\mathrm{e}^{-\left(\lambda_{t}+\lambda_{j}\right) \tau}-1\right] /-\left(\lambda_{t}+\lambda_{j}\right) \quad i, j=1, \ldots, n \tag{3,6.1}
\end{equation*}
$$

Combining (3.59) and (3.61) defines the eigenvector transformation method for computing W.
To illustrate, consider the example

$$
A=\left[\begin{array}{rrr}
-1 & 2 & 0 \tag{3.62}\\
0 & -3 & 0 \\
1 & 2 & 0
\end{array}\right] \quad B=\left[\begin{array}{rr}
1.5 & -1 \\
-4 & 2 \\
-10.5 & -25
\end{array}\right] \quad \begin{aligned}
& T=0.5 \\
& m=2 \\
& n=3
\end{aligned}
$$

If the transformation matrix and its inverse are

$$
Q=\left[\begin{array}{lll}
-2 & -2 & 0 \\
0.25 & 0 & -0.25 \\
0 & 1 & 0
\end{array}\right]: \quad Q=\left[\begin{array}{ccc}
-0.5 & 0 & -1 \\
0 & 0 & 1 \\
-0.5 & -4 & -1
\end{array}\right]
$$

then

$$
\widetilde{A}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right] \quad \widetilde{B}=\left[\begin{array}{rr}
5 & -2 \\
3 & 6 \\
-4 & 2
\end{array}\right]
$$

Substituting into (3.61)

$$
\widetilde{\mathrm{W}}=\left[\begin{array}{rcc}
24.92 & 3.48 & -38.33 \\
3.48 & 71.88 & 0.0 \\
-38.33 & 0.0 & 63.62
\end{array}\right]
$$

and next substituting \widetilde{W} into (3.59)

$$
W=\left[\begin{array}{rrr}
31.51 & -44.45 & 38.48 \tag{3.63}\\
-44.45 & 63.62 & -44.45 \\
38.48 & -44.45 & 1195.47
\end{array}\right]
$$

Numerical Integration
Let $F(t)$ represent the integrand of (3.43), i.e.,

$$
\begin{equation*}
W=\int_{0}^{T} F d t \tag{3.64}
\end{equation*}
$$

Differentiating F results in the matrix differential equation

$$
-\dot{F}=A F+F A^{\prime}
$$

Integrating both sides of the above equation from 0 to \dagger gives the following linear matrix differential equation for computing the controllability Grammian $W(t)$

$$
\begin{equation*}
-\dot{W}=A W+W A^{\prime}-B B^{\prime} \quad, \quad W(0)=0 \tag{3.65}
\end{equation*}
$$

The solution to (3.65) at $t=T$ is the value of the integral (3.43). Similarly, the linear matrix differential equation for computing $\mathrm{W}_{t}(\boldsymbol{})$ is

$$
\begin{gather*}
-\dot{W}_{i}=A W_{i}+W_{i} A^{\prime}-B_{i} B_{i}^{\prime} \quad, \quad W_{i}(0)=0 \tag{3.66}\\
i=1, \ldots m
\end{gather*}
$$

A computer program for calculating the controllability Grammian by numerically integrating (3.65) was developed. The output form the program for the example (3.62) is shown below and required 0.43 seconds of cpu on the IBM 370 .

```
MATHIXA
    -0.100000E ul 
MATHIX 2
    0.150000E 01 
MATHIX W
\[
\begin{array}{rrrrrr}
0.315126 E & 02 & -0.444507 E & 0 Z & 0.384759 E & 02 \\
-0.444507 E & 02 & 0.636177 \mathrm{E} & 02 & -0.444507 \mathrm{E} & 02 \\
0.344759 \mathrm{E} & 02 & -0.444507 \mathrm{E} & 0 \mathrm{C} & 0.114545 \mathrm{t} & 04
\end{array}
\]
```

The computer solution of W agrees with the solution (3.63) calculated by hand.

Recursive Algorithm

Suppose the objective is to compute the controllability Grammian for $t=T, 2 T$, 3T, . .., NT . Let $W(n)$ denote solution of (3.65) for $t+n T$ and define

$$
\Omega=\Phi(-T)
$$

A recursive algorithm for computing $W(n), n=2,3, \ldots, N$ from $W(1)$ and Ω is developed below. From (3.64)

$$
\begin{equation*}
W(n+1)=\int_{0}^{n T+T} F d t=\int_{n T}^{n T+T} F d t+\int_{0}^{n T} F d t \tag{3.67}
\end{equation*}
$$

Let $\boldsymbol{\xi}=\dagger-\mathrm{nT}$ and from

$$
\Phi(-t)=\Phi(-\xi-n T)=\Omega^{n} \Phi(-\xi)
$$

it can be shown that

$$
\begin{equation*}
\int_{n T}^{n T+T} F(t) d t=\int_{0}^{T} F(\xi+n t) d \xi=\Omega^{n} \int_{0}^{T} F(\xi) d \xi \Omega^{n^{\prime}} \tag{3.68}
\end{equation*}
$$

Substituting (3.68) into (3.67) and using the definition (3.43) results in

$$
\begin{equation*}
W(n+1)=\Omega^{n} W(1) \Omega^{n^{\prime}}+W(n) \tag{3.69}
\end{equation*}
$$

From (3.69) it can be shown by repeated substitution that

$$
\begin{equation*}
W(n+1)=\Omega^{n} W(1) \Omega^{n^{\prime}}+\ldots+\Omega W(1) \Omega^{\prime}+W(1) \tag{3.70}
\end{equation*}
$$

From (3.70) it can be readily proven that

$$
\begin{equation*}
W(n+1)=\Omega W(n) \Omega^{\prime}+W(1) \tag{3.71}
\end{equation*}
$$

Formula (3.71) can be used to reduce the amount of numerical integration. To compute $W(t)$ at $t+$ NT instead of numerically integrating (3.65) from 0 to NT, only integrate (3.65) and

$$
-\Phi=A \Phi \quad, \quad \Phi(0)=I
$$

from 0 to T and then use (3.71)

3.3.2 Index of Controllability

When the general vehicle dynamics are nonlinear, then the linear equations (2.9) for the dynamic response about the trim solution δ_{d} are a function of δ_{d}. Hence, the controllability of the linear system (2.9) varies with the choice of the trim solution. Quantification of controllability provides a measure for determining the trim solution that results in the most controllable linear system. In the previous section, the controllability Grammain $W(t)$ at $t=T$ is used evaluate the integral (3.44) for the scalar E which may be viewed as the energy expended by the control effectors in returning the vehicle to trim during a time span of T seconds. One possible means of quantification is the use of E to indicate the degree of controllability. In this section another means of quantification is developed. An index of controllability is defined as the ratio of maximum to minimum eigenvalues of $W(T)$ or some other controllability matrix.

The time-invariant linear system (3.39) is said to be controllable, if it is possible to find an input u which reduces an arbitrary initial state to zero in finite time T.A necessary and sufficient condition for the system to be controllable is that the controllability Grammain $W(t)$ defined by (3.43) be nonsingular for some finite t. If $W \equiv W(T)$ is nonsingular, then (3.42) defines one of the many possible inputs u that satisfy the definition of controllability. Another matrix often used to study controllability is

$$
\begin{equation*}
P(t)=\int_{0}^{t} \Phi(\tau) \mathrm{BB}^{\prime} \Phi(\tau) \mathrm{dt} \tag{3.72}
\end{equation*}
$$

where $\Phi(t)$ is the transition matrix (3.41). The matrix $P(t)$ is related to $W(t)$ by

$$
\begin{equation*}
\mathrm{P}(t)=\Phi(t) W(t) \Phi^{\prime}(t) \tag{3.73}
\end{equation*}
$$

and can be identified as the covariance matrix of the state $x(t)$ when $u(t)$ is white noise having a spectral density of unity. It follows from (3.73) that the system is controllable if and only if $P(t)$ is nonsingular for some finite t. If the system (3.39) is stable, then the integral for $P(t)$ exists as $t \rightarrow \infty$ and the asymptotic value

$$
\begin{equation*}
P=\lim _{t \rightarrow \infty} P(t) \tag{3.74}
\end{equation*}
$$

is the solution to the algebraic equation

$$
\begin{equation*}
A P+P A^{\prime}+B B^{\prime}=0 \tag{3.75}
\end{equation*}
$$

It is well known that $P(t)$ or $W(t)$ is nonsingular if and only if the matrix

$$
\begin{equation*}
K=\left[B, A B, \ldots, A^{k+1} B\right] \tag{3.76}
\end{equation*}
$$

has rank $k=$ order of the system. The rank of K is equal to the rank of $k \times k$ symmetric matrix

$$
\begin{equation*}
Q=K K^{\prime}=B B^{\prime}+A B B^{\prime} A^{\prime}+\ldots+A^{k+1} B B^{\prime}\left(A^{\prime}\right)^{k-1} \tag{3.77}
\end{equation*}
$$

which is more convenient than K for testing controllability.

Indices of Controllability

The necessary and sufficient conditions for controllability of a time-invariant system is that a certain matrix be nonsingular. Possible choices of the test matrix that are symmetric, positive-semidefinite include $W(t), P$, and Q. This controllability is a property that a given system theoretically either possesses or does not possess. In practical applications, however, there may be instances in which a system may be nearly uncontrollable in the sense that certain initial states may be much harder to reduce to zero than others. Evidence of such situations is that the matrices tested for controllability are nearly singular, i.e., poorlyconditioned. It is thus appropriate to use conditioning of a relevant matrix as an index of controllability. A useful measure $[4,5]$ of the conditioning of a matrix F is

$$
\begin{equation*}
k(F)=\|F\| \cdot\left\|F^{-1}\right\| \tag{3.78}
\end{equation*}
$$

where || F || denotes the norm of the matrix F defined by

$$
\begin{array}{r}
\|F\|=\sup \|F x\| \\
\|x\|=1
\end{array}
$$

where $\|\times\|$ is a suitable vector norm. When the Euclidian norm, i.e.

$$
\|x\|=\sqrt{x^{\prime} x}
$$

is used, then, for a symmetric matrix F,

$$
\begin{equation*}
k(F)=\left|\lambda_{\text {max }} / \lambda_{\text {min }}\right| \tag{3.79}
\end{equation*}
$$

where $\lambda_{\text {max }}$ and $\lambda_{\text {min }}$ are the eigenvalues of largest and smallest magnitude, respectively.
Clearly $k(F) \geq 1$ and reaches the lower limit only when $\left|\lambda_{\text {max }}\right|=\left|\lambda_{\text {min }}\right|$, i.e. when all eigenvalues are equal in magnitude. The condition $k(F) \geq 1$ also holds for other norms, as shown in [5?.

The quantification of controllability (and/or observability) was considered earlier by several investigators. Kalman, Ho and Narendra [5] considered using the trace or the determinant of the inverse of the controllability matrix as indices of controllability, and Johnson [7] considered the determinant as an index of controllability in greater detail.

The shortcoming of the earlier indices of controllability is that they depend on the scale of the variables used in the problem. For example, multiplying earch control variable by a constant say c, is equivalent to multiplying the B matrix by the same constant and hence the controllability matrix Q as defined by (3.77) or P as defined by (3.74) is multiplied by c^{2}. Hence the trace of P^{-1} or Q^{-1} is multiplied by $\mathrm{c}^{-2 k}$ On the other hand the conditioning number is obviously independent of a scale change, either of the control variables or of the state variables. The conditioning number, how ever, does depend on the choice of state variables, as the following examples indicate. Example - Consider the system having the transfer function

$$
H(s)=\frac{Y(s)}{U(s)}=\frac{s+a}{(s+1)(s+2)}
$$

It is clear that if $a=1$ or 2 the system is either not observable or not controllable or both. The objective of this example is to show the behavior of the controllability index as a $\rightarrow 1$ or 2 .

In order to examine the controllability and observability of the system it is necessary to define a suitable set of state variables. In this example the state variables are defined as those of two canonical forms. The Jordan normal form and the companion form.

Jordan Form - The Jordan form can be obtained by expanding $H(s)$ in partial fractions:

$$
H(s)=\frac{a-1}{s+1}-\frac{a-2}{s+2}
$$

Two block diagram representations of $H(s)$ are given in Figure 3.5. For Figure 3.5(a), the state and output equations are

$$
\begin{array}{ll}
\dot{x}_{1}=-x_{1}+u & A=\left[\begin{array}{rr}
-1 & 0 \\
0 & -2
\end{array}\right]: B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\dot{x}_{2}=-2 x_{2}+u & \\
y=(a-1) x_{1}-(a-2) x_{2} & C=[a-1,-(a-2)]
\end{array}
$$

For Figure $3.5(\mathrm{~b})$ the state and output equations are

$$
\begin{array}{ll}
\dot{x}_{1}=-x_{1}+(a-1) u \\
\dot{x}_{2}=-2 x_{2}-(a-2) u & A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right] \quad B=\left[\begin{array}{c}
a-1 \\
-(a-2)
\end{array}\right] \\
y=x_{1}+x_{2} & C=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
\end{array}
$$

It is thus seen that the A matrix of both representations are identical and also $A=A^{\prime}$. Moreover, B^{\prime} of Figure 3.5(a) equals C of Figure $3.5(b)$ and C^{\prime} of Figure 3.5(a) equals B of Figure 3.5(b). Hence it follows that observability of Figure 3.5(a) corresponds to controllability of Figure 3.5(b), and vice-versa. Accordingly, examining the control lability of Figure $3.5(\mathrm{~b})$ is equivalent to examining the observability of Figure 3.5(a).

The controllability matrix K of the system of Figure $3.5(\mathrm{~b})$ is

$$
K=\left[\begin{array}{ll}
a-1 & -(a-1) \\
-(a-2) & 2(a-2)
\end{array}\right]
$$

Hence

$$
Q=K K^{\prime}=\left[\begin{array}{ll}
2(a-1)^{2} & -3(a-1)(a-2) \\
-3(a-1)(a-2) & 5(a-2)^{2}
\end{array}\right]
$$

The characteristic equation of Q is
where

$$
\begin{aligned}
& \lambda^{2}-\lambda(\operatorname{tr} A)+|A|=0 \\
& \operatorname{tr} A=2(a-1)^{2}+5(a-2)^{2}
\end{aligned}
$$

$$
|A|=(a-1)^{2}(a-2)^{2}
$$

There is a characteristic root at $\lambda=0$, for $a=1$ or $a=2$, and these are the values of a for which the system is not controllable, as expected. The condition number of Q, as defined above, is

$$
k(Q)=\frac{\operatorname{tr} Q+\sqrt{(\operatorname{tr} Q)^{2}-4|Q|}}{\operatorname{tr} Q-\sqrt{(\operatorname{tr} Q)^{2}-4|Q|}}
$$

A curve showing the behavior of $k(Q)$ vs the parameter a is shown in Figure (3.6). It is observed that $k(Q)$ tends to infinity as $a \rightarrow 1$ or as $a \rightarrow 2$. It is interesting to note, however, that $k(Q)$ reaches (local) minima of 37.9 at $a=1.61$ and $a=3.72$. This would suggest that if a were adjustable, the controllability (or observability) can be optimized, in the sense of minimizing $k(Q)$ by using $a=1.61$ or $a=3.72$.

Instead of $k(Q)$ we can determine $k(P)$ after solving for P by use of (3.77)
The solution of the latter is

$$
P=\left[\begin{array}{cc}
\frac{(a-1)^{2}}{2} & -\frac{(a-1)(a-2)}{3} \\
-\frac{(a-1)(a-2)}{3} & \frac{(a-2)^{2}}{4}
\end{array}\right]
$$

FIGURE 3.5: JORDAN CANONICAL FORMS OF TRANSFER FUN CTION IN EXAMPLE

FIGURE 3.8: COMPANION FORM OF TRANSFER FUNCTIONS
whence $\quad \operatorname{tr} P=\frac{(a-1)^{2}}{2}+\frac{(a-2)^{2}}{4}$

$$
|P|=\frac{1}{72}(a-1)^{2}(a-2)^{2}
$$

The resulting curve for $k(P)$ is also shown in Fig. 3.6. It is observed that $k(P)$ attains minima of about 34.0 at $a \approx-1.5$ and $a \approx 1.4$.

It is noted that the minimum value of the conditioning number is almost equal for P and Q and one minimum occurs (as expected) between $a=1$ and $a=2$. The locations of the other minima are quite differerit, but the general shapes of the curves are remarkably similar.

It is of interest to examine the effect of adding another independent input on the controllability of the system. Suppose, for example, another input say u_{2} was added to the first state, resulting in the equations

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+(a-1) u_{1}+u_{2} \\
& \dot{x}_{2}=-2 x_{2}-(a-2) u_{1}
\end{aligned}
$$

The corresponding B matrix is now

$$
B=\left[\begin{array}{ll}
a-1 & 1 \\
-(a-2) & 0
\end{array}\right]
$$

The controllability matrix is now

$$
K=\left[\begin{array}{llll}
a-1 & -1 & -(a-1) & -1 \\
-(a-2) & 0 & 2(a-2) & 0
\end{array}\right]
$$

and

$$
Q=K K^{\prime}=\left[\begin{array}{ll}
2(a-1)^{2}+2 & -3(a-1)(a-2) \\
-3(a-1)(a-2) & 5(a-2)^{2}
\end{array}\right]
$$

likewise

$$
P=\left[\begin{array}{ll}
\frac{(a-1)^{2}+1}{2} & \frac{-(a-1)(a-2)}{3} \\
-\frac{(a-1)(a-2)}{3} & \frac{(a-2)^{2}}{4}
\end{array}\right]
$$

P and Q are now singular for only one value of a, namely $a=2$; obviously
x_{2} is not controllable for $a=2$.
The curves of $k(P)$ and $k(Q)$ are shown in Fig. 3.7. It is noted that the addition of input u_{2} has the effect of reducing the conditioning number for all values of a^{\prime}, as would be expected.

Companion Form - Two alternate companion forms that realize the transfer function $\mathrm{H}(\mathrm{s})$ are shown in Fig. 3.8 (a) and (b). The corresponding matrices are as follows

Figure 3.8 (a)

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right] \quad B=\left[\begin{array}{r}
1 \\
a-3
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

Figure $3.8(b)$

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad C=\left[\begin{array}{ll}
a & 1
\end{array}\right]
$$

Since the C matrix of Fig. 3.8(a) is independent of a it is natural to examine the behavior of this realization for controllability. Likewise, it is natural to examine the realization of Fig. 3.8 (b) for observability.

For the system of Fig. 3.8 (a) it is found that

$$
K=\left[\begin{array}{ll}
1 & a-3 \\
a-3 & -3 a+7
\end{array}\right]
$$

whence $\quad Q=K K^{\prime}=\left[\begin{array}{ll}a^{2}-6 a+10 & -3 a^{2}+17 a-24 \\ -3 a^{2}+17 a-24 & 10 a^{2}-48 a 58\end{array}\right]$
and hence $\quad \operatorname{tr} Q=11 a^{2}-54 a+68$

$$
|Q|=(a-1)^{2}(a-2)^{2}
$$

Solution of (3.75) for P gives

$$
P=\left[\begin{array}{cc}
\frac{a^{2}+2}{12} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{a^{2}-6 a+11}{6}
\end{array}\right]
$$

with

$$
\begin{aligned}
& \text { tr } P=\frac{1}{4}\left(a^{2}-4 a+8\right) \\
& |P|=\frac{1}{72}(a-1)^{2}(a-2)^{2}
\end{aligned}
$$

Curves showing $k(P)$ and $k(Q)$ as functions of a are given in Figure 3.9. It is noted that although local minima occur for both $k(P)$ and $k(Q)$ for $1 \leq a \leq 2$, the minima attained exceed 1000 and hence would indicate that operation with a in this interval is undesirable. A very sharp local minimum in $k(Q)$ of about 1.4 occurs at $a \approx 2.7$, and would indicate that operation at this value of a is, in a sense, optimum; $k(P)$ on the other hand does not have any other minimum, but tends to unity as $a \rightarrow \pm \infty$. This corresponds to the case in which the "feedforward" gain (to x_{1}) is negligible in comparison to the direct gain ($a-3$).

3.4 OPTIMUM CONTROL APPROACH

3.4.1 Optimum Control Computation

If the general control problem described in Section 2. I can be formulated as an optimum stochastic control problem for a linear process with a quadratic performance criterion than a linear feedback system can be designed to solve both the trim problem and the dynamic response problem. The theory to compute such a feedback system is developed in this section and will be applied in Section 4.3 to the lateral control of the Space Shuttle.

The linear stochastic optimum control problem with bias inputs is defined by the following equations in vector-matrix notation

Process Dynamics:

$$
\begin{array}{rlrl}
\dot{x} & =A x+B u+C z+v & z & =\text { constant } \tag{3.80}\\
E\{v\} & =0 & E\left\{v v^{\prime}\right\} & =v
\end{array}
$$

Observation Equation:

$$
\begin{align*}
y & =H x+w \\
E\{w\} & =0 \quad E\left\{w w^{\prime}\right\}=w \tag{3.81}
\end{align*}
$$

Performance Criterion:

$$
\begin{array}{r}
J(u)=E\left\{\int_{t}^{\infty}\left(x^{\prime} Q x+\sigma^{2} u^{\prime} R u\right) d s \mid y(\tau) \text { for } \tau \leq t\right\} \tag{3.82}\\
\sigma \sigma=\text { scalar parameter }
\end{array}
$$

where

$$
\begin{aligned}
& x=\text { state vector } \\
& u=\text { control vector } \\
& y=\text { output vector } \\
& z=\text { bias vector } \\
& v=\text { input noise vector to process dynamics } \\
& w=\text { sensor noise vector }
\end{aligned}
$$

Equation (3.80) is identical to (2.10) except the vector of deflection angles is denoted by u instead of δ. The stochastic optimum control solution is denoted by u in order to distinguish
it from the control solution 5 obtained by solving the trim problem. This distinction is helpful in the next section when the correlation between u and 6 is developed. In the usual problem formulation, the scalar parameter σ is not present in (3.82) since it can be incorporated in the R matrix. In this case, however, the scalar parameter σ is useful in deriving the correlation between u and δ.

If the "bias term" $C z$ was not present, then the aptimum control problem defined by (3.80) - (3.82) would be in the standard form. By defining z as part of the state vector, (3.80) - (3.82) may be rewritten in the standard form. The resulting augmented dynamics are

$$
\begin{align*}
& \dot{\bar{x}}=\bar{A} \bar{x}+\bar{B} u+\bar{v} \tag{3.83}\\
& y=\bar{H} \bar{x}+w \tag{3.84}\\
& \left.J=E \int_{t}^{\infty}\left(\bar{x}^{\prime} \bar{Q} \bar{x}+\sigma^{2} u^{\prime} R u\right) d s \mid y(\tau) \text { for } \tau \leq i\right\} \tag{3.85}
\end{align*}
$$

where

$$
\begin{aligned}
& \bar{x}=\left[\begin{array}{l}
x \\
z
\end{array}\right] \quad \bar{A}=\left[\begin{array}{ll}
A & C \\
0 & E
\end{array}\right] \quad \bar{B}=\left[\begin{array}{l}
B \\
0
\end{array}\right] \quad \bar{Q}=\left[\begin{array}{ll}
Q & 0 \\
0 & 0
\end{array}\right] \\
& \bar{v}=\left[\begin{array}{l}
v \\
f
\end{array}\right] \quad \bar{V}=\left[\begin{array}{ll}
V & 0 \\
0 & J
\end{array}\right] \quad \bar{H}=\left[\begin{array}{ll}
H & 0
\end{array}\right]
\end{aligned}
$$

The solution to the optimum control problem defined by (3.83) - (3.85) is given by the equations

Deterministic Quadratic Optimum Control:

$$
\begin{equation*}
u(t)=-F \hat{\bar{x}}(t) \tag{3.86}
\end{equation*}
$$

where

$$
\begin{align*}
& F=\left(1 / \sigma^{2}\right) R^{-1} \bar{B}^{\prime} M \tag{3.87}\\
& M \bar{A}+\bar{A}^{\prime} M-\left(1 / \sigma^{2}\right) M \overline{B R} R^{-1} B^{\prime} M+\bar{Q}=0 \tag{3.88}
\end{align*}
$$

Kalman Filter:

$$
\begin{equation*}
\dot{\hat{\bar{x}}}=\overline{\mathrm{A}} \hat{\bar{x}}+\bar{B} v+K(y-\bar{H} \hat{\bar{x}}) \tag{3.89}
\end{equation*}
$$

where

$$
\begin{align*}
& K=P \bar{H}^{\prime} W^{-1} \tag{3.90}\\
& 0=\bar{A} P+P \bar{A}^{\prime}-P \bar{H}^{\prime} W^{-1} \overline{H P}+\bar{V} \tag{3.91}
\end{align*}
$$

The feedback control system defined by (3.86) - (3.91) is divided into two parts in tandem. First, a Kalman filter computes the optimum estimate of the augmented state $\hat{\bar{x}}$ from the sensor measurements y. Next, feedback gains multiply the estimated state $\hat{\bar{x}}$ to yield the control signal. In the event that the augmented state vector \bar{x} can be measured perfectly, i.e.,

$$
y \equiv \bar{x}
$$

then, the Kalman filter is not required. In this case the control system is defined by (3.86) (3.88) where $\hat{\bar{x}}=\bar{x}$.

Partitioning the augmented state vector into x and z simplifies the equations (3.86) (3.91) for the control design. The deterministic quadratic optimum control is considered first.

By partitioning the matrix M according to

$$
M=\left[\begin{array}{ll}
M_{1} & M_{2} \\
M_{2} & M_{3}
\end{array}\right]
$$

the optimum control solution (3.86) can be rewritten as

$$
\begin{equation*}
u(t)=u_{x}(t)+u_{z}(t) \tag{3.93}
\end{equation*}
$$

where

$$
\begin{aligned}
& u_{x}(t)=-1 / \sigma^{2} R^{-1} B^{\prime} M_{1} x(t)=-F_{x} \hat{x}(t) \\
& u_{z}(t)=-1 / \sigma^{2} R^{-1} B^{\prime} M_{2} z=-F_{z} \hat{z}(t)
\end{aligned}
$$

The symmetric matrix M_{1} is the positive definite solution of

$$
\begin{equation*}
M_{1} A+A^{\prime} M_{1}-1 / \sigma^{2} M_{1} B R^{-1} B^{\prime} M_{1}+Q=0 \tag{3.94}
\end{equation*}
$$

and the matrix M_{2} is computed from M_{1} according to

$$
\begin{equation*}
M_{2}=-\left(A^{\prime}-1 / \sigma^{2} M_{1} B R^{-1} B^{\prime}\right)^{-1} M_{1} C \tag{3.95}
\end{equation*}
$$

In the derivation of (3.94) and (3.95) it is assumed that $E=0$ in \bar{A} which corresponds to the assumption $z=$ constant .

Similarly, by partitioning the matrix P according to

$$
P=\left[\begin{array}{ll}
P_{1} & P_{2} \\
P_{2}^{\prime} & P_{3}
\end{array}\right]
$$

the equations (3:89) - (3.91) for the Kalman filter become

$$
\begin{align*}
& \dot{\hat{x}}=A \hat{x}+B u+C \hat{z}+K_{x}(y-H x) \tag{3.96}\\
& \dot{\hat{z}}=E \hat{z}+K_{z}(y-H x)
\end{align*}
$$

and

$$
\begin{align*}
& K_{x}=P_{1} H^{\prime} W^{-1} \tag{3.97.}\\
& K_{z}=P_{2}^{\prime} H^{\prime} W^{-1}
\end{align*}
$$

The partitioning of the P matrix does not simplify the computation of the submatrices P_{1} and P_{2} as in case of the matrix M. Hence, P_{1} and P_{2} are computed by solving (3.91) for the positive definite covariance matrix P. In the computation of P it is assumed $E \neq 0$ and F. $\neq 0$: If $\mathcal{F}=0$ then $P_{2}=P_{3}=0$. This implies that the bias disturbances z can be determined perfectly which is not realistic. A small amount of damping ($E \neq 0$) is included in the noise model of bias disturbances in order to yield a finite value of P_{3}.

3.4.2 Correlation Between Trim Solution and Optimum Contral Solution

There is a relationship between the optimum control approach and the trim control approach. This relationship relates the optimum steady state control value $u(\infty)$ to the trim solution δ for the case when the control weighting matrix R in the performance criterion (3.82) of the optimum control approach and in the performance criterion (3.19) of the trim control approach are the same.

The derivation given below is for the case of complete state feedback for which (3.92) holds. It appears that the proof extends to the more general case in which she optimum control system includes the Kalman filter to estimate the state. A detailed proof, however, has not been developed for the more general case.

Substituting (3.93) into (3.80) yields for the case of complete state feedback the closed loop dynamics

$$
\begin{equation*}
\dot{x}=\tilde{A} x+\tilde{C} z \tag{3.98}
\end{equation*}
$$

where

$$
\begin{aligned}
& \widetilde{A}=A-1 / \sigma^{2} B R^{-1} B^{\prime} M_{1} \\
& \widetilde{C}=C-1 / \sigma^{2} B R^{-1} B^{\prime} M_{2}
\end{aligned}
$$

Since the matrix \tilde{A} is asymptotically stable, setting $\dot{x}=0$ in (3.98) results in the formula

$$
\begin{equation*}
x\left({ }^{\infty}\right)=-\tilde{A}^{-1} \widetilde{C} z \tag{3.99}
\end{equation*}
$$

for computing the steady state value of the state vector. In turn, substituting (3.99) and (3.95) into (3.93) gives that the steady state value of the control vector is

$$
\begin{equation*}
u(\infty)=u_{x}(\infty)+u_{z}(\infty) \tag{3.100}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{x}(\infty)=R^{-1} B^{\prime} M_{1}\left(\sigma^{2} \widetilde{A}\right)^{-1} \widetilde{C} z \tag{3.101}\\
& u_{z}(\infty)=R^{-1} B^{\prime}\left(\sigma^{2} \widetilde{A}^{\prime}\right)^{-1} M_{1} C z \tag{3.102}
\end{align*}
$$

Next we will consider how $u(\infty)$ varies with the scalar parameter σ in the performance criterion (3.82). In particular what is the limiting value of $u(\infty)$ as σ approaches zero. In determining the limiting solution, we must take into account the variation of the matrices M_{1} and M_{2} with σ. A solution of (3.94) is sought in the form of a series in ascending power of σ :

$$
\begin{equation*}
M_{1}=N_{0}+\sigma N_{1}+\sigma^{2} N_{2}+\ldots \tag{3.103}
\end{equation*}
$$

In papers by Friedland [8] and Hutton [9], it is shown that the following equations:

$$
\begin{array}{r}
N_{0} B=0 \\
N_{0} A+A^{\prime} N_{0}+Q-N_{1} B R^{-1} B^{\prime} N_{1}=0 \\
N_{1} A+A^{\prime} N_{1}-N_{2} B R^{-1} B^{\prime} N_{1}-N_{1} B R^{-1} B^{\prime} N_{2}=0 \tag{3.105}
\end{array}
$$

must be satisfied if (3.103) is a solution to (3.94). The above equations are formed by substituting (3.103) into (3.94) and equating matrix coefficients of like powers of σ. By matrix manipulations of (3.104) and (3.105), it is shown in [8] that. N_{0} is the positive semidefinite solution of

$$
\begin{align*}
0= & N_{0} A\left[I-B\left(B^{\prime} Q B\right)^{-1} B^{\prime} Q\right]+\left[I-Q B\left(B^{\prime} Q B\right)^{-1} B^{\prime}\right] A^{\prime} N_{0}+Q-Q B\left(B^{\prime} Q B\right)^{-1} B^{\prime} Q \\
& -N_{0} A B\left(B^{\prime} Q B\right)^{-1} B^{\prime} A^{\prime} N_{0} \tag{3.106}
\end{align*}
$$

After solving (3.106) for N_{0}, we can solve (3.105) for the positive semi-definite matrix N_{1}.

Consider the asymptotic value of

$$
\begin{equation*}
\left(\sigma^{2} \tilde{A}\right)^{-1}=\left(\sigma^{2} A-B R^{-1} B^{\prime} M_{1}\right)^{-1} \tag{3.107}
\end{equation*}
$$

as σ approaches zero. For all nonzero σ, the matrix M_{1} is positive definite. From (3. 104), the matrix M_{1} is positive semi-definite at $\sigma=0$. However, if the first term $\sigma^{2} \mathrm{~A}$ in (3.107) decays to zero more rapidly than the second term, then

$$
\begin{equation*}
\left(\sigma^{2} \tilde{A}\right)^{-1} \rightarrow-M_{1}^{-1}\left(B R^{-1} B^{\prime}\right)^{-1} \text { as } \sigma \rightarrow 0 \tag{3.108}
\end{equation*}
$$

provided $B R^{-1} B^{\prime}$ is positive definite. Substituting (3.103) into (3.107) and using (3.104) gives that

$$
\begin{equation*}
\left[\sigma^{2} \widetilde{A}\right]^{-1}=\left[\sigma^{2} A-B R^{-1} B^{\prime}\left(\sigma N_{1}+\sigma^{2} N_{2}+\ldots\right)\right]^{-1} \tag{3.109}
\end{equation*}
$$

The dominant term in (3.109) is $B R^{-1} B^{\prime} N_{1}$ which is derived from the second term in (3.107) and indicates that (3.108) is valid.

Substituting (3.108) into (3.95) and (3.98) gives

$$
\begin{align*}
& \lim _{\sigma \rightarrow 0} M_{2}=-\left(B R^{-1} B^{\prime}\right)^{-1} C \tag{3.110}\\
& \lim _{\sigma \rightarrow 0} \tilde{C}=0 \tag{1ון}
\end{align*}
$$

Further substituting (3.108) into (3.101) and (3.102) and using (3.111) yields the results

$$
\begin{align*}
& \lim _{\sigma \rightarrow 0} u(\infty)=\lim _{\sigma \rightarrow 0} u_{z}(\infty)=-R^{-1} B^{\prime}\left(B R^{-1} B^{\prime}\right)^{-1} C z \tag{3.112}\\
& \lim _{\sigma \rightarrow 0} u_{x}(\infty)=0 \tag{3.113}
\end{align*}
$$

The trim control problem is to find the set of controls δ satisfying

$$
\begin{equation*}
0=C z+B \delta \tag{3.114}
\end{equation*}
$$

and minimizing the performance index

$$
\begin{equation*}
J=1 / 2 \delta^{\prime} \bar{R} \delta \tag{3.115}
\end{equation*}
$$

The solution to (3.114) and (3.115) is

$$
\begin{equation*}
\delta=-\bar{R}^{-1} B\left(B \bar{R}^{-1} B^{\prime}\right)^{-1} C z \tag{3.116}
\end{equation*}
$$

Comparing (3.116) to (3.112) provides the fundamental result that

$$
\begin{equation*}
\delta=\lim _{\sigma \rightarrow 0} u^{(\infty)} \text { if } \bar{R}=k^{2} R \tag{3.117}
\end{equation*}
$$

where k is an arbitrary scalar. Thus the steady state value of the optimum control solution in the case of unlimited control authority (control weighting matrix R in the performance criterion goes to zero) is equal to the trim solution provided the relative control weighting matrices are the same in both cases. This provides a correlation between the optimum control solution and the trim solution.

4. SPACE SHUTTLE CONTROL

Control of the Space Shuttle is studied during ascent when more control effectors are available than required. The analytical methods developed in Section 3 are applied to the lateral control problem. An illustration of the Space Shuttle configuration, given in Figure 4.1, shows the two aerodynamic surfaces and five rocket engines available for control. For purposes of later reference these controls are identified as follows:

1) top orbiter rocket engine
2) right orbiter rocket engine
3) left orbiter rocket engine
4) right solid rocket motor
5) left solid rocket motor
6) aileron.
7) rudder

By varying the angular position of these controls, seven independent means of lateral control are achieved. But only three independent controls are required, leaving four redundant controls. If the solid rocket motors (SRM) are not gimballed then the number as independent controls is reduced to five, leaving two redundant controls. The results in this report are for the latter case. However, the equations and computer programs used to perform the calculation of the control deflections include the possibility of gimballing the SRM.

4.1 Space Shuttle Dynamics

A mathematical model describing the lateral motion of the Space Shuttle is given in this section. This description entails an extensive number of the parameters defined in Appendix B together with a tabulation of their numerical values.

The set of differential equations describing the translational and rotational motion of the vehicle are based on summing the forces and moments along the body axes of the vehicle*. The body axes are defined as a Cartesian coordinate system fixed to the vehicle and whose origin is located at the center of mass as shown in Figure 4.2. The attitude and rotational rate

[^1]Figure 4.1 Ascent Control Configuration of Space Shuttle

of the vehicle are defined by the Euler angles and the components of the angular velocity vector along the three body axes. Specifically

$$
\begin{aligned}
& \varphi=\text { roll angle } \\
& \theta=\text { pitch angle } \\
& \psi=\text { yaw angle } \\
& p=\text { roll rate } \\
& q=\text { pitch rate } \\
& r=\text { yaw rate }
\end{aligned}
$$

Figure 4.2 Body Axes and Notation

The positive directions are as shown in Figure 4.2. Upper case letters denote the total motion (Nominal and Perturbation) of the vehicle. The velocities, forces, and moments about the three body axes are defined as follows:

$$
\begin{aligned}
U, X & =\text { forward velocity and force } \\
V, Y & =\text { side velocity and force } \\
W, Z & =\text { downward velocity and force } \\
L & =\text { rolling moment } \\
M & =\text { pitching moment } \\
N & =\text { yawing moment }
\end{aligned}
$$

The kinematic and dynamic equations describing the lateral motion of the vechile are

$$
\begin{align*}
& \mathrm{Y}=m[V+\mathrm{RU}-\mathrm{PW}-g \cos \theta \sin \Phi] \\
& \mathrm{L}=I_{x} \dot{\mathrm{P}}-I_{x z} \dot{\mathrm{R}}+\mathrm{QR}\left(I_{z}-I_{y}\right)-I_{x z} \mathrm{PQ} \tag{4.1}\\
& \mathrm{~N}=-I_{x z} \dot{\mathrm{P}}+I_{z} \dot{\mathrm{R}}+\mathrm{PQ}\left(I_{y}-I_{x}\right)+I_{x z} \mathrm{QR}
\end{align*}
$$

and

$$
\begin{align*}
& \dot{\Phi}=P+Q \sin \Phi \tan \theta+R \cos \Phi \tan \Theta \tag{4.2}\\
& \dot{\Psi}=(Q \sin \Phi+R \cos \Phi) \sec \Theta
\end{align*}
$$

where the moments of inertia are defiried by

$$
\begin{array}{ll}
I_{x}=\int\left(y^{2}+z^{2}\right) d m & I_{y}=\int\left(x^{2}+z^{2}\right) d m \tag{4.3}\\
I_{z}=\int\left(x^{2}+y^{2}\right) d m & I_{x z}=\int x z d m
\end{array}
$$

For this investigation no data was available on $I_{x z}$, thus the approximation $I_{x z}=0$ is used. The (total) vehicle motion modeled by (4.1) and (4.2) can be partitioned into nominal plus perturbation motion by substituting

$$
\begin{array}{lll}
U=U_{0}+u & P=P_{0}+p & \Theta=\Theta_{0}+\theta \\
V=V_{0}+v & Q=Q_{0}+q & \Phi=\Phi_{0}+\varphi \\
W=W_{0}+w & R=R_{0}+r & \Psi=\Psi_{0}+\psi
\end{array}
$$

where the capital letters with subscript "o" denote the nominal motion and the lower case letters denote the perturbation motion. For the nominal motion along the trajectory it is assumed that

$$
\begin{array}{lll}
U_{0} \neq 0 & P_{0}=0 & \Theta_{0} \neq 0 \\
V_{0}=0 & R_{0}=0 & \Phi_{0}=0 \\
W_{0} \neq 0 & Q_{0} \neq 0 & \Psi_{0}=0
\end{array}
$$

The nonzero values are tabulated in Appendix B for each of the twelve flight times along the ascent trajectory for which the perturbation motion is to be studied. Substituting (4.4) and (4.5) into (4.1) and (4.2) results in the following linearized equations of motion for small perturbations from the nominal trajectory:

$$
\begin{align*}
& \mathrm{Y}=\mathrm{m}\left[\dot{\mathrm{v}}+U_{0} \mathrm{r}-\mathrm{g} \cos \Theta_{0} \varphi\right] \\
& \mathrm{L}=I_{x} \dot{p}+\left(I_{z}-I_{y}\right) Q_{0} \mathrm{r} \\
& \mathrm{~N}=I_{z} \dot{r}+\left(I_{y}-I_{x}\right) Q_{0} p \tag{4.6}\\
& \dot{\varphi}=p+Q_{0} \tan \Theta_{0} \varphi+\tan \Theta_{0} r \\
& \dot{\psi}=\left(Q_{0} \varphi+r\right) \sec \Theta_{0}
\end{align*}
$$

Adding the equation $\dot{y}=v$ to (4.6) and reqriting in the state space formulation results in the vector-matrix equation

$$
\begin{equation*}
\dot{x}=\bar{A} x+\bar{B} f \tag{4.7}
\end{equation*}
$$

where the state and forcing vectors are

$$
x=[y, \varphi, \psi, v, p, r]^{\prime}
$$

and

$$
f=[Y, L, N]^{\prime}
$$

The constant matrix \bar{B} has the form

$$
\bar{B}=\frac{3}{\left[\begin{array}{c}
0 \\
--0 \\
\Lambda^{-1}
\end{array}\right] \psi_{3}^{3}}
$$

where

$$
\begin{equation*}
\Lambda=\operatorname{Diag}\left[m, I_{x}, I_{z}\right] \tag{4.8}
\end{equation*}
$$

The forcing vector f represents the lateral forces and moments acting on the vehicle and can be modeled by

Substituting (4.9) into (4.7) gives the desired vector-matrix equation for the dynamics of the vehicle

$$
\begin{equation*}
\dot{x}=A x+B \delta+C z \tag{4.10}
\end{equation*}
$$

where

$$
a_{54}=L_{v}
$$

$$
a_{64}=N_{v}
$$

$$
a_{44}=Y_{v}
$$

$$
\begin{align*}
& A=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & a_{22} & 0 & 0 & 1 & a_{26} \\
0 & a_{32} & 0 & 0 & 0 & a_{36} \\
0 & a_{42} & 0 & a_{44} & a_{45} & a_{46} \\
0 & 0 & 0 & a_{54} & a_{55} & a_{56} \\
0 & 0 & 0 & a_{64} & a_{65} & a_{66}
\end{array}\right] \tag{4.11}\\
& a_{22}=Q_{0} \tan \Theta_{0} \quad a_{26}=\tan \Theta_{0} \\
& a_{32}=Q_{0} \sec \Theta_{0} \quad a_{36}=\sec \Theta_{0} \\
& a_{42}=\mathrm{g} \cos \theta_{0} \\
& a_{45}=Y_{P} \\
& a_{46}=Y_{r}-U_{0} \\
& a_{55}=L_{p} \\
& \sigma_{56}=L_{r}+Q_{0}\left(I_{y}-I_{z}\right) / I_{x} \\
& a_{65}=N_{p}+Q_{0}\left(I_{x}-I_{y}\right) / I_{z} \quad a_{66}=N_{r}
\end{align*}
$$

$$
\begin{align*}
& f \equiv\left[\begin{array}{c}
Y \\
L \\
N
\end{array}\right]=\left[\begin{array}{lll}
Y_{v} & Y_{p} & Y_{r} \\
L_{v} & L_{p} & L_{r} \\
N_{v} & N_{p} & N_{r}
\end{array}\right]\left[\begin{array}{l}
v \\
p \\
r
\end{array}\right]+\widetilde{B} \delta+\widetilde{C}_{z} \tag{4.9}\\
& \text { aerodynamic forces and } \\
& \text { moments } \\
& \text { bias disturbance } \\
& \text { forces and moments } \\
& \text { and } \\
& \text { moments }
\end{align*}
$$

and

$$
\begin{align*}
& B=\frac{3}{\left[\begin{array}{c}
-1 \\
-\Lambda^{-1} \widetilde{B}
\end{array}\right]}{ }^{0} 3 \tag{4.12}\\
& C=\underset{\left[\begin{array}{c}
-1 \frac{0}{2}-- \\
\Lambda^{-1}
\end{array}\right]}{\frac{3}{3}}
\end{align*}
$$

In the remainder of this section, the formulas for computing the matrix elements in (4.9), which are required for (4.10), are developed.

The formulas for the matrix elements corresponding to the aerodynamic forces and moments are

$$
\begin{array}{lll}
Y_{v}=Q C_{y \beta} / U_{0} & Y_{p}=0 & Y_{r}=Q \bar{c} C_{y r} / 2 U_{0} \\
L_{v}=Q_{x} C_{l p} U_{0} & L_{p}=Q_{x} b C_{\ell p} / 2 U_{0} & L_{r}=Q_{x} b C_{l r} / 2 U_{0} \tag{4.13}\\
N_{v}=Q_{z} C_{n \beta} / U_{0} & N_{p}=Q_{z} b C_{r p} / 2 U_{0} & N_{r}=Q_{z} b C_{n r} / 2 U_{0}
\end{array}
$$

where

$$
\begin{aligned}
& Q=q S / m \quad Q_{x}=q S b / I_{x} \quad Q_{z}=q S b / I_{z} \\
& q=\text { dynamic pressure } \\
& U_{0}=\text { nominal velocity in } \times \text {-direction } \\
& S=\text { reference area } \\
& b=\text { reference length } \\
& \bar{c}=\text { length of mean aerodynamic cord }
\end{aligned}
$$

Next the expressions for the forces and moments generated by gimballing the rocket engines are derived. The location and nominal direction of each rocket engine with respect to the Cartesian coordianate system fixed to the vehicle is shown in Figure 4.3 *. The rocket engines are numbered 1 through 5 as indicated in Figure 4.3 and in agreement with the list of controls at the beginning of Section 4. Let x_{i}, y_{i}, z_{i} denote the coordinates of the

[^2]vehicle center of gravity where $y_{c g}=0$. The (position) vector from the center of gravity to the i th rocket engine is, therefore,
\[

$$
\begin{equation*}
\left[x_{c g}+x_{i}, y_{i}, z_{c g}+z_{i}\right] \tag{4:14}
\end{equation*}
$$

\]

The thrust vector with magnitude F_{t} has the components

$$
\begin{array}{ll}
\text { (forward) } & \mathrm{X}_{t}=\mathrm{F}_{i}\left(\cos \theta_{i} \cos \psi_{i}-\cos \theta_{i} \sin \psi_{i} \delta_{\mathrm{ey} t}-\sin \theta_{i} \cos \psi_{i} \delta_{\mathrm{ep} i}\right) \\
\text { (sideward) } & \mathrm{Y}_{i}=\mathrm{F}_{i}\left(\cos \theta_{i} \sin \psi_{i}+\cos \theta_{i} \cos \psi_{i} \delta_{\mathrm{ey} i}-\sin \theta_{i} \sin \psi_{i} \delta_{\mathrm{ep} t}\right) \tag{4,15}\\
\text { (downward) } & \mathrm{Z}_{i}=\mathrm{F}_{i}\left(\sin \theta_{i}+\cos \theta_{i} \delta_{\mathrm{ep} i}\right. \text {) }
\end{array}
$$

where the angles defining the direction of the thrust vector are

$$
\theta_{i}=\text { nominal pitch angle of the } i \text { th rocket engine. }
$$

$\psi_{i}=$ nominal yaw angle of the i th rocket engine.
$\delta_{\mathrm{epi}}=$ pitch deflection of the th rocket engine.
$\delta_{\text {eyt }}=$ yaw deflection of the t th rocket engine.
as shown in Figure 4.4. The arrows in Figure 4.4 indicate the directions of positive angles. The nominal directions of the rocket engines are shown in Figure 4.3 and listed in Table 4.1. The derivation of (4.15) assumes that the deflection angles are small.

Table 4.1 Nominal Directions of the Rocket Engines

Figure 4.3 Location and Nominal Direction of Rocket Engines

Rear
View
(1)

Figure 4.4 Angular Direction of Thrust Axis

The moments induced by the t th rocket engine are given by the cross product of the position vector (4.14) with the thrust vector which results in
(roll)

$$
L_{i}=y_{i} Z_{i}-\left(z_{c g}+z_{i}\right) Y_{t}
$$

(pitch)

$$
\begin{equation*}
M_{t}=\left(z_{c g}+z_{i}\right) x_{i}-\left(x_{c g}+x_{i}\right) Z_{t} \tag{4.16}
\end{equation*}
$$

(yaw)

$$
N_{t}=\left(x_{c g}+x_{i}\right) Y_{i}-y_{i} X_{i}
$$

Substituting (4.15) into (4.16) expresses the moments as a linear function of the deflection angles.

Having derived the general equations for modeling the rocket engines, the next step is to derive the equations corresponding to the term $\widetilde{\mathrm{B}} \delta$ in (4.9).

The elements of the control vector are

$$
\begin{align*}
& \delta_{1}=\delta_{e y 1} \\
& \delta_{2}=\delta_{e y 2}^{\prime}=\frac{1}{2}\left(\delta_{e y 3}+\delta_{e y 2}\right) \\
& \delta_{3}=\delta_{e p 3}^{\prime}=\frac{1}{2}\left(\delta_{e p 3}-\delta_{e p 2}\right) \\
& \delta_{4}=\delta_{e y 4}^{\prime}=\frac{1}{2}\left(\delta_{e y 5}+\delta_{e y 4}\right) \tag{4.17}\\
& \delta_{5}=\delta_{e p 5}^{\prime}=\frac{1}{2}\left(\delta_{e p 5}-\delta_{e p 4}\right) \\
& \delta_{6}=\delta_{a} \\
& \delta_{7}=\delta_{r}
\end{align*}
$$

where the deflection angles are defined as follows:
$\delta_{\text {eyl }}=$ yaw angle of top orbiter engine
$\delta_{e y 2}=$ yaw angle of right orbiter engine
$\delta_{\text {ep2 }}=$ pitch angle of right orbiter engine
$\delta_{\text {ey3 }}=$ yaw angle of left orbiter engine

$$
\begin{aligned}
& \delta_{e p 3}=\text { pitch angle of left orbiter engine } \\
& \delta_{e y 4}=\text { yaw angle of right SRM } \\
& \delta_{e p 4}=\text { pitch angle of right SRM } \\
& \delta_{e y 5}=\text { yaw angle of left SRM } \\
& \delta_{e p 5}=\text { pitch angle of left SRM }
\end{aligned}
$$

The elements of the constant 7×3 matrix

$$
\widetilde{B}=\left[\begin{array}{lllllll}
b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} & b_{17} \tag{4.18}\\
b_{21} & b_{22} & b_{23} & b_{24} & b_{25} & b_{26} & b_{27} \\
b_{31} & b_{32} & b_{33} & b_{34} & b_{35} & b_{36} & b_{37}
\end{array}\right]
$$

are computed from the following set of formulas:

$$
\begin{align*}
& \mathrm{b}_{11}=F \cos 18^{\circ} \\
& \mathrm{b}_{21}=-F\left(z_{1}-z_{c g}\right) \cos 18^{\circ} \\
& \mathrm{b}_{31}=F\left(x_{1}-x_{c g}\right) \cos 18^{\circ} \\
& \mathrm{b}_{12}=2 F \cos 12^{\circ} \cos 3.5^{\circ} \\
& \mathrm{b}_{22}=-2 F\left(z_{2}-z_{c g}\right) \cos 12^{\circ} \cos 3.5^{\circ} \\
& \mathrm{b}_{32}=2 \mathrm{~F}\left[\left(x_{2}-x_{c g}\right) \cos 3.5^{\circ}-y_{2} \sin 3.5^{\circ}\right] \cos 12^{\circ} \\
& \mathrm{b}_{13}=2 \mathrm{~F} \sin 12^{\circ} \cos 3.5^{\circ} \\
& \mathrm{b}_{23}=2 \mathrm{~F}\left[y_{2} \cos 12^{\circ}-\left(z_{2}-z_{c g}\right) \sin 12^{\circ} \sin 3.5^{\circ}\right] \\
& \mathrm{b}_{33}=2 F\left[y_{2} \cos 3.5^{\circ}+\left(x_{2}-x_{c g}\right) \sin 3.5^{\circ}\right] \sin 12^{\circ} \tag{4.19}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{b}_{14}=2 \mathrm{~F}_{\text {SRM }} \cos 15^{\circ} \\
& b_{24}=2 F_{S R M}\left(z_{4}-z_{c g}\right) \cos 15^{\circ} \\
& \mathrm{b}_{34}=2 \mathrm{~F}_{\text {SRM }}\left[\left(x_{4}-x_{c g}\right) \cos 15^{\circ}-y_{4} \sin 15^{\circ}\right] \\
& b_{15}=0 \\
& b_{25}=2 F_{S R M} y_{4} \\
& b_{35}=0 \\
& b_{16}=q S C_{y \delta_{a}} \\
& b_{26}=q S b_{r e f}\left(C_{l \delta_{a}}\right)_{c g} \\
& b_{36}=q S b_{r e f}\left(C_{n \delta_{a}}\right)_{c g} \\
& b_{17}=q S C_{y \delta_{r}} \\
& b_{27}=q S b_{r e f}\left(C_{e \delta_{r}}\right) \\
& b_{37}=q S b_{r e f}\left(C_{n \delta_{r}}\right)_{c g} \\
& \left(C_{\ell \delta_{a}}\right)_{c g}=C_{l \delta_{a}}+C_{y \delta_{a}}\left(z_{c g}-z_{m r p}\right) / b_{r e f} \\
& \left(C_{n \delta_{a}}\right)_{c g}=C_{n \delta_{a}}-C_{y \delta_{a}}\left(x_{c g}-x_{m r p}\right) / b_{r e f} \\
& \left(C_{l \delta_{r}}\right)_{c g}=C_{l \delta_{r}}+C_{y \delta_{r}}\left(z_{c g}-z_{\text {mrp }}\right) / b_{r e f} \tag{4.20}\\
& \left(C_{n \delta_{r}}\right)=C_{n \delta_{r}}-C_{y \delta_{r}}\left(x_{c g}^{-x_{m r p}}\right) / b_{r e f}
\end{align*}
$$

The formulas in (4.19) are grouped by column. The i th column of the \widetilde{B} matrix in (4.9) defines the values of Y, L, N corresponding to δ_{i}. The formulas for the first five columns are derived from (4.14) - (4.17) . The last two columns corresponding to the aileron
and rudder; respectively, are computed using the standard formulas for aerodynamic control surfaces. The data for the stability derivatives received from MSFC were with respect to the moment reference point located at $x_{\text {mrp }}, y_{\text {mrp }}, z_{\text {mrp }}$ where $y_{\text {mrp }}=0$. The translation of data from the moment reference point to the center of gravity is given by (4.20).

The force and moments in (4.9) due to the bias disturbances is modeled by the term $\widetilde{\mathbb{C}} \mathbf{z}$. The elements of the vector z or bias inputs are

$$
\begin{aligned}
& z_{1}=\beta=\text { side slip angle due to a steady side wind } \\
& z_{2}=T_{r_{b}}=\text { roll bias torque due to SRM misalignment } \\
& z_{3}=T_{y_{b}}=\text { yaw bias torque due to SRM misalignment }
\end{aligned}
$$

The constant 3×3 matrix $\widetilde{\mathcal{C}}$ has the form

$$
\tilde{c}=\left[\begin{array}{lll}
c_{11} & 0 & 0 \tag{4.21}\\
c_{21} & 1 & 0 \\
c_{31} & 0 & 1
\end{array}\right]
$$

where the elements in the first column are computed from

$$
\begin{align*}
& C_{11}=q S C_{y \beta}^{*} \\
& C_{21}=q S b\left(C_{l \beta}^{*}\right)_{c g} \\
& C_{31}=q S b\left(C_{n \beta}^{*}\right)_{c g} \\
& \left(C_{\ell \beta}^{*}\right)_{c g}=C_{l \beta}^{*}+C_{y \beta}^{*}\left(z_{c g}-z_{m r p}\right) / b \tag{4,22}\\
& \left(C_{n \beta c g}^{*}\right)^{\prime}=C_{n \beta}^{*}-C_{y \beta}^{*}\left(x_{c g}-x_{m r \beta}\right) / b \\
& C_{y \beta}^{*}=C_{y \beta}+\Delta C_{y \beta} \\
& C_{l \beta}^{*}=C_{\ell \beta}+\Delta C_{l \beta} \\
& C_{n \beta}^{*}=C_{n \beta}+\left(\Delta C_{n \beta}\right)_{A F T}+\left(\Delta C_{n \beta}\right)_{\text {FORWARD }}
\end{align*}
$$

The last three equations in (4.22)account for the change in the stability derivatives due to the addition of a pair of dorsal fins to the Space Shuttle configuration as indicated in the sketch below.

To summarize, the lateral dynamics of the space shuttle is governed by the vector matrix equation (4.10). The coefficient matrices A, B, C in (4.10) are computed using $(4.8),(4.9),(4.11)-(4.13),(4.18)-(4.22)$. The values of the parameters required by these equations are given in Appendix 8 .

4.2 TRIM PROBLEM AND SOLUTION

When bias disturbances generate forces and moments that cause the vehicle to deviate from the nominal rajectory, the rocket and aerodynamic controls must be deflected in such a way as to counterbalance these forces and moments. For the lateral trim problem of the space shuttle, the bias disturbances are due primarily to steady side winds and SRM misalignments. The state vector x in (4.7) defines the deviation of the vehicle from the nominal trajectory in the lateral-direction. Hence, the trim condition is to maintain $x=0$. On substituting $x=0$ into (4.10) one finds that the trim solution δ must satisfy the matrix linear equation

$$
\begin{equation*}
0=B \delta+C z \tag{4.23}
\end{equation*}
$$

For a given value of the bias vector $z,(4.23)$ represents six equations in seven unknowns. However, the equations are not all linearly independent. From (4.12) the first three equations are identically zero independent of δ and the last three equations have the form

$$
\begin{equation*}
0=\Lambda^{-1} \widetilde{B} \delta+\Lambda^{-1} \widetilde{C} z \tag{4.24}
\end{equation*}
$$

where Λ is the diagonal matrix defined by (4.8). Premultiply (4.24) by Λ gives

$$
\begin{equation*}
0=\widetilde{\mathrm{B}} \delta+\widetilde{\mathrm{Cz}} \tag{4.25}
\end{equation*}
$$

which is equivalent to setting $\mathrm{Y}=\mathrm{L}=\mathrm{N}=0$ in (4.9). In other words, (4.25) states that the trim control must provide zero net side force, rolling moment, and yawing moment in the presence of a steady side wind and SRM misalignments. Replacing (4.23) by (4.25) has reduced the number of trim equations from six to three. In terms of the notation introduced in Section 2.1, the dimensions of the trim problem are

$$
\begin{array}{ll}
m=7 & \text { : number of controls } \\
n=6 & \text { : number of state variables } \\
\tilde{n}=3 & : \text { number of linearly independent trim equations }
\end{array}
$$

In order to determine the optimum trim solution, a performance criterion of the following form was selected:

$$
\begin{align*}
\mathrm{r}(\delta)= & \frac{1}{2} \sum_{i=1}^{7} W_{1 i}^{2}\left(\delta_{i} / \delta_{i \text { max }}\right)^{2} \\
& +\sum_{i=1}^{5} W_{2 i}^{2}\left(1-\cos \delta_{i}\right) \tag{4.26}\\
& +\frac{1}{2} \sum_{i=6}^{7} W_{2 i}^{2}\left(\mathrm{qS}_{i} C_{D_{i}} \delta_{i}\right)^{2}
\end{align*}
$$

where
$\delta_{t \text { max }} \quad$ Maximum deflection angle allowed for the $t^{\text {th }}$ control because of physical limitations or excessive hinge moments.

9
Dynamic pressure
S
$C_{D_{i}} \quad$ Coefficient of drag corresponding to the $i^{\text {th }}$ control.

The numerical values of the above parameters is given in Appendix B.
The seven components of the vector 6 of control deflections are defined according to (4.17). The first term in (4.26) penalizes the movement of the actuators for trim in order to leave maximum flexibility for dynamic response. The second term in (4.26) penalizes the thrust loss(gain) caused by gimballing the rocket engines away from their nominal position. The third term in (4.26) penalizes the thrust loss due to drag caused by deflecting aerodynamic surfaces.

Substituting the approximation

$$
1-\cos \delta_{i} \approx \frac{1}{2} \delta_{i}^{2}
$$

into (4.26), the performance criterion can be written as the quadratic form

$$
\begin{equation*}
r(\delta)=\frac{1}{2} \delta^{\prime} R_{\delta} \tag{4.27}
\end{equation*}
$$

where R is a diagonal matrix whose elements are given by

$$
\begin{array}{ll}
R_{i i}=W_{1 i}^{2} / \delta_{i \text { max }}^{2}+W_{2 i}^{2} & i=1, \ldots, 5 \\
R_{i i}=W_{i i}^{2} / \delta_{i \text { max }}^{2}+W_{2 t}^{2}\left(q S_{i} C_{D_{i}}\right)^{2} & i=6,7 \tag{4.29}
\end{array}
$$

The fourteen (relative) weighting factors $W_{1 t}$ and $W_{2 i}$ are selected by the user to achieve the best performance within the restriction imposed by the problem. This best performance is a judgement evaluation unless additional criteria are used.

The lateral trim deflection angles are the solution to the optimization problem defin ed by (4.25) and (4.27). The objective is to solve the trim problem for the maximum expected values of sideslip angle and for different combinations of roll and yaw misalignment torques that encompass the worse case situation. The sideslip angle is computed from the mean side wind velocity and the vehicle velocity according to

$$
\beta=\sin ^{-1}\left(V_{y} N\right)
$$

The values of V_{y} and V for each of the twelve trajectory points are listed in Appendix B and result in the values of sideslip angle listed in Table 4.2. Plotting the values of β as a function of flight time yields the sideslip profile shown in Figure 4.5. Eight different combinations of yaw and roll bias torques due to SRM misalignments were provided by MSFC for studying the trim problem and these are listed in Table 4.3.

A computer program entitled TRIMS for computing lateral trim of the Space Shuttle was developed. The TRIMS program solves the trim problem given by (4.25) and (4.27) using the numerical methods described in Section 3.1. The program user can select either the steepest descent method or the Newton-Raphson method at execution time. Although the trim problem given by (4.25) and (4.26) is linear, these numerical methods have the capability to solve the nonlinear problem. The TRIMS program is coded to facilitate changes in the trim problem including the replacement of the linear trim problem by a nonlinear trim problem.

Table 4.2 Sideslip Angle for Different Flight Times

flight time (sec)	β (rad)	8 (deg)
25	.02096	1.201
40	.05996	3.436
50	.07887	4.519
60	.09942	5.696
65	.10642	6.097
70	.11124	6.374
75	.11635	6.667
80	.11404	6.534
90	.06169	3.535
100	0	0
110	0	0
140	0	0

Table 4.3 Bias Torques Caused by SRM Misalignment

CASE	YAW BIAS (New. -m$) \times 10^{6}$	ROLL BIAS $($ New. -m$) \times 10^{6}$
1	3.02	0.
2	2.50	0.70
3	0.	0.87
4	-2.50	0.70
5	-3.07	0.
7	-2.50	-0.70
8	0.	-0.87

Figure 4.5 Sideslip Angle vs Flight Time Due to Mean Wind Disturbance

The formulas developed in the previous section for computing the matrix elements in (4.25) are coded into the TRIMS program. The numerical data required by these formulas and tabulated in Appendix B is also stored internally in the program. Similarly the formulas (4.28) and (4.29) used to compute the performance criterion (4.27) are coded into the program together with the required numerical data. Only those input parameters with values that are likely to vary from run to run are entered as input data at execution time. These are the fourteen weighting factors $w_{1 t}$ and $w_{2 t}$ in the performance criterion and the values of the roll and yaw bias torques, z_{2} and z_{3}, respectively. A more detailed description of the TRIMS program including flowcharts, listing, instructions showing how to use the program is given in Appendix C.

The trim angles for the eight different combinations of yaw and roll SRM bias torques in Table 4.3 were computed in a single run of the TRIMS program. Each case entailed computing the trim angles for the twelve trajectory points or flight times which totals to 96 trim solutions. The total cpu time was 5.29 seconds on the IBM $370 / 165$ computer which averages to 0.055 second per trim solution. For this run the second order gradient method and the weighting factors in the performance criterion were chosen to be

$$
\begin{aligned}
& w_{1 t}=\left\{\begin{array}{l}
3000 \text { for } i \neq 6 \\
4000 \text { for } i=6
\end{array}\right. \\
& w_{2 t}=0 \quad t=1, \ldots 7
\end{aligned}
$$

The lateral trim solutions for the eight cases in Table 4.3 are shown in Figure 4.6 where the trim angles are in degrees. The trim angles δ_{4} and δ_{5} for the SRM engines are always zero since in the current TRIMS program the SRM engines are not gimballed. However, the provision for gimballing the SRM engines has been included in the development of the development of the TRIMS program.

For most of the trajectory points in Figure 4.6, especially those with high dynamic pressure, some of the deflection angles exceed the allowable limits by an order of magnitude. This indicates that the Space Shuttle configuration does not have sufficient control authority to meet. the trim conditions $Y=L=M=0$ when the $S R M$ engines are not gimballed.

A check of the TRIMS program against a lateral trim solution computed at MSFC was made. The MSFC solution is for the case of zero net rolling and yawing moments, but, unlike in the TRIMS program the requirement of a zero net side force (i.e., $Y=0$) is not imposed. Also the MSFC solution does not consider the deflection of the aileron. A special modification of the TRIMS program for including or disregarding the trim condition $Y=0$ and/or the aileron deflection was made and is described in Appendix C. Although the actual modification of the TRIMS program to eliminate the constraint $Y=0$ is minor, it is based on a novel procedure derived in Appendix D. A comparison of the trim solutions computed by each program for (supposedly) the same trim problem showed that the deflection angles have about the same magnitude but are not equal. A more detailed discussion of the comparison including plots of the trim solutions is given in Appendix E.

CASE 1

CASE 2

SYSTEM OYNAMICS PARAMETERS
YAW BIAS TOHOUE = 2500000.0 HOLL EIAS TORQUE $=700000.0$

PERFORHANCE CRITERION PARAMETERS	W11 $=3000.00$	W21	0.0
	$\omega 12=3000.00$	W22	0.0
WEIGHTING	$w 13=3000.00$	W23	0.0
FACTORS	$W 14=3000.00$	W24 =	0.0
. ${ }^{\text {a }}$	$\omega 15=3000.00$	*25 =	0.0
	W16 $=4000.00$	W26	0.0
	w17 $=3000.00$	W27	0.0

Thim deflection angles

SYSTEM DYNAMICS PAKAMETELS
Yaw HIAS TORQUE $=\quad 0.0$
HOLL BIAS TOHCUEE $=\quad 870000.0$

Trim deflection angles

SYSTEM DYNAMICS PARAMETERS
YAH BIAS TOHQNE $=-2500000.0$
HOLL BIAS TUKQUE $=700000.0$

PEAFORMANCE CKITERION PARAMETERS

i

TRIM DEFLECTION ANGLES

SYSTEM OYNAMICS PARAMETEHS
YAW HIAS TDRULE $=$ O．U
WOLL HIAS IUNGUE $=-870000.0$

PERFOHMANCE CHITEHION FAKAMETTEHS

THIM DEFLECTION ANGLES

CASE B

SYSTEM DYNANICS PARAMETERS
YAd GIAS TURQUE $=\quad 2500000.0$
ROLL BIAS TURQUE $=-700000.0$

PERFORMANCE CRITERION PARA：AE゙TERS

TAIM DEFLECTION ANGLES

4.3 OPTIMUM FEEDBACK CONTROL AND PERFORMANCE

The vector-matrix equations defining the linear stochastic optimum control problemand its solution are given in Section 3.4. These equations entail computation of the matrices F, M, K, P from the matrices $A, B, C, E, G, H, V, W, Q, R$ defining the optimum control problem. In order to simplify the feedback design, the matrices F, M, K, P are partitioned as follows:

$$
\begin{aligned}
& K=\left[\begin{array}{l}
k_{x} \\
k_{z}
\end{array}\right] \begin{array}{l}
6 \\
3
\end{array} \\
& P=\left[\begin{array}{ll}
P_{1} & P_{2} \\
P_{2}^{\prime} & P_{3}
\end{array}\right] \begin{array}{l}
6 \\
3
\end{array}
\end{aligned}
$$

A block diagram of the complete closed loop system in terms of the matrices listed above is given in Figure 4.7. The lower half of the block diagram depicts the optimum feedback control system.

For the lateral control of the Space Shuttle the state vector x, control vector u, bias vector z, and observation vector y are defined to be

$$
\begin{aligned}
& \left.x=\left[\begin{array}{l}
y \\
\varphi \\
\psi \\
v \\
p \\
r
\end{array}\right] \begin{array}{l}
\text { side displacement } \\
\text { roll angle } \\
\text { yaw angle } \\
\text { side velocity } \\
\text { roll rate } \\
\text { yaw rate }
\end{array} \quad u=\left[\begin{array}{c}
\delta_{1} \\
\delta_{2} \\
\delta_{3} \\
\delta_{4} \\
\text { pitch }
\end{array}\right\} \begin{array}{l}
\text { yaw } \\
\text { yaw } \\
\delta_{5} \\
\text { pitch }
\end{array}\right\} \text { orbiter } \\
& z=\left[\begin{array}{c}
\beta \\
T_{y_{b}} \\
T_{r_{b}}
\end{array}\right] \begin{array}{l}
\text { side slip } \\
\text { yaw bias torque } \\
\text { roll bias torque }
\end{array} \quad y=\left[\begin{array}{c}
y \\
\varphi \\
\psi \\
p \\
r
\end{array}\right]
\end{aligned}
$$

Figure 4.7 Block Diagram of Closed Loop System with Optimum Feedback Control

The vehicle dynamics used in the optimum control design are for the first trajectory point (flight time $=25 \mathrm{sec}$). The elements of the matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ were computed from the data in Appendix B using the equations in Section 4.1. It should be noted that the results in this section are for the case of no dorsal fins and the results in Section 4.2 include the effect of the dorsal fins. For the first trajectory point the difference in the two cases is minor. Since y is assumed to be a subvector of x, the elements of the observation matrix H are either 0 or 1 where a value of 1 in column i indicates that x_{i} is one of the measured quantities. The relative weighting matrices Q and R in the performance criterion (3.82) are selected by the control designer with the goal of optimizing the closed loop performance. The particular approach adopted for this problem is to select Q and R of the form

$$
\begin{aligned}
Q & =\operatorname{Diag}\left\{y_{\max }^{-2}, \varphi_{\max }^{-2}, \psi_{\max }^{-2}, v_{\max }^{-2}, p_{\max }^{-2}, r_{\max }^{-2}\right\} \\
R & =\operatorname{Diag}\left\{u_{\mathrm{I}_{\text {max }}}^{-2}, \ldots, u_{7 \text { max }}^{-2}\right\}
\end{aligned}
$$

The parameter σ in the performance criterion (3.82) is varied until an acceptable "trade off" is achieved between the closed loop performance and the level of control effart. For this example $\sigma=1$ and the maximum values of the state variables and control deflections used in the performance criterion are listed below.

$$
\begin{aligned}
& y_{\text {max }}=10 \mathrm{~m} \\
& \varphi_{\text {max }}=0.01 \mathrm{rad} \\
& \psi_{\text {max }}=0.01 \mathrm{rad} \\
& v_{\text {max }}=5 \mathrm{~m} / \mathrm{sec} \\
& p_{\text {max }}=0.1 \mathrm{rad} / \mathrm{sec} \\
& r_{\text {max }}=0.1 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

The matrix V defining the state excitation noise spectral density is assumed to be diagonal with

$$
\begin{aligned}
& v_{t t}=0 \\
& v_{44}=\left(2 v_{\max }\right)^{2} \\
& v_{55}=\left(0.1 p_{\max }\right)^{2} \\
& v_{66}=\left(0.1 r_{\text {max }}\right)^{2}
\end{aligned}
$$

For this example the matrices G and E defining the noise model associated with the bias inputs are

$$
\begin{aligned}
& G=\operatorname{Diag}\left[0.1,0.1 \times 10^{14}, 0.1 \times 10^{14}\right] \\
& E=\operatorname{Diag}[-0.01,-0.01,0.01]
\end{aligned}
$$

The th diagonal element of G is roughly equal to the maximum value of z_{t} squared. The negative diagonal elements in E provide a small amount of damping in the noise model which is required in order that the covariance matrix P_{3} corresponding to the bias vector z does not become infinite. The observation noise spectral density matrix is assumed to have the form

$$
W=\operatorname{Diag}\left[\sigma_{y}^{2}, \sigma_{\varphi}^{2}, \sigma_{\psi}^{2}, \sigma_{p}^{2}, \sigma_{r}^{2}\right]
$$

The standard deviation σ_{y} defines the level of noise associated with the measurement of y and the other standard deviations are similarly defined. By varying the standard deviations of the sensor noise as part of the design procedure, different Kalman filter designs are obtained. For the final Kalman filter design in this example

$$
\begin{aligned}
\sigma_{y} & =0.1 \gamma_{\max } \\
\dot{\sigma}_{\varphi} & =0.1 \varphi_{\max } \\
\sigma_{\psi} & =0.1 \psi_{\max } \\
\sigma_{p} & =0.01 p_{\max } \\
\sigma_{r} & =0.01 r_{\max }
\end{aligned}
$$

The numerical values of these matrices defining the optimum control problem are given in Figure 4.8 (a).

A computer program entitled Linear Systems Design (LSD) was used to design the optimum feedback system. The LSD program solves the equations for the optimum control solution given in Section 3.4.1. The resulting matrices $M_{1}, M_{2}, F_{x}, F_{z}$ used to design the deterministic quadratic optimum control are shown in Figure 4.8'b). Similarly, the resulting matrices $P_{1}, P_{2}, P_{3}, K_{x}, K_{z}$ used to design the Kalman filter are shown in Figure 4.8 (c).

The performance achieved by the feedback control system was simulated for the different designs. The control deflections as a function of time were plotted and are shown Figures 4.9 and 4.10. Note the SRM deflections δ_{4} and δ_{5} are not plotred since in the current investigation it is assumed that the SRM are not gimballed. The dynamic response in Figures 4.9 and 4.10 is for the case where the vehicle starts from the trim condition for

$$
\begin{aligned}
\beta & =1.20^{\circ} \\
\mathrm{T}_{\mathrm{r}_{\mathrm{b}}} & =3.02 \times 10^{6} \mathrm{~N}-\mathrm{m} \\
\mathrm{~T}_{\mathrm{y}_{\mathrm{b}}} & =0 . \mathrm{N}-\mathrm{m}
\end{aligned}
$$

to which correspond the deflection angles

$$
\begin{aligned}
& \delta_{1}=-6.63^{\circ} \\
& \delta_{2}=7.35^{\circ} \\
& \delta_{3}=-11.27^{\circ} \\
& \delta_{6}=2.65^{\circ} \\
& \delta_{7}=-12.11^{\circ}
\end{aligned}
$$

The initial trim solution shown above is indicated by the straight lines in Figures 4.9 and 4.10. The effect of a 2° step change in the sideslip angle causing an increase from $\beta=1.20^{\circ}$ to $\beta=3.20^{\circ}$ was simulated. The transient response curves show the performance of the control system in achieving the new trim solution. The curves in Figure 4.9 (a) are for the case of complete state feedback which assumes that the state of the process can be estimated perfectly (i.e., $H=I, V=W=0, \hat{x}=x$). This is not realistic but provides an upper bound on the performance as the estimation capability of the Kalman filter improves.

Observe in this case that the control deflections change discontinuaously due to a step change in β. This does not occur when the Kalman filter is included. The curves for the remaining cases show the performance when different Kalman filter designs are used. The different designs correspond to different values of the W matrix as shown below

$$
W=\operatorname{Diag}\left[\sigma_{y}^{2}, \sigma_{\varphi}^{2}, \sigma_{\psi}^{2}, \sigma_{p}^{2}, \sigma_{r}^{2}\right]
$$

Figure	σ_{y}	σ_{φ}	σ_{ψ}	σ_{p}	σ_{r}
4.10 b	10	.01	.01	.1	.1
4.10 c	10	.01	.01	.01	.01
4.11	1	.001	.001	.001	.001

The value of W in Figure 4.8 (a) and the matrices in Figure 4.8 (c) correspond to the Kalman filter design used in Figure 4.9.

In Section 3.4.1 a convergence property relating the optimum control approach and the trim control approach is given by (3.117). A demonstration of this property for the lateral control problem of the Space Shuttle is given below. Trajectory point number 1 occurring at 25 seconds after launch is shown in which the roll and yaw bias torques due to misalignment of the solid rocket motors are assumed to be

$$
\begin{aligned}
& \text { roll bias torque }=3.02 \times 10^{6} \quad(\mathrm{~N}-\mathrm{m}) \\
& \text { yaw bias torque }=0
\end{aligned}
$$

The control vectors $u_{x}(\infty), u_{z}(\infty)$, and $u(\infty)$ obtained by the optimum control approach have been computed in this case for three different values of σ (1, 0.1, 0.01) and are listed in Table 4.4. The computations were performed according to (3.94), (3.95), (3.98)-(3.102) where the control weighting matrix R was chosen to be and where I denotes the identity matrix.

$$
R=25 I
$$

The trim solution or limiting solution for $\sigma=0$ was computed using the TRIMS program and is also listed in Table 4.4. An examination of Table 4.4 illustrates that the steady state control level $u(\infty)$ for the optimum control solution approaches the trim solution as σ approaches zero.

	0.	0.	0.	0.	0.	0.	0.
	0.	0.	0.	0.	0.	0.	0.
$B=$	D.	0.	0.	0.	0.	0.	0.
	-.71984E+00	-14779E+01	-19214E-01	0.	0.	0.	-35406E*00
	-12778E+00	-17242E*00	.47832E-01		0.	-. 19571E-01	-12336E+00
	.61986E-01	-. 12772E+00	-.94834E-04	0.	0.	.33613E-02	-.39708E-01

$Q=\left[\begin{array}{llllll}0.100000 \mathrm{E}-01 & 0.0 & & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.100000 \mathrm{E} & 05 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.100000 \varepsilon & 05 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.00000 \mathrm{E}-01 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.100000 \mathrm{O} & 03 \\ & & 0.0 & 0.0 & 0.100000 \mathrm{E} & 03\end{array}\right]$

$V=\left[\begin{array}{llllll}0 . & 0 . & 0 . & 0 . & 0 . \\ 0 . & 0 . & 0 . & 0 . & 0 . \\ 0 . & 0 . & 0 . & 0 . & 0 . \\ 0 . & 0 . & 0 . & 0 . & 0.10000 \mathrm{E}+03 & 0 . \\ 0 . & 0 . & 0 . & 0.10000 \mathrm{E}-03 & 0 . \\ 0 . & 0 . & 0 . & 0000 \mathrm{I}-03\end{array}\right]$
$G=\left[\begin{array}{lll}. & & \\ 0 . & 0000 \mathrm{E}+00 & 0 . \\ 0 . & 0.10000 \mathrm{E}+14 & 0 . \\ 0 . & 0000 \mathrm{E}+14\end{array}\right]$
$W=\left[\begin{array}{cccc}. & & 0 . & 0 . \\ 0 . & 0000 \mathrm{E}+01 & 0 . & 0 . \\ 0 . & 0.10000 \mathrm{E}-05 & 0 . & 0 . \\ 0 . & 0 . & 0.10000 \mathrm{E}-05 & 0 . \\ 0 . & 0 . & 0.10000 \mathrm{E}-05 & 0 . \\ 0 . & 0 . & 0 . & 0000 \mathrm{E}-05\end{array}\right]$
(b) Deterministic Quadratic Optimum Control Design (Complete State Feadback)

(c) Kalman Filter Dasign

YAHN DEFL.ENG. 1

Figure 4.9, continued - 2 -
YFW TEFL. ENE. 2,3

TTME LEEC]

TIME CSEC]

Figure 4.9, continued - 3 -
PITCH TEFL.ENG. 2,3

TIME [FE[]

Figure 4.9, continued - 4 -
AILEREN IEFL.

TIME [EEE]

Figure 4.9, continued - 5 -
RUTIEER TEFL.

Figure 4.10 Dynamic Response of Optimum Control with Improved Kalman Filter for a 2° Step in Sideslip Angle

YAW DEFL.ENE. 1

YFW DEFL.ENG. 2,3

Figure 4. 10, continued - 2 -

TIME [EEC]

Figure 4.10, continued - 3 -

Table 4.6 Convergence of Optimum Steady State Control Level to

Trim Control as Control Weighting Decreases

$$
\begin{aligned}
& \sigma=1 \\
& \sigma=0.1 \\
& \sigma=0.01 \\
& \text { (trim solution) } \\
& \sigma=0 \\
& u_{x}(\infty)=\left[\begin{array}{c}
-0.85 \\
-0.56 \\
-0.61 \\
0 \\
0 \\
0.22 \\
-0.11
\end{array}\right] \\
& {\left[\begin{array}{c}
-0.20 \\
-0.13 \\
-0.14 \\
0 \\
0 \\
0.05 \\
-0.25
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{c}
-0.02 \\
-0.01 \\
-0.01 \\
0 \\
0 \\
0.01 \\
-0.03
\end{array}\right] \\
& \rightarrow\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& u_{z}(\infty)=\left[\begin{array}{c}
-5.78 \\
7.90 \\
-10.64 \\
0 \\
0 \\
2.43 \\
-11.00
\end{array}\right] \\
& {\left[\begin{array}{c}
-7.17 \\
7.46 \\
-12.24 \\
0 \\
0 \\
2.03 \\
-10.76
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{c}
-7.36 \\
7.35 \\
-12.39 \\
0 \\
0 \\
2.06 \\
-10.96
\end{array}\right] \\
& \rightarrow\left[\begin{array}{c}
-7.39 \\
-7.34 \\
-12.42 \\
0 \\
0 \\
2.06 \\
-10.96
\end{array}\right] \\
& u(\infty)=\left[\begin{array}{c}
-6.63 \\
7.35 \\
-11.27 \\
0 \\
0 \\
2.65 \\
-12.11
\end{array}\right] \\
& {\left[\begin{array}{c}
-7.37 \\
7.33 \\
-12.38 \\
0 \\
0 \\
2.08 \\
-11.01
\end{array}\right] \rightarrow\left[\begin{array}{c}
-7.38 \\
7.33 \\
-12.40 \\
0 \\
0 \\
2.07 \\
-10.99
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{c}
-7.39 \\
7.34 \\
-12.42 \\
0 \\
0 \\
2.06 \\
-10.96
\end{array}\right]
\end{aligned}
$$

5. CONCLUSIONS AND FUTURE WORK

Solutions to the trim problem can be efficiently calculated by the TRIMS program using the numerical methods described in Section 3.1. The results of this investigation indicate that numerical solution by the Newton-Raphson method is preferable to the steepest descent method because it yields faster convergence and does not require the user to specify an iteration step size σ. If the initial guess of the solution used to start the Newton-Raphson method is not in the region of convergence then the method may not converge or may converge to the wrong solution. In this case the steepest descent method should be used for the first few iterations to generate a good starting solution to the Newton-Raphson method. This hybrid method could be implemented in the TRIMS program with minor modifications. However, it appears that for most practical trim problems an initial guess of $\delta=0$ is always in the region of convergence.

For the linear trim problem, a diagonal weighting matrix, R in the quadratic performance criterion is sufficient in finding the "best" trim solution with respect to the limits on the deflection angles. Introducing nonzero values for the off-diagonal elements of R complicates the selection of the performance criterion and does not lead to a better trim solution than could be obtained by use of a diagonal matrix. Starting from the trim solution for a given diagonal R matrix, consider the problem of searching for a more desirable trim solution. The penalty function method for varying the diagonal elements of R is a viable approach for improving the trim solution that is easy to use. The penalty function method would be considerably facilitated if the computer computation of the trim solution is performance in a conversational mode of operation rather than a batch mode. In the former case, the user can examine the trim solution and then immediately try a new R matrix. The process can be repeated in asingle sitting as many times as is necessary.

The lateral trim solution in Figure 4.6 indicates that the Space Shuttle configuration does not have sufficient control authority when the SRM engines are not gimballed. (The improvement in the trim solution obtained by gimballing the SRM engines is an area for future study which can be performed by the TRIMS program with minor modifications to the block data subroutine.) If the constraint of zero net side force (i.e., $Y=0$) is eliminated and the vehicle is only trimmed in roll and yaw, the maximum control deflections decrease by
roughly an order-of-magnitude. In this case the trim solution is within the deflection limits. Hence, the control requirements increase significantly with the addition of the trim requirement $Y=0$. Maintaining $Y=0$ is not as critical as zero net roll and yaw torques because angular errors are multiplied by the vehicle velocity in computing the displacement from the nominal trajectory. This suggests removing the trim condition $\mathrm{Y}=0$ entirely or replacing it by $|Y|<\epsilon$. The value of ϵ depends on how much side displacement error ia acceptable. By varying the weighting matrix R in the performance criterion with flight time rather than holding it constant, significant improvement in the trim solution might be achieved. The problem of realizing a trim solution for a time-varying R matrix must also be considered.

Only the steady-state performance of the control system for bias inputs is considered in the trim calculation. The dynamic or transient response of the controls for fluctuating inputs must also be considered in the overall system design. For the nonlinear trim problem, the index of controllability defined in Section 3.3.2 is a quantitative measure for selecting the trim solution that results in the most controllable system with respect to the dynamic response problem. An integral E proportional to the control energy is defined in Section 3.3.1 and is computed using the controllability Grammian W . Another measure for selecting the trim solution is given by the value of E. If the trim problem is linear, then the value of the controllability index or E does not vary with the trim solution.

The basic question in studying the dynamic response problem is: "What is the maximum deflection of each control for the possible fluctations in the disturbance inputs?" One possible approach to the dynamic response problem is to examine the values of E_{i}, where E_{i} denotes the energy expended by the i th control to return the vehicle to trim. The values E_{i} can be readily computed from the controllability Grammain W. Although this approach has potential in gaining insight into dynamic response problem, it possesses two major limitations. First, there is no simple relationship between the energy E_{t} and the maximum value of the transient response curve showing the variation in the control deflection angle with time. Second, the control signal corresponding to E_{i} cannot be realized by a linear feedback control system. The trim problem concerns only the static performance and can be studied without considering the detailed design of the feedback control system. The dynamic response problem, however, concerns the closed-loop transient response and is strongly dependent on the design of the feedback control system.

The most realistic method and possibly the only practical method for studying the dynamic response problem is to design the control system and simulate the closed-loop performance. The application of optimum control theory provides a method for the design of a linear feedback control system that can solve both the trim problem and the dynamic response problem. The correlation between the trim solution and the optimum control solution derived in Section 3.4.1 indicates how the solution to the trim problem can be used to select the proper control weighting R in performance criterion of the optimum control approach. This saves design time since the trim problem is easier to solve. A computer program entitled Linear System Design (LSD) was developed at Singer-Kearfott that is capable of computing the optimum feedback system and simulating the closed-loop performance. Since LSD is a conversational program with an automated plotting capability, many different designs can be studied efficiently. An example illustrating the use of LSD to design an optimum feedback system for the lateral control of the Space Shuttle during ascent is described in Section 4.3. It is recommended a more extensive design effort be pursued using the optimum control approach.

APPENDIX A VECTOR NOTATION AND DIFFERENTIATION

In this appendix the notation used for handling differentiation with respect to vector quantities is reviewed for reference purposes. This notation is useful in describing the solution to the trim control problem.

Let x and y denote an n dimensional and an m dimensional (column) vector, respectively. Further, let α denote a scalar function of x and y and let f denote a vector function of x and y where the dimension of f is p.

$$
\left.x=\left[\begin{array}{c}
x_{i} \\
\vdots \\
x_{n}
\end{array}\right] \quad v=\left[\begin{array}{c}
y_{i} \\
\vdots \\
y_{m}
\end{array}\right] \quad f=f(x, y) \quad \alpha=d x, y\right)
$$

Differentiation of a vector by a scalar results in a (column) vector defined by

$$
\dot{x}=d x / d t=\left[\begin{array}{c}
d x_{i} / d t \\
\vdots \\
d x_{n} / d t
\end{array}\right]
$$

On the other hand, differentiation of a scalar by a vector results. in a row vector defined by

$$
\partial \alpha / \partial x=\left[\partial \alpha / \partial x_{1}, \partial \alpha / \partial x_{2}, \ldots, \partial \alpha / \partial x_{n}\right]
$$

The second partial of the scalar α with respect to x and y

$$
\partial^{2} \alpha / \partial x \partial y=\partial / \partial y(\partial \alpha / \partial x)^{\prime}
$$

is an n by m matrix whose t th element is defined by

$$
\left(\partial^{2} \alpha / \partial x \partial y\right)_{i j}=\partial^{2} \alpha / \partial x_{i} \partial y_{i}
$$

Differentiation of the vector function f with respect to the vector x is a p by n matrix whose $i y$ th element is defined by

$$
(\partial f / \partial x)_{i j}=\partial f_{i} / \partial x_{j}
$$

Consider the scalar formed by the inner product of f and a constant vector λ of dimension p. The second partial of this scalar with respect to x and y

$$
\partial^{2}\left(\lambda^{\prime} f\right) / \partial x \partial y=\lambda^{\prime}(\partial f / \partial x \partial y)
$$

is an n by m matrix whose t th element is given by

$$
\left[\lambda^{\prime}\left(\frac{\partial f}{\partial x \partial y}\right)\right]_{i j}=\sum_{k=1}^{p} \lambda_{k}\left(\frac{\partial f}{\partial x \partial y}\right)_{k i j}
$$

The quantity of $\partial f / \partial x \partial y$ is a tensor whose $k i, j$ th element is defined by

$$
(\partial f / \partial x \partial y)_{k i j}=\partial f_{k} / \partial x_{i} \partial y_{i}
$$

APPENDIX B PARAMETERS OF SPACE SHUTTLE DYNAMICS

The equations defining the lateral-direction dynamics of the Space Shuttle during ascent through the atmosphere were derived in Section 4.1. The parameters required to compute the matrix coefficients in the linear equations of motion (4.10) are given in this appendix. The list of parameters appearing below indicates the parameter symbol, value, units, and a brief description. The data is given for twelve different points or flight times along the ascent trajectory and was furnished by Dr. S. Winder of MSFC.

In the column labeled VALUE, there appears either the numerical value or the word "table" or is left blank. The word "table" denotes that the numerical value varies with flight time and the twelve different values are listed in the tables at the end of this appendix. A blank denotes that the value of the parameter has not been specified. The unspecified parameters are the location and thrust of the SRM engines and the stability derivative $C_{y_{\delta a}}$ Most likely $\mathrm{C}_{y_{\text {Sa }}}$ is small and is assumed to be zero in this investigation. It is further assumed ${ }^{y}$ that the SRM engin es are not gimballed but the provision for including the SRM engine deflections is incorporated into the equations.

The stability derivatives $C_{l p}, C_{n p}, C_{y r}, C_{l r}, C_{n r}$ were not included in the data furnished by MSFC. The ir values listed below are rough estimates based on the vehicle configuration. These stability derivatives are not used in computing the trim solution but are required for the study of dynamic response.

SYMBOL̇	VALUE	UNITS		DESCRIPTION
${ }^{1}$	0	m)	
y_{1}	0	m	$\}$	x, y, z positions of (top, orbiter) engine 1
${ }^{2}$	0	m	,	
${ }^{2}$	0	m)	
y_{2}	1.346	m	\rangle	x, y, z positions of (right orbiter) engine 2
z_{2}	- 6.68		\bigcirc	
${ }^{3}$	0	m)	
y_{3}	- 1.346	m	\rangle	x, y, z positions of (left orbiter) engine 3
z_{3}	- 6.68		\bigcirc	
\times_{4}		m	\rangle	
y_{4}		m	\rangle	x, y, z, positions of (right SRM) engine 4
z_{4}		m	\bigcirc	
x_{5}		m	\%	
y_{5}		m	$\}$	x, y, z position of (left SRM) engine 5
z_{5}		m)	
${ }^{\text {cg }}$	table	m	\%	
${ }^{\text {cg }}$	0	m	$\}$	x, y, z position of center of gravity
z_{cg}	table	m)	
$x_{\text {mrp }}$	21.6	m	>	
$y_{\text {mrp }}$	0	m	\rangle	x, y, z position of moment reference point
$z_{m r p}$	- 1.47		1	105

9	table	new./m ${ }^{2}$	dynamic pressure
S	317.73	m^{2}	reference area
b	28.322	m	reference length
V	table	$\mathrm{m} / \mathrm{sec}$	velocity of the vehicle relative to the air
V_{y}	table	$\mathrm{m} / \mathrm{sec}$	side component of V (side wind velocity)
F	table	New.	thrust per orbiter engine
$F_{S R M}$		New.	thrust per SRM engine
$C_{y \beta}$	table	-	stability derivative
$C_{\ell \beta}$	table	-	stability derivative
$C_{n \beta}$	table	-	stability derivative
$\Delta C_{y \beta}$	table	-	change in $\mathrm{C}_{y \beta}$ due to dorsal fins
$\Delta C_{\ell \beta}$	table	-	change in $C_{\ell \beta}$ due to dorsal fins
$\left(\Delta C_{n \beta}\right)_{A F T}$	table	-	change in $C_{n \beta}$ due to aft dorsal fin
$\left(\Delta C_{n \beta}\right)_{\text {FORWARD }}$	table	-	change in $C_{n \beta}$ due to forward dorsal fin
$c_{y_{\delta a}}$		-	stability derivative
$c_{\ell_{\delta a}}$	table	-	stability derivative
C_{n}	table	-	stability derivative
$C_{y_{\delta r}}$	table	-	stability derivative
$C_{\ell_{\delta r}}$	table	-	stability derivative
$c_{n_{6 r}}$	table	-	stability derivative
$C_{\text {ep }}$	-. 01	-	stability derivative
C^{C}	-0.03	-	stability derivative
$C_{\text {yr }}$	0.	-	stability derivative

$C_{\text {er }}$	0.022	-	stability derivative
$C_{n r}$	-0.11	-	stability derivative
$\stackrel{\rightharpoonup}{c}$	20.	m	length of mean aerodynamic cord
m	table	Kg	vehicle mass
I_{x}	table	$\mathrm{Kg}-\mathrm{m}{ }^{2}$	vehicle moment of inertia about x axis
I_{y}	table	$\mathrm{Kg}-\mathrm{m}^{2}$	vehicle moment of inertia about y axis
I_{z}	table	$\mathrm{Kg}-\mathrm{m}^{2}$	vehicle moment of inertia about z axis
g	table	$\mathrm{m} / \mathrm{sec}^{2}$	acceleration of gravity
$\cos \theta_{0}$	table	-	cosine of nominal pitch angle
$\boldsymbol{\operatorname { s i n }} \theta_{0}$	table	-	sine of nominal pitch angle
Q	table	$\mathrm{rad} / \mathrm{sec}$	nominal pitch rate
U_{0}	table	$\mathrm{m} / \mathrm{sec}$	nominal velocity along x axis
W_{0}	table	$\mathrm{m} / \mathrm{sec}$	nominal velocity along z axis
$\delta_{i \text { max }}$	30	deg	maximum allowable rocket engine deflection ($t=1, \ldots, 5$)
$\delta_{6 \text { max }}$	table	deg	maximum allowable aileron deflection
67 max	table	deg	maximum allowable rudder deflection
5_{6}	0	m^{2}	reference area for drag induced by aileron control
δ_{7}	0	m^{2}	reference area for drag induced by rudder control
$C_{\text {D6 }}$	0	- .	drag coefficient for aileron control
$C_{\text {D7 }}$	0	-	drag coefficient for rudder control
$C_{\text {ep }}$	-0.1	-	stability derivative
$C_{n p}$	-0.03	-	stability derivative
$C^{\text {yr }}$	0.0	-	stability derivative
$C_{l r}$	0.022	-	stability derivative
$C_{n r}$	-0.11	-	stability derivative

DATA: Stability Derivatives
(all data/radian)

DATA: Vehicle Parameters

flight time (sec)	$\begin{aligned} & \mathrm{m} \\ & (\mathrm{Kg}) \end{aligned}$	$\begin{aligned} & I_{x} \\ & \left(\mathrm{Kg}^{2}{ }^{2}\right) \end{aligned}$	$\begin{aligned} & \left.I_{y}{ }^{2}\right) \\ & \left(K g-m^{2}\right) \end{aligned}$	$\begin{aligned} & I_{z} \\ & \left(K g-m^{2}\right) \end{aligned}$	$\begin{aligned} & x_{c g} \\ & (m) \end{aligned}$	$\begin{aligned} & \mathrm{z}_{\mathrm{cg}} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{aligned} & F \\ & (\text { New.) } \end{aligned}$
25	. $218 \mathrm{E}+7$. $953 \mathrm{E}+8$. $526 \mathrm{E}+9$. $591 \mathrm{E}+9$	23.345	- 1.58	$1.650 \mathrm{E}+6$
40	.201E+7	. $856 \mathrm{E}+8$.490E+9	. $547 \mathrm{E}+9$	23.42	- 1.5847	1.760E+6
50	.190E+7	.794E+8	. $468 \mathrm{E}+9$. $519 \mathrm{E}+9$	23.47	- 1.5914	$1.825 E+6$
60	. $179 \mathrm{E}+7$.733E+8	.445E+9	. $491 \mathrm{E}+9$	23.52	- 1.5953	$1.885 \mathrm{E}+6$
65	. $174 \mathrm{E}+7$. $702 \mathrm{E}+8$. $434 \mathrm{E}+9$. $478 \mathrm{E}+9$	23.545	- 1.5979	1.920E+6
70	. $169 \mathrm{E}+7$. $671 \mathrm{E}+8$. $423 \mathrm{E}+9^{-}$. $464 \mathrm{E}+9$	23.57	-1.60	$1.940 \mathrm{E}+6$
75	. 160E+7	. $629 \mathrm{E}+8$. $383 \mathrm{E}+9$. $420 \mathrm{E}+9$	24.13	- 1.4626	$1.970 \mathrm{E}+6$
80	. $154 \mathrm{E}+7$. $606 \mathrm{E}+8$. $372 \mathrm{E}+9$. $405 \mathrm{E}+9$	24.18	- 1.455	$1.980 \mathrm{E}+6$
90	. $144 \mathrm{E}+7$. $559 \mathrm{E}+8$. $348 \mathrm{E}+9$. $375 \mathrm{E}+9$	24.33	- 1.440	$2.025 \mathrm{E}+6$
100	. $133 \mathrm{E}+7$. $512 \mathrm{E}+8$. $326 \mathrm{E}+9$. $346 \mathrm{E}+9$	24.535	-1.4327	$2.040 \mathrm{E}+6$
110	. 122E+7	. $466 \mathrm{E}+8$. 303E+9	. $317 \mathrm{E}+9$	24.74	- 1.4255	$2.060 \mathrm{E}+6$
140	. $914 \mathrm{E}+6$. $329 \mathrm{E}+8$. $234 \mathrm{E}+9$. $228 \mathrm{E}+9$	25.62	- 1.400	$2.070 \mathrm{E}+6$

DATA: Trajectory Parameters

DATA: Deflection Limits for Aerodynamic Surface Controls and Change in Stability Derivatives Due to Dorsal Fins

flight time (sec)	${ }^{6} 7$ max rudder hinge moment limit (deg)	${ }^{5} 6$ max aileron hinge moment limit (deg)	$\Delta C_{y \beta}$	(all $\Delta C_{\ell \beta}$	degree $)$ $\left(\Delta C_{n \beta}\right)$	$\left(\Delta C_{n \beta}\right)$ FORWARD
25	no hinge limit	nohinge limit	-. 011	.0031	. 0064	-. 004
40	42.0	71.8	-. 012	. 0032	. 0067	- . 0044
50	30.8	52.6	-. 013	. 0033	. 0074	-. 0048
60	23.5	40.0	-. 015	. 0036	. 0085	-. . 0056
65	14.7	25.1	-. 016	. 0038	. 0094	-. 006
70	8.19	14.1	-. 017	. 0042	. 0104	.-. 006
75	5.54	9.47	-. 0165	. 0042	. 01	-. 0058
80	5.23	8.91	-. 014	. 0035	. 0088	-. 005
90	6.27	10.69	-. 0105	. 0027	. 0075	-. 0044
100	10.23	17.5	- . 008	. 0017	. 005	-. 0028
110	19.67	33.64	-. 006	. 0014	. 004	-. . 0022
140	no hinge limit	no hinge limit	-. 004	. 001	. 0028	-. 0015
* hard limits	± 30	40 up-15 down				
* Hard deflection angle limit is used when less than hinge moment limit.						

APPENDIX C TRIMS COMPUTER PROGRAM

1. PROGRAM USAGE

Input
The input data to the TRIMS program consists of punched cards. The data deck is divided into cases where for example each case computes the trim solution for different values of roll bias torque. There are seven punched cards per case with the first card containing the case title and the last card indicating whether another case follows or whether this is the last case to be run. A description of the information and format for punching these seven data cards per case is given in Table 1. A sample of an input data deck for a single case run is shown in Figure 1.

Output
The computer printout from the TRIMS program is a single page per case. The printout resulting from the data deck in Figure 1 is shown in Figure 2. The first part of the printout lists the information contained on the data cards and used to compute the trim solution. The trim solution is printed in a convenient tabular form with each row listing the seven trim angles in degrees for a particular flight time. The number of iterations required to compute the trim solution at each trajectory point is also indicated.

Options

Special options have been added to the program since the original development date of February, 1973. The purpose of these options is described in Table 2 including the modifications to the input data required to exercise these options.

TABLE 1: TRIMS PROGRAM INPUT DATA.

CARD	COLUMNS	VARIABLE	FORMAT	DESCRIPTION
TITLE CARD				\because
1	1-72	LINE	72A1	Descriptive case title.
CONTROL CARD				
1	1-5	IGRAD	I 5	$\left\{\begin{array}{l} =1, \text { use } 1 \text { st order gradient method; } \\ =2, \text { use } 2 \text { nd order gradient method. } \end{array}\right.$
1	11-20	EPS	E10.3	Upper bound used in the convergence criterion.
1	21-30	STEP	E10.3	Step size used in the lst order gradient method; leave blank if 2 nd order gradient method is used.

TRAJECTORY CARD
1 JPT 1-60 12I5

If trajectory point no. $k, k=1, \ldots, 12$, is to be used then punch a 1 in column 5 k ; otherwise punch a 0 in column $5 k$.

CARD CONTAINING BIAS TORQUES

1	$1-10$	YBT	E10.0	Yaw bias torque.
1	$11-20$	RBT	E10.0	Roll bias torque.

CARDS CONTAINING WEIGHTING FACTORS

| $1-70$ | W1 | 7E10.0 | Seven weighting factors in performance criterion
 for adjusting maximum deflection angles. |
| :--- | :--- | :--- | :--- | :--- |
| 2. | W2 | 7E10.0 | Seven weighting factor in performance criterion
 for adjusting aerodynamic (drag) and thrust
 losses due to trim. |

CASE PARTITION CARD

$$
1 \quad I G \varnothing \quad I^{5} \quad\left\{\begin{array}{l}
=1, \text { another case follows } \\
=2, \text { last case. }
\end{array}\right.
$$

FIGURE 1: EXAMPLE OF INPUT TO TRIMS COMPUTER PROGRAM

stuny af		$\begin{aligned} & \text { TFQAI } \\ & 0.0001 \end{aligned}$		$\begin{aligned} & \text { Fnit } \\ & 0 \text {. } \end{aligned}$		SHL!			4	IAS		
1	1	1	1	1	1	1	1.	1	1	1	1	
n.		0.										
3000.		3000.		3000.		3000.		3000 .		3000.		3000.
0 .		n.		0 。		0.		0.		0.		0 .

FIGURE 2: EXAMPLE OF OUTPUT FROM TRIMS COMPUTER PROGRAM

SYSTEM OYNAMICS PARAMETERS

YAW BIAS TOROUE	$=$
ROLL BIAS TOROUE	$=0.0$
	0.0

PERFORMANCE CRITERION PARAMETEPS
$w 11=3000.00$
$w 12=3000.00$
$w 13=3000.00$
$w 14=3000.00$
$W 15=3000.00$
$w 16=3000.00$
$w 17=3000.00$
$W 17=3000.00$
$w 21=0.0$
$w 22=0.0$
$w 23=0.0$
$w 24=0.0$
$w 25=0.0$
$w 26=0.0$
$w 27=0.0$

TRIM DEFLECTION ANGLFS

TABLE 2: PROGRAM OPTIONS

Option 1- The program has the capability of disregarding the first trim equality constraint. This equation corresponds to the trim condition of zero net force in the y-direction. To exercise this option change the nonzero values of JPT on the trajectory data card from positive numbers to negative numbers.

Option 2 - The program has the capability of computing the trim solution for the case where the aileron is not used. To exercise this option change the nonzero values of JPT on the trajectory data-card from a magnitude of 1 to a magnitude of 2 (i.e., replace 1 by 2 and replace -1 by -2).

Option 3 - The program has the capability of replacing the performance criterion stored internally in the program with the quadratic performance criterion

$$
r(\delta)=\left(\delta_{1} / c_{1}\right)^{2}+\ldots+\left(\delta_{7} / c_{7}\right)^{2}
$$

where c_{1}, \ldots, c_{7} are seven constants specified by the user at execution time. To exercise this option replace the fourteen weighting factors in the input data with the values

$$
\begin{aligned}
& W 1(i)=-c_{t} \\
& W 2(i)=0 .
\end{aligned}
$$

$$
t=1, \ldots, 7
$$

2. PROGRAM DESCRIPTION

TRIMS is a FORTRAN IV computer program composed of a single main or executive routine and many subroutines. The program subroutines may be viewed as divided into two main groups. The first group is comprised of the main routine, entitled TRIMS, plus seven basic subroutines which form the heart of the program. These are listed in Table 3 together with a brief description of their function. The second group contains the utility subroutines which perform a specific matrix operation such as invert a matrix or print out a matrix. There are thirteen of these subroutines which are listed in Table 4. With the exception of GMSYMM, all of the utility subroutines are found in the IBM Scientific Subroutine Package *.

In addition to the calling lists, the transfer of information into and out from the subroutines is achieved by means of five named $C \varnothing M M \varnothing N S$. Their names are listed in Table 5 together with a brief functional description. The innerconnection between the main routine, the seven basic subroutines, and the five named C $\triangle M M \varnothing N S$ summarizing where each is used is shown in Table 6. The variables in each of the named $C \varnothing M M \varnothing N S$ are listed and defined in Table 7. The other variables in the program not in a named $С \varnothing$ MM $\varnothing \mathrm{N}$ are listed in Table 8.

In the following pages the FORTRAN source listing of each subroutine is given. The beginning of each listing contains comment cards describing the subroutine which includes the purpose, input variables, output variables, and the subroutines called. Flow diagrams are also given for each of the subroutines with the exception of the IBM SSP subroutines.

[^3]
TABLE 3: MAIN ROUTINE AND BASIC SUBROUTINES

TRIM - main routine controlling the basic computational steps.
BLOCK - block data subroutine for storing data internally in the program.
INPUT - subroutine used to read in and print out the input data.
OUTPUT - subroutine used to print out the results of the program.
GRAD 1 - subroutine for computing the deflection angles using the lst order gradient method.

GRAD2 - subroutine for computing the deflection angles using the 2 nd order gradient method.

SYSTEM - subroutine containing the equations defining the system dynamics and the corresponding equations for evaluating the derivatives required by the gradient methods.
COST - subroutine containing the equations defining the performance criterion and the corresponding derivatives.

TABLE4: UTILITY SUBROUTINES
GYSYMM - symmetrize a matrix
MCPY - matrix copy
MSTR - storage conversion of a matrix
LめC - location in compressed-stored matrix
GMSUB - subtract two general matrices
GMPRD - product of two general matrices
GMTRA - transpose of a general matrix
MPRD - matrix product
CCUT - partition a matrix by column
MINV - matrix inversion
SINV - invert a symmetric positive definite matrix
MFSD - triangular factorization of a symmetric positive definite matrix
MXØUT - print a matrix

TABLE 5 : NAMED C \varnothing MM \varnothing NS

/C \varnothing N/	dimension and accuracy parameters
/ARRAY/	values of trim equation, performance criterion, and their derivatives
/TRAJ/	trajectory information /SYST/
data derived from the space shuttle configuration for	
computing the system dynamics and trim equation	

TABLE 6: INNERCONNECTION OF SUBROUTINES AND NAMED COMMONS

where used requires		$\begin{array}{ll} 5 & \stackrel{5}{2} \\ \stackrel{a}{2} & \stackrel{2}{2} \\ \stackrel{\rightharpoonup}{Q} \end{array}$	$\begin{aligned} & -0 \\ & \stackrel{ষ}{0} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\rightharpoonup}{\Delta} \\ & 0 \end{aligned}$	㐬	占	$\begin{aligned} & Z \\ & Q \\ & \hline \end{aligned}$	$\begin{aligned} & \grave{y} \\ & \frac{y}{2} \\ & \frac{c}{4} \end{aligned}$	$\frac{\grave{y}}{\frac{\checkmark}{2}}$	$\frac{\pi}{i}$	
TRIMS		$\times \times$	X	X		I	X				
BLOCK						1	x		x	x	x
INPUT						,	x		X	X	x
ØUTPUT						!					
GRAD 1						x_{1}^{\prime}	x	x	x		
GRAD2					X	x_{1}^{1}	X	X	X		
SYSTEM						1		X		X	
CØST						'		X			X
						1					

Program
Symbol
/CØN/

M	\ldots	m
NS	\ldots	\tilde{n}
KMAX	\ldots	$K_{\text {max }}$
EPSO	\ldots	ϵ_{0}
MPT	\ldots.	\ldots.

/ ARRAY /
$A V$
BV
BM
BT
RS
RV
RM
/TRAJ/
JPT
TF
/SYST/
YBT
RBT
S
BREF
$\mathrm{XI}, \mathrm{Y} 1, \mathrm{Z} 1$
$X 2, Y 2, Z 2$
X3,Y3,Z3
X4,Y4,Z4
$\mathrm{X} 5, \mathrm{Y} 5, \mathrm{Z} 5$
XMRP
YMRP
ZMRP
XCG
ZCG

Dimension Symbol
-•

6
6
60
6,60

10
100

12

\ldots	$\begin{aligned} & \ldots \\ & b_{\text {ref }} \end{aligned}$
. .	$\mathrm{x}_{1} \mathrm{~A}_{1}{ }^{\prime z}{ }_{1}$
. .	$x_{2}, y_{2}{ }^{\prime} z_{2}$
. .	$x_{3}, y_{3}{ }^{\prime} z_{3}$
\cdots	x_{4}, y_{4}, z_{4}
	$\mathrm{x}_{5}, \mathrm{y}_{5}, \mathrm{z}_{5}$
. .	$x_{\text {mrp }}$
	$y_{\text {mip }}$
. .	$z_{\text {mrp }}$
12	${ }^{\text {cg }}$
12	z_{cg}

Explanation

Number of trim angles. Number of trim equations. Maximum number of iterations allowed. Relative tolerance used in subroutine SINV. Maximum number of trajectory points allowed.

Constant terms in trim equations.
Terms in trim equations varying with trim angles.
First derivatives of trim equations.
Second derivative of trim equations. Performance criterion.

First derivative of performance criterion. Second derivative of performance criterion.

Index vector determining which trajectory points to use (see program input data).
Flight times corresponding to the different possible trajectory points.

Yaw bias torque (see program input data). Roll bias torque (see program input data). Reference area. Reference length.
Coordinates of (top orbiter) engine 1.
Coordinates of (right orbiter) engine 2.
Coordinates of (left orbiter) engine 3.
Coordinates of (right SRM) engine 4.
Coordinates of (left SRM) engine 5.
$\left\{\begin{array}{l}\text { Coordinates of moment reference point. } \\ \begin{array}{l}\text { Coordinates of center of gravity } \\ \left(Y_{\mathrm{cg}}=0\right) .\end{array}\end{array}\right.$

TABLE7: Variables in Named C $\varnothing M M \varnothing N$, Continued

Program Symbol	Dimension	Symbol	Explanation
/SYST/, Continued			
Q	12	q	Dynamic pressure.
V	12	V	V ehicle velocity relative to air.
VY	12	V_{y}	Side wind velocity. .
F	12	F	Thrust per orbiter engine.
FSRM	12	$\mathrm{F}_{\text {SRM }}$	Thrust per SRM engine.
CYB	12	$c_{y \beta}$	Stability derivative.
CLB	12	${ }^{18}$	Stability derivative.
CNB	12	$C^{\text {n }}$	Stability derivative.
DCYB	12	$\Delta C^{\text {y }}$	Change in $\mathrm{C}_{y \beta}$ due to dorsal fins.
DCLB	12	ΔC^{\prime}	Change in $C^{\prime \beta}$ due to dorsal fins.
DCNBA	12	$\left(\triangle C_{n \beta}\right)$ AFT	Change in $C_{n \beta}$ due to aft dorsal fin.
DCNBF	12	$\left(\Delta C_{n \beta}\right)$ FORWARD	Change in $\mathrm{C}_{n \beta}$ due to forward dorsal fin.
CYA	12	$C_{y \delta a}$	Stability derivative.
CLA	12	$C_{\text {c }}$	Stability derivative.
CNA	12	$C_{\text {n }}$	Stability derivative,
CYR	12	$C_{\text {y } \delta \mathrm{r}}$	Stability derivative.
CLR	12	$C_{\text {cor }}$	Stability derivative
CNR	12	$C^{\text {n } \delta \mathrm{r}}$	Stability derivative.
/PERF/			
WI	7	W_{1}	Vector of relative weighting factors (see program input data).
W2	7	W_{2}	Vector of relative weighting factors (see program input data).
DAMAX	12	$\delta_{\text {a max }}$	Maximum deflection angle allowed for aileron.
DRMAX	12	$\delta_{\text {r max }}$	Maximum deflection angle allowed for rudder.
QQ DMAX	12	9	Dynamic pressure.
DMAX	. .	\cdots	orbiter rocket engines.
SA	...	S_{a}	Reference area corresponding to the drag induced by the aileron.
SR	. .	S_{r}	Reference area corresponding to the drag induced by the rudder.
CDA	. .	$C^{\text {Da }}$	Coefficient of drag corresponding to the aileron.
CDR	. .	$C_{\text {Dr }}$	Coefficient of drag corresponding to the rudder.

TABLE 8: Variables not in Named C \varnothing MM \varnothing N

Program Symbol	Dimension	Symbol	Explanation
I CASE	. .	.	Number of the current case.
IGO	. .		Index controlling sequence of cases.
I	. .	. \cdot	Do loop index.
L	. .		Number of the trajectory point.
I GRAD	Order of the gradient method to be used.
K	. .	k	Number of the iteration.
EPS	. .	ϵ	Convergence bound in gradient methods.
TIME	...	+	Flight time of the current trajectory point.
STEP	\ldots	σ	Iteration step size used in first order gradient method.
DELTA	10	$\underline{\delta}$	Vector of trim angles.
LAMDA	6	$\underline{\lambda}$	Vector of Lagrange multipliers.
J	Do loop index.
DET			Determinant of a matrix
MNS	-••	-••	Difference between number of trim angles and trim equations
$N \varnothing$ RM	. .	\cdots	Quantity for determining trim solution accuracy.
RU	10	r_{u}	Subvector of $\partial \mathrm{r} / \partial \underline{\delta}$.
RX	10	${ }^{r} \times$	Subvector of $\partial \mathrm{r} / \partial \underline{\delta}$.
x	10	\underline{x}	Subvector of $\underline{6}$ (subroutine GRAD 1).
X	10	-••	Dummy vector (subroutine GRAD2).
$B X$	60	B_{x}	Square nonsingular submatrix of $\underline{\partial b /}$ / $\underline{\delta}$.
DU	10	$\Delta \mathrm{u}$	Correction to subvector $\underline{\underline{u}}$ of $\underline{\mathbf{\delta}}$.
BU	60	B_{u}	Submatrix of $\partial \underline{\mathrm{b}} / \mathrm{\partial} \underline{\delta}$.
JI	Matrix element index
M2	. .	. \cdot	$=m(m+1) / 2$.
IER	-••	\cdots	Index used to indicate errors in inverting a positive definite matrix.
HL	10	h_{λ}	Derivative of hamiltonian with respect to $\underline{\lambda}$.
R	100	$h_{6 \delta}$	Second derivative of hamiltonian with respect to $\underline{\delta}$.

TABLE 8: Variables not in Named C ${ }^{M M \varnothing N \text { (Continued) }}$

Program Symbol	Dimension	Symbol	Explanation
Y	10	. .	Dummy vector
DEL	10	- $\underline{\delta}$	Correction to $\underline{\underline{\delta}}$.
BR	60	$B R^{-1}$	Matrix product.
LAM	6	$\Delta \underline{\lambda}$	Correction to λ.
BRB	36	$B R^{-1} B^{\prime}$	Matrix product.
HD	10	h_{0}	Derivative of hamiltonian with respect to $\underline{\delta}$.
D	60	. .	Dummy matrix.
B	60	${ }^{h_{\lambda \delta}}$	Mixed second derivative of hamiltonian.
CYBCG	-••	-••	Stability derivative $C_{y_{\beta}}$ about cg .
CNRCG	. .	-	Stability derivative $C_{n_{r}}$ about cg :
CLBCG	-	. .	Stability derivative $C_{\ell_{\beta}}$ about cg .
CNBCG	-••	-••	Stability derivative $C_{n_{\beta}}$ about cg .
CLACG	. -	-	Stability derivative $C_{\ell_{\mathrm{G}}}$ about cg .
CNACG	Stability derivative $C_{n_{a}}$ about cg .
CLRCG	-	.	stability derivative $C_{\ell_{r}}$ about cg .
Cl	. .	-	$\operatorname{Cos} 18^{\circ}$.
C 2	$\operatorname{Cos} 12^{\circ}$.
C3	. . .	-••	$\operatorname{Cos} 3.5^{\circ}$
C4		. .	$\operatorname{Cos} 15^{\circ}$.
S1	. .	-••	$\sin 18^{\circ}$.
S2	-	-••	$\sin 12^{\circ}$.
S3	$\sin 3.5^{\circ}$.
\$4	$\operatorname{Sin} 15^{\circ}$.

TABLE 8 : Variables not in Named C \varnothing MM $\varnothing \mathrm{N}$ (Continued)

Program Symbol	Dimension	Symbol	Explanation
[J	-	. .	Matrix element index.
QS	Product qS .
QSB	. .	-••	Product qS ${ }_{\text {ref }}$.
RAD	...	-••	Conversion factor from radians to degrees.
BETA	. .	β	Side slip angle.
II	...	-	Vector element index.
C	. .	. -	Dummy vector.

C \#\# GO TO THF NEXT CASF TRM 0600
70 ICASE $=$ ICASE +1
rin TO 30
C
RO CALL EXIT
END
TRM 0610
TRM 0620
TRM 0630
TRM 0640
TRM 0650

TRIMS Flow Diagram

C
MATA VY
1
DATA F
2 2. . 9. , 15. . 24. . 29. . 34. ,

ALK 0600
RLK 0610
BLK 0620
RLK 0630
$1.65 E+6,1.76 E+6$, $1.825 \mathrm{~F}+6,1.885 E+6$, BLK 0640
$1.92 F+6$, $1.94 E+G$, $1.97 E+6$ • $1.9 R E+6$. RLK 0650 $2.025 E+6,2.04 E+6$, $2.06 E+6$, $2.07 E+6$ / ALK 0660

DATA FSQM / 12*0. /

DATA CNR ,
.3 ,. -.356 , -.246 , $=.196$,

DATA DCLA / . 0031 , .0032,.0033,.0036,.0038,.0042.
1
DATA DCABA / . $00064, .0067 . .0074, .0085, .0094, .0104$, 1
$1{ }^{n}$

DATA CYA

DATA CLA / =. $0430,-.0458,-.0487,-.0544,-.0630,-.0630$.

DATA DRMAX / 30. , 30. , 23.5 . 14.7 , 8.19 , 8.19, ,


```
    COMMON /CON/M , NS, KMAX.EPSO. MPT INT 0600
    COMMON /TRAJ/ JPT(12), TF(12) INT 0610
    COMMON /SYST/ YRT, RRT
    COMMON /PFRF/ W1(7),W2(7)
C
C
C *# FNTER CASE IDENTIFICATION TITLE
    READ(5.1000) (LINE(I),I=1.72)
    WRITE(6.1010) ICASE, (LINE(I).I=1,72)
C
C ### ENTEH COMPUTATIONAL CONTROL PARAMETERS
    WRITE (6,1020)
    READ(5,1030) IGHAN, EPS , STEP
    IF(IGRAD-2) 10,20,10
    10 WRITE(6.1040) STFP
        GO TO 30
    20 WRITF(6,1050)
    30 WRTTF(6.1060) EPS
C
C ## ENTER POINTS ALONG TRAJECTORY FOR COMPUTING TRIM
    WRITE(6.1070)
    READ(5.10R0) (JPT(I),I=1.MPT)
    WRITE(6.1090) (JPT(I),I=1.MPT)
C
C ** ENTER SYSTEM DYNAMICS PARAMETERS
    WRITE (6.1100)
    REOD(5.1110) YRT, RRT
    WRITE(6.1120) YRT , RRT
c
C ** FNTER PERFORMANCE CRITERION PARAMETERS
    WRITE(6.1130)
    RESD(5,1140) (W1(I),I=1,M)
    RFAD(5.1140) (W2(I):I=1,M) INT 0920
    WRITE(6.1150) Wl(1),W2(1),W1(2);W2(2),W1(3),W2(3), INT 0930
    1 WI(4),W2(4),W1(5),W2(5),W1(6),W2(6), INT O940
    2 W1(7),W2(7)
C
C ** ENTEQ END OF CASE CARD
    READ(5.1160) IGO
        IF(IGO-1) 200,220,200
    200.JF(IGO-2) 210,220,210
    210 WRTTE(6.1170)
    CALL EXIT
    220 CONTINUE
C
    RETURN
    END
INT 0610
    INT 0630
    INT 0640
    INT 0650
    INT 0660
    INT 0670
    INT 0680
    INT 0690
    INT 0700
    INT 0710
    INT 0720
    INT 0730
    INT 0740
    INT 0750
    INT 0760
    INT 0770
    INT 0780
    INT 0790
    INT 0800
    INT 0810
    INT 0820
    INT 0830
    INT 0840
    INT 0850
    INT 0860
    INT O870
    INT OB8O
INT 0890
INT 0900
INT 0910
INT 0920
INT 0940
INT 0950
INT 0960
INT 0970
INT 0980
INT 0990
INT 1000
INT 1010
INT 1020
INT 1030
INT 1040
INT 1050
INT }106
```

INPUT Flow Diagram


```
20 IF(K) 40,30,30
30 00 35 I=1,M
35 ANGLE(I) = RAD # DELTA(I)
    WRITE(6,1020) L , TIME, (ANGLE(I),I=1,M) , K
4 0 ~ I F ( L - M P T ) ~ 6 0 , 5 0 : 6 0
50.WRITE(6,1050)
    WRITE (6,1040)
    WRITE(6,1030)
60 RETURN
    ENO
OUT 0480
\(300035 \mathrm{I}=1 \mathrm{~g} \mathrm{M}\)
35 ANGLE (I) = RAD DELTA(I)
WRITE(6,1020) L , TIME , (ANGLE(I), I=1,M) , K
40 IF (L-MPT) \(60,50,60\)
50. WRITE \((6,1050)\) WRITE (6.1040) WRITE \((6,1030)\)
END
```

OUT 0485 OUT 0486 OUT 0490
OUT 0500
OUT 0510
OUT 0520
OUT 0530
OUT 0540
OUT 0550

ØUTPUT Flow Diagram


```
    S TIME = TF(L)
C
C ### START INITIAL ITEHATION
    K = 0
    MNS = M-NS
C
    10 CONTINUE
C
C.** COMPUTE GRAOIENT TERMS CORRESPONOING TO SYSTEM DYNAMICS
        CALL SYSTEM(K,L,NS,M,OELTA,IGRAD)
C
C *# PAKTITION THE MATRIX BM INTO MATRICES BX AND BU
    IF(MNS) 30,30,40
    30.CALL MCPY(BM,BX,NS,M,U)
        GO TO 50
    40 J = NS + 1
        CALL CCUT(BM,J,BX,BU,NS,M,O)
C
C ** COMPUTE THE INVERSE OF THE mATHIX BX
    SO CALL MINV(BX,NS,DET,LB,MB)
C
C ##* COMPUTE VECTOR x
    DO 60 I =1.NS
    60DU(I) = - AV(I) - BV(I)
        CALL GMPRU(BX,DU,LX,NS,NS,1)
        DO 65 I =1,NS
    65 X(I) = X(I) +UX(I)
C
C ** CUMPUTE GRADIENT TERMS CORRESPONDING TO PERFORMANCE CRITERION
            DO.70 I=1.NS
    70 DELTA(I) = X(I)
        IF(MNS) 130,130,80
    80 CALL COST(K,L,M,DELTA,IGHAD)
C
C ** PARTITION THE VECTOR RV INTO VECTORS RX AND RU
        J=NS + 1
        CALL. CCUT(RV,J,RX,RU,I,M,0)
C
C ##* COMPUTE THE VECTOR LAMDA
    CALL GMPRD(RX,BX,LAMDA,IONS,NS)
c
C *** COMPUTE THE NEW ESTIMATE OF DELTA
    CALL GMPRD(LAMDA,BU,OU,I,NS,MNS)
    NOMM = 0.
    DO 90 I =1.MNS
    DU(I) = (DU(I) - RU(I) ) * STEP
    NORM = NORM + DU(I)*#2
    90 DELTA(NS+I) = DELTA(NS+I) + OU(I)
```

ONE 0490
ONE 0500
ONE OS10
ONE 0520
ONE 0530
ONE 0540
ONE 0550
ONE 0560
ONE 0570
ONE 0580
ONE 0590
ONE 0600
ONE 0610
ONE 0620
ONE 0630
ONE 0640
ONE 0650
ONE 0660
ONE 0670
ONE 0680
ONE 0690
ONE 0700
ONE 0710
ONE 0720
ONE 0730
ONE 0731
ONE 0732
ONE 0740
ONE 0750
ONE 0760
ONE 0770
ONE 0780
ONE 0790
ONE 0800
ONE 0810 .
ONE O820
ONE O830
ONE 0840
ONE 0850
ONE 0860
ONE 0870
ONE 0880
ONE 0890
ONE 0900
ONE 0910
ONE 0920
ONE 0930
ONE 0940

```
            00 95 I=1,NS
        95 NORM = NURM + UX(I)**て
C
C ### TEST IF THE NEW ESTIMATES ARE SUFFICIENTLY ACCURATE
    IF (NORM=EPS) 130.130,100
C
C CHECK FOK EXCESSIVE NUMBEH OF ITERATIONS
    100 IF(K-KMAX) 110,120,120
C.
C ** PERFORM ANOTHER ITERATION
    110 K = K + l
        GO TO 10
C
    120 WRITE(0.1000) K, NORM, EPS
    130 RETURN
        END
ONE 0941
```

GRADI Flow Diagram

GRAD 1 Flow Diagram (Continued)


```
    IF(IER) 50.70.60 TWO 0900
    50 WRITE(b.1000)K, EPSU
    WPITE(מ-10ヶ0)
    CALL MxOUT(1,H,M,M,190U,132,1)
    CALL tXIT
    60 WRITE(0.1010) к EPSO
    WRITE (6,1050)
    CALL MXUUT(I,R,M,M,I,KO,132,1)
C
C #** COMPUTE MATRIX AR
    70 CALL. MPHO(H,RQ,HK,NS,M,O,1,M)
C
C
C ### COMPUTE MATKIX GRH
    CALL (GMTRA(H,O)NS*M)
    CALL GMHKU(HK,O),HKHgIVSOM,NS)
    CALL. t,MSYMM(BHROD,NS)
    CALL MSTR(O,HKP,NSOU,1)
C
C ##* COMPUTE INVERSE OF MATHIX BRB
    CALL SINV(HRFONSORPSOQIER)
    IF(IER) H0,100.90
    *O WRITE(G.lUCO) K , EPSO
    WFIIE(6,1060)
    CALL MXOUT(1,R,M,M,1,60,132,1)
    WFITE(6.1070)
    CALL MXOUT(I,B,NS,M,0,60,132,1)
    WRITE(6,10GO)
    CALL MXOUT(1,BRE,NS,NS,1,60,132,1)
    CALL EXIT
    90 WRITE (6.1030) K EPSU
    WRITE (6,1060)
    CALL MXOUT(1,R,M,M,1,00,132,1)
    WHITE(6.1070)
    CALL MXOUT(l,B,NS,M,O,00,13C,l)
    WFITE(6.1080)
    CALL MXOUT (1,HRR,NS,NS,1,60,132,1)
C
C- - - - - - - - - - - - - - - - - - TWOW1271
C ** OPTION FOR OISREGARUING IST TRIM EQUALITY CONSTRAINT -- TWO*1272
C #$* EQUATIUN REGUIRING ZERO NET FORCE IN Y-DIRECTION TWO*1273
    100 IF(JPT(L)) 45,96,96
        95 AV(1) = BRF(2)*AV(2).+ BRH(4)*AV(3)
            HL(1)= BV(1) - AV(1)/BRB(1)
        96 CONTINUE TWOE1278
        TWO*1274
        TWO*1275
    TWO*1276
C-
C** COMPUTE COHRECTION TO LAMOA
TW0*1278
TW0*1279
Tw0 1280
```

```
    CALL (GMPKO(BF,HD,X,NS,MOI) TWO 1290
    CALL MHKD(FARK,X,Y,NS,NS,1,0,1)
    TWO 1300
    CALL MPKD(HRH,HL,X,NS,NS,1,0,1)
```



```
C
C. ** COMPUTE COHRECTION TO DELTA
    CALL GMPRO(Y,GH,DEL.I,NS,M)
    CALL MPKD(F,HD,Y,M,M,I,O,1)
    CALL GMSUK(OEL,Y,UEL,M,1)
    CALL:GMPRU(X,WR,Y,l,NS,M)
    CALL GMSUS(OEL,Y,BEL,M,I)
C
C ** COMPUTE NEW ESTIMATE OF DELTA
    NORM = 0.
    DO 110 I=1.M
    NOHM = NORM + OEL(I) $*2
    110 DELTA(I) = DELTA(I) + DELLI)
C
C **# COMPOUTE NEW ESTIMATE OF LAMDA
    DO 120 J=1.NS
    NOLM = NOYM + 1.AM(J)**C
    120.\operatorname{LAMOA}(J)=LAMOA(J) + LANi(J)
    IF(NORM-EPS) 150,160.130
130 IF(K-KMAX) 140.15U.150
140K=K+1
    GO TO 10
    150 WRITE(6.1040) K , FPSO, NORM
    160 RE TUFN
    ENO
```

GRAD 2 Flow Diagram

GRAD2 Flow Diagram (Continued)


```
    CNBCG = CNA(L) + (UCNBA(L) + OCNBF(L))#RAD
C
    CLHCG = CLBCG + CYBCG*(ZCG(L)-ZMRP)/BREF
    CNHCG = CNBCG - CYHCG*(XCG(L)-XMRP)/BREF
C
    AV(1) = OS * CYBCG * BETA
    AV(C) = USB * CLBCG *ETA * RBT
    AV(3) = USB * CNBCG * BETA * YBT
C
C ** COMPUTE COEFFICIENTS IN VECTOK G
C
    RAO = 57.2957795
    Cl = COS(1H./HAD)
    Sl = SIN(1O./RAD)
    C2 = CUS(12./HAD)
    S2 = SIN(12./RAD)
    C3 = COS(3.b/RAO)
    S3 = SIN(3.5/HAU)
    C4 = CUS(15./HAU)
    S4 = SIN(1S./RAD)
C
C
BM(l) = F(L)*Cl
GM(Z) =-F(L)*Cl*(21-ZCG(L))
BM(3)=F(L)*Cl*(X1-XCG(L))
BM(4) = 2.*F(L)*C2 *C3
BM(S) =-2. * F(L)*C2*C3*(Z2-ZCG(L))
BM(6) = 2.*F(L)*((XZ2-XCG(L))*C3-Y2*S3)*C2
BM(7) = 2.*F(L) # S2 *S3
BM(B) = 2.*F(L)* (YZ*C2 - (Z2-ZCG(L))*S2*S3)
BM(y) = 2.*F(L)*((YC*C3 + (X2-XCG(L))*S3)*S2)
BM(10)=2.*FSRM(L)*C4
BM(11) =-2. FSRM(L) *C4* (Z4-ZCG(L))
BM(12)=2.*FSNM(L)* ((X4-XCG(L))*C4-Y4*S4)
BM(13)=0.
BM(14)=2.*FSRM(L)*Y4
BM(15)=0.
BM(16)=QS #CYA(L)
8M(17.) = QSE * CLACG
BM(1B)=QSH # CNACG
BM(19) = US CYH(L)
BM(20) = QSH* CLRCG
BM(Cl) = QSB CNRCG
C
    CLACG = CLA(L) + CYA(L)*(ZCG(L)-2MRP)/BREF
    CNACG = CNA(L) - CYA(L)&(XCG(L)-XMRP)/BREF
    CLRCG = CLN(L) + CYK(L)*(ZCG(L)-ZMRP)/BREF
    CNRCG = CNK(L) - CYR(L)*(XCG(L)-XMRP)/BREF
```

SYS
SYS 0490
SYS 0500
SYS 0510
SYS 0520
SYS 0530
SYS 0540
SYS 0550
SYS 0560
SYS 0570
SYS 0580
SYS 0590
SYS 0600
SYS 0610
SYS 0620
SYS 0630
SYS 0640
SYS 0650
SYS 0660
SYS 0670
SYS 0680
SYS 0690
SYS 0700
SYS 0710
SYS 0720
SYS 0730
SYS 0740
SYS 0750
SYS 0760
SYS 0770
SYS 0780
SYS 0790
SYS 0800
SYS 0810
SYS 0.820
SYS 0830
SYS 0840
SYS 0850
SYS 0860
SYS 0870
SYS 0880
SYS 0890
SYS 0900
SYS 0910
SYS 0920
SYS 0930
SYS 0940
SYS 0950

Trim Equation

$$
\begin{aligned}
\underline{a}+\underline{b}(\underline{\delta}) & =0 \\
\underline{b}(\underline{g}) & =B \underline{\delta}
\end{aligned}
$$

First Derivative of Trim Equation


```
    OOCl2I=1,M
    00<l2I=1,M
    2l1C(I)=1:/Wl(I)##2
    212 CONTINUE
        M2 = M* (M+1)/2
        00 220 I=1.M2
    220 RM(I) = 0.
    DO 230 I=1,M
        II = I*(I+I)/2
    230 RM(II)=C(I)
C
C *# COMPUTE THE IST DERIVATIVE OF THE PERFORMANCE CRITERION
    300 CONTINUE
    DO 310 I=1.M
    310.RV(I) = C(I)* DELTA(I)
C
    IF(IGHAO-2) 500,400,500
C
C ** COMPUTE THE ZND DERIVATIVE OF. THE PERFORMANCE CRITERION
    400 CONTINUE
C
C (--- CONSTANT MATRIX COMPUTED ABOVE ---)
C
    500 RETURN
    END
    00 Cl2I=1,M
CST 0483
    CST }048
    CST 0490
    CST 0500
    CST 0510
    CST 0520
    CST 0530
CST 0540
CST 0550
CST 0560
CST 0570
CST 0580
CST 0590
CST 0600
CST 0610
CST 0620
CST 0630
CST 0640
CST 0650
CST 0660
CST 0670
CST 0680
CST 0690
```



```
C
    SUBROUTINE MSTR(A,R,N,MSA,MSR)
    OIMENSION A(1),R{1)
C
    DC 20 I=1,N
    DO 20 J=1,N
C IF R IS GENERAL, FORM ELENENT
    IF(MSR) 5,10,5
C
C
C
    5 IF(I-J) 10,10,20
    10 CALL:LOC(I,J,IR,N;N,MSR)
        IF IN UPPER AND OFF DIAGONAL OF DIAGONAL R, BYPASS
    IF(IR) 20,20,15
        OTHERWISE, FGRM R(I;J)
    15R(IR)=0.0
    CALL LOC(I,J,IA,N,N,MSA)
        IF THERE IS NO A(I.,J), LEAVE R(I.j) AT O.0
    IF(IA) 20,20,18
    18 R(IRI=A(IA)
    20 CONTINUE
    RETURN
    END
```

MSTR
490
MSTR 500
MSTR 510
MSTR 520
MSTR 530
MSTR 540
MSTR 550
MSTR 560
MSTR 570
MSTR 580
MSTR 590
MSTR 600
MSTR 610
MSTR 620
MSTR 630
MSTR 640
MSTR 650
MSTR 660
MSTR 670
MSTR 680
MSTR 690
MSTR 700
MSTR 710
MSTR 720
MSTR 730
MSTR 740
MSTR 750
MSTR 760
MSTR 770
MSTR 780
MSTR 790
MSTR 800

CC $10 \mathrm{I}=1, \mathrm{M}$ GNPR 490
$J I=J I+N \quad$ GMPR 500
$I B=I E+1$
$10 R(I R)=R(I R)+A(J I) \neq B(I B)$
RETURN
GNPR 530
ENE
GMPR 540

WEAI; Summituttaf CCUT


```
        IS=0
        i)O}70I=1,
        FIND IUCATION IA OUTHIJT MATHIX ANO SET TO ZFRO
        TF(J-L) >0,10.10
    10 IS=1S+1
        S(TS)=0.0
        a! TO 30
    20 TH=IN+1
        Q(TQ)=0.0
C COCATH FLENENI FON ANY MATHIX STOHAGE MOLF
C 30 CAIL LOC(IGJ,IJONOMOMS)
C
CTEST FOR GFKO FLFMENT IN IIAGONAL MATHIX
    IF(IU) 40.70,40
        UETEWMINE WHETHER NIGMT ON LEFT OF L
    40 TF(J-L) M0.50.50
    50 &(TS)=A(IJ)
    GO TO 70
    AO R(TH)=A(J.J)
    70 CONTINUF
        QF TURN
    ENO
        CCUT 470
        CCUT 480
        CCUT 490
        CCUT 500
        CCUT 510
        CCUT 520
        CCUT 530
        CCUT }54
        CCUT }55
        CCUT 560
        CCUT 570
        CCUT 580
        CCUT 590
        CCUT 600
        CCUT 610
        CCUT 620
        CCUT 630
        CCUT }64
        CCUT }65
        CCUT }66
        CCUT 670
        CCUT 680
        CCUT }69
        CCUT 700
        CCUT T10
    CCUT }72
    CCUT }73
    CCUT }74
    CCUT }75
    CCUT }76
```



```
1C0 K=(K-1)
    IF(K) 150.150,105
105 I=L(K)
    IF(I-K) 120,120,108
108 JG=N*(K-1)
    JR=N* (I-1)
    CO 110 J=1,N
    JK=JC+J
    HOLC=A(JK)
    JI=JR+J
    A(JK)=-A(JI)
110 A(JI) =HOLO
120 J=M(K)
    IF(J-K) 100,10C,125
125 KI*K-N
    CC 130 1=1,N
    KI=KI+N
    HCLC*A(KI)
    JI=KI-K+J
    A(KI)=-A(JI)
130 A(JI)=HOLD
    GO TC 100
150 REYURN
    ENC
```

MINV1450
MINV1460
MINV1470
MINV1480
MINV1490
MINV1500
MINVI510
MINV1520
MINVI530
MINV1540
MINV1550
MINV1560
MINV1570
MINV1580
MINV1590
MINV1600
MINV1610
MINV1620
MINV1630
MINV1.640
MINV1650
MINV1660
MINV1670
MINV1680


```
c
C
    DINENSICN A(1)
    DQUELE PRECISICN DIN,WORK
C
c
C
        factorize given matrix by means of Subroutine mfSD
        A = TRANSPCSE(T) *T
        CALL MFSU(A,N,EPS,IER)
        IF(IER) 9,l,l
        INVERT UPPER TRIANGULAR MATRIX T
        PREPARE INVERSION-LCGP
            1 IPIV=N*(N+1)/2
    IND=IPIV
C
C
            INITIALIZE INVERSION-LOOP
        coti=1,N
        CIN=1.DO/DBLE(A(IPIV))
        A(IPIV)=CIN
        MIN=N
        KENC=1-1
        LANF=N-KEND
        IF(KEND) 5,5,2
2 J=IND
C
C
    \INITIALIZE RCh-LOOP
    SINV 490
    SINV 500
    SINV 510
    SINV 520
    SINV 530
    SINV 540
    SINV 550
    SINV }56
    SINV 570
    SINV 580
    SINV 590
    SINV 600
SINV 610
SINV 620.
SINV }63
SINV 640
SINV 650
SINV 660
SINV 670
SINV 680
SINV 690
SINV 700
SINV 710
SINV }72
SINV }73
SINV }74
    750
    SINV
    LHCR=IPIV SINV 780
```



```
    1 IEP=0
        INITIALTZE. DIAGONAL-LOOF
        KDIV=0
        DO 11 k=1.N
        KPTV=KPIV +K
        IN!)=KPIV
        LF゙ND=K-1
C CALCULATE TOLFHANCE
C CALCULATE TOLFHANCE
    TOL=AHS(FPS*A(KPIV))
C
C START FACTOLI/ATION-LOOP OVEF K-TH ROW
        nO ll T=K."l
        OSUM=0.DO
        JF(LENO) 2.4.Z
C
C START TNNEN LONO
        2 On 3 L=l LENO
        L. }\triangleNF=KOIV-
        LINO=IND-L
        3 DSUM=DSUM + DRLE (A(L\triangleNF)*A(LJND))
            END OF JNNER LOOF
            THANSFORM ELFMENT A(INI))
        4 ПSUM=DALF(\triangle(IND))-DSUM
        IF(I-K) 10.S,10
C
C
            TEST FOR NEGATIVF PIVOT ELEMENT ANO FOR LOSS OF SIGNIFICANCE
            5 IF(SNGL (DSIJM)-TOL) 6.6.9
            B IF(DSUM) 12.12.7
            7F(IER) 8,8.9
            A.IER=K-1
C
C COMPIJTE PIVOT ELEMENT
            9 OPTV=OSORT (DSUM)
        A(KPIV)=OPIV
        DPIV=1.D0/OPIV
        go TO 11
C
C CALCULATE TERMS IN ROW
        10A(IND)=OSUM*OPIV
        11 INI)=IND+I
            END OF OIAGONAL-LOOP
        RETURN
    12. IFR=-1
        RETURN
        END
    MFSD 610
    C
    C
MFSD 620
    MFSO 630
MFSD 640
MFSD 650
MFSD 660
C
C
C
C
MFSD 660
MFSD }68
MFSD 690
MFSD}70
MFSD }70
    TOL=ANS(FDS*A(KPIV))
MFSD 710
MFSD 720
MFSD }73
MFSD 740
MFSD 750
MFSD }76
MFSD }77
MFSD }77
MFSD }79
MFSD 800
MFSD 810
MFSD 820
MFSD 830
MFSD 840
MFSD 850
MFSO 860
MFSD }87
MFSD 880
MFSD 890
MFSD }90
MFSD 910
MFSD 920
MFSD 930
MFSD 940
MFSD 950
MFSD 960
MFSD }97
MFSO 980
MFSD 990
MFSD1000
MFSD1010
MFSO1020
MFSD1030
MFSO1040
MFSO1040
MFSD1060
MFSD1070
MFSD1080
```


APPENDIX D PROCEDURE FOR ELIMINATING CONSTRAINT EQUATIONS IN TRIM PROBLEM

For linear dynamics and a quadratic performance criterion the trim problem can be written in the form

$$
\begin{align*}
& 0=a+B \delta \tag{1}\\
& r=1 / 2 \delta^{\prime} R \delta \tag{2}
\end{align*}
$$

with

$$
\begin{aligned}
& a=\text { constant vector of dimension } n \\
& \delta=\text { control vector of dimension } m \geq n \\
& B=n \times m \text { coefficient matrix } \\
& R=m \times m \text { positive definite weighting matrix }
\end{aligned}
$$

The objective is to find the set of control angles δ that satisfy (1) and minimize (2). The trim solution is given by

$$
\begin{align*}
\delta & =-B^{\#} a \tag{3}\\
B^{\#} & =R^{-1} B^{\prime}\left(B R^{-1} B^{\prime}\right)^{-1} \tag{4}
\end{align*}
$$

The $m \times n$ matrix $B^{\#}$ is a right inverse of B, i.e., $B B^{\#}=I$.
Consider the new trim problem that results from eliminating k of the n equality constraints. Suppose that the first k constraint equations in (l) are to be disregarded. The problem can always be written in this form by reordering the equations if necessary. Partitioning (1) gives that the new trim problem is

$$
\begin{align*}
& 0=a_{2}+B_{2} \delta_{n} \tag{5}\\
& r=1 / 2 \delta_{n}^{\prime} R \delta_{n} \tag{6}
\end{align*}
$$

where

$$
a=\left[\begin{array}{c}
a_{1} \tag{7}\\
\hdashline a_{2}
\end{array}\right]\left\{\begin{array}{c}
k \\
n-k
\end{array} \quad B=\left[\begin{array}{c}
B_{1} \\
B_{2}
\end{array}\right]{ }_{l}^{k} \begin{array}{c}
n-k
\end{array}\right.
$$

The solution to the new trim problem is

$$
\begin{equation*}
\delta_{n}=-R^{-1} B_{2}^{\prime}\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1} a \tag{8}
\end{equation*}
$$

The following question is of interest: Without starting the problem over again, is it possible to compute δ_{n} using the solution for δ ? The answer is affirmative and a procedure for computing δ_{n} is developed below.

From the partitioning (7) of the B matrix

$$
\begin{align*}
R^{-1} B^{\prime} & =\left[\begin{array}{l:l}
R^{-1} B_{1}^{\prime} & R^{-1} B_{2}^{\prime}
\end{array}\right] \tag{9}\\
B R^{-1} B^{\prime} & =\left[\begin{array}{l:l}
B_{1} R^{-1} B_{1}^{\prime} & B_{1} R^{-1} B_{2}^{\prime} \\
\hdashline B_{2} R^{-1} B_{1}^{\prime} & B_{2} R^{-1} B_{2}^{\prime}
\end{array}\right] \tag{10}
\end{align*}
$$

Taking the inverse of (10) results in

$$
\left(B R^{-1} B^{\prime}\right)^{-1}=\left[\begin{array}{c:c}
-k \rightarrow n-k \rightarrow \\
Q_{1} & Q_{2} \tag{11}\\
\hdashline Q_{2}^{\prime} & Q_{3}
\end{array}\right] \&^{k}
$$

where

$$
\begin{aligned}
& Q_{1}=E^{-1} \\
& Q_{2}=-E^{-1} B_{1} R^{-1} B_{2}^{\prime}\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1} \\
& Q_{3}=\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1} B_{2} R^{-1} B_{1}^{\prime} E^{-1} B_{1} R^{-1} B_{2}^{\prime}\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1}+\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1}
\end{aligned}
$$

and

$$
E=B_{1} R^{-1} B_{1}^{\prime}-B_{1} R^{-1} B_{2}^{\prime}\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1} B_{2} R^{-1} B_{1}^{\prime}
$$

Premultiplying (11) by (9) yields the right inverse of the B matrix in partitioned form

$$
\mathrm{B}^{\#}=\left[\begin{array}{l:l}
\mathrm{B}_{1}^{*} & \mathrm{~B}_{2}^{*}
\end{array}\right]
$$

where

$$
\begin{align*}
& \left.B_{1}^{*}=\left[I-R^{-1} \cdot B_{2}^{\prime}\left(B_{2} R^{-1} B_{2}\right)^{-1} B_{2}\right]\right]^{-1} B_{1}^{\prime} E^{-1} \tag{12}\\
& B_{2}^{*}=-\left[I-R^{-1} B_{2}^{\prime}\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1} B_{2}\right] R^{-1} B_{1}^{\prime} E^{-1} B_{1} R^{-1} B_{2}^{\prime}\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1}+R^{-1} B_{2}^{\prime}\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1}
\end{align*}
$$

Substituting (12) into (3) and using (7) gives that

$$
\begin{equation*}
\delta=-B_{1}^{\#} a_{1}-B_{2}^{\#} a_{2} \tag{13}
\end{equation*}
$$

If we substitute

$$
\begin{equation*}
a_{1}=B_{1} R^{-1} B_{2}^{\prime}\left(B_{2} R^{-1} B_{2}^{\prime}\right)^{-1} a_{2} \tag{14}
\end{equation*}
$$

into (13) then from (8) and (12) it follows that

$$
\begin{equation*}
\delta=\delta_{n} \tag{15}
\end{equation*}
$$

This result states that if the first k elements in the vector a are replaced by the values computed from (14) then the solution to the original trim problem becomes the solution to the new trim problem created by eliminating the first \mathbf{k} constraint equations.

It is apparent from comparing (11) to (14) that (14) can be replaced by

$$
\begin{equation*}
a_{1}=-Q_{1}^{-1} Q_{2} a_{2} \tag{16}
\end{equation*}
$$

This is a more useful equation for computing the new value of a_{1} since Q_{1} and Q_{2} are submatrices of a matrix computed in the solution of the original problem.

To summarize, the steps for computing δ_{n} are as follows:

1) Start the computation of δ using (3) and (4) in the usual way.
2) After computing $\left(B R^{-1} B^{\prime}\right)^{-1}$ form the submatrices Q_{1} and Q_{2} according to (II).
3) Replace subvector a_{1} in a by the value computed from (16).
4) Continue the computation of δ in the usual way. The result will be $\delta=\delta_{n}$.

The above procedure for computing δ_{n} does not offer any particular advantage over using (8) if the calculations are to be done by hand. If a computer program, on the other hand, has been developed to compute δ then the above procedure minimizes the amount of program modification required to compute δ_{n}.

APPENDIX E VERIFICATION OF TRIMS PROGRAM

Lateral trim of the Space Shuttle is an example of the linear trim problem. The linear trim problem is to find the control deflections δ satisfying the equality constraints

$$
a+B \delta=0
$$

and minimizing

$$
J=1 / 2 \delta^{\prime} R \delta
$$

The solution is

$$
\begin{aligned}
\delta & =-B_{a}^{\#} \\
B^{\#} & =-R^{-1} B^{\prime}\left(B R^{-1} B^{\prime}\right)^{-1}
\end{aligned}
$$

The problem of Space Shuttle trim in roll and yaw (two constraint equations) using the following four control deflections:

- yaw deflection of orbiter engine 1
- yaw deflection of orbiter engines 2 and 3
- pitch deflection of orbiter engine 2 (negative of the pitch deflection of orbiter engine 3)
- rudder deflection
was solved at MSFC. The control deflection angles vs flight time for the case when the R matrix is

$$
R=\operatorname{Diag}[0.49,0.49,0.49,1.00]
$$

and the bias torques due to misalignments are

$$
\begin{array}{ll}
\text { roll torque }=0.87 \times 10^{6} & \mathrm{~N} \cdot \mathrm{~m} \\
\text { yaw torque }=3.02 \times 10^{6} & \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

ore plotted in Figure EI.
The solution to (supposedly) the same trim problem was also computed using the TRIMS program as a check of the program. The resulting plot of control deflection angles vs flight time is shown in Figure E2. The TRIMS computation was repeated except without the dorsal
fins and the trim solution is plotted in Figure E3.
The results in Figures E2 and E3 computed by TRIMS do not agree with the results in Figure El obtained by MSFC. A comparison of the results does not indicate the reason for the difference. The computation of δ land $B^{\#}$ from a, B, and R in the TRIMS program was checked against hand calculations. Most likely, the area of difficulty is in the computation of the vector a and matrix B from the equations of motion.

Figure E 1 Trim Soltuion Computed at MSFC

```
\square= YAW DEFLECTION ENGINE 1 渞 PITCH DEFLECTION ENGINE 3, AND
O= YAW DEFLECTION ENGINE 2.a3 O}=\mathrm{ RUODER DEFLECTION
```


Figure E 2 Control Deflections vs Flight Time for Space Shuttle Trim in Roll and Yaw with Addition of Dorsal Fins

Figure E 3 Control Deflections vs Flight Time for Space Schuttle Trim in Roll and Yaw

REFERENCES

1. Brockett, R., Finite Dimensional Linear Systems, John Wiley and Sons, Inc., New York, 1970.
2. Bryson, A. and Ho. Y, Applied Optimal Control, Blaisdell Publishing Co., Waltham, Mass., 1969.
3. Etkin, B., Dynamics of Flight-Stability and Control, John Wiley \& Sons, Inc., New York, 1959.
4. Faddeev, D. K. and Faddeeva, V. N., Computional Methods of Linear Algebra, W. H. Freeman \& Co., San Francisco, 1963.
5. Householder, A. S., The Theory of Matrices in Numerical Analysis, Blaisdell Publishing Co., New York, 1964.
6. Kalman, R. F., Ho, Y. C., and Narendra, K. S., "Controllability of Linear Dynamical Systems," Contributions to Differential Equations, vol. 1, No. 2, 1961, pp. 182-213.
7. Johnson, C. D., "Optimization of a Certain Quality of Complete Controllability and Observability for Linear Dynamic Systems," J. Basic Engineering, Trans. ASME, ser. D, vol. 91, June 1969, pp. 228-238.
8. Friedland, B., "Limiting Forms of Optimum Stochastic Linear Regulators," Trans. ASME, Joumal of Dynamic Systems, Measurement, and Control, September 1971, pp. 134-141.
9. Hutton, M. F., "Solutions of the Singular Stochastic Regulator Problem," to be published in the Journal of Dynamic Systems, Measurement, and Control.

[^0]: \dagger The notation " >0 " means the matrix is positive definite and " ≥ 0 " means the matrix is positive semi-definite. For reference purposes see Appendix A for a discussion of differentiation by a vector.

[^1]: * The notation and definitions used for the aerodynamic terms in the report are in accordance with [1].

[^2]: * The location of SRM was not included in the information received from MSFC. This data was not required since it was assumed the SRM could not be gimballed. However, the equations and corresponding computer programs include the posibility of gimballing the SRM.

[^3]: * System/360 Scientific Subroutine Package, Version III, Programmer's Manual, IBM publication GH20-0205-4, Fifthe edition, August 1970.

