

CONTRACT NAS9-13568

ASYMMETRICAL BOOSTER ASCENT GUIDANCE AND CONTROL SYSTEM DESIGN STUDY

VOLUME II
SSFS MATH MODELS - ASCENT

JUNE 28, 1974

APPROVED By $\frac{\text { UC. }}{\text { W.G. Rydi }}$ Program Manager

PREFACE

Final report of Asymmetrical Booster Ascent Guidance and Control System Design Studies performed under Contract NAS9-13568 are contained in five separate volumes identified as follows:
Volume I - Summary
Volume II - SSFS Math Models - Ascent
Volume III - Space Shuttle Vehicle SRB Actuator Failure Study
Volume IV - Sampled Data Stability Analysis Program (SADSAP) Users Guide
Volume V - Space Shuttle Powered Explicit Guidance

ABSTRACT

This manual presents Boeing developed boost to orbit math models for the NASA/JSC Space Shuttle Functional Simulator.

KEY WORDS
Space Shuttle Vehicle
Math Models
SSFS (Space Shuttle Functional Simulator)
Boost Dynamics
Simulation Models
Flight Dynamics

TABLE OF CONTENTS

Section Page
i
PREFACE
ii
ABSTRACT
ii
KEY WORDS
iii
TABLE OF CONTENTS
1.0 Introduction 1
2.0 SSFS Math Models 2
2.1 ACCEL (Acceleration) 3
2.2 ACTVEH (6 DOF Equations of Motion) 7
2.3 AERO (Aerodynamics) 17
2.4 ATMOS (Atmosphere) 25
2.5 BLC (Baseline Control System) 26
2.6 CGAINS (Control Gains Equations) 41
2.7 FLTSEQ (Flight Sequencing) 50
2.8 GUIDE (Guidance Equations) 56
2.9 MASPR \emptyset (Vehicle Mass Properties) 57
2.10 MAXMIN (Max and Min Parameter Dump) 59
2.11 QRBIT1 (Orbit Parameters) 61
$2.12 \emptyset$ QBITR (3D Equations of Motion) 64
2.13 ØRBTAR (Orbit Insertion Targeting) 68
2.14 RCS (Reaction Control System) 71
2.15 THRCMD (Throttle Command) 75
2.16 THRUST 77
2.17 TSHAPE (Trajectory Shaping) 81
2.18 TVC (Thrust Vector Control) 88
3.0 Coordinate Systems and Transformations 94
4.0 Flexible Body Math Models (FLEX) 98
4.1 Program Description 98
4.2 Vibration Equations 99
4.3 Aerodynamic Forces 101
4.4 Engine Forces 108
4.5 Slosh Forces 112
4.6 Aerodynamic Moments 114
4.7 Engine Moments 115
4.8 Slosh Moments 117

1.0 INTRODUCTION

This manual presents the engineering equations and math models developed by the Boeing Aerospace Company for use in the Space Shuttle Functional Simulator (SSFS). These models were originally developed for NASA/JSC under Contract NAS9-12183, and continued under Contract NAS9-13568. This manual contains extensive revisions and additions to earlier documentation and it supersedes the previous math models document, Boeing Memorandum 5-2581-HOU-102 dated 4 October 1972.

Section 2 contains documentation of all Boeing developed math models including several proposed models not yet incorporated into the SSFS. Included in section 3 are definitions of coordinate systems used by the SSFS models and coordinate transformations.

Documentation of the flexible body math models is provided in section 4. These models have been incorporated in the SSFS and are in the checkout stage.

2.0 SSFS MATH MODELS

This section contains environment math models for the SSFS computer program. Several model changes are contained within this documentation which have not yet been incorporated into the program. Subroutine ATTUDE has been deleted as a scheduled model and has been made a part of the flight control system subroutine. The control system now provides the call for attitude commands. Subroutine FLTSEQ (Flight Sequencing Program) has been included to simulate flight control system logic necessary to initiate staging signals.

Each model is discussed under the following format:

X. 1 Program Description

X. 2 Math Mode1
X. 3 Nomenclature (that used in math model)

X. 4 Input/Output Requirements ${ }^{\text { }}$

2.1 ACCEL (Acceleration)

2.1.1 Program Description

This routine calculates acceleration in body coordinates for the accelerometer position APOS (X, Y, Z) on the vehicle. The component of acceleration returned is determined by the value of IFLAG. If IFLAG $=1$, the X component of acceleration is returned. If IFLAG $=2$, the Y component of acceleration is returned. If IFLAG $=3$, the Z component of acceleration is returned. All rotational and translational effects are included in the acceleration calculations. This routine is called by the control routine and is used to generate accelerometer signals for use by the flight control system.

2.1.2 Math Mode1

2.1.3 Nomenclature
$\operatorname{APOS}_{x}, \operatorname{APOS}_{y}, \operatorname{APOS}_{z}$
$C G_{x}, C G_{y}, C G_{z}$
$\ell_{x}, \ell_{y}, \ell_{z}$
$\ddot{x}_{c g}, \ddot{\gamma}_{c g}, \ddot{z}_{c g}$
$\omega_{x}, \omega_{y}, \omega_{z}$
$\dot{\omega}_{x}, \dot{\omega}_{y}, \dot{\omega}_{z}$
IFLAG
Accelerometer location (X, Y, Z)
Vehicle center of gravity (X, Y, Z)
Moment arms (X, Y, Z)
Vehicle center of gravity accel (X, Y, Z)
Vehicle body angular rates ($X ; Y, Z$)
Vehicle body angular accelerations (X, Y, Z)
Flag to specify component of acceleration to be returned

IFLAG $=1$ returns X component
IFLAG $=2$ returns Y component
IFLAG $=3$ returns Z component

2.1.4 Input/0utput

This routine requires, as formal parameter input, accelerometer location and a code identifying the desired component of acceleration to be returned. Body angular rates, angular accelerations, translational accelerations, and C.G. locations must be input via common. Acceleration of the position denoted is output.

2.2 ACTVEH (6 DOF Equations of Motion)

ACTVEH defines the motions of the center of gravity of the vehicle. For convenience it is separated into five parts; 1) translation equations, 2) rotation equations, 3) euler angles, 4) initial position calculations, and 5) momentum transfer at staging.

These first three equations should be solved at least once each second during powered flight. In the vicinity of environmental discontinuities more frequent solution is required; for instance, the vehicle can fly completely through a wind gust at maximum dynamic pressure within 0.1 second. Other discontinuities include: staging, start of closed loop guidance, and engine or actuator failures. As a rule of thumb, the integration rate during transients can be $1 / 2 \times$ rotational acceleration (in degrees $/ \mathrm{sec}^{2}$).

2.2.1 Translation Equations

2.2.1.1 Program Description

This model defines the linear accelerations of the rigid body.

2.2.1.2 Math Mode1

$$
\left[\begin{array}{c}
\Sigma F_{X_{p}} \\
\Sigma F_{Y_{p}} \\
\Sigma F_{Z_{p}}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\Sigma F_{X_{B}} \\
\Sigma F_{Y_{B}} \\
\Sigma F_{Z_{B}}
\end{array}\right] .
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
g_{X_{P}} \\
g_{Y_{P}} \\
g_{Z_{P}}
\end{array}\right]=[\alpha] \quad\left[\begin{array}{l}
g_{X_{I}} \\
g_{Y_{I}} \\
g_{Z_{I}}
\end{array}\right]} \\
& \ddot{x}_{p}=g_{X_{p}}+\sum F_{X_{p}} / m \quad \dot{x}_{p}=\int_{t_{1}}^{t_{2}} \ddot{x}_{d t}+\dot{x}_{p_{0}} \quad x_{p}=\int_{t_{1}}^{t_{2}} \dot{x} d t+x_{P_{0}} \\
& \ddot{Y}_{P}=g_{\gamma_{P}}+\Sigma F_{Y_{P}} / m \quad \dot{Y}_{P}=\int_{t_{i}}^{t_{2}} \ddot{\gamma}_{d t}+\dot{\gamma}_{p} \\
& \ddot{Z}_{p}=g_{Z_{P}}+\Sigma F_{Z_{p}} / m \quad \dot{Z}_{P}=\int_{t_{1}}^{t_{2}} \ddot{Z} d t+\dot{Z}_{P_{0}} \quad Z_{P}=\int_{t_{1}}^{t_{2}} \dot{Z} d t+Z_{P_{0}}
\end{aligned}
$$

2.2.1.3 Nomenclature

$\Sigma F_{X_{B}}, \Sigma F_{Y_{B}}, \Sigma F_{Z_{B}}=$ sum of forces in the X, Y, Z body axis directions.
$\Sigma F_{X_{P}}, \Sigma F_{Y_{P}}, \Sigma F_{Z_{P}}=$ sum of forces in the X, Y, Z inertial plumbing axis directions.
$[\beta]=$ transformation matrix from body to inertial plumbline.
$\Sigma F=$ aero forces + thrust forces + RCS forces + engine deflection forces + slosh forces.
$g_{X_{I}}, g_{Y_{I}}, g_{Z_{I}}=\underset{\text { equatorial axis directions }}{\text { gravitational }}$ acceleration contents in inertial polar-
$g_{X_{P}}, g_{Y_{P}}, g_{Z_{P}}=\underset{\text { plumbline axis directions }}{\text { gravitational }}$ accelemponents in inertial
$[\alpha]=$ transformation matrix from inertial polar - equatorial to inertial plumbline.
$X_{P}, Y_{P}, Z_{P}=$ accelerations in inertial plumbline axis directions
$m=$ total vehicle mass

2.2.1.4 Input/Output

The translation equations require as inputs:

> Aerodynamic forces
> Thrust forces
> RCS forces
> Engine deflection forces
> Slosh forces
> $[\alpha]$ and $[\beta]$ matrices
> Gravitational acceleration components
> Vehicle mass
> Initial conditions on $\dot{X}_{p}, \dot{Y}_{p}, \dot{Z}_{p}, X_{p}, Y_{p}, Z_{p}$

The outputs from the translation equations are:
$\Sigma F_{X_{B}}, \Sigma F_{Y_{B}}, \Sigma F_{Z_{B}}$ and the inertial plumbline position, velocity and acceleration components.

The translation equations require the presence of subroutines: RCS, THRUST, AERO,TVC, SLOSH AND GRAVITY:

2.2.2 Rotational Equations

2.2.2.1 Program Description

This model defines the angular accelerations of the rigid body assuming that the center of mass lies approximately in the $X-Z$ plane ($I_{Y Z} \cong I_{X Y} \cong 0$).

2.2.2.2 Math Model

$\dot{q}=\frac{1}{I_{Y Y}} \quad \sum M_{Y_{B}}+\operatorname{pr}\left(I_{Z Z}-I_{X X}\right)+\left(r^{2}-p^{2}\right) I_{X Z}$
$\dot{\mathrm{p}}=\left(a \mathrm{I}_{Z Z}+\mathrm{b} \mathrm{I}_{X Z}\right) / C$
$\dot{r}=\left(a I_{X Z}+b I_{X X}\right) / C$
$a=\Sigma M_{X_{B}}+q r\left(I_{Y Y}-I_{Z Z}\right)+p q I_{X Z}$
$b=\Sigma M_{Z_{B}}+p q\left(I_{X X}-I_{Y Y}\right)-q r I_{X Z}$
$\mathrm{c}=\mathrm{I}_{X X} \mathrm{I}_{Z Z}-\mathrm{I}_{X Z}{ }^{2}$

2.2.2.3 Nomenclature

$\dot{\mathrm{q}}=$ Angular acceleration about the Y body axis
$\dot{\mathrm{p}}=$ Angular acceleration about the X body axis
$\dot{r}=$ Angular acceleration about the Z body axis
$I_{X X}, I_{Y Y}, I_{Z Z}=$ Moment of inertia about X, Y, Z body axis respectively.
$I_{X Z}=X-Z$ Cross product moments of inertia

```
\(p, q, r=\) Integral of \(\dot{p}, \dot{q}, \dot{r}\) (Body rates)
```

$$
\begin{aligned}
\Sigma M_{X_{B}}, \Sigma M_{Y_{B}}, \Sigma M_{Z_{B}}= & \text { Sum of moments about } X, Y, Z \text { body axes } \\
= & \text { Aero moments }+ \text { thrust moments }+ \text { RCS moments } \\
& + \text { engine deflection moments }+ \text { slosh moments }
\end{aligned}
$$

2.2.2.4 Input/Output

Inputs: From THRUST, AERO, RCS, TVC and SLOSH
Moments (about body axes) due to aerodynamics, main propulsion, reaction control, engine accelerations and slosh.

Outputs: $\dot{P}, \dot{Q}, \dot{R}, P Q, R$ to IMU, Aero and Euler Angles

2.2.3 Euler Angles

2.2.3.1 Program Description

This model defines the rate of change of the euler angles describing the attitude of the vehicle in inertial space.

2.2.3.2 Math Mode1

$\dot{\theta}=(q \cos \phi-r \sin \phi) / \cos \psi$
$\dot{\psi}=q \sin \phi+r \cos \phi$
$\dot{\phi}=p=\tan \psi(q \cos \phi+r \sin \phi)$

2.2.3.3 Nomenclature

$\dot{\theta}, \dot{\psi}, \dot{\phi}=$ Euler angle rates (1st, $2 n d$, and 3 rd rotations, respectively)
$\theta, \psi, \phi=$ Integral of $\dot{\theta}, \dot{\psi}, \dot{\phi}$

2.2.3.4 Input/Output

Inputs p, q, r from rotation equations
Outputs θ, ψ, ϕ to $\beta]$ and to IMU

2.2.4 Initial Position Math Model

2.2.4.1 Program Description

This program calculates the difference between geodetic and geocentric latitude and uses it to calculate the initial state vector. This calculation needs to be done once each time either the launch azimuth or latitude is changed.

2.2.4.2 Math Model

$$
\begin{aligned}
& \psi_{L}=A^{\operatorname{rctan}}\left[(1-f)^{2} \tan \phi_{L}\right] \\
& R_{L}=\frac{R_{e}(1-f)}{\sqrt{1-f(2-f) \cos ^{2} \psi_{L}}}+h o \\
& B=\phi_{L}-\psi_{L} \\
& R_{X}=R_{L} \cos \beta \\
& R_{Y}=R_{L} \sin \beta \sin A_{Z} \\
& R_{Z}=-R_{L} \sin \beta \cos A_{Z} \\
& V_{X}=0 \\
& V_{Y}=\omega R_{L} \cos A_{Z} \cos \psi_{L} \\
& V_{Z}=\omega R_{L} \sin A_{Z} \cos \psi_{L}
\end{aligned}
$$

2.2.4.3 Nomenclature
$\omega=$ rotation rate of earth
$\phi_{L}=$ launch geodetic latitude
$\mathrm{f}=$ earth flattening constant
$R_{e}=$ earth equatorial radius
$A_{Z}=$ launch azimuth
$\psi_{L}=$ launch geocentric latitude
$R_{L}=$ magnitude of initial position vector
$B=$ difference between geodetic \& geocentric latitude
$\mathrm{P}_{\mathrm{x}}$$\left.R_{Y}\right\}=$ initial position vector in platform coordinate$\mathrm{R}_{\mathrm{Z}}$$v_{X}$$\left.\begin{array}{l}V_{Y} \\ V_{Z}\end{array}\right\}=$ initial velocity vector in platform coordinate
ho = altitude of vehicle CG above Fischer ellipse

2.2.4.4 Input/Output

The constants needed by this model are $\omega, \phi_{L}, f, R_{e}$, and A_{Z}. The output of the program is $R_{X}, R_{Y}, R_{Z}, V_{X}, V_{Y}$, and V_{Z}.

2.2.5 Staging Momentum Transfer

2.2.5.1 Program Description

This model accomplishes momentum transfer to the orbiter at the time of staging.
2.2.5.2 Math Model

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{0} \\
Y_{0} \\
Z_{0}
\end{array}\right]=\left[\begin{array}{l}
X_{L C} \\
Y_{L C} \\
Z_{L C}
\end{array}\right]+[B]\left[\begin{array}{l}
\Delta C G_{Y} \\
\Delta C G_{Y} \\
\Delta C G_{Z}
\end{array}\right]} \\
& {\left[\begin{array}{l}
\dot{x}_{0} \\
\dot{Y}_{0} \\
\dot{Z}_{0}
\end{array}\right]=\left[\begin{array}{l}
\dot{x}_{L C} \\
\dot{Y}_{L C} \\
\dot{Z}_{L C}
\end{array}\right]+[B]\left[\begin{array}{l}
r_{L C} \Delta C G_{y}-q_{L C} \Delta C G_{z} \\
P_{L C} \Delta C G_{z}-r_{L C} \Delta C G_{x} \\
q_{L C}^{\Delta C G_{x}}-P_{L C} \Delta C G_{y}
\end{array}\right]}
\end{aligned}
$$

2.2.5.3 Nomenclature

$X_{0}, Y_{0}, Z_{0} \quad$ Orbiter inertial positions immediately after separation
$X_{L C}, Y_{L C}, Z_{L C} \quad$ Launch configuration inertial position immediately before separation
$\dot{X}_{0}, \dot{Y}_{0}, \dot{Z}_{0} \quad \begin{aligned} & \text { Orbiter inertial } \\ & \text { after separation }\end{aligned}$
$\dot{X}_{L C}, \dot{Y}_{L C}, \dot{Z}_{L C} \quad$ Launch configuration linear velocity immediately before
[${ }^{6}$ separation

Body to inertial transformation matrix
$P_{L C}$
Launch configuration angular rotation about X body axis immediately before separation

Launch configuration angular rotation about Y body axis immediately before separation

Launch configuration angular rotation about Z body axis immediately before separation

Center-of-gravity location in body coordinates for orbiter immediately after separation
${ }^{\Delta}{ }^{C} G_{X}$
$\left|X_{C G_{L C}}-X_{C G_{0}}\right|$ pre-separation
${ }^{\Delta}{ }^{C} G_{Y}$
$\left|Y_{C G_{L C}}-Y_{C G_{0}}\right|$ pre-separation
${ }^{\Delta}{ }^{C} G_{Z}$
$\left|Z_{C G_{L C}}-Z_{C G_{0}}\right|$ pre-separation.

2.2.5.4 Input/Output

Inputs: Vehicle Pre-separation C.G. Locations
Vehicle Pre-separation Inertial Position
Vehicle Pre-separation Velocity Components
Vehicle Pre-separation Angular Rates
from MASPRO and ACTVEH (translational and rotational sections)
Outputs: Orbiter inertial position and velocity components
2.3 AERO (Aerodynamics)

2.3.1 Program Description

This model calculates and sums aerodynamic forces and moments for the vehicle. In addition this model calculates the latitude and longitude of the vehicle, flight path angle, mach number, dynamic pressure, angle-of-attack and sideslip angle, and the contribution to velocity due to wind speed and direction.
2.3.2 Math Mode?

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{f} \\
y_{F} \\
z_{F}
\end{array}\right]=[A]^{\top}\left[\begin{array}{l}
x_{p} \\
y_{p} \\
x_{p}
\end{array}\right]} \\
& \lambda_{V}=\sin ^{-1}\left(z_{r} / R_{V}\right) \\
& \theta=\tan ^{-1}\left(\frac{r_{f}}{T_{\mathrm{F}}}\right)-凶_{e}\left(\mathrm{t}_{\mathrm{t}}+\mathrm{t}\right) \\
& V_{\text {EARTH }_{X}}=-W_{e} Y_{F} \\
& V_{\text {EARTH }_{Y}}=W_{e} X_{F} \\
& {\left[\begin{array}{l}
v_{R_{X_{P}}} \\
v_{R_{Y_{P}}} \\
v_{R_{Z_{P}}}
\end{array}\right]=\left[\begin{array}{c}
\dot{X}_{P} \\
\dot{\gamma}_{P} \\
\dot{Z}_{P} \\
\end{array}\right]-[A]\left[\begin{array}{c}
V_{\text {EARTH }_{X}} \\
V_{\text {EARTH }_{Y}} \\
0 \\
0
\end{array}\right]} \\
& V_{R_{P}}=\left(V_{R_{X_{P}}}^{2}+V_{R_{Y_{P}}}^{2}+V_{R_{Z_{P}}}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{c}
V_{X_{L V}} \\
v_{Y_{L V}} \\
v_{Z_{L V}}
\end{array}\right] } & =[D]^{\top}[A]^{\top}\left[\begin{array}{c}
V_{R_{X P}} \\
V_{R_{Y P}} \\
V_{R_{Z P}}
\end{array}\right] \\
\gamma & =\sin ^{-1} \quad\left(v_{X_{L V}} / V_{R_{P}}\right) \\
V_{W} & =\text { table lookup } \sim f(\text { altitude }) \\
A Z_{W} & =\text { table lookup } \sim f(\text { altitude })
\end{aligned}
$$

$$
\left[\begin{array}{l}
V_{W_{X P}} \\
v_{W_{Y P}} \\
v_{W_{Z P}}
\end{array}\right]=[A] \cdot[D]\left[\begin{array}{l}
0 \\
-V_{W} \sin A Z_{W} \\
-V_{W} \cos A Z_{W}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
v_{R_{X_{B}}} \\
v_{R_{Y_{B}}} \\
v_{R_{X_{B}}}
\end{array}\right]=[B]\left[\begin{array}{l}
v_{R_{X_{P}}}-v_{W_{X_{P}}} \\
v_{R_{Y_{P}}}-v_{W_{Y_{P}}} \\
v_{R_{Z_{P}}}-v_{W_{Z_{P}}}
\end{array}\right]
$$

$$
v_{B}=\left(v_{R_{X_{B}}}^{2}+v_{R_{\gamma_{B}}}^{2}+v_{R_{Z_{B}}}^{2}\right)^{\frac{1}{2}}
$$

$$
\beta=\sin ^{-1}\left(V_{R_{Y_{B}}} / N_{B}\right)
$$

$$
a=\tan ^{-1}\left(V_{R_{Z_{B}}} / V_{R_{X_{B}}}\right)
$$

Obtain from ATMDS

$$
\begin{aligned}
& \text { 1) } \rho=f \text { (altitude) } \\
& \text { 2) } a=f \text { (altitude) } \\
& \text { 3) } P=f \text { (altitude) } \\
& M=V_{B /} \\
& q=1 / 2 \rho V_{B} 2
\end{aligned}
$$

The following aerodynamic coefficients are looked up in tables for liftoff, boost to SRB separation, or orbiter + ET to MECO.

$$
c_{Z_{0}}=f(M)
$$

$$
c_{x_{\alpha}}=f(M)
$$

$$
c_{n_{p}}=f(M)
$$

$$
c_{1_{\delta_{r}}}=f(M)
$$

$$
C_{Z_{\alpha}}=f(M, \alpha)
$$

$$
c_{Y_{B}}=f(M)
$$

$$
c_{1_{p}}=f(M)
$$

$$
c_{n_{\delta_{r}}}^{r}=f(M)
$$

$$
c_{M_{0}}=f(M)
$$

$$
c_{1_{\beta}}=f(M)
$$

$$
c_{1_{r}}=f(M)
$$

$$
c_{\gamma_{\delta_{a}}}^{r}=f(M)
$$

$$
C_{M_{\alpha}}=f(M, \alpha)
$$

$$
c_{n_{B}}=f(M)
$$

$$
c_{n_{\delta_{a}}}=f(M)
$$

$$
c_{x_{0}}=f(M)
$$

Criteria for the selection of which group of tables to use should be as follows:

1) If $M<0.6$, use liftoff aero data tables.
2) If $M>0.6$ and prior to SRB separation, use orbiter + ET + SRB aero data tables.
3) If time is past SRB separation time, use orbiter + ET aero data tables.

Compute aerodynamic forces and moments

$$
\begin{aligned}
& F_{A_{X}}=q S\left(C_{X_{0}}+C_{X_{\alpha}}{ }_{\alpha}\right) \\
& F_{A_{Y}}=q S C_{Y_{B}} B+\frac{q S b}{2 V_{R_{X_{B}}}} C_{Y_{P}} P+q S C_{Y_{\delta r}} \quad \delta r \\
& F_{A_{Z}}=q S\left(C_{Z_{0}}+C_{Z_{\alpha}} \alpha\right)+q S C_{Z_{\delta e}} \quad \delta e \\
& M_{A_{X}}=F_{A_{Y}}\left(Z_{C G}-Z_{A_{R}}\right)-F_{A_{Z}}\left(Y_{C G}-Y_{A_{R}}\right)+q S b\left(C_{\gamma_{B}} B+\right. \\
& \left.C_{1_{\delta a}} \delta a+C_{\delta r} \delta r\right)+\frac{q S b^{2}}{2 V_{R_{X_{B}}}}\left(C_{1_{P}} P+C_{1_{r}} R\right) \\
& M_{A_{Y}}=q S \bar{c}\left(C_{m_{0}}+C_{m_{a}} \alpha\right)+F_{A_{Z}}\left(X_{C G}-X_{A_{R}}\right)-F_{A_{X}}\left(Z_{C G}-Z_{A_{R}}\right) \\
& +q S \bar{c}\left(C_{m_{\delta e}} \delta e+C_{m_{q}} Q a / 2 v_{R_{X_{B}}}\right) \\
& M_{A_{Z}}=q \leqslant b C_{n_{B}} B-F_{A_{Y}}\left(X_{C G}-X_{A_{R}}\right)+F_{A_{X}}\left(Y_{C G}-Y_{A_{R}}\right) \\
& +\frac{q S b^{2}}{2 V_{R_{X_{B}}}} C_{n_{P}} p-q S b \quad\left(C_{n_{\delta a}} \delta a+C_{n_{\delta r}} \delta r\right) \\
& \text { 2.3.3 Nomenclature } \\
& X_{F}, Y_{F}, Z_{F}=\text { vehicle position in inertial polar-equatorial coordinates } \\
& X_{P}, Y_{P}, Z_{P}=\text { vehicle position in inertial plumbline coordinates } \\
& \text { [A] = transformation matrix from inertial polar-equatorial to } \\
& \text { plumbline coordinates } \\
& \lambda_{\mathbf{v}} \quad=\text { latitude of present position of vehicle } \\
& \phi \quad=\text { East longitude of present position of vehicle corrected } \\
& \text { for earth's rotation } \\
& t_{L} \quad=\text { time of launch (from epoch) } \\
& C_{1} \quad=\text { radians to degrees conversion constant }
\end{aligned}
$$

W_{e}	= angular rate of earth
t	= elapsed time from liftoff
R_{V}	$=$ distance from the center of the earth to the vehicle
$V_{\text {EARTH }}^{X}$, $V_{\text {EARTH }}$	= components of earth's velocity in inertial polarequatorial coordinates
$v_{R_{X_{P}}}, v_{R_{r_{p}}}$	$=$ components of vehicle relative velocity in plumbline coordinates
$\mathrm{V}_{\mathrm{z}_{\mathrm{p}}}$	
$\dot{x}_{p}, \dot{y}_{p}, \dot{z}_{p}$	= components of vehicle velocity in plumbline coordinates
$V_{R_{p}}$	$=$ total vehicle relative velocity in plumbline coordinates
$V_{X L V}, v_{Y_{L V}}$,	components of relative velocity in local vertical coordinates
$\mathrm{V}_{\mathrm{Z}_{\mathrm{LV}}}$	
[D]	= transformation matrix from local vertical to inertial polarequatorial coordinates
γ	$=$ vehicle flight path angle with respect to local horizontal
v_{W}	= horizontal wind speed in local vertical coordinates
Az_{W}	$=$ wind azimuth (North $=0^{\circ}$)
$\begin{aligned} & v_{W_{X_{p}}}, v_{W_{Y_{P}}}, \\ & v_{W_{Z_{p}}} \\ & , \end{aligned}$	= components of wind velocity in plumbline coordinates
$v_{R_{X_{B}}}, v_{R_{Y_{B}}},$	= vehicle velocity with respect to air in body coordinates
$V_{R_{Z_{B}}}$	
[B]	$=$ transformation matrix from body to plumbline coordinates
v_{B}	$=$ total vehicle velocity with respect to air in body coordinates

α	= vehicle angle of attack
B	$=$ vehicle sideslip angle
ρ	$=$ local air mass density
a	$=$ local speed of sound
p	= local air pressure
M	$=$ Mach number
q	= dynamic pressure
$F_{X}, F_{A_{Y}}$	$=$ components of aerodynamic force in body coordinates
$\mathrm{F}_{\mathrm{A}_{\mathrm{Z}}}$	
S	= vehicle aerodynamic reference area
\bar{c}	$=$ vehicle mean aerodynamic chord
b	= vehicle reference span
δ_{a}	= aileron deflection
$\delta^{\text {e }}$	= elevator deflection
${ }^{\delta} \mathrm{r}$	= rudder deflection
p	$=$ vehicle roll rate
Q	$=$ vehicle pitch rate
R	= vehicle yaw rate
$\begin{aligned} & M_{A_{X}}, M_{A_{Y}}, \\ & M_{A_{Z}} \end{aligned}$	$=$ Aerodynamic moments about the X, Y, and Z body axes, respectively

2.3.4 Input/Output

Input from routines:

X_{p}, Y_{p}, Z_{p}	vehicle position in inertial plumbline coordinates from EOM
$\dot{X}_{P}, \dot{Y}_{P}, z_{p}$	vehicle velocity in inertial plumbline coordinates from EOM
V_{W}	wind velocity from tables
A_{W}	wind azimuth from tables
p, a, p	current air density, speed of sound and air pressure from ATMOS
$X_{C G}, Y_{C G}, Z_{C G}$	current location of vehicle center of gravity from MASPRO
t	elapsed time from liftoff from flight sequencer
R_{V}	distance from center of the earth to the vehicle from E $\emptyset M$
$\delta_{a}, \delta_{e}, \delta_{R}$	aerodynamic control surface deflections from flight software commands
P, Q, R	vehicle roll, pitch and yaw rates from E¢M
All aerodynamic coefficients	are input from tables.
Input from cards for initiali	ization:
t_{L}	time of launch (from epoch)
c_{1}	radians to degrees conversion constant
W_{e}	angular rate of earth
S	vehicle aerodynamic reference area
\bar{c}	vehicle mean aerodynamic chord
b	vehicle reference span
$X_{A_{R}}, Y_{A_{R}}, Z_{A_{R}}$	aerodynamic reference location in body coordinates

Output to routines:
p
$F_{A_{X}}, F_{A_{Y}}, F_{A_{Z}}$
$M_{A_{X}}, M_{A_{Y}}, M_{A_{Z}}$

Output to printer:
q
$\delta_{e}, \delta_{r}, \delta_{a}$
current air pressure to THRUST
components of aerodynamic forces to the EDM
moments due to aerodynamic forces to EQM
latitude of vehicle's position
longitude of vehicle's position
rate of climb
flight path angle
wind speed
wind azimuth
vehicle velocity with respect to air
angle of attack
angle of sideslip
local air mass density
local speed of sound
local air pressure
Mach number
dynamic pressure
aerodynamic control surface deflections
2.4 ATMOS (Atmosphere)
2.4.1 Program Description

This program calculates the speed of sound, pressure and air density from an altitude input.
2.4.2 Math Model

Use the Cape Kennedy Reference Atmosphere (TM-X-53872, PARAGRAPH 14.7 MSFC "COMPUTER SUBROUTINE PRA-63") as specified for SSV design studies.

2.4.3 Input/Output

The altitude above the mean earth surface must be supplied to the model which returns the speed of sound, pressure, and atmospheric density.

2.5 BLC (Baseline Control System)

2.5.1 Program Description

This model issues commands to the engine gimbals (to subroutine TVC via CMDFIL) such that the actual vehicle attitude is made to follow the attitude prescribed by the guidance model. This documentation represents the implementation of the RI system as described in the July 73 Space Shuttle Guidance and Control Data Book, with the addition of roll rate crossfeed into the Y accelerometer channel. With proper input of gain tables, this routine may be used both for first and second stage control.

2.5 .3	Nomenclature
AOP(i)	Mixing Logic Coefficients for Pitch Actuators Used for
	Pitch Control, i $=1-8$
AOY(i)	Mixing Logic Coefficients for Yaw Actuators Used for Yaw
	Control, $\mathbf{i}=1-8$
K	Roll Command Filter Constant
KAQ	Pitch Attitude Error Gain
KAR	Yaw Attitude Gain
KT	Rate Gain
KY	Lateral Accelerometer Gain
KZ	Normal Accelerometer Gain
K ${ }_{\text {¢ }}$	Roll Attitude Gain
P_{0}	Orbiter Roll Rate Gyro Signal
PORB	Pitch Signal to Orbiter Engines
PSRB	Pitch Signal to SRB Engines
Q_{K}	Summed SRB Pitch Rate Signal
Q_{0}	Orbiter Pitch Rate Gyro Signal
Q_{4}	Left SRB Pitch Rate Gyro Signal
Q_{5}	Right SRB Pitch Rate Gyro Signal
R_{0}	Orbiter Yaw Rate Gyro Signal
R_{4}	Left SRB Yaw Rate Gyro Signal
R_{5}	Right SRB Yaw Rate Gyro Signal
RA	Roll Rate Crossfeed Signal
$R A_{F}$	Filtered Roll Rate Crossfeed Signal
RORB	Roll Signal to Orbiter Engines
R0RB5	Roll Signal to Orbiter Engines Limited to ± 5 degrees

$R P(i)$	Mixing Logic Coefficients for Pitch Actuators Used for
	Roll Control, $i=1-7$
$R \mathrm{R}(\mathrm{i})$	Mixing Logic Coefficients for Aero Actuators Used for
	Roll Control, $i=1-2$
RSRB	Roll Signal to SRB Engines
RUDDER	Deflection Command to Rudder
RY(i)	Mixing Logic Coefficients for Yaw Actuators Used for
	Roll Control, $i=1-7$
TRIM 0	Trim Signal to Orboter Pitch Signal
TRIM_{S}	Trim Signal to SRB Pitch Signal
$\ddot{\gamma}$	Summed Lateral Accelerometer Signal
\ddot{Y}_{A}	Aft Lateral Accelerometer Signal
$\ddot{\boldsymbol{Y}}_{F}$	Filtered and Scaled Lateral Accelerometer Signal
$\ddot{\gamma}_{\text {FO }}$	Forward Lateral Accelerometer Signal
YORB	Yaw Signal to Orbiter Engines
YSRBL	Yaw Signal to Left SRB Engine
YSRBR	Yaw Signal to Right SRB Engine
\ddot{Z}	Summed Normal Accelerometer
\ddot{Z}_{A}	Aft Normal Accelerometer Signal
\ddot{Z}_{C}	Normal Accelerometer Command
\ddot{Z}_{F}	Filtered and Scaled Normal Accelerometer Signal
$\ddot{Z}_{\text {F0 }}$	Forward Normal Accelerometer Signal
$\dot{\gamma}_{\text {CI }}$	Inertial Flight Path Angle Rate Command
${ }^{\phi} \mathrm{CI}$	Inertial Roll Attitude Command
${ }^{\text {C CIF }}$	Filtered Inertial Roll Attitude Command

$\phi_{\varepsilon B}$	Body Roll Error
$\phi_{E I}$	Inertial Roll Error
${ }^{\text {I }}$	Inertial Roll Attitude
${ }^{\prime} \mathrm{K}$	Scaled Roll Attitude Signal
ϕ_{S}	Summed Roll Attitude and Rate Signal
$\dot{\phi}_{K}$	Roll Attitude Signal Rate of Change
${ }^{\theta} \mathrm{CI}$	Inertial Pitch Attitude Command
$\theta_{E B}$	Body Pitch Attitude Error
$\theta_{\varepsilon I}$	Inertial Attitude Error
${ }^{\text {I }}$	Inertial Pitch Attitude
${ }^{\theta} \mathrm{K}$	Scaled Pitch Attitude Signal
${ }^{\theta} \mathrm{S}$	Summed Pitch Attitude and Rate Signal
${ }^{\text {® }} \mathrm{CB}$	Body Pitch Rate Command
${ }_{\varepsilon}{ }^{*} B$	Body Yaw Attitude Error
$\psi_{E I}$	Inertial Yaw Attitude Error
${ }^{\Psi}{ }_{I}$	Inertial Yaw Attitude
${ }^{\Psi} \mathrm{CB}$	Body Yaw Rate Command
${ }^{\Psi} K$	Scaled Yaw Attitude Signal
${ }^{\psi}$ S	Summed Yaw Attitude and Rate Signal
$\delta_{0}{ }^{1}$	Deflection Command to Pitch Actuator of Orbiter Engine \#1
$\delta_{0 P 2}$	Deflection Command to Pitch Actuator of Orbiter Engine \#2
$\delta_{0}{ }^{\text {P }}$	Deflection Command to Pitch Actuator of Orbiter Engine \#3
${ }^{\delta}$ SR5	Deflection Command to Right Actuator of Left SRB
${ }^{\text {SR } 6}$	Deflection Command to Right Actuator of Right SRB
$\delta_{0 Y 1}$	Deflection Command to Yaw Actuator of Orbiter Engine \#1
$\delta_{\text {OY2 }}$	Deflection Command to Yaw Actuator of Orbiter Engine \#2

$\delta_{0 Y 3}$
${ }^{\delta}$ SL5
${ }^{\delta}$ SL6

Deflection Command to Yaw Actuator of Orbiter Engine \#3 Deflection Command to Left Actuator of Left SRB Deflection Command to Left Actuator of Right SRB Deflection Command to Pitch Actuator of OMS Engine \#7 Deflection Command to Pitch Actuator of OMS Engine \#2 Deflection Command to Yaw Actuator of OMS Engine \#1 Deflection Command to Yaw Actuator of OMS Engine \#2 Computation Frequency for Control Subroutine

2.5.4 Input/Output

Inputs to this model are inertial attitude angles, body rotational rates, Y and Z translational acceleration, prestored engine trim deflection commands, prestored acceleration commands, and attitude commands from guidance. Outputs from this model are engine gimbal and aero surface deflection commands output via the CMDFIL routine.

2.6 CGAINS (Control Gains Equations)

2.6.1 Program Description

The CGAINS program is used to calculate the control gains necessary for a desired type of control during the Shuttle boost. There are several options for the control gains that are calculated: load minimum, drift minimum, or attitude control for the pitch and yaw gains; and thrust vector control or aero control for the roll gains. The following model presents the equations necessary to calculate these gains.

2.6.2 Math Mode 1

The following quantities must be calculated each time the control gains are needed. The symbols used in these equations are defined in Table I.

$$
\begin{aligned}
& I_{l_{p}}=\bar{c}\left(C_{m \alpha} / C_{z \alpha}\right)+X_{c g}-X_{R} \\
& T_{1 y}=\left(\bar{D} C_{n \beta} / C_{y \beta}\right)+X_{c g}-X_{R} . \\
& N_{p}^{\prime}=q S C_{z \alpha} \\
& N^{\prime}{ }_{y}=q S C_{y \beta} \\
& 1_{a p}=X_{A C E L}-X_{c g} \\
& \left.1_{a y}=-\right]_{a p} \\
& K_{1 p}=\left[\sum_{i=1}^{7} F_{X_{i}}\right] / m \\
& K_{2 p}=N^{\prime}{ }_{p} / m \\
& { }^{\ell} X_{i}=X_{c g}-X_{e_{i}} \\
& { }^{\ell} Y_{\mathbf{i}}=Y_{c g}-Y_{e_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& z_{i}=Z_{c g}-Z_{e_{i}} \\
& K_{3 p}=-\left\{\left[\sum_{i=1}^{7} F_{X_{i}} * A O P_{i}\right]+\left(q S C_{3_{\delta}} A O P_{8}\right)\right\} / m \\
& K_{1 y}=-K_{1 p} \\
& K_{2 y}=-N_{y} / m \\
& K_{3 y}=\left\{\left[\sum_{i=1}^{7} F_{X_{i}} * A O Y_{i}\right]+\left(q S C_{\delta_{r}} A O Y_{8}\right)\right\} / m \\
& C_{1 p}=-\ell_{1 p} * N_{p}^{\prime} / I_{y} \\
& C_{z p}=\left\{\left[\sum_{i=1}^{7} F_{X_{i}} * A O P_{i}+\ell_{X_{i}}\right]+\left(q S \bar{c} C_{m_{\delta}} A O P_{8}\right)\right\} / I_{y} \\
& \Delta_{p}=C_{2 p} K_{2 p}-C_{1 p} K_{3 p} \\
& C_{l y}=-l_{l y} N N_{y}^{\prime} / I_{z} \\
& C_{2 y}=\left\{\left[\sum_{i=1}^{7} F_{X_{i}} * A O Y_{i} * \ell_{X_{i}}\right]+q S D C_{n_{\delta}} A O Y_{8}\right\} / I_{z} \\
& \Delta_{y}=C_{2 y} K_{2 y}-C_{l y} K_{3 y}
\end{aligned}
$$

Pitch and Yaw Control Gains for Load Minimum Option

$$
\begin{aligned}
& { }^{a_{0 p}}=0 . \\
& { }^{g_{2 p}}=\frac{\omega_{y}{ }^{2}-c_{1 p}}{\Delta_{p}+\omega_{y}{ }^{2}\left(K_{3 p}+1_{a p} c_{2 p}\right)} \\
& a_{1 p}=\frac{25_{p} \omega_{y}}{C_{2 p}}\left[1-g_{2 p}\left(K_{3 p}+1_{a p} c_{2 p}\right)\right] \\
& { }^{a_{0 y}}=0 . \\
& g_{2 y}=\frac{\omega_{z}{ }^{2}-c_{1 y}}{\Delta_{y}+\omega_{z}{ }^{2}\left(K_{3 y}+1_{a y} c_{2 y}\right)} \\
& a_{1 y}=\frac{2 \delta_{y y} \omega_{z}}{C_{2 y}}\left[1-g_{2 y}\left(K_{3 y}+1_{a y} c_{2 y}\right)\right]
\end{aligned}
$$

Pitch and Yaw Control Gains for Drift Minimum Option

$$
\begin{aligned}
& g_{2 p}=\frac{\omega_{y}^{2}-\left(1+c_{2 p} K_{1 p} / \Delta_{p}\right) c_{1 p}}{c_{2 p} K_{1 p}+\Delta_{p}+\omega_{y}^{2}\left(K_{3 p}+1_{a p} c_{2 p}\right)} \\
& a_{0 p}=g_{2 p} K_{1 p}+c_{1 p} K_{1 p} / \Delta_{p} \\
& a_{1 p}=\frac{2 \zeta_{p p} \omega_{y}}{c_{2 p}}\left[1-g_{2 p}\left(K_{3 p}+1_{a p} c_{2 p}\right)\right] \\
& g_{2 y}=\frac{\omega_{z}{ }^{2}-\left(1+c_{2 y} K_{1 y} / \Delta_{y}\right) c_{1 y}}{c_{2 y} K_{1 y}+\Delta_{y}+\omega_{z}^{2}\left(K_{3 y}+1_{a y} c_{2 y}\right)}
\end{aligned}
$$

$$
{ }^{a_{0 y}}=g_{2 y} K_{1 y}+C_{1 y} K_{1 y} / \Delta y
$$

$$
a_{1 y}=\frac{2 \zeta_{y} \omega_{z}}{C_{2 y}} \quad\left[1-g_{2 y}\left(K_{3 y}+1_{a y} c_{2 y}\right)\right]
$$

$$
\begin{aligned}
& g_{2 p}=0 \\
& a_{0 p}=\frac{\omega_{y}^{2}-c_{1 p}}{C_{2 p}} \\
& a_{1 p}=\frac{2 \zeta_{p} \omega_{y}}{C_{2 p}} \\
& g_{2 y}=0 \\
& a_{0 y}=\frac{\omega_{z}^{2}-C_{1 y}}{C_{2 y}+N^{\prime \prime}} \\
& a_{1 y}=\frac{2 \zeta_{y} \omega_{z}}{C_{2 y}+N^{\prime \prime}}
\end{aligned}
$$

Thrust Vector Control

$$
\begin{aligned}
c_{2 r} & =-\left[\sum_{i=1}^{6}\left(F_{X_{i}} * R P_{i} * l_{y_{i}}+F_{X_{i}} * R Y_{i}+l_{z_{i}}\right)\right] / I_{X} \\
a_{0 r} & =\frac{\omega_{x}}{C_{2 r}} \\
a_{1 r} & =\frac{2 \zeta_{r} \omega_{x}}{C_{2 r}}
\end{aligned}
$$

Aero Control

$$
\begin{aligned}
& C_{2 r}=-q S \bar{D}\left[C_{\ell_{\delta_{a}}} R R_{1}-1 C_{\ell_{\delta_{r}}} R R_{2}\right] / I_{X} \\
& a_{0 r}=\frac{\omega_{x}}{C_{2 r}} \\
& a_{1 r}=\frac{2}{C_{2 r}}
\end{aligned}
$$

TVC and Aero Control

$$
\begin{aligned}
& C_{2 r}=-\left\{\left[\sum_{i=1}^{6}\left(F_{X_{i}} * R P_{i} * \ell_{y_{i}}+F_{X_{i}} * R Y_{i} * \ell_{z_{i}}\right)\right]\right. \\
& \left.+q S D\left[C_{\ell_{\delta_{a}}} R R_{1}+C_{\ell_{\delta_{r}}} R R_{2}\right]\right\} / I_{X}
\end{aligned}
$$

${ }^{a}{ }_{0 r}$ and ${ }^{\mathrm{a}}$ ir same as above.

2.6.3	
Variable	Definition
AOP_{i}	Mixing Logic Coefficients for Pitch Actuators Used for Pitch Control, $\mathbf{i}=1-8$
AOY_{i}	Mixing Logic Coefficients for Yaw Actuators Used for Yaw Control, $i=1-8$
${ }^{\text {op }}$	Pitch Attitude Gain
$\mathrm{a}_{\text {oy }}$	Yaw Attitude Gain
${ }^{a}{ }_{1 p}$	Pitch Attitude Rate Gain
${ }^{\mathrm{a}} 1 \mathrm{y}$	Yaw Attitude Rate Gain
\bar{b}	Wing Span
c	Coefficients for Calculation of Gain
\bar{c}	Mean Aerodynamic Chord
$\mathrm{c}_{\ell_{\delta_{a}}}$	Aero Rolling Moment Coefficient Due to Aileron Deflection
$c_{\ell_{\delta_{r}}}$	Aero Rolling Moment Coefficient Due to Rudder Deflection
Cm_{α}	Aero Pitching Moment Coefficient Due to Angle-of-Attack
${ }^{\mathrm{Cm}} \delta_{\mathrm{e}}$	Aero Pitching Moment Coefficient Due to Elevator Deflection
Cn_{β}	Aero Yawing Moment Coefficient Due to Sideslip-Angle
${ }^{c n_{\delta_{r}}}$	Aero Yawing Moment Coefficient Due to Rudder Deflection
$C^{\text {¢ }}$	Aero Side Force Coefficient Due to Sideslip-Angle
${ }^{C y} \delta^{\delta}$	Aero Side Force Coefficient Due to Rudder Deflection

Variable	Definition
$C^{z_{\alpha}}$	Aero Normal Force Coefficient Due to Angle-of-Attack
$c_{z_{\delta}}$	Aero Normal Force Coefficient Due to Elevator Deflection
F_{X}	Thrust in X direction from engine i
$g_{2 p}$	Pitch Acceleration Gain
$g_{2 y}$	Yaw Acceleration Gain
I	Moments of Inertia
K	Coefficients for Calculation of Gains
1	Moment Arms
m	Mass
N^{\prime}	Partial of Normal Force
q	Dynamic Pressure
RP ${ }_{i}$	Mixing Logic Coefficients for Pitch Actuators Used for Roll Control, $\mathbf{i}=1-7$
$\mathrm{RR}^{\mathbf{j}}$	Mixing Logic Coefficients for Aero Actuators Used for Roll Control, $i=1-2$
RY_{i}	Mixing Logic Coefficients for Yaw Actuators Used for Roll Control, $\mathbf{i}=1-7$
S	Aero Reference Area
$\chi_{\text {ACCEL }}$	X Accelerometer Location
$X_{C G}, Y_{C G}, Z_{C G}$	Location of Center of Gravity
X_{R}, Y_{R}, Z_{R}	Location of Aero Reference Point
$X_{\dot{e}_{i}}, Y_{e_{i}}, z_{e_{i}}$	Engine Locations, $i=1-6$

$\frac{\text { Variable }}{\Delta_{p}, \Delta_{y}}$	$\frac{\text { Definition }}{\text { Temporary Variable }}$
ζ	Damping Ratio
ω	Natural Frequency

2.6.4 Input/0utput

The control gains routine calculates the attitude gains, attitude rate gains and accelerometer gains for each of the desired conditions which have been previously mentioned. These gains are also calculated for a range of natural frequencies (ω). These results are output on a scratch tape or FASTRAND file for processing by a plotting program.

2.7 FLTSEQ (Flight Sequencing)

2.7.1 Program Description

Although not currently active, this program is called by the Flight Control System (BLC) and is used to initiate staging and provide flight sequencing logic as required.

The switching points between stages were defined by the following events: 1) SRB separation and guidance initiation; 2) main engines shutdown and RCS activation; 3) external tank jettison; 4) OMS burn initiation and RCS deactivation; and 5) OMS shutdown and RCS actuation at orbit insertion.

2.7.2 Math Model

BOOST TO ORBIT

FLIGHT CONTROL LOGIC

2.8 GUIDE (Guidance Model)

Due to recent revisions and updates to the guidance equations, these models are not shown here but are presented in Volume V of this report.

2.9 MASPRO (Mass Properties)

2.9.1 Program Description

This model provides the mass properties, which consist of center of gravity travel, moments of inertia as a function of weight and total mass calculation.

2.9.2 Math Model

$$
\begin{aligned}
& W=W-\dot{W} \\
& \text { At Staging } W=W-W(I) \\
& C G_{x}=\text { table lookup } F(W) \\
& C G_{y}=\text { table lookup } F(W) \\
& C G_{z}=\text { table lookup } F(W) \\
& I_{x x}=\text { table lookup } F(W) \\
& I_{y y}=\text { table lookup } F(W) \\
& I_{z z}=\text { table lookup } F(W) \\
& I_{x z}=\text { table lookup } F(W)
\end{aligned}
$$

2.9.3 Nomenclature

$$
W=\text { total vehicle weight }
$$

$W(1)=$ solid rocket booster weight
$W(2)=$ external tank weight
$\dot{W}=$ weight flow rate input from THRUST
$C G_{X}=X$ center of gravity location from vehicle reference
$C G_{y}=Y$ center of gravity location from vehicle reference
$C G_{z}=Z$ center of gravity location from vehicle reference
$\dot{I}_{X X}=$ Mass moment of inertia about X axis
$I_{y y}=$ Mass moment of inertia about Y axis
$I_{z z}=X-Z$ cross product of inertia

2.9.4 Input/Output

Input: \dot{W} from THRUST
Output: W, CG's and I's.
2.10 MAXMIN (Max and Min Parameter Dump)
2.10.1 Program Description

This program is used to collect the extreme values of certain flight parameters. At the stop time scheduled for MAXMIN the collected values are printed. This routine may be scheduled as often as desired, as long as the calls do not overlap.
2.10.2 Math Mode1

2.10.3 Nomenclature
$V(i) \quad$ Parameter value to be tested for magnitude
$\operatorname{MAX}(i) \quad$ Maximum value of parameter i collected
$\operatorname{MIN}(i) \quad$ Minimum value of parameter i collected
$\operatorname{ABS}(i) \quad$ Absolute maximum value of parameter \mathbf{i} collected
$\operatorname{TMAX}(i) \quad$ Time of occurrence of maximum
TMIN(i) Time of occurrence of minimum
TABS(i) Time of occurrence of absolute maximum

2.11 ORBITI (Orbit Parameters)

2.11.1 Program Description

This math model calculates the parameters of the trajectory achieved at insertion from knowledge of the state vector in polar equatorial coordinates at the time of orbiter engine shutdown. The program calculates node, inclination angle, orbit phase angle, eccentricity, orbit parameter, true anomaly, apogee altitude, and perigee altitude.
2.11.2 Math Mode1

$$
\left.\begin{array}{c}
\eta=\operatorname{Arctan}\binom{-V_{Y P E} R_{Z P E}+V_{Z P E} R_{Y P E}}{-V_{X P E} R_{Z P E}+V_{Z P E} R_{X P E}} \\
\zeta=\operatorname{Arctan}\left(\frac{V_{Z P E}}{-V_{X P E} \sin +V_{Y P E} \cos n}\right) \\
\nu=\operatorname{Arctan}\left(\frac{-V_{X P E} \cos \eta-V_{Y P E} \sin \eta}{\cos \zeta\left(-V_{X P E} \sin +V_{Y P E} \cos n\right)+V_{Z P E} \sin \zeta}\right.
\end{array}\right) .
$$

$$
\begin{aligned}
P & =\frac{|R \times V|^{2}}{K} \\
S M A & =\frac{K}{\frac{2 K}{R}-V^{2}} \\
\varepsilon & =\sqrt{1-\frac{P}{S M A}} \\
F P & =\frac{R \cdot V}{R^{2} V^{2}-|R \cdot V|^{2}} \\
T A & =A r c t a n \frac{(P)(F P)}{P-R} \\
R_{P} & =S M A(1-E)-R_{e} \\
R_{a} & =2 \cdot S M A-R_{P}-2 R_{e}
\end{aligned}
$$

2.11.3 Nomenclature

$V_{X P E}, V_{Y P E}, V_{Z P E}=$ Velocity in polar-inertial coordinates
$R_{X P E}, R_{Y P E}, R_{Z P E}=$ Position in polar-inertial coordinates
$\eta=$ Longitude of the ascending node
$\zeta=$ Inclination angle
$\varepsilon=$ Eccentricity
$K=$ Gravitational constant $=1.407654 \times 10^{16} \mathrm{ft}^{3} / \mathrm{sec}^{2}$
$\nu=$ Orbit phase angle (angle between equator and perigee)
$P=$ Semi-latus rectum
SMA $=$ Semi-major axis
$F P=$ Tangent of flight path angle
TA = True anomaly
$R_{P}=$ Altitude at perigee
$R_{a}=$ Altitude at apogee
$R_{e}=$ Mean radius of the earth

2.11.4 Input/Output

The ORBITI math model requires the vehicle state vector in platform equatorial coordinates as input. As output the model prints out ascending node, inclination angle, orbit phase angle, eccentricity, orbit parameter, true anomaly, apogee altitude, and perigee altitude.

2.12 ORBITR (3D EQUATIONS OF MOTION)

2.12.1 Program Description

This Math Model calculates vehicle acceleration from active guidance commands and integrates to get velocity and position in platform coordinates. Polar-Equatorial and Local Vertical coordinates systems are erected to calculate latitude, longitude, and flight path angle. Logic is included for acceleration limiting, integration cycle time rectification, and velocity cutoff.
2.12.2 Mati; Model

$$
Q_{P T}=\sum_{I=1}^{N} \quad \frac{T_{V}}{M_{V}}(I)
$$

$$
\begin{array}{ll}
\overrightarrow{Q_{A P}} & =\frac{\overrightarrow{A_{P}}}{\mid \overrightarrow{A_{P} T}} \\
\overrightarrow{A_{P T}} & =Q_{P T} P_{T} \overrightarrow{Q_{A P}}+\overrightarrow{A_{G R A V}}
\end{array}
$$

$$
\begin{aligned}
& \overrightarrow{V_{P}^{\prime}} \quad=\int_{t} \overrightarrow{A_{P T}} d t+V_{P} \\
& \overrightarrow{R_{P}} \quad=\int t \overrightarrow{V_{P}} d t+\overrightarrow{R_{P}} \\
& \overrightarrow{R_{F}} \quad=[\alpha]^{\top} \vec{R}_{P}{ }^{\prime} \\
& \lambda_{V} \quad=\operatorname{Arcsin}\left(\frac{R_{F}(3)}{\frac{R_{F} T}{}}\right) \\
& \phi \quad=\operatorname{Arctan}\left(\frac{R_{F}(2)}{R_{F}(1)}\right)-\omega e\left(t_{L}+t\right) \\
& V_{L V}^{*} \quad=[\delta]^{\top}[\alpha]^{\top} \vec{V}_{p}^{\prime} \\
& \gamma \quad=\operatorname{Arcsin}\left(\frac{V_{L V^{(1)}}}{\left|V_{L V}\right|}\right)
\end{aligned}
$$

Integration Cycle Time Rectification

Acceleration limiting will most likely occur between integration time points. Therefore the integration for this interval must be done in two parts.

Velocity Cutoff

The program will be terminated either when $\left|V_{p}\right|$ exceeds \dot{Z} or when M_{V} is less than $M_{V O}$, whichever occurs first.
2.12.3 Nomenclature

$Q_{P T}$	= Thrust acceleration at full throttle
N	= Number of engines
T_{V}	= Maximum vacuum thrust of main engine
$M^{\prime} \mathrm{V}$	= Current vehicle mass
$A_{\text {LIM }}$	= Maximum allowed vehicle acceleration
$\left\|A_{T}\right\|$	= Magnitude of acceleration due to thrust
P_{T}	$=$ Throttle setting
\dot{M}_{V}	$=$ Total mass flow rate for all engines at full throttle
$\overrightarrow{A_{P}}$	= Acceleration command from guidance in platform coordinates
$\overrightarrow{Q_{A P}}$	= Unit vector acceleration command
$A_{P T}$,	= Current total vehicle acceleration in platform coordinates
AGRAV	$=$ Acceleration due to gravity in platform coordinates
V_{p}	$=$ Velocity of vehicle in platform coordinates on last pass
$\mathrm{V}_{\mathrm{p}}{ }^{\text {, }}$	= Current vehicle velocity
$\overrightarrow{R_{P}}$	= Position of vehicle in platform coordinates on last pass
$\mathrm{R}_{\mathrm{p}}{ }^{\prime}$	$=$ Current vehicle position
R_{F}	$=$ Position of vehicle in polar equatorial coordinates
λ_{L}^{*}	$=$ Geodetic latitude of launch site
$\phi_{L}{ }^{*}$	$=$ Longitude of launch site
${ }^{\omega} \mathrm{e}$	$=$ Rotation rate of earth
${ }^{T}$ L.	$=$ Time of launch
I	= Elasped time since launch
M_{V}	$=$ Mass of vehicle on last pass

A_{L}	$=$ Launch azimuth
λ_{V}	$=$ Present vehicle latitude
ϕ^{\prime}	$=$ Temporary variable
$[\alpha]$	$=$ Transformation from polar equatorial to platform coordinates
$[\delta]$	$=$ Transformation from local vertical to polar equatorial
${ }^{\prime}$	$=$ Preordinates
γ	$=$ Flight path angle
$\vec{V}_{L V}$	$=$ Velocity in local vertical coordinates
\dot{Z}	$=$ Target velocity in guidance coordinates
$M_{V O}$	$=$ Mass of empty orbiter

2.12.4 Input/Output

The targeting program provides \dot{Z}. The Active Guidance program provides \vec{A}_{p}. The gravity program provides $\vec{A}_{\text {GRAV }}$. The resulting quantities calculated by this model are $\lambda_{V}, \phi, \gamma, V_{P}, R_{P}, A_{P T}, M_{V}$, and $V_{L V}$. Flight software commands accepted by this model are \vec{A}_{P}. The Active Guidance, Targeting, and Gravity programs must be present to provide inputs to the model.
2.13 ORBTAR (Boost Orbit Insertion Targeting Model)

2.13.1 Program Description

The Targeting program is used in the flight software to describe the orbit plane with respect to the launch pad. Position, velocity, and a unit vector normal to the orbit plane at perigee are calculated from a knowledge of perigee and apogee altitudes, location of the launch pad, orbit inclination, and an orbit parameter.
2.13 .2 Math Model

$$
\begin{aligned}
& R_{P}=R_{e}+h_{P} \\
& R_{A}=R_{e}+h_{A} \\
& A=\frac{R_{P}+R_{A}}{2} \\
& R=R_{P} \\
& Y=0 \\
& Z=\text { unconstrained } \\
& \dot{R}=0 \\
& \dot{Y}=0 \\
& \dot{Z}=\sqrt{\mu\left(\frac{2}{R_{P}}-\frac{1}{A}\right)}
\end{aligned}
$$

$$
\begin{aligned}
S_{G} & =\sin (\lambda) \cos (\beta)+\cos \left(A_{Z}\right) \cos (\lambda) \sin (\beta) \\
C_{L} & =\sin \left(A_{Z}\right) \cos (\lambda) \\
C_{\dot{G}} & =\sqrt{1-S_{G}^{2}} \\
C_{P} & =\frac{C_{L}}{C_{G}} \\
\alpha & =\cos (\gamma) / C_{G} \\
\Delta & =-\sin (\beta) \sin (\Delta) \\
U_{Q}(1) & =\cos (\Delta) \\
U_{Q}(2) & =\cos (\beta) \sin (\Delta) \\
U_{Q}(3) & =\operatorname{cosin}(\alpha)
\end{aligned}
$$

2.13.3 Nomenclature
$R_{P}=$ distance from earth center of mass to periapsis
$R_{A}=$ distance from earth center of mass to apoapsis
$h_{P}=$ altitude at periapsis
$h_{A}=$ altitude at apoapsis
$A=$ semi-major axis
$\varepsilon=$ eccentricity
$R_{e}=$ radius of earth
$R=$ radial distance at insertion
$Y=$ cross-range distance at insertion
$Z=$ downrange distance at insertion
$\dot{R}=$ radial rate at insertion
$\dot{Y}=$ lateral velocity at insertion
$\dot{Z}=$ downrange velocity at insertion
$S_{G}, C_{L}, C_{G}, C_{P}, \alpha, \Delta=$ temporary variables
$\lambda=$ latitude of launch pad
$\mu=$ universal gravitational constant
$\beta=-$ orbi-t-parameter
$A_{Z}=1$ lunch azimuth
$\gamma=$ orbit inclination angle
$\vec{U}_{Q}=$ unit vector normal to desired orbit plane in platform coordinates (see Section IV)
2.13.4 Input/Output

This model requires $R_{e}, h_{p}, h_{a}, \lambda, B, A_{Z}$, and $\bar{\gamma}$ as input and calculates $R, Y, Z, \dot{R}, \dot{Y}, \dot{Z}$, and \vec{U}_{Q}. The model needs to be called only once per simulation.
2.14 RCS (Reaction Control System)

2.14.1 Program Description

This program calculates the moments and linear accelerations applied to the vehicle due to RCS thrust commands from the flight software.
2.14.2 Math Mode1

Thrust commands are conditioned according to the following limitations:
(1) A jet cannot be commanded to ignite unless the duration of ignition is some minimum value
(2) No jet can be ignited continuously longer than T_{B} seconds
(3) A jet cannot be commanded to ignite unless T_{A} seconds has elapsed since the previous ignition has ceased.

The following shows a logic diagram which can be used to implement these limitations.

RCS LOGIC DIAGRAM
FIGURE 2-1
2.14.3 Nomenclature
i = engine index
$j=1,2$, or 3 for x, y, or z respectively
$T_{\text {MAX }}=$ thrust achieved with continuous ignition
$T_{\text {MIN }}=$ average thrust for a computation cycle for minimum thrust duration
$T C_{i}(j)=$ commanded thrust
$T_{j}(j)=$ realized thrust
$\begin{aligned} & M_{i}(j)=\end{aligned} \begin{aligned} & \text { indicator for continuous thrust for the previous pass } \\ & \text { (set equal to zero for restart) }\end{aligned}$
$\begin{aligned} & N_{i}(j)=\end{aligned} \quad \begin{aligned} & \text { thrust enable flag } \\ & \\ & \text { (set equal to zero for restart) }\end{aligned}$
$T_{C H}=$ check time for T_{A}
$T_{H C}=$ check time for T_{B}
$t=$ current time at entry to RCS program

$$
\begin{align*}
\vec{M}_{\mathbf{i}} & =\vec{P}_{\mathbf{i}} \times \vec{T}_{\mathbf{i}} \tag{1}\\
P_{\mathbf{i}}(1) & =E L X_{\mathbf{i}}-X C G \\
P_{\mathbf{i}}(2) & =E L Y_{\mathbf{i}}-Y C G \tag{2}\\
P_{\mathbf{i}}(3) & =E L Z_{i}=Z C G
\end{align*}
$$

$\vec{P}_{\mathbf{i}}=$ engine position vector for the $i^{\text {th }}$ jet; ELX ${ }_{i}, E L Y_{i}, E L Z Z_{i}=$ X, Y, and Z locations, respectively, of the $i^{\text {th }}$ RCS jet cluster; XCG, YCG, ZCG $=X, Y$, and Z locations, respectively of the vehicle center of mass
i = engine index
$\vec{M}_{\mathbf{j}}=$ moment vector due to thrust from the $i^{\text {th }}$ jet
$\vec{T}_{\mathbf{i}}=$ thrust vector for the $\mathrm{i}^{\text {th }}$ jet
$X=$ indicates vector cross product
$\stackrel{\rightharpoonup}{M R}=\sum_{i=1}^{N} \vec{M}_{i}$
$\overrightarrow{M R}=$ total effective moment from all RCS jets
$N=$ number of RCS jets
$\vec{F}=\sum_{i=1}^{N} \overrightarrow{T_{i}}$
$F=$ total effective linear force
$A=R_{j} \sum_{=1}^{3} \sum_{i=1}^{N}\left|T_{i}(j)\right|$
$A=$ reduction in mass of vehicle due to RCS fuel usage
$R=R C S$ jet efficiency constant
2.14.4 Input/Output

The model requires ELX, ELY, ELZ, XCG, YCG, ZCG, \vec{T}_{c}, t, and M as input. The flight software command accepted is \vec{T}_{c}. The cross product, mass properties, and EOM subroutines must be present. The model provides $\overrightarrow{M R}$, A, and \vec{F} as output.

2.15 THRCMD (Throttle Command)

2.15.1 Program Description

This model senses vehicle longitudinal acceleration and issues throttle commands to the SSME's if the " 3 g " acceleration limit is exceeded. The throttle command is calculated such that the limit is maintained.

2.15.2 Math Model

2.15.3 Nomenclature

ACCEL Vehicle acceleration along X body axis
$F_{x} \quad$ Total thrust forces along X body axis
$M \quad$ Vehicle mass
go Accel. of gravity
$F_{\text {LIMIT }}$
$F_{\text {SSME }}$
$F_{\text {SRB }}$
THROT

Allowable thrust to maintain 3 g acceleration
Sum of SSME X axis thrusts
Sum of SRB X Axis thrusts
Throttle command to SSME's

2.15.4 Input/Output

This model requires as input X axis thrusts for the SRB and SSME's. In addition the present throttle setting must be supplied. Outputs consist of identical throttle commands to the Space Shuttle main engines.

2.16 THRUST

2.16.1 Program Description

This model calculates forces and moments in body coordinates due to thrust forces from all engines given engine gimbal angles, throttle settings, and atmospheric pressure.

2.16.2 Math Mode 1

Table lookup for SRM vacuum thrust, SRM mass flow rate, and power-on base drag.

$$
P O B D=f(h)
$$

$$
\text { time }_{S R M}=\text { time } *(1+U N B A L)
$$

$$
T_{\left.V_{i(i}=4+5\right)}=f\left(\text { time }_{S R M}\right) *(1+U N B A L)
$$

$$
\dot{M}_{i}(i=4-5)=f\left(\text { time }_{S R M}\right) *(1+\text { UNBAL })
$$

Calculate engine forces

$$
\begin{aligned}
& T_{i(i=1-7)}=P_{T_{i}} *\left(T_{V_{i}}-E A_{i} * P_{A}\right) \\
& { }^{\theta} P=\alpha_{2} *\left(\tan \delta_{P_{i}}+\alpha_{1} *\left(\tan \delta_{Y_{i}}\right)\right) \\
& { }^{\theta} Y_{Y}=\alpha_{2} *\left(\tan \delta_{Y_{i}}-\alpha_{1} *\left(\tan \delta_{P_{i}}\right)\right) \\
& \text { if } i=1-3,6-7 \quad \alpha_{1}=0 \text { and } \alpha_{2}=1 \\
& i=4,5 \quad \alpha_{1}=1 \text { and } \alpha_{2}=.7071068 \\
& \text { (for } \mathbf{i}=4,5 ; \alpha_{1} \text { and } \alpha_{2} \text { are unique for diag. and SRB actuators) } \\
& T B X_{i}=T_{i} *\left(1+\theta_{P}^{2}+\theta_{Y}{ }^{2}\right)^{-1 / 2} \\
& T B Y_{i}=T B X_{i}{ }^{*}{ }^{\theta} \mathbf{Y} \\
& T B Z_{i}=T B X_{i}{ }^{*} \theta_{p}
\end{aligned}
$$

Sum Forces

$$
\begin{aligned}
& F B_{X}=\sum_{i=1,7} T B X_{i}+P O B D \\
& F B_{Y}=\sum_{i=1,7}^{\Sigma} T B Y_{i} \\
& F B_{Z}=\sum_{i=1,7}^{\Sigma} \quad T B Z_{i} \\
& \text { Calculate moments } \\
& \text { MTXB }_{\mathbf{i}}=T B Z_{\mathbf{i}}\left(E L Y_{\mathbf{i}}-Y C G\right)-T B Y_{\mathbf{i}}\left(E L Z_{\mathbf{i}}-Z C G\right) \\
& M T Y B_{i}=T B X_{i}\left(E L Z_{i}-Z C G\right)-T B Z_{\mathbf{i}}\left(E L X_{i}-X C G\right) \\
& M T Z B_{i}=\text { TBY }_{\mathbf{i}}\left(E L X_{i}-X C G\right)-T B X_{i}\left(E L Y_{i}-Y C G\right)
\end{aligned}
$$

Sum moments
$M T B_{X}=\Sigma M T X B_{i}$
$M T B_{Y}=\Sigma M T Y B_{i}$
$M T B_{Z}=\Sigma M T Z B_{i}$
2.16.3 Nomenclature
i $=$ engine index; 1,2,3 = orbiter engines, $4,5=$ solid engines 6,7 $=$ OMS engines

POBD :== Power-on base drag
$h==A l t i t u d e$
UNBAL $=$ Individual SRM thrust unbalance
$T_{V_{i}}=$ Vacuum thrust
$\dot{M}_{i}=$ Mass flow rate
$\mathrm{T}_{\mathbf{i}}=$ Altitude thrust
$P_{T_{i}}=$ Throttle setting
$E A_{j}=$ Engine exit area
$\mathrm{P}_{\mathrm{A}}=$ Atmospheric pressure
$\delta_{\mathbf{P}_{\mathbf{i}}}=$ Engine pitch gimbal angle
${ }^{\delta} \boldsymbol{Y}_{\mathbf{i}} \quad=$ Engine yaw gimbal angle
$\operatorname{TBX}_{\mathbf{i}}=$ Engine force in X body coordinate
TB ${ }_{i}=$ Engine force in Y body coordinate
$T B Z_{i}=$ Engine force in Z body coordinate
$\mathrm{FB}_{\mathrm{X}}=$ Total thrust force in X body coordinate
$F B_{Y}=$ Total thrust force in Z body coordinate
MTXB $_{i}, M T Y B_{i}, M T Z B_{i}=X, Y$, and Z components, respectively, of moments due to engine number i.
$E L X_{i}, E L Y_{i}, E L Z_{i}=X, Y$, and Z components, respectively, of engine locations in body coordinates.
$X C G, Y C G, Z C G=X, Y$, and Z components of location of center of mass of the vehicle.
$M T B_{X}, M T B_{Y}$, and $M T B_{Z}=X, Y$, and Z components, respectively of total moments due to engine thrust
2.16.4 Input/Output

The parameters which must be supplied to the model as input are $E A_{i}, E L X_{i}$, $E L Y_{i}, E L Z_{i}, P_{T i}, T_{V i}, P_{A}, \delta_{P_{i}}, \delta_{Y_{i}}, X C G, Y C G$, and ZCG. The resulting
quantities calculated by the model are FTB and MTB. The flight software command accepted by the model is $\mathrm{P}_{\mathrm{T}_{\mathbf{i}}}$. The outputs of this model are accepted by the equations of motion.
2.17 TSHAPE (Trajectory Shaping)
2.17.1 Program Description

The trajectory and control parameters which must be calculated to accomplish trajectory shaping are α_{D}, desired angle-of-attack; ${ }_{C}$, desired pitch attitude angle; δ_{D}, desired engine deflection angle; and $\ddot{Z}_{D C G}$, desired body sensed acceleration. The values of ${ }^{\theta_{C}}, \delta_{D}$, and $\ddot{Z}_{D C G}$ are dependent on α_{D}. The boost flight is divided into three phases: vertical rise, tilt maneuver, and alpha policy. For each of these flight phases, $\alpha_{\dot{D}}$ is calculated differently.
2.17.2 Math Mode1
2.17.3 General Calculations

$$
\begin{aligned}
& C_{Z^{\alpha}}{ }_{r} \quad=C_{Z^{\alpha}} \cdot \frac{\pi}{180} \\
& N_{0} \quad=q S C_{20} \\
& N_{P}^{\prime} \quad=q . S C_{Z}{ }_{r} \\
& \mathrm{I}_{0}=\overline{\mathrm{c}}\left(\mathrm{C}_{\mathrm{mo}} / \mathrm{C}_{z \mathrm{O}}\right)+\mathrm{X}_{\mathrm{CG}}-\mathrm{X}_{\mathrm{R}} \\
& 1_{1 P}=\bar{c} \quad\left(C_{m}{ }^{\alpha} / C_{z}{ }^{\alpha}\right)+X_{C G}-X_{R} \\
& D_{Z} \quad=F_{a x} Z_{C G} \\
& X_{1 g}=X_{C G}-X_{0} \\
& Z_{1 g}=Z_{C G}-Z_{0} \\
& \text { Lo } \\
& =\left(X_{l g}{ }^{2}+Z_{l g}{ }^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& L_{B}=\left[\left(x_{B}-x_{C G}\right)^{2}+\left(z_{B}-z_{C G}\right)^{2}\right]^{7 / 2} \\
& \delta_{C G B}=-\tan \left[\frac{z_{C G}-z_{B}}{x_{C G}-x_{B}}\right] \\
& \delta_{C G O}=\tan \left[\frac{-z_{1 g}}{x_{1 g}}\right]
\end{aligned}
$$

Angle-of-Attack Calculations

Vertical Rise

$$
\begin{aligned}
& \delta_{D} \quad=\delta_{C G O}-L_{B} F_{B}\left(\frac{\delta_{B}-\delta_{C G B}}{L_{0} F_{0}}\right) \\
& \alpha_{D}
\end{aligned}=\tan ^{-1}\left[\frac{F_{0} \cos \delta_{D}=F_{B} \cos \delta_{B}}{-F_{0} \sin \delta_{D}-F_{B} \sin \delta_{B}}\right]
$$

Tilt Maneuver (Parking Lot Tilt)

The maneuver modeled here is a modification of the tilt maneuver presented in the previous memo. Here, α_{m} is used as the value of angle-of-attack at a time half-way between the time to begin and end the tilt maneuver, T_{T} and T_{D}. Therefore, this procedure can fit any part of a parabola to the three points, depending on the value of α_{m}, and i ts relation to α_{0} and α_{D}. This is illustrated in Figure 2-2.

where $\alpha_{m 1}, \alpha_{m 2}$, and $\alpha_{m 3}$ are three examples of values for α_{m} which cause a different shape curve to be fitted. The calculation for α_{D} during this maneuver is as follows:

$$
\begin{aligned}
\alpha_{0} & =\tan \left[\frac{V_{B Z}}{V_{B X}}\right], \text { calculated only at } t=T_{T} \\
T_{O P} & =\frac{T_{T}+T_{D}}{2} \\
A_{1} & =\frac{\alpha_{D}-\alpha_{0}}{2} \\
& =\frac{\left(\alpha_{D}-\alpha_{m}\right)+\left(\alpha_{D}-\alpha_{m}\right)}{2} \\
A_{2} & =\frac{T-T_{O P}}{T_{2}\left(T_{D}-T_{T}\right)} \\
Z & =\alpha_{m}+A_{1} Z+A_{2} Z^{2}
\end{aligned}
$$

$$
\begin{aligned}
K_{2} & =\frac{-N_{P}^{\prime}+F_{T}}{m} \\
K_{3} & =\frac{F_{0}}{m} \\
& =\frac{1_{0} N_{0}-F_{a x}\left(Z_{C G}-Z_{R}\right)}{I_{y y}} \\
\ddot{\theta}_{0} & =N_{0} / m \\
\ddot{Z}_{0} & =C_{2 P} \delta_{C G 0}+\ddot{\theta}-C_{2 B} \\
B_{1} & =\ddot{Z}_{0}-K_{3 B} \\
B_{2} & =\frac{B_{1} K_{3}-B_{2} C_{2 P}}{C_{1 P} K_{3}-C_{2 P} K_{2}}
\end{aligned}
$$

Aerodynamic Moment Control

$$
\alpha_{D} \quad=\frac{-1_{0} N_{0}+D_{z}}{l_{1 P} N_{P}^{\prime}}
$$

Remaining Shaping and Control Parameters

The following parameters are calculated after a value for α_{D} has been determined by some specified alpha policy.

$$
\begin{aligned}
& \theta_{R}=\tan ^{-1}\left[\frac{V_{R Z}}{V_{R X}}\right] \\
&=\alpha_{D}-\theta_{R} \\
& \theta_{C} \\
& \ddot{\theta}_{0}=\frac{1_{0} N_{0}-F_{a x}\left(Z_{C G}-Z_{R}\right)}{I_{y y}} \\
& C_{1 P}=\frac{-1_{1 P} N_{P}^{\prime}}{I_{y y}} \\
& \delta_{D} \frac{\left(\ddot{\theta}{ }_{0}-C_{1 P} \alpha_{D}\right) I_{y y}+\delta_{C G O}-L_{B} F_{B}\left(\delta_{B}-\delta_{C G B}\right)}{L_{0} F_{0}} \\
&=\frac{1}{m}\left[N_{0}+N_{P}^{\prime}{ }^{\alpha_{D}}-F_{0} \sin ^{\left.\delta_{D}-F_{B} \sin \delta_{B}\right]}\right.
\end{aligned}
$$

2.17.3 Nomenclature

Variable	Definition.
A_{1}, A_{2}	Temp. variables
B_{1}, B_{2}	Temp. variables
$C_{1 P}, C_{2 P}, C_{2 B}$	Temp. variables
\bar{c}	Mean aerodynamic cord
$C_{m o}, C_{m}$	Aero. moment coefficients
$C_{Z 0}, C_{Z \alpha}$	Aero. normal force coefficients (pitch)

Drag moment due to CG offset
Total force acting on vehicle
Aeoo. axial force
Moments of inertia
Temp. variables
Moment arms from CG to orbiter and booster engines
Mass
Normal force at zero angle-of-attack
Partial of normal
Dynamic pressure
Aerodynamic reference area
Present time
Time to end tilt maneuver (begin alpha policy)
Mid point between T_{D} and T_{T}
Time to begin tilt maneuver (end vertical rise)
Velocity components in body coordinates
Inertial components of velocity relative to air
Location of center of gravity
Moment arm from CG to orbiter engines
Average orbiter engine location
Location of aerodynamic reference
Location of body fixed accelerometer
Temp. variable
Desired body sensed acceleration

2.18 TVC (Thrust Vector Control)

2.18.1 Program Description

This model describes the motions of massless engines with limits on deflection, deflection rate, and acceleration.
2.18.2 Math Mode]

Initialization (time $=0$)
${ }^{\delta} P_{0 L D_{i}(i=1,7)}={ }^{\delta} P_{N E W_{i}}$
${ }^{\delta} Y_{O L D} \quad(i=1,7) \quad={ }^{\delta} Y_{N E W_{i}}$

Process and Limit Commands

if $\left(\delta_{\text {P }_{\text {COMMAND }_{i}}}-\right.$ PNULL $\left._{\mathbf{i}}\right)>$ PLIMIT $_{\mathbf{i}}$

$$
\begin{aligned}
& \delta_{\text {COMMAND }_{i}}=\operatorname{PLIMIT}_{\mathbf{i}}+\text { PUL }_{\mathbf{i}} \\
& \text { if }\left({ }^{\delta} \gamma_{\text {COMMAND }_{i}}-\text { NULL }_{i}\right)>\text { LIMIT }_{\mathbf{i}} \\
& { }^{\delta} \boldsymbol{Y}_{\text {COMMAND }_{i}}=\text { LIMIT }+ \text { NULL }_{\mathbf{i}}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\delta}{Y_{\text {NEW }}^{i}}=\left(1-\mathrm{e}^{-10 * \Delta t i m e}\right) * \delta_{\text {COMMAND }_{i}}+\left(\mathrm{e}^{-10 * \Delta \text { time }}\right) * \delta_{Y_{O L D}}
\end{aligned}
$$

Calculate and Limit Rates

$$
\begin{aligned}
& \ddot{\phi}_{N E W_{i}}=\left(\delta_{P_{N E W_{i}}}-\delta_{0 L D_{i}}\right) / \Delta t i m e \\
& \text { limit to } \dot{\delta}_{\mathrm{P}_{\text {LIMIT }_{\mathbf{i}}}} \\
& \dot{\delta}_{\gamma_{N E W_{i}}}=\left(\delta_{\mathcal{N E W}_{\mathbf{i}}}-\delta_{\gamma_{O L D_{i}}}\right) / \text { time } \\
& \text { limit to }{ }^{\dot{\delta}}{ }_{\gamma_{\text {LIMIT }_{i}}}
\end{aligned}
$$

Calculate and Limit Accelerations

$$
\begin{aligned}
& \ddot{\delta}_{p_{i}}=\left(\dot{\delta}_{\mathrm{NEW}_{i}}-\dot{\delta}_{\mathrm{OLD}_{i}}\right) / \Delta t i m e \\
& \text { limit to } \ddot{\delta}_{\mathrm{P}_{\text {LIMIT }_{i}}} \\
& \ddot{\delta}_{Y_{i}}=\left(\dot{\delta}_{y_{N E W_{i}}}-\dot{\delta}_{Y_{O L D_{i}}}\right) / \Delta \text { time } \\
& \text { limit to } \ddot{\delta}_{Y_{\text {LIMIT }}}
\end{aligned}
$$

Define new rate using limited acceleration

$$
\begin{aligned}
& \dot{\delta}_{P_{N E W}}=\dot{\delta}_{P_{O L D_{i}}}+\left(\ddot{\delta}_{P_{N E W_{i}}}\right) *(\Delta t i m e) \\
& \dot{\delta}_{Y_{N E W}}=\dot{\delta}_{Y_{O L D}}+\left(\ddot{\delta}_{Y_{N E W_{i}}}\right) *(\Delta t i m e)
\end{aligned}
$$

Define new position using limited rate

$$
\begin{aligned}
& \delta_{\mathrm{P}_{\mathrm{NEW}_{\mathbf{i}}}}=\delta_{\mathrm{P}_{0 L D_{i}}}+\left(\delta_{\mathrm{P}_{\mathrm{NEW}_{\mathbf{i}}}}\right) *(\Delta \text { time })+\text { BIAS }_{i} \\
& \delta_{Y_{N E W_{i}}}=\delta_{Y_{O L D}}+\left(\delta_{Y_{N E W}}\right) *(\Delta t i m e)+\text { BIAS }_{i}
\end{aligned}
$$

Reset 01d Values

$$
\begin{aligned}
& { }^{\delta} \mathrm{P}_{\mathrm{OLD} \mathrm{D}_{\mathbf{i}}}={ }^{\delta} \mathrm{P}_{\mathrm{NEW}_{\mathbf{i}}}-\text { BIAS }_{i} \\
& { }^{\delta} Y_{O L D_{i}}={ }^{\delta} Y_{O L D_{i}}-\text { BIAS }_{i} \\
& { }^{\delta} \mathrm{P}_{\mathrm{OLD}_{\mathrm{i}}}={ }^{\delta} \mathrm{P}_{\mathrm{NEW}_{\mathrm{i}}} \\
& \dot{\delta}_{Y_{O L D_{i}}}=\dot{\delta}_{Y_{N E W}}
\end{aligned}
$$

Calculate Duty Cycle

DCYCLE $_{\mathbf{i}}=$ DCYCLE $_{\mathbf{i}}+(\Delta$ time $) *\left(\left|\dot{\delta}_{\mathrm{P}_{\mathrm{NEW}_{\mathbf{i}}}}\right|+\left|\dot{\delta}_{\mathbf{\gamma}_{\text {NEW }_{\mathbf{i}}}}\right|\right)$
2.18.3 Nomenclature
${ }^{\delta} \mathrm{P}_{\text {NEW }} \quad=$ present pitch deflection
$\delta_{Y_{\text {WW }}} \quad=$ present yaw deflection
${ }^{\delta} P_{0 L D} \quad=$ past pitch deflection
${ }^{\delta} y_{0 L D} \quad=$ past yaw deflection
$\dot{\delta}_{P_{\text {NEW }}} \quad=$ present pitch deflection rate
$\dot{\delta}_{Y_{\text {NEW }}} \quad=$ present yaw deflection rate

$\dot{\delta}_{P_{0 L D}}$	$=$ past pitch deflection rate
$\dot{\delta}_{Y_{O L D}}$	= past yaw deflection rate
$\ddot{\delta}_{p}$	= pitch deflection acceleration
$\ddot{\delta}_{\gamma}$	= yaw deflection acceleration
BIASP.	= engine pitch bias due to misalignments
BIASY	= engine yaw bias due to misalignments
PLIMIT	$=$ pitch deflection limit
YLIMIT	= yaw deflection limit
PNULL	$=$ pitch null position
YNULL	= yaw null position
${ }^{\delta} P_{0}$ COMMAND	$=$ pitch deflection command from flight computer
$\delta^{\gamma_{\text {COMMAND }}}$	= yaw deflection command from flight computer
$\delta_{\text {P }_{\text {LIMIT }}}$	$=$ pitch rate limit
${ }^{\delta}{ }_{\text {Y LIMIT }^{\prime}}$	= yaw rate limit
$\ddot{\delta}_{\text {P }_{\text {LIMIT }}}$	$=$ pitch acceleration limit
$\ddot{\delta}_{\gamma}$ LIMIT	= yaw acceleration limit

i $\quad=$ engine index; $1,2,3=$ orbiter engines
$4,5=$ solid engines
6, $7=0 \mathrm{MS}$ engines

2.18.4 Input/Output

Inputs: Pitch and yaw deflection commands from the flight control system (for each engine); deflection, rate, and acceleration limits; pitch and yaw null positions; and canned yaw bias.

Outputs: Engine deflections, deflection rates, deflection accelerations, and duty cycle requirements.

3.0 COORDINATE SYSTEMS

Inertial Polar-Equatorial - A right-handed orthogonal system with its origin at the center of the earth - X axis in the equatorial plane and positive through a reference meridian at the time of liftoff; the reference meridian is defined by the time of liftoff and the coordinate system used for gravity calculations. The Z axis is positive through the North Pole.

Inertial Plumbline - An orthogonal system with its origin at the center of the earth, X axis parallel to the launch site gravity vector and positive in the direction opposite to gravitational acceleration. The Z axis lies in the launch plane and points downrange and the Y axis completes a right-handed triad.

Local Vertical - An orthogonal system with its origin at the center of the earth, the X axis points from the earth center to the vehicle, the Z axis is in the plane containing the earth's rotation axis and the $X_{L V}$ axis. The Z axis is perpendicular to the X axis and points towards the North Pole. The Y axis completes a right-handed triad.

Body - An orthogonal system with its origin at the engine gimbal pivot plane - X axis positive towards the nose of the vehicle along the main propellant tank centerline, Z axis positive "down", and the Y axis completes the right-handed system and is positive in the direction of the right wing.

Transformation matrix from polar-equatorial to plumbline coordinates:

$$
\begin{aligned}
& {[\alpha]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]} \\
& a_{11}=\cos \lambda_{L}^{*} \cos \left(\phi_{L}^{*}+\omega_{e} t_{L}\right) \\
& a_{12}=\cos \lambda_{L}^{*} \sin \left(\phi_{L}^{*}+\omega_{e} t_{L}\right) \\
& a_{13}=\sin \lambda_{L}^{*} \\
& a_{21}=\sin A_{L} \sin \lambda_{L}^{*} \cos \left(\omega_{e} t_{L}+\phi_{L}^{*}\right)-\cos A_{L} \sin \left(\omega_{e} t_{L}+\phi_{L}^{*}\right) \\
& a_{22}=\sin A_{L} \sin \lambda_{L}^{*} \sin \left(\omega_{e} t_{L}+\phi_{L}^{*}\right)-\cos A_{L} \cos \left(\omega_{e} t_{L}+\phi_{L}^{*}\right) \\
& a_{23}=-\sin A_{L} \cos \lambda_{L}^{*} \\
& a_{31}=-\cos A_{L} \sin \lambda_{L}^{*} \cos \left(\omega_{e} t_{L}+\phi_{L}^{*}\right)-\sin A_{L} \sin \left(\omega_{e} t_{L}+\phi_{L}^{*}\right) \\
& a_{32}=-\cos A_{L} \sin \lambda_{L}^{*} \sin \left(\omega_{e} t_{L}+\phi_{L}^{*}\right)+\sin A_{L} \cos \left(\omega_{e} t_{L}+\phi_{L}^{*}\right) \\
& a_{33}=\cos A_{L} \cos \lambda_{L}^{*}
\end{aligned}
$$

Where:
$\lambda_{L}^{*}=$ geodetic latitude of launch site
$\phi_{L}^{*}=$ longitude of launch site
$\omega_{e}=$ angular rate of earth
$T_{L}=$ time of launch (from epoch)
$A_{L}=$ launch azimuth

Transformation matrix from body to inertial plumbline coordinates:

$$
[B]=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

$b_{11}=\cos \theta \cos \psi$
$b_{12}=\sin \theta \sin \phi-\cos \theta \sin \psi \cos \phi$
$\mathrm{b}_{13}=\sin \theta \cos \phi+\cos \theta \sin \psi \sin \phi$
$b_{21}=\sin \psi$
$\mathrm{b}_{22}=\cos \psi \cos \phi$
$\mathrm{b}_{23}=-\cos \psi \sin \phi$
$b_{31}=-\sin \theta \cos \psi$
$\mathrm{b}_{32}=\cos \theta \sin \phi+\sin \theta \sin \psi \cos \phi$
$b_{33}=\cos \theta \cos \phi-\sin \theta \sin \psi \sin \phi$
where the Euler angles θ, ψ and ϕ are calculated in EØM.

Transformation matrix from local vertical to polar-equatorial coordinates:

$$
\begin{aligned}
& {[\phi]=\left[\begin{array}{lll}
d_{11} & d_{12} & d_{13} \\
d_{21} & d_{22} & d_{23} \\
d_{31} & d_{32} & d_{33}
\end{array}\right]} \\
& d_{11}=\cos \lambda_{V} \cos \phi^{\prime} \\
& d_{12}=-\sin \phi^{\prime} \\
& d_{13}=-\sin \lambda_{V} \cos \phi^{\prime} \\
& d_{21}=\cos \lambda_{V} \sin \phi^{\prime} \\
& d_{22}=\cos \phi^{\prime} \\
& d_{23}=-\sin \lambda_{V} \sin \phi^{\prime} \\
& d_{31}=\sin \lambda_{V} \\
& d_{32}=0 \\
& d_{33}=\cos \lambda_{V}
\end{aligned}
$$

Where:

$$
\begin{aligned}
& \sin \lambda_{V}=Z_{F} / R \\
& \cos \lambda_{V}=\sqrt{1-\sin ^{2} \lambda_{V}} \\
& \sin \phi^{\prime}=Y_{F} / R \cos \lambda_{V} \\
& \cos \phi^{\prime}=X_{F} / R \cos \lambda_{V}
\end{aligned}
$$

4.0 FLEXIBLE BODY MATH MODELS

Mathematical models were developed for use in the SSFS. These models were programmed for a parallel burn solid rocket motor configuration. The flexible body version of SSFS is currently being checked out.

4.1 Flexible Body Program Description

This program contains the bending and slosh models for the launch configuration during first stage boost. It uses a generalized modal approach to bending which represents the elastic response by standard normal modal equations with viscous damping. Included are models for aerodynamic forces and moment and thrust forces and moments to account for bending effects as well as the tail wags dog contribution to bending. The rigid body and elastic response equations provided here are uncoupled and are considered separately since the magnitude of the coupling is insignificant. The number of equations is very sensitive to the vehicle configuration and to the completeness of the bending analysis. Therefore, when data becomes available it is likely that only a small percentage of the general set provided here will actually be required for SSV analysis.

The model sums all the forces acting on each of the equivalent mass points and for a given mode numerically integrates the sum with a second order linear differential equation in modal displacement. The number of mass points at which aero forces and modal displacements are calculated will be less than 50 . The number of modes at these points will be less than 10 each. The number of slosh masses will be less than 5 and the number of modes per slosh mass will be less than 5. The EOM, guidance atmosphere and control subroutine must be present to provide inputs for this model.
4.2 Vibration Equations

$$
\begin{aligned}
& \sum_{j=1}^{N 1}\left(F_{a x j} \phi_{x i j}+F_{a y j} \phi_{y i j}+F_{a z j} \phi_{z i j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j=1}^{K 1}\left(F_{s x j} \phi_{x i j}+F_{s y j} \phi_{y i j}+F_{s z j} \phi_{z i j}\right) \\
& +\sum_{j=1}^{N 2}\left(M_{a x j} \phi_{x i j}^{\prime}+M_{a y j} \phi_{y i j}^{\prime}+M_{a z j} \phi_{z i j}^{\prime}\right) \\
& +\sum_{j_{=}^{M 2}=1}\left(M_{t x j} \phi_{x i j}^{\prime}+M_{t y j} \phi_{y i j}^{\prime}+M_{t z j} \phi_{z i j}^{\prime}\right) \\
& +\sum_{j=-1}^{k 2}\left(M_{s x j} \phi_{x i j}^{\prime}+M_{s y j}{ }^{\phi_{y i j}}+M_{s z j} \phi_{z i j}^{\prime}\right) \\
& =m_{i}\left(\ddot{q}_{i}+2 \zeta_{i} \omega_{i} \dot{q}_{i}+\omega_{i}^{2} q_{i}\right) \\
& \dot{q}_{i}=\int \ddot{q}_{i} d t+\dot{q}_{i} \\
& q_{i}=\int \dot{q}_{i} d t+q_{i}
\end{aligned}
$$

Where:

> N1 = number of aero stations for aero forces
> N 2 = number of aero stations for aero moments
> M1 $=$ number of engines producing forces
> M2 = number of engines producing moments
> K1 = number of slosh stations for slosh forces
> K2 $=$ number of slosh stations for slosh moments
> $\mathbf{q}_{\mathbf{j}}=$ modal displacement due to bending mode \mathbf{i}
> $\zeta_{\mathbf{i}}=$ damping coefficient for mode \mathbf{i}
> $\omega_{\mathbf{i}}=$ frequency of mode \mathbf{i}
> $\mathrm{m}_{\mathbf{i}}=$ normalized mass for mode \mathbf{i}
> $F_{a x j}=$ aero forces in X direction at station j
> $F_{\text {ayj }}=$ aero forces in Y direction at station j
> $F_{a z j}=$ aero forces in Z direction at station J
> $F_{t x j}=$ thrust forces in X direction for engine j
> $F_{t y j}=$ thrust forces in Y direction for engine j
> $F_{t z j}=$ thrust forces in Z direction for engine j
> $F_{s X j}=$ slosh forces in X direction at station j
> $F_{\text {syj }}=$ slosh forces in Y direction at station j
> $F_{s Z j}=$ slosh forces in Z direction at station j
> $M_{a x j}=$ aero moments about X axis at station j
> $M_{a y j}=$ aero moments about y axis at station j
> $M_{a z j}=$ aero moments about z axis at station j
$M_{t x j}=$ thrust moments about X axis due to engine j
$M_{\text {tyj }}=$ thrust moments about Y axis due to engine j
$M_{t z j}=$ thrust moments about Z axis due to engine j
$M_{s x j}=$ s.losh moments about X axis at station j
$M_{\text {syj }}=$ slosh moments about Y axis at station j
$M_{s Z j}=$ slosh moments about Z axis at station j
$\phi_{x i j}=$ mode shape translation in X direction for mode i at location j
$\phi_{y i j}=$ mode shape translation in Y direction for mode i at location j
$\phi_{z i j}=$ mode shape translation in Z direction for mode \mathbf{i} at location j
$\phi_{X i j}^{\prime}=$ mode slope about X axis for mode i at location j
$\phi_{y_{i j}}^{\prime}=$ mode slope about Y axis for mode i at location j
$\phi_{Z i j}^{\prime}=$ mode slope about Z-axis for mode \mathbf{i} at location j

4.3 Aerodynamic Forces

$$
\begin{aligned}
& {\left[\begin{array}{l}
v_{w x p j} \\
v_{w y p j} \\
v_{w z p j}
\end{array}\right]=\left[\begin{array}{ll}
{[\alpha]} & {[\delta]}
\end{array}\right]\left[\begin{array}{c}
0 \\
-v_{w_{j}} \sin A_{z w_{j}} \\
-v_{w_{j}} \cos A_{z w_{j}}
\end{array}\right]} \\
& {\left[\begin{array}{c}
v_{\text {axbj }}^{\prime} \\
v_{\text {aybj }}^{\prime} \\
v_{\text {azbj }}^{\prime}
\end{array}\right]=\left[\left[\begin{array}{c}
v_{R_{X_{P}}} \\
v_{R_{P}} \\
v_{X_{P}} \\
v_{X_{P}}
\end{array}\right] \cdots\left[\begin{array}{l}
v_{w x p j} \\
v_{w y p j} \\
v_{w z p j}
\end{array}\right]\right]}
\end{aligned}
$$

$$
\begin{aligned}
& v_{a \times b j}{ }^{\prime \prime}=Q\left(\bar{Z}_{j}-\bar{Z}_{c g}\right)-R\left(\bar{Y}_{j}-\bar{Y}_{c g}\right) \\
& v_{\text {aybj }}{ }^{\prime \prime}=R\left(\bar{X}_{j}-\bar{X}_{c g}\right)-P\left(\bar{Z}_{j}-\bar{Z}_{c g}\right) \\
& V_{a z b j}^{\prime \prime}=P\left(\bar{Y}_{j}=\bar{Y}_{c g}\right)-Q\left(\bar{X}_{j}-\bar{X}_{c g}\right) \\
& V_{\text {axbj }}=\sum_{i=1}^{M 3}{ }_{\varepsilon}{ }_{x i j} \dot{q}_{i}
\end{aligned}
$$

$$
\begin{aligned}
& v_{a z b j}^{\mathrm{nI}}=\sum_{i=1}^{M 3} \quad \phi_{z i j} \dot{q}_{i} \\
& V_{a \times b j}^{I V}=V_{a y b j} \sum_{i=1}^{M 3} \phi_{z i j}^{\prime} q_{i}-v_{a z b j} \sum_{i=1}^{M 3}{ }^{\sum_{y i j}^{\prime} q_{i}} \\
& V_{a y b j}^{I V}=V_{a z b j} \sum_{i=1}^{M 3} \phi_{x i j}^{\prime} q_{i}-V_{a x b j} \sum_{i=1}^{M 3} \phi_{z i j}^{\prime} q_{i}
\end{aligned}
$$

$$
\begin{aligned}
& v_{a x b j}=v_{a x b j}^{\prime}+v_{a x b j}^{\prime \prime}+v_{a x b j}^{\prime \prime \prime}+v_{a x b j}^{I V} \\
& v_{a y b j}=v_{a y b j}^{\prime}+v_{a y b j}^{\prime \prime}+v_{a y b j}^{\prime \prime \prime}+v_{a y b j}^{I V} \\
& v_{a z b j}=v_{a z b j}^{\prime}+v_{a z b j}^{\prime \prime}+v_{a z b j}^{\prime \prime \prime}+v_{a z b j}^{I I V}
\end{aligned}
$$

The previous 6 equations must be solved simultaneousily for $V_{a x b j}, V_{a y b j}$, and $V_{a z b j}$. The solution is as follows:

$$
\begin{aligned}
& \text { let } \\
& a_{11}=-1 \\
& a_{12}=\sum_{i=1}^{M 3} \phi_{\text {zij }}^{\prime} q_{i} \\
& a_{13}=-\sum_{i=1}^{M 3} \quad \oint_{y i j}^{\prime} q_{i} \\
& a_{21}=-\sum_{i=1}^{\text {M3 }} \quad \phi_{z i j}^{\prime} q_{i} \\
& a_{22}=-1 \\
& A_{23}=\stackrel{M 3}{{\underset{j}{i}}^{\Sigma}=1} \quad \stackrel{i}{\Phi_{x i j}} q_{i}
\end{aligned}
$$

$$
\begin{aligned}
& a_{31}=\sum_{i=1}^{M 3} \phi_{y i j}^{\prime} q_{i} \\
& a_{32}=-\sum_{i=1}^{M 3} \phi_{x i j}^{\prime} q_{i} \\
& a_{33}=-1
\end{aligned}
$$

$$
[A]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

then:

$$
\begin{aligned}
& {\left[\begin{array}{l}
v_{a x b j} \\
v_{a y b j} \\
v_{a z b j}
\end{array}\right]=[a]^{-1}\left[\begin{array}{l}
-v_{a x b j}^{\prime}-v_{a x b j}^{\prime \prime}-v_{a x b j}^{\prime \prime \prime} \\
-v_{a y b j}^{\prime}-v_{a y b j}^{\prime \prime \prime}-v_{a y b j}^{\prime \prime \prime} \\
-v_{a z b j}^{\prime}-v_{a z b j}^{\prime \prime \prime}-v_{a z b j^{\prime \prime \prime}}
\end{array}\right]} \\
& v_{a j}=\sqrt{v_{a x b j}{ }^{2}+v_{a y b j}{ }^{2}+v_{a z b j}{ }^{2}} \\
& \beta_{j}=\operatorname{Arcsin}\left(\frac{v_{a y b j}}{v_{a j j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{j}=\operatorname{Arctan}\left(\frac{V_{a z b j}}{V_{a x b j}}\right) \\
& M_{j}=\frac{V_{a j}}{a} \\
& q_{j}=\frac{1}{2} \rho V_{a j}^{2} \\
& F_{a x j}=q_{j} S\left(C_{x o j}+C_{x \alpha j} \alpha_{j}\right) \\
& F_{a y j}=q_{j} S C_{y B j}{ }^{B_{j}} \\
& F_{a z j}=q_{j} S\left(C_{z o j}+C_{z a j}{ }^{\alpha_{j}}\right)
\end{aligned}
$$

Where:

$V_{w_{j}}$	$=$ magnitude of relative wind at Station j
$A_{z w_{j}}$	$=$ azimuth angle of relative wind at Station j
$V_{w x p j}$,	
$V_{\text {wypj }}$,	$=$relative wind velocity at mass point j in platform $V_{w z p j}$

[a] $\quad=$ transformation described in "coordinate systems"
[$[\beta] \quad=$ transformation described in "coordinate systems"
[$]$] $=$ transformation described in "coordinate systems"

$V_{\text {axbj }}{ }^{\prime}$,	
Vaybj,	= components of air velocity in body coordinates at mass point j
$V_{a z b j}{ }^{\prime}$	
P, Q, R	$=$ angular velocity about X, Y, and Z axes respectively
X_{j}, Y_{j}, Z_{j}	$=$ location of mass point j in body coordinates
$\bar{X}_{c g}, \bar{Y}_{c g}, \bar{Z}_{c g}$	$=$ location of center of gravity in body coordinates
$V_{\text {axbj }}$,	
$V_{\text {aybj }}{ }^{\text {M }}$,	$=$ component of velocity at mass point j due to rotation of mass point about c.g.
$V_{\text {azbj }}$	
Vaxbj ${ }^{\text {m }}$,	
$v_{\text {aybj }}{ }^{\prime \prime \prime}$	$=$ components of velocity of vibrating mass with respect to rigid body
$V_{\text {azbj }} \mathrm{IM}^{\prime \prime}$	
$V_{\text {axbj }}{ }^{\text {IV }}$	
$V_{\text {aybj }} \text { IV }$	= components of velocity due to perpendicular forces being rotated with respect to rigid body due to bending
$V_{\text {azbj }}$	
M3	$=$ number of bending modes
$V_{R_{X}}, V_{R_{Y}}, V_{R_{Z}}=$ velocity of vehicle relative to the earth in platform ${ }_{R_{X_{P}}},{ }^{R_{Y_{P}}}{ }^{\prime}{ }^{R_{Z_{P}}}$ coordinate	
$V_{\text {axbj }}$,	
$V_{\text {aybj }}$,	$=$ components of velocity of mass point j with respect to air
$V_{\text {azbj }}$	

α_{j}	$=$ angle of attack of mass point j
M_{j}	$=$ mach number of mass point j
$V_{\text {aj }}$	$=$ velocity of mass point j with respect to air
a	= speed of sound
q_{j}	$=$ dynamic pressure at mass point \mathbf{j}
ρ	= mass density of air
S	= aero reference area
$C_{x 0 j}$,	
$C^{x \alpha j}{ }^{\text {, }}$	
$C_{y \beta j}$	$=\text { aero coefficients for mass point } j$
$\begin{aligned} & C_{z o j}, \\ & c_{z \alpha j}, \end{aligned}$,
β_{j}	$=$ sideslip angle for mass point j

4.4 Engine Forces

$$
\begin{aligned}
& \theta_{y j}=\theta_{y j}^{\prime}+\sum_{i=1}^{M 3} \phi_{z i j}^{\prime} q_{i} \\
& \theta_{p j} \stackrel{=}{\theta} \theta_{p j}^{\prime}+\stackrel{M}{i}=1_{\Sigma} \phi_{y i j}^{\prime} q_{i} \\
& T_{b x j}=E T_{j} \cos \theta_{p j} \cos \theta_{y j} \\
& T_{b y j}=E T_{j} \sin \theta_{y j} \\
& T_{b z j}=-E T_{j} \sin \theta_{p j} \cos \dot{\theta}_{y j} \\
& \text { Limit } \theta_{p c j} \text { and } \theta_{y c j} \text { to position limit } \\
& \dot{\hat{\theta}}_{p j}=\left[\omega_{a} ;\left(\theta_{p c j}-\hat{\theta}_{p j}\right)+K_{2 j}\left(\dot{\theta}_{p j}^{\prime}-\hat{\theta}_{p j}\right)+K_{1 j} \dot{\theta}_{p j}^{\prime}\right] /\left(1+K_{1 j}\right) \\
& \dot{\hat{\theta}}_{y j}=\left[\omega_{z} ;\left(\theta_{y c j}-\hat{\theta}_{y j}\right)+K_{2 j}\left(\theta_{y j}^{\prime}-\hat{\theta}_{y j}\right)+K_{1 j} \dot{\theta}^{\prime} y j\right] /\left(1+K_{1 j}\right) \\
& \text { Limit } \dot{\hat{\theta}} \text { to rate limit } \\
& \text { If } \hat{\theta}+\hat{\hat{\theta}} \mathrm{dt} \text { exceed position limit, limit } \hat{\hat{\theta}} \text { to (position limit }-\hat{\theta} \text {)/vt } \\
& \hat{\theta}_{\mathrm{pj}}=\int \dot{\hat{\theta}}_{\mathrm{pj}} d t+\hat{\theta}_{\mathrm{pjo}} \\
& \hat{\theta}_{y j}=\int \dot{\hat{\theta}}_{y j} d t+\hat{\theta}_{y j o}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\theta}_{p j}^{\prime}+\dot{Q}+\sum_{i=1}^{M 3} \phi_{y i j j}^{\prime} \ddot{q}_{j}+2 \zeta_{e p} \omega_{e p} \dot{\theta}_{p j}^{\prime}+\omega_{e p}^{2} \theta_{p j}= \\
& \omega_{e p}^{2} \hat{\theta}_{p j}-\frac{F_{e z j}}{I_{y y e}}\left(X_{e c g j}-X_{e j}\right) \\
& \ddot{\theta}_{y j}+\dot{R}+\sum_{i=1}^{M 3} \phi_{z i j}^{\prime} \ddot{q}_{i}+2 \zeta_{e j} \omega_{e y} \theta^{\prime}{ }_{y j}+\omega^{2} e y \theta^{\prime} y j= \\
& \omega_{e y}^{2} \hat{\theta}_{y j}+\frac{F_{e y j}}{I_{z z e}}\left(x_{e c g j}-x_{e j}\right) \\
& \dot{\theta}^{\prime}{ }_{p j}=\tilde{\theta}^{\prime}{ }_{p j} d t+\dot{\theta}^{\prime}{ }_{p j 0} . \\
& \theta^{\prime}{ }_{p j}=\int \dot{\theta}_{p j}^{\prime} d t+\dot{\theta}^{\prime}{ }_{p j o} \\
& \dot{\theta}_{\dot{y} j}=\int \dot{\theta}^{\prime} y j d t+\theta^{\prime} y j o \\
& \dot{\theta}^{\prime}{ }_{y j}=\ddot{\theta}^{\prime} y j d t+\dot{\theta}_{y j o} \\
& F_{t \times j}^{\prime}=E T_{j} \sqrt{1+\operatorname{TAN}^{2} \theta_{p}^{\prime}+\operatorname{TAN}^{2} \theta^{\prime} y} \\
& F_{t y j}{ }^{\prime}=E_{t j} \operatorname{TAN}^{\prime}{ }^{\prime}{ }_{y} \\
& F_{t z j}{ }^{\prime}=-E_{t j} \text { TAN }^{\prime}{ }_{p} \\
& F_{e x j}=-m_{e j} \quad A_{x}+\sum_{i=1}^{M 3} \phi_{x i j} \ddot{q}_{\dot{i}}-\left(y_{e j}-y_{c g}\right) \dot{R}+\left(Z_{c j}-Z_{c g}\right) \dot{Q} \\
& F_{e y j}=-m_{e j}\left\{A_{y}+\left(x_{e j}-x_{C G}\right) \dot{R}-\left(z_{e j}-Z_{C G}\right) \dot{p}+\sum_{i=1}^{M 3} \phi_{y i j} \bar{q}_{i}\right\}
\end{aligned}
$$

$$
F_{e z j}=-m_{e j}\left\{A_{z}-\left(x_{e j}-x_{c g}\right) \ell+\left(y_{e j}-y_{c g}\right) \dot{p}+\sum_{i=1}^{M 3} \phi_{z i j} \ddot{q}_{i}\right\}
$$

$$
\begin{aligned}
& F_{t x j}=F_{t x j}^{\prime}+F_{e x j} \\
& F_{t y j}=F_{t y j}^{\prime}+m_{e j}\left(x_{e j}-x_{e c g}\right) \ddot{\theta}_{y}+F_{e y j} \\
& F_{t z j}=F_{t z j}^{\prime}+m_{e j}\left(x_{e c g}-x_{e j}\right) \ddot{\theta}_{p}^{\prime}+F_{e z j}
\end{aligned}
$$

Where:
$\theta^{\prime}{ }_{y j}=\begin{aligned} & \text { yaw engine gimbal angle with respect to the mounting } \\ & \text { surface for engine } j\end{aligned}$
${ }^{\theta}{ }_{y j}=$ yaw engine gimbal angle with respect to rigid body coordinates for engine j
${ }^{\theta}{ }_{\mathrm{pj}}=\begin{aligned} & \text { pitch engine gimbal angle with respect to the mounting } \\ & \text { surface for engine } j\end{aligned}$ surface for engine j
$\theta_{\mathrm{pj}}=\begin{aligned} & \text { pitch engine gimbal angle with respect to rigid body } \\ & \text { coordinates for engine } j\end{aligned}$
$\bar{x}_{e j}$,
$\left.\gamma_{\mathrm{ej}},\right\}=$ location of engine j pivot point
$\bar{z}_{e j}$

$\left.\begin{array}{l}T_{b x j}, \\ T_{b y j}, \\ T_{b z j}\end{array}\right\}=$ thrust forces acting on vehicle
$\hat{\theta}_{p j}=$ pitch engine actuator angle
$\hat{\theta}_{y j}=\begin{aligned} & \text { yaw engine actuator angle } \\ & \hat{\theta}_{p j}=\end{aligned}$
$I_{\text {yye }}=\begin{aligned} & \text { moment of inertia of engine bell about } Y \text { axis at engine } \\ & \end{aligned} \quad \begin{aligned} & \text { gimbal point }\end{aligned}$ gimbal point
$\hat{\dot{\theta}}_{y j}=$ yaw engine actuator rate
${ }^{\theta_{p C j}}=$ pitch gimbal angle command
${ }^{\theta}{ }_{y c j}=$ yaw gimbal angle command
$\zeta_{\mathrm{ep}}=$ damping factor for pitch engine dynamics
$5_{\text {ey }} \quad=$ damping factor for yaw engine dynamics
we \quad frequency for engine dynamics
$\omega_{a} \quad=$ frequency for actuator dynamics
$\dot{\theta}_{p} \quad=$ present engine rate for pitch
$\ddot{\theta}_{y} \quad=$ present engine rate for yaw
$\ddot{\theta}_{p} \quad=$ pitch engine angular acceleration

$$
M_{e j} \quad=\text { mass of engine } j
$$

A_{x}, A_{y}, linear acceleration of vehicle in body coordinates A_{2}

The characteristicsfrequencies associated with the engine dynamics are much higher than the vehicle characteristic frequencies. It is recommended that the engine dynamics be integrated separately with an integration cycle of 50 milliseconds.

4.5 Slosh Forces

$$
\begin{aligned}
\ddot{\lambda}_{x j} & +2 \zeta_{s j} \omega_{s j} \dot{x}_{x j}+\omega_{s j}^{2} \lambda_{x j} \neq-\sum_{j=1}^{M 3} \phi_{x i j} \ddot{q}_{i}-A_{x}-\dot{Q}\left(z_{s j}-\bar{Z}_{c g}\right) \\
& +\dot{R}\left(\bar{Y}_{s j}-Y_{c g}\right) \\
\ddot{\lambda}_{y j}+ & 2 \zeta_{s j} \omega_{s j} \dot{X}_{y j}+\omega_{s j}^{2} x_{y j}=-\sum_{i=1}^{M 3} \phi_{y i j} \ddot{q}_{i}-A_{y}-\dot{R}\left(x_{s j}-\bar{x}_{c g}\right) \\
& +\dot{p}\left(z_{s j}-\bar{Z}_{c g}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{\lambda}_{z j}+2 \zeta_{s j} \omega_{s j} \dot{\lambda}_{z j}+\omega_{s j}^{2} \lambda_{z j}=-\sum_{i=1}^{M 3} \phi_{z i j} \ddot{q}_{i}-A_{z}-\dot{p}\left(\gamma_{s j}-Y_{c g}\right) \\
& +\dot{Q}\left(X_{s j}-\bar{X}_{c g}\right) \\
& F_{s x j}=-m_{s j} \ddot{\lambda}_{x j} \\
& F_{x y j}=-m_{s j} \ddot{\lambda}_{y j} \\
& F_{s z j}=-m_{s j} \ddot{\lambda}_{z j} \\
& \dot{\lambda}_{x j}=s \ddot{\lambda}_{x j} \\
& \dot{\lambda}_{y \dot{j}}=\int \bar{\lambda}_{y j} \\
& \dot{\lambda}_{z j}=\ddot{\lambda}_{z j} \\
& \lambda_{x j}=f \ddot{\lambda}_{x j} \\
& \lambda_{y i}=f_{z j}{ }_{y j} \\
& \lambda_{z j}=f{ }_{z}^{\ddot{\lambda}}{ }_{z j}
\end{aligned}
$$

Where:

$$
\begin{aligned}
& \lambda_{x j}, \lambda_{y j}, \lambda_{z j}=\text { displacements of slosh mass } j \\
& \dot{\lambda}_{x j}, \dot{\lambda}_{y j}, \dot{\lambda}_{z j}=\text { velocities of slosh mass } j \\
& \ddot{\lambda}_{x j}, \ddot{\lambda}_{y j}, \ddot{\lambda}_{z j}=\text { acceleration of slosh mass } j
\end{aligned}
$$

$\zeta_{\mathrm{sj}}=$ damping factor for slosh mode j
$\omega_{s j}=$ characteristic frequency of slosh mode j
$X_{s j}$,
$Y_{s j},=$ position of slosh mass j
$Z_{s j}$
$m_{s j}=$ mass of sloshing fluid at mode j

4.6 Aerodynamic Moments

$$
\begin{aligned}
& M_{a x j}^{\prime}=F_{a y j}\left(Z_{c g}-Z_{a r j}\right)-F_{a z j}\left(Y_{c g}-Y_{a r j}\right) \\
& M_{a y j}^{\prime}=F_{a z j}\left(X_{c g}-X_{a r j}\right)-F_{a x j}\left(Z_{c g}-Z_{a r j}\right) \\
& M_{a z j}^{\prime}=F_{a x j}\left(Y_{c g}-Y_{a r j}\right)-F_{a y j}\left(x_{c g}-x_{a r j}\right) \\
& M_{a x j}^{\prime \prime}=q_{j} S b\left(C_{1 B j} B_{j}\right) \\
& M_{a y j}^{\prime \prime}=q_{j} S \bar{c}\left(C_{m o j}+C_{m \alpha j} \alpha_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M_{a z j}^{\prime \prime}=q_{j} S b C_{n \beta j} \\
& M_{a x j}=M_{a x j}^{\prime}+M_{a x j}^{\prime \prime} \\
& M_{a y j}=M_{a y j}^{\prime}+M_{a y j}^{\prime \prime} \\
& M_{a z j}+M_{a z j}^{\prime}+M_{a z j}^{\prime \prime}
\end{aligned}
$$

Where:

$$
c_{1 \delta a}, c_{n \delta a}, c_{l_{B j}}
$$

$$
=\text { aero coefficients for station } j
$$

$\delta_{a}=$ aileron deflection
4.7 Engine Moments

$$
\begin{aligned}
& M_{t x j}^{\prime}=-T_{y b j}\left(\bar{z}_{e j}-\bar{Z}_{c g}\right)+T_{z b j}\left(\bar{Y}_{e j}-\bar{Y}_{c g}\right) \\
& M_{t y j}^{\prime}=-T_{z b j}\left(\bar{x}_{e j}-\bar{x}_{c g}\right)+T_{x b j}\left(\bar{Z}_{e j}-\bar{z}_{c g}\right) \\
& M_{t z j}^{\prime}=-T_{x b j}\left(\bar{Y}_{e j}-Y_{c g}\right)+T_{y b j}\left(\bar{x}_{e j}-\bar{x}_{c g}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M_{t x j}{ }^{\prime \prime}=-T_{y b j}{\underset{i}{\Sigma}=1}_{M 3} \phi_{z i j} q_{j}+T_{z b j}{\underset{i}{\Sigma}=1}_{M 3} \phi_{y i j} q_{i}
\end{aligned}
$$

$$
\begin{aligned}
& M_{e x j}=\left[F_{e z j}-m_{e j}\left(X_{e j}-X_{e c g}\right) \ddot{\theta}_{p j}^{\prime}\right]\left(Y_{e j}-Y_{c g}\right)-\left[F_{e y j}{ }^{+m}{ }_{e j}\left(X_{e j}-x_{e c g j}\right) \ddot{\theta}_{y j}^{\prime}\right]\left(Z_{e j}-Z_{c g}\right) \\
& M_{e y j}=F_{e x j}\left(Z_{e j}-Z_{e c g j}\right)-\left[F_{e z j}-m_{e j}\left(x_{e j}-x_{e c g j}\right) \ddot{\theta}_{p j}^{\prime}\right]\left(x_{e j}-x_{c g}\right) \\
& M_{e z j}=\left[F_{e y j}+m{ }_{e j}\left(x_{e j}-x_{e c g j}\right) \ddot{\theta}_{y j}^{\prime}\right]\left(x_{e j}-x_{c g}\right)-F_{e x j}\left(y_{e j}-\ddot{Y}_{c g}\right) \\
& M_{t x j}=M_{t x j}^{\prime}+M_{t \times j}{ }^{\prime \prime}+M_{e x j} \\
& M_{t y j}=M_{t y j}{ }^{\prime}+M_{t y j}{ }^{\prime \prime}+M_{e y j} \\
& M_{t z j}=M_{t z j}^{\prime}+M_{t z j} \ddagger M_{e z j}
\end{aligned}
$$

Where:

$$
I_{e j}=\text { moment of inertia of engine } j
$$

4.8 Slosh Moments

$$
\begin{aligned}
& M_{s x j}^{\prime}=A_{y} m_{s j} \lambda_{z j}-A_{z} m_{s j} \lambda_{y j} \\
& M_{s y j}^{\prime}=A_{z} m_{s j} \dot{x}_{x j}-A_{x} m_{s j} \lambda_{z i} \\
& M_{s z j}^{\prime}=A_{x} m_{s j} \lambda_{y j}-A_{y} m_{s j} \lambda_{x i} \\
& M_{s x j}^{\prime \prime}=F_{s y j}\left(\bar{Z}_{c g}-\bar{Z}_{s j}\right)-F_{s z j}\left(\bar{Y}_{c g}-\bar{Y}_{s j}\right) \\
& M_{s y j}^{\prime \prime}=F_{s z j}\left(\bar{X}_{c g}-\bar{X}_{s j}\right)-F_{s x j}\left(\bar{Z}_{c g}-Z_{s j}\right) \\
& M_{s z j}^{\prime \prime}=F_{s x j}\left(\bar{Y}_{c g}-\bar{Y}_{s j}\right)-F_{s y j}\left(\bar{X}_{c g}-\bar{X}_{s j}\right) \\
& M_{s x j}=M_{s x j}^{\prime}+M_{s x j}^{\prime \prime} \\
& M_{s y j}=M_{s y j}^{\prime}+M_{s y j}^{\prime \prime \prime} \\
& M_{s z j}=M_{s z j}^{\prime}+M_{s z j}^{\prime \prime}
\end{aligned}
$$

