PRA

## **ADVANCED CONTROL CONCEPTS**

FINAL REPORT

Contract NAS 8-29192 November 1973

By:

Maurice F Hutton And Bernard Friedland

Prepared For

GEORGE C. MARSHALL SPACE FLIGHT CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-120370) ADVANCED CONTROL CONCEPTS Final Report (Singer Co., Little Falls, N.J.) 190 p HC \$12.50

N74-32284

CSCL 22A

Unclas

G3/31 16776



### Final Report

### ADVANCED CONTROL CONCEPTS

By Maurice F. Hutton and Bernard Friedland

November 1973

Prepared under Contract NAS 8-29192

bу

THE SINGER COMPANY, KEARFOTT DIVISION
LITTLE FALLS, NEW JERSEY

for

GEORGE C. MARSHALL SPACE FLIGHT CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

# TABLE OF CONTENTS

| 1. | INTRODUCTION AND SUMMARY                                                                                                                                           |               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 2. | PROBLEM DESCRIPTION                                                                                                                                                | ;             |
|    | 2.1 TRIM PROBLEM                                                                                                                                                   | :             |
|    | 2.2 GENERAL CONTROL PROBLEM                                                                                                                                        | •             |
| 3. | ANALYTICAL METHODS                                                                                                                                                 | 1             |
|    | 3.1 ITERATIVE SOLUTION OF NONLINEAR TRIM PROBLEM                                                                                                                   | 7             |
|    | <ul><li>3.1.1 Lagrange Multipliers</li><li>3.1.2 Numerical Solution by Steepest Descent Method</li><li>3.1.3 Numerical Solution by Newton-Raphson Method</li></ul> | ]<br>];<br>]; |
|    | 3.2 SOLUTION OF LINEAR TRIM PROBLEM                                                                                                                                | 20            |
|    | <ul><li>3.2.1 Explicit Formulas</li><li>3.2.2 Performance Criterion Selection</li></ul>                                                                            | 20<br>25      |
|    | 3.3 CONTROLLABILITY AND DYNAMIC RESPONSE                                                                                                                           | 3             |
|    | 3.3.1 Controllability Grammian 3.3.2 Index of Controllability                                                                                                      | 3'            |
| ı  | 3.4 OPTIMUM CONTROL APPROACH                                                                                                                                       | 50            |
|    | <ul><li>3.4.1 Optimum Control Computation</li><li>3.4.2 Correlation Between Trim Solution and Optimum Control Solution</li></ul>                                   | 50            |
| 4. | APPLICATION TO SPACE SHUTTLE CONTROL                                                                                                                               | 58<br>58      |
|    | 4.1 SPACE SHUTTLE DYNAMICS                                                                                                                                         | 58            |
|    | 4.2 TRIM PROBLEM AND SOLUTION                                                                                                                                      | 72            |
|    | 4.3 OPTIMUM FEEDBACK CONTROL AND PERFORMANCE                                                                                                                       | 82            |
| 5. | CONCLUSIONS AND FUTURE WORK                                                                                                                                        | 99            |
| Α. | VECTOR NOTATION AND DIFFERENTIATION                                                                                                                                | 102           |
| В. | PARAMETERS OF SPACE SHUTTLE DYNAMICS                                                                                                                               | 104           |
| С. | TRIMS COMPUTER PROGRAM                                                                                                                                             | 112           |
| ٥. | PROCEDURE FOR ELIMINATING CONSTRAINT EQUATIONS IN TRIM PROBLEM                                                                                                     | 1 <i>7</i> 9  |
| Ε. | VERIFICATION OF TRIMS PROGRAM                                                                                                                                      | 182           |
|    | REFERENCES                                                                                                                                                         | 187           |

### 1. INTRODUCTION AND SUMMARY

Because of the possible launch configurations required to boost a space shuttle into orbit, it is anticipated that a large number of control effectors, including both aerodynamic surfaces and gimballed rocket engines, will be required to control the vehicle during ascent through the atmosphere. One objective in controlling the vehicle is to determine the deflection angle settings of the control effectors required to trim the vehicle for headwind and sidewind disturbances, and for bias torques due to solid rocket motor misalignments. Because of the launch configuration and the large number of controls, the control engineer is faced with two challenging problems. First, to compute the trim solution may entail solving a system of coupled, nonlinear equations. Second, if the number of control variables exceeds the number of independent trim equations to be satisfied, the trim solution is not unique.

To solve the uniqueness problem, additional constraints must be imposed. A logical choice for the additional constraints is the minimization of a performance criterion that penalizes the degradation in vehicle performance caused by large trim deflection angles. The performance criterion used in this investigation penalizes the following effects:

- Thrust loss (gain) by gimballing the engines away from their nominal condition.
- Thrust loss due to drag caused by deflecting aerodynamic surfaces.
- Excessive hinge moments on aerodynamic surfaces.
- Large movement of the actuators for trim which hampers the flexibility needed for dynamic response.

The inclusion of a performance criterion in the problem formulation results in an optimization problem with equality constraints to be solved for the trim solution. This formulation eliminates the uniqueness problem but the control engineer is still faced with the problem of explicitly solving the equations for the trim solution. Furthermore, the control engineer is likely to want to perform the trim computations many times in order to consider changes in the following:

- Flight regime (dynamic pressure)
- Desired trim conditions
- Launch vehicle configuration
- Set of control effectors
- Steady-state wind disturbances
- Performance criterion.

To serve this need, a computer program entitled TRIMS was developed to solve the trim problem numerically. The equations for the trim solution are based on the method of Lagrange multipliers and in general are nonlinear. Two standard numerical methods, steepest-descent and Newton-Raphson, are available for solving the nonlinear equations. Application of these methods yields a pair of iterative algorithms for computing the trim solution that are included in the TRIMS program. The program user can select the desired method at the time of program execution. The Newton-Raphson method is more efficient for linear or nearlylinear equations, but may fail to converge in severely nonlinear problems unless started near the optimum solution. If the trim equations are linear and the performance criterion is quadratic, then the trim problem can be solved explicitly. For this case the Newton-Raphson method converges to the exact solution in one iteration. The current version of the TRIMS program for a Space Shuttle during ascent (described in Appendix C) solves the lateral trim problem. The lateral-directional dynamics are in the program and the required data (stability derivatives, moments of inertia, and etc.) supplied by MSFC are stored internally in the block data subroutine. The program permits multiple-case runs and the cost of computing a trim solution is minimal. The program is in a modular form that facilitates changes in the data and/or the equations defining the trim problem.

In computing the trim solution, the control engineer must specify the particular performance criterion to be used. There is no rule or theory for determining a unique performance criterion. The usual procedure is to vary the performance criterion and examine the different trim solutions that result. In the TRIMS program there are fourteen relative weighting factors in the input data that can be varied in the performance criterion. By varying these a family of acceptable trim solutions can be obtained for more detailed examination.

Two methods for determining which of the acceptable trim solutions is preferable were considered.

One possible method for selecting from among several trim solutions is based on controllability. If the trim problem is nonlinear, then the controllability of the linear vehicle dynamics about trim will depend on the particular trim solution. In this case, the trim solution that results in the most controllable system could be used. The notion of a controllability index is developed. This index provides a criterion for ranking the trim solutions according to the degree of controllability. The controllability index is computed

from a symmetric, positive semi-definite controllability matrix and is defined as the ratio of the maximum eigenvalue to the minimum eigenvalue of the matrix. This ratio has a minimum value of unity for an orthogonal matrix. For an uncontrollable system, the controllability matrix is singular and the value of the controllability index is infinite. A difficulty with using the controllability index is that the controllability matrix is not unique and the value of the controllability index varies with the choice of this matrix. The controllability Grammain [1] is one possible choice for this matrix. Other controllability matrices are also considered in the development of the controllability index. A second method for selecting a trim solution is based on comparing the trim solution to the maximum allowable deflections. The rocket engines and aerodynamic control surfaces can only rotate a certain maximum angle. For particular flight times, a maximum hinge moment requirement can reduce the maximum deflection angle of an aerodynamic control surface below its physical limit. Obviously, the trim solution must be within these deflection limits. Moreover, to permit freedom of movement, a control deflection should not be too close to its angular limit. Hence, the requirement that all deflection angles be within their limits by a specified margin could be used to select the trim solution. For linear trim equations, a quadratic performance criterion with a diagonal weighting matrix can always be found for which the trim solution meets this requirement if such a solution exists at all. (This property of a diagonal weighting matrix might extend to nonlinear trim equations, but the more general case has not been studied.) The search for a trim solution satisfying this requirement can be accomplished by varying the diagonal elements of the weighting matrix using the penalty function method discussed in Section 3.2.

For the lateral trim problem of the Space Shuttle, there are two aerodynamic control surfaces (aileron and rudder) and five rocket engines (three orbiter engines and two solid rocket motors). The physical or hard limits on the aileron and rudder deflection are

aileron 
$$\begin{cases} +15^{\circ} \\ -40^{\circ} \end{cases}$$
rudder  $\pm 30^{\circ}$ 

and, as noted earlier, maximum allowable deflections can be less than these limits due to hinge moment restrictions which vary with flight time. The physical limits on the rocket engine deflections were assumed to be  $\pm$  30°. The maximum control deflections computed by the TRIMS program for the lateral trim problem exceeded the limits when the solid rocket motors are not gimballed. In numerous instances, a deflection angle exceeded 100 degrees. When the trim constraint of zero net side force is removed, the maximum deflection angles decrease by an order of magnitude and are within the limits.

In addition to the trim problem, the capability of the control system to damp out perturbations about trim must be considered. This can be identified as the <u>dynamic response</u> <u>problem</u>. In order to solve the dynamic response problem, it must be determined if the vehicle has sufficient dynamic control authority after trim conditions have been achieved. An approach to this problem based on the <u>controllability Grammain</u> used in defining the controllability index mention previously is studied. The controllability Grammain is used to compute the energy expended by each control in damping out errors from the trim conditions. This approach is limited, however, since it does not directly examine the peak deflection angles nor does it consider the realization of the feedback control system.

It is advantageous to have a single method for solving both the trim problem and the dynamic response problem. The method should minimize the total control deflection required both to trim the vehicle and to damp out initial errors and random disturbances. If the vehicle dynamics are linear, optimum control theory provides the desired method. In Section 3.4 the equations for the solution of the optimum control problem are derived for the case of bias inputs (trim problem) and random inputs (dynamic response problem). In Section 4.3, this theory is used to design an optimum feedback system for the lateral control of the Space Shuttle, and the closed-loop performance is simulated for a step change in side-slip angle. The computations for this example of the optimum control approach were performed with the aid of the Linear Systems Design (LSD) program developed at Singer-Kearfott under its Independent Research and Development program concurrent with this investigation.

It is recommended that further investigation of the trim problem for the Space Shuttle be performed with the aid of the TRIMS program for different combinations of controls (i.e., gimbal solid rocket motors), performance criterion, and trim constraints. In addition, a more extensive design effort using the optimum control approach would merit further consideration.

### 2. PROBLEM DESCRIPTION

The objective of this study is to determine how the control effectors for the Space Shuttle can be optimally used to achieve trim and dynamic control in the presence of wind disturbances and bias torques due to misalignment of rocket engines. Launch vehicles have in the past been primarily controlled by gimballing the rocket engines. Various Space Shuttle configurations now under investigation indicate that engine gimballing will not provide sufficient control to trim the vehicle for headwind and sidewind disturbances. Consequently, it may be necessary to use aerodynamic surfaces in conjunction with engine gimballing to achieve trim. Because of the severe cross-coupling problems encountered in the launch configurations, it appears that a large number of control effectors may be used. If the number of control effectors exceeds the number of quantities to be controlled, then the set of deflection angles to achieve trim is not unique. Thus, the control engineer in this case has a family (most likely an infinite set) of possible trim solutions to choose from. However, different trim solutions will result in different levels of performance and dynamic control. Consequently, the objective of the control engineer is to select the trim solution that provides the highest level of performance and dynamic control. To achieve this a performance criterion, which ranks the trim solutions according to level of performance and dynamic control, is defined. The problem then becomes, "What is the unique trim solution which optimizes the performance criterion?"

The algebraic equations for computing the trim solution are derived from the differential equations describing the motion of the vehicle by substituting the desired trim conditions. If the number of control variables exceeds the number of (independent) algebraic equations, then the trim solution is not unique. By addition of the performance criterion mentioned above, a meaningful optimization problem which can be solved for a unique trim solution, is obtained. This section develops the general problem in greater detail showing how the trim equations are derived from the equations of motion and the mathematical form of the performance criterion. The general equations for studying the dynamic response about trim are also derived.

#### 2.1 Trim Problem

In general the motion of the vehicle is governed by a set of nonlinear, time-varying, differential equations of the form

$$\dot{x} = a(x,t) + b(\delta, x, t) + c(x, z, t) + v(t)$$
 (2.1)

where  $x(t) = n \times 1$  vector defining state of the vehicle motion at time t  $\delta(t) = m \times 1$  vector of control deflections  $z(t) = \ell \times 1$  vector of bias disturbances  $v(t) = n \times 1$  vector of random disturbances  $a(x,t) = n \times 1$  vector function of x and t  $b(\delta,x,t) = n \times 1$  vector function of  $\delta,x$ , and t  $c(x,z,t) = n \times 1$  vector disturbance function of x, x, and y.

The trim problem is to find the set of control deflections  $\delta_d$  that yield the desired steady state trim conditions  $x_d$  in the presence of bias disturbances  $z_d$ . The bias disturbances model the effects of a steady wind and misalignment torques. The trim problem ignores the random disturbances, i.e., v(t) = 0 is assumed. Therefore, the trim solution must satisfy

$$\dot{x}_{d} = 0 = \alpha(x_{d}, t) + b(\delta_{d}, x_{d}, t) + c(x_{d}, z_{d}, t)$$
 (2.2)

Let

$$0 = \widetilde{a}(x_{d'}, t) + \widetilde{b}(\delta_{d'}, x_{d'}, t) + \widetilde{c}(x_{d'}, z_{d'}, t)$$
(2.3)

represent the subset of (2) required to calculate the trim deflections  $\delta_d$  where  $\widetilde{a}$ ,  $\widetilde{b}$ , and  $\widetilde{c}$  are  $\widetilde{n} \times 1$  vector functions with  $\widetilde{n} \le n$ . In orther words, in obtaining the algebraic equations in (2.2) from the differential equations in (2.1), it is possible that some of the equations in (2.2) are satisfied by  $x_d$  independent of  $\delta_d$ . These equations, although used in (2.1) for computing the dynamic response, are not used in computing  $\delta_d$  and may be eliminated from (2.2). This elimination which results in (2.3) replacing (2.2) will be illustrated by the lateral control of the Space Shuttle in Section 4.

If  $m < \widetilde{n}$  then no set of control deflections  $\delta_d$  exists that satisfy (2.3). If  $m > \widetilde{n}$  then a solution  $\delta_d$  exists but is not unique. If m = n, there exist a unique solution, but unless b is a linear function of  $\delta_d$  (i.e.,  $b(\delta_d, x_d, t) = B(x_d, t) \delta_d$  it may be difficult to find.

For the case of infinitely many possible trim solutions  $(m > \widetilde{n})$ , certain solutions are preferable over others. An example of the latter is a solution in which each deflection angle is smaller in magnitude than for another trim solution. Trim solutions in which any of the deflection angles exceed the maximum allowable deflection should be excluded since such

solutions cannot be realized. Suppose additional constraints in the form of a performance criterion are included in the problem formulation. The solution that satisfies the trim conditions (2,3) and minimizes the performance criterion is unique. For this approach the trim design problem reduces to the appropriate selection of the performance criterion.

The performance criterion denoted by r is a scalar function of the control

$$r = r(\delta_d) \tag{2.4}$$

In the case  $m \ge n$  the trim problem is to find the set of control deflections

$$\delta'_{d} = [\delta_{1}, \delta_{2}, \ldots, \delta_{m}]$$

that satisfy (2.3) and minimize the performance criterion (2.4). In general, (2.3) and (2.4) are nonlinear functions of  $\delta_d$  and the resulting optimization problem with equality constraints can not be solved analytically. Numerical methods for solving the nonlinear trim problem are developed in Section 3.1.

If the trim equation (2.3) is a linear function of  $\delta$ ,

$$0 = \widetilde{a}(x_d, t) + \widetilde{b}(x_d, t) \delta_d + \widetilde{c}(x_d, z, t)$$
 (2.5)

where  $\widetilde{B}$  is a  $\widetilde{n}$  by m matrix and if the performance criterion is a quadratic form

$$r(\delta_d) = 1/2(\delta_d - \delta_o)'R(\delta_d - \delta_o)$$
 (2.6)

where r is a positive definite matrix and where  $\delta_0$  is the desired trim solution (in most instances  $\delta_0 = 0$ ) then the trim problem is said to be <u>linear</u>. The linear trim problem can be solved analytically and the equations are derived in Section 3.2.

### 2.2 GENERAL CONTROL PROBLEM

The trim problem is only part of the vehicle control problem. In addition to bias disturbances, the control system must be able to damp out sudden deviations from trim and to sustain proper vehicle motion in presence of fluctuating disturbances. An example is a sudden change or rapid fluctuation in the side wind velocity or equivalently the sideslip angle  $\beta$ . The capability of the control system to handle rapid fluctuations in  $\beta$ , for example, is commonly determined by simulating the performance for a step change, impulsive change, or random noise with a specified frequency spectrum. The control system must be designed to maintain the control deflections within the physical limits and to return the vehicle

to trim within an acceptable setting time. This problem can be identified as the problem of dynamic response about trim. The first step in studying the dynamic response of the vehicle is to linearize the equations of motion about trim. Let  $\Delta x$ ,  $\Delta \delta$ ,  $\Delta z$  denote deviations of the state, control deflections, and bias disturbances, respectively, from trim.

$$\Delta x = x - x_{d}$$

$$\Delta \delta = \delta - \delta_{d}$$

$$\Delta z = z - z_{d}$$
(2.7)

Expanding in a Taylor series the nonlinear functions a, b, and c in (2.1) about trim conditions results in the approximations

$$a(x,t) \cong a(x_{d},t) + [\partial a/\partial x] \Delta x$$

$$b(x,t) \cong b(x_{d},t) + [\partial b/\partial x] \Delta x + [\partial b/\partial \delta] \Delta \delta \qquad (2.8)$$

$$c(x,t) \cong c(x_{d},t) + [\partial c/\partial x] \Delta x + [\partial c/\partial x] \Delta z$$

Substracting (2.2) and (2.1) and substituting (2.7) and (2.8) yields the linearized equations of motion

$$\Delta \dot{x} = A\Delta x + B\Delta \delta + C\Delta z + v$$

where

$$A = \frac{\partial a}{\partial x} + \frac{\partial b}{\partial x} + \frac{\partial c}{\partial x}$$
 (2.9)

$$B = \partial b/\partial \delta \tag{2.9}$$

$$C = \partial c / \partial z$$

Note that the partial derivatives are evaluated about the trim conditions and that for particular values of  $\delta_d$ ,  $x_d$ ,  $z_d$ , the matrices A, B, and C are constant.

If the total motion (trim + dynamic response) is governed by linear differential equations then (2.1) becomes

$$\dot{x} = Ax + B\delta + Cz + v \tag{2.10}$$

which has the same form as (2.9). The matrices A, B, C in (2.10) are in general a function of time t. By considering only a number of fixed points along the trajectory the problem

reduces to a set of matrix equations of the form (2.10) with constant coefficients.

There are two general approaches for studying the general control problem including trim and dynamic response.

- Approach 1: First solve the trim problem for a set of acceptable trim solutions by varying the performance criterion (2.4). From this set select the particular trim solution that leads to the best dynamic response. Methods for determining the particular trim solution are developed in Section 3.3.
- Approach 2: Formulate a single performance criterion for the general control problem and solve for the optimum combination of trim solution plus dynamic response. This differs from the first approach in that two performance criteria are used in the former—one for the trim problem and one for the dynamic response problem.

Consider all possible combinations of forces and moments that can be generated by the controls of the Space Shuttle. This set defines the control authority of the vehicle. The restrictions on the control authority are of the form of bounds on the deflection angle, i.e.,

$$\delta_{t\min} \leq \delta_t \leq \delta_{t\max}$$
  $t = 1, \ldots, m$  (2.11)

For most of the controls the maximum deflection and is the same in either direction

$$\|\delta_t\| \le \delta_{t,max}$$
  $t = 1, \dots, m$ 

The primary problem is to find a control solution that satisfies the restrictions (2.11). The restrictions (2.11) are in terms of the total deflection angles resulting from both trim and dynamic response requirements. Hence, the second approach is preferable to the first approach. However, the second approach in general presents more difficult computation problems. If the equations governing the total vehicle motion are nonlinear then it may be necessary to use the first approach; the second may lead to an intractable problem. If, on the other hand, the equations for the total motion are linear, as is the case of the space shuttle dynamics in Section 4, then a design method in the category of the second approach results from the application of optimum control theory. The use of optimum control theory to solve the general control problem with both random and bias input disturbances is developed in Section 3.4 and the application to the lateral control of the Space Shuttle

is described in Section 4.3.

Even when the control design is to be performed using optimum control theory, there are advantages to first solving the trim problem. The trim solution is much easier to compute, and sufficient control authority must exist to handle at least the trim problem. Furthermore, the solution to the trim problem can aid in the formulation of the optimum control problem. The correlation between the trim solution and the optimum control solution is considered in Section 3.4.1.

### 3. ANALYTICAL METHODS

### 3.1 ITERATIVE SOLUTION OF NONLINEAR TRIM PROBLEM

## 3.1.1 Lagrange Multipliers

From (2.3) and (2.4) in Section 2 it was shown that the computation of the control deflections required to trim the vehicle for bias disturbances can be modeled as a problem of the following form:

Find the vector  $\delta$  of dimension m which minimizes a scalar function of  $\delta$ 

$$\frac{\min \ r(\delta)}{\delta} \tag{3.1}$$

subject to a set of n equality constraints

$$0 = a + b(\delta) \tag{3.2}$$

For simplicity, the subscript "d" has been dropped from  $\delta_d$  and (2.3) has been rewritten as (3.2) where

$$a \equiv \widetilde{a}(x_{d}, t) + \widetilde{c}(x_{d}, t)$$

$$b \equiv \widetilde{b}(\delta, x_{d}, t)$$

$$n \equiv \widetilde{n}$$

For a particular point in time t along the trajectory and for a particular set of desired trim conditions x, and bias disturbances z, the vector a in (3.2) is a constant and the vector b ia a function of  $\delta$  only.

In order to achieve a well-defined optimization problem the performance criterion  $r(\delta)$  is assumed to have the following properties: assume that r is differentiable and let  $\delta$  \* be the value of  $\delta$  that minimizes  $r(\delta)$ . (Here the subscript d has been dropped from  $\delta_d$  since just the properties of the performance criterion r are of interest irrespective of the trim equation (3.2).)

$$r(\delta) \ge r(\delta^*) \ge 0 \tag{3.3}$$

Then in some neighborhoods of  $\delta^*$ , the performance citerion has the property that the gradient satisfies

$$\frac{\partial r}{\partial \delta} \begin{cases} = 0 & \text{for } \delta = \delta^* \\ \neq 0 & \text{for } \delta \neq \delta^* \end{cases}$$
 (3.4)

where  $\partial r / \partial \delta = [\partial_r / \partial \delta_1, \dots, \partial_r / \partial \delta_m]$ . Furthermore the second partial derivative of the performance criterion or Hessian matrix satisfies  $\frac{1}{2}$ 

$$\partial^{2}_{r}/\partial\delta^{2} \begin{cases} > 0 & \text{for } \delta = \delta^{*} \\ \geq 0 & \text{for } \delta \neq \delta^{*} \end{cases}$$
 (3.5)

where 
$$(\partial^2 r / \partial \delta^2)_{ij} = \partial^2 r / \partial \delta_i \partial \delta_j$$

The basic approach for solving the nonlinear trim problem given by (3.1) and (3.2) is to apply the well-known method of Lagrange multipliers.

Define a new scalar function h (the Hamiltonian) by

$$h(\delta, \lambda) = r(\delta) + \lambda'(\alpha + b(\delta))$$
 (3.6)

where  $\lambda$  is a vector of n unknown parameters, commonly referred to as the "Lagrange multipliers". The fundamental idea underlying the method of Lagrange multipliers is that if  $\delta^*$ ,  $\lambda^*$  is the solution that minimizes h then  $\delta^*$  is the solution that minimizes r and satisfies (3.2).

Assuming that the functions  $r(\delta)$  and  $b(\delta)$  are differentiable, the equations for the minimal solution  $\delta^*$ ,  $\lambda^*$  can be obtained by differentiating h and setting the derivatives to zero. This gives

$$\partial r / \partial \delta + \lambda' \partial b / \partial \delta = 0 \tag{3.7}$$

$$a + b(\delta) = 0 (3.8)$$

<sup>†</sup> The notation ">0" means the matrix is positive definite and " $\geq$ 0" means the matrix is positive semi-definite. For reference purposes see Appendix A for a discussion of differentiation by a vector.

This is a system of m+n equations in m+n unknown  $\delta$  and  $\lambda$ . Only in special cases can (3.7) and (3.8) be solved explicitly. In general, numerical methods must be used to solve (3.7) and (3.8). Iterative numerical methods for determining the solution  $\delta^*$ ,  $\lambda^*$  that minimizes h given by (3.6), start with an initial guess  $\delta_O$ ,  $\lambda_O$  and then proceed to compute a sequence of solutions

$$\delta_1$$
,  $\delta_2$ , ...,  $\delta_k$ , ...

$$\lambda_1, \lambda_2, \ldots, \lambda_k, \ldots$$

which converge to the exact solution  $\delta^*$  ,  $\lambda^*$ 

$$\delta_k \rightarrow \delta^*$$

$$\lambda_k \rightarrow \lambda^*$$

Two such numerical methods are described in Sections 3.1.2 and 3.1.3.

### 3.1.2 Numerical Solution by Steepest Descent Method

One numerical method, in common use for many years, for finding the minimum of a function is that of "steepest descent". The steepest descent method is a 1st order gradient method and uses an iterative algorithm for improving the estimate of the solution so as to come closer to satisfying the zero slope conditions

$$\partial h/\partial \delta = 0$$
 and  $\partial h/\partial \lambda = 0$ 

The method computes  $\delta_{k+1}$ ,  $\lambda_{k+1}$  from  $\delta_k$ ; the value of  $\lambda_k$  is not used to continue the iteration. The method partitions the vector  $\delta$  according to

where the subvectors x and u are computed separately.

Application of the steepest descent method gives the following steps for computing  $x_{k+1}$ ,  $u_{k+1}$  from  $x_k$ ,  $u_k$ 

- 1) From  $x_k$  ,  $u_k$  compute the column vector  $b(\delta)$  .
- 2) From  $x_k$ ,  $u_k$  compute the matrices  $\partial b / \partial x$ ,  $\partial b / \partial u$ .
- 3) Compute the new estimate of subvector x according to

$$\Delta x_k = -(\partial b/\partial x)^{-1}(a+b(\delta))$$

$$x_{k+1} = x_k + \Delta x_k$$

- 4) From  $x_{k+1}$ ,  $u_k$  compute the row vectors  $\frac{\partial r}{\partial x}$ ,  $\frac{\partial r}{\partial u}$ .
- 5) Compute the vector of Lagrange multipliers according to

$$\lambda'_{k+1} = -(\frac{\partial r}{\partial x})(\frac{\partial b}{\partial x})^{-1}$$

6) Compute the gradient of h with respect to u using

$$\partial h / \partial u = \partial r / \partial u + \lambda'_{k+1} (\partial b / \partial u)$$

7) Compute the new estimate of subvector u according to

$$\Delta u_{L} = -\sigma (\partial h/\partial u)'$$

$$v_{k+1} = v_k + \Delta v_k$$

8) Repeat steps 1) through 8) with the updated solution  $x_{k+1}$ ,  $u_{k+1}$  until the total error is very small

$$\| \Delta x_k \|^2 + \| \Delta u_k \|^2 < \epsilon$$

where the norms are given by

$$\| \Delta x_k \|^2 = \Delta x_k' \Delta x_k$$

$$\|\Delta u_k\|^2 = \Delta u_k' \Delta u_k$$

A flow chart showing the basic steps required to implement the steepest descent method for solving the trim control problem on the computer is given in Figure 3.1. A graphical interpretation of first order gradient methods is given on p. 20 of [2].

First order gradient methods usually show substantial improvements in the first few iterations but have poor convergence characteristics as the optimal solution is approached. A second-order gradient method, which uses the "curvature" as well as the "slope" at the nominal point, is discussed in the next section. Second order gradient methods have excellent convergence characteristics as the optimal solution is approached but unless the initial guess is in the region of convergence then the method may not converge or may converge to the wrong solution.

### 3.1.3 Numerical Solution by Newton-Raphson Method

Newton-Raphson method (or second-order gradient method) for locating the minimum point of a function uses both the first and second derivative at the nominal point to extrapolate a new estimate of the solution. A detailed description of the Newton-Raphson method is given in [1].

Using the Newton-Raphson method to find the minimum solution of  $h(\delta,\lambda)$  given by (3.6) yields an iterative algorithm for computing the trim solution. To obtain the equations for computing  $\delta_{k+1}$ ,  $\lambda_{k+1}$  from  $\delta_k$ ,  $\lambda_k$ , first expand  $h(\delta,\lambda)$  in a Taylor series about  $\delta_k$ ,  $\lambda_k$ .

$$h(\delta, \lambda) = h(\delta_{k}, \lambda_{k}) + \begin{bmatrix} h_{\delta_{k}} & h_{\lambda} \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \lambda \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \Delta \delta \\ \Delta \lambda \end{bmatrix} ' \begin{bmatrix} h_{\delta \delta_{k}} & h_{\delta \lambda} \\ h_{\lambda \delta_{k}} & h_{\lambda \lambda} \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \lambda \end{bmatrix} + \cdots$$
(3.9)

where

$$\Delta \delta = \delta - \delta_{k}$$

$$\Delta \lambda = \lambda - \lambda_{k}$$
(3.10)

Differentiating (3.6) gives the following set of equations for evaluating the derivatives in (3.9)

$$h_{\delta} = \frac{\partial h}{\partial \delta} = \frac{\partial r}{\partial \delta} + \frac{\lambda'(\partial b}{\partial \delta)}$$

$$h_{\delta} = \frac{\partial h}{\partial \lambda} = \frac{\alpha'}{\delta} + \frac{b'(\delta)}{\delta}$$
(3.11)

Figure 3.1 Flowchart of Steepest Descent Method for Solving the Trim Control Problem



$$h_{\delta\delta} = \frac{\partial^{2}h}{\partial \delta^{2}} = \frac{\partial^{2}r}{\partial \delta^{2}} + \lambda'(\frac{\partial^{2}b}{\partial \delta^{2}})$$

$$h_{\delta\lambda} = \frac{\partial^{2}h}{\partial \delta \partial \lambda} = (\frac{\partial b}{\partial \delta})'$$

$$h_{\lambda\delta} = \frac{\partial^{2}h}{\partial \lambda} = \frac{\partial b}{\partial \delta}$$

$$h_{\lambda\lambda} = \frac{\partial^{2}h}{\partial \lambda} = \frac{\partial b}{\partial \lambda}$$

$$(3.12)$$

From (3.9) the equations for computing the new estimate of the solution are:

$$\delta_{k+1} = \delta_k + \Delta \delta_k$$

$$\lambda_{k+1} = \lambda_k + \Delta \lambda_k$$
(3.13)

where the incremental corrections  $\Delta\,\delta_k$  ,  $\Delta\,\lambda_k$  are the solution of a system of linear equations

$$\begin{bmatrix} h_{\delta\delta} & h_{\delta\lambda} \\ ---- & h_{\lambda\delta} & h_{\lambda\lambda} \end{bmatrix} \begin{bmatrix} \Delta \delta_{k} \\ ---- \\ \Delta \lambda_{k} \end{bmatrix} = -\begin{bmatrix} h'_{\delta} \\ --- \\ h'_{\lambda} \end{bmatrix}$$
(3.14)

Note that the derivatives are evaluated about the nominal point  $\delta_{\nu}$ ,  $\lambda_{\nu}$ .

To summarize, the steps in the Newton-Raphson method for computing  $\,\delta_{k+1}^{}$  ,  $\,\lambda_{k}^{}$  are as follows:

- 1) From  $\delta_k$  compute the column vector  $b(\delta)$  .
- 2) From  $\delta_k$  compute the matrix  $\partial b / \partial \delta$ .
- 3) From  $\delta_k$  compute the tensor  $\frac{\partial^2 b}{\partial \delta^2}$
- 4) From  $\delta_k$  compute the row vector  $\partial r/\partial \delta$  .
- 5) From  $\delta_k$  compute the symmetric matrix  $\partial^2 r/\partial \delta^2$
- 6) Compute the first-order gradient terms  $h_{\delta}$ ,  $h_{\lambda}$  according to (3.11).
- 7) Compute the second-order gradient terms  $h \delta \delta$ ,  $h \lambda \lambda$ ,  $h \lambda \delta$  according to (3.12). (Note that  $h \lambda \lambda = 0$ .)
- 8) Compute the incremental correction to the solution by solving (3.14) which gives

$$\Delta \delta_{k} = - [R^{-1} - R^{-1}B'(BR^{-1}B')^{-1}BR^{-1}]h'_{\delta} - [R^{-1}B'(BR^{-1}B')^{-1}]h'_{\lambda}$$

$$\Delta \lambda_{k} = - [(BR^{-1}B')^{-1}BR^{-1}]h'_{\delta} + [(BR^{-1}B')^{-1}]h'_{\lambda}$$
(3.15)

where the matrices R and B are defined by

$$R = h_{\delta\delta}$$

$$B = h_{\lambda\delta} = h'_{\delta\lambda}$$
(3.16)

- 9) Update the solution according to (3.13).
- 10) Estimate the error in the solution by computing the norms

$$\| \Delta \delta_{k} \|^{2} = \Delta \delta_{k}' \Delta \delta_{k}$$

$$\| \Delta \lambda_{k} \|^{2} = \Delta \lambda_{k}' \Delta \lambda_{k}$$

11) Repeat steps 1) through 11) with the updated solution  $\delta_{k+1}$ ,  $\lambda_{k+1}$  until the sum of the norms is very small as given by

$${\parallel \Delta \delta_{k} \parallel}^{2} + {\parallel \Delta \lambda_{k} \parallel}^{2} < \epsilon$$

A flowchart showing the basic steps required to implement the Newton-Raphson method on the computer is given in Figure 3.2.

Figure 3.2 Flow Chart of Newton-Raphson Method for Solving the Trim Control Problem



### 3.2 SOLUTION OF LINEAR TRIM PROBLEM

### 3.2.1 Explicit Formulas

In the previous section the general nonlinear trim problem defined by (3.1) and (3.2) was discussed. The case of a linear trim equation

$$a + B\delta = 0 \tag{3.17}$$

and a quadratic performance criterion

$$r(\delta) = \frac{1}{2} \left(\delta - \delta_{0}\right)' R \left(\delta - \delta_{0}\right) \tag{3.18}$$

is referred to as the <u>linear</u> trim problem and can be solved explicitly. The scalar Hamiltonian function corresponding to (3.17) and (3.18) is

$$h(\delta,\lambda) = 1/2(\delta - \delta_0)'R(\delta - \delta_0) + \lambda'(\alpha + B\delta)$$
 (3.19)

The vectors and matrices in the right-hand side of (3.19) are defined below

 $\delta = m$  - vector of control deflections.

 $\delta_{o} = m - vector of desired control deflections.$ 

 $\lambda$  = vector of Lagrange multipliers of dimension (m-n).

a = constant vector of dimension n.

 $B = constant matrix of dimension <math>n \times m$ .

R = constant positive definite matrix of dimension  $m \times m$ .

The trim solution is computed by determining the values of  $\delta$  and  $\lambda$  that minimize the scalar function h. Differentiating (3.19) and setting the derivatives to zero gives

$$(\frac{\partial h}{\partial \delta})' = R(\delta - \delta_0) + B'\lambda = 0$$

$$(\frac{\partial h}{\partial \lambda})' = \alpha + B\delta$$
(3.20)

The vector-matrix form of (3.20) is

$$\begin{bmatrix} R & B' \\ B & 0 \end{bmatrix} \begin{bmatrix} \delta \\ \lambda \end{bmatrix} = \begin{bmatrix} \delta_{0} \\ -\alpha \end{bmatrix}$$
 (3.21)

Premultiplying both sides of (3.21) by the inverse of the square matrix on the right hand side

of (3.21) gives that the optimum trim solution is

$$\delta = \int I - B^{\#}B \int \delta - B^{\#}a \qquad (3.22)$$

where

$$B^{\#} = R^{-1}B'(BR^{-1}B')^{-1}$$
 (3.23)

Note that  $B^{\#}$  is a right inverse of B (i.e.,  $BB^{\#} = \mathcal{I}$ ). Substituting (3.22) and (3.23) into (3.18) and (3.19) gives that the minimum values of performance criterion and Hamiltonian function are

$$h = r = 1/2 (a+B \delta_0)' (BR^{-1}B')^{-1} (a+B \delta_0)$$

Consider the example of triming sidewind induced roll and yaw momen to using aileron, rudder, and the yaw deflection of a single rocket engine. Setting the rolling and yawing moment coefficients to zero ( $C_{\chi} = C_{\rm p} = 0$ ) gives in vector form

$$\begin{bmatrix} C_{\ell Y} \\ C_{nY} \end{bmatrix} \delta_{EY} + \begin{bmatrix} C_{\ell R} \\ C_{nR} \end{bmatrix} \delta_{R} + \begin{bmatrix} C_{\ell A} \\ C_{nA} \end{bmatrix} \delta_{A} = \begin{bmatrix} C_{\ell \beta} \\ C_{n\beta} \end{bmatrix} \beta \qquad (3.24)$$

or in slightly different form

$$\begin{bmatrix} C_{\ell Y} & C_{\ell R} & C_{\ell A} \\ C_{nY} & C_{nR} & C_{nA} \end{bmatrix} \begin{bmatrix} \delta_{EY} \\ \delta_{R} \\ \delta_{A} \end{bmatrix} = \begin{bmatrix} C_{\ell B} \\ C_{nB} \end{bmatrix} \beta$$
(3.25)

The trim equations given by (3.24) or (3.25) are a set of 2 linear equations in three unknowns  $\delta_{EY}$ ,  $\delta_R$ ,  $\delta_A$ . Since there is one more unknown than equations, (3.24) has an infinite family of possible trim solutions.

A graphical representation of the possible trim solutions can be seen by depicting (3.24) in the yaw-roll moment coefficient plane as shown in Figure 3.3. The four vectors formed by the stability derivatives are represented by solid arrows where the following numerical values were chosen for the example

$$\begin{bmatrix} C_{\ell Y} \\ C_{n Y} \end{bmatrix} = \begin{bmatrix} -0.20 \\ 0.80 \end{bmatrix} \qquad \begin{bmatrix} C_{\ell R} \\ C_{n R} \end{bmatrix} = \begin{bmatrix} 0.10 \\ -0.10 \end{bmatrix} \qquad \begin{bmatrix} C_{\ell A} \\ C_{n A} \end{bmatrix} = \begin{bmatrix} 0.07 \\ 0.08 \end{bmatrix} \qquad \begin{bmatrix} C_{\ell \beta} \\ C_{n \beta} \end{bmatrix} = \begin{bmatrix} -0.67 \\ 0.35 \end{bmatrix}$$

The dotted curve in Figure 3.3 represents one of the trim solutions for the case,  $\beta=1^{\circ}$ , and is the vector diagram corresponding to the left hand side of (3.24). The values of the deflection angles are

$$\delta_{EY} = -0.5$$
  $\delta_{R} = 2.807$   $\delta_{A} = 4.133$ 

and are equal to the lengths of the dotted arrows divided by the lengths of the corresponding (parallel) solid arrows. The sign of the deflection angle is positive if the dotted arrow and the corresponding solid arrow point in the same direction, and the sign is negative if the directions are opposite.

The addition of a performance criterion to be minimized will yield a unique solution for (3.24). For illustration, one possible choice might be

$$r(\delta) = (\delta_{FV}/15^{\circ})^{2} + (\delta_{R}/20^{\circ})^{2} + (\delta_{A}/10^{\circ})^{2}$$
 (3.26)

where 15°, 20°, and 10° are the corresponding maximum deflections. From (3.25) it follows that for  $\beta=1^\circ$ 

$$B = \begin{bmatrix} -0.20 & 0.10 & 0.07 \\ 0.80 & -0.10 & 0.08 \end{bmatrix} \qquad a = \begin{bmatrix} -0.67 \\ 0.35 \end{bmatrix}$$
 (3.27)

and from (3.26)

$$R = \begin{bmatrix} 1/225 & 0 & 0 \\ 0 & 1/400 & 0 \\ 0 & 0 & 1/100 \end{bmatrix} \qquad \delta_0 = 0 \qquad (3.28)$$

Substituting (3.27) and (3.28) into (3.22) and (3.23) gives the solution

$$\delta = \begin{bmatrix} \delta_{EY} \\ \delta_{R} \\ \delta_{A} \end{bmatrix} = \begin{bmatrix} 0.10^{\circ} \\ 5.70^{\circ} \\ 1.72^{\circ} \end{bmatrix}$$
 (3.29)

Figure 3.3 Yaw/Roll Coupling Characteristics



As an example of how changes in the performance criterion effect the minimal solution suppose in place of (3.26)

$$r(\delta) = (\delta_{EY}/20^{\circ})^{2} + (\delta_{R}/20^{\circ}) + (\delta_{A}/20^{\circ})^{2}$$

then

$$\delta = \begin{bmatrix} \delta_{EY} \\ \delta_{R} \\ \delta_{A} \end{bmatrix} = \begin{bmatrix} 0.10^{\circ} \\ 5.70^{\circ} \\ 1.72^{\circ} \end{bmatrix}$$
 (3.30)

### 3.2.2 Performance Criterion Selection

When infinitely many trim solutions are possible, certain solutions definitely require more control authority than other solutions and should not be used. In particular, given a trim solution  $\delta$ , if it is possible to find another trim solution  $\delta^*$  such that for each control

$$|\delta_{t}^{*}| \leq |\delta_{t}|$$
  $t = 1, 2, \ldots, m$  (3.31)

where the strict inequality holds for some controls then  $\delta$  should not be used. Property (3.31) partitions the possible trim solutions into two disjoint sets. If  $\delta$  satisfies (3.31) it will be referred to as an <u>unfavorable</u> trim solution and if  $\delta$  does <u>not</u> satisfy (3.31) it will be referred to as a <u>favorable</u> trim solution. The problem of selecting a form of the performance criterion that guarantees a <u>favorable</u> trim solution <u>has</u> been solved.

At this point a simple example is helpful in studying the properties of the trim problem. Suppose there is a single trim equation

$$0 = 6 - 2 \delta_1 + \delta_2 \tag{3.32}$$

with two controls  $\delta_1$  and  $\delta_2$  . The general form of the performance criterion for the case of two controls is

$$r = 1/2r_1\delta_1^2 + 1/2r_2\delta_2^2 + r_3\delta_1\delta_2$$
 (3.33)

where

$$R = \begin{bmatrix} r_1 & r_3 \\ r_3 & r_2 \end{bmatrix}$$

and

$$r_1 > 0$$
 ,  $r_2 > 0$  ,  $r_3^2 < r_1^2$ 

One approach for graphically representing the trim problem is to consider  $\delta = [\delta_1, \dots, \delta_m]'$  as defining the coordinates of a point in an m-dimensional space which shall be referred to as the solution space. This approach is different from the graphical representation in Figure 3.3 where each coordinate corresponds to one of the scalar trim equations and hence

might be referred to as the <u>equation space</u> representation. For this example the loci of possible trim solutions in the solution space is the straight line defined by (3.32) and shown in Figure 3.4. The segment of the straight line between points P and Q defines the set of favorable trim solutions and the remaining two segments on either side of P and Q define the set of unfavorable trim solutions.

For each fixed value of the performance criterion, there corresponds a closed contour curve in the solution space. For (3.33),  $\, r =$  constant defines an ellipse centered at the origin of the solution space. By parametrically increasing the value of  $\, r = 1$  and  $\, r = 1$ . The circle with  $\, r = 3.6 \,$  intersects the straight line at the single point  $\, \delta_1 = 2.4 \,$  and  $\, \delta_2 = -1.2 \,$ . This is also the optimum solution obtained using the formulas (3.22) and (3.23). For the case  $\, r_1 = 4, \, r_2 = 1$ , and  $\, r_3 = 0 \,$  the optimum ellipse is

$$18 = 4\delta_1^2 + \delta_2^2$$

and is tangent to the straight line PQ at  $\delta_1 = 1.5$  and  $\delta_2 = -3.0$  .

The above example illustrates how varying the weighting matrix R in the performance criterion leads to different trim solutions. However, there are more ways of varying R (degrees of freedom) than necessary. This means different choices of the R matrix can lead to the same optimum trim solution.

The redundancy in the selection of R suggests that R can be restricted to a diagonal matrix without disregarding a favorable trim solution. This assumption simplifies the selection of R. For the example illustrated in Figure 3.4, the principle axes of the ellipse will coincide with the coordinate axes in the solution space when and only when R is diagonal (i.e.,  $r_3 = 0$ ). As a consequence, the optimum trim solution for a diagonal R matrix will always lie on the line segment PQ (region of favorable trim solutions). The optimum solution point in Figure 3.4 will move from point P to point Q as the ratio of the diagonal elements  $r_1 / r_2$  increases from 0 to  $\infty$ . Thus increasing the weighting on  $\delta_1$  relative to the

weighting on  $\delta_2$  causes  $|\delta_1|$  to decrease and  $|\delta_2|$  to increase.

This example illustrates the following general properties of the weighting matrix in the performance criterion:

- Property 1: The optimum trim solution for a diagonal R matrix is always a favorable trim solution.
- Property 2: Any favorable trim solution is the optimum solution for some diagonal R matrix.

The general proof of the first property is not difficult. Let  $\,\delta\,$  be the optimum trim solution for

$$R = Diag[r_1, \ldots, r_m]$$

then the minimum value of the performance criterion is

$$r = 1/2(r_1 \delta_1^2 + ... + r_m \delta_m^2)$$
 (3.34)

Suppose  $\delta$  is an unfavorable trim solution, then there exists another trim solution  $\delta^*$  satisfying (3.31) for which the value of the performance criterion is

$$r^* = 1/2 (r_1 \delta_1^{*2} + \dots + r_m \delta_m^{*2})$$
 (3.35)

Comparing (3.34) to (3.35) term by term, it follows from (3.31) and  $r_{i} > 0$  that

But  $\tau$  is the minimum value and hence a contradiction! Therefore,  $\delta$  cannot be an unfavorable trim solution.

Given a favorable trim solution  $\delta$  it should be possible to find a diagonal R matrix in the performance criterion for which the optimum solution is  $\delta$ . A general method for constructing such an R matrix or equivalently, a general proof of the second property has not yet been found.

The formulation of trim control problem given by (3.17) and (3.18) is an optimization problem with equality constraints. However, as pointed out in Section 2, inequality constraints also exist due to the physical limitation on the control deflections. For a symmetric control, these will have the form

Figure 3.4 Example of Trim Problem and Solution Space Representation







$$|\delta_i| \leq \delta_{i \max}$$
  $i = 1, \ldots, m$ 

 $\delta_{t \text{ max}} = \text{maximum allowable deflection of the } t \text{h control}$ 

The inequality constraints are not included explicitly in the problem formulation since an optimization problem with both equality and inequality constraints is difficult to solve. Instead, the inequality constraints are handled by the penalty function method.

The basic idea of the penalty function method is to repeat the computation of the optimum trim folution for different R matrices in the performance criterion until each ratio  $| \delta_t | / \delta_{t \text{ max}}$  is less than one and the difference  $\delta_{t \text{ max}} - | \delta_t |$  is sufficiently large to provide the additional control required to solve the dynamic response problem. The procedure for varying the elements of R is simplified if R is restricted to be a diagonal matrix. From the properties of a diagonal R matrix discussed previously, this restriction does not exclude any favorable trim solutions but does exclude all unfavorable trim solutions. As an illustration of how to vary the diagonal elements of R , suppose the optimum solution for

$$R = Diag[r_1, \dots, r_m]$$

results in one of the deflections  $\delta_t$  exceeding its limits. The next step is to increase the corresponding weighting factor  $\mathbf{r}_t$  and solve the problem again. Repeat this procedure until  $\delta_t$  is smaller than the maximum deflection. An increase in the weighting factor  $\mathbf{r}_t$  will cause the magnitude of  $\delta_t$  to decrease at the expense of increasing the magnitude of other deflection angles. If no adjustment of the weighting factors results in all the control deflections being within their corresponding limits then the launch configuration does not possess sufficient control authority. If the limits are exceeded for every control then from Properties 1 and 2, mentioned earlier, no acceptable trim solution exists.

The modification of the performance criterion to produce a more desirable trim solution can be facilitated by realizing that for small perturbations the change in the optimum trim solution is proportional to the change in the weighting factors of the performance criterion. Computing the differentials of (3.22) and (3.23) for the case  $\delta_0 = 0$  gives

$$d\delta = -dB^{\#} \cdot a \tag{3.37}$$

$$-dB^{\#} = (I - B^{\#}B)R^{-1} \cdot dR \cdot B^{\#}$$
 (3.38)

The derivation of (3.38) makes use of the identity

$$d(R^{-1}) = -R^{-1} \cdot dR \cdot R^{-1}$$

From (3.23) and (3.38) it can be shown that

$$B \cdot d\delta = 0$$

which also follows from computing the differential of (3.17). Equations (3.37) and (3.38) showthat for small perturbations dô varies linearly with  $\delta R$ . Let  $d\delta_t$  denote the change in the trim solution due to  $dR_t$ , i.e.,

$$dR_t \rightarrow d\delta_t$$

Substituting

$$dR = \sum w_t dR_t$$

into (a 24) where  $\mathbf{w}_t$  is an arbitrary scalar results in

$$d\delta = \sum w_i d\delta_i$$

Thus, replacing R by R+dR causes the optimum trim solution to become  $\delta+d\delta$ .

### 3.3 CONTROLLABILITY AND DYNAMIC RESPONSE

### 3.3.1 Controllability Grammian

The use of the controllability Grammian for studying dynamic response about frim is developed below. The trim solution uses part of the control authority. If the vehicle deviates from trim due to random disturbance or a sudden wind gust then it must be determined if the control effectors have sufficient authority in reserve to return the vehicle to trim. By using a different trim solution, better dynamic response performance could possibly be achieved with respect to the control limits. The problem of determining which controls are most effective in zeroing out deviations is also of interest. If there are more control effectors available than required it may be possible to disregard those controls whose effectiveness is small.

### **Basic Theory**

In vector-matrix notation the linearized equations of motion about trim have the general form

$$\dot{x} = Ax + Bu \tag{3.39}$$

where

 $x = state\ vector\ of\ dimension\ n$ 

u = control vector of dimension m

The equation for the solution is

$$x(t) = \Phi(t) x(0) + \int_{0}^{t} \Phi(t-\tau) Bu(\tau) d\tau$$
 (3.40)

where the transition matrix is

$$\Phi(t) = e^{At} \tag{3.41}$$

The control signal that will drive the error to zero at time T is

$$v(t) = -B'\Phi'(-t)W^{-1}\times(0)$$
 (3.43)

where

$$W = W(T) = \int_{0}^{T} \Phi(-t)BB'\Phi'(-t)dt$$
 (3.43)

The matrix function W(t) is referred to as the "controllability Grammian" [1]. Substituting (3.42) into (3.40) and using (3.43), it can be shown that x(T) = 0.

A useful criterion for indicating the amount of control effort is given by the integral

$$E = \int_{0}^{T} v'v \, dt \tag{3.44}$$

which may be viewed as proportional to the total "energy" expended by the control effectors in returning the vehicle to trim. Substituting (3.42) into (3.44) and using (3.43) yields the result

$$E = x'(0) W^{-1} x(0)$$
 (3.45)

Thus the controllability Grammian W(t) provides a means for computing E.

Let  $\mathbf{E}_{t}$  denote the "energy" expended by the tth control effector, then

$$E_{t} = \int_{0}^{T} u_{t}^{2} dt$$
  $t = 1..., m$  (3.46)

where

$$u_{L}(t) = B_{L}'\Phi'(-t)W^{-1}x(0)$$
 (3.47)

and  $B_i$  is the ith column of the B matrix. Substituting (3.47) into (3.46) results in

$$E_{t} = x'(0) W^{-1} W_{t} W^{-1} x(0)$$
 (3.48)

with

$$W_{t} = \int_{0}^{T} \Phi(-t) B_{t} B_{t}' \Phi'(-t) dt$$
 (3.49)

The ratio  $E_t/E$  is a convenient measure for determining the relative effectiveness of the tth control effector. Upon substituting

$$BB' = B_1 B_1' + B_2 B_2' + \dots + B_m B_m'$$
3.50)

into (3.43), it follows from (3.45), (3.48), and (3.49) that

$$W = W_1 + W_2 + \dots + W_m$$
 (3.51)

and

$$E = E_1 + E_2 + \dots + E_n$$
 (3.52)

Another approach for computing E and  $E_{t}$  is obtained by rewriting (3.44) as

$$E = \operatorname{trace} \left\{ \int_{0}^{T} u u' dt \right\}$$
 (3.53)

Substituting (3.42) into (3.53) gives

$$E = trace \{ B'MB \}$$
 (3.54)

where

$$M = \int_{0}^{T} \Phi'(-t) W^{-1} x(0) x'(0) W^{-1} \Phi(-t) dt$$
 (3.55)

Repeating this approach for (3.46) and (3.47) leads to

$$E_{t} = B'_{t} MB_{t}$$
  $t = 1, 2, ..., m$  (3.56)

The advantage of using (3.56) in place of (3.49) is that instead of computing  $W_1, W_2, \dots, W_m$  only have to compute M. The disadvantage is that if the initial state vector  $\mathbf{x}(0)$  changes then M must be recomputed where as the matrices  $W_t$  are not a function of  $\mathbf{x}(0)$  and hence do not change.

### Computation of Controllability Grammian

Several methods for computing the matrix  $W \equiv W(T)$  defined by (3.43) are discussed below Eigenvector Transformation

Suppose a new set of state variables q(t) are introduced that are related to x(t) by

$$q = Qx (3.57)$$

where by assumption Q is a nonsingular matrix. Substituting (19) into (1) gives

$$\dot{\mathbf{q}} = \widetilde{\mathbf{A}}_{\mathbf{q}} + \widetilde{\mathbf{B}}_{\mathbf{U}} \tag{3.58}$$

where

$$\tilde{A} = QAQ^{-1}$$

$$\widetilde{B} = OB$$

Let  $\widetilde{W}(t)$  denote the controllability Grammian computed from (3.58) then defining  $\widetilde{W} \equiv \widetilde{W}(T)$  and applying the definition (3.43) to (3.58) results in

$$\widetilde{W} = QWQ' \quad \text{or} \quad W = Q^{-1}\widetilde{W}Q^{-1}$$
 (3.59)

1f

$$\widetilde{A} = Diag [\lambda_1, \lambda_2, \dots, \lambda_n]$$

where  $\lambda_t$  are the eigenvalues of A then the columns of  $Q^{-1}$  form the corresponding set of eigenvectors. In this development it is assumed that the eigenvalues are real and distinct. The method can still be applied to the complex and the multiple eigenvalue case but the computations are more complicated. This method will not be generalized because it is intended only for illustration purposes and as a means for checking the other methods. If  $\widetilde{A}$  is a diagonal matrix then the transition matrix is a diagonal matrix with diagonal elements.

$$\widetilde{\Phi}_{t,t}(t) = e^{\lambda_t t}$$
  $t = 1, \dots, n$ 

which upon substitution into the definition of the controllability Grammian (3.43) gives that the element of matrix  $\widetilde{W}$  in row t and column j is

$$\widetilde{W}_{t,f} = \widetilde{b}_{t}'\widetilde{b}_{f} \int_{0}^{T} e^{-(\lambda_{t} + \lambda_{f})^{\dagger}} dt$$
(3.60)

where  $\widetilde{b}_t$  is the vector of dimension m formed by the tth row of  $\widetilde{B}$ , i.e.,

$$\widetilde{b}'_{t} = [\widetilde{b}_{t1}, \ldots, \widetilde{b}_{tm}]$$

Integrating (3.60) gives

$$\widetilde{W}_{t,j} = \widetilde{b}_t' \widetilde{b}_j \left[ e^{-(\lambda_t + \lambda_j) T} - 1 \right] / - (\lambda_t + \lambda_j)$$

$$t, j = 1, \dots, n$$
(3.61)

Combining (3.59) and (3.61) defines the eigenvector transformation method for computing  $\,\mathrm{W}\,$ 

To illustrate, consider the example

$$A = \begin{bmatrix} -1 & 2 & 0 \\ 0 & -3 & 0 \\ 1 & 2 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1.5 & -1 \\ -4 & 2 \\ -10.5 & -25 \end{bmatrix} \qquad T = 0.5$$

$$m = 2$$

$$n = 3$$
(3.62)

If the transformation matrix and its inverse are

$$Q = \begin{bmatrix} -2 & -2 & 0 \\ 0.25 & 0 & -0.25 \\ 0 & 1 & 0 \end{bmatrix} \qquad Q = \begin{bmatrix} -0.5 & 0 & -1 \\ 0 & 0 & 1 \\ -0.5 & -4 & -1 \end{bmatrix}$$

then

$$\widetilde{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \qquad \widetilde{B} = \begin{bmatrix} 5 & -2 \\ 3 & 6 \\ -4 & 2 \end{bmatrix}$$

Substituting into (3.61)

$$\widetilde{W} = \begin{bmatrix} 24.92 & 3.48 & -38.33 \\ 3.48 & 71.88 & 0.0 \\ -38.33 & 0.0 & 63.62 \end{bmatrix}$$

and next substituting  $\widetilde{W}$  into (3.59)

$$W = \begin{bmatrix} 31.51 & -44.45 & 38.48 \\ -44.45 & 63.62 & -44.45 \\ 38.48 & -44.45 & 1195.47 \end{bmatrix}$$
(3.63)

## Numerical Integration

Let F(t) represent the integrand of (3.43), i.e.,

$$W = \int_{0}^{T} F dt$$
 (3.64)

Differentiating F results in the matrix differential equation

$$-F = AF + FA'$$

Integrating both sides of the above equation from  $\,0\,$  to  $\,t\,$  gives the following linear matrix differential equation for computing the controllability Grammian  $\,W(t)\,$ 

$$-\dot{W} = AW + WA' - BB'$$
,  $W(0) = 0$  (3.65)

The solution to (3.65) at t = T is the value of the integral (3.43). Similarly, the linear matrix differential equation for computing  $W_t(t)$  is

$$-\dot{W}_{t} = AW_{t} + W_{t}A' - B_{t}B'_{t}$$
 ,  $W_{t}(0) = 0$  (3.66)  
 $i = 1, ..., m$ 

A computer program for calculating the controllability Grammian by numerically integrating (3.65) was developed. The output form the program for the example (3.62) is shown below and required 0.43 seconds of cpu on the IBM 370.

MATHIX A

MATHIX A

MATHIX W

The computer solution of W agrees with the solution (3.63) calculated by hand.

### Recursive Algorithm

Suppose the objective is to compute the controllability Grammian for t=T, 2T, 3T, ..., NT. Let W(n) denote solution of (3.65) for t+nT and define

$$\Omega = \Phi(-T)$$

A recursive algorithm for computing W(n),  $n=2,3,\ldots,N$  from W(1) and  $\Omega$  is developed below. From (3.64)

$$W(n+1) = \int_{0}^{nT+T} F dt = \int_{0}^{nT+T} F dt + \int_{0}^{r} F dt$$

$$(3.67)$$

Let  $\xi = t - nT$  and from

$$\Phi(-+) = \Phi(-\xi-nT) = \Omega^n \Phi(-\xi)$$

it can be shown that

$$nT+T \qquad T \qquad T$$

$$\int F(t) dt = \int F(\xi+nt) d\xi = \Omega^{n} \int F(\xi) d\xi \Omega^{n'}$$

$$0 \qquad (3.68)$$

Substituting (3.68) into (3.67) and using the definition (3.43) results in

$$W(n+1) = \Omega^{n}W(1)\Omega^{n'} + W(n)$$
 (3.69)

From (3.69) it can be shown by repeated substitution that

$$W(n+1) = \Omega^{n}W(1)\Omega^{n'} + ... + \Omega W(1)\Omega' + W(1)$$
(3.70)

From (3.70) it can be readily proven that

$$W(n+1) = \Omega W(n) \Omega' + W(1)$$
(3.71)

Formula (3.71) can be used to reduce the amount of numerical integration. To compute W(t) at t+NT instead of numerically integrating (3.65) from 0 to NT, only integrate (3.65) and

$$-\Phi = A\Phi \quad , \quad \Phi(0) = I$$

from 0 to T and then use (3.71)

# 3.3.2 Index of Controllability

When the general vehicle dynamics are nonlinear, then the linear equations (2.9) for the dynamic response about the trim solution  $\delta_{\bf d}$  are a function of  $\delta_{\bf d}$ . Hence, the controllability of the linear system (2.9) varies with the choice of the trim solution. Quantification of controllability provides a measure for determining the trim solution that results in the most controllable linear system. In the previous section, the controllability Grammain W(t) at t=T is used evaluate the integral (3.44) for the scalar E which may be viewed as the energy expended by the control effectors in returning the vehicle to trim during a time span of T seconds. One possible means of quantification is the use of E to indicate the degree of controllability. In this section another means of quantification is developed. An index of controllability is defined as the ratio of maximum to minimum eigenvalues of W(T) or some other controllability matrix.

The time-invariant linear system (3.39) is said to be <u>controllable</u>, if it is possible to find an input u which reduces an arbitrary initial state to zero in finite time T. A necessary and sufficient condition for the system to be controllable is that the controllability Grammain W(t) defined by (3.43) be nonsingular for some finite t. If  $W \equiv W(T)$  is nonsingular, then (3.42) defines one of the many possible inputs u that satisfy the definition of controllability. Another matrix often used to study controllability is

$$P(t) = \int_{0}^{t} \Phi(\tau)BB' \Phi(\tau) dt \qquad (3.72)$$

where  $\Phi(t)$  is the transition matrix (3.41). The matrix P(t) is related to W(t) by

$$P(t) = \Phi(t)W(t)\Phi'(t)$$
 (3.73)

and can be identified as the covariance matrix of the state x(t) when u(t) is white noise having a spectral density of unity. It follows from (3.73) that the system is controllable if and only if P(t) is nonsingular for some finite t. If the system (3.39) is stable, then the integral for P(t) exists as  $t \to \infty$  and the asymptotic value

$$P = \lim_{t \to \infty} P(t) \tag{3.74}$$

is the solution to the algebraic equation

$$AP + PA' + BB' = 0$$
 (3.75)

It is well known that P(t) or W(t) is nonsingular if and only if the matrix

$$K = [B, AB, \dots, A^{k+1}B]$$
 (3.76)

has rank k = order of the system. The rank of K is equal to the rank of  $k \times k$  symmetric matrix

$$Q = KK' = BB' + ABB'A' + ... + A^{k+1}BB'(A')^{k-1}$$
 (3.77)

which is more convenient than K for testing controllability.

# Indices of Controllability

The necessary and sufficient conditions for controllability of a time-invariant system is that a certain matrix be nonsingular. Possible choices of the test matrix that are symmetric, positive-semidefinite include W(t), P, and Q. This controllability is a property that a given system theoretically either possesses or does not possess. In practical applications, however, there may be instances in which a system may be nearly uncontrollable in the sense that certain initial states may be much harder to reduce to zero than others. Evidence of such situations is that the matrices tested for controllability are nearly singular, i.e., poorly-conditioned. It is thus appropriate to use conditioning of a relevant matrix as an index of controllability. A useful measure [4, 5] of the conditioning of a matrix F is

$$k(F) = || F || \cdot || F^{-1} ||$$
 (3.78)

where || F || denotes the norm of the matrix F defined by

where  $|| \times ||$  is a suitable vector norm. When the Euclidian norm, i.e.

$$|| \times || = \sqrt{x'x}$$

is used, then, for a symmetric matrix F,

$$k(F) = |\lambda_{\text{max}}/\lambda_{\text{min}}| \tag{3.79}$$

where  $\lambda_{\text{max}}$  and  $\lambda_{\text{min}}$  are the eigenvalues of largest and smallest magnitude, respectively.

Clearly  $k(F) \ge 1$  and reaches the lower limit only when  $|\lambda_{max}| = |\lambda_{min}|$ , i.e. when all eigenvalues are equal in magnitude. The condition  $k(F) \ge 1$  also holds for other norms, as shown in [5].

The quantification of controllability (and/or observability) was considered earlier by several investigators. Kalman, Ho and Narendra [5] considered using the trace or the determinant of the inverse of the controllability matrix as indices of controllability, and Johnson [7] considered the determinant as an index of controllability in greater detail.

The shortcoming of the earlier indices of controllability is that they depend on the scale of the variables used in the problem. For example, multiplying earch control variable by a constant say c, is equivalent to multiplying the B matrix by the same constant and hence the controllability matrix Q as defined by (3.77) or P as defined by (3.74) is multiplied by  $c^2$ . Hence the trace of  $P^{-1}$  or  $Q^{-1}$  is multiplied by  $c^{-2k}$ . On the other hand, the conditioning number is obviously independent of a scale change, either of the control variables or of the state variables. The conditioning number, however, does depend on the choice of state variables, as the following examples indicate. Example – Consider the system having the transfer function

$$H(s) = \frac{Y(s)}{U(s)} = \frac{s+a}{(s+1)(s+2)}$$

It is clear that if a=1 or 2 the system is either not observable or not controllable or both. The objective of this example is to show the behavior of the controllability index as  $a \to 1$  or 2.

In order to examine the controllability and observability of the system it is necessary to define a suitable set of state variables. In this example the state variables are defined as those of two canonical forms. The Jordan normal form and the companion form.

Jordan Form - The Jordan form can be obtained by expanding H(s) in partial fractions:

$$H(s) = \frac{\alpha - 1}{s + 1} - \frac{\alpha - 2}{s + 2}$$

Two block diagram representations of H(s) are given in Figure 3.5. For Figure 3.5(a), the state and output equations are

$$\dot{x} = -x + \upsilon$$

$$1 1$$

$$\dot{x} = -2x + \upsilon$$

$$y = (\alpha - 1)x - (\alpha - 2)x$$

$$C = [\alpha - 1, -(\alpha - 2)]$$

For Figure 3.5(b) the state and output equations are

$$\dot{x} = -x + (\alpha - 1) \upsilon$$

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \quad B = \begin{bmatrix} \alpha + 1 \\ -(\alpha - 2) \end{bmatrix}$$

$$\dot{x} = -2x - (\alpha - 2) \upsilon$$

$$y = x + x$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

It is thus seen that the A matrix of both representations are identical and also A = A'. Moreover, B' of Figure 3.5(a) equals C of Figure 3.5(b) and C' of Figure 3.5(a) equals B of Figure 3.5(b). Hence it follows that observability of Figure 3.5(a) corresponds to controllability of Figure 3.5(b), and vice-versa. Accordingly, examining the controllability of Figure 3.5(b) is equivalent to examining the observability of Figure 3.5(a).

The controllability matrix K of the system of Figure 3.5(b) is

$$K = \begin{bmatrix} \alpha-1 & -(\alpha-1) \\ -(\alpha-2) & 2(\alpha-2) \end{bmatrix}$$

Hence

Q = KK' = 
$$\begin{bmatrix} 2(\alpha-1)^2 & -3(\alpha-1)(\alpha-2) \\ -3(\alpha-1)(\alpha-2) & 5(\alpha-2)^2 \end{bmatrix}$$

The characteristic equation of Q is

$$\chi^2 - \chi(tr A) + |A| = 0$$

where

$$tr A = 2(\alpha-1)^2 + 5(\alpha-2)^2$$
  
 $|A| = (\alpha-1)^2(\alpha-2)^2$ 

There is a characteristic root at  $\lambda=0$ , for  $\alpha=1$  or  $\alpha=2$ , and these are the values of  $\alpha$  for which the system is not controllable, as expected. The condition number of Q, as defined above, is

$$k(Q) = \frac{trQ + \sqrt{(trQ)^2 - 4|Q|}}{trQ - \sqrt{(trQ)^2 - 4|Q|}}$$

A curve showing the behavior of  $k(\mathbb{Q})$  vs the parameter a is shown in Figure (3.6). It is observed that  $k(\mathbb{Q})$  tends to infinity as  $a \to 1$  or as  $a \to 2$ . It is interesting to note, however, that  $k(\mathbb{Q})$  reaches (local) minima of 37.9 at a = 1.61 and a = 3.72. This would suggest that if a were adjustable, the controllability (or observability) can be optimized, in the sense of minimizing  $k(\mathbb{Q})$  by using a = 1.61 or a = 3.72.

Instead of k(Q) we can determine k(P) after solving for P by use of (3.77) The solution of the latter is

$$P = \begin{bmatrix} \frac{(\alpha-1)^2}{2} & -\frac{(\alpha-1)(\alpha-2)}{3} \\ -\frac{(\alpha-1)(\alpha-2)}{3} & \frac{(\alpha-2)^2}{4} \end{bmatrix}$$



FIGURE 3.5: JORDAN CANONICAL FORMS OF TRANSFER FUNCTION IN EXAMPLE



FIGURE 3.8: COMPANION FORM OF TRANSFER FUNCTIONS

whence 
$$trP = \frac{(\alpha-1)^2}{2} + \frac{(\alpha-2)^2}{4}$$
  
 $|P| = \frac{1}{72} (\alpha-1)^2 (\alpha-2)^2$ 

The resulting curve for k(P) is also shown in Fig. 3.6. It is observed that k(P) attains minima of about 34.0 at  $a \approx -1.5$  and  $a \approx 1.4$ .

It is noted that the minimum value of the conditioning number is almost equal for P and Q and one minimum occurs (as expected) between a=1 and a=2. The locations of the other minima are quite different, but the general shapes of the curves are remarkably similar.

It is of interest to examine the effect of adding another independent input on the controllability of the system. Suppose, for example, another input say u was added to the first state, resulting in the equations

$$\dot{x_1} = -x_1 + (\alpha - 1) u_1 + u_2$$

$$\dot{x}_2 = -2x_2 - (\alpha - 2)u_1$$

The corresponding B matrix is now

$$B = \begin{bmatrix} \alpha - 1 & 1 \\ -(\alpha - 2) & 0 \end{bmatrix}$$

The controllability matrix is now

$$K = \begin{bmatrix} \alpha - 1 & -1 & -(\alpha - 1) & -1 \\ -(\alpha - 2) & 0 & 2(\alpha - 2) & 0 \end{bmatrix}$$

and

$$Q = KK' = \begin{bmatrix} 2(\alpha-1)^2+2 & -3(\alpha-1)(\alpha-2) \\ -3(\alpha-1)(\alpha-2) & 5(\alpha-2)^2 \end{bmatrix}$$

likewise

$$P = \begin{bmatrix} \frac{(\alpha-1)^2+1}{2} & \frac{-(\alpha-1)(\alpha-2)}{3} \\ -\frac{(\alpha-1)(\alpha-2)}{3} & \frac{(\alpha-2)^2}{4} \end{bmatrix}$$

P and Q are now singular for only one value of a , namely a = 2; obviously  $x_2$  is not controllable for a = 2.

The curves of k(P) and k(Q) are shown in Fig. 3.7. It is noted that the addition of input  $u_2$  has the effect of reducing the conditioning number for all values of a, as would be expected.

Companion Form - Two alternate companion forms that realize the transfer function H(s) are shown in Fig. 3.8 (a) and (b). The corresponding matrices are as follows

Figure 3.8(a) 
$$A = \begin{bmatrix} 0 & 1 \\ & & \\ -2 & -3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ \alpha - 3 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Figure 3.8(b) 
$$A = \begin{bmatrix} 0 & 1 \\ & & \\ -2 & -3 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} \alpha & 1 \end{bmatrix}$$

Since the C matrix of Fig. 3.8(a) is independent of a it is natural to examine the behavior of this realization for controllability. Likewise, it is natural to examine the realization of Fig. 3.8 (b) for observability.

For the system of Fig. 3.8 (a) it is found that

$$K = \begin{bmatrix} 1 & \alpha - 3 \\ \alpha - 3 & -3\alpha + 7 \end{bmatrix}$$

whence 
$$Q = KK' = \begin{bmatrix} a^2 - 6a + 10 & -3a^2 + 17a - 24 \\ -3a^2 + 17a - 24 & 10a^2 - 48a 58 \end{bmatrix}$$

$$tr Q = 11a^2 - 54a + 68$$

$$|Q| = (a-1)^2 (a-2)^2$$

Solution of (3.75) for P gives

$$P = \begin{bmatrix} \frac{\alpha^2 + 2}{12} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{\alpha^2 - 6\alpha + 11}{6} \end{bmatrix}$$

with

tr 
$$P = \frac{1}{4}(a^2 - 4a + 8)$$

$$|P| = \frac{1}{72}(a-1)^2(a-2)^2$$

Curves showing k(P) and k(Q) as functions of a are given in Figure 3.9. It is noted that although local minima occur for both k(P) and k(Q) for  $1 \le a \le 2$ , the minima attained exceed 1000 and hence would indicate that operation with a in this interval is undesirable. A very sharp local minimum in k(Q) of about 1.4 occurs at  $a \ge 2.7$ , and would indicate that operation at this value of a is, in a sense, optimum; k(P) on the other hand does not have any other minimum, but tends to unity as  $a \to \pm \infty$ . This corresponds to the case in which the "feedforward" gain (to  $x_1$ ) is negligible in comparison to the direct gain (a-3).







### 3.4 OPTIMUM CONTROL APPROACH

# 3.4.1 Optimum Control Computation

If the general control problem described in Section 2.1 can be formulated as an optimum stochastic control problem for a linear process with a quadratic performance criterion than a linear feedback system can be designed to solve both the trim problem and the dynamic response problem. The theory to compute such a feedback system is developed in this section and will be applied in Section 4.3 to the lateral control of the Space Shuttle.

The linear stochastic optimum control problem with bias inputs is defined by the following equations in vector-matrix notation

#### Process Dynamics:

$$\dot{x} = Ax + Bu + Cz + v \qquad z = constant$$

$$E\{v\} = 0 \qquad \qquad E\{vv'\} = V$$
(3.80)

### Observation Equation:

$$y = Hx + w$$
  
 $E\{w\} = 0$   $E\{ww'\} = W$  (3.81)

## Performance Criterion:

$$J(u) = E\{ \int_{t}^{\infty} (x'Qx + \sigma^{2}u'Ru)ds \mid y(\eta) \text{ for } \tau \leq t \}$$
 (3.82)

σ = scalar parameter

where

x = state vector

u = control vector

y = output vector

z = bias vector

v = input noise vector to process dynamics

w = sensor noise vector

Equation (3.80) is identical to (2.10) except the vector of deflection angles is denoted by  $\, u \,$  instead of  $\, \delta \,$  . The stochastic optimum control solution is denoted by  $\, u \,$  in order to distinguish

it from the control solution  $\delta$  obtained by solving the trim problem. This distinction is helpful in the next section when the correlation between u and  $\delta$  is developed. In the usual problem formulation, the scalar parameter  $\sigma$  is not present in (3.82) since it can be incorporated in the R matrix. In this case, however, the scalar parameter  $\sigma$  is useful in deriving the correlation between u and  $\delta$ .

If the "bias term" Cz was not present, then the optimum control problem defined by (3.80) - (3.82) would be in the standard form. By defining z as part of the state vector, (3.80) - (3.82) may be rewritten in the standard form. The resulting augmented dynamics are

$$\frac{\dot{x}}{x} = \overline{A} \, \overline{x} + \overline{B} \, \mathbf{u} + \overline{\mathbf{v}} \tag{3.83}$$

$$y = \overline{H} \overline{x} + w \tag{3.84}$$

$$J = E \int_{t}^{\infty} (\overline{x'} \, \overline{Q} \, \overline{x} + \sigma^2 \, \upsilon' R \upsilon) ds \mid y(\tau) \text{ for } \tau \le t \}$$
 (3.85)

where

$$\vec{x} = \begin{bmatrix} x \\ z \end{bmatrix} \quad \vec{A} = \begin{bmatrix} A & C \\ 0 & E \end{bmatrix} \quad \vec{B} = \begin{bmatrix} B \\ 0 \end{bmatrix} \quad \vec{Q} = \begin{bmatrix} Q & 0 \\ 0 & 0 \end{bmatrix}$$

$$\overline{\mathbf{v}} = \begin{bmatrix} \mathbf{v} \\ \mathbf{f} \end{bmatrix} \quad \overline{\nabla} = \begin{bmatrix} \mathbf{V} & \mathbf{0} \\ \mathbf{0} & \mathbf{3}^{\mathbf{f}} \end{bmatrix} \qquad \overline{\mathbf{H}} = \begin{bmatrix} \mathbf{H} & \mathbf{0} \end{bmatrix}$$

The solution to the optimum control problem defined by (3.83) – (3.85) is given by the equations

Deterministic Quadratic Optimum Control:

$$u(t) = -F\hat{x}(t) \tag{3.86}$$

where

$$F = (1/\sigma^2)R^{-1}\overline{B}'M$$
 (3.87)

$$M\overline{A} + \overline{A}'M - (1/\sigma^2)M\overline{B}R^{-1}B'M + \overline{Q} = 0$$
 (3.88)

Kalman Filter:

$$\frac{\hat{x}}{x} = \overline{Ax} + \overline{Bu} + K(y - \overline{Hx})$$
 (3.89)

where

$$K = P\overline{H}'W^{-1} \tag{3.90}$$

$$0 = \overline{A}P + P\overline{A'} - P\overline{H'}W^{-1}\overline{HP} + \overline{V}$$
 (3.91)

The feedback control system defined by (3.86) – (3.91) is divided into two parts in tandem. First, a Kalman filter computes the optimum estimate of the augmented state  $\frac{\hat{x}}{x}$  from the sensor measurements y. Next, feedback gains multiply the estimated state  $\frac{\hat{x}}{x}$  to yield the control signal. In the event that the augmented state vector  $\frac{\hat{x}}{x}$  can be measured perfectly, i.e.,

$$y \equiv \overline{x}$$

then, the Kalman filter is not required. In this case the control system is defined by (3.86) - (3.88) where  $\hat{x} = \bar{x}$ .

Partitioning the augmented state vector into x and z simplifies the equations (3.86) - (3.91) for the control design. The deterministic quadratic optimum control is considered first.

By partitioning the matrix M according to

$$M = \begin{bmatrix} M_1 & M_2 \\ M_2 & M_3 \end{bmatrix}$$

the optimum control solution (3.86) can be rewritten as

$$u(t) = u_{x}(t) + u_{z}(t)$$
 (3.93)

where

$$v_{x}(t) = -1/\sigma^{2} R^{-1} B' M_{1} x(t) = -F_{x} \hat{x}(t)$$

$$v_z(t) = -1/\sigma^2 R^{-1} B' M_2 z = -F_z \hat{z}(t)$$

The symmetric matrix  $M_1$  is the positive definite solution of

$$M_1A + A'M_1 - 1/\sigma^2 M_1BR^{-1}B'M_1 + Q = 0$$
 (3.94)

and the matrix  $M_2$  is computed from  $M_1$  according to

$$M_2 = -(A' - 1/\sigma^2 M_1 BR^{-1}B')^{-1} M_1 C$$
 (3.95)

In the derivation of (3.94) and (3.95) it is assumed that E=0 in  $\overline{A}$  which corresponds to the assumption z= constant .

Similarly, by partitioning the matrix P according to

$$P = \begin{bmatrix} P_1 & P_2 \\ P_2' & P_3 \end{bmatrix}$$

the equations (3.89) - (3.91) for the Kalman filter become

$$\hat{x} = A\hat{x} + Bu + C\hat{z} + K_{x}(y-H_{x})$$
 (3.96)

$$\hat{z} = E\hat{z} + K_z(y-Hx)$$

and

$$K_{x} = P_{1}H'W^{-1}$$

$$K_{z} = P_{2}'H'W^{-1}$$
(3.97)

The partitioning of the P matrix does not simplify the computation of the submatrices  $P_1$  and  $P_2$  as in case of the matrix M. Hence,  $P_1$  and  $P_2$  are computed by solving (3.91) for the positive definite covariance matrix P. In the computation of P it is assumed  $E \neq 0$  and  $F \neq 0$ . If F = 0 then  $P_2 = P_3 = 0$ . This implies that the bias disturbances z can be determined perfectly which is not realistic. A small amount of damping  $(E \neq 0)$  is included in the noise model of bias disturbances in order to yield a finite value of  $P_3$ .

# 3.4.2 Correlation Between Trim Solution and Optimum Control Solution

There is a relationship between the optimum control approach and the trim control approach. This relationship relates the optimum steady state control value  $u(\varpi)$  to the trim solution  $\delta$  for the case when the control weighting matrix R in the performance criterion (3.82) of the optimum control approach and in the performance criterion (3.19) of the trim control approach are the same.

The derivation given below is for the case of complete state feedback for which (3.92) holds. It appears that the proof extends to the more general case in which the optimum control system includes the Kalman filter to estimate the state. A detailed proof, however, has not been developed for the more general case.

Substituting (3.93) into (3.80) yields for the case of complete state feedback the closed loop dynamics

$$\dot{x} = \widetilde{A}x + \widetilde{C}z \tag{3.98}$$

where

$$\widetilde{A} = A - 1/\sigma^2 BR^{-1}B'M_1$$

$$\widetilde{C} = C - 1/\sigma^2 BR^{-1} B' M_2$$

Since the matrix  $\widetilde{A}$  is asymptotically stable, setting  $\dot{x} = 0$  in (3.98) results in the formula

$$\times (\infty) = -\widetilde{A}^{-1}\widetilde{C}z \tag{3.99}$$

for computing the steady state value of the state vector. In turn, substituting (3.99) and (3.95) into (3.93) gives that the steady state value of the control vector is

$$\upsilon(^{\infty}) = \upsilon_{_{\mathbf{X}}}(^{\infty}) + \upsilon_{_{\mathbf{Z}}}(^{\infty}) \tag{3.100}$$

where

$$U_{\mathbf{x}}^{(\infty)} = \mathbf{R}^{-1} \mathbf{B}' \mathbf{M}_{1} (\sigma^{2} \widetilde{\mathbf{A}})^{-1} \widetilde{\mathbf{C}} \mathbf{z}$$
 (3.101)

$$v_z^{(\infty)} = R^{-1} B' (\sigma^2 \widetilde{A}')^{-1} M_1 Cz$$
 (3.102)

Next we will consider how  $u(\infty)$  varies with the scalar parameter  $\sigma$  in the performance criterion (3.82). In particular what is the limiting value of  $u(\infty)$  as  $\sigma$  approaches zero. In determining the limiting solution, we must take into account the variation of the matrices  $M_1$  and  $M_2$  with  $\sigma$ . A solution of (3.94) is sought in the form of a series in ascending power of  $\sigma$ :

$$M_1 = N_0 + \sigma N_1 + \sigma^2 N_2 + \dots$$
 (3.103)

In papers by Friedland [8] and Hutton [9], it is shown that the following equations:

$$N_0^B = 0$$
 (3.104)

$$N_0 A + A' N_0 + Q - N_1 B R^{-1} B' N_1 = 0$$

$$N_1 A + A' N_1 - N_2 B R^{-1} B' N_1 - N_1 B R^{-1} B' N_2 = 0$$
(3.105)

must be satisfied if (3.103) is a solution to (3.94). The above equations are formed by substituting (3.103) into (3.94) and equating matrix coefficients of like powers of  $\sigma$ . By matrix manipulations of (3.104) and (3.105), it is shown in [8] that  $N_0$  is the positive semi-definite solution of

$$0 = N_0 A [I - B (B'QB)^{-1} B'Q] + [I - QB(B'QB)^{-1} B'] A'N_0 + Q - QB(B'QB)^{-1} B'Q$$

$$- N_0 A B (B'QB)^{-1} B'A'N_0$$
(3.106)

After solving (3.106) for  $\,N_0^{}\,$  , we can solve (3.105) for the positive semi-definite matrix  $\,N_1^{}\,$  .

Consider the asymptotic value of

$$(\sigma^2 \widetilde{A})^{-1} = (\sigma^2 A - BR^{-1} B' M_1)^{-1}$$
 (3.107)

as  $\sigma$  approaches zero. For all nonzero  $\sigma$ , the matrix  $M_1$  is positive definite. From (3.104), the matrix  $M_1$  is positive semi-definite at  $\sigma=0$ . However, if the first term  $\sigma^2 A$  in (3.107) decays to zero more rapidly than the second term, then

$$(\sigma^2 \widetilde{A})^{-1} \rightarrow -M_1^{-1} (BR^{-1}B')^{-1} \text{ as } \sigma \rightarrow 0$$
 (3.108)

provided  $BR^{-1}B'$  is positive definite. Substituting (3.103) into (3.107) and using (3.104) gives that

$$[\sigma^{2}\widetilde{A}]^{-1} = [\sigma^{2}A - BR^{-1}B'(\sigma N_{1} + \sigma^{2}N_{2} + ...)]^{-1}$$
(3.109)

The dominant term in (3.109) is  $BR^{-1}B'N_1$  which is derived from the second term in (3.107) and indicates that (3.108) is valid.

Substituting (3.108) into (3.95) and (3.98) gives

$$\lim_{\sigma \to 0} M_2 = -(BR^{-1}B')^{-1}C \tag{3.110}$$

$$\lim_{\sigma \to 0} \widetilde{C} = 0 \tag{3.111}$$

Further substituting (3.108) into (3.101) and (3.102) and using (3.111) yields the results

$$\lim_{\sigma \to 0} v(^{\infty}) = \lim_{\sigma \to 0} v_{z}(^{\infty}) = -R^{-1}B'(BR^{-1}B')^{-1}Cz$$
 (3.112)

$$\lim_{\sigma \to 0} U_{\chi}(^{\infty}) = 0 \tag{3.113}$$

The trim control problem is to find the set of controls of satisfying

$$0 = Cz + B\delta \tag{3.114}$$

and minimizing the performance index

$$J = 1/2 \delta' \overline{R} \delta \tag{3.115}$$

The solution to (3.114) and (3.115) is

$$\delta = -\overline{R}^{-1}B(B\overline{R}^{-1}B')^{-1}Cz \tag{3.116}$$

Comparing (3.116) to (3.112) provides the fundamental result that

$$\delta = \lim_{\sigma \to 0} \sigma(\infty) \text{ if } \overline{R} = k^2 R$$
 (3.117)

where k is an arbitrary scalar. Thus the steady state value of the optimum control solution in the case of unlimited control authority (control weighting matrix R in the performance criterion goes to zero) is equal to the trim solution provided the relative control weighting matrices are the same in both cases. This provides a correlation between the optimum control solution and the trim solution.

# 4. SPACE SHUTTLE CONTROL

Control of the Space Shuttle is studied during ascent when more control effectors are available than required. The analytical methods developed in Section 3 are applied to the lateral control problem. An illustration of the Space Shuttle configuration, given in Figure 4.1, shows the two aerodynamic surfaces and five rocket engines available for control. For purposes of later reference these controls are identified as follows:

- 1) top orbiter rocket engine
- 2) right orbiter rocket engine
- 3) left orbiter rocket engine
- 4) right solid rocket motor
- 5) left solid rocket motor
- 6) alleron
- 7) rudder

By varying the angular position of these controls, seven independent means of lateral control are achieved. But only three independent controls are required, leaving four redundant controls. If the solid rocket motors (SRM) are not gimballed then the number as independent controls is reduced to five, leaving two redundant controls. The results in this report are for the latter case. However, the equations and computer programs used to perform the calculation of the control deflections include the possibility of gimballing the SRM.

# 4.1 Space Shuttle Dynamics

A mathematical model describing the lateral motion of the Space Shuttle is given in this section. This description entails an extensive number of the parameters defined in Appendix B together with a tabulation of their numerical values.

The set of differential equations describing the translational and rotational motion of the vehicle are based on summing the forces and moments along the body axes of the vehicle \*.

The body axes are defined as a Cartesian coordinate system fixed to the vehicle and whose origin is located at the center of mass as shown in Figure 4.2. The attitude and rotational rate

<sup>\*</sup> The notation and definitions used for the aerodynamic terms in the report are in accordance with [ 1].

Figure 4.1 Ascent Control Configuration of Space Shuttle





of the vehicle are defined by the Euler angles and the components of the angular velocity vector along the three body axes. Specifically

 $\varphi = \text{roll angle}$ 

 $\theta$  = pitch angle

 $\psi = yaw angle$ 

p = roll rate

q = pitch rate

r = yaw rate

Figure 4.2 Body Axes and Notation



The positive directions are as shown in Figure 4.2. Upper case letters denote the total motion (Nominal and Perturbation) of the vehicle. The velocities, forces, and moments about the three body axes are defined as follows:

U, X = forward velocity and force

V, Y = side velocity and force

W, Z = downward velocity and force

L = rolling moment

M = pitching moment

N = yawing moment

The kinematic and dynamic equations describing the lateral motion of the vechile are

$$Y = m[V + RU - PW - g \cos \Theta \sin \Phi]$$

$$L = I_x P - I_{xz} R + QR(I_z - I_y) - I_{xz} PQ$$

$$N = -I_{xz} P + I_z R + PQ(I_z - I_z) + I_{xz} QR$$

$$(4.1)$$

and

$$\Phi = P + Q \sin \Phi \tan \theta + R \cos \Phi \tan \Theta$$

$$\cdot \qquad (4.2)$$

$$\Psi = (Q \sin \Phi + R \cos \Phi) \sec \Theta$$

where the moments of inertia are defined by

$$I_{x} = \int (y^{2}+z^{2}) dm$$

$$I_{y} = \int (x^{2}+z^{2}) dm$$

$$I_{z} = \int (x^{2}+y^{2}) dm$$

$$I_{xz} = \int xz dm$$
(4.3)

For this investigation no data was available on  $I_{xz}$ , thus the approximation  $I_{xz} = 0$  is used. The (total) vehicle motion modeled by (4.1) and (4.2) can be partitioned into nominal plus perturbation motion by substituting

$$U = U_{o} + u \qquad P = P_{o} + p \qquad \Theta = \Theta_{o} + \Theta$$

$$V = V_{o} + v \qquad Q = Q_{o} + q \qquad \Phi = \Phi_{o} + \varphi$$

$$W = W_{o} + w \qquad R = R_{o} + r \qquad \Psi = \Psi_{o} + \psi$$

$$(4.4)$$

where the capital letters with subscript "o" denote the nominal motion and the lower case letters denote the perturbation motion. For the nominal motion along the trajectory it is assumed that

The nonzero values are tabulated in Appendix B for each of the twelve flight times along the ascent trajectory for which the perturbation motion is to be studied. Substituting (4.4) and (4.5) into (4.1) and (4.2) results in the following linearized equations of motion for small perturbations from the nominal trajectory:

$$Y = m [\dot{\mathbf{v}} + \mathbf{U}_{o} \mathbf{r} - \mathbf{g} \cos \Theta_{o} \phi]$$

$$L = I_{x} \dot{\mathbf{p}} + (I_{z} - I_{y}) Q_{o} \mathbf{r}$$

$$N = I_{z} \dot{\mathbf{r}} + (I_{y} - I_{x}) Q_{o} \mathbf{p}$$

$$\dot{\mathbf{p}} = \mathbf{p} + Q_{o} \tan \Theta_{o} \phi + \tan \Theta_{o} \mathbf{r}$$

$$\dot{\mathbf{p}} = (Q_{o} \phi + \mathbf{r}) \sec \Theta_{o}$$

$$(4.6)$$

Adding the equation  $\dot{y} = v$  to (4.6) and reqriting in the state space formulation results in the vector-matrix equation

$$\dot{x} = \overline{A}x + \overline{B}f \tag{4.7}$$

where the state and forcing vectors are

$$x = [y, \varphi, \psi, v, p, r]'$$

and

The constant matrix B has the form

$$\overline{B} = \begin{bmatrix} 0 \\ --- \\ \Lambda^{-1} \end{bmatrix} \begin{pmatrix} 3 \\ 3 \\ 62 \end{bmatrix}$$

where

$$\Lambda = Diag[m, I_x, I_z]$$
 (4.8)

The forcing vector f represents the lateral forces and moments acting on the vehicle and can be modeled by

$$f = \begin{bmatrix} Y \\ L \end{bmatrix} = \begin{bmatrix} Y_v & Y_p & Y_r \\ L_v & L_p & L_r \\ N_v & N_p & N_r \end{bmatrix} \begin{bmatrix} v \\ p \\ r \end{bmatrix} + \widetilde{B}\delta + \widetilde{C}z$$

$$\begin{array}{c} \text{derodynamic forces and control} \\ \text{moments} \\ \text{forces} \\ \text{and} \\ \text{moments} \\ \end{array}$$

$$(4.9)$$

Substituting (4.9) into (4.7) gives the desired vector-matrix equation for the dynamics of the vehicle

$$\dot{x} = Ax + B\delta + Cz \tag{4.10}$$

where

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & a_{22} & 0 & 0 & 1 & a_{26} \\ 0 & a_{32} & 0 & 0 & 0 & a_{36} \\ 0 & a_{42} & 0 & a_{44} & a_{45} & a_{46} \\ 0 & 0 & 0 & a_{54} & a_{55} & a_{56} \\ 0 & 0 & 0 & a_{64} & a_{65} & a_{66} \end{bmatrix}$$

$$a_{22} = Q_0 \tan \Theta_0 \qquad a_{26} = \tan \Theta_0$$

$$a_{32} = Q_0 \sec \Theta_0 \qquad a_{36} = \sec \Theta_0$$

$$a_{42} = g \cos \Theta_0$$

$$a_{42} = g \cos \Theta_0$$

$$a_{45} = Y_p \qquad a_{46} = Y_r - U_0$$

$$a_{55} = L_p \qquad a_{56} = L_r + Q_0 (I_y - I_z) / I_x$$

 $a_{65} = N_p + Q_o(I_x - I_y)/I_z$   $a_{66} = N_r$ 

and

$$B = \begin{bmatrix} 3 & 3 & 3 \\ -\frac{0}{\Lambda^{-1}\widetilde{B}} \end{bmatrix} \begin{pmatrix} 3 & C = \begin{bmatrix} -\frac{0}{\Lambda^{-1}\widetilde{C}} \end{bmatrix} \begin{pmatrix} 3 & (4.12) \\ 3 & 3 & 3 \end{pmatrix}$$

In the remainder of this section, the formulas for computing the matrix elements in (4.9), which are required for (4.10), are developed.

The formulas for the matrix elements corresponding to the aerodynamic forces and moments are

$$Y_{v} = QC_{y\beta}/U_{o} \qquad Y_{p} = 0 \qquad Y_{r} = Q\overline{c}C_{yr}/2U_{o}$$

$$L_{v} = Q_{x}C_{\ell\rho}/U_{o} \qquad L_{p} = Q_{x}bC_{\ell p}/2U_{o} \qquad L_{r} = Q_{x}bC_{\ell r}/2U_{o} \qquad (4.13)$$

$$N_{v} = Q_{z}C_{n\beta}/U_{o} \qquad N_{p} = Q_{z}bC_{rp}/2U_{o} \qquad N_{r} = Q_{z}bC_{nr}/2U_{o}$$

where

$$Q = qS/m$$
  $Q_x = qSb/I_x$   $Q_z = qSb/I_z$ 

q = dynamic pressure

 $U_{o} = nominal velocity in x-direction$ 

S = reference area

b = reference length

 $\frac{-}{c}$  = length of mean aerodynamic cord

Next the expressions for the forces and moments generated by gimballing the rocket engines are derived. The location and nominal direction of each rocket engine with respect to the Cartesian coordinate system fixed to the vehicle is shown in Figure 4.3 \* . The rocket engines are numbered 1 through 5 as indicated in Figure 4.3 and in agreement with the list of controls at the beginning of Section 4. Let  $x_1$ ,  $y_2$ ,  $z_3$  denote the coordinates of the

<sup>\*</sup> The location of SRM was not included in the information received from MSFC. This data was not required since it was assumed the SRM could not be gimballed. However, the equations and corresponding computer programs include the posibility of gimballing the SRM.

vehicle center of gravity where  $y_{cg} = 0$ . The (position) vector from the center of gravity to the ith rocket engine is, therefore,

$$\left[x_{cg} + x_{i}, y_{i}, z_{cg} + z_{i}\right] \tag{4.14}$$

The thrust vector with magnitude  $\mathbf{F}_t$  has the components

(forward) 
$$X_{t} = F_{t}(\cos\theta_{t}\cos\psi_{t} - \cos\theta_{t}\sin\psi_{t}\delta_{\mathbf{e}y\,t} - \sin\theta_{t}\cos\psi_{t}\delta_{\mathbf{e}p\,t})$$
(sideward) 
$$Y_{t} = F_{t}(\cos\theta_{t}\sin\psi_{t} + \cos\theta_{t}\cos\psi_{t}\delta_{\mathbf{e}y\,t} - \sin\theta_{t}\sin\psi_{t}\delta_{\mathbf{e}p\,t})$$
(downward) 
$$Z_{t} = F_{t}(\sin\theta_{t} + \cos\theta_{t}\delta_{\mathbf{e}p\,t})$$
(4.15)

where the angles defining the direction of the thrust vector are

 $\theta_t$  = nominal pitch angle of the *i*th rocket engine.

 $\psi_{\star}$  = nominal yaw angle of the tth rocket engine.

 $\delta_{ept}$  = pitch deflection of the th rocket engine.

 $\delta_{\rm ey} i = {\rm yaw} \ {\rm deflection} \ {\rm of} \ {\rm th} \ {\rm rocket} \ {\rm engine}.$ 

as shown in Figure 4.4. The arrows in Figure 4.4 indicate the directions of positive angles. The nominal directions of the rocket engines are shown in Figure 4.3 and listed in Table 4.1. The derivation of (4.15) assumes that the deflection angles are small.

Table 4.1 Nominal Directions of the Rocket Engines

|         |   | $\theta_{i}$ | $\psi_{t}$ |
|---------|---|--------------|------------|
|         | 1 | - 18°        | 0          |
|         | 2 | - 12°        | - 3.5°     |
| index i | 3 | - 12°        | 3.5°       |
|         | 4 | 0            | - 15°      |
|         | 5 | . 0          | 15°        |

Figure 4.3 Location and Nominal Direction of Rocket Engines



Figure 4.4 Angular Direction of Thrust Axis



The moments induced by the *i*th rocket engine are given by the cross product of the position vector (4.14) with the thrust vector which results in

(roll) 
$$L_{t} = y_{t}Z_{t} - (z_{cg}+z_{t})Y_{t}$$
(pitch) 
$$M_{t} = (z_{cg}+z_{t})X_{t} - (x_{cg}+x_{t})Z_{t}$$
(yaw) 
$$N_{t} = (x_{cg}+x_{t})Y_{t} - y_{t}X_{t}$$
(4.16)

Substituting (4.15) into (4.16) expresses the moments as a linear function of the deflection angles.

Having derived the general equations for modeling the rocket engines, the next step is to derive the equations corresponding to the term  $\widetilde{B}\delta$  in (4.9).

The elements of the control vector are

$$\delta_{1} = \delta_{\text{ey1}}$$

$$\delta_{2} = \delta'_{\text{ey2}} = \frac{1}{2} (\delta_{\text{ey3}} + \delta_{\text{ey2}})$$

$$\delta_{3} = \delta'_{\text{ep3}} = \frac{1}{2} (\delta_{\text{ep3}} - \delta_{\text{ep2}})$$

$$\delta_{4} = \delta'_{\text{ey4}} = \frac{1}{2} (\delta_{\text{ey5}} + \delta_{\text{ey4}})$$

$$\delta_{5} = \delta'_{\text{ep5}} = \frac{1}{2} (\delta_{\text{ep5}} - \delta_{\text{ep4}})$$

$$\delta_{6} = \delta_{a}$$

$$\delta_{7} = \delta_{r}$$
(4.17)

where the deflection angles are defined as follows:

$$\delta_{\rm ey1}$$
 = yaw angle of top orbiter engine  $\delta_{\rm ey2}$  = yaw angle of right orbiter engine  $\delta_{\rm ep2}$  = pitch angle of right orbiter engine  $\delta_{\rm ey3}$  = yaw angle of left orbiter engine

$$\delta_{ep3}$$
 = pitch angle of left orbiter engine

$$\delta_{ey4}$$
 = yaw angle of right SRM

$$\delta_{ep4}$$
 = pitch angle of right SRM

$$\delta_{\rm ey5}$$
 = yaw angle of left SRM

$$\delta_{ep5}$$
 = pitch angle of left SRM

The elements of the constant  $7 \times 3$  matrix

$$\widetilde{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} & b_{17} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} & b_{26} & b_{27} \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35} & b_{36} & b_{37} \end{bmatrix}$$

$$(4.18)$$

are computed from the following set of formulas:

$$b_{21} = -F(z_1 - z_{cg}) \cos 18^{\circ}$$

$$b_{31} = F(x_1 - x_{cg}) \cos 18^\circ$$

$$b_{12} = 2F \cos 12^{\circ} \cos 3.5^{\circ}$$

$$b_{22} = -2F(z_2 - z_{cg}) \cos 12^{\circ} \cos 3.5^{\circ}$$

$$b_{32} = 2F[(x_2 - x_{cg})\cos 3.5^{\circ} - y_2 \sin 3.5^{\circ}]\cos 12^{\circ}$$

$$b_{13} = 2F \sin 12^{\circ} \cos 3.5^{\circ}$$

$$b_{23} = 2F[y_2 \cos 12^\circ - (z_2 - z_{cq}) \sin 12^\circ \sin 3.5^\circ]$$

$$b_{33} = 2F[y_2 \cos 3.5^{\circ} + (x_2 - x_{cg}) \sin 3.5^{\circ}] \sin 12^{\circ}$$

(4.19)

$$b_{14} = 2F_{SRM}\cos 15^{\circ}$$

$$b_{24} = 2F_{SRM}(z_{4} - z_{cg})\cos 15^{\circ}$$

$$b_{34} = 2F_{SRM}\Gamma(x_{4} - x_{cg})\cos 15^{\circ} - y_{4}\sin 15^{\circ}]$$

$$b_{15} = 0$$

$$b_{25} = 2F_{SRM}y_{4}$$

$$b_{35} = 0$$

$$b_{16} = qSC_{y}\delta_{a}$$

$$b_{26} = qSb_{ref}(C_{t}\delta_{a})c_{g}$$

$$b_{36} = qSb_{ref}(C_{n}\delta_{a})c_{g}$$

$$(4.19 \text{ continued})$$

$$b_{17} = qSC_{y}\delta_{r}$$

$$b_{27} = qSb_{ref}(C_{t}\delta_{r})c_{g}$$

$$(C_{t}\delta_{a})c_{g} = C_{t}\delta_{a} + C_{y}\delta_{a}(z_{cg} - z_{mrp})/b_{ref}$$

$$(C_{n}\delta_{a})c_{g} = C_{n}\delta_{a} - C_{y}\delta_{a}(x_{cg} - x_{mrp})/b_{ref}$$

$$(C_{t}\delta_{r})c_{g} = C_{t}\delta_{r} + C_{y}\delta_{r}(z_{cg} - z_{mrp})/b_{ref}$$

$$(C_{n}\delta_{r})c_{g} = C_{n}\delta_{r} - C_{y}\delta_{r}(x_{cg} - x_{mrp})/b_{ref}$$

$$(C_{n}\delta_{r})c_{g} = C_{n}\delta_{r} - C_{y}\delta_{r}(x_{cg} - x_{mrp})/b_{ref}$$

$$(C_{n}\delta_{r})c_{g} = C_{n}\delta_{r} - C_{y}\delta_{r}(x_{cg} - x_{mrp})/b_{ref}$$

The formulas in (4.19) are grouped by column. The ith column of the  $\widetilde{B}$  matrix in (4.9) defines the values of Y, L, N corresponding to  $\delta_i$ . The formulas for the first five columns are derived from (4.14) – (4.17). The last two columns corresponding to the aileron

and rudder, respectively, are computed using the standard formulas for aerodynamic control surfaces. The data for the stability derivatives received from MSFC were with respect to the moment reference point located at  $x_{mrp}$ ,  $y_{mrp}$ ,  $z_{mrp}$  where  $y_{mrp} = 0$ . The translation of data from the moment reference point to the center of gravity is given by (4.20).

The force and moments in (4.9) due to the bias disturbances is modeled by the term  $\widetilde{C}z$ . The elements of the vector z or bias inputs are

$$z_1 = \beta$$
 = side slip angle due to a steady side wind

$$z_2 = T_{b} = roll$$
 bias torque due to SRM misalignment

$$z_3 = T_{y_b} = y_{aw}$$
 bias torque due to SRM misalignment

The constant  $3 \times 3$  matrix  $\widetilde{C}$  has the form

$$\tilde{C} = \begin{bmatrix} C_{11} & 0 & 0 \\ C_{21} & 1 & 0 \\ C_{31} & 0 & 1 \end{bmatrix}$$
 (4.21)

where the elements in the first column are computed from

$$C_{11} = qSC_{y\beta}^{*}\beta$$

$$C_{21} = qSb(C_{t\beta}^{*})_{cg}$$

$$C_{31} = qSb(C_{n\beta}^{*})_{cg}$$

$$(C_{t\beta}^{*})_{cg} = C_{t\beta}^{*} + C_{y\beta}^{*}(z_{cg} - z_{mrp})/b$$

$$(C_{n\beta}^{*})_{cg} = C_{n\beta}^{*} - C_{y\beta}^{*}(x_{cg} - x_{mrp})/b$$

$$C_{n\beta}^{*} = C_{y\beta}^{*} + \Delta C_{y\beta}$$

$$C_{y\beta}^{*} = C_{y\beta}^{*} + \Delta C_{y\beta}$$

$$C_{t\beta}^{*} = C_{t\beta}^{*} + \Delta C_{t\beta}$$

$$C_{n\beta}^{*} = C_{n\beta}^{*} + (\Delta C_{n\beta}^{*})_{AFT}^{*} + (\Delta C_{n\beta}^{*})_{FORWARD}$$

$$(4.22)$$

The last three equations in (4.22)account for the change in the stability derivatives due to the addition of a pair of dorsal fins to the Space Shuttle configuration as indicated in the sketch below.



To summarize, the lateral dynamics of the space shuttle is governed by the vector matrix equation (4.10). The coefficient matrices A , B , C in (4.10) are computed using (4.8), (4.9), (4.11) - (4.13), (4.18)- (4.22). The values of the parameters required by these equations are given in Appendix B.

## 4.2 TRIM PROBLEM AND SOLUTION

When bias disturbances generate forces and moments that cause the vehicle to deviate from the nominal tajectory, the rocket and aerodynamic controls must be deflected in such a way as to counterbalance these forces and moments. For the lateral trim problem of the space shuttle, the bias disturbances are due primarily to steady side winds and SRM misalignments. The state vector x in (4.7) defines the deviation of the vehicle from the nominal trajectory in the lateral-direction. Hence, the trim condition is to maintain x = 0. On substituting x = 0 into (4.10) one finds that the trim solution x = 0 must satisfy the matrix linear equation

$$0 = B\delta + Cz \tag{4.23}$$

For a given value of the bias vector z, (4.23) represents six equations in seven unknowns. However, the equations are not all linearly independent. From (4.12) the first three equations are identically zero independent of  $\delta$  and the last three equations have the form

$$0 = \Lambda^{-1}\widetilde{B}\delta + \Lambda^{-1}\widetilde{C}z \tag{4.24}$$

where  $\Lambda$  is the diagonal matrix defined by (4.8). Premultiply (4.24) by  $\Lambda$  gives

$$0 = \widetilde{\mathsf{B}}\delta + \widetilde{\mathsf{C}}\mathsf{z} \tag{4.25}$$

which is equivalent to setting Y = L = N = 0 in (4.9). In other words, (4.25) states that the trim control must provide zero net side force, rolling moment, and yawing moment in the presence of a steady side wind and SRM misalignments. Replacing (4.23) by (4.25) has reduced the number of trim equations from six to three. In terms of the notation introduced in Section 2.1, the dimensions of the trim problem are

m = 7 : number of controls

n = 6 : number of state variables

 $\tilde{n} = 3$ : number of linearly independent trim equations

In order to determine the optimum trim solution, a performance criterion of the following form was selected:

$$r(\delta) = \frac{1}{2} \sum_{i=1}^{7} W_{1i}^{2} (\delta_{i} / \delta_{i \text{ max}})^{2}$$

$$+ \sum_{i=1}^{5} W_{2i}^{2} (1 - \cos \delta_{i})$$

$$+ \frac{1}{2} \sum_{i=4}^{7} W_{2i}^{2} (q S_{i} C_{D_{i}} \delta_{i})^{2}$$

$$(4.26)$$

where

 $\delta_{t\,\mathrm{max}}$  Maximum deflection angle allowed for the tth control because of physical limitations or excessive hinge moments.

Dynamic pressure

S, Reference area corresponding to the drag induced by the ¿th control

 $C_{D_{\tilde{L}}}$  Coefficient of drag corresponding to the tth control.

The numerical values of the above parameters is given in Appendix B.

The seven components of the vector  $\delta$  of control deflections are defined according to (4.17). The first term in (4.26) penalizes the movement of the actuators for trim in order to leave maximum flexibility for dynamic response. The second term in (4.26) penalizes the thrust loss(gain) caused by gimballing the rocket engines away from their nominal position. The third term in (4.26) penalizes the thrust loss due to drag caused by deflecting aerodynamic surfaces.

Substituting the approximation

$$1 - \cos \delta_{t} \approx \frac{1}{2} \delta_{t}^{2}$$

into (4.26), the performance criterion can be written as the quadratic form

$$r(\delta) = \frac{1}{2} \delta' R \delta \tag{4.27}$$

where R is a diagonal matrix whose elements are given by

$$R_{i,i} = W_{1i}^2 / \delta_{i,\max}^2 + W_{2i}^2$$
  $t = 1, ..., 5$  (4.28)

$$R_{t\bar{t}} = W_{1\bar{t}}^2 / \delta_{\bar{t}}^2 \max + W_{2\bar{t}}^2 (q S_{\bar{t}} C_{D_{\bar{t}}})^2 \qquad t = 6, 7$$
 (4.29)

The fourteen (relative) weighting factors W and W are selected by the user to achieve the best performance within the restriction imposed by the problem. This best performance is a judgement evaluation unless additional criteria are used.

The lateral trim deflection angles are the solution to the optimization problem defined by (4.25) and (4.27). The objective is to solve the trim problem for the maximum expected values of sideslip angle and for different combinations of roll and yaw misalignment torques that encompass the warse case situation. The sideslip angle is computed from the mean side wind velocity and the vehicle velocity according to

$$\beta = \sin^{-1}(V / V)$$

The values of V and V for each of the twelve trajectory points are listed in Appendix B and result in the values of sideslip angle listed in Table 4.2. Plotting the values of B as a function of flight time yields the sideslip profile shown in Figure 4.5. Eight different combinations of yaw and roll bias torques due to SRM misalignments were provided by MSFC for studying the trim problem and these are listed in Table 4.3.

A computer program entitled TRIMS for computing lateral trim of the Space Shuttle was developed. The TRIMS program solves the trim problem given by (4.25) and (4.27) using the numerical methods described in Section 3.1. The program user can select either the steepest descent method or the Newton-Raphson method at execution time. Although the trim problem given by (4.25) and (4.26) is linear, these numerical methods have the capability to solve the nonlinear problem. The TRIMS program is coded to facilitate changes in the trim problem including the replacement of the linear trim problem by a nonlinear trim problem.

Table 4.2 Sideslip Angle for Different Flight Times

| flight<br>time | В      | B     |
|----------------|--------|-------|
| (sec)          | (rad)  | (deg) |
| 25             | .02096 | 1.201 |
| 40             | .05996 | 3.436 |
| 50             | .07887 | 4.519 |
| 60             | .09942 | 5.696 |
| 65             | .10642 | 6.097 |
| 70             | .11124 | 6.374 |
| 75             | .11635 | 6.667 |
| 80             | .11404 | 6.534 |
| 90             | .06169 | 3.535 |
| 100            | o      | 0     |
| 110            | 0      | 0     |
| 140            | 0      | 0     |

Table 4.3 Bias Torques Caused by SRM Misalignment

| CASE | YAW BIAS<br>(Newm)× 10 <sup>6</sup> | ROLL BIAS<br>(Newm) × 10 <sup>6</sup> |
|------|-------------------------------------|---------------------------------------|
| ]    | 3.02                                | o.                                    |
| 2    | 2,50                                | 0.70                                  |
| 3    | 0.                                  | 0.87                                  |
| 4    | -2.50                               | 0.70                                  |
| 5    | -3.07                               | 0.                                    |
| 6    | -2.50                               | -0.70                                 |
| 7    | 0.                                  | -0.87                                 |
| 8    | 2.50                                | -0.70                                 |

Figure 4.5 Sideslip Angle vs Flight Time Due to Mean Wind Disturbance



The formulas developed in the previous section for computing the matrix elements in (4.25) are coded into the TRIMS program. The numerical data required by these formulas and tabulated in Appendix B is also stored internally in the program. Similarly the formulas (4.28) and (4.29) used to compute the performance criterion (4.27) are coded into the program together with the required numerical data. Only those input parameters with values that are likely to vary from run to run are entered as input data at execution time. These are the fourteen weighting factors  $\mathbf{w}_{1t}$  and  $\mathbf{w}_{2t}$  in the performance criterion and the values of the roll and yaw bias torques,  $\mathbf{z}_2$  and  $\mathbf{z}_3$ , respectively. A more detailed description of the TRIMS program including flowcharts, listing, instructions showing how to use the program is given in Appendix C.

The trim angles for the eight different combinations of yaw and roll SRM bias torques in Table 4.3 were computed in a single run of the TRIMS program. Each case entailed computing the trim angles for the twelve trajectory points or flight times which totals to 96 trim solutions. The total cpu time was 5.29 seconds on the IBM 370/165 computer which averages to 0.055 second per trim solution. For this run the second order gradient method and the weighting factors in the performance criterion were chosen to be

$$w_{1}i^{\pm} \begin{cases} 3000 \text{ for } i \neq 6 \\ 4000 \text{ for } i = 6 \end{cases}$$
 $w_{2}i^{\pm} = 0$ 
 $i = 1, \dots, 7$ 

The lateral trim solutions for the eight cases in Table 4.3 are shown in Figure 4.6 where the trim angles are in degrees. The trim angles  $\delta_4$  and  $\delta_5$  for the SRM engines are always zero since in the current TRIMS program the SRM engines are not gimballed. However, the provision for gimballing the SRM engines has been included in the development of the development of the TRIMS program.

For most of the trajectory points in Figure 4.6, especially those with high dynamic pressure, some of the deflection angles exceed the allowable limits by an order of magnitude. This indicates that the Space Shuttle configuration does not have sufficient control authority to meet the trim conditions Y = L = M = 0 when the SRM engines are not gimballed.

A check of the TRIMS program against a lateral trim solution computed at MSFC was made. The MSFC solution is for the case of zero net rolling and yawing moments, but, unlike in the TRIMS program the requirement of a zero net side force (i.e., Y = 0) is not imposed. Also the MSFC solution does not consider the deflection of the aileron. A special modification of the TRIMS program for including or disregarding the trim condition Y = 0 and/or the aileron deflection was made and is described in Appendix C. Although the actual modification of the TRIMS program to eliminate the constraint Y = 0 is minor, it is based on a novel procedure derived in Appendix D. A comparison of the trim solutions computed by each program for (supposedly) the same trim problem showed that the deflection angles have about the same magnitude but are not equal. A more detailed discussion of the comparison including plots of the trim solutions is given in Appendix E.

| CASE 1                                |                |                |                        |                               |                  |              |            |                                       |                   |         |
|---------------------------------------|----------------|----------------|------------------------|-------------------------------|------------------|--------------|------------|---------------------------------------|-------------------|---------|
|                                       |                |                | •                      | •.                            | •                |              |            |                                       |                   |         |
| SYSTEM DYNAMICS PAHAMETER             |                |                | AS TORQUE<br>AS TORQUE |                               | 0.000            |              | -          |                                       |                   |         |
| PERFORMANCE CRITERION PAR             | MAMETERS       | •              |                        |                               |                  |              | •          |                                       | , , ••            |         |
|                                       |                |                | <b>₩12</b> #3          | 1000.00                       |                  | M51          | 2 = 0.0    |                                       |                   |         |
|                                       |                | SHTING<br>TORS | <b>#14 =3</b>          | 1000.00<br>1000.00<br>1000.00 | *                | #51<br>#51   | = 0.0      |                                       |                   | ٠,.     |
| e e e e e e e e e e e e e e e e e e e | ,              |                | ₩16 =4                 | 000.00                        |                  |              | S = 0.0    |                                       |                   |         |
| •                                     |                | •              | •                      |                               |                  | •            |            |                                       |                   |         |
| TRIM DEFLECTION ANGLES                |                |                |                        |                               |                  | <b>'</b> ,   | ٠, ۵,      | · · · · · · · · · · · · · · · · · · · |                   |         |
| THE DEFECTION MODES                   | TRAJ.<br>PI.   | FLIGHT<br>TIME | (1)                    | (2)                           | (3)              | DELTA        | (5)        | (6)                                   | (7)               |         |
|                                       |                | ••••••         | • • • • • • • •        | ******                        |                  | ••••••       | •••••      |                                       |                   | • • • • |
| ,                                     | . 1            | 25.0<br>40.0   | -11.59<br>14.77        | 4.08                          | -19.35           | 0.0          | 0.0        | -7.55                                 | 13.03             | . •     |
|                                       | . з            | 50.0           | 46.99                  | 4.99<br>3.32                  | 16.13<br>61.74   | 0.0          | 0.0<br>0.0 | 4.28<br>31.07                         | -13.35<br>-24.96  |         |
|                                       | . 4            | 60.0<br>65.0   | 100.03<br>128.39       | -4.25<br>-13.30               | 146.84<br>229.11 | 0.0          | 0.0        | 81.55                                 | -39.35<br>-43.78  | •       |
| •                                     | . 6            | 70.0           | 95.05                  | 22.88                         | 141.57           | 0.0          | 0.0        | 18.55                                 | -68.60            |         |
|                                       | . 7            | 75.0<br>80.0   | 129.30<br>136.46       | 8.95<br>-2.99                 | 239.63<br>314.14 | 0.0<br>0.0   | 0.0<br>0.0 | 20.78<br>35.18                        | -70.80<br>-80.27  | •       |
| ·                                     | . 10           | 90.0<br>100.0  | 11.56                  | 22.91<br>-5.80                | 201.30           | 0.0          | 0.0        | 52.10                                 | -67.49            | •       |
|                                       | . 11           | 110.0          | 5.74<br>. 12.93        | -9.93                         | -37.39<br>-41.76 | 0.0          | 0.0        | 6.74                                  | 27.59<br>60.32    | •       |
| •                                     | . 12           | 140.0          | 118.73                 | -57.42                        | -119.78          | 0.0          | 0.0        | 58,39                                 | 110.65            | •       |
|                                       | ******         | ******         | 705                    | *****                         | ******           |              |            |                                       |                   | • • • • |
|                                       |                |                | TOP<br><               | YAW<br>ORBITER                | PITCH            | YAW<br>-< SF | PITCH>     | AILERON                               | RUDDER            |         |
|                                       | •              |                |                        |                               |                  |              |            |                                       |                   |         |
|                                       |                |                |                        |                               |                  |              |            |                                       |                   |         |
|                                       |                |                |                        |                               |                  |              |            |                                       |                   | •       |
| •                                     | •              |                |                        |                               |                  |              |            |                                       |                   |         |
|                                       |                |                |                        |                               | -                |              |            |                                       |                   |         |
| - ·                                   |                |                |                        |                               |                  |              |            |                                       |                   |         |
| CASE 2                                |                |                |                        |                               |                  |              |            |                                       |                   |         |
|                                       |                | *              |                        |                               |                  |              |            |                                       |                   |         |
| CMCTCH CHARLES CARAMETERS             | • .            |                |                        |                               |                  |              |            |                                       |                   |         |
| SYSTEM DYNAMICS PARAMETERS            |                | YAW BIA        | 3UDHOUE                | = 2500¢                       | 000.0            |              |            |                                       |                   |         |
|                                       |                | ROLL BIAS      | S TORQUE               | = 700                         | 000.0            |              |            |                                       |                   |         |
|                                       |                |                |                        |                               |                  |              |            |                                       |                   |         |
| PERFORMANCE CRITERION PARA            |                |                | ₩11 ±30                | 00-00                         |                  | W21          | = 0.0      |                                       |                   |         |
|                                       |                |                | W12 #30                | 00.00                         |                  | #22          | = 0.0      |                                       |                   |         |
|                                       | WEIGH<br>FACTO |                | W13 =30<br>W14 =30     |                               | •                | #23<br>#24   |            |                                       |                   |         |
|                                       | , , , , , , ,  |                | W15 =30                | 00.00                         |                  | w25          | = 0.0      |                                       |                   |         |
|                                       |                |                | w16 =40<br>w17 =30     |                               |                  | W26<br>W27   |            |                                       |                   |         |
|                                       |                |                |                        |                               |                  |              |            |                                       |                   |         |
|                                       |                |                |                        |                               |                  |              |            |                                       | • .               |         |
| TRIM DEFLECTION ANGLES                |                | -              |                        |                               |                  |              |            | •                                     |                   |         |
|                                       | THAJ.          | FLIGHT         | 43.5                   | . <u>.</u> .                  |                  | DELTA        |            |                                       |                   |         |
|                                       | PT.            | TIME           | (1)                    | (2)                           | (3)              | { <b>6</b> } | (5)        | (6)                                   | . <del>(</del> 7) |         |
|                                       | • ;            | 36 0           | -11 -0                 | E 10                          | -10 10           |              |            | _6 00                                 | g 14              | •       |
|                                       | . 1            | 25.0<br>40.0   | -11.49<br>14.29        | 5.19<br>5.93                  | -19.19<br>15.09  | 0.0          | 0.0        | -5.80<br>4.79                         |                   | •       |
|                                       | . 3            | 50.0           | 47.25                  | 4.11                          | 61.77            | 0.0          | 0.0        | 32.15                                 | -26.64            |         |

|     |          | 79    | -             |         |                  | -     |       |               |        |   |
|-----|----------|-------|---------------|---------|------------------|-------|-------|---------------|--------|---|
|     |          |       | <             | UNBITER |                  | < 5RI |       |               |        |   |
| ••• |          |       | 401           | YAH     | PITCH            | YAW   | PITCH | AILERON       | RUODER |   |
| •   | <b></b>  |       |               |         |                  |       |       |               |        |   |
| •   | 15       | 140.0 | 21.70         | -4412   | -33.00           | 0.0   | 0.0   | -0.07         | 67471  | • |
| •   | 11<br>12 | 110.0 | 7.48<br>91.36 |         | +37.58<br>-99.66 | 0.0   | 0.0   | 6.29<br>46.67 | 87.91  | • |
| • , |          |       |               |         |                  |       |       |               | 47.90  | • |
| •,  | 10       | 100.0 | 1.66          |         | -34.26           | 0.0   | 0.0   | -4.23         | 21.97  | • |
| •   | ų,       | 90.0  | 9.69          |         | 205.51           | 0.0   | 0.0   | 54.09         | -70.14 | • |
| -   | 8        | 40.0  | 130.29        |         | 315.70           | 0.0   | 0.0   | 35.60         | -81.62 | - |
|     | 7        | 75.0  | 128.96        |         | 240.02           | 0.0   | 0.0   | 21.24         | -71.94 |   |
|     | 6        | 70.0  | 94.54         | 23.77   | 141.11           | 0.0   | 0.0   | 19.24         | -69.80 | - |
|     | 5 -      | 65.0  | 128.98        | -13.09  | 230.79           | 0.0   | 0.0   | 123.92        | -44.77 | - |
|     | 4        | 60.0  | 100.54        | -3.79   | 147.57           | 0.0   | 0.0   | 83.79         | -40.56 |   |
| •   | 3        | 50.0  | 47.25         | 4.11    | 61.77            | 0.0   | 0.0   | 32.15         | -26.64 |   |
|     | 2        | 40.0  | 14.29         | 5.93    | 15.09            | 0.0   | 0.0   | . 4.79        | -15.18 |   |
| •   | 1        | 25.0  | -11.49        | 5.19    | -19.19           | 0.0   | 0.0   | -5.80         | . 8.10 | • |

| "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                         |              |                  |               | ,                | •           |              |        |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------|--------------|------------------|---------------|------------------|-------------|--------------|--------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  |             |              |        |                           |
| CASE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                         |              |                  |               |                  |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | •                                       |              |                  |               |                  |             | •            |        |                           |
| SYSTEM DYNAMICS PARAMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FUC    |                                         |              |                  |               |                  |             |              |        |                           |
| wight Disself by the bell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | YAM                                     | HIAS         | TORQUE           | <b>=</b> -    | 0.0              |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              | TORQUE           |               | 0.000            |             | ^            |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  | * 1         |              |        | and the second            |
| Managaran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | _                                       |              |                  | 4 -           |                  |             |              |        |                           |
| ENFORMANCE CRITERION P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AHAMET | EHS                                     |              |                  |               |                  |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              | A15 =3<br>A)1 =3 |               |                  | #21         |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | WEIGHTING                               |              | #13 =3           |               |                  | W22         |              | •      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | FACTORS                                 |              | W14 =3           |               | •                | W24         |              | •      | •                         |
| <i>f</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 100                                     |              | W15 =3           | 000.00        | -                | W25         |              | •      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              | #15 =4           |               |                  | H26         |              | 1      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              | W17 =3           | 000.00        | •                | w27         | <b>= 0.0</b> |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  |             |              |        |                           |
| RIM DEFLECTION ANGLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | • · · · · · · · · · · · · · · · · · · · | <del>.</del> |                  |               |                  | * •         |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | TRAJ. FLIG<br>Pi. Tim                   |              | (1)              | 131           |                  | DELTA       |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         | 1E           | (1)              | (2)           | (3)              | (4)         | (5)          | (6)    | (7)                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      |                                         |              |                  |               |                  | *******     | ******       | •••••• |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      | 1 25.                                   |              | 2.46             | 2.59          | 3.16             | 0.0         | 0.0          | 4.32   | -10.51                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      | 2 40.                                   |              | 25.63            | 2.99          | 31.20            | 0.0         | 0.0          | 6.88   | -22.68                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      | 3 50.                                   |              | 60.27            | 0.63          | 81.35            | 0.0         | 0.0          | 39.90  |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      | 4 60.<br>5 65.                          |              | 14.42<br>42.74   |               | 169.95<br>256.87 | 0.0         | 0.0          | 93.27  | -+5,32                    |
| ₩ * * ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 6 70.                                   |              | 03.77            |               | 156.45           | 0.0         | 0.0          | 134.91 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 7 75.                                   |              | 39.00            |               | 259.74           | 0.0         | 0.0          | 22.50  |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ´ •    | 8 60.                                   |              | 40.77            | -5.50         | 340.59           | 0.0         | 0.0          |        | -87.15                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      | 9 90.                                   |              | 12.67            |               | 240.96           | 0.0         | 0.0          |        | -80.79                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      | 10 100.<br>11 110.                      |              | <b>-3.82</b>     | 2.05          | ~4.11            | 0.0         | 0.0          |        | -1.08                     |
| • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :      | 12 140.                                 |              | -4.01<br>-6.61   | 2.18<br>4.25  | -3.75<br>-0.63   | 0.0<br>0.0  | 0.0          | 0.68   |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         | 7            | 0.01             | 4463          | -0.03            | 0.0         | 0.0          | -2.07  | ~4.59                     |
| •*.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                         |              |                  |               |                  |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      |                                         |              |                  | YAW           |                  |             | PITCH A      | ILERON | RUDDER                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         | <            | (                | HHITER        | >                | < SRM       | >            |        |                           |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                         |              |                  |               |                  |             |              | •      |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  |             |              |        | •                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               | ,                |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  | •           | •            |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  | :             |                  |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  |             |              |        | <b>L</b>                  |
| CASE 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                         |              |                  |               |                  | -           |              |        | (₹)                       |
| 4046 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                         | •            |                  |               |                  | -           |              |        | •                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | •                                       |              |                  |               |                  |             |              |        | •                         |
| YSTEM DYNAMICS PARAMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ER5    |                                         | -            |                  |               |                  |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  | <b>= -250</b> |                  | •           | •            |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | HOLL                                    | BIAS         | TOHQUE           | = 70          | 0.000            |             |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  |             |              |        | •                         |
| PERFORMANCE CRITERION P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ARAMET | FRS                                     |              |                  |               | •                |             |              |        |                           |
| ich committe briterium F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                         |              | W11 =3           | 000.00        |                  | W21         | <b>#</b> 0.0 |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              | #15 -43          | 00.00         |                  | w22         | = 0.0        |        | •                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | ME IGHT ING                             |              |                  | 000.00        |                  | #Š3         |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | FACTURS                                 |              |                  | 000.00        |                  | 45W         |              |        | i i                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                         |              |                  | 00.00         |                  | #25.<br>#26 |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  | 000.00        |                  | W27         |              | •      | `                         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                         |              |                  |               |                  |             |              |        | L.                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               | •                | -           |              |        |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                         |              |                  |               |                  |             |              |        | · · · · · · · · · · · · · |
| A Company of the Comp |        |                                         |              |                  |               |                  |             |              |        |                           |

|   | LECTION ANGLE | <b>-</b> | THAJ.<br>PT. | FLIGHT<br>TIME | · a     | (2)    | (3)    | DELTA<br>(4) | (5) | (6)    | (7)    |
|---|---------------|----------|--------------|----------------|---------|--------|--------|--------------|-----|--------|--------|
|   |               | •        |              |                |         |        |        |              |     |        | ****** |
|   |               | •        |              | 25.0           | 17.83   | -0.85  | 27.60  | 0.0          | 0.0 | 14.62  | -20.71 |
| : |               | •        | ~            | 40.0           | 38.42   | -0.75  | 49.56  | 0.0          | 0.0 | 8.45   | 30.03  |
|   |               | •        | 3            | 50.0           | 74.53   | -3.62  | 102.99 | 0.0          | 0.0 | 47.92  | -37.67 |
|   |               |          | 4            | +O.U           | 129.51  | -12.45 | 194.34 | 0.0          | 0.0 | 102.62 | -49.97 |
|   |               |          | 5            | 65.0           | 157.66  | -23.50 | 284.67 | 0.0          | 0.0 | 145.67 | -52.90 |
|   |               |          | 6            | 70.0           | 114.23  | 19.56  | 173.65 | 0.0          | 0.0 | 20.77  | -80.67 |
|   | •             |          | 7            | 75.0           | 150.29  | 3.98   | 281.35 | 0.0          | 0.0 | 23.65  | -B1.44 |
|   |               |          | а            | 80.0           | 158.46  | -9.28  | 367.35 | 0.0          | 0.0 | 40.49  | -92.57 |
| • | 9 %           |          | rý.          | 90.0           | 16.93   | 24.76  | 278.03 | 0.0          | 0.0 | 70.48  | -91.22 |
| ` |               |          | 10           | 100.0          | -7.82   | 6.45   | 27.65  | 0.0          | 0.0 | 5.29   | -23.70 |
|   |               |          | ii           | 110.0          | -13.93  | 9.97   | 31.55  | 0.0          | 0.0 | -4.68  | -51.97 |
|   | •             | •        | 12           | 140.0          | -105.21 | 50.95  | 98.65  | 0.0          | 0.0 | -50.40 | -95.29 |

TUP YAW PITCH YAW PITCH AILENON RUDDER

CASE 5

SYSTEM DYNAMICS PARAMETERS

YAW HIAS TURGUE = -3070000.0

HOLL HIAS TORQUE =

PERFORMANCE CRITERIUN PARAMETERS

wil =3000.00. w21 = w12 =3000.00 w22 = 0.0 WEIGHTING w23 = w13 =3000.00 0.0 #14 =3000.00 #15 =3000.00 FACTOR5 #24 = #25 = #26 = 0.0 0.0 w16 =4000.00 w17 =3000.00

TRIM DEFLECTION ANGLES

|     | .LAHT         | FLIGHT        |                   |        |        | DELTA         |        |                 |                           |  |
|-----|---------------|---------------|-------------------|--------|--------|---------------|--------|-----------------|---------------------------|--|
|     | PT.           | TIHE          | (1)               | (2)    | (3)    | (4)           | (5)    | (6)             | (7)                       |  |
| • • | • • • • • • • | • • • • • • • | • • • • • • • • • |        |        | • • • • • • • | ****** | • • • • • • • • | • • • • • • • • • • • • • |  |
| :   | 1             | 25.0          | 24.12             | -3.24  | 37.88  | 0.0           | 0.0    | 17.32           | -31.90                    |  |
|     | 2             | 40.0          | 44.17             | -3.14  | 58.11  | 0.0           | 0.0    | 9.31            | -31.42                    |  |
| •   | 3             | 50.0          | 80.21             | -6.10  | 111.94 | 0.0           | 0.0    | 50.27           | -38.40                    |  |
|     | 4             | 60.0          | 135.32            | -15.40 | 18.502 | 0.0           | 0.0    | 104.48          | -50.61                    |  |
|     | 5             | 65.0          | 163.33            | -25.98 | 294.99 | 0.0           | 0.0    | 147.65          | -53,68                    |  |
|     | 6             | 70.0          | 119.03            | 17.75  | 181.20 | 0.0           | 0.0    | 20.41           | -81.85                    |  |
|     | 7             | 75.0          | . 155.27          | 1.94   | 289.98 | 0.0           | 0.0    | 23.71           | -82.37                    |  |
|     | 8             | ರ∨.0          | 163.46            | -11.42 | 377.05 | 0.0           | 0.0    | 40.89           | -93.61                    |  |
|     | زد            | 90.0          | 20.37             | 23.38  | 289.63 | 0.0           | 0.0    | 72.07           | -93.16                    |  |
|     | 10            | 100.0         | -5.84             | 5.90   | 38.01  | 4.0           | 0.0    | 5.45            | -2a.04                    |  |
| ٠   | 11            | 110.0         | -13.14            | 10.09  | 42.45  | 0.0           | 0.0    | -6.85           | -61.32                    |  |
| ٠   | 14            | 140.0         | -120.70           | 58.37  | 121.76 | <b>0 - 0</b>  | 0.0    | -59.36          | -112.48                   |  |
| ٠   |               |               |                   |        |        |               |        |                 |                           |  |

YAW PITCH YAW PITCH AILERON RUDDER ORBITER ----><---- SRM ---->

CASE 6

SYSTEM DYNAMICS PARAMETERS

0.000000- = TORQUE = -2500000.0

PERFORMANCE CRITERION PARAMETERS

W11 =3000.00 #21 ± 0.0 00.000E= SIW W22 = W23 = W24 = 0.0 WEIGHTING 00.000t= E1w 0.0 ₩14 =3000.00 0.0 W15 =3000.00 W16 =4000.00 W17 =3000.00 ₩25 **=** #26 = #27 = 0.0

THIM DEFLECTION ANGLES

|    |          |                |                 |                 |                  |              |                   |                | 4                 |         |
|----|----------|----------------|-----------------|-----------------|------------------|--------------|-------------------|----------------|-------------------|---------|
| ٠. |          | FLIGHT<br>TIME | (1)             | (2)             | (3)              | DELTA<br>(4) | (5)               | (6)            | (7)               |         |
|    |          |                |                 |                 |                  | •••••        | * * * * * * * * * | *******        | • • • • • • • • • | • • • • |
| :  | 1        | 25.0<br>40.0   | 23.13<br>44.42  | -4.34<br>-4.01  | 37.25<br>50.01   | 0.0          | 0.0               | 15.35          | -26.68            |         |
| :  | <b>.</b> | 50.0<br>60.0   | 79.67<br>134.52 | -6.82<br>-15.77 | 111.49           | 0.0          | 0.0               | 8.75<br>49.02  | -29.43<br>-36.61  | :       |
| :  | . 6      | 65.U<br>70.U   | 102.40          | -26.09<br>16.90 | 292.77           | 0.0          | 0.0               | 102.05         | -49.50<br>-52.61  | •       |
| :  | 7<br>8   | 75.0<br>80.0   | 155.40          | 1,22            | 269.18<br>374.97 | 0.0<br>0.0   | 0.0               | 19.70<br>23.22 | -80.54<br>-81.13  | •       |
| :  | 9<br>10  | 90.0<br>100.0  | 22.17<br>-1.00  | 21.91<br>3.15   | 284.70<br>34.26  | 0.0          | 0.0<br>U.O        | 40.22<br>69.92 | -92.14<br>-90.29  | •       |
| :  | 11<br>12 | 110.0<br>140.0 | -7.48<br>-91.36 | 6.47<br>44.12   | 37.50            | 0.0          | 0.0               | 4.23<br>-6.29  | -21.97<br>-47.90  | :       |
| •  |          | ••••           |                 | 44.12           | 94.66            | 0.0          | 0.0               | -46.67         | -87.91            | :       |
|    |          |                | TOF             | YAW             | PITCH            |              | PITCH             | ATI FWIN       | *******           | •••     |

ζ.

YAM PITCH YAM PITCH AILENON RUDDER

CASE 7

| CASE                                    |                          |                                         | •                |                      |         |                                       |
|-----------------------------------------|--------------------------|-----------------------------------------|------------------|----------------------|---------|---------------------------------------|
|                                         |                          |                                         | •                | 100                  |         |                                       |
| SYSIEM DYNAMICS PARAMETER:              | - YAW HI                 | AS TURBUE = -878                        | 0.0              |                      |         |                                       |
| PERFORMANCE CHITCHION PARA              | AMETERS                  |                                         |                  |                      | •       |                                       |
|                                         |                          | w11 =3000.00<br>w12 =3000.00            |                  | M55<br>M51           |         | ÷ .                                   |
|                                         | WEIGHTING<br>FACTURS     | W13 =3000.00<br>W14 =3000.00            |                  | #23<br>#24           |         |                                       |
|                                         |                          | w15 =3000,00<br>w16 =4000,00            |                  | . W25                |         |                                       |
|                                         |                          | w17 =3000.00                            | •                | W27                  | = 0.0   | ,                                     |
|                                         |                          |                                         |                  |                      |         |                                       |
| TRIM DEFLECTION ANGLES                  | •                        |                                         |                  | •                    |         |                                       |
| *************************************** | THAJ. FLIGHT             | (1) (2)                                 | (3)              | DELTA<br>(4)         | (5) (   | 6) (7)                                |
|                                         | •                        | *********                               |                  | • • • • • • • • •    |         | ***********                           |
| ,                                       | · 1 25.0                 | 9.78 -1.74<br>33.08 -1.06               | 14.90<br>42.70   | 0.0                  |         | 5.23 -7.99<br>6.67 -21.94             |
|                                         | . 3 50.0<br>. 4 60.0     | 66.66 -3.34<br>120.64 -11.54            | 91.91<br>180.24  | 0.0                  |         | 1.27 -30.47<br>2.57 -44.74            |
| •                                       | . 5 65.0<br>. 6 70.0     | 110.11 18.68                            | 266.69<br>166.00 | 0.0                  | 0.0 1   | 3.68 -48.51<br>8.80 -75.08            |
| · · · · · · · · · · · · · · · · · · ·   | . 7 75.0<br>. 8 80.0     | 145.36 3.76<br>152.93 -8.84             | 269.46<br>350.07 | 0.0                  |         | 1.97 -76.35<br>7.84 -86.62            |
|                                         | . 9 40.0                 | 19.19 21.37<br>3.82 -2.05               |                  | 0.0                  |         | 1.65 -74.64<br>0.66 1.08              |
|                                         | 11 110.0<br>12 140.0     | 4.01 -2.18<br>8.61 -4.25                | 3.75<br>0.63     | 0.0                  | 0.0 -   | 0.88 2.53<br>2.07 4.59                |
|                                         |                          |                                         |                  |                      |         |                                       |
|                                         |                          | TOP YAW                                 | PITCH            | YA <b>d</b><br>< SRM |         | ERON RUDDER                           |
|                                         |                          | •                                       | •                |                      |         |                                       |
|                                         |                          |                                         |                  |                      |         |                                       |
|                                         | •                        |                                         |                  |                      | •       |                                       |
| CASE H                                  |                          |                                         |                  | •                    | •       |                                       |
| ***                                     | :                        |                                         | -                |                      |         | , ·                                   |
| SYSTEM DYNAMICS PARAMETERS              |                          |                                         |                  |                      |         |                                       |
|                                         |                          | IS TORQUE = . 2500<br>IS TORQUE = .+700 |                  |                      |         |                                       |
|                                         |                          |                                         |                  |                      |         |                                       |
| PERFORMANCE CRITERION PARA              | METERS                   | w11 =3000.00                            |                  | w21                  |         |                                       |
|                                         | WEIGHTING                | w12 =3000.00<br>w13 =3000.00            |                  | . W22 :              | = 0.0   |                                       |
|                                         | FACTORS                  | #14 =3000.00<br>#15 =3000.00            |                  | #24<br>#25           | = 0.0   |                                       |
|                                         |                          | W16 =+000.00<br>W17 ≃3000.00            |                  | W26<br>W27           |         |                                       |
|                                         | *                        |                                         |                  |                      |         |                                       |
|                                         |                          |                                         |                  |                      | •       |                                       |
| TRIM DEFLECTION ANGLES                  | THAU. FLIGHT             |                                         |                  | DELTA                |         | urtining.<br>Samuel a <u>l</u> antina |
|                                         | PT. TIME                 | (1) (2)                                 | (3)              | (4)<br>              | (5) (6  | 5) (7) Sa.                            |
|                                         | 1 25.0                   | -5.59 1.71                              | -9.74            | 0.0                  |         | 10.21                                 |
| ,                                       | . 2 40.0<br>. 3 50.0     | 20.28 / 2.67<br>52.40 0.91              | 24.34<br>70.27   | 0.0                  | 0.0 33  | 3.26 -25.58                           |
|                                         | 4 60±0<br>4 5 65±0       | 105.55 -6.62                            | 155.85           | 0.0                  | 0.0 122 | -23 -40.10<br>-44.49                  |
|                                         | 7 75.0                   | 99.64 21.11<br>134.07 6.97              | 148.80           | 0.0<br>0.0           | 0.0 20  | 3.17 -69.66<br>3.82 -71.64            |
| ,                                       | - 8 80.0,<br>- 9 90.0    | 141.24 -5.05<br>14.93 21.52             | 353.35           | 0.0                  | 0.0 53  | .52 -69.22                            |
|                                         | . 10 100.0<br>. 11 110.0 | 7.82 -6.45<br>13.93 +9.97               | -27.65<br>-31.55 | 0.0                  | 0.0 4   | 29 23.70<br>.88 51.97                 |
|                                         | 12 140.0                 | 105.21 -50.95                           | -94.65           | 0.0                  | 0.0 50  | 0.00 95.29                            |

## 4.3 OPTIMUM FEEDBACK CONTROL AND PERFORMANCE

The vector-matrix equations defining the linear stochastic optimum control problem and its solution are given in Section 3.4. These equations entail computation of the matrices F, M, K, P from the matrices A, B, C, E, G, H, V, W, Q, R defining the optimum control problem. In order to simplify the feedback design, the matrices F, M, K, P are partitioned as follows:

$$F = \begin{bmatrix} F_{x} & F_{z} \\ 6 & 3 \end{bmatrix}$$

$$K = \begin{bmatrix} K_{x} \\ K_{z} \end{bmatrix} \begin{bmatrix} 6 \\ 6 & 3 \end{bmatrix}$$

$$P = \begin{bmatrix} P_{1} & P_{2} \\ P'_{2} & P_{3} \end{bmatrix} \begin{bmatrix} 6 \\ 6 \\ 3 \end{bmatrix}$$

A block diagram of the complete closed loop system in terms of the matrices listed above is given in Figure 4.7. The lower half of the block diagram depicts the optimum feedback control system.

For the lateral control of the Space Shuttle the state vector  $\, {\bf x} \,$ , control vector  $\, {\bf u} \,$ , bias vector  $\, {\bf z} \,$ , and observation vector  $\, {\bf y} \,$  are defined to be

$$x = \begin{bmatrix} y \\ \varphi \\ \psi \\ v \\ side velocity \\ roll rate \\ yaw rate \end{bmatrix} side slip \\ z = \begin{bmatrix} \beta \\ T \\ y_b \\ T_r \\ b \end{bmatrix} side slip \\ roll bias torque \\ roll bias torque \\ 82 \end{bmatrix} \begin{bmatrix} \delta_1 \\ \delta_2 \\ yaw \\ \delta_3 \\ pitch \\ \delta_4 \\ yaw \\ pitch \\ \delta_5 \\ \delta_6 \\ aileron \\ rudder \end{bmatrix}$$

Figure 4.7 Block Diagram of Closed Loop System with Optimum Feedback Control



The vehicle dynamics used in the optimum control design are for the first trajectory point (flight time =  $25 \, \mathrm{sec}$ ). The elements of the matrices A , B , C were computed from the data in Appendix B using the equations in Section 4.1. It should be noted that the results in this section are for the case of no dorsal fins and the results in Section 4.2 include the effect of the dorsal fins. For the first trajectory point the difference in the two cases is minor. Since y is assumed to be a subvector of x , the elements of the observation matrix H are either 0 or 1 where a value of 1 in column t indicates that t is one of the measured quantities. The relative weighting matrices Q and R in the performance criterion (3.82) are selected by the control designer with the goal of optimizing the closed loop performance. The particular approach adopted for this problem is to select Q and R of the form

Q = Diag {
$$y_{\text{max}}^{-2}$$
,  $\varphi_{\text{max}}^{-2}$ ,  $\psi_{\text{max}}^{-2}$ ,  $v_{\text{max}}^{-2}$ ,  $v_{\text{max}}^{-2}$ ,  $v_{\text{max}}^{-2}$ ,  $v_{\text{max}}^{-2}$ }
$$R = Diag \{ v_{\text{l max}}^{-2}, \dots, v_{\text{l max}}^{-2} \}$$

The parameter  $\sigma$  in the performance criterion (3.82) is varied until an acceptable "trade off" is achieved between the closed loop performance and the level of control effort. For this example  $\sigma = 1$  and the maximum values of the state variables and control deflections used in the performance criterion are listed below.

$$y_{max} = 10 \, \text{m}$$

$$\phi_{max} = 0.01 \, \text{rad}$$

$$\psi_{max} = 0.01 \, \text{rad}$$

$$v_{max} = 5 \, \text{m/sec}$$

$$j = 1, \dots, 7$$

$$p_{max} = 0.1 \, \text{rad/sec}$$

$$r_{max} = 0.1 \, \text{rad/sec}$$

The matrix V defining the state excitation noise spectral density is assumed to be diagonal with

$$V_{tt} = 0$$
  $t = 1, 2, 3$ 

$$V_{44} = (2v_{max})^{2}$$

$$V_{55} = (0.1p_{max})^{2}$$

$$V_{66} = (0.1r_{max})^{2}$$

For this example the matrices G and E defining the noise model associated with the bias inputs are

G = Diag [0.1, 0.1 × 
$$10^{14}$$
, 0.1 ×  $10^{14}$ ]
E = Diag [-0.01, -0.01, 0.01]

The th diagonal element of G is roughly equal to the maximum value of  $z_t$  squared. The negative diagonal elements in E provide a small amount of damping in the noise model which is required in order that the covariance matrix  $P_3$  corresponding to the bias vector z does not become infinite. The observation noise spectral density matrix is assumed to have the form

W = Diag 
$$[\sigma_y^2, \sigma_{\varphi}^2, \sigma_{\psi}^2, \sigma_p^2, \sigma_r^2]$$

The standard deviation  $\sigma_y$  defines the level of noise associated with the measurement of y and the other standard deviations are similarly defined. By varying the standard deviations of the sensor noise as part of the design procedure, different Kalman filter designs are obtained. For the final Kalman filter design in this example

$$\sigma_{y} = 0.1 y_{\text{max}}$$

$$\sigma_{\varphi} = 0.1 \varphi_{\text{max}}$$

$$\sigma_{\psi} = 0.1 \psi_{\text{max}}$$

$$\sigma_{p} = 0.01 p_{\text{max}}$$

$$\sigma_{r} = 0.01 r_{\text{max}}$$

The numerical values of these matrices defining the optimum control problem are given in Figure 4.8(a).

A computer program entitled Linear Systems Design (LSD) was used to design the optimum feedback system. The LSD program solves the equations for the optimum control solution given in Section 3.4.1. The resulting matrices  $M_1$ ,  $M_2$ ,  $F_x$ ,  $F_z$  used to design the deterministic quadratic optimum control are shown in Figure 4.8(b). Similarly, the resulting matrices  $P_1$ ,  $P_2$ ,  $P_3$ ,  $K_x$ ,  $K_z$  used to design the Kalman filter are shown in Figure 4.8(c).

The performance achieved by the feedback control system was simulated for the different designs. The control deflections as a function of time were plotted and are shown Figures 4.9 and 4.10. Note the SRM deflections  $\delta_4$  and  $\delta_5$  are not plotted since in the current investigation it is assumed that the SRM are not gimballed. The dynamic response in Figures 4.9 and 4.10 is for the case where the vehicle starts from the trim condition for

$$\beta = 1.20^{\circ}$$
 $T_{r_b} = 3.02 \times 10^{6} \text{ N-m}$ 
 $T_{y_b} = 0. \text{ N-m}$ 

to which correspond the deflection angles

$$\delta_1 = -6.63^{\circ}$$
 $\delta_2 = 7.35^{\circ}$ 
 $\delta_3 = -11.27^{\circ}$ 
 $\delta_6 = 2.65^{\circ}$ 
 $\delta_7 = -12.11^{\circ}$ 

The initial trim solution shown above is indicated by the straight lines in Figures 4.9 and 4.10. The effect of a 2° step change in the sideslip angle causing an increase from  $\beta=1.20^\circ$  to  $\beta=3.20^\circ$  was simulated. The transient response curves show the performance of the control system in achieving the new trim solution. The curves in Figure 4.9 (a) are for the case of complete state feedback which assumes that the state of the process can be estimated perfectly (i.e.,  $H=\mathcal{I}$ , V=W=0,  $\hat{x}=x$ ). This is not realistic but provides an upper bound on the performance as the estimation capability of the Kalman filter improves.

Observe in this case that the control deflections change discontinuaously due to a step change in  $\beta$ . This does not occur when the Kalman filter is included. The curves for the remaining cases show the performance when different Kalman filter designs are used. The different designs correspond to different values of the W matrix as shown below

W = Diag [
$$\sigma_y^2$$
,  $\sigma_{\varphi}^2$ ,  $\sigma_{\psi}^2$ ,  $\sigma_p^2$ ,  $\sigma_r^2$ ]

| Figure | σ <sub>y</sub> | $\sigma_{oldsymbol{arphi}}$ | $\sigma_{oldsymbol{\psi}}$ | σ <sub>p</sub> | $\sigma_{\mathbf{r}}$ |
|--------|----------------|-----------------------------|----------------------------|----------------|-----------------------|
| 4.10b  | 10             | .01                         | .01                        | .1             | . 1                   |
| 4.10c  | 10             | .01                         | .01                        | .01            | .01                   |
| 4.11   | 1              | .001                        | .001                       | .001           | .001                  |

The value of W in Figure 4.8 (a) and the matrices in Figure 4.8 (c) correspond to the Kalman filter design used in Figure 4.9.

In Section 3.4.1 a convergence property relating the optimum control approach and the trim control approach is given by (3.117). A demonstration of this property for the lateral control problem of the Space Shuttle is given below. Trajectory point number 1 occurring at 25 seconds after launch is shown in which the roll and yaw bias torques due to misalignment of the solid rocket motors are assumed to be

roll bias torque = 
$$3.02 \times 10^6$$
 (N-m)  
yaw bias torque = 0

The control vectors  $\mathbf{u}_{\mathbf{X}}(\infty)$ ,  $\mathbf{u}_{\mathbf{Z}}(\infty)$ , and  $\mathbf{u}(\infty)$  obtained by the optimum control approach have been computed in this case for three different values of  $\sigma$  (1., 0.1, 0.01) and are listed in Table 4.4. The computations were performed according to (3.94), (3.95), (3.98)–(3.102) where the control weighting matrix R was chosen to be and where I denotes the identity matrix.

$$R = 25I$$

The trim solution or limiting solution for  $\sigma=0$  was computed using the TRIMS program and is also listed in Table 4.4. An examination of Table 4.4 illustrates that the steady state control level  $u(\infty)$  for the optimum control solution approaches the trim solution as  $\sigma$  approaches zero.

# (a) Definition of Linear Stochastic Optimum Control Problem

```
.16920E+01 0.
.16920E+01 0.
.11760E+00 0.
0. 0.
             0. -10000E+01 -.83330E+02

0. -.83330E+02

-.12300E-01 0. -.95400E+02

-.13040E-02 -.67560E-02 .15330E-01

-31340E-03 .14470E-01 -.11980E-02
```

#### (b) Deterministic Quadratic Optimum Control Design (Complete State Feedback)

```
-0.158639E 00
                                                                                  0.445554E 02
                                                 0.378119E 01
                -0.563500F 01
                                 0.762735E 00
 0.27433HE 00
                                -0.585306E 04
                                                -0.13804HE 03
                                                                0.389273E 04
                                                                                  0.157787E 04
                0.681854E 04
-0.563500E 01
                               , 0.676011E 04
                                                  0.2113538 02
                                                                -0.392709E 04
                                                                                 -0.848510E 04
                -0.5H530AE 04
 0.7627376 UU
                                                                                  0.106545E 04
                -0.13804HE 03
                                0,211353E 02
                                                 50 3566806°0
                                                                -0.800357E 01
 0.378119E 01
                                                                                  0.783438E 04
                 U.386273E 04
                                -0.3927096 04
                                                -0.800357E 01
                                                                 0.502995E 04
-U.158639E UO
                                                                                  0.574432E 05
                                                                 0.783438E 04
                 0.157787E U4
                                -0.848510E 04
                                                 0.106545€ 04
 0.4455546 02
                -0.127343E 02
                                 0.1369576-06
                                                  0.3057018-06
                 0.193046E 04
                                -0.175135E-04
                                                 -0.4621736-04
                                 0.344119E=05
                                                  0.8021228-05
                -0.332043E 03
        M2 -
                                 0.109665E-04
                                                  0.2975476-04
                -0.124515£ U#
                                                  0.6210676-05
                -0.141713E 03
                                 0.32355aE-04
                                 0.182085E-03
                                                  0.365003E-03
                -0.149686E U5
                                                                0.605653E 01
-0.580465E 01
-0-24224nt-02
                 0.119613E 02
                                 0.157240E 01 -0.656341E-01
                                                                                ~0.717104E 02
                 0.10554IE 02
                                 0.1751026 02
-0.513893E-02
                                                -0.123552£ 00
                                                                                 -0.176404E 03
 0.2432956-02
                 0.731637E 01
                                -0.746488E 01
                                                  0.504930E-01
                                                                 0.958743E 01
                                                                                  0.155895€ 02
 0 . ú
                 0.0
                                 0.0
                                                  0.0
                                                                 0.0
                                                                                  0.0
 0.0
                 0.0
                                 0.0
                                                  0.0
                                                                 0.0
                                                                                  0.0
                 -0.282727E 01 0.193339E 01 0.149504E 00 -0.288419E 01 0.147035E 02 -0.560701E 01 -0.444370E 00 0.122703E 02
                -0.282727E 01
                                                                                  0.158991E 01
 0.6114206-02
-0.179980E-01
                                                                                 -0.374812E 02
                 0.5418558 00
                                  0.296517E-07
                                                 -0.166160c-07
                  0.187014E 01
                                -0.586262E-07
                                                 -0.625121E-07
                -0.117112E 01
                                 0.696390E-07
                                                  0.3336166-07
```

#### 

#### (c) Kalman Fister Design

```
.44244E+01 -.78062E-04 -.77003E-04 .98272E+01 -.25592E-03 .45855E-04 
-.78062E-04 .24450E-04 .23735E-04 -.42155E-03 .93877E-06 -.67372E-05 
-.77003E-04 .23735E-04 .24434E-04 -.41794E-03 -.53273E-07 -.67546E-05 
.98278E+01 -.42155E-03 -.41794E-03 .43977E+02 -.17384E-02 .27358E-03 
-.25592E-03 .93807E-06 -.53273E-07 -.17384E-02 .14250E-04 -.17866E-06 
.45855E-04 -.67372E-05 -.67546E-05 .27358E-03 -.17866E-06 .40175E-05
```

```
--12735E+00 --58636E+06 -11444E+07
-.11593E-03 -.88900E+03 -.13900E+04
                                                 -67931E+00
                                                            .77186E+07 -.10807E+08
-,11413E-03 -,92330E+03 -,14021E+04
                                                             .94366E+14 -.12756E+15
                                                 .77186E+07
-.49321E+00 -.30518E+07
                        .53063E+07
                                                -.10809E+08 -.12756E+15 .20316E+15
-.19722E-03
            -24128E+04
                         +92674E+02
 -69539E-04
             +55174E+03
                        .84891E+03
```

```
.44244E+01 -:78062E+02 -.77003E+02 -.25592E+03 .45855E+02
-.78062E-04 .24450E+02 .23735E+02 .93807E+00 -.67372E+01
-.77003E-04 .23735E+02 .24434E+02 -.53273E-01 -.67546E+01
.98272E+01 -.42155E+03 -.41794E+03 -.17384E+04 .27358E+03
-.25592E-03 .93807E+00 -.53273E-01 .14250E+02 -.17866E+00
.45855E-04 -.67372E+01 -.67546E+01 -.17866E+00 .40175E+01
```

```
K = -.12735E+00 -.11593E+03 -.11413E+03 -.19722E+03 .69539E+02 .55174E+09 .55174E+09 .11444E+07 -.13900E+10 -.14021E+10 .92674E+08 .84891E+09
```

Figure 4.9 Dynamic Response for a 2° Step in Sideslip Angle





Figure 4.9, continued - 2 -



# PITCH BEFL.ENG. 2,3



Figure 4.9, continued - 4 -



Figure 4.9, continued - 5 -

# RUDDER DEFL.



Figure 4.10 Dynamic Response of Optimum Control with Improved Kalman
Filter for a 2° Step in Sideslip Angle





Figure 4.10, continued - 2 -









Figure 4.10, continued -3-



Table 4.6 Convergence of Optimum Steady State Control Level to
Trim Control as Control Weighting Decreases

$$\sigma = 1 \qquad \sigma = 0.1 \qquad \sigma = 0.01 \qquad (trim solution) \\ \sigma = 0 \qquad \sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.1 \qquad \sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.1 \qquad \sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01 \qquad \sigma = 0$$

$$\sigma = 0.01 \qquad \sigma = 0.01$$

# 5. CONCLUSIONS AND FUTURE WORK

Solutions to the trim problem can be efficiently calculated by the TRIMS program using the numerical methods described in Section 3.1. The results of this investigation indicate that numerical solution by the Newton-Raphson method is preferable to the steepest descent method because it yields faster convergence and does not require the user to specify an iteration step size  $\sigma$ . If the initial guess of the solution used to start the Newton-Raphson method is not in the region of convergence then the method may not converge or may converge to the wrong solution. In this case the steepest descent method should be used for the first few iterations to generate a good starting solution to the Newton-Raphson method. This hybrid method could be implemented in the TRIMS program with minor modifications. However, it appears that for most practical trim problems an initial guess of  $\delta = 0$  is always in the region of convergence.

For the linear trim problem, a diagonal weighting matrix R in the quadratic performance criterion is sufficient in finding the "best" trim solution with respect to the limits on the deflection angles. Introducing nonzero values for the off-diagonal elements of R complicates the selection of the performance criterion and does not lead to a better trim solution than could be obtained by use of a diagonal matrix. Starting from the trim solution for a given diagonal R matrix, consider the problem of searching for a more desirable trim solution. The penalty function method for varying the diagonal elements of R is a viable approach for improving the trim solution that is easy to use. The penalty function method would be considerably facilitated if the computer computation of the trim solution is performance in a conversational mode of operation rather than a batch mode. In the former case, the user can examine the trim solution and then immediately try a new R matrix. The process can be repeated in a single sitting as many times as is necessary.

The lateral trim solution in Figure 4.6 indicates that the Space Shuttle configuration does not have sufficient control authority when the SRM engines are not gimballed. (The improvement in the trim solution obtained by gimballing the SRM engines is an area for future study which can be performed by the TRIMS program with minor modifications to the block data subroutine.) If the constraint of zero net side force (i.e., Y = 0) is eliminated and the vehicle is only trimmed in roll and yaw, the maximum control deflections decrease by

roughly an order-of-magnitude. In this case the trim solution is within the deflection limits. Hence, the control requirements increase significantly with the addition of the trim requirement Y=0. Maintaining Y=0 is not as critical as zero net roll and yaw torques because angular errors are multiplied by the vehicle velocity in computing the displacement from the nominal trajectory. This suggests removing the trim condition Y=0 entirely or replacing it by  $|Y| < \epsilon$ . The value of  $\epsilon$  depends on how much side displacement error is acceptable. By varying the weighting matrix R in the performance criterion with flight time rather than holding it constant, significant improvement in the trim solution might be achieved. The problem of realizing a trim solution for a time-varying R matrix must also be considered.

Only the steady-state performance of the control system for bias inputs is considered in the trim calculation. The dynamic or transient response of the controls for fluctuating inputs must also be considered in the overall system design. For the nonlinear trim problem, the index of controllability defined in Section 3.3.2 is a quantitative measure for selecting the trim solution that results in the most controllable system with respect to the dynamic response problem. An integral E proportional to the control energy is defined in Section 3.3.1 and is computed using the controllability Grammian W. Another measure for selecting the trim solution is given by the value of E. If the trim problem is linear, then the value of the controllability index or E does not vary with the trim solution.

The basic question in studying the dynamic response problem is: "What is the maximum deflection of each control for the possible fluctations in the disturbance inputs?" One possible approach to the dynamic response problem is to examine the values of  $\mathbf{E}_t$ , where  $\mathbf{E}_t$  denotes the energy expended by the tth control to return the vehicle to trim. The values  $\mathbf{E}_t$  can be readily computed from the controllability Grammain  $\mathbf{W}$ . Although this approach has potential in gaining insight into dynamic response problem, it possesses two major limitations. First, there is no simple relationship between the energy  $\mathbf{E}_t$  and the maximum value of the transient response curve showing the variation in the control deflection angle with time. Second, the control signal corresponding to  $\mathbf{E}_t$  cannot be realized by a linear feedback control system. The trim problem concerns only the static performance and can be studied without considering the detailed design of the feedback control system. The dynamic response problem, however, concerns the closed-loop transient response and is strongly dependent on the design of the feedback control system.

The most realistic method and possibly the only practical method for studying the dynamic response problem is to design the control system and simulate the closed-loop performance. The application of optimum control theory provides a method for the design of a linear feedback control system that can solve both the trim problem and the dynamic response problem. The correlation between the trim solution and the optimum control solution derived in Section 3.4.1 indicates how the solution to the trim problem can be used to select the proper control weighting R in performance criterion of the optimum control approach. This saves design time since the trim problem is easier to solve. A computer program entitled Linear System Design (LSD) was developed at Singer-Kearfott that is capable of computing the optimum feedback system and simulating the closed-loop performance. Since LSD is a conversational program with an automated plotting capability, many different designs can be studied efficiently. An example illustrating the use of LSD to design an optimum feedback system for the lateral control of the Space Shuttle during ascent is described in Section 4.3. It is recommended a more extensive design effort be pursued using the optimum control approach.

# APPENDIX A VECTOR NOTATION AND DIFFERENTIATION

In this appendix the notation used for handling differentiation with respect to vector quantities is reviewed for reference purposes. This notation is useful in describing the solution to the trim control problem.

Let x and y denote an n dimensional and an m dimensional (column) vector, respectively. Further, let  $\alpha$  denote a scalar function of x and y and let f denote a vector function of x and y where the dimension of f is g.

$$x = \begin{bmatrix} x_t \\ \vdots \\ x_n \end{bmatrix} \qquad v = \begin{bmatrix} y_t \\ \vdots \\ y_m \end{bmatrix} \qquad f = f(x, y) \qquad \alpha = a(x, y)$$

Differentiation of a vector by a scalar results in a (column) vector defined by

$$\dot{x} = dx/dt = \begin{bmatrix} dx_{i}/dt \\ \vdots \\ dx_{n}/dt \end{bmatrix}$$

On the other hand, differentiation of a scalar by a vector results in a row vector defined by

$$\partial \alpha / \partial x = [\partial \alpha / \partial x_1, \partial \alpha / \partial x_2, \dots, \partial \alpha / \partial x_n]$$

The second partial of the scalar  $\alpha$  with respect to x and y

$$\frac{2}{\partial \alpha} / \partial x \partial y = \partial / \partial y (\partial \alpha / \partial x)'$$

is an n by m matrix whose t th element is defined by

$$(\partial^2 \alpha / \partial x \partial y)_{ij} = \partial^2 \alpha / \partial x_i \partial y_i$$

Differentiation of the vector function f with respect to the vector x is a p by n matrix whose ijth element is defined by

$$(\partial f/\partial x)_{ij} = \partial f_i/\partial x_j$$

Consider the scalar formed by the inner product of  $\,f\,$  and a constant vector  $\,\lambda$  of dimension  $\,p\,$  . The second partial of this scalar with respect to  $\,\times\,$  and  $\,y\,$ 

$$\partial^2(\chi'f)/\partial x \partial y = \chi'(\partial f/\partial x \partial y)$$

is an n by m matrix whose t jth element is given by

$$\left[\lambda'\left(\frac{\partial f}{\partial \times \partial y}\right)\right]_{i,j} = \sum_{k=1}^{p} \lambda_k \left(\frac{\partial f}{\partial \times \partial y}\right)_{kij}$$

The quantity of  $\partial f/\partial x \partial y$  is a tensor whose ktJth element is defined by

$$(\partial f/\partial x \partial y)_{kij} = \partial f_k/\partial x_i \partial y_i$$

# APPENDIX B PARAMETERS OF SPACE SHUTTLE DYNAMICS

The equations defining the lateral-direction dynamics of the Space Shuttle during ascent through the atmosphere were derived in Section 4.1. The parameters required to compute the matrix coefficients in the linear equations of motion (4.10) are given in this appendix. The list of parameters appearing below indicates the parameter symbol, value, units, and a brief description. The data is given for twelve different points or flight times along the ascent trajectory and was furnished by Dr. S. Winder of MSFC.

In the column labeled VALUE, there appears either the numerical value or the word "table" or is left blank. The word "table" denotes that the numerical value varies with flight time and the twelve different values are listed in the tables at the end of this appendix. A blank denotes that the value of the parameter has not been specified. The unspecified parameters are the location and thrust of the SRM engines and the stability derivative C Most likely C is small and is assumed to be zero in this investigation. It is further assumed that the SRM engines are not gimballed but the provision for including the SRM engine deflections is incorporated into the equations.

The stability derivatives  $C_{\ell p}$ ,  $C_{np}$ ,  $C_{\gamma r}$ ,  $C_{\ell r}$ ,  $C_{nr}$  were not included in the data furnished by MSFC. Their values listed below are rough estimates based on the vehicle configuration. These stability derivatives are not used in computing the trim solution but are required for the study of dynamic response.

# LATERAL TRIM PARAMETERS

| SYMBOÙ                   | VALUE   | UNITS | DESCRIPTION                                   |
|--------------------------|---------|-------|-----------------------------------------------|
| ×ı                       | 0       | m )   |                                               |
| у <sub>1</sub>           | 0       | m }   | x, y, z positions of (top, orbiter) engine 1  |
| z <sub>]</sub>           | 0       | m     | da d      |
| × <sub>2</sub>           | 0       | m )   |                                               |
| у <sub>2</sub>           | 1.346   | m }   | x, y, z positions of (right orbiter) engine 2 |
| <sup>z</sup> 2           | - 6.68  | m     |                                               |
| ×3                       | 0       | m )   |                                               |
| y <sub>3</sub>           | - 1.346 | . m   | x, y, z positions of (left orbiter) engine 3  |
| <sup>z</sup> 3           | - 6.68  |       |                                               |
| × <sub>4</sub>           |         | m .)  |                                               |
| y <sub>4</sub>           | ·       | m     | x, y, z, positions of (right SRM) engine 4    |
| <sup>z</sup> 4           |         | m     |                                               |
| × <sub>5</sub>           |         | m )   | · · · ·                                       |
| у <sub>5</sub>           |         | m     | x, y, z position of (left SRM) engine 5       |
| <b>z</b> 5               |         | m     |                                               |
| ×cg                      | table   | m }   |                                               |
| У <sub>сд</sub>          | 0       | m     | x, y, z position of center of gravity         |
| z<br>cg                  | table   | m     |                                               |
| × <sub>mrp</sub>         | 21.6    | m     |                                               |
| y <sub>mrp</sub>         | 0       | m .   | x, y, z position of moment reference point    |
| <sup>z</sup> mr <b>p</b> | - 1.47  | m     | 105                                           |

| q                                      | tabl <b>e</b> | $new./m^2$                            | dynamic pressure                                          |
|----------------------------------------|---------------|---------------------------------------|-----------------------------------------------------------|
| S                                      | 317.73        | m <sup>2</sup>                        | reference area                                            |
| Ь                                      | 28.322        | m                                     | reference length                                          |
| V                                      | table         | m/sec                                 | velocity of the vehicle relative to the air               |
| V <sub>y</sub>                         | tab <b>le</b> | m/sec                                 | side component of V (side wind velocity)                  |
| F                                      | table         | New.                                  | thrust per orbiter engine                                 |
| F <sub>SRM</sub>                       |               | New.                                  | thrust per SRM engine                                     |
| С <sub>уβ</sub>                        | table         | -                                     | stability derivative                                      |
| CLB                                    | table         |                                       | stability derivative                                      |
| C <sub>nβ</sub>                        | table         | -                                     | stability derivative                                      |
| ΔC <sub>yβ</sub>                       | table         | · -                                   | change in $C_{y\beta}$ due to dorsal fins                 |
| ΔC                                     | table         | -                                     | change in C <sub>LB</sub> due to dorsal fins              |
| <sup>(ΔC</sup> nβ <sup>)</sup> AFT     | , table       | -                                     | change in C <sub>nβ</sub> due to aft dorsal fin           |
| (ΔC <sub>nβ</sub> ) <sub>FORWARD</sub> | table         |                                       | change in $C_{noldsymbol{eta}}$ due to forward dorsal fin |
| С<br>У <sub>ба</sub>                   |               | <del>-</del>                          | stability derivative                                      |
| $^{c}{}_{\iota_{\delta^{a}}}$          | table         | -                                     | stability derivative                                      |
| C <sub>n</sub> ôa                      | table         | -                                     | stability derivative                                      |
| C <sub>y.<sub>ôr</sub></sub>           | table         | • • • • • • • • • • • • • • • • • • • | stability derivative                                      |
| $^{C}\iota_{\delta r}$                 | table         |                                       | stability derivative                                      |
| C <sub>n</sub>                         | table         | _                                     | stability derivative                                      |
| C                                      | 01            | -                                     | stability derivative                                      |
| C <sub>np</sub>                        | - 0.03        | . <u>-</u>                            | stability derivative                                      |
| C <sup>yr</sup>                        | 0.            | -                                     | stability derivative                                      |

| C <sub>lr</sub>         | 0.022        | -                  | stability derivative                                  |
|-------------------------|--------------|--------------------|-------------------------------------------------------|
| Cnr                     | - 0.11       | -                  | stability derivative                                  |
| <del>c</del>            | 20.          | m .                | length of mean aerodynamic cord                       |
| m                       | table        | Kg                 | vehicle mass                                          |
| I <sub>×</sub>          | table        | Kg-m <sup>2</sup>  | vehicle moment of inertia about x axis                |
| I <sub>y</sub>          | table        | Kg-m <sup>2</sup>  | vehicle moment of inertia about y axis                |
| $I_{\mathbf{z}}$        | table        | Kg-m <sup>2</sup>  | vehicle moment of inertia about z axis                |
| g                       | table        | m/sec <sup>2</sup> | acceleration of gravity                               |
| cos θ                   | table        | -                  | cosine of nominal pitch angle                         |
| $\sin \theta_{0}$       | table        | -                  | sine of nominal pitch angle                           |
| Q                       | table        | rad/sec            | nominal pitch rate                                    |
| U                       | table        | m/sec              | nominal velocity along x axis                         |
| W                       | table        | m/sec              | nominal velocity along z axis                         |
| $\delta_{t	extsf{max}}$ | 30           | deg                | maximum allowable rocket engine deflection ( $t$ =1,, |
| δ <sub>ó max</sub>      | table        | deg                | maximum allowable aileron deflection                  |
| <sup>δ</sup> 7 max      | table        | deg                | maximum allowable rudder deflection                   |
| δ <sub>6</sub>          | G            | m <sup>2</sup>     | reference area for drag induced by alleron control    |
| δ <sub>7</sub>          | 0            | m <sup>2</sup>     | reference area for drag induced by rudder control     |
| c <sub>D6</sub>         | 0            | . <del>-</del>     | drag coefficient for aileron control                  |
| C <sub>D7</sub>         | 0            | -                  | drag coefficient for rudder control                   |
| Cup                     | <b>- 0.1</b> | <b>-</b>           | stability derivative                                  |
| Cnp                     | - 0.03       | <b>-</b>           | stability derivative                                  |
| Cyr                     | 0.0          | - t                | stability derivative                                  |
| cu                      | 0.022        |                    | stability derivative                                  |
| C <sub>nr</sub>         | - 0.11       | -                  | stability derivative                                  |

DATA: Stability Derivatives

(all data/radian)

| flight<br>time<br>(sec) | C <sub>y<sub>ôa</sub></sub> | C <sub>ℓδα</sub> | C <sub>n</sub> δα | C<br>y <sub>ðr</sub> | C <sub>ℓ</sub> <sub>δr</sub> | C<br>n<br>δr | Сув             | с <sub>и</sub> в | С <sub>пВ</sub> |
|-------------------------|-----------------------------|------------------|-------------------|----------------------|------------------------------|--------------|-----------------|------------------|-----------------|
| 25                      | .0                          | 0430             | .0458             | .504                 | .273                         | 510          | - 1.66          | 283              | .302            |
| 40                      | ,0                          | 0458             | .0444             | .408                 | .265                         | 489          | - 1.68          | 285              | .315            |
| 50                      | .0                          | 0487             | .0430             | . 462                | .259                         | 473          | - 1 <i>.7</i> 0 | 286              | .325            |
| 60                      | .0                          | 0544             | .0358             | .394                 | .215                         | 388          | - 1.83          | 291              | . 404           |
| 65                      | .0                          | 0630             | .0344             | .319                 | .181                         | 310          | - 1.99          | <b>29</b> 8      | . 468           |
| 70                      | .0                          | 0630             | .0301             | .300                 | . 173                        | 345          | - 2.05          | 326              | .460            |
| 75                      | .0                          | 0544             | .0258             | .292                 | .206                         | 340          | - 1.97          | 384              | .344            |
| 80                      | .0                          | 0458             | .0244             | .217                 | . 186                        | <b>2</b> 54  | - 1.92          | 356              | .266            |
| 90                      | .0                          | 0286             | .0172             | . 132                | <b>.</b> 105                 | 137          | - 1.93          | 299              | .238            |
| 100                     | .0                          | 0215             | .00286            | . 096 1              | .055                         | 105          | - 2.03          | 246              | .269            |
| 110                     | .0                          | 0158             | 00286             | .0749                | .0406                        | - ,077       | - 1.98          | - , 196          | .207            |
| 140                     | .0                          | 00859            | 0114              | .0573                | .0286                        | 061          | - 1.60          | 122              | 0284            |

| flight<br>time<br>(sec) | m<br>(Kg) | I x (Kg-m <sup>2</sup> ) | Гу<br>(Kg-m <sup>2</sup> ) | I<br>(Kg-m <sup>2</sup> ) | ×<br>cg<br>(m) | z<br>cg<br>(m) | F<br>(New.) |
|-------------------------|-----------|--------------------------|----------------------------|---------------------------|----------------|----------------|-------------|
| 25                      | .218E+7   | .953E+8                  | .526E+ <del>9</del>        | .591E+9                   | 23.345         | - 1.58         | 1.650E+6    |
| 40                      | .201E+7   | .856E+8                  | .490E+ <del>9</del>        | .547E+9                   | 23.42          | - 1.5847       | 1.760E+6    |
| 50                      | .190E+7   | .794E+8                  | .468E+9                    | .519E+9                   | 23.47          | - 1.5914       | 1.825E+6    |
| 60                      | . 179E+7  | .733E+8                  | .445E+ <del>9</del>        | .491E+9                   | 23.52          | - 1.5953       | 1.885E+6    |
| 65                      | . 174E+7  | .702E+8                  | .434E+9                    | . 478E+ <del>9</del>      | 23.545         | - 1.5979       | 1.920E+6    |
| <b>7</b> 0              | . 169E+7  | .671E+8                  | .423E+9                    | .464E+9                   | 23.57          | -1.60          | 1.940E+6    |
| 75                      | . 160E+7  | .629E+8                  | .383E+9                    | . 420E+ <del>9</del>      | 24.13          | - 1.4626       | 1.970E+6    |
| 80                      | . 154E+7  | .606E+8                  | .37 <b>2</b> E+9           | .405E+ <del>9</del>       | 24.18          | - 1.455        | 1.980E+6    |
| 90                      | . 144E+7  | .559E+8                  | .348E+ <del>9</del>        | .375E+ <del>9</del>       | 24.33          | - 1.440        | 2.025E+6    |
| 100                     | . 133E+7  | .512E+8                  | .326E+9                    | .346E+9                   | <b>2</b> 4.535 | - 1.4327       | 2.040E+6    |
| 110                     | .122E+7   | .466E+8                  | .303E+ <del>9</del>        | .317E+9                   | 24.74          | - 1.4255       | 2.060E+6    |
| 140                     | .914E+6   | .3 <b>2</b> 9E+8         | .234E+9                    | .228E+9                   | 25.62          | ~ 1.400        | 2.070E+6    |

DATA: Trajectory Parameters

| flight        | V       | <b>У</b> у | g                     | cos θ | $\sin \theta_{o}$ | Q <sub>0</sub> | U <sub>o</sub> | Wo        | q                     |
|---------------|---------|------------|-----------------------|-------|-------------------|----------------|----------------|-----------|-----------------------|
| time<br>(sec) | (m/sec) | (m/sec)    | (m/sec <sup>2</sup> ) |       |                   | (rad/sec)      | (m/sec)        | (m/sec)   | (New/m <sup>2</sup> ) |
| 25            | 95.4    | 2.0        | 9.8                   | 012   | 1.0               | 203E-1         | 95.4           | .279E+0   | . 482E+4              |
| 40            | 150.    | 9.0        | 9.8                   | .050  | .999              | 512E-2         | 149.           | . 149E+3  | .987E+4               |
| 50            | 190.    | 15.0       | 9.79                  | . 125 | .992              | .450E-2        | 186.           | . 186 E+3 | .134E+5               |
| 60            | 241.    | 24.0       | 9.78                  | . 222 | .975              | .112E-2        | 232.           | .232E+3   | . 174E+5              |
| 65            | 272.    | 29.0       | 9.78                  | . 274 | .962              | 158E-1         | 257.           | .257E+3   | . 194E+5              |
| 70            | 305.    | 34.0       | 9.78                  | , 329 | .944              | .687E-1        | 283.           | .283E+3   | .212E+5               |
| 75            | 343.    | 40.0       | 9.77                  | . 384 | .923              | 103E+0         | 310.           | .310E+3   | .226E+5               |
| 80            | 385.    | 44.0       | 9.77                  | . 449 | .893              | .412E-1        | 337.           | .337E+3   | .233E+5               |
| 90            | 486.    | 30.0       | 9.76                  | . 566 | .824              | 227E-2         | 392.           | .392E+3   | .217E+5               |
| 100           | 612.    | 0.0        | 9.74                  | .664  | .748              | .301E-3        | 445.           | .445E+3   | . 165E+5              |
| 110           | 768.    | 0.0        | 9.73                  | .681  | .732              | 851E-2         | 498.           | .498E+3   | .117E+5               |
| 140           | 1520.   | 0.0        | 9.68                  | .874  | .486              | 100E-2         | 673.           | .673E+3   | .231E+4               |

DATA: Deflection Limits for Aerodynamic Surface Controls and Change in Stability Derivatives Due to Dorsal Fins

|                         | <sup>6</sup> 7 max                    |                                                   |                          | (all data / degrees) |                                    |               |  |  |  |  |  |  |
|-------------------------|---------------------------------------|---------------------------------------------------|--------------------------|----------------------|------------------------------------|---------------|--|--|--|--|--|--|
| flight<br>time<br>(sec) | rudder hinge<br>moment limit<br>(deg) | δ 6 max<br>aileron hinge<br>moment limit<br>(deg) | <b>∆</b> C <sub>yβ</sub> | ΔC <sub>Lβ</sub>     | (ΔC <sub>nβ</sub> ) <sub>AFT</sub> | (ACng FORWARD |  |  |  |  |  |  |
| <b>2</b> 5              | no hinge limit                        | no hinge limit                                    | 011                      | .0031                | .0064                              | 004           |  |  |  |  |  |  |
| 40                      | 42.0                                  | 71.8                                              | 012                      | .0032                | .0067                              | 0044          |  |  |  |  |  |  |
| 50                      | 30.8                                  | 52.6                                              | 013                      | .0033                | .0074                              | 0048          |  |  |  |  |  |  |
| 60 .                    | 23.5                                  | 40.0                                              | 015                      | .0036                | .0085                              | 0056          |  |  |  |  |  |  |
| 65                      | 14.7                                  | 25.1                                              | 016                      | .0038                | .0094                              | 006           |  |  |  |  |  |  |
| 70                      | 8.19                                  | 14.1                                              | 017                      | .0042                | .0104                              | 006           |  |  |  |  |  |  |
| 75                      | 5.54                                  | 9.47                                              | 0165                     | .0042                | .01                                | 0058          |  |  |  |  |  |  |
| 80                      | 5.23                                  | 8.91                                              | 014                      | .0035                | .0088                              | 005           |  |  |  |  |  |  |
| 90                      | 6.27                                  | 10.69                                             | 0105                     | .0027                | .0075                              | 0044          |  |  |  |  |  |  |
| 100                     | 10.23                                 | 17.5                                              | 008                      | .0017                | .005                               | 0028          |  |  |  |  |  |  |
| 110                     | 19.67                                 | 33.64                                             | 006                      | .0014                | .004                               | 0022          |  |  |  |  |  |  |
| 140                     | no hinge limit                        | no hinge limit                                    | 004                      | .001                 | .0028                              | 0015          |  |  |  |  |  |  |
| * hard limits           | ± 30                                  | 40 up-15 down                                     |                          | ·                    |                                    | <b>/</b>      |  |  |  |  |  |  |

<sup>\*</sup> Hard deflection angle limit is used when less than hinge moment limit.



#### APPENDIX C TRIMS COMPUTER PROGRAM

#### 1. PROGRAM USAGE

#### Input

The input data to the TRIMS program consists of punched cards. The data deck is divided into cases where for example each case computes the trim solution for different values of roll bias torque. There are seven punched cards per case with the first card containing the case title and the last card indicating whether another case follows or whether this is the last case to be run. A description of the information and format for punching these seven data cards per case is given in Table 1. A sample of an input data deck for a single case run is shown in Figure 1.

#### Output

The computer printout from the TRIMS program is a single page per case. The printout resulting from the data deck in Figure 1 is shown in Figure 2. The first part of the printout lists the information contained on the data cards and used to compute the trim solution. The trim solution is printed in a convenient tabular form with each row listing the seven trim angles in degrees for a particular flight time. The number of iterations required to compute the trim solution at each trajectory point is also indicated.

# **Options**

Special options have been added to the program since the original development date of February, 1973. The purpose of these options is described in Table 2 including the modifications to the input data required to exercise these options.

TABLE 1: TRIMS PROGRAM INPUT DATA.

| CARD        | COLUMNS     | VARIABLE  | FORMAT       | DESCRIPTION                                                                                                       |
|-------------|-------------|-----------|--------------|-------------------------------------------------------------------------------------------------------------------|
| TITLE CARD  |             |           | •            | . o                                                                                                               |
| 1           | 1-72        | LINE      | 72A1         | Descriptive case title.                                                                                           |
| CONTROL C   | ARD         |           |              |                                                                                                                   |
| 1           | 1-5         | IGRAD     | <b></b>      | <pre>= 1, use 1st order gradient method; = 2, use 2nd order gradient method.</pre>                                |
| 1           | 11-20       | EPS       | E10.3        | Upper bound used in the convergence criterion.                                                                    |
| 1           | 21-30       | STEP      | E10.3        | Step size used in the 1st order gradient method; leave blank if 2nd order gradient method is used.                |
| TRAJECTORY  | CARD        |           | ,            |                                                                                                                   |
| <b>1</b>    | 1-60        | JPT       | <b>12</b> 15 | If trajectory point no. k, k=1,, 12, is to be used then punch a 1 in column 5k; otherwise punch a 0 in column 5k. |
| CARD CONT   | AINING BIAS | TORQUES   | •            |                                                                                                                   |
| 1           | 1-10        | YBT       | E10.0        | Yaw bias torque.                                                                                                  |
| 1           | 11~20       | RBT       | E10.0        | Roll bias torque.                                                                                                 |
| CARDS CON   | TAINING WEI | GHTING FA | CTORS        |                                                                                                                   |
| 1           | 1-70        | WI        | 7E10.0       | Seven weighting factors in performance criterion for adjusting maximum deflection angles.                         |
| 2           | 1-70        | W2        | 7E10.0       | Seven weighting factor in performance criterion for adjusting aerodynamic (drag) and thrust losses due to trim.   |
| CASE PARTIT | ION CARD    |           |              |                                                                                                                   |
| 1           | 1           | I G Ø     | <b>75</b>    | {= 1, another case follows<br>= 2, last case.                                                                     |

# FIGURE 1: EXAMPLE OF INPUT TO TRIMS COMPUTER PROGRAM

| STUDY OF    | L | ATERAL.     | THIN | 4 FOR | SPACE | SHUTT | L F | NO S  | RM BI    | AS -  |   | •     |
|-------------|---|-------------|------|-------|-------|-------|-----|-------|----------|-------|---|-------|
| 2<br>1      | ì | 0.0001      |      | 0.    | ı     | 1     | 1   | 1     | 1        | 1     | 1 | 1     |
| 0.<br>3000. |   | 0.<br>3000. |      | 3000. |       | 3000. | . 3 | 3000. | . 3      | 1000. |   | 3000. |
| 0.          |   | 0 •         | •    | 0.    |       | 0.    | •   | •     | <u> </u> | •     |   | 0 • 1 |

#### FIGURE 2: EXAMPLE OF OUTPUT FROM TRIMS COMPUTER PROGRAM

CASE 1 STUDY OF LATERAL TRIM FOR SPACE SHUTTLE NO SHM BIAS

| COMPUTATION CONTROL PAPAMETERS        |        | USE          | 2ÑD        | 01  | RDE | ድ ፍጹ/ | GRADIENT METHOD |      |      |            |    |       |       |     |       |     |           |  |  |
|---------------------------------------|--------|--------------|------------|-----|-----|-------|-----------------|------|------|------------|----|-------|-------|-----|-------|-----|-----------|--|--|
| TRAJECTORY POINTS                     |        |              |            |     | U   | PPÈR  | BOUNE           | USEE | ) IN | THE        | CC | ONVER | GENCE | CRI | TERIO | 4 = | 0.100E-03 |  |  |
| FRANCIONI FOUNTS                      | 1      | ı            | 1          | 1   |     | 1     | 1.              | 1    | 1    | 1          |    | 1     | 1     | 1   |       |     |           |  |  |
| SYSTEM DYNAMICS PARAMETERS            |        |              |            |     |     |       |                 |      |      |            |    |       |       |     |       |     |           |  |  |
| · · · · · · · · · · · · · · · · · · · |        | BIAS<br>BIAS |            |     |     |       | 0.0             |      |      |            |    |       |       |     |       |     |           |  |  |
| PERFORMANCE CRITERION PARAMETERS      |        | •            |            |     |     | •     |                 |      |      |            |    |       |       |     |       |     |           |  |  |
|                                       |        |              | W11<br>W12 |     |     |       |                 |      |      | W21<br>W22 |    | 0.0   |       |     |       |     |           |  |  |
|                                       | GHTING | 3            | W13        | = 3 | 000 | .00   |                 |      |      | W23        | =  | 0.0   |       |     |       |     |           |  |  |
| FAC                                   | . TURS |              | W15        | =3  | 000 | .00   |                 |      |      | W25        | =  | 0.0   |       |     |       |     |           |  |  |
|                                       |        |              | W16<br>W17 |     |     |       |                 |      |      | W26<br>W27 |    | 0.0   |       |     |       |     |           |  |  |

| TRIM DEFLECTION ANGLES |         | .LAST       | FLIGHT        |                   |       | _     | DELTA         |                 |         |        |         | NO. OF     |
|------------------------|---------|-------------|---------------|-------------------|-------|-------|---------------|-----------------|---------|--------|---------|------------|
|                        |         | PT.         | TIME          | (1)               | (2)   | (3)   | (4)           | (5)             | (6)     | (7)    |         | ITERATIONS |
|                        | • • • • |             |               | • • • • • • • • • |       |       | • • • • • • • | • • • • • • • • | •••••   | •••••• | •       |            |
|                        | •       | 1           | 25.0          | 0.09              | -0.00 | 0.13  | 0.0           | 0.0             | 0.10    | -0.10  | •       | 1          |
|                        | •       | 2           | 40.0          | 0.45              | -0.04 | 0.59  | 0.0           | 0.0             | 0.14    | -0.26  | •       | 1          |
| ,                      | •       | 3           | 50.0          | 0.87              | -0.13 | 1.24  | 0.0           | 0.0             | 0.81    | -0.26  |         | ì          |
|                        | •       | 4           | 60.0          | 1.58              | -0.31 | 2.40  | 0.0           | 0.0             | 1.43    | -0.36  |         | 1          |
|                        | •       | 5           | 65.0          | 2.04              | -0.48 | 3.50  | 0.0           | 0.0             | 1.88    | -0.39  | •       | 1          |
|                        | •       | 6           | 70.0          | 1.71              | 0.02  | 2.57  | 0.0           | 0.0             | 0.25    | -0.88  | •       | 1          |
|                        | •       | 7           | 75.0          | 2.26              | -0.24 | 4.03  | 0.0           | 0.0             | 0.39    | -0.89  |         | ĺ          |
|                        |         | 8           | 80.0          | 2.42              | -0.39 | 5.15  | 0.0           | 0.0             | 0.78    | -1.03  | •       | 1          |
|                        |         | 9           | 90.0          | 0.54              | 0.12  | 3.48  | 0.0           | 9.0             | 1.31    | -0.94  | •       | 1          |
| ,                      |         | 10          | 100.0         | -0.00             | -0.00 | 0.00  | 0.0           | 0.0             | 0.00    | -0.00  |         | . 1        |
|                        |         | 11          | 110.0         | 0.00              | 0.00  | -0.00 | 0.0           | 0.0             | 0.00    | 0.00   |         | 0          |
|                        | •       | 12          | 140.0         | 0.00              | 0.00  | -0.00 | 0.0           | 0.0             | 0.00    | 0.00   | •       | 0          |
| •                      | •       |             |               |                   |       |       |               |                 |         |        | •       |            |
|                        | •••     | • • • • • • | • • • • • • • | TOP               | YAW   | PITCH | YAW           | PITCH           | AILERON | RUDDER | • • • • |            |

# TABLE 2: PROGRAM OPTIONS

Option 1 - The program has the capability of disregarding the first trim equality constraint. This equation corresponds to the trim condition of zero net force in the y-direction. To exercise this option change the nonzero values of JPT on the trajectory data card from positive numbers to negative numbers.

Option 2 - The program has the capability of computing the trim solution for the case where the aileron is not used. To exercise this option change the nonzero values of JPT on the trajectory data-card from a magnitude of 1 to a magnitude of 2 (i.e., replace 1 by 2 and replace - 1 by - 2).

Option 3 - The program has the capability of replacing the performance criterion stored internally in the program with the quadratic performance criterion

$$r(\delta) = (\delta_1/c_1)^2 + ... + (\delta_1/c_7)^2$$

where  $c_1$ , ...,  $c_7$  are seven constants specified by the user at execution time. To exercise this option replace the fourteen weighting factors in the input data with the values

$$W1(t) = -c_t$$
  $t = 1, ..., 7$   $W2(t) = 0.$ 

### 2. PROGRAM DESCRIPTION

TRIMS is a FORTRAN IV computer program composed of a single main or executive routine and many subroutines. The program subroutines may be viewed as divided into two main groups. The first group is comprised of the main routine, entitled TRIMS, plus seven basic subroutines which form the heart of the program. These are listed in Table 3 together with a brief description of their function. The second group contains the utility subroutines which perform a specific matrix operation such as invert a matrix or print out a matrix. There are thirteen of these subroutines which are listed in Table 4. With the exception of GMSYMM, all of the utility subroutines are found in the IBM Scientific Subroutine Package \*.

In addition to the calling lists, the transfer of information into and out from the subroutines is achieved by means of five named CØMMØNS. Their names are listed in Table 5 together with a brief functional description. The innerconnection between the main routine, the seven basic subroutines, and the five named CØMMØNS summarizing where each is used is shown in Table 6. The variables in each of the named CØMMØNS are listed and defined in Table 7. The other variables in the program not in a named CØMMØN are listed in Table 8.

In the following pages the FORTRAN source listing of each subroutine is given. The beginning of each listing contains comment cards describing the subroutine which includes the purpose, input variables, output variables, and the subroutines called. Flow diagrams are also given for each of the subroutines with the exception of the IBM SSP subroutines.

<sup>\*</sup> System/360 Scientific Subroutine Package, Version *III*, Programmer's Manual, IBM publication GH20-0205-4, Fifthe edition, August 1970.

# TABLE 3: MAIN ROUTINE AND BASIC SUBROUTINES

TRIM - main routine controlling the basic computational steps.

BLOCK - block data subroutine for storing data internally in the program.

INPUT - subroutine used to read in and print out the input data.

OUTPUT - subroutine used to print out the results of the program.

GRAD 1 - subroutine for computing the deflection angles using the 1st order gradient method.

GRAD2 - subroutine for computing the deflection angles using the 2nd order gradient method.

system - subroutine containing the equations defining the system dynamics and the corresponding equations for evaluating the derivatives required by the gradient methods.

cOST - subroutine containing the equations defining the performance criterion and the corresponding derivatives.

# TABLE4: UTILITY SUBROUTINES

GYSYMM - symmetrize a matrix

MCPY - matrix copy

MSTR - storage conversion of a matrix

LØC - location in compressed-stored matrix

GMSUB - subtract two general matrices

GMPRD - product of two general matrices

GMTRA - transpose of a general matrix

MPRD - matrix product

CCUT - partition a matrix by column

MINV - matrix inversion

SINV - invert a symmetric positive definite matrix

MFSD - triangular factorization of a symmetric positive definite matrix

MXØUT - print a matrix

# TABLE 5 : NAMED COMMONS

| /cøn/   | dimension and accuracy parameters                                                                     |
|---------|-------------------------------------------------------------------------------------------------------|
| /ARRAY/ | values of trim equation, performance criterion, and their derivatives                                 |
| /TRAJ/  | trajectory information                                                                                |
| /SYST/  | data derived from the space shuttle configuration for computing the system dynamics and trim equation |
| /PERF/  | data used to compute the performance criterion                                                        |

# TABLE 6: INNERCONNECTION OF SUBROUTINES AND NAMED COMMONS

| where<br>used | <br>BLØCK | INPUT | UTPUT | 3RAD 1 | 3RAD2 | SYSTEM | CØST        | /NØD/ | ARRAY /  | /TRAJ/ | /SYST/ | /PERF/ |
|---------------|-----------|-------|-------|--------|-------|--------|-------------|-------|----------|--------|--------|--------|
| requires      |           |       | Ø     |        |       | S      |             |       | <b>A</b> |        |        |        |
| TRIMS         |           | X     | X     | X      | X     |        | ·           | Χ     |          |        |        |        |
| BLOCK         |           |       |       |        |       |        | 1           | X.    |          | Х      | X      | Х      |
| INPUT         |           |       |       |        |       |        | l<br>I      | Χ     |          | Χ      | X      | Χ      |
| ØUTPUT        |           |       |       |        |       |        | 1           |       |          |        |        |        |
| GRADI         |           |       |       |        |       | X      | X           | Χ     | Х        | Х      |        |        |
| GRAD2         |           |       |       |        |       | Х      | $X_{i}^{i}$ | Χ     | Х        | Х      | -      |        |
| SYSTEM        |           |       |       |        |       |        | 1           |       | Х        |        | X      |        |
| CØST          |           |       |       |        |       |        | 1           |       | . X      |        |        | X      |

TABLE 7: Variables in Named CØMMØN

| Program<br>Symbol        | Dimension | Symbol                                                                  | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|-----------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |           |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /CØN/<br>M<br>NS<br>KMAX | •••       | m<br>ñ<br>K<br>max                                                      | Number of trim angles. Number of trim equations. Maximum number of iterations allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| EPSO<br>MPT              | • • •     | €0                                                                      | Relative tolerance used in subroutine SINV.  Maximum number of trajectory points allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| /ARRAY/                  |           | ; ·                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AV<br>BV                 | 6         | <u>а</u><br><u>Б</u> (д)                                                | Constant terms in trim equations.  Terms in trim equations varying with trim angles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ВМ                       | 60        | 36 \ <u>d</u> 6                                                         | First derivatives of trim equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BT<br>RS                 | 6,60      | $\frac{\partial^2 b}{\partial a^2} / \frac{\partial a^2}{\partial a^2}$ | Second derivative of trim equations.  Performance criterion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R∨                       | 10        | ar/a8                                                                   | First derivative of performance criterion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RM                       | 100       | $\frac{1}{3}$ r / $\frac{1}{3}$ $\frac{5}{2}$                           | Second derivative of performance criterion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| /TRAJ/                   |           |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JPT<br>TF                | 12<br>12  | •••                                                                     | Index vector determining which trajectory points to use (see program input data). Flight times corresponding to the different possible trajectory points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| /SYST/                   |           |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| YBT<br>RBT<br>S<br>Bref  | •••       | <br>S<br>b <sub>rof</sub>                                               | Yaw bias torque (see program input data). Roll bias torque (see program input data). Reference area. Reference length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| X1,Y1,Z1                 |           | ref<br>× <sub>1</sub> ,y <sub>1</sub> ,z <sub>1</sub>                   | Coordinates of (top orbiter) engine 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| X2,Y2,Z2                 |           | ×2, <sup>y</sup> 2, <sup>z</sup> 2                                      | Coordinates of (right orbiter) engine 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| X3,Y3,Z3                 | • • •     | ×3′ <sup>y</sup> 3′ <sup>z</sup> 3                                      | Coordinates of (left orbiter) engine 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| X4,Y4,Z4                 |           | × <sub>4</sub> , y <sub>4</sub> , z <sub>4</sub>                        | Coordinates of (right SRM) engine 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| X5,Y5,Z5                 | • • •     | × <sub>5</sub> , y <sub>5</sub> , z <sub>5</sub>                        | Coordinates of (left SRM) engine 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| XMRP                     |           | ×mrp                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| YMRP                     | • • •     | yulb<br>uub                                                             | Coordinates of moment reference point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ZMRP                     | • • •     | mrp<br>z                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| xcg                      | 12        | x                                                                       | 1 Constitution of the contract |
| ZCG                      | 12        | ×cg<br><sup>z</sup> cg                                                  | Coordinates of center of gravity $ \begin{cases} (Y_{cg} = 0). \end{cases} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

TABLE7: Variables in Named CØMMØN, Continued

| Program<br>Symbol | Dimension      | Symbol                           | Explanation                                                               |
|-------------------|----------------|----------------------------------|---------------------------------------------------------------------------|
| /SYST/, Continued |                |                                  |                                                                           |
| Q<br>V<br>VY      | 12<br>12<br>12 | q<br>V<br>V                      | Dynamic pressure. Vehicle velocity relative to air. Side wind velocity.   |
| F<br>FSRM         | 12<br>12       | F<br>F<br>SRM                    | Thrust per orbiter engine.<br>Thrust per SRM engine.                      |
| CYB               | 12             | С<br>У <i>В</i>                  | Stability derivative.                                                     |
| CLB               | 12             | _                                | Stability derivative.                                                     |
| CNB               | 12             | <i>ιβ</i><br>C                   | Stability derivative.                                                     |
| DCYB              | 12             | οng<br>Δ <sup>C</sup> y <b>g</b> | Change in C due to dorsal fins.                                           |
| DCLB              | 12             | $\Delta \subset \iota_{\beta}$   | Change in $C_{\mathcal{L}\beta}^{\gamma\beta}$ due to dorsal fins.        |
| DCNBA             | 12             | (∆Cng)AFT                        | Change in $C_{n\beta}^{x\beta}$ due to aft dorsal fin.                    |
| DCNBF             | 12 (           | Cng) FORWARD                     | Change in Cng due to forward dorsal fin.                                  |
| CYA               | 12             | <u>.</u>                         | Stability derivative.                                                     |
| CLA               | 12             | γδα<br>C<br><i>ι</i> δα          | Stability derivative.                                                     |
| CNA               | 12             | C <sub>n8a</sub>                 | Stability derivative.                                                     |
| CYR               | 12             | C<br>yδr                         | Stability derivative.                                                     |
| CLR               | 12             | C                                | Stability derivative                                                      |
| CNR               | 12             | C <sub>nor</sub>                 | Stability derivative.                                                     |
| /PERF/            |                | •                                |                                                                           |
| W1                | 7              | W <sub>1</sub>                   | Vector of relative weighting factors                                      |
| W2                | 7              | W <sub>2</sub>                   | (see program input data).  Vector of relative weighting factors           |
| DAMAX             | 12             | δ <sub>a max</sub>               | (see program input data).  Maximum deflection angle allowed for aileron.  |
| DRMAX             | 12             | δ <sub>r max</sub>               | Maximum deflection angle allowed for rudder.                              |
| QQ<br>DMAX        | 12             | q                                | Dynamic pressure.  Maximum deflection angle allowed for                   |
| SA                |                | Sa                               | orbiter rocket engines.<br>Reference area corresponding to the drag       |
| SR                |                | s <sub>r</sub>                   | induced by the aileron. Reference area corresponding to the drag          |
| CDA               | • • •          | C <sub>Da</sub>                  | induced by the rudder.  Coefficient of drag corresponding to the aileron. |
| CDR               |                | C <sub>Dr</sub>                  | Coefficient of drag corresponding to the rudder.                          |
|                   |                | UI'                              | ·.                                                                        |

120

TABLE 8: Variables not in Named CØMMØN

| Program |           |                   | •                                                                                      |
|---------|-----------|-------------------|----------------------------------------------------------------------------------------|
| Symbol  | Dimension | Symbol            | Explanation                                                                            |
| I CASE  |           |                   | Number of the current case.                                                            |
| I GO    |           |                   | Index controlling sequence of cases.                                                   |
| I       |           |                   | Do loop index.                                                                         |
| L       | • • •     | • • •             | Number of the trajectory point.                                                        |
| IGRAD   | • • •     |                   | Order of the gradient method to be used.                                               |
| Κ       |           | k                 | Number of the iteration.                                                               |
| EPS     | •, • •    | €                 | Convergence bound in gradient methods.                                                 |
| TIME    |           | <b>†</b>          | Flight time of the current trajectory point.                                           |
| STEP    |           | σ                 | Iteration step size used in first order gradient method.                               |
| DELTA   | 10        | <u>δ</u>          | Vector of trim angles.                                                                 |
| LAMDA   | 6         | <u> </u>          | Vector of Lagrange multipliers.                                                        |
| J       |           | • • •             | Do loop index.                                                                         |
| DET     |           | • • •             | Determinant of a matrix                                                                |
| MNS     | • • •     | • • •             | Difference between number of trim angles and trim equations                            |
| NØRM    |           | • • •             | Quantity for determining trim solution accuracy.                                       |
| RU      | 10        | r <sub>U</sub>    | Subvector of $\partial r/\partial \underline{\delta}$ .                                |
| RX      | 10        | <b>r</b>          | Subvector of $\partial r/\partial \underline{\delta}$ .                                |
| X       | 10        | ×                 | Subvector of <u>8</u> (subroutine GRAD1).                                              |
| X       | 10        | • • •             | Dummy vector (subroutine GRAD2).                                                       |
| BX      | 60        | B×                | Square nonsingular submatrix of $\partial \underline{b}/\partial \underline{\delta}$ . |
| DU      | 10        | <u>Δυ</u>         | Correction to subvector u of S.                                                        |
| BU      | 60        | B                 | Submatrix of $\partial \underline{b}/\partial \underline{\delta}$ .                    |
| JI      |           | · • • •           | Matrix element index                                                                   |
| M2      | • • •     |                   | = m(m+1)/2.                                                                            |
| I ER    | • • •     | • • •             | Index used to indicate errors in inverting a positive definite matrix.                 |
| HL      | 10        | $h_{\lambda^{i}}$ | Derivative of hamiltonian with respect to $\underline{\lambda}$ .                      |
| R       | 100       | h <sub>δδ</sub>   | Second derivative of hamiltonian with respect to $\delta$ .                            |

TABLE 8: Variables not in Named CØMMØN (Continued)

| Program<br>Symbol | Dimension | Symbol                     | Explanation                                                      |
|-------------------|-----------|----------------------------|------------------------------------------------------------------|
| Y                 | 10        |                            | Dummy vector                                                     |
| DEL               | 10        | <u>Δ</u> <u>δ</u>          | Correction to $\delta$ .                                         |
| BR                | 60        | BR <sup>-1</sup>           | Matrix product.                                                  |
| LAM               | 6         | $\Delta \overline{\gamma}$ | Correction to $\frac{\lambda}{\lambda}$ .                        |
| BRB               | 36        | BR-1 B                     | Matrix product.                                                  |
| HD                | 10        | h <sub>δ</sub>             | Derivative of hamiltonian with respect to $\underline{\delta}$ . |
| D                 | 60        |                            | Dummy matrix,                                                    |
| В                 | 60        | <sup>h</sup> λδ            | Mixed second derivative of namiltonian.                          |
| CYBCG             | • • •     | • • •                      | Stability derivative C about cg.                                 |
| CNRCG             |           |                            | Stability derivative $C_n$ about cg .                            |
| CLBCG             |           | • • •                      | Stability derivative C about cg . $\iota_{oldsymbol{eta}}$       |
| CNBCG             |           | • • •                      | Stability derivative $C_n$ about $cg$ .                          |
| CLACG             | • • •     | * * *;                     | Stability derivative C $\ell_{\mathbf{a}}$ about cg .            |
| CNACG             | •••       | • • •                      | Stability derivative C about cg.                                 |
| CLRCG             | • • •     |                            | stability derivative $\ \mathcal{C}_{r}$ about cg .              |
| C1                |           |                            | Cos 18°.                                                         |
| C2                | • • •     |                            | Cos 12°.                                                         |
| C3                |           |                            | Cos 3.5°                                                         |
| C4                | • • •     |                            | Cos 15°.                                                         |
| <b>S1</b>         |           | • • •                      | Sin 18°.                                                         |
| S2                | • • •     |                            | Sin 12°,                                                         |
| S3                |           |                            | Sin 3.5°.                                                        |
| \$4               |           |                            | Sin 15°.                                                         |

TABLE 8: Variables not in Named CØMMØN (Continued)

| Program<br>Symbol | Dimension | Symbol | Explanation                                |
|-------------------|-----------|--------|--------------------------------------------|
| ŢĴ                |           | • • •  | Matrix element index.                      |
| QS                | • • •     |        | Product qS.                                |
| QSB               | • • •     | • • •  | Product qSb <sub>ref</sub> .               |
| RAD               |           | • • •  | Conversion factor from radians to degrees. |
| BETA              |           | β      | Side slip angle.                           |
| II                |           |        | Vector element index.                      |
| С                 |           |        | Dummy vector.                              |

```
C
                                                     -----TRM 0010
                                                                         TRM 0020
C
C
                    *** TRIMS COMPUTER PROGRAM ***
                                                                         TRM 0030
C
                                                                         TRM 0040
          DEVELOPED BY: M.HUTTON THE SINGER CO. FEBRUARY 1973
C
                                                                         TRM 0050
C
                                                                         TRM 0060
C
                               -----TRM 0070
C
                                                                         TRM 0080
C
      PURPOSE MAIN ROUTINE FOR EXECUTION OF COMPUTIONS OF LATERAL
                                                                         TRM 0090
C
        ---- TRIM ANGLES FOR SPACE SHUTTLE.
                                                                         TRM 0100
C
                                                                       · TRM 0110
C
                 (SEE SURPOUTINE INPUT).
                                                                         TRM 0120
      INPUTS
                                                                         TRM 0130
C
C
                                                                         TRM 0140
C
      OUTPUTS (SEE SURROUTINE OUTPUT).
                                                                         TRM 0150
                                                                         TRM 0160
C
                                                                         TRM 0170
C
                             INPUT , GRADI , GPADE , OUTPUT .
      SUBROUTINES CALLED
                                                                         TRM 0180
¢
                                                                         TRM 0190
C
                                                                         TRM 0200
C
                                                                    # # TRM 0210
C
                                                                         TRM 0220
                                                                         TRM 0230
€
C
                                                                         TRM 0240
      REAL LAMDA
                                                                         TRM 0250
      DIMENSION DELTA(10) , LAMDA(6)
                                                                         TRM .0260
                                                                         TRM 0270
      COMMON /CON/ M . NS . KMAX . EPSO . MPT
C
                                                                         TRM 0280
C
                                                                         TRM 0290
                                                                         TRM 0300
 *** INITIALIZATION
      TCASE = 1
                                                                         TRM 0310
      DO 10 I=1.M
                                                                         TRM 0320
   10 DELTA(I) = 0.
                                                                         TRM 0330
    DO 20 I=1.NS
                                                                         TRM 0340
                                                                         TRM 0350
   20 \text{ LAMDA(I)} = 0.
C
                                                                         TRM 0360
 *** ENTER INPUT DATA
                                                                         TRM 0370
   30 CALL . INPUT (IGRAD + EPS + STEP + IGO + ICASE)
                                                                         TRM 0380
C
                                                                         TRM 0390
C
 *** COMPUTE TRIM SOLUTION FOR EACH OF THE SELECTED POINTS ALONG
                                                                         TRM 0400
      THE TRAJECTORY
                                                                         TRM 0410
                                                                         TRM 0420
      DO 60 L=1.MPT
                                                                         TRM 0430
C
 *** DETERMINE COMPUTATIONAL METHOD TO BE USED
                                                                         TRM 0440
      IF (IGRAD-1) 50.40.50
                                                                         TRM 0450
C
                                                                         TRM 0460
 *** COMPUTE TRIM SOLUTION USING 1ST ORDER GRADIENT
                                                                         TRM: 0470
   40 CALL GRADI(K.L., TIME, DELTA, LAMDA, IGRAD, EPS, STEP)
                                                                         TRM 0480
      GO TO 60
                                                                         TRM 0490
C
                                                                         TRM 0500
 *** COMPUTE TRIM SOLUTION USING 2ND ORDER GRADIENT
                                                                         TRM 0510
   50 CALL GRAD2(K+L+TIME+DELTA+LAMDA+IGRAD+EPS)
                                                                         TRM 0520
C
                                                                         TRM 0530
C ### PRINT RESULTS
                                                                         TRM 0540
   60 CALL OUTPUT (K.L.M.TIME.DELTA.MPT)
                                                                         TRM 0550
                                                                         TRM 0560
 *** TEST IF END OF COMPUTER RUN
                                                                         TRM 0570
      IF(IGO-1) 80,70,80
                                                                         TRM 0580
                                                                         TRM 0590
```

| С | 444 | OT On | THE NEXT CASE |
|---|-----|-------|---------------|
|   | 70  | ICASE | = TCASE + 1   |
| С |     | GO TO | 30            |
|   | R)  | CALL  | EXIT          |
|   |     | FND   | *             |

| TRM | 0600 |
|-----|------|
| TRM | 0610 |
| TRM | 0620 |
| TRM | 0630 |
| TRM | 0640 |
| TOM | 0650 |

TRIMS Flow Diagram



```
----BLK 0010
C
C
                                                                           BLK 0030
C
      SURPROGRAM BLOCK
                                                                           BLK 0.040
C
                                                                          -BLK 0050
C
                                                                           BLK 0060
C
               BLOCK DATA SUBROUTINE FOR STORING DATA INTERNALLY IN THE BLK 0070
C
      PURPOSE
               PROGRAM. THIS IS THE AERODYNAMIC DATA REQUIRED TO COMPUTEBLE 0080
C
                                                                           BLK 0090
                COEFFICIENTS OF LATERAL TRIM EQUATIONS.
C
                                                                           BLK 0100
C
                                                                          - BLK 0110
                        /CON/ . /TRAJ/ . /SYST/ . /PERF/
C
                                                                           RLK 0120
C
                                                                           BLK 0130
C
                                                                        * BLK 0140
C
                                                                         * BLK 0150
¢
                                                                           BLK 0160
C
                                                                           BLK 0170
      BLOCK DATA
                                                                           BLK 0180
C
                                                                           BLK 0190
C
                                                                           BLK 0200
      COMMON /CON/ M . NS . KMAX . EPSO . MPT
                                                                           BLK 0210
                      JPT(12) . TF(12)
      COMMON /TRAJ/
                                                                           BLK 0220
                                   X1, X2, X3, X4, X5, XMRP+
                      YBT. RBT.
       COMMON /SYST/
                                                                           BLK 0230
                                   Y1, Y2, Y3, Y4, Y5, YMRP.
                      S. BREF.
                                    Z1, Z2, Z3, Z4, Z5, ZMRP,
                                                                           BLK 0240
                                                                   VY(12) + BLK 0250
                                                      V(12),
                                         9(12)+
                         ZCG(12) •
     3
            XCG(12)+
                                                                  CNB(12) + BLK 0260
                                                     CLB(12)+
                                       CYB(12) +
                        FSRM(12)+
              F(12),
                                                                  CYA(12) . BLK 0270
                                                  DCNBF (12) + -
                                     DCNBA (12)+
           DCYB(12) .
                        DCLB(12) +
                                                                  CNR (12)
                                                                           BLK 0280
                                                  CLR(12)+
                                       CYR(12) +
           CLA(12)+
                         CNA(12)+
                      W1(7) + W2(7) + DAMAX(12) + DRMAX(12) + QQ(12) + -
                                                                           BLK 0290
      COMMON /PERF/
                                                                           BLK 0300
                      DMAX+ SA+ SR+ CDA+ CDR
                                                                           BLK 0310
Ç
                                                                           BLK 0320
Ċ
                                                                           BLK 0330
             M.NS.KMAX.EPSO.MPT / 7, 3, 3, 0.00001, 12
      DATA
                                                                            BLK 0340
                       25.0 , 40.0 , 50.0 , 60.0 , 65.0 , 70.0
                                                                            BLK 0350
       DATA
                                                                           BLK 0360
                              , 80.0 , 90.0 , 100.0 , 110.0 , 140.0 /
                       75.0
                                                                            BLK 0370
 C
                                                                            BLK 0380
                                     , -9.34
             X1,Y1,Z1
                          0.,
                                0.
       DATA
                                                                            BLK 0390
                                1.346, -6.68
                          0.,
             X2, Y2, Z2
                       1
      DATA
                                                                            BLK 0400
                          0., -1.346, -6.68
                       /
       DATA
             X3,Y3,Z3
                                              1
                                                                            BLK 0410
                                0.
             X4.Y4.Z4
                           0.
                                    •
                                        0.
       DATA
                                                                            BLK 0420
             X5.Y5,25
                           0. .
                                0.
                                        0.
       DATA
                                                                            BLK 0430
 C
                                                                            BLK 0440
                    / 23.345, 23.42 , 23.47 , 23.52 , 23.545, 23.57 ,
      DATA
             XCG
                                                                            BLK 0450
                      24.13 , 24.18 , 24.33 , 24.535, 24.74 , 25.62
                                                                            BLK 0460
 C
                                                                            BLK 0470
                    / -1.58 ,-1.5847,-1.5914,-1.5953,-1.5979,-1.60
             ZCG
       DATA
                       -1.4626,-1.455 ,-1.440 ,-1.4327,-1.4255,-1.400
                                                                            BLK 0480
                                                                            BLK 0490
 C
                                                                            BLK 0500
             XMRP, YMRP, ZMRP / 21.6, 0., -1.47
       DATA
                                                                          BLK 0510
                                                           , .174E+5
                                                                            BLK 0520
                                  , .987E+4 , .134E+5
                        .482E+4
       DATA
                                                                            BLK 0530
                                               , .226E+5 , .233E+5
                        .194E+5
                                  . 212E+5
                                               • •117E+5
                                                                            BLK 0540
                                                           , .231E+4
                                  • .165E+5
                        .217E+5
      2
                                                                            BLK 0550
 C
                                                                            BLK 0560
                           317.73 • 28.322 /
                 BREF
       DATA
                                                                            BLK 0570
                                               . 241.
                                                       , 272.
                                                                , 305.
                                                                            BLK 0580
                        95.4
                              150.
                                       . 190.
       DATA
                                               , 612.
                                                       , 768.
                                                                , 1520.
                                                                            BLK 0590
                        343.
                              385
                                       486.
      1
```

```
C
                                                                               ALK 0600
      DATA
                               , 9.
                                        , 15.
                     / 2.
                                                , 24.
                                                         , 29.
                                                                  • 34.
                                                                               BLK 0610
                        40.
                                                . O. . . . O.
     1
                               . 44.
                                        , 30.
                                                                  + 0.
                                                                              BLK 0620
C
                                                                               BLK 0630
      DATA
                                   , 1.76E+6
                        1.65E+6
                                                , 1.825E+6
                                                              , 1.885E+6
                                                                               BLK 0640
                        1.92F+6
     1
                                   • 1.94E+6

    1.97E+6

    1.98E+6

                                                                               BLK 0650
                                                + 2.06E+6
     2
                        2.025E+6
                                  • 2.04E+6
                                                              . 2.07E+6
                                                                               ALK 0660
C
                                                                               BLK 0670
      DATA
             FSRM
                     / 12*0.
                                                                               BLK 0680
C
                                                                               BLK 0690
      DATA
             CYB
                     / -1.66
                               ,-1.68
                                       ·-1.70
                                                ·-1.83
                                                         ·-1.99·
                                                                  ·-2.05
                                                                               BLK 0700
     1
                       -1.97
                               ·-1.92
                                       ,-1.93
                                                ,-2.03
                                                         •-1.98
                                                                  ·-1.60
                                                                               BLK 0710
C
                                                                              BLK 0720
                     / -.283
                                                         ,-.298
      DATA
             CLR
                               ·--285
                                        · - · 286
                                                ,-.291
                                                                  ,-.326
                                                                               BLK 0730
                       -.384
                               ,-.356
                                        .-.299
                                                ·- . 246
                                                         ,-.196
                                                                  ·-.122
                                                                               PLK 0740
C
                                                                               BLK 0750
      DATA
             CNR
                     / .302
                               , .315
                                        , .325
                                                , .404
                                                                  , .460
                                                         • • 468
                                                                               BLK 0760
                        .344
                               , .266
                                        , .238
                                                .269
                                                         .207
                                                                  ·-.0284
                                                                               BLK 0770
C
                                                                               BLK 0780
      DATA
             DCYB
                     / -.011
                               ,-.012
                                        ·-.013
                                                ·-.015
                                                         ,-.016
                                                                  ·-.017
                                                                               BLK 0790
     1
                       -.0165 .-.014
                                       ·-.0105 ·-.008
                                                                  • - • 0 0 4
                                                         ·-.006
                                                                               BLK 0800
C
                                                                               BLK 0810
      DATA
             DCLB
                     / .0031 + .0032 + .0033 + .0036 + .0038 + .0042 +
                                                                               BLK 0820
                        .0042 , .0035 , .0027 , .0017 , .0014 , .001
                                                                               BLK 0830
C
                                                                               BLK 0840
      DATA
             DCNBA
                        .0064 · .0067 · .0074 · .0085 · .0094 · .0104 ›
                                                                               BLK 0850
                        .01
                               + .0088 + .0075 + .005
                                                                 • .0028
                                                        • •004
                                                                               BLK 0860
Ç
                                                                               BLK .0870
                               --.0044 --.0048 --.0056 --.006 --.006
      DATA
             DONBE
                     / -.004
                                                                               BLK 0880
                       -.0058 --.005 --.0044 --.0028 --.0022 --.0015
                                                                               BLK 0890
C
                                                                               BLK 0900
      DATA
             CYA
                     / 12#0.
                                                                               BLK 0910
C
                                                                               BLK 0920
      DATA
             CLA
                     / -.0430 ,-.0458 ,-.0487 ,-.0544 ,-.0630 ,-.0630 ,
                                                                               BLK 0930
                       -.0544 --.0458 --.0286 --.0215 --.0158 --.00859 /
                                                                               BLK 0940
C
                                                                               BLK 0950
      DATA
             CNA
                        .0458 • .0444 • .043 • .0358 • .0344 • .0301 •
                                                                               BLK 0960
                        .0258 • .0244 • .0172 • .00286 • - .00286 • - .0114
                                                                               BLK 0970
C
                                                                               BLK 0980
      DATA
            CYR
                        .504
                               . 408
                                       . .462
                                                . 394
                                                         .319
                                                                  .300
                                                                               BLK 0990
                                       . .132
                               , .217
     1
                        .292
                                                , .0961 , .0749 , .0573
                                                                               BLK 1000
C
                                                                               BLK 1010
      DATA
             CLR
                               , .265
                        .273
                                       , .259
                                                215
                                                         .181
                                                                  .173
                                                                               BLK 1020
     1
                               , .186
                        .206
                                       .105
                                                • .055
                                                         · .0406 · .0286
                                                                               BLK 1030
C
                                                                               BLK 1040
      DATA
                               ·-·489
             CNR
                     / -.510
                                       ·--473
                                                ·-.388
                                                         ·-.310
                                                                  ,-.345
                                                                               BLK 1050
                       -.340
                               ·-·254
                                       ,-.137
                                                ,-.105
                                                         .-.077
                                                                  ,-.061
                                                                               BLK 1060
C
                                                                               BLK 1070
      DATA
             DAMAX
                        40.
                               . 40.
                                       · 40.
                                                , 40.
                                                         , 25.1
                                                                  , 14.1
                                                                               BLK 1080
                        9.47
                               . 8.91

 10.69
 17.5

                                                         33.6440.
                                                                               BLK 1090
Ç
                                                                               BLK 1100
C
      DATA
             DAMAX
                        15.
                               , 15.
                                        , 15.
                                                 , 15.
                                                         ., 15.
                                                                   , 14.1
                                                                               BLK 1110
C
     1
                        9.47
                               9.8.91
                                       · 10.69 · 15.
                                                                               BLK 1120

    15.

                                                                  + 15.
C
                                                                               BLK 1130
      DATA
             DRMAX
                        30.
                                 30.
                                       , 23.5
                                                • 14.7
                                                         . 8.19
                                                                               RLK 1140
                                                                  , 8.19
                        5.54
                                5.23
                                       . 6.27
                                                • 10.23 • 19.67 • 30.0
                                                                               BLK 1150
C
                                                                               BLK 1160
      DATA
             QQ
                        .482E+4
                                                , .134E+5
                                   • .987E+4
                                                             . 174E+5
                                                                               BLK 1170
     1
                        .194E+5
                                   • .212E+5
                                                .226E+5
                                                                               BLK 1180
                                                             • .233E+5
     2
                        .217E+5
                                   • .165E+5
                                                • .117E+5
                                                             . .231E+4
                                                                               BLK 1190
```

C DATA DMAX, SA+ SR+ CDA+ CDR / 30. , 4\*0.
C END

RLK 1200 RLK 1210 RLK 1220 RLK 1230

```
-----INT 0010
C
C
                                                                  INT 0020
C
     SUBROUTINE INPUT(IGRAD, EPS, STEP, IGO, ICASE)
                                                                  INT 0030
C
                                                                  TNT 0040
      Ç
C
                                                                  INT 0060
     PURPOSE SUBROUTINE USED TO READ IN AND PRINT OUT THE INPUT DATA. INT 0070
C
C
                                                                  INT 0080
C
                                                                  INT 0090
C
               ICASE = NO. OF CURRENT CASE.
     INPUTS
                                                                  INT 0100
C
                                                                  INT 0110
C
                                                                  INT 0120
C
     OUTPUTS
               IGRAD
                      = ORDER OF GRADIENT METHOD TO BE USED.
                                                                  INT 0130
C
               EPS

    ≃ CONVERGENCE BOUND.

                                                                  INT 0140
                      = STEP SIZE IF 1ST ORDER GRADIENT METHOD USED.
C
                STEP
                                                                  INT 0150
Ç
                      = INDEX CONTROLING SEQUENCE OF CASES.
               IGO
                                                                  INT 0160
C
                                                                  INT 0170
C
     SUBROUTINES CALLED
                         NONE
                                                                  TNT 0180
C
                                                                  INT 0190
C
                                                                  INT 0200
C
                                                                  INT 0210
C
                                                                  INT 0220
C
                                                                  INT 0230
     SUBROUTINE INPUT ([GRAD + EPS + STEP + IGO + ICASE)
                                                                  INT 0240
Ĉ
                                                                  INT 0250
C
                                                                  INT 0260
 1000 FORMAT(72A1)
                                                                  INT 0270
 1010 FORMAT(1H1,9X,4HCASE,13,8X,72A1 / 10X,4H---- )
                                                                  INT 0280
 1020 FORMAT(//5x,30HCOMPUTATION CONTROL PARAMETERS)
                                                                  INT 0290
 1030 FORMAT(I5.5X.2E10.3)
                                                                  INT 0300
 1 GRADIENT METHOD ITERATION STEP SIZE = .E10.3 / 50x.3H---) INT 0320
 2ND ORDERINT 0330
                                                                  INT 0340
 1060 FORMAT (58X+48HUPPER BOUND USED IN THE CONVERGENCE CRITERION = +
                                                                  INT 0350
    1 F10.3)
                                                                  INT 0360
 1070 FORMAT(5X+17HTRAJECTORY POINTS )
                                                                  INT 0370
 1080 FOPMAT(1215)
                                                                  INT 0380
 1090 FORMAT (5X+17H-----+,13X+12I5 )
                                                                  INT 0390
 1100 FORMAT(//5X:26HSYSTEM DYNAMICS PARAMETERS)
                                                                  INT 0400
 1110 FORMAT(2E10.0)
                                                                  INT 0410
 1120 FORMAT (5X+26H------,9X,
                                                                  INT 0420
    1
            18H YAW BIAS TORQUE = F11.1 /
                                                                  INT 0430
        40X.18HROLL BIAS TORQUE =.F11.1 )
                                                                  INT 0440
 1130 FORMAT (//5X+32HPERFORMANCE CRITERION PARAMETERS)
                                                                  INT 0450
 1140 FORMAT(7F10.0)
                                                                  INT 0460
 1150 FORMAT (5X, 32H------
                                                                  INT 0470
    1
                    13X,5HW11 =,F7.2,15X,5HW21 =,F7.2 /
                                                                  INT 0480
    2
                    50X,5HW12 =,F7,2,15X,5HW22 =,F7,2 /
                                                                  INT 0490
    3 35X+9HWEIGHTING+6X+5HW13 =+F7.2+15X+5HW23 =+F7.2 /
                                                                  INT 0500
    4 35X+9HFACTORS +6X+5HW14 =+F7.2+15X+5HW24 =+F7.2 /
                                                                  INT 0510
    5
                    50X+5HW15 =+F7.2+15X+5HW25 =+F7.2 /
                                                                  INT 0520
    6
                    50X,5HW16 =,F7.2,15X,5HW26 =,F7.2 /
                                                                  INT 0530
    7
                    50X \cdot 5HW17 = \cdot F7 \cdot 2 \cdot 15X \cdot 5HW27 = \cdot F7 \cdot 2
                                                                  INT 0540
1160 FORMAT(I1)
                                                                  INT 0550
 1170 FORMAT(//5x,66H* * * ERROR IN THE INPUT DATA -- COMPUTER RUN TEINT 0560
    1RMINATED * * * )
                                                                  INT 0570
C
                                                                  INT 0580
     DIMENSION | IDP(50) + ICP(50) + LINE(72)
                                                                  INT 0590
```

```
INT 0600
      COMMON /CON/ M + NS + KMAX + EPSO + MPT
                                                                                INT 0610
      COMMON /TRAJ/
                       JPT(12) • TF(12)
                                                                                INT
                                                                                    0620
      COMMON /SYST/
                       YST. RST
                                                                                    0630
                                                                                INT
      COMMON /PERE/
                       W1(7) + W2(7)
                                                                                INT
                                                                                    0640
C
                                                                                INT
                                                                                    0650
C
C
  *** ENTER CASE IDENTIFICATION TITLE
                                                                                TNT
                                                                                    0660
                                                                                INT
                                                                                    0670
      READ(5+1000) (LINE(I)+I=1+72)
                                                                                INT 0680
      WRITE(6+1010) ICASE + (LINE(I)+I=1+72)
                                                                                INT
                                                                                    0690
C
                                                                                INT
                                                                                    0700
C
  *** ENTER COMPUTATIONAL CONTROL PARAMETERS
                                                                                INT 0710
      WRITE (6 - 1020)
                                                                                INT 0720
                      IGHAD . EPS . STEP
      READ(5,1030)
                                                                                INT 0730
      IF (IGRAD-2) 10,20,10
                                                                                INT
                                                                                    0740
                       STEP
   10 WRITE(6.1040)
                                                                                    0750
                                                                                INT
      GO TO 30
                                                                                    0760
                                                                                INT
   20 WRITE (6,1050)
                                                                                INT
                                                                                    0770
                       EPS
   30 WRITE (6+1060)
                                                                                INT 0780
C
  *** ENTER POINTS ALONG TRAJECTORY FOR COMPUTING TRIM
                                                                                INT 0790
C
                                                                                INT 0800
      WRITE (6+1070)
                                                                                INT 0810
      READ (5.1080)
                        (JPT(I) * I = I * MPT)
                                                                                INT
                                                                                    0820
      WRITE (6+1090)
                        (JPT(I),I=1,MPT)
                                                                                INT
                                                                                    0830
C
                                                                                INT
                                                                                    0840
C.
  *** FNTER SYSTEM DYNAMICS PARAMETERS
                                                                                INT 0850
      WRITE (6+1100)
                                                                                INT
                                                                                    0860
      READ(5+1110)
                       YBT . RBT
                                                                                INT
                                                                                    0870
       WRITE (6-1120)
                       YRT . RBT
C
                                                                                INT
                                                                                    0880
                                                                                INT
                                                                                    0890
  *** ENTER PERFORMANCE CRITERION PARAMETERS
                                                                                INT
                                                                                    0900
       WRITE(6+1130)
                                                                                    0910
                                                                                TNT
       READ(5+1140)
                      (W1(I) \bullet I = 1 \bullet M)
      READ (5+1140)
                                                                                INT
                                                                                    0920
                      (W2(I) + I = 1 + M)
                        W1(1) , W2(1) , W1(2) , W2(2) , W1(3) + W2(3)
                                                                                INT
                                                                                    0930
       WRITE (6+1150)
                                                                                INT
                                                                                    0940
                        W1(4) , W2(4) , W1(5) , W2(5) , W1(6) , W2(6) ,
                                                                                    0950
                                                                                INT
     2
                        W1(7) + W2(7)
                                                                                INT
                                                                                    0960
                                                                                    0970
                                                                                INT
  *** FNTER END OF CASE CARD
                                                                                INT
                                                                                    0980
       READ (5,1160)
                      IGO
       IF(IGO-1) 200+220+200
                                                                                INT
                                                                                    0990
                                                                                INT 1000
  200 JF(IGO-2) 210+220+210
                                                                                INT 1010
  210 WRITE(6:1170)
                                                                                INT 1020
       CALL EXIT
  220 CONTINUE
                                                                                INT
                                                                                    1030
                                                                                    1040
                                                                                INT
C
                                                                                INT 1050
       RETURN
       END
                                                                                INT 1060
```



```
C.
                                                                   ----OUT 0010
C
                                                                         OUT 0020
C
      SUBROUTINE OUTPUT (K.L., M. TIME, DELTA, MPT)
                                                                         OUT 0030
                                                                         OUT 0040
C
                                                                        -OUT 0050
                                                                         OUT .0060
C
               SUBROUTINE USED TO PRINT OUT THE RESULTS OF THE PROGRAM. OUT 0070
C
                                                                         OUT 0080
C
                                                                         OUT 0090
G
      INPUTS
                       = NO. OF ITERATIONS.
                                                                         OUT 0100
                 ĸ
C
                        = NO. OF THE TRAJECTORY POINT.
                                                                         OUT 0110
                        = NO. OF TRIM ANGLES.
C
                                                                         OUT 0120
                       = FLIGHT TIME OF THE TRAJECTORY POINT.
                                                                         OUT 0130
C.
                 TIME
                                                                         OUT 0140
                 DELTA = VECTOR OF TRIM ANGLES.
                        = INDEX USED TO DETERMINE LAST TRAJECTORY POINT.OUT 0150
                 MPT
C
                                                                         OUT DISD
C
      OUTPUTS
                                                                         OUT 0170
                 NONE
C
                                                                         OUT 0180
                                                                         OUT 0190
C
C
      SUBROUTINES CALLED
                            NONE
                                                                         0050 TUO
C
                                                                         OUT 0210
C
                                                                         OUT 0220
                                                                         OUT 0230
C
C
                                                                       * OUT 0240
                                                                         OUT 0250
      SUBROUTINE OUTPUT (K, L, M, TIME, DELTA, MPT)
                                                                         OUT 0260
C
                                                                        OUT 0270
                                                                         OUT 0280
 1010 FORMAT(////5X+22HTRIM DEFLECTION ANGLES
                                                                         OUT 0290
               /5X,22H-----,7X,13HTRAJ.
    1
                                                                         OUT 0300
                                                           FLIGHT . 26X .
     2 5HDELTA+32X+6HNO. OF / 35X+85HPT.
                                            TIME (1)
                                                                (3) OUT 0310
     3 (4) (5) (6) (7)
                                                                         OUT 0320
                                              ITERATIONS
C1020 FORMAT (35X+13+2X+F6.1+1X+7F8.2+7X+15)
                                                                        OUT 0330
1020 FORMAT(31X+1H++3X+13+2X+F6+1+1X+7F8+2+4X+1H++2X+15)
                                                                         OUT 0340
 1030 FORMAT (48X+55H TOP YAW PITCH YAW PITCH AILERON
                                                                      RUOUT 0350
     1DDER • /48X•40H<----
                             ORBITER
                                        ----><---- SRM ----> )
                                                                        OUT 0360
 1040 FORMAT (31X+77H.........
                                                                        .OUT 0370
                                                                        OUT 0380
- 1050 FORMAT(31X,1H.,75X,1H.)
                                                                         OUT 0390
C
                                                                         OUT 0400
      DIMENSION
                 DELTA(1) . ANGLE(10)
                                                                         OUT 0410
      DATA RAD / 57.2957795 /
                                                                         OUT 0415
C
                                                                         OUT 0420
C
                                                                         OUT 0430
      IF(L-1) 20,10,20
                                                                         OUT 0440
   10 WRITE(6,1010)
                                                                         OUT 0450
      WRITE (6,1040)
                                                                         OUT 0460
      WRITE(6,1050)
                                                                         OUT 0470
```

|    | IF(K) 40+30+30<br>DO 35 I=1+M |                  |     | OUT 04   | _   |
|----|-------------------------------|------------------|-----|----------|-----|
|    | ANGLE(I) = RAD * DELTA(I)     |                  | •   | OUT 04   |     |
|    | WRITE(6,1020) L , TIME , (A   | NGLE(I) + I=1+M) | • K | OUT 04   | 490 |
| 40 | IF(L-MPT) 60,50,60            |                  |     | OUT 05   | 500 |
| 50 | WRITE(6,1050)                 |                  | ·   | OUT 0    | 510 |
|    | WRITE(6,1040)                 |                  |     | OUT 05   | 520 |
|    | WRITE(6,1030)                 |                  |     | OUT 05   | 530 |
| 60 | RETURN                        |                  |     | - OUT 05 | 540 |
|    | END                           |                  |     | OUT: 0!  | 550 |



```
-----ONE 0010
                                                                         ONE 0020
C
      SUBROUTINE GRADI(K,L,TIME,DELTA,LAMDA,IGRAD,EPS,STEP)
                                                                         ONE 0030
C
                                                                         ONE 0040
                                                                    ----ONE 0050
C
      PURPOSE SUBROUTINE FOR COMPUTING THE DEFLECTION ANGLES USING THE ONE 0070
Ç
                                                                         ONE 0080
      ----- 1ST ORDER GRADIENT METHOD.
C
                                                                         ONE 0090
                                                                        ONE 0100
                        = NO. OF ITERATIONS.
C
                                                                         ONE 0110
                         = NO. OF THE TRAJECTORY POINT.
C
                                                                         ONE 0120
                        = FLIGHT TIME OF THE TRAJECTORY POINT.
                  TIME
C
                                                                         ONE 0130
                  DELTA = INITIAL GUESS OF TRIM ANGLES.
C
                        = INITIAL GUESS OF LAGRANGE MULTPLIERS.
                                                                         ONE 0140
                  LAMDA
· C
                                                                         ONE 0150
                  IGRAD

    ONE 0160

                         = CONVERGENCE BOUND.
                  EPS
C
                                                                         ONE 0170
                  STEP
                         = STEP SIZE.
C
                                                                         ONE 0180
C
                                                                         ONE 0190
                 DELTA = VECTOR OF TRIM ANGLES.
      OUTPUTS
C
                                                                         ONE 0200
                 LAMDA = VECTOR OF LAGRANGE MULTIPLIERS.
C
                                                                         ONE 0210
C
                            SYSTEM , COST , MCPY , CCUT , MINV , GMPRD .ONE 0220
      SUBROUTINES CALLED
C
C
                                                                         ONE 0240
                                                                     * * ONE 0250
                                                                     * * ONE 0260
C
                                                                         ONE 0270
C
                                                                         ONE 0280
       SUBROUTINE GRADI (K+L+TIME+DELTA+LAMDA+IGRAD+EPS+STEP)
                                                                         ONE 0290
C
                                                                          ONE 0300
  1000 FORMAT(//5x,75H** WARNING ** 1ST ORDER GRADIENT ALGORITHM USED THONE 0310
   1E MAX. NO. OF ITERATIONS:14 /20X:6HNORM =:E10.3:10X:5HEPS =:E10.3)ONE 0320
                                                                         ONE 0330
 C
                                                                         .ONE 0340
                         TYPE AND STORAGE ALLOCATION
 C
                                                                          ONE .0350
       REAL LAMDA , NORM
       DIMENSION DELTA(10), LAMDA(6), BX(60), BU(60), RX(10), RU(10), ONE 0360
                                                                         ONE 0370
                  X(10) + DX(10) + DU(10) + LB(10) + MB(10)
      1.
       COMMON /ARRAY/ AV(6), BV(6), BM(60), BT(6,60), RS, RV(10), RM(100)ONE 0380
       COMMON /CON/ M + NS + KMAX + EPSO + MPT
                                                                          ONE 0400
       COMMON /TRAJ/ JPT(12) • TF(12)
                                                                          ONE 0410
 C
                                                                          ONE 0420
 C
                                                                         ONE 0430
   *** TEST, WHETHER THIS TRAJECTORY POINT IS TO BE USED
                                                                          ONE 0440
      IF(JPT(L)) 5:1:5
                                                                         ONE 0450
     1 K = -1
                                                                         ONE 0460
       GO TO 130
                                                                        ONE 0470
                                                                          ONE 0480
 C *** COMPUTE THE TIME OF FLIGHT
```

```
5 TIME = TF(L)
                                                                           ONE 0490
C
                                                                           ONE 0500
 *** START INITIAL ITERATION
                                                                           ONE 0510
      K = 0
                                                                           ONE 0520
      MNS = M - NS
                                                                           ONE 0530
C
                                                                           ONE 0540
   10 CONTINUE
                                                                           ONE 0550
C
                                                                           ONE 0560
C. *** COMPUTE GRADIENT TERMS CORRESPONDING TO SYSTEM DYNAMICS
                                                                           ONE 0570
      CALL SYSTEM (K+L+NS+M+DELTA+IGRAD)
                                                                           ONE 0580
                                                                           ONE 0590
  *** PARTITION THE MATRIX BM
                                 INTO MATRICES BX
                                                                           ONE 0600
      IF (MNS) 30,30,40
                                                                           ONE 0610
   30 CALL MCPY (BM, BX, NS, M, U)
                                                                           ONE 0620
      GO TO 50
                                                                           ONE 0630
   40 J = NS + 1
                                                                           ONE 0640
      CALL CCUT(BM+J+BX+BU+NS+M+0)
                                                                           ONE 0650
                                                                           ONE 0660
 *** COMPUTE THE INVERSE OF THE MATRIX
                                          BX
                                                                           ONE 0670
   50 CALL MINV(BX+NS+DET+LB+MB)
                                                                           ONE 0680
                                                                           ONE 0690
C ### COMPUTE VECTOR
                                                                           ONE 0700
      00 60 I=1.NS
                                                                           ONE 0710
   60 DU(I) = -AV(I) -BV(I)
                                                                           ONE 0720
      CALL GMPRD (BX+DU+UX+NS+NS+1)
                                                                           ONE 0730
      DO 65 I=1.NS
                                                                           ONE 0731
   65 X(I) = X(I) + DX(I)
                                                                           ONE 0732
C
                                                                           ONE 0740
C *** COMPUTE GRADIENT TERMS CORRESPONDING TO PERFORMANCE CRITERION
                                                                           ONE 0750
      DO 70 I=1+NS
                                                                           ONE 0760
   70 DELTA(I) = X(I)
                                                                           ONE 0770
      IF (MNS) 130,130,80
                                                                           ONE 0780
   80 CALL COST(K.L.M.DELTA.IGRAD)
                                                                           ONE 0790
                                                                           ONE 0800
 ### PARTITION THE VECTOR RV INTO VECTORS RX
C
                                                         RU
                                                    AND
                                                                           ONE 0810
      J = NS + 1
                                                                           ONE 0820
      CALL CCUT(RV+J+RX+RU+1+M+0)
                                                                           ONE 0830
                                                                           ONE 0840
 *** COMPUTE THE VECTOR LAMDA
                                                                           ONE 0850
      CALL GMPRD (RX+BX+LAMDA+1+NS+NS)
                                                                           ONE 0860
C
                                                                           ONE 0870
 *** COMPUTE THE NEW ESTIMATE OF DELTA
                                                                           ONE 0880
      CALL GMPRD (LAMDA+BU+DU+1+NS+MNS)
                                                                           ONE. 0890
      NORM = 0.
                                                                           ONE 0900
      DO 90 I=1+MNS
                                                                           ONE 0910
      DU(I) = (DU(I) - RU(I)) * STEP
                                                                           ONE 0920
      NORM = NORM + DU(I) **2
                                                                           ONE 0930
  90 DELTA(NS+I) = DELTA(NS+I) + DU(I)
                                                                           ONE 0940
```

|    |     | 00 95 I=1+NS                  | •              |          |     | ONE | 0941 |
|----|-----|-------------------------------|----------------|----------|-----|-----|------|
|    | ΛE  | NORM = NORM + DX(I) **2       |                |          |     | ONE | 0942 |
| _  | 90  | NORM - NORM + DATES           |                |          |     | ONE | 0950 |
| ٠. |     | TEST IF THE NEW ESTIMATES ARE | SHEETCIENTLY   | ACCURATE | i . | ONE | 0960 |
| J  | *** | IE (MOKW-EB2) 130 + 130 + 100 | 2011 1025      | 7,000    | •   | ONE | 0970 |
| _  |     | TE (MORWEER2) 12001200100     |                |          | •   |     | 0980 |
| Ü  |     | ALLON FOR EXCEPTIVE NUMBER OF | TTEDATIONS .   |          |     |     | 0990 |
| С  | 222 | CHECK FOR EXCESSIVE NUMBER OF | I I ENA I DIVO |          |     |     | 1000 |
|    |     | IF(K-KMAX) 110+120+120        |                |          |     | ONE |      |
| C. |     | TOTAL TOTAL                   |                |          |     |     | 1020 |
|    |     | PERFORM ANOTHER ITERATION     |                |          |     |     | 1030 |
|    | 110 | K = K + 1                     |                |          |     |     | 1040 |
|    |     | GO TO 10                      |                |          |     |     | 1050 |
| С  |     |                               | •              |          |     |     | 1060 |
|    |     | WRITE(6,1000) K, NORM, EPS    |                |          |     |     | 1070 |
|    | 130 | RETURN                        |                | •        |     |     |      |
|    |     | END                           | •              |          |     | UNE | 1086 |





```
---TWO 0010
                                                                           TWO 0020
C
      SUBROUTINE GRADE (K. L. TIME, DELTA, LAMDA, IGRAD, EPS)
                                                                           TWO 0030
C
                                                                           TWO 0040
C
                                                                          --TWO 0050
C
                                                                          TWO 0060
                SUBROUTINE FOR COMPUTING THE DEFLECTION ANGLES USING THE TWO 0070
C
C
               2ND ORDER GRADIENT METHOD.
                                                                           TWO 0080
C
                                                                           TWO 0090
      IMPUTS
C
                       . = NO. OF ITERATIONS.
                                                                           TWO 0100
C
                         = NO. OF THE TRAJECTORY POINT.
                                                                           TWO 0110
C
                 TIME
                         = FLIGHT TIME OF THE TRAJECTORY POINT.
                                                                           TWO 0120
C
                 DELTA
                         = INITIAL GUESS OF TRIM ANGLES.
                                                                           TWO 0130
C
                 LAMUA
                        = INITIAL GUESS OF LAGRANGE MULTPLIERS.
                                                                           TWO 0140
C
                 IGRAD
                         = 2
                                                                           TWO 0150
C
                 EPS -
                         = CONVERGENCE BOUND.
                                                                        TWO 0160
C
                                                                           TWO 0170
C
                 DELTA = VECTOR OF TRIM ANGLES.
      OUTPUTS
                                                                           TWO 0180
                LAMDA = VECTOR OF LAGRANGE MULTIPLIERS.
C
                                                                           TWO 0190
C
                                                                           TWO 0200
C
      SUBHOUTINES CALLED
                             SYSTEM , COST , SINV , MXOUT , MPRD ,
                                                                           TWO 0210
C
                             GMTRA . GMPRD . GMSYMM . MSTR . GMSUB ..
                                                                         TWO 0220
C
                                                                           TWO 0230
C
                                                                         * TWO 0240
                                                                         * TWO 0250
Ç.
                                                                           TWO 0260
      SUBROUTINE GRADZ(K.L.TIME.DELTA.LAMDA.IGRAD.EPS)
                                                                           TWO 0270
C
                                                                           TWO 0280
                                                                           TWO 0290
 1000 FORMAT (//5x+55H** ERROR ** MATRIX R IS NOT POSITIVE DEFINITE
                                                                           TWO 03.00
     1 \text{ K} = *13*5X*5HEPS} = *E12.3 /)
                                                                           TWO 0310
 1010 FORMAT(//5x+65H** WARNING ** LOSS OF SIGNIFICANCE IN INVERTING MATWO 0320
                 K = + I3 + 5X + 5HEPS = + E12 . 3 /)
     ITRIX R
                                                                          TWO 0330
 1020 FORMAT(//5X+57H** ERROR *** MATRIX BRB IS NOT POSITIVE DEFINITE
                                                                          TWO 0340
         1
                                                                           TWO 0350
 1030 FORMAT(//5X+67H** WARNING **
                                     LOSS OF SIGNIFICANCE IN INVERTING MATHO 0360
     1TRIX BRB K =+13+5X+5HEPS =+E12.3 /)
                                                                           TWO 0370
 1040 FORMAT (7/5X,68H** WARNING ** 2ND ORDER GRADIENT METHOD USED MAX. TWO 0380
     1NO. OF ITEHATIONS, 13,5X,5HEPS =, E12.5,5X,6HNORM =, E12.5 /)
                                                                           TWO 0390
 1050 FORMAT (/10x+9HMATRIX R )
                                                                           TWO '0400
 1060 FORMAT(/10X+20HMATRIX R
                                 (INVERSE))
                                                                           TWO .0410
 1070 FORMAT(/10X+9HMATRIX B )
                                                                           TWO 0420
 1080 FORMAT (/10X+11HMATRIX BRB )
                                                                           TWO 0430
                                                                           TWO 0440
      REAL
             LAMDA + LAM + NORM
                                                                          TW0 0450
                  DELTA(10) + LAMDA(6) + DEL(10) + LAM(6) + HD(10) + HL(10) + TWO 0460
                 R(100) + B(60) + BR(60) + BRB(36) + D(60) + X(10) + Y(10) TWO 0470
      COMMON /ARRAY/ AV(6) + BV(6) + BM(60) + BT(6+60) + RS+ RV(10) + RM(100) TWO 0480
```

```
TWO 0490
      COMMON /CON/ M . NS . KMAX . EPSO . MPT
                                                                               TWO 0500
      COMMON /TRAJ/ JPT(12) + TF(12)
                                                                               TWO 0510
       FOUTVALENCE
                      (B(1)*BM(1))
                                                                               TWO 0520
\mathbf{C}
                                                                               TWO 0530
C
                                                                               TWO 0540
  *** TEST WHETHER THIS TRAJECTORY PUINT IS TO BE USED
                                                                               TWO 0550
       IF (JPT(L)) 5,1,5
                                                                               TWO 0560
     1 K = .-1
                                                                               TWO 0570
      GO TO 160 1
                                                                               TWO 0580
                                                                               TWO 0590
  *** COMPUTE THE TIME OF FLIGHT
                                                                               TWO 0600
     5 TIME = TF(L)
                                                                               TWO-0610
                                                                                TWO 0620
       \mathbf{K} \cdot = 0
                                                                                TW0#0621
·C
                                                                               TW0#0622
C =
  *** OPTION FOR DISREGARDING AILERON
                                                                                TW0*0623
                                                                                TW0#0624
       IF (JPT(L)+2) 10+6+10
                                                                                TW0*0625
     6 IGRAD = - IGRAD
                                                                                TW0#0626
0-
                                                                                TW0#0627
C
                                                                                TWO 0630
             SYSTEM(K+L+NS+M+DELTA+IGRAD)
    TO CALL
                                                                                TWO 0640
       CALL COST(K.L.M.DELTA.IGRAD)
                                                                                TWO-0650
C
  *** COMPUTE THE DERIVATIVE OF THE HAMILTONIAN WITH RESPECT TO DELTA
                                                                                TWO 0660
                                                                                TWO. 0670
       DO 50 I=1+W
                                                                                TWO 0680
       HD(I) = KV(I)
                                                                                TWO 0690
       00 S0 J=1+45
                                                                                TWO 0700
       JI = J + (I-I)*NS
                                                                                TWO 0710
    20 \text{ HD}(I) = \text{HD}(I) + \text{LAMDA}(J) *BM(JI)
                                                                                TWO 0720
 C
   *** COMPUTE THE DERIVATIVE OF THE HAMILTONIAN WITH RESPECT TO LAMDA
                                                                                TWO 0730
                                                                                TWO 0740
       00 30 J=1+NS
                                                                                TWO 0750
    30 HL(J) = AV(J) + BV(J)
                                                                                TWO 0760
 C
                                                                                TWO 0770
   *** COMPUTE THE 2ND DERIVATIVE OF THE HAMILTONIAN R = HDD
                                                                                TWO: 0780
       MS = M\#\{M+1\}/S
                                                                                TWO 0790
       DO 40 I=1.M2
                                                                                TWO 0800
       R(T) = RM(T)
                                                                                TWO 0810
       00 40 J=1+NS
                                                                                TWO 0820
    40 R(I) = R(I) + LAMDA(J)*BT(J*I)
                                                                                TWO 0830
 C
                                                                                TWO 0840
   *** COMPUTE THE 2ND DERIVATIVE OF THE HAMILTONIAN
 C
                                                                                TWO 0850
 C
                                                                                TWO 0860
        ( SEE EQUIVALENCE STATEMENT )
 ¢
                                                                                TWO 0870
                                                                                TWO 0880
   *** COMPUTE INVERSE OF MATRIX
                                                                                TWO 0890
       CALL SINV (R+M+EPSU+TEK)
```

```
IF(IER) 50.70.60
                                                                              TWO 0900
                                                                              TWO 0910
   50 WRITE(6.1000) K . EPSU
     . WRITE (6 • 1050)
                                                                              TWO 0920
             MXUUT (1+H+M+M+1+60+132+1)
                                                                              TWO 0930
      CALL
                                                                              TWO 0940
            EXIT
   60 WRITE (6+1010)
                                                                              TWO 0950
                      K + EPSU
                                                                              TWO 0960
      WRITE (6:1050)
           MXUUT(1+R+M+M+1+60+132+1)
                                                                              TWO 0970
                                                                              TWO 0980
 **** COMPUTE MATRIX AR
                                                                             TWO 0990
   70 CALL MPRU(H.R.HR.NS.M.O.1.M)
                                                                              TWO 1000
C
                                                                              TWO 1010
C
                                                                              TWO 1020.
C
                                                                              TWO 1030
  ### COMPUTE MATRIX
                       BRH
      CALL
            GMTR4 (B+O+NS+M)
                                                                              TWO 1040
                                                                              TWO 1050
      CALL
             GMPRD (HR + D + BRH + NS + M + NS )
      CALL
            GMSYMM (BRB, D, NS)
                                                                              TWO 1060
      CALL
             MSTR (D.BRB.NS.U.1)
                                                                              TWO 1070
C
                                                                              TWO 1080
  *** COMPUTE INVERSE OF MATRIX
                                                                              TWO 1090
                                   BRB
      CALL SINV (BRB+NS+EPS0+IER)
                                                                              TWO 1100
   ....IF(IER) H0+100+90
                                                                              TWO 1110
   80 WRITE (6+1020)
                      K . EPSU
                                                                              TWO 1120
      WRITE (6,1060)
                                                                              TWO 1130
      CALL
            MXOUT(1,98,98,91,60,132,1)
                                                                              TWO 1140
      WRITE (6+1070)
                                                                              TWO 1150:
                                                                              TWO 1160
      CALL MXOUT(1+B+NS+M+0+60+132+1)
      WRITE (6+1080)
                                                                              TWO 1170
      CALL
            MXOUT(1+BRB+NS+NS+1+60+132+1)
                                                                              TWO 1180
      CALL
             EXIT
                                                                              TWO 1190
   90 WRITE (6-1030)
                      K . EPSU
                                                                              TWO 1200
      WRITE (6+1060)
                                                                              TWO 1210
      CALL
            MXOUT(1+P+M+M+1+60+132+1)
                                                                              TWO 1220
      WRITE (6+1070)
                                                                              TWO 1230
      CALL MXOUT (1.8+NS+M.0.60.132.1)
                                                                              TWO 1240
      WRITE(6+1080)
                                                                              TWO 1250
      CALL MXOUT (1.8888.NS.NS.1.60.132.1)
                                                                              TWO 1260
Ç
                                                                              TWO 1270
                                                                              TWO#1271
 *** OPTION FOR DISREGARDING 1ST TRIM EQUALITY CONSTRAINT
                                                                              TW0#1272
 *** EQUATION REQUIRING ZERO NET FORCE IN Y-DIRECTION
                                                                              TW0*1273
  100 IF(UPT(L)) 95,96,96
                                                                              TW0#1274
   95 AV(1) = BRR(2) \pm AV(2) + BRB(4) \pm AV(3)
                                                                              TW0*1275
      HL(1) = BV(1) - AV(1)/BRB(1)
                                                                              TW0#1276
   96 CONTINUE
                                                                              TWO#1278
C-
                                                                              TW0+1278
                                                                              TW0#1279
C *** COMPUTE CORRECTION TO LAMDA
                                                                              TWO 1280
```

|   |       | CALL GMPRD (BR+HD+X+NS+M+1)        |                                       | TWO 1   |            |
|---|-------|------------------------------------|---------------------------------------|---------|------------|
|   |       | CALL MPRD (ARB+X+Y+NS+NS+1+0+1)    |                                       | TWO 1   | 300        |
|   |       | CALL MPRD (BRB+HL+X+NS+NS+1+0+1)   |                                       |         | 310        |
|   |       | CALL GMSUB (X+Y+LAM+NS+1)          |                                       | TWO 1   | 320        |
| С |       | -                                  |                                       | TWO 1   | <b>330</b> |
|   | * # # | COMPUTE CORRECTION TO DELTA        |                                       | TW0 1   | 340        |
|   |       | CALL GMPRD (Y+BR+DEL+1+NS+M)       | •                                     | TWO 1   | 350        |
|   | •     | CALL MPRD (R.HD.Y.M.M.1.0.1)       |                                       | TWO 1   | 360        |
| ٠ |       | CALL GMSUB (DEL+Y+DEL+M+1)         |                                       | TWO 1   | 370        |
|   |       | CALL GMPRD (X+BR+Y+1+NS+M)         |                                       |         | 380        |
|   | •     | CALL GMSUB (DEL + Y + DEL + M + 1) | •                                     | TWO 1   |            |
| c |       |                                    |                                       | TWO'1   | 400        |
|   | **    | COMPUTE NEW ESTIMATE OF DELTA      |                                       | T#0 1   | 410        |
| · |       | NORM = U.                          |                                       | TWO 1   | 420        |
|   |       | 00 110 I=1+M                       |                                       | TWO 1   | 430        |
| , |       | NORM = NORM + DEL(I) ##2           |                                       | 1 TWO 1 | 440        |
| ! | 110   | DELTA(I) = DELTA(I) + DEL(I)       |                                       | TWO 1   | 450        |
| c |       |                                    |                                       | TWO 1   | 460        |
|   | ***   | COMPUTE NEW ESTIMATE OF LAMDA      |                                       | TWO 1   | 470        |
|   |       | DO 120 J=1.NS                      | • .                                   | TWO 1   | 480        |
|   |       | NORM = NORM + LAM(J) **2           |                                       | TWO 1   | 490        |
|   | 120   | LAMOA(U) = LAMOA(U) + LAM(U)       |                                       | TWO 1   | 500        |
|   |       | IF (NORM-ERS) 160,160,130          |                                       | TWO 1   | 510        |
|   | 130   | IF (K-KMAX) 140,150,150            | • .                                   | TWO 1   | 520        |
|   | 140   |                                    |                                       | TWO 1   | 530        |
|   | •     | GO TO 10                           |                                       | TWO 1   | 540        |
|   | 150   |                                    | •                                     | TWO 1   | 550        |
|   | 160   | RETURN                             |                                       |         | 560        |
|   |       | ENO                                | · · · · · · · · · · · · · · · · · · · | TWO 1   | 570        |

GRAD 2 Flow Diagram





GRAD2 Flow Diagram (Continued)



```
-----SYS 0010
C
                                                                          SYS 0020
C
                                                                          SYS 0030
      SUBROUTINE SYSTEM(K.L.NS.M.DELTA.IGRAD)
C
                                                                         SYS 0040
Ç
C
C
                                                                       SYS 0070
SYS 0080
SYS 0090
SYS 0100
              SUBROUTINE FOR COMPUTING THE COEFFICIENTS IN THE
C
      PURPOSE
               EQUATIONS OF THE LATERAL DYNAMICS DEFINING TRIM.
C
              ALSO EVALUATES THE CORRESPONDING DERIVATIVES REQUIRED
¢
                                                                          SYS 0100
               BY THE GRADIENT METHODS.
¢
                                                                          SYS 0110
Ċ
                        = NO. OF ITERATIONS.
                                                                          SYS 0120
C
      INPUTS
                       = NO. OF THE TRAJECTORY POINT.
= NO. OF TRIM EQUATIONS.
                                                                         SYS 0130
C
                 L.
                                                                         SYS 0140
C
                 NS
                                                                       SYS 0150
                       = NO. UF TRIM ANGLES.
С
                                                                          SYS 0160
                 DELTA = VECTOR OF TRIM ANGLES.
C
                 IGRAD = ORDER OF GRADIENT METHOD TO BE USED.
                                                                       SYS 0170
C
                                                                          SYS 0180
C
                                                                          SYS 0190
                             NONE
C
      SUBROUTINES CALLED
                                                                          SYS 0200
C
                                                                          SYS 0210
C
                                                              * * * * * SYS 0220
C
                                                                      # # SYS 0230
C
                                                                          SYS 0240
C
                                                                          SYS 0250
      SUBROUTINE SYSTEM(K+L+NS+M+DELTA+IGRAD)
                                                                          SYS 0260
C
                                                                          SYS 0270
C
                                                                          SYS 0280
      DIMENSION DELTA(1)
      COMMON /ARRAY/ AV(6) . BV(6) . BM(60) . BT(6,60) . RS. RV(10) . RM(100)SYS 0290
      COMMON /SYST/ YBT, RBT, X1, X2, X3, X4, X5, XMRP, SYS 0300
                    S. BREF. Y1, Y2, Y3, Y4, Y5, YMRP,
                                                                          SYS 0310
                                                                 SYS 0320
VY(12), SYS 0330
                                  Z1. Z2. Z3. Z4. Z5. ZMRP.
                                                    V(12).
     3
           XCG(12).
                        ZCG(12)+
                                       Q(12),
                                                                CNB(12), SYS 0340
                                     CYB(12),
                                                  CLB(12) +
                       FSRM(12) •
            F(12),
                                   DCNBA(12), DCNBF(12),
                                                                CYA(12), SYS 0350
          DCYB(12) .
                       DCLB(12)+
                                                                 CNR(12) SYS 0360
                                    CYR(12)+
                       CNA(12).
                                                CLR(12).
        CLA(12)+
                                                                          SYS 0365
    - DATA RAD / 57.2957795 /
                                                                          SYS 0370
C
                                                                          SYS 0380
C
                                                                          SYS 0390
      IF(K) 300,100,300
                                                                          SYS 0400
  *** COMPUTE VECTOR A
                                                                          SYS 0410
  100 CONTINUE
                                                                          SYS 0420
      QS = Q(L) + S
                                                                          SYS 0430
      QSB = QS * BREF -
                                                                          SYS 0440
      BETA = ARSIN(VY(L)/V(L))
                                                                          SYS 0450
C
                                                                        SYS 0460
      CYBCG = CYB(L) + (DCYB(L))*RAD
                                                                          SYS 0470
      CLBCG = CLB(L) + (DCLB(L))*RAD
```

```
CNBCG
            = CNB(L) + (DCNBA(L) + DCNBF(L)) + RAD
                                                                             SYS 0480
C
                                                                             SYS 0490
      CLHCG
                 CLBCG + CYBCG*(ZCG(L)-ZMRP)/BREF
                                                                             SYS 0500
      CNBCG
                CNBCG - CYBCG*(XCG(L)-XMRP)/BREF
                                                                             SYS 0510
C
                                                                             SYS 0520
      AV(1)
             = 0.5
                    * CYBCG * BETA
                                                                             SYS 0530
      (S) VA
             = QSB # CLBCG # BETA
                                        RBT
                                                                             SYS 0540
      (E) VA
             = USB * CNBCG * BETA
                                        YBT
                                                                             SYS 0550
C
                                                                            SYS 0560
C
 *** COMPUTE COEFFICIENTS IN VECTOR
                                                                             SYS 0570
C
                                                                             SYS 0580 !
      RAD = 57.2957795
                                                                             SYS 0590
      C1 = COS(18./RAD)
                                                                             SYS 0600
      S1 = SIN(18./RAD)
                                                                             SYS 0610
      C2 = CUS(12./RAD)
                                                                             SYS 0620
      S2 = SIN(12./RAD)
                                                                             SYS 0630
      C3 = COS(3.5/RAD)
                                                                             SYS 0640
      S3 = SIN(3.5/RAD)
                                                                             SYS 0650
      C4 = COS(15./RAU)
                                                                             SYS 0660
      S4 = SIN(15./RAD)
                                                                             SYS 0670
C
                                                                             SYS 0680
      CLACG
             = CLA(L) + CYA(L)*(ZCG(L)-ZMRP)/BREF
                                                                             SYS 0690
      CNACG
             = CNA(L) - CYA(L) + (XCG(L) - XMRP) /BREF
                                                                             SYS 0700
             = CLR(L) + CYR(L)*(ZCG(L)-ZMRP)/BREF
      CLRCG
                                                                             SYS 0710
      CNRCG.
             = CNR(L) - CYR(L)*(XCG(L)-XMRP)/BREF
                                                                             SYS 0720
C
                                                                             SYS 0730
             = F(L) * C1
      BM(1)
                                                                             SYS 0740
             =-F(L) * C1 * (Z1 - ZCG(L))
      BM (2)
                                                                             SYS 0750
             = F(L) + C1 + (X1 - XCG(L))
      BM(3)
                                                                             SYS 0760
             = 2 \cdot * F(L) * C2 * C3
      BM (4)
                                                                             SYS 0770
      BM (5)
             =-2. * f(L) * C2 * C3 * (Z2 - ZCG(L))
                                                                             SYS 0780
             = 2. * F(L) * ((X2-XCG(L))*C3 - Y2*S3) * C2
      BM (6)
                                                                             SYS 0790
             = 2. * F(L) * S2 * S3
      BM (7)
                                                                             SYS 0800
             = 2. * F(L) * (Y2*C2 - (Z2-ZCG(L))*S2*S3)
      8M(8)
                                                                             SYS 0810
             = 2. * F(L) * ((Y2*C3 + (X2+XCG(L))*S3) * S2)
      BM (9)
                                                                             SYS 0.820
      BM(10) = 2. + FSRM(L) + C4
                                                                             SYS 0830
      BM(11) = -2. + FSRM(L) + C4 + (Z4 - ZCG(L))
                                                                             SYS 0840
      BM(12) = 2. + FSRM(L) + ((X4-XCG(L))+C4 - Y4+S4)
                                                                             SYS 0850
      BM(13) = 0.
                                                                             SYS 0860
      BM(14) = 2. * FSRM(L) * Y4
                                                                             SYS 0870
      BM(15) = 0.
                                                                             SYS 0880
      8M(16) = QS
                   # CYA(L)
                                                                             SYS 0890
      8M(17) = QSB + CLACG
                                                                             SYS 0900
                                                                             SYS 0910
      BM(18) = QSB * CNACG
      BM(19) = QS
                   * CYH(L)
                                                                             SYS 0920
      BM(20) = QSB * CLRCG
                                                                             SYS 0930
      BM(21) = QSB + CNRCG
                                                                             SYS 0940
                                                                             SYS 0950
```

```
SYS#0951
                                                                              SYS#0952
C *** OPTION FOR DISREGARDING AILERON .
      IF(IGRAD) 290+300+300
                                                                              SYS#0953
  290 \text{ HM}(16) = 0.
                                                                              SYS*0955
      BM(17) = 0.
                                                                              SYS#0956
      HW(TR) = 0
                                                                              SYS*0957
      IGRAD = - IGRAD
                                                                              SYS#0958
C-
                                                                              SYS*0959
C
C *** COMPUTE VECTOR
                                                                              SYS 0970
  300 CONTINUE
                                                                              SYS 0980
      00 310 I=1+NS
      BV(I) = 0.
                                                                              SYS 0990
                                                                              SYS 1000
      DO 310 J=1•M
                                                                              SYS 1010
      IJ = I + (J-1) *NS
                                                                              SYS 1020
  310 BV(I) = BV(I) + BM(IJ)*DELTA(J)
                                                                              SYS 1030
  *** COMPUTE THE 1ST DERIVATIVE OF VECTOR B
                                                                              SYS 1040
                                                                              SYS 1050
С
                                                                              SYS 1060
C
          (--- CONSTANT MATRIX COMPUTED ABOVE ---)
¢
                                                                              SYS 1070
C
                                                                              SYS 1080
                                                                              SYS 1090
      IF(IGRAD-2) 600,500,600
Ç
                                                                              SYS 1100
  *** COMPUTE THE 2ND DERIVATIVE OF VECTOR
                                                                               SYS 1110
  500 CONTINUE
                                                                              SYS 1120
                                                                              SYS-1130
      M2 = M^{+}(M+1)/2
      DO 510 J=1.NS
                                                                               SYS 1140
      00 510 I=1.M2
                                                                              SYS
                                                                                  1150
                                                                              SYS 1160
  510 BT(J_{\bullet}I) = 0.
                                                                               SYS 1170
  600 RETURN
                                                                               SYS 1180
      END
```

Trim Equation

$$\overline{a} + \overline{p}(\overline{v}) = 0$$

$$\underline{b}(\underline{\delta}) = \underline{b}\underline{\delta}$$



```
---CST 0010
                                                                            CST 0020
C
                                                                            CST 0030
C
      SUBROUTINE COST (K.L., M.DELTA, IGRAD)
                                                                            CST 0040
C
C
                SUBROUTINE FOR COMPUTING THE COEFFICIENTS IN THE
                                                                           -CST 0070
C
                                                                            CST 0080
·C
                PERFORMANCE CRITERION.
                ALSO EVALUATES THE CORRESPONDING DERIVATIVES REQUIRED
Ç
                                                                            CST 0090
                                                                            CST 0100
                BY THE GRADIENT METHODS.
                                                                            CST 0110
C
                                                                            CST 0120
                         = NO. OF ITERATIONS.
С
      INPUTS
                         = NO. OF THE TRAJECTORY POINT.
                                                                            CST 0130
¢
                         = NO. OF TRIM ANGLES.
                                                                            CST 0140
C
                        = VECTOR OF TRIM ANGLES.
                                                                            CST 0150
C
                  DELTA
                  IGRAD = ORDER OF GRADIENT METHOD TO BE USED.
                                                                            CST 0160
                                                                            CST 0170
                                                                            CST 0180
C
                             NONE
      SUBROUTINES CALLED
                                                                          CST 0190
C
C
                                                                        # # CST 0210
                                                                            CST 0220
C
                                                                            CST 0230
C
                                                                            CST 0240
      SUBROUTINE COST(K,L,M,DELTA,IGRAD)
                                                                            CST 0250
C
                                                                            CST 0260
C
                                                                            CST . 0270
      DIMENSION ((7) , DELTA(1)
      COMMON /ARRAY/ AV(6), BV(6), BM(60), BT(6,60), RS, RV(10), RM(100)CST 0280
      COMMON /PERF/ W1(7), W2(7), DAMAX(12), DRMAX(12), Q(12),
                                                                            CST 0290
                                                                            CST 0300
                      DMAX, SA, SR, CDA, CDR
                                                                            CST 0310
C
                                                                            CST 0320
C
      IF(K) 100+200+300
                                                                            CST 0330
                                                                            CST 0340
                                                                            CST 0350
 *** COMPUTE MINIMUM VALUE OF THE PERFORMANCE CRITERION
                                                                            CST 0360
  100 CONTINUE
                                                                            CST 0370
      RS = 0
                                                                            CST 0380
      DO 110 I=1+M
  110 RS = RS + C(I) * DELTA(I)**2
                                                                            CST 0390
      RS = RS / 2.
                                                                            CST 0400
                                                                            CST 0410
      GO TO 500
                                                                            CST 0420
 *** COMPUTE THE COEFFICIENTS IN THE PERFORMANCE CRITERION
                                                                            CST 0430
  200 CONTINUE
                                                                            CST 0440
      DO 210 I=1.5
                                                                            CST 0450
  210 \text{ C(I)} = (W1(I)/DMAX)**2 + W2(I)**2
                                                                            CST
                                                                                0460
      C(6) = (W1(6)/DAMAX(L))#*2 + (W2(6)*Q(L)#SA*CDA)#*2
                                                                            CST: 0470
                                                                                0480
      C(7) = (w1(7)/DRMAX(L))**2 + (w2(7)*Q(L)*SR*CDR)**2
```

```
CST 0481
      00 212 I=1.M
                                                                                CST 0482
      IF(W1(I)) 211.212.212
                                                                                CST 0483
  211 C(I) = 1. / w1(I) **2
                                                                                CST 0484
  212 CONTINUE
                                                                                CST 0490
      S((1+M)+M = SM
                                                                                CST 0500
      DO 220 I=1.M2
                                                                                C5T 0510
  220 \text{ RM(I)} = 0.
                                                                                CST 0520
      DO 230 I=1.m
                                                                                CST 0530
      II = I*(I+1)/2
                                                                                CST 0540
  230 \text{ RM}(II) = C(I)
                                                                                CST 0550
C
  *** COMPUTE THE IST DERIVATIVE OF THE PERFORMANCE CRITERION
                                                                                CST 0570
  300 CONTINUE
                                                                                CST 0580
      DO 310 I=1.M
                                                                                C5T 0590
  310 \text{ RV(I)} = \text{C(I)} + \text{DELTA(I)}
                                                                                CST 0600
Ć
                                                                                     0610
                                                                                CST
      IF(IGHAD-2) 500,400,500
                                                                                CST 0620
C
                                                                                CST 0630
  *** COMPUTE THE 2ND DERIVATIVE OF THE PERFORMANCE CRITERION
                                                                                CST 0640
  400 CONTINUE
                                                                                CST 0650
C
          (--- CONSTANT MATRIX COMPUTED ABOVE ---)
                                                                                CST 0660
C
                                                                                CST 0670
                                                                                CST 0680
  500 RETURN
                                                                                CST 0690
       END
```



```
C
                                                                   -----SYM 0010
                                                                           SYM 0020
      SUBROUTINE GMSYMM (A+B+N)
                                                                           SYM 0030
C
                                                                           SYM 0040
C
                                                                        ---SYM 0050
                                                                           SYM 0060
C
               COMPUTES A SYMMETRIC MATRIX B FROM A SQUARE MATRIX A SYM 0070
C
      -----
               ACCORDING TO
                                                                           SYM 0080
C
                                 B = (A + A^{\dagger}) / 2
                                                                           SYM 0090
¢
                                                                           SYM 0100
      INPUTS
                       = SQUARE MATRIX (STORAGE MODE = 0).
                                                                         . SYM 0110
C
                        = NO. OF ROWS AND COLS. IN A AND B.
                                                                          SYM 0120
C
                                                                           SYM 0130
¢
      OUTPUTS
                      = SYMMETRIC MATRIX FORMED FROM A (STORAGE
                                                                           SYM 0140
C
                           MODE = 0).
                                                                           SYM 0150
C
                                                                           SYM 0160
C
      SUBROUTINES CALLED
                             NONE
                                                                           SYM 0170
C
                                                                           SYM 0180
C
                                                                           SYM 0190
C
                                                                          SYM 0200
C
                                                                           SYM 0210
C
                                                                           SYM 0220
C
    SUBROUTINE GMSYMM(4+8+N)
                                                                           SYM 0230
C
                                                                           SYM 0240
                                                                           SYM 0250
      DIMENSION A(1) + B(1)
                                                                           SYM 0260
                                                                           SYM 0270
C
                                                                           SYM 0280
      N1 = N - 1
                                                                           SYM 0290
     IF(N1) 20+20+5
                                                                           SYM 0300
    5 00 10 J=1+NI
                                                                           SYM 0310
      J1 = J + 1
                                                                           SYM 0320
      DO 10 I=J1.N
                                                                           SYM 0330
      IJ = (J-1)*N + I
                                                                           SYM 0340
      JI = (I-1)*N + J
                                                                           SYH 0350
      B(IJ) = 0.5 + (A(IJ) + A(JI))
                                                                           SYM-0360
  10 B(JI) = B(JJ)
                                                                           SYM 0370
  20 DO 30 I=1.N
                                                                           SYM 0380
     I + N*(I-I) = II
                                                                           SYM 0390
  30 R(IJ) = A(IJ)
                                                                           SYM 0400
      RETURN
                                                                           SYM 0410
     END
                                                                           SYM 0420
```



| C .        |   |     | • • • • • • • • • • • • • • • • • • • • |               |         |            |          | ••••   | • • • • | MCPY | 10<br>20 |
|------------|---|-----|-----------------------------------------|---------------|---------|------------|----------|--------|---------|------|----------|
| C T        |   |     |                                         | ,             |         |            | •        |        |         | MCPY | 30       |
| C          |   |     | SUBROUTINE PCPY                         |               |         |            |          |        |         | MCPY |          |
| ( )<br>(   |   |     | PURPOSE                                 |               |         |            |          |        |         | MCPY |          |
| با<br>م    |   |     | COPY ENTIRE MAI                         | PTY           |         |            |          |        |         | PCPY | -        |
| C.         |   |     | CUPY ENTIRE MAI                         |               |         |            | •        | •      | -       | MCPY | _        |
| C -        |   |     | USAGE                                   |               |         |            | •        |        |         | MCPY |          |
| Č          |   |     | CALL MCPY (A.R.                         | N.M.MSI       |         |            |          | •      | - ;     | MCPY | 100      |
| C          |   |     |                                         |               |         | * +        |          |        |         | MCPY | 110      |
| C i        | • |     | DESCRIPTION OF PAR                      |               |         |            | -        |        | ٠.      | MCPY |          |
| <u>.</u>   |   |     | A - NAME OF INC                         |               |         |            |          |        |         | MCPY |          |
| ַ          |   |     | R - NAME OF OUT                         |               |         |            |          |        |         | MCPY |          |
| Ç.         | • |     | N - NUMBER OF F                         |               |         |            |          | •      |         | MCRY |          |
| <u>.</u>   |   |     | M - NUMBER OF (<br>MS - CNE DIGIT       |               | OR R    | MODE OF    | MATRIY   | A LAND | D 1     |      |          |
| Ç '        | • |     | C - GENE                                |               | SIUNAGE | MUDE OF    | PPINIA   | M (MND | ~ /     | MCPY |          |
| C          |   |     | 1 - SYM                                 |               |         | •          |          | • *    |         | MCPY |          |
| Č          |   |     | 2 - CIA                                 |               |         |            |          | •      |         | MCPY | -        |
| Č          | ٠ |     |                                         |               |         |            |          |        |         | MCPY | 210      |
| Č.         |   | 1   | REMARKS                                 |               |         |            | •        |        |         | MCPY | 220      |
| C          |   |     | NONE                                    | •             | •       |            |          |        |         | MCPY |          |
| C          |   |     | 1.                                      |               |         | 1          |          | * •    |         | MCPY |          |
| C          |   |     | SUBROUTINES AND FL                      | INCTION SUBPR | ROGRAMS | REQUIRED   | •        |        |         | MCPY |          |
| <b>C</b> . |   |     | FOC                                     |               |         | †<br>      |          |        |         | MCPY |          |
| ַ          | , |     | METHOD                                  | •             |         |            | •        |        | ` .     | MCPY |          |
| C<br>C     |   |     | METHOD<br>Each Element Di               | MATRIY A TO   | MOVED   | TO THE CO  | PRECDON  | DING   |         | MCPY |          |
| C.         |   |     | ELEMENT OF MATE                         |               | , word  | 10 11/2 00 | JAKESTON |        | . •     | MCPY |          |
| Č          |   |     | CLEMENT OF FIRST                        |               | ٠       |            |          |        |         | MCPY |          |
| Č          |   |     |                                         |               |         |            |          |        |         | MCPY |          |
| ¢          |   |     | •                                       |               |         |            | •        |        |         | MCPY | 330      |
|            |   | SUE | BROUTINE MCPY(A,R,                      | 1, M, MS)     |         |            |          |        |         | MÇPY | 340      |
|            |   | CIP | ENSION A(1);R(1)                        | •             |         |            |          |        |         | MCPY |          |
| C.         |   |     | · · · · · · · · · · · · · · · · · · ·   |               | •       |            |          |        |         | MCPY |          |
| C          |   |     | COMPUTE VECTOR LE                       | IGTH, IT      |         |            |          |        |         | MCPY |          |
| C          |   |     |                                         | 46.4          | -       |            |          |        |         | MCPY |          |
| _          |   | CAL | L LOC(N,M,IT,N,M,                       | .21           |         |            | •        |        | •       | MCPY |          |
| Č          |   |     | CCPY MATRIX                             |               |         |            |          |        |         | MCRY |          |
| C<br>C     |   |     | CUPT MAIRIA                             |               |         | ,          |          |        |         | MCPY |          |
|            |   | DO  | 1 1*1,17                                |               |         | •          |          |        | •       | MCPY |          |
|            | 1 |     | [)=A(I)                                 |               |         |            | 1000     |        |         | MCPY |          |
|            | • |     | FURN                                    |               |         |            | • .      |        |         | MCPY |          |
|            |   | ENC | · · · · · · · · · · · · · · · · · · ·   |               | •       |            |          | e*     | •       |      | 460      |

| . • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| . • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     | SUBROUTINE MSTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     | PURPOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     | USAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MSTR  |  |
|     | ALCOHOL C. A. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     | prophri table of the contraction | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     | R - NAME OF OUTPUT MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MSTR  |  |
|     | ii iii iii ii ii ii ii ii ii ii ii ii i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSTR  |  |
|     | MSA - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSTR  |  |
|     | - California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSTR  |  |
|     | 1 - SYMMETRIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MSTR  |  |
|     | 2 - CIAGONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
| •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     | MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSTR  |  |
|     | MATRIX A MUST BE A SQUARE MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     | SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MSTR  |  |
|     | LOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSTR  |  |
|     | MATRIX A IS RESTRUCTURED TO FORM MATRIX R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MSTR  |  |
|     | MSA MSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSTR  |  |
|     | O O MATRIX A IS MOVED TO MATRIX R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MSTR  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MSTR  |  |
|     | ARE USED TO FORM A SYMMETRIC MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSTR  |  |
|     | O 2 THE DIAGONAL ELEMENTS OF A GENERAL MATRIX ARE USED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |
|     | TO FORM A DIAGONAL MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MSTR  |  |
|     | 1 O A SYMMETRIC MATRIX IS EXPANDED TO FORM A GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSTR  |  |
|     | MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSTR  |  |
|     | 1 1 MATRIX A IS MOVED TO MATRIX R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MSTR  |  |
|     | 1 2 THE DIAGONAL ELEMENTS OF A SYMMETRIC MATRIX ARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MSTR  |  |
|     | USED TO FORM A DIAGONAL MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MSTR  |  |
|     | 2 O A DIAGONAL MATRIX IS EXPANDED BY INSERTING MISSING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |
|     | ZERO ELEMENTS TO FORM A GENERAL MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSTR  |  |
|     | 2 1 A DIAGONAL MATRIX IS EXPANDED BY INSERTING MISSING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MOTE  |  |
|     | ZERO ELEMENTS TO FORM A SYMMETRIC MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MSTR  |  |
| •   | 2 2 MATRIX A IS MOVED TO MATRIX R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MSTR  |  |
|     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HOIR. |  |

|    |                                |                                       |        | MSTR   |
|----|--------------------------------|---------------------------------------|--------|--------|
|    | SUBROUTINE MSTR(A,R,N,MSA,MSR) |                                       |        | MSTR ! |
| `- | DIMENSION A(1),R(1)            |                                       |        | MSTR ! |
|    |                                |                                       |        | MSTR   |
|    | DO 20 I=1,N                    |                                       |        | MSTR   |
| ٠. | DO 20 J=1,N                    |                                       |        | MSTR   |
|    |                                | · · · · · · · · · · · · · · · · · · · |        | MSTR ! |
|    | IF R IS GENERAL. FORM ELEMENT  |                                       |        | MSTR   |
|    | terment file f                 |                                       |        | MSTR ! |
|    | IF(MSR) 5,10,5                 |                                       |        | MSTR!  |
| ٠. | IF IN LOWER TRIANGLE OF SYMME  | TOTO OR OTAGONAL P.                   | RVDACC | MSTR   |
|    | IF IN LUMER INTANGLE OF STMME  | INTO OR DIAGONAL K.                   | DIFRIJ | HSTR   |
| E  | IF(1-J) 10,10,20               |                                       |        | MSTR   |
|    | CALL LOC(I,J,IR,N,N,MSR)       |                                       |        | MSTR   |
| 10 | CHEE FOOTING THANKING HOLD     | ·                                     |        | MSTR   |
|    | IF IN UPPER AND OFF DIAGONAL   | OF DIAGONAL R. BYPA                   | SS     | MSTR   |
|    |                                |                                       |        | MSTR   |
|    | IF(IR) 20,20,15                |                                       | • ,    | MSTR   |
|    |                                |                                       | •      | MSTR   |
|    | OTHERWISE, FORM R(I;J)         |                                       |        | MSTR   |
|    |                                |                                       |        | MSTR   |
| 15 | R(IR)=0.0                      |                                       |        | MSTR   |
|    | CALL LOC(I,J,IA,N,N,MSA)       |                                       |        | MSTR   |
| •  |                                |                                       |        | MSTR   |
|    | IF THERE IS NO A(I,J), LEAVE   | R(I,J) AT 0.0                         | •      | MSTR   |
|    |                                | •                                     |        | MSTR   |
|    | IF(IA) 20,20,18                |                                       |        | MSTR   |
|    | R(IR)=A(IA)                    |                                       |        | MSTR   |
| 20 | CONTINUE                       |                                       |        | MSTR.  |
|    | RETURN                         |                                       |        | MSTR   |
|    | END                            |                                       |        | MSTR   |

| ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | SURROUTINE LOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | PURPOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | COMPUTE A VECTOR SUBSCRIPT FOR AN ELEMENT IN A MATRIX OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | SPECIFIED STORAGE MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | USAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | CALL LUC (I+J+IR+N+M+MS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | DESCRIPTION OF PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | I - ROW NUMBER OF ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | J - CULUMN NUMBER OF ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | TR - RESULTANT VECTOR SUBSCRIPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | N - NUMBER OF ROWS IN MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | M - NUMBER OF COLUMNS IN MATHIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | MS - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 0 - GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 1 - SYMMETRIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 2 - UIAGONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | MINC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             | MS=0 SUBSCRIPT IS COMPUTED FOR A MATRIX WITH NAM ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | IN STORAGE (GENERAL MATRIX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,           | MS=1 SUBSCRIPT IS COMPUTED FOR A MATRIX WITH N*(N+1)/2 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | STORAGE (UPPER TRIANGLE OF SYMMETRIC MATRIX). IF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | ELEMENT IS IN LOWER TRIANGULAR PORTION, SUBSCRIPT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | CORRESPONDING ELEMENT IN UPPER TRIANGLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | MS=2 SUBSCRIPT IS COMPUTED FOR A MATRIX WITH N ELEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | IN SINKENE INICIONAL CECURATO OF BURNESS OF THE STATE OF  |
|             | IF ELEMENT IS NOT ON DIAGONAL (AND THEREFORE NOT IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •           | STORAGE) . IN IS SET TO ZERO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | SURROUTINE LOC(I+J+IP+N+M+MS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | SOURCE LOCATION IN THE STATE OF |
|             | I X=I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | JX=J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | IF(MS-1) 10+20+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.0         | IBX=N# (UX-1) + IX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10          | GO TO 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20          | IF(IX-JX) 22,24,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | INX=IX+(JX*JX-JX)/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ~~ <b>*</b> | 60 TO 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 24          | IPX=JX+(IX*IX-IX)/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 60 TO 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | IBX=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30          | IF(IX-UX) 36,32,36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

RETURN

END

LOC 160 LOC 170 180 LOC 190 LUC 200 210 LOC LOC 220 LOC 230 LOC 240 250 LOC LOC 260 LOC 270 LOC 280 290 LOC 300 LOC TS LOC 310 LOC 320 IN LOC 330 LOC 340 IS LOC 350 LOC 360 370 LOC LOC 38,0 390 LOC LOC 400: 410 LOC ...LOC 420 430 LOC 440 LOC LOC 450 LOC 460 470 LOC 480 LOG 490 LOC 500 LOC 510 LOC 520 LOC LOC 530 LOC 540 LOC 550 560 LOC 570 LOC 580 LOC LOC 590 LOC 600 610

10 20

30

40

5.0 60

70

80

90

100

110 120

130

140

150

| ~          | ٠. |                                                            |       |                           |
|------------|----|------------------------------------------------------------|-------|---------------------------|
| Ċ          |    |                                                            | GMSU  | 10                        |
| ~          |    | ***************************************                    | -GMSU | 20                        |
| _          |    | CLARGO TRACE AREA B                                        | GMSU  |                           |
| Ĺ          |    | SUBROUTINE GMSUB                                           | GMSU  | 40                        |
| Ĺ          |    |                                                            | GMSU  | 50                        |
| Ĺ          |    | PURPOSE                                                    | GMSU  |                           |
| C          |    | SUBTRACT CHE GENERAL MATRIX FROM ANOTHER TO FORM RESULTANT | GMSU  | 70                        |
| C          | •  | MATRIX                                                     | GMSU  | 80                        |
| C          | .• |                                                            | GMSU  | 90                        |
| C          |    | USAGE                                                      | GMSU  | 100                       |
| С          |    | CALL GMSUB(A,B,R,N,M)                                      | GMSU  | 110                       |
| С          |    |                                                            | GMSU  | 120                       |
| С          |    | DESCRIPTION OF PARAMETERS                                  | GMSU  | 130                       |
| C          |    | A - NAME OF FIRST INPUT MATRIX                             | GMSU  | 140                       |
| C          |    | B - NAME OF SECOND INPUT MATRIX                            | GMSU  | 150                       |
| C          |    | R - NAME OF OUTPUT MATRIX                                  | GMSU  |                           |
| С          |    | N - NUMBER OF ROWS IN A.B.R                                | GMSU  |                           |
| C          |    | M - NUMBER OF COLUMNS IN A.B.R                             | GMSU  |                           |
| C          |    |                                                            | GMSU  |                           |
| C          |    | REMARKS                                                    | GMSU  | • • •                     |
| C          |    | ALL MATRICES MUST BE STORED AS GENERAL MATRICES            | GMSU  |                           |
| C          |    |                                                            | GMSU  |                           |
| C          |    | SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED              | GMSU  |                           |
| C          |    | NONE                                                       | GMSU  |                           |
| C          |    |                                                            | GMSU  |                           |
| C          |    | METHOD                                                     | GMSU  | <ul> <li>1 (1)</li> </ul> |
| C          |    | MATRIX B ELEMENTS ARE SUBTRACTED FROM CORRESPONDING MATRIX |       |                           |
| С          | 4  | ELEMENTS                                                   | GMSU  |                           |
| C          |    |                                                            | GMSU  |                           |
| С          |    |                                                            | .GMSU |                           |
| Ċ          | •  |                                                            | GMSU  |                           |
|            |    | SUBROUTINE GMSUB(A,B,R,N,M)                                | GMSU  |                           |
|            |    | CIMENSION A(1), B(1), R(1)                                 | GMSU  |                           |
| C          |    |                                                            | GMSU  |                           |
| Č          |    | CALCULATE NUMBER OF ELEMENTS                               | GMSU  |                           |
| Č          |    |                                                            | GM SU |                           |
|            |    |                                                            | GMSU  |                           |
| <b>C</b> . |    |                                                            | GMSU  |                           |
| Č          |    | SUBTRACT MATRICES                                          | G#SU  |                           |
| Č.         |    |                                                            | GMSU  |                           |
| -          |    | DC 10 I=1,NM                                               | GPSU  |                           |
|            | 10 | R(I) = A(I) - B(I)                                         | GMSU  |                           |
|            |    | RETURN                                                     | GMSU  |                           |
|            |    | END                                                        | GMSU  |                           |
|            |    |                                                            | J. 30 | 170                       |

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR    | 10  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GPPR    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 20  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR    | 30  |
|      | SUBROUTINE GMPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GMPR    | 40  |
|      | Source The Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GMPR    | 50  |
|      | avanage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GMPR    |     |
|      | PURPOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |     |
|      | MULTIPLY TWO GENERAL MATRICES TO FORM A RESULTANT GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GPPR    |     |
|      | MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GMPR    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR    | 90  |
|      | USAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CMPR    | 100 |
|      | CALL GMPRC(A,B,R,N,M,L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GMPR    | 110 |
|      | CALL OF THE THY OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GMPR    | 120 |
|      | DESCRIPTION OF PANAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GMPR    |     |
|      | DESCRIPTION OF PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GMPR    |     |
|      | A - NAME OF FIRST INPUT MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |     |
|      | B - NAME OF SECOND INPUT MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR    |     |
|      | R - NAME OF OUTPUT MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GMPR    |     |
|      | N - NUMBER OF ROWS IN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GMPR    | 170 |
|      | M - NUMBER OF COLUMNS IN A AND ROWS IN B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GMPR    | 180 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR    |     |
|      | L - NUMBER OF COLUMNS IN B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GMPR    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |
|      | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GMPR    |     |
|      | ALL MATRICES MUST BE STORED AS GENERAL MATRICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR    |     |
|      | MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . GMPR  | 230 |
|      | MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GMPR    | 240 |
|      | NUMBER OF COLUMNS OF MATRIX A MUST BE EQUAL TO NUMBER OF R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |     |
|      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GMPR    | 240 |
|      | OF MATRIX B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | . ′ |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR.   |     |
|      | SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GMPR    |     |
|      | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GMPR    | 290 |
|      | Honz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GMPR    | 300 |
|      | WETHOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GMPR    |     |
|      | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |     |
|      | THE M BY L MATRIX B IS PREMULTIPLIED BY THE N BY M MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A GPICK | 320 |
|      | AND THE RESULT IS STORED IN THE N BY L MATRIX R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GMPR    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR    | 350 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GMPR    | 360 |
| c.   | EDDOUTING CARRELA B. R. N. M. L.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GMPR    | 370 |
|      | BROUTINE GMPRO(A,B,R,N,M,L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GMPR    |     |
| n i  | MENSION A(1),B(1),R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GMPR    |     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |     |
| IF   | t=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GMPR    |     |
| Ιk   | (=-P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GMPR    |     |
|      | 10 K=1,L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GMPR    | 420 |
|      | (=[K+M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GMPR    | 430 |
|      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GMPR    |     |
|      | 10 J=1+N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GMPR    |     |
|      | R=IR+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |     |
| J    | I#J−N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GMPR    |     |
| I E  | 3≐ I K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 470 |
|      | IR)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GMPR    | 480 |
| 13.1 | rate to the second of the seco |         |     |

RETURN

END

10

20

30

40

50

60

70

80

90

**GMTR 410** 

|     | DC 10 I=1,M             |  | • | - |   |   | GMPR | 490 |
|-----|-------------------------|--|---|---|---|---|------|-----|
|     | JI=JI+N                 |  |   |   | • |   | GMPR | 500 |
|     | I8=I8+1                 |  |   |   |   |   | GMPR | 510 |
| 0.1 | R(IR)=R(IR)+A(JI)*B(IB) |  |   |   | - |   | GMPR | 520 |
|     | RETURN                  |  |   |   |   | • | GMPR | 530 |
|     | END                     |  |   |   |   | • | GMPR | 540 |

| ~ ' | MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20         |
|     | MPRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30         |
|     | SUBROUTINE MPRO MPRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40         |
|     | MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 C        |
|     | PURPCSE MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 60       |
|     | MULTIPLY TWO MATRICES TO FORM A RESULTANT MATRIX MPRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70         |
|     | MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|     | USAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|     | CALL MPRC(A,B,R,N,N,MSA,MSB,L) MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
|     | MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|     | DESCRIPTION OF PARAMETERS MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130        |
| -   | B - NAME OF SECOND INPUT MATRIX MPRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160        |
|     | M - NUMBER OF COLUMNS IN A AND ROWS IN B MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|     | The same areas to be a second as a second  | 180        |
|     | C - GENERAL MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -          |
|     | 1 - SYMMETRIC MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 210        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230        |
|     | MPRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 250        |
|     | MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRICES A OR B MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|     | NUMBER OF COLUMNS OF MATRIX A MUST BE EQUAL TO NUMBER OF ROWMPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 280        |
|     | * MPRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300<br>310 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 320        |
|     | and the contract of the contra | 330        |
|     | THE M BY L MATRIX B IS PREMULTIPLIED BY THE N BY M MATRIX A MPRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|     | AND THE RESULT IS STORED IN THE N BY L MATRIX R. THIS IS A MPRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 360        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 380        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 390        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 410        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 420        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 430        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 440        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 450        |
| ٠   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 460        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 470        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 480        |
|     | Devidence Associate Repopular Bases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |

| C SUBROUTINE MPRO(A,B,R,N,M,MSA,MSB,L)                                                                                         | M:<br>  M:<br>  M: | PRD<br>PRC<br>PRD<br>PRD | 510<br>520 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|------------|
| SUBROUTINE MPRC(A,B,R,N,M,MSA,MSB,L) CIMENSION A(1),R(1) C  SPECIAL CASE FOR DIAGONAL BY DIAGONAL C  MS=MSA*10+MSB             | M(<br>M)           | PRD<br>PRD               | 520        |
| CIMENSION A(1), P(1), R(1)  C SPECIAL CASE FOR DIAGONAL BY DIAGONAL  MS=MSA*10+MSB                                             | M                  | PRD                      |            |
| C SPECIAL CASE FOR DIAGONAL BY DIAGONAL  MS=MSA*10+MSB                                                                         | M                  |                          | 530        |
| C SPECIAL CASE FOR DIAGONAL BY DIAGONAL  MS=MSA*10+MSB                                                                         |                    |                          | ノフリ        |
| MS=MSA*10+MSB<br>IF(MS-22) 30,1C,30<br>10 DC 20 I=1,N<br>20 R(I)=A(I)*B(I)<br>RETURN<br>C<br>C ALL OTHER CASES<br>C<br>30 IR=1 |                    | PRD                      | 540        |
| MS=MSA*10+MSB<br>IF(MS-22) 30,1C,30<br>10 DC 20 I=1,N<br>20 R(I)=A(I)*B(I)<br>RETURN<br>C<br>C ALL OTHER CASES<br>C<br>30 IR=1 | M!                 | PRD                      | 550        |
| IF(MS-22) 30,10,30<br>10 DC 20 I=1,N<br>20 R(I)=A(I)*B(I)<br>RETURN<br>C<br>ALL OTHER CASES<br>C<br>30 IR=1                    | M                  | PRD                      | 560        |
| 10 DC 20 I=1,N 20 R(I)=A(I)*B(I) RETURN  C ALL OTHER CASES  C 30 IR=1                                                          | M                  | PRD                      | 570        |
| 20 R(I)=A(I)*B(I) RETURN C C ALL OTHER CASES C 30 IR=1                                                                         | · M.               | PRD                      | 580        |
| RETURN C C ALL OTHER CASES C 30 IR=1                                                                                           | ` <b>M</b> !       | PRD                      | 590        |
| C ALL OTHER CASES C 30 IR=1                                                                                                    | M                  | PRD                      | 600        |
| C<br>30 IR=1                                                                                                                   | M                  | PRD                      | 610        |
| C<br>30 IR=1                                                                                                                   |                    | PRD                      |            |
| C<br>30 IR=1                                                                                                                   |                    | PRD                      |            |
|                                                                                                                                | M                  | PRD                      | 640        |
| DC 90 K=1.(                                                                                                                    |                    | PRD                      |            |
|                                                                                                                                |                    | PRD                      |            |
| DO 90 J=1,N                                                                                                                    |                    | PRD                      |            |
| R(IR)=0                                                                                                                        |                    | PRC                      |            |
| DC 8C I=1.M                                                                                                                    |                    | PRD                      |            |
| IF(MS) 40,60,40                                                                                                                |                    | PRD                      |            |
| 40 CALL LOC(J,I,IA,N,M,MSA)                                                                                                    | •                  | PRD                      |            |
| CALL LOC(I,K,IB,M,L,MSB)                                                                                                       |                    | PRD                      |            |
| IF(IA) 50.80,50                                                                                                                |                    | PRD                      |            |
| 50 IF(18) 70,80,70                                                                                                             |                    | PRD                      |            |
| 60 IA=N*(I-1)+J                                                                                                                |                    | PRD                      |            |
| IB=M*(K-1)+I                                                                                                                   |                    | PRD                      |            |
| 70 R(IR)=R(IR)+A(IA)*B(IB)                                                                                                     | •                  | PRD                      |            |
| 80 CONTINUE                                                                                                                    |                    | PRD                      | -          |
| 90 IR=IR+1                                                                                                                     |                    |                          | 790        |
| RETURN                                                                                                                         |                    | PRD                      |            |
| END                                                                                                                            | ,                  |                          | 810        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 | :                       |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------|-------------------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PEAD SUMMOUTIME COUT                      |                 | •                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SUMPOUTIME COUT                           |                 |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
| ۴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | URPOSE                                    |                 |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PAPTITION A MATRIX HETWEEN SP             | PECIFIED COLUMN | S TO FORM TW            | O CCUT   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RESULTANT MATRICES                        | •               |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
| and the second s | SAGE                                      |                 |                         | CCUT     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - CALL COUT (A.L. + 4.5 + N. + M. + M.S.) |                 | * 4                     | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
| ប                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ESCRIPTION OF PARAMETERS.                 | •               |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A - NAME OF INPUT MATRIX                  |                 |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L - COLUMN OF A TO THE LEFT C             | F WHICH PARTIT  | TONING TAKES            | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLACE                                     | -               |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H - NAME OF MATRIX TO HE FORM             | NEO FROM LEFT P | PORTION OF A            | COULT    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - > - NAME OF MATRIX TO BE FORM           | EU FROM PIGHT   | PORTION OF A            | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N - NUMBER OF ROWS IN A                   |                 |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M - NUMBER OF COLUMNS IN A                | •               | •                       | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MS - ONE DIGIT NUMBER FOR ST              | ORAGE MODE OF   | MATRIX A                | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O - GENERAL                               |                 |                         | CCUT     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 - SYMMETHIC                             |                 |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 - DIAGONAL                              | •               |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 | 4                       | CCUT     |
| . ∵. R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EMARKS                                    | ·               |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATRIX & CANNOT BE IN SAME LO             | CATION AS MATE  | ΤΧ Δ :                  | CCUT     |
| * .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - MATRIX S CANNOT HE IN SAME LO           | CATION AS MATE  | TXA                     | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - MATRIX R CANNOT BE IN SAME LO           | CATION AS MATR  | TXS                     | CCUT     |
| · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MATRIX R. AND MATRIX 5 ARE ALW            | AYS GENERAL MA  | TRICES                  | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UPROUTINES AND FUNCTION SUBPROG           | RAMS REQUIRED   |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Loc                                       |                 | •                       | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FTHOO                                     | •               | • "                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELEMENTS OF MATRIX A TO THE L             | EFT OF COLUMN   | ARE MOVED 1             | TUDO     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FURM MAIKIX R OF N ROWS AND L             | → 1 COLUMNS, FL | EMENTS OF               | COULT    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - MATRIX A IN COLUMN L AND TO T           | HE RIGHT OF L   | ARE MOVED TO            | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATRIX S OF N ROWS AND M-L+I              | COLUMNS.        | ALL MOVED TO            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
| • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100000000000000000000000000000000000000   |                 |                         | CCUT     |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                 | • • • • • • • • • • • • | ····CCUT |
| SUBRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DUTINE COUT (A+L+R+S+N+M+MS)              | ٠.              |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NSTON A(1) .R(1) .S(1)                    |                 |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |
| 0=91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                 |                         | CCUT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                 |                         | CCUT     |

```
CCUT 470
       19=0
                                                                                 CCUT 480
      on 70 J=1•™
                                                                                 CCUT: 490
      i(0) = 7() = 1 * N
                                                                                 CCUT 500
C
C
C
          FIND LOCATION IN OUTPUT MATRIX AND SET TO ZERO
                                                                                 CCUT 510
                                                                                 CCUT 520
                                                                                 CCUT 530
       IF(J-L) 20,10.10
                                                                                 CCUT 540
   10 IS=IS+1
                                                                                 CCUT 550
       S(15) = 0.0
                                                                                 CCUT 560
       60 TO 30
                                                                                 CCUT 570:
   20 IH=IH+1
                                                                                 CCUT 580
       R(JR)=0.0
                                                                                 CCUT 590
C
                                                                                 CCUT 600
          LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE
                                                                                 CCUT 610
C
                                                                                 CCUT - 620
   30 CALL LOC(I = J = I J = N = M = M 5)
                                                                                 CCUT 630
C
                                                                                 CCUT 640
          TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX
C
                                                                                 CCUT 650
C
                                                                                 CCUT 660
       IF(1J) 40+70+40
                                                                                 CCUT 670
C
C
                                                                                  CCUT 680
          DETERMINE WHETHER RIGHT OF LEFT OF L
                                                                                  CCUT 690
C
                                                                                       700
                                                                                  CCUT
   40 TF (J-L) 50.50.50
                                                                                  CCUT 710 -
   50.5(15) = 4(10)
                                                                                  CCUT 720
       60 TO 70
                                                                                  CCUT 730
    60 R(TR)=A(JJ)
                                                                                  CCUT 740
    70 CONTINUE
                                                                                  CCUT 750
       RETURN
                                                                                  CCUT 760
       END
```

|      |                                                                                                                                                                                                                                                                                                                                                                       | KINV                                                         |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|      | SUBROUTINE MINV                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
| •    |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
|      | USAGE                                                                                                                                                                                                                                                                                                                                                                 | MINV                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
|      | DESCRIPTION OF PARAMETERS                                                                                                                                                                                                                                                                                                                                             | MINV                                                         |
|      | A - INPUT MATRIX: DESTROYED IN COMPUTATION AND REPLACED BY                                                                                                                                                                                                                                                                                                            |                                                              |
|      | RESULTANT INVERSE.                                                                                                                                                                                                                                                                                                                                                    | MINV                                                         |
| 5    | N - ORDER OF MATRIX A                                                                                                                                                                                                                                                                                                                                                 | MINV                                                         |
|      | D - RESULTANT DETERMINANT<br>L - WORK VECTOR OF LENGTH N                                                                                                                                                                                                                                                                                                              | MINV                                                         |
|      | M - WORK VECTOR OF LENGTH N                                                                                                                                                                                                                                                                                                                                           | MINV                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
| ÿ    | REMARKS                                                                                                                                                                                                                                                                                                                                                               | MINV                                                         |
|      | MATRIX A MUST BE A GENERAL MATRIX                                                                                                                                                                                                                                                                                                                                     | MINV                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                       | MINV.                                                        |
|      | SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED                                                                                                                                                                                                                                                                                                                         | MINY                                                         |
|      | NONE                                                                                                                                                                                                                                                                                                                                                                  | MINV                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
| •    |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
|      | THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT                                                                                                                                                                                                                                                                                                             | MINV                                                         |
|      | IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT THE MATRIX IS SINGULAR.                                                                                                                                                                                                                                                                                      |                                                              |
|      | IDP HAIRIA IS SINGULARA                                                                                                                                                                                                                                                                                                                                               |                                                              |
| . T. | _ · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                               | MINV                                                         |
| . 14 |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
| , je |                                                                                                                                                                                                                                                                                                                                                                       | MINV                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                       | WINV<br>WINV<br>WINV                                         |
|      | SUBROUTINE MINV(A,N,D,L,M)                                                                                                                                                                                                                                                                                                                                            | MINV<br>MINV<br>MINV<br>MINV                                 |
|      | SUBROUTINE MINV(A,N,D,L,M) DIMENSION A(1),L(1),M(1)                                                                                                                                                                                                                                                                                                                   | WINV<br>WINV<br>WINV                                         |
|      | SUBROUTINE MINV(A.N.D.L.M) DIMENSION A(1).L(1).M(1)                                                                                                                                                                                                                                                                                                                   | MINV<br>MINV<br>MINV<br>MINV<br>MINV                         |
|      | SUBROUTINE MINV(A.N.D.L.M) DIMENSION A(1),L(1),M(1)                                                                                                                                                                                                                                                                                                                   | MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV                 |
|      | SUBROUTINE MINV(A.N.D.L.M) DIMENSION A(1),L(1),M(1)  IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE                                                                                                                                                                                                                                                    | MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV         |
|      | SUBROUTINE MINV(A,N,D,L,M) DIMENSION A(1),L(1),M(1)  IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION                                                                                                                                                                                          | MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV         |
|      | SUBROUTINE MINV(A,N,D,L,M) DIMENSION A(1),L(1),M(1)  IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION                                                                                                                                                                                          | MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV |
| (    | SUBROUTINE MINV(A,N,D,L,M) DIMENSION A(1),L(1),M(1)  IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS.                                                                                                                                                                 | MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV |
| (    | SUBROUTINE MINV(A,N,O,L,M) DIMENSION A(1),L(1),M(1)  IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS.  DOUBLE PRECISION A,D,BIGA,HOLD                                                                                                                                 | MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV |
| (    | SUBROUTINE MINV(A,N,O,L,M) DIMENSION A(1),L(1),M(1)  IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS.  DOUBLE PRECISION A,D,BIGA,HOLD                                                                                                                                 | MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV |
| ſ    | SUBROUTINE MINV(A.N.D.L.M) DIMENSION A(1);L(1),M(1)  IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS.  DOUBLE PRECISION A.D.BIGA,HOLD  THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS                                                                    | MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV |
| (    | SUBROUTINE MINV(A,N,D,L,M) DIMENSION A(1),L(1),M(1)  IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS.  DOUBLE PRECISION A,D,BIGA,HOLD  THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS          | HINV<br>WINV<br>WINV<br>WINV<br>WINV                         |
| (    | SUBROUTINE MINV(A,N,C,L,M) DIMENSION A(1),L(1),M(1)  IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION STATEMENT WHICH FOLLOWS.  DOUBLE PRECISION A,D,BIGA,HOLD  THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS ROUTINE. | MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV<br>MINV |

| CCCC   |     | CONTAIN DOUBLE PRECISION FORTRAN<br>10 MUST BE CHANGED TO DABS. |          | ABS IN STATEMENT      | MINV 490<br>MINV 500<br>MINV 510<br>MINV 520<br>MINV 530 |
|--------|-----|-----------------------------------------------------------------|----------|-----------------------|----------------------------------------------------------|
| C<br>C |     | SEARCH FOR LARGEST ELEMENT                                      |          |                       | MINV 540<br>MINV 550                                     |
| Ū      |     | D=1.0                                                           | -        |                       | MINV 560                                                 |
|        |     | NK=-N                                                           | •        | •                     | MINV 570                                                 |
| •      |     | DC 80 K=1+N                                                     |          |                       | MINV 580                                                 |
|        |     | N.K=NK+N                                                        | • • •    | and the second second | MINV 590                                                 |
|        |     | L(K)=K                                                          |          |                       | MINV 600                                                 |
|        |     | M(K)=K                                                          |          |                       | MINV 610<br>MINV 620                                     |
|        |     | KK*NK+K                                                         |          |                       | MINV 620                                                 |
|        |     | BIGA=A(KK)                                                      |          |                       | MINV 640                                                 |
|        |     | DC 20 J=K,N                                                     | •        | •                     | MINV 650                                                 |
|        |     | IZ=N*(J-1) DO 20 I=K,N                                          |          | •                     | MINV 660                                                 |
|        |     | IJ=IZ+I                                                         |          | •                     | MINV 670                                                 |
|        | 10  | IF( ABS(BIGA) - ABS(A(IJ))) 15,20,20                            |          | • .                   | MINV 680                                                 |
|        |     | BIGA=A(IJ)                                                      | •        |                       | MINV 690                                                 |
|        | 12  | L(K) = I                                                        |          | •                     | MINV 700                                                 |
|        |     | M(K)=J                                                          |          |                       | MINV 710                                                 |
|        | 20  | CONTINUE                                                        |          | •                     | MINV 720                                                 |
| C      |     |                                                                 |          |                       | MINV 730                                                 |
| C      |     | INTERCHANGE ROWS                                                | <i>‡</i> |                       | MINV 740                                                 |
| C      |     |                                                                 |          |                       | MINV 750                                                 |
|        |     | J=L(K)                                                          |          |                       | - MINV:760                                               |
|        |     | IF(J-K) 35,35,25                                                |          | ,                     | MINV 770                                                 |
|        | 25  | KI=K-N                                                          |          | •                     | MINV 780                                                 |
|        |     | CO 30 I=1.N                                                     |          |                       | MINV 790                                                 |
|        |     | KI*KI+N                                                         | •        |                       | MINV BOO                                                 |
|        |     | HOLD=+A(KI)                                                     |          |                       | MINV 810                                                 |
|        |     | JI=KI-K+J                                                       |          |                       | PINV 820                                                 |
|        |     | A(KI)=A(JI)                                                     |          |                       | MINV 830                                                 |
|        | 30  | A(JI) =HOLD                                                     |          |                       | MINV 840                                                 |
| C      |     |                                                                 |          |                       | MINV 850                                                 |
| Ç      |     | INTERCHANGE COLUMNS                                             |          |                       | MINV 860                                                 |
| C      |     |                                                                 |          |                       | MINV 870                                                 |
|        | 35  | I≠M(K)                                                          | •        |                       | MINV 880<br>MINV 890                                     |
|        |     | IF(I-K) 45,45,38                                                |          | •                     |                                                          |
|        | 38  | JP=N*(I-1)                                                      |          |                       | MINV 900<br>MINV 910                                     |
|        |     | 00 40 J=1.N                                                     |          |                       | MINV 920                                                 |
|        |     | JK=NK+J                                                         |          |                       | MINV 920                                                 |
|        |     | JI=JP+J                                                         |          |                       | MINV 940                                                 |
|        |     | HOLD=-A(JK)                                                     |          |                       | MINV 950                                                 |
|        | 4.0 | A(JK)=A(JI)<br>A(JI) =HOLD                                      |          |                       | MINV 960                                                 |
|        | 40  | ALGET =MULU                                                     | •        |                       | WINA JAA                                                 |

|      |                            |           |            |            | · · · · · · · · · · · · · · · · · · · | MINV    |
|------|----------------------------|-----------|------------|------------|---------------------------------------|---------|
|      | DIVIDE COLUPA BY MINUS PIV | OT (VALUE | OF PIVOT   | ELEMENT IS |                                       | MINV    |
|      | CONTAINED IN BIGA)         |           | -          | ·          |                                       | MINV    |
|      |                            |           |            |            |                                       | MINVI   |
|      | IF(BIGA) 48,46,48          |           |            |            |                                       | MINAL   |
|      | D=C.0                      |           |            |            |                                       | MINVI   |
|      | RETURN                     |           |            |            | . 4                                   | MINVI   |
| 48   | CC 55 [=1,N                | • • • •   | 180        |            |                                       | . MINVI |
|      | IF(I-K) 50,55,50           |           | •          |            |                                       | MINVI   |
| 50   | IK=NK+I                    |           | •          |            | •                                     | MINV1   |
|      | A(IK)=A(IK)/(-8IGA)        | •         | •          |            |                                       | MINV1   |
| 55   | CONTINUE                   |           |            |            |                                       | MINVI   |
|      |                            |           |            |            |                                       | MINV1   |
| •••  | REDUCE MATRIX              |           |            |            |                                       | MINVI   |
|      |                            | ,         | •          |            |                                       | MINVL   |
|      | DQ 65 I+1,N                |           |            |            |                                       | HINV1   |
|      | IK*NK+I                    |           | • • •      | •          |                                       | PINVI   |
|      | HOLD=A(IK)                 |           |            | •          |                                       | MINVI   |
|      | IJ*I-N                     |           |            |            |                                       | MINV1   |
| o* - | DO 65 J=1,N                | -         |            | •          | • .                                   | MINV1   |
|      | IJ*IJ+N                    |           |            |            |                                       | MINVI   |
| 126  | IF(I-K) 60,65,60           |           |            |            |                                       | MINV1   |
| 40   | IF(J-K) 62,65,62           | -         | the second |            |                                       | MINV1   |
|      | KJ=IJ-I+K                  |           |            |            |                                       |         |
| 0 2  | A(IJ)=HOLD+A(KJ)+A(IJ)     |           |            |            |                                       | MINVI   |
| 48   | CONTINUE                   |           | :          | •          |                                       | MINVI   |
|      | CUNTINUE                   |           |            |            | ••                                    | MINV1   |
|      | DIVIDE ROW BY PIVOT        |           |            |            |                                       | MINVI   |
|      | DIAIRE KOM BA PIAGI        | *         |            |            |                                       | MINV1   |
|      | W taw hi                   |           | •          |            |                                       | MINVI   |
|      | KJ*K-N                     |           |            |            |                                       | MINVI   |
|      | DC 75 J=1.N                |           |            |            |                                       | MINVI   |
|      | KJ=KJ+N                    |           |            |            |                                       | MINAT   |
|      | IF(J-K) 70,75,70           |           | ,          |            | • '                                   | MINVI   |
|      | A(KJ)=A(KJ)/BIGA           |           |            |            |                                       | MINVI   |
| 75   | CONTINUE                   |           |            |            | ••                                    | HINAT   |
|      |                            |           |            |            |                                       | WINAT   |
|      | PRODUCT OF PIVOTS          |           |            |            | •                                     | MINVI   |
|      |                            | •         |            |            |                                       | MINV1   |
|      | D=D*BIGA                   | *         |            |            | *.                                    | HINVL   |
|      |                            | •         |            | *          |                                       | -MINAT  |
|      | REPLACE PIVOT BY RECIPROCA | L         |            |            | •                                     | MINVI   |
|      |                            |           | • . •      |            |                                       | MINVI   |
|      | A(KK)=1.0/BIGA             |           |            |            |                                       | MINVI   |
| 80   | CONTINUE                   | •         |            |            | •                                     | MINVI   |
|      |                            | •         |            |            |                                       | MINVI   |
|      | FINAL ROW AND COLUMN INTER | CHANGE    |            | •          |                                       | MINV1   |
|      |                            |           |            | * *        |                                       | MINV1   |
|      | K=N                        |           |            |            | •                                     | HINVI   |

| 100 | K={K-1)                    |
|-----|----------------------------|
|     | IF(K) 150,150,105          |
| 105 | I=L(K)                     |
|     | IF(I-K) 120,120,108        |
| 108 | JC=N*(K-1)                 |
|     | JR=N*(I-1)                 |
|     | CO 110 J=1.N               |
|     | <b>1K=1C+1</b>             |
|     | HOLD=A(JK)                 |
| •   | JI=JR+J                    |
| •   | A(JK)=+A(JI)               |
| 110 | A(JI) ≖HOLD                |
| 120 | J=M(K)                     |
|     | IF(J-K) 100,100,125        |
| 125 | KI=K-N                     |
|     | CC 130 I=1.N               |
|     | KI=KI+N                    |
|     | FOLD=A(KI)                 |
|     | JI=KI-K+J                  |
|     | $\Delta(KI) = -\Delta(JI)$ |
| 130 | A(JI) =HOLD                |
|     | GO TO 100                  |
| 150 | RETURN                     |
| •   | END                        |

MINV1450 MINV1460 MINV1480 MINV1490 MINV1510 MINV1520 MINV1530 MINV1540 MINV1550 MINV1560 MINV1570 MINV1580 MINV1590 FINV1630 MINV1640 MINV1650 MINV1660 MINV1670 MINV1680

4

|      | \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NV.   | 1  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| ٠,   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ń۷    | 2  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NV    | 3  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NV    | 4  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NV    | 5  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   | .6 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |    |
|      | THE CONTRACTOR OF THE CONTRACT | NV    | 7  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NV    | 8  |
|      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NV    | 9  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NV    |    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NV .  |    |
| '    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NV    |    |
|      | The state of the s | NV    |    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   |    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   | -  |
| •    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NV    |    |
|      | The state of the s | INV   |    |
|      | The second of th | [NV   | -  |
| . 7  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | INV   | _  |
|      | The state of the s | INV . |    |
| **** | IER=0 - NO ERROR \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INV . | 21 |
|      | IER=-1 + NO RESULT BECAUSE OF WRONG INPUT PARAMET ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INV . | 22 |
|      | TER N OR BECAUSE SOME RADICAND IS NON- SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INV . | 23 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   | 24 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   | 25 |
| 14.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV 1 | 26 |
| •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [NV.] | 27 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV . | 28 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I N,V | 29 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   | 30 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   |    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 32 |
|      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 33 |
|      | STORED COLUMNWISE IN N*(N+1)/2 SUCCESSIVE STORAGE LOCATIONS.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 34 |
| 4.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 35 |
| +    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 36 |
| •.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   |    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV.  |    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   |    |
|      | i de la companya del companya de la companya de la companya del companya de la co | INV.  |    |
| •    | METHOD SOLUTION IS DONE USING THE FACTORIZATION BY SUBROUTINE MESD.S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   |    |
| ·    | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INV   |    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INV   |    |
|      | SUBROUTINE SINV(A,N,EPS,IER) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INV   | +8 |

| C      |                            |                            | SINV 490   |
|--------|----------------------------|----------------------------|------------|
| C      |                            |                            | SINV 500   |
| -      | DIMENSION A(1)             |                            | SINV 510   |
|        | DOUBLE PRECISION DIN, WORK |                            | SINV 520   |
| С      |                            |                            | SINV 530   |
| Č      | FACTORIZE GIVEN MATRIX B   | Y MEANS OF SUBROUTINE MESD | SINV 540   |
| Č      | A = TRANSPCSE(T) * T       |                            | SINV 550   |
|        | CALL MFSD(A,N,EPS,IER)     |                            | SINV 560   |
| ٠.     | IF(IER) 9,1,1              |                            | SINV 570   |
| ·C.    |                            | •                          | · SINV 580 |
| C<br>C | INVERT UPPER TRIANGULAR    | MATRIX T                   | SINV 590   |
| č      | PREPARE INVERSION-LCGP     |                            | SINV 600   |
| -      | 1 IPIV=N*(N+1)/2           |                            | SINV 610   |
|        | IND=[PIV                   |                            | SINV 620   |
| C      |                            |                            | SINV 630   |
| Č      | INITIALIZE INVERSION-LOO   | P                          | SINV 640   |
| ~      | CO 6 I=1.N                 |                            | SINV 650   |
|        | DIN=1.DO/DBLE(A(IPIV))     |                            | SINV 660   |
|        | A(IPIV)=DIN                | •                          | SINV 670   |
|        | MIN=N                      | •                          | SINV 680   |
|        | KENC=I+1                   |                            | SINV 690   |
|        | LANF=N-KEND                |                            | SINV 700   |
|        | IF(KEND) 5,5,2             | •                          | SINV 710   |
|        | 2 J=IND                    |                            | SINV 720   |
| C      |                            |                            | SINV 730   |
| Č      | INITIALIZE RCK-LOOP        |                            | SINV 740   |
|        | DO 4 K=1.KEND              |                            | SINV 750   |
|        | WCRK=0.DO                  |                            | SINV 760   |
|        | MIN=MIN-1                  |                            | · SINV 770 |
|        | LHCR=IPIV                  |                            | SINV 780   |

|       |                                                                                                                         | MESD         | 10       |
|-------|-------------------------------------------------------------------------------------------------------------------------|--------------|----------|
|       |                                                                                                                         | MESD         | 20       |
|       | SUBPOUTINE MESO.                                                                                                        | MFSD<br>MFSD | 30<br>40 |
|       | Some fire and six                                                                                                       | MFSD         | 50       |
|       | PURPOSE                                                                                                                 | MESD         | 60       |
|       | FACTOR A GIVEN SYMMETRIC POSITIVE DEFINITE MATRIX                                                                       | MESD         |          |
|       |                                                                                                                         | MESD         | 80       |
|       | USARE                                                                                                                   | MFSD         | 90       |
|       | CALL MESD (A+N+EPS+IER)                                                                                                 | MFSD         |          |
| :     |                                                                                                                         | MFSD.        |          |
|       | DESCRIPTION OF PARAMETERS  - HPPER TRIANGULAR PART OF THE GIVEN SYMMETRIC                                               | MESD         |          |
|       | A THOUSER THE OTTER STAMETHIC                                                                                           | MFSD-        |          |
|       | ON RETURN A CONTAINS THE RESULTANT UPPER                                                                                | MFSD         |          |
|       | TRIANGULAR MATRIX.                                                                                                      | MFSD         |          |
|       |                                                                                                                         | MFSD         |          |
|       |                                                                                                                         | MFSD         |          |
|       | TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE.                                                                             | MFSD         | 190      |
|       | •                                                                                                                       | MFSD         |          |
|       |                                                                                                                         | MFSD         |          |
|       |                                                                                                                         | MESD         |          |
| * 7 . |                                                                                                                         | MFSD         |          |
|       | POSITIVE (MATRIX A IS NOT POSITIVE DEFINITE. POSSIBLY DUE TO LOSS OF SIGNI-                                             | MESD         |          |
|       | FICANCE)                                                                                                                | MESD         |          |
|       | IER=K - WARNING WHICH INDICATES LOSS OF SIGNIFI-                                                                        | MFSD         |          |
|       |                                                                                                                         | MFSD         |          |
| • .   | TION STEP K+1 WAS STILL POSITIVE BUT NO                                                                                 | MESD         |          |
|       | LONGER GREATER THAN ABS(EPS*A(K+1,K+1)).                                                                                | MFSD         |          |
|       |                                                                                                                         | MFSD         |          |
| f     | REMARKS                                                                                                                 | MFSD         |          |
| e e   |                                                                                                                         | MFSD         |          |
| ·.    | STORED COLUMNWISE IN N*(N+1)/2 SUCCESSIVE STORAGE LOCATIONS. IN THE SAME STORAGE LOCATIONS THE RESULTING UPPER TRIANGUM |              |          |
| •     | LAR MATRIX IS STORED COLUMNWISE TOO.                                                                                    | MFSD         |          |
|       | THE PROCEDURE GIVES RESULTS IF N IS GREATER THAN O AND ALL                                                              | MFSD         |          |
|       | CALCULATED RADICANDS ARE POSITIVE.                                                                                      | MESD         |          |
|       | THE PRODUCT OF RETURNED DIAGONAL TERMS IS EQUAL TO THE                                                                  | MESD         | 390      |
|       | SQUARE-ROOT OF THE DETERMINANT OF THE GIVEN MATRIX.                                                                     | MFSD         | 400      |
|       |                                                                                                                         | MFSD         | •        |
|       | SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED                                                                           | MESD         |          |
|       | NONE                                                                                                                    | MESD         |          |
|       | METHOD                                                                                                                  | MFSD<br>MFSD |          |
| ٠.    |                                                                                                                         | MFSD         |          |
|       | THE GIVEN MATRIX IS REPRESENTED AS PRODUCT OF TWO TRIANGULAR                                                            | MESD         | 470      |
|       |                                                                                                                         | MFSD         |          |
|       | THE RETURNED RIGHT HAND FACTOR.                                                                                         | MESD         | 490      |
| •     |                                                                                                                         | MFSD         | 500      |
| • • • |                                                                                                                         | MESD         |          |
| CHO   |                                                                                                                         | MFSD         |          |
| 204   |                                                                                                                         | MESD         |          |
|       |                                                                                                                         | MFSD<br>MFSD |          |
| DIM   |                                                                                                                         | MFSD         |          |
|       |                                                                                                                         | MFSD         |          |
|       |                                                                                                                         | MESD         |          |
|       |                                                                                                                         | MFSD         |          |
| IF(   | N-1) 12+1+1                                                                                                             | MFSD         | 600      |

|   | 1     | 166=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MFSD 610 |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| C |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MFSD 620 |
| C |       | INITIALIZE DIAGONAL-LOOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFSD 630 |
|   |       | KDIA=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFSD 640 |
|   |       | 00 11 K=1.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MFSD 650 |
|   |       | Kb[A=Kb]A+K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MFSD 660 |
|   |       | IND=KBIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFSD 670 |
|   |       | LEND=K-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFSD 680 |
| С |       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MFSD 690 |
| Ċ |       | CALCULATE TOLERANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MFSD 700 |
|   |       | TOL=A8S(EPS*A(KPIV))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MFSD 710 |
| C |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MESD 720 |
| С | •     | START FACTORIZATION-LOOP OVER K-TH ROW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFSD 730 |
|   |       | DO 11 J=K•*I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MFSD 740 |
|   |       | DSUM=0.D0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MFSD 750 |
|   |       | JF(LEND) 2.4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MFSD 760 |
| C |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MFSD 770 |
| C |       | START INNER LOOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MFSD 780 |
|   | : 2   | 00 3 L=1.LEN0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MFSD 790 |
|   |       | LANF=KPIV-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MESD 800 |
|   |       | LIND=IND-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MFSD B10 |
|   | 3     | DSUM=DSUM+DRLE(A(LANF) *A(LIND))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MFSD 820 |
| C |       | END OF INNER LOOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MFSD 830 |
| C |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MFSD 840 |
| č |       | TRANSFORM ELEMENT A(IND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFSD 850 |
| • | 4     | DSUM=DALE (4 (IND))-DSUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFSD 860 |
|   |       | IF(I=K) 10.5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MFSD 870 |
| С |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MFSD 880 |
| č |       | TEST FOR NEGATIVE PIVOT ELEMENT AND FOR LOSS OF SIGNIFICANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MFSD 890 |
| • | 5     | IF (SNGL (DSUM) - TOL) 6.6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MFSD 900 |
|   |       | IF (DSUM) 12.12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MFSD 910 |
|   |       | IF(IER) 8.8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MFSD 920 |
| * |       | · IER=K+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MESD 930 |
| С | ٠.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MFSD 940 |
| č |       | COMPUTE PIVOT ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MFSD 950 |
| • | ٥     | DPTV=DSORT (DSUM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MFSD 960 |
|   | ,     | A(KPIV)=DPIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MFSD 970 |
|   |       | DPIV=1.00/DPIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MFSD 980 |
|   |       | G0 TO 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MFSD 990 |
| С |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MFSD1000 |
| č |       | CALCULATE TERMS IN ROW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFSD1010 |
| U | 1.0   | A(IND)=DSUM*DPIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MFSD1020 |
|   |       | IND=IND+I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| С | 1 1   | The state of the s | MFSD1030 |
| Ç | •     | END OF OTACOMAL -LOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MFSD1040 |
| C |       | END OF DIAGONAL-LOOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MFSD1050 |
| ÷ | . 1 2 | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFSD1060 |
| • | 16    | IFR=-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFSD1070 |
|   |       | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MFSD1080 |
|   | •     | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MFSD1090 |

| C          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UOXM  | 10  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| C          | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MXQU  |     |
| C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| С          | SURPOUTINE MXOUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MXOU  |     |
| Ċ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| С          | PURPOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MXOU  |     |
| C          | PRODUCES AN OUTPUT LISTING OF ANY SIZED ARRAY ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MXOU  |     |
| Ċ          | LOGICAL UNIT 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MXOU  |     |
| C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| C          | USAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MXOU  |     |
| C          | CALL MXOUT (ICODE + A + N + M + MS + LINS + IPOS + ISP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MXOU  |     |
| C          | or cm and attorning the trade of the contract  | MXOU  |     |
| C          | DESCRIPTION OF PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |     |
| 'C         | ICODE- INPUT CODE NUMBER TO BE PRINTED ON EACH OUTPUT PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MXOU  |     |
| Č          | A-NAME OF OUTPUT MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MXOU  |     |
| Č          | N-NUMBER OF ROWS IN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MXOU  |     |
| č          | M-NUMBER OF COLUMNS IN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MXOU  |     |
| Č          | MS-STORAGE MODE OF A WHERE MS=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MXOU  |     |
| Č          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| C          | U-GENERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MXOU  |     |
| Č          | 1-SYMMETRIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MXOU  |     |
| Č          | 2-DIAGONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MXQU  |     |
| C          | LINS-NUMBER OF PRINT LINES ON THE PAGE (USUALLY 60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MXOU  | 220 |
|            | IPOS-NUMBER OF PRINT POSITIONS ACROSS THE PAGE (USUALLY 132)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |     |
| C          | ISP-LINE SPACING CODE: 1 FOR SINGLE SPACE: 2 FOR DOUBLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MXOU  | 240 |
| C          | SPACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MXOU. | 250 |
| C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UOXM  | 260 |
| C.         | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MXOU  | 270 |
| Ç          | THIS SUBROUTINE HAS BEEN MODIFIED BY M. HUTTON ON 11/27/71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UOXM  | 280 |
| C          | TO REDUCE THE AMOUNT OF EXTRA PRINTOUT. TO RETURN THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UOXM  | 281 |
| , <b>C</b> | SUBROUTINE TO ITS ORIGINAL FORM MUDIFY CARDS 280,480,590,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UOXM  | 282 |
| Ċ.         | 650,900,920 ACCORDING TO THE SSP MANUAL AND REMOVE CARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MXOU  | 283 |
| · C        | 281-284.591.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MXOU  | 284 |
| С          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UOXM  | 290 |
| C          | SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MXOU  | 300 |
| , C        | LOC LOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MXOU  | 310 |
| Ċ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| , C        | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MXOU  | 330 |
| С          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXQU  |     |
| > <b>C</b> | SIZED ARRAY WITH ANY STORAGE MODE. EACH PAGE IS HEADED WITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MXOU  | 350 |
| ; C        | THE CODE NUMBER.DIMENSIONS AND STORAGE MODE OF THE ARRAY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MXOU  |     |
| · C        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| ¢.         | and to keep more than the control of | MXOU  |     |
| ¢          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU. |     |
| C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| , C.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
|            | 表现水面表现是更加是,2.0.5.0是,4.5.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MXDU  |     |
| •          | A PAIR AND THAT A 2 1 1 PAGE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MXQU. |     |
|            | A MARKET LIVE BY THE WAR ARE AN AREA OF THE STATE OF THE  | MXOU  |     |
|            | ton tongroup of months are not by the companies and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MXOU: |     |
|            | 5 FORMATIES COROLLING TISSESS SOULS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -     |     |
|            | O DESCRIPTION OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MXOU  |     |
|            | CONTRACTOR AND THESE CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU. |     |
|            | M. MANAGAR T. A. S. L. M. M. A. M. A | MXOU  |     |
|            | A MANUATERN REVIEWED OF A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MXOU  |     |
| C.         | E POUMATILIA SAV ZIPIO ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MXOU  |     |
| C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| L          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| C          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXOU  |     |
| , C        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UOXM  |     |
| C          | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MXOU  | 540 |
|            | 177 Table 1 Control of the Control o |       |     |

|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | •   |          |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|----------|
|     |      | NFND=IP0S/16-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     | MXQU 550 |
|     |      | LEND=(LINS/ISP)-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |     | MXOU 560 |
|     |      | IPAGE=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |     | MXQU 570 |
|     | 10   | LSTRT=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |     | MXQU 580 |
| С   |      | WRITE(6+1)ICODE+N+M+MS+IPAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |     | MXOU 590 |
|     | 50   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |     | MX0U 591 |
|     |      | JNT=J+NEND-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |     | MXOU 600 |
|     |      | IPAGE = TPAGE+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                        |     | MXOU 610 |
|     | 31   | IF (JNT-M) 33+33+32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |     | MXOU 620 |
|     | 32   | JNT=M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |     | MXOU 630 |
|     | 33   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                        | •   | MXOU 640 |
| C   |      | WRITE(6+2)(JCUR+JCUR=J+JNT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |     | MX0U 650 |
|     | -    | IF(ISP=1) 35+35+40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | •   | MX0U 660 |
|     | 35   | WRITE(6.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |     | MXOU 670 |
|     | 40   | LTEND=LSTRT+LEND=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |     | MX0U 680 |
|     |      | DO 80 L=LSTRT+LTENO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                        |     | MX0U 690 |
| С   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 4   | MXOU 700 |
| C ' |      | FORM OUTPUT ROW LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |     | MX0U 710 |
| C:  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | •   | MX0U 720 |
|     |      | 00 55 K=1.NENO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     | MXOU 730 |
|     |      | KK=K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | • * | MXOU 740 |
|     |      | JT = J+K+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |     | MXOU 750 |
|     |      | CALL LOC (L+JT+IJNT+N+M+M5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |     | MXOU 760 |
|     |      | A(K)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |     | MXOU 770 |
|     |      | 1F(IJNT)50.50.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |     |          |
|     | 45   | B(K) = A(IJNT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     | MX0U 780 |
|     |      | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |     | MXOU 790 |
| С   | ,    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |     | MXOU 800 |
| Č   |      | CHECK IF LAST COLUMN IF YES GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TO 60                    | •   | MXOU 810 |
| č   |      | 0.0000 11 ERST CHECKET 11 165 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 90                    |     | MXOU 820 |
| •   |      | IF(JT-M) 55.60.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                        |     | MXOU 830 |
|     | 55   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |     | MXOU 840 |
| C   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |     | MXOU 850 |
| C   |      | END OF LINE. NOW WRITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |     | MXOU B60 |
| Ċ   |      | Eliter for anti-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | •   | MX0U 870 |
| -   | 60   | IF(ISP-1)65+65+70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | •   | MXQU 880 |
|     |      | WRITE(6+4) (R(JW)+JW=1+KK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |     | MXQU 890 |
|     | •    | 60 TO 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |     | MXOU 900 |
|     | 70   | ₩917E(6+5) (H(JW)+JW=1+KK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |     | MXOU 910 |
| ¢   | , ,  | A CONTRACTOR ACCORDAGE AND ACC | •                        |     | MXOU 920 |
| č   |      | IF END OF ROWS+GO CHECK COLUMNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | •   | MXOU 930 |
| Ċ   |      | IN CAP OF HORSTON CHECK COLOMAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |     | MXOU 940 |
|     | .75  | JF (N=L) 85 • 85 • 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |     | MXOU 950 |
|     |      | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |     | MXOU 960 |
| c   | 1,10 | CONTINUI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                        |     | MXOU 970 |
| Č   |      | EMO DE DACE NOW OUTON FOR MORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | understand in the second |     | MXOU 980 |
| C · |      | END OF PAGE. NOW CHECK FOR MORE O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101101                   | •   | MXOU 990 |
| U   |      | LSTRT=LSTRT+LEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |     | MX0U1000 |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                        |     | MXOU1010 |
| C   |      | 05 OT 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                        |     | MX0U1020 |
| C   |      | END OF COLUMNS THE WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                        | • • | MX0U1030 |
| C   |      | END OF COLUMNS. THEN RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | `,  | MXOU1040 |
| L   | υŒ   | TEL IT-MADE OF OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                        |     | MXOU1050 |
|     |      | IF(JT-M)90,95,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | ,   | MX0U1060 |
|     | 40   | J=JT+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | .*  | MX0U1070 |
|     | ٥E   | 60 TO 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |     | MX0U1080 |
|     |      | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |     | MX0U1090 |
|     |      | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | •   | MX0U1100 |

## APPENDIX D PROCEDURE FOR ELIMINATING CONSTRAINT EQUATIONS IN TRIM PROBLEM

For linear dynamics and a quadratic performance criterion the trim problem can be written in the form

$$0 = \alpha + B\delta \tag{1}$$

$$r = 1/2 \delta' R \delta \tag{2}$$

with

a = constant vector of dimension n

 $\delta$  = control vector of dimension  $m \ge r$ 

 $B = n \times m$  coefficient matrix

R = mxm positive definite weighting matrix

The objective is to find the set of control angles 8 that satisfy (1) and minimize (2). The trim solution is given by

$$\delta = -B^{\#}\alpha \tag{3}$$

$$B'' = R^{-1}B'(BR^{-1}B')^{-1}$$
 (4)

The mxn matrix  $B^{\#}$  is a right inverse of B, i.e.,  $BB^{\#} = I$ .

Consider the new trim problem that results from eliminating k of the n equality constraints. Suppose that the first k constraint equations in (1) are to be disregarded. The problem can always be written in this form by reordering the equations if necessary. Partitioning (1) gives that the new trim problem is

$$0 = \alpha_2 + B_2 \delta_n \tag{5}$$

$$r = 1/2 \delta'_n R \delta_n \tag{6}$$

where

$$a = \begin{bmatrix} a_1 \\ --- \\ a_2 \end{bmatrix} \begin{cases} k \\ n-k \end{cases}$$

$$B = \begin{bmatrix} B_1 \\ --- \\ B_2 \end{bmatrix} \begin{cases} k \\ n-k \end{cases}$$
(7)

The solution to the new trim problem is

$$\delta_{n} = -R^{-1}B_{2}'(B_{2}R^{-1}B_{2}')^{-1}\alpha$$
 (8)

The following question is of interest: Without starting the problem over again, is it possible to compute  $\delta_n$  using the solution for  $\delta$ ? The answer is affirmative and a procedure for computing  $\delta_n$  is developed below.

From the partitioning (7) of the B matrix

$$R^{-1}B' = \begin{bmatrix} R^{-1}B'_1 & R^{-1}B'_2 \end{bmatrix}$$

$$BR^{-1}B' = \begin{bmatrix} \frac{B_1R^{-1}B'_1}{B_2R^{-1}B'_1} & \frac{B_1R^{-1}B'_2}{B_2R^{-1}B'_2} \end{bmatrix}$$
(10)

Taking the inverse of (10) results in

$$(BR^{-1}B')^{-1} = \begin{bmatrix} Q_1 & Q_2 \\ Q_2 & Q_3 \end{bmatrix} k$$
(11)

where

$$Q_{1} = E^{-1}$$

$$Q_{2} = -E^{-1}B_{1}R^{-1}B_{2}'(B_{2}R^{-1}B_{2}')^{-1}$$

$$Q_{3} = (B_{2}R^{-1}B_{2}')^{-1}B_{2}R^{-1}B_{1}'E^{-1}B_{1}R^{-1}B_{2}'(B_{2}R^{-1}B_{2}')^{-1} + (B_{2}R^{-1}B_{2}')^{-1}$$

and

$$E = B_{1}R^{-1}B'_{1} - B_{1}R^{-1}B'_{2}(B_{2}R^{-1}B'_{2})^{-1}B_{2}R^{-1}B'_{1}$$

Premultiplying (11) by (9) yields the right inverse of the B matrix in partitioned form

where
$$B_{1}^{\#} = \begin{bmatrix} B_{1}^{\#} & B_{2}^{\#} \end{bmatrix}$$

$$B_{1}^{\#} = \begin{bmatrix} I - R^{-1}B_{2}'(B_{2}R^{-1}B_{2})^{-1}B_{2} \end{bmatrix} R^{-1}B_{1}'E^{-1}$$

$$B_{2}^{\#} = -\begin{bmatrix} I - R^{-1}B_{2}'(B_{2}R^{-1}B_{2}')^{-1}B_{2} \end{bmatrix} R^{-1}B_{1}'E^{-1}B_{1}R^{-1}B_{2}'(B_{2}R^{-1}B_{2}')^{-1} + R^{-1}B_{2}'(B_{2}R^{-1}B_{2}')^{-1}$$

$$B_{2}^{\#} = -\begin{bmatrix} I - R^{-1}B_{2}'(B_{2}R^{-1}B_{2}')^{-1}B_{2} \end{bmatrix} R^{-1}B_{1}'E^{-1}B_{1}R^{-1}B_{2}'(B_{2}R^{-1}B_{2}')^{-1} + R^{-1}B_{2}'(B_{2}R^{-1}B_{2}')^{-1}$$

Substituting (12) into (3) and using (7) gives that

$$\delta = -B_1^{\#} \alpha_1 - B_2^{\#} \alpha_2 \tag{13}$$

If we substitute

$$\alpha_1 = B_1 R^{-1} B_2' (B_2 R^{-1} B_2')^{-1} \alpha_2$$
 (14)

into (13) then from (8) and (12) it follows that

$$\delta = \delta_{\mathbf{p}} \tag{15}$$

This result states that if the first k elements in the vector a are replaced by the values computed from (14) then the solution to the original trim problem becomes the solution to the new trim problem created by eliminating the first k constraint equations.

It is apparent from comparing (11) to (14) that (14) can be replaced by

$$a_1 = -Q_1^{-1}Q_2^{\alpha}a_2$$
 (16)

This is a more useful equation for computing the new value of  $a_1$  since  $Q_1$  and  $Q_2$  are submatrices of a matrix computed in the solution of the original problem.

To summarize, the steps for computing  $\delta_{\mathbf{p}}$  are as follows:

- 1) Start the computation of  $\delta$  using (3) and (4) in the usual way.
- 2) After computing  $(BR^{-1}B')^{-1}$  form the submatrices  $Q_1$  and  $Q_2$  according to (11).
- 3) Replace subvector  $a_1$  in a by the value computed from (16).
- 4) Continue the computation of  $\delta$  in the usual way. The result will be  $\delta=\delta_n$  .

The above procedure for computing  $\delta_n$  does not offer any particular advantage over using (8) if the calculations are to be done by hand. If a computer program, on the other hand, has been developed to compute  $\delta$  then the above procedure minimizes the amount of program modification required to compute  $\delta_n$ .

## APPENDIX E VERIFICATION OF TRIMS PROGRAM

Lateral trim of the Space Shuttle is an example of the linear trim problem. The linear trim problem is to find the control deflections  $\delta$  satisfying the equality constraints

$$a + B\delta = 0$$

and minimizing

$$J = 1/2 \delta' R \delta$$

The solution is

$$\delta = -B \alpha$$

$$B^{\#} = -R^{-1}B'(BR^{-1}B')^{-1}$$

The problem of Space Shuttle trim in roll and yaw (two constraint equations) using the following four control deflections:

- yaw deflection of orbiter engine 1
- e yaw deflection of orbiter engines 2 and 3
- pitch deflection of orbiter engine 2
   (negative of the pitch deflection of orbiter engine 3)
- rudder deflection

was solved at MSFC. The control deflection angles vs flight time for the case when the R matrix is

$$R = Diag [0.49, 0.49, 0.49, 1.00]$$

and the bias torques due to misalignments are

roll torque = 
$$0.87 \times 10^6$$
 N·m  
yaw torque =  $3.02 \times 10^6$  N·m

are plotted in Figure E1.

The solution to (supposedly) the same trim problem was also computed using the TRIMS program as a check of the program. The resulting plot of control deflection angles vs. flight time is shown in Figure E2. The TRIMS computation was repeated except without the dorsal

fins and the trim solution is plotted in Figure E3.

The results in Figures E2 and E3 computed by TRIMS do not agree with the results in Figure E1 obtained by MSFC. A comparison of the results does not indicate the reason for the difference. The computation of  $\delta$  and  $B^\#$  from a, B, and R in the TRIMS program was checked against hand calculations. Most likely, the area of difficulty is in the computation of the vector a and matrix B from the equations of motion.

Figure E 1 Trim Soltuion Computed at MSFC

= YAW DEFLECTION ENGINE 1

O = YAW DEFLECTION ENGINE 2 8 3

O = RUDDER DEFLECTION



Figure E 2 Control Deflections vs Flight Time for Space Shuttle Trim in Roll and Yaw with Addition of Dorsal Fins



Figure E 3 Control Deflections vs Flight Time for Space Schuttle Trim in Roll and Yaw



## REFERENCES

- 1. Brockett, R., Finite Dimensional Linear Systems, John Wiley and Sons, Inc., New York, 1970.
- 2 Bryson, A. and Ho. Y., Applied Optimal Control, Blaisdell Publishing Co., Waltham, Mass., 1969.
- 3. Etkin, B., <u>Dynamics of Flight-Stability and Control</u>, John Wiley & Sons, Inc., New York, 1959.
- 4. Faddeev, D. K. and Faddeeva, V. N., <u>Computional Methods of Linear Algebra</u>, W. H. Freeman & Co., San Francisco, 1963.
- 5. Householder, A. S., The Theory of Matrices in Numerical Analysis, Blaisdell Publishing Co., New York, 1964.
- Kalman, R. F., Ho, Y. C., and Narendra, K. S., "Controllability of Linear Dynamical Systems," Contributions to Differential Equations, vol. 1, No. 2, 1961, pp. 182–213.
- Johnson, C. D., "Optimization of a Certain Quality of Complete Controllability and Observability for Linear Dynamic Systems," J. Basic Engineering, Trans. ASME, ser. D, vol. 91, June 1969, pp. 228–238.
- Friedland, B., "Limiting Forms of Optimum Stochastic Linear Regulators," Trans.
   ASME, Journal of Dynamic Systems, Measurement, and Control, September 1971, pp. 134–141.
- 8. Hutton, M. F., "Solutions of the Singular Stochastic Regulator Problem," to be published in the Journal of Dynamic Systems, Measurement, and Control.