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A FINITE-ELEMENT ANALYSIS OF FATIGUE CRACK CLOSURE

By J. C. Newman, Jr.

NASA Langley Research Center

Hampton, Virginia

ABSTRACT

Experiments have shown that fatigue cracks close at positive 
loads during

constant-amplitude load cycling. The crack-closure phenomenon is caused by

residual plastic deformations remaining in the wake of an advancing crack 
tip.

The present paper is concerned with the application of a two-dimensional, 
non-

linear, finite-element analysis for predicting crack-closure and crack-opening

stresses during cyclic loading.

A two-dimensional finite-element computer program, which accounts 
for both

elastic-plastic material behavior and changing boundary conditions 
associated

with crack extension and intermittent contact of the crack surfaces under cyclic

loading, has been developed. An efficient technique to account for changing

boundary conditions was also incorporated into the nonlinear analysis program.

This program was subsequently used to study crack extension 
and crack closure

under constant-amplitude and two-level block loading. 
The calculated crack-

closure and crack-opening stresses were qualitatively consistent with experi-

mental observations.

INTRODUCTION

Until recently, fatigue-crack propagation was assumed to be directly

related to the linear elastic stress-intensity factor [1] during cyclic loading.

Implicit in this concept were the assumptions 
that only the tensile portion of

the load cycle was effective in growing the crack, and that cracks close pre-

cisely at zero load. Elber [2-4] has shown experimentally that fatigue cracks
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close at positive loads during zero-tension constant-amplitude load cycling. He

has indicated that fatigue-crack closure may be a significant factor in causing

the stress-interaction effects on crack growth (retardation or acceleration)

under general cyclic loading. He has also postulated that the crack-closure

phenomenon is caused by residual plastic deformations remaining in the wake of

the advancing crack tip.

Kobayashi, Chiu, and Beeuwkes [5], and Anderson [6] using the finite-

element method analyzed the steadily growing crack under a single monotonically

increasing load. Since these investigations did not consider cyclic loading,

crack-closure effects were not accounted for in the analysis.

Newman and Armen [7], also using the finite-element method, analyzed an

extending crack under cyclic loading and included the effects of crack closure.

However, theirs was a general-purpose program which included a large number of

options concerning the types of elements and the material stress-strain behavior

and, consequently, required a large computer storage capability.

In the present paper, a more efficient two-dimensional, nonlinear, finite-

element analysis ([8 is presented, and used to investigate crack extension and

crack closure in a center-cracked panel under cyclic loading. The panel material

was assumed to be elastic-perfectly plastic. Both constant-amplitude and two-

level block loading were investigated. The crack-closure stresses, crack-

opening stresses, displacements, and residual stress distributions near the crack

tip were determined as functions of applied stress.

SYMBOLS

a Half-length of crack, m

[B] Matrix relating total strains to nodal displacements, m- 1

C,n Material crack-growth constants
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(dP) Incremental applied load vector, N

(dQ) Incremental load vector, N

dV Differential volume of triangular element, m3

(dE) Incremental total strain vector

(da i Incremental elastic stress vector, N/m
2

e

(dc0 ) Incremental "initial" stress vector, N/m
2

[De] Elasticity matrix relating stress to total strain, N/m
2

g Relaxation parameter

ksx,ksy Spring stiffness in x- and y-direction, respectively, N/m

[Ks] Diagonal matrix containing spring stiffnesses, N/m

[Ke] Elastic stiffness matrix, N/m

(P) Applied load vector, N

(Q) "Effective" plastic load vector, N

R Stress ratio (ratio of minimum to maximum applied stress)

S Applied gross stress, N/m
2

S Maximum gross stress, N/m
2

max

Smin Minimum gross stress, N/m2

S Crack-opening stress, N/m2
o

(U) Generalized nodal displacement vector, m

u,v Displacements in x- and y-direction, respectively, m

W Total plate width, m

x,y Cartesian coordinates

£a Incremental crack growth, m

Keff Effective stress-intensity factor 
range, N/m5/2

tAN Incremental number of cycles



SNormal stress acting in y-direction, N/m2
yy

a Tensile yield stress, N/m2
o

FINITE-ELEMENT ANALYSIS

The elastic-plastic analysis of the center-cracked panel (Fig. 1) employed

the finite-element method and the initial-stress concept as described in [9].

The finite-element model, Figure 2, was composed of two-dimensional constant-

strain triangular elements (unit thickness). In the initial-stress approach,

the load-displacement relations for a discretized structure are written to

include the effects of initial stresses, which are required in order to satisfy

the yield criterion (von Mises) for an elastic-plastic material. These initial

stresses produce effective plastic-load vectors which are applied to all elements

which have become plastic and which maintain the permanent plastic deformation

on those elements while the external loads are applied. The governing matrix

equations for a discretized structure are reviewed only briefly here to demon-

strate how the material nonlinearity is accounted for and what is required to

treat crack extension and intermittent contact or separation of the crack

surfaces.

Solution Procedure for Elastic-Plastic Structures

The application of the finite-element method to problems involving linearly

elastic materials is straightforward because the material properties are constant

and only one solution is required to obtain displacements for the elastic struc-

ture. However, for elastic-plastic structures the coefficients in the stiffness

matrix are functions of loading. Thus, the displacements are usually obtained

by applying small load increments to the structure and either updating the coef-

ficients of the stiffness matrix or applying an "effective" plastic-load vector

after each load increment.
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In general, the matrix equation which governs the response of a discretized

structure under loads which cause plastic deformation is

[K ] (U)i = (P) Qi- (1)
e I I-1

where [Ke] is the elastic stiffness matrix, (U) is the generalized nodal dis-

placement vector, (P) is the applied load vector, and (Q) is the "effective"

plastic-load vector which accounts for elements in a plastic state. In the

initial-stress method, the solution to an elastic-plastic problem is obtained

by applying a series of small load increments to the structure until the desired

load is reached ((P]i [pi-1 + (dP)). The superscript i in Equation (1)

denotes the current load increment and i - 1 denotes the preceding increment.

After each load increment an iterative process is required to stabilize the

plastic-load vector. The subscript I in Equation (1) denotes the current

iteration and I - 1 denotes the preceding iteration. During the it h increment

a purely elastic problem is solved and the increments in total strain (dE) and

corresponding elastic stress (da e ) are computed from the displacements for every

element. Because of the material nonlinearity the stress increments are not, in

general, correct. If the correct stress increment for the corresponding strain

increment is (do), then a set of body forces or plastic-load vectors (dQ) caused

by the "initial" stress (do0 ) (= (doe) - (do)) is required to maintain the stress

components on the yield surface. The correct stress increment (da) is computed

from the equations.given in [9). The plastic load increments are computed from

M
(dQ) E [Bf]T (du ) dV (2)
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where M is the total number of elements, [B] is the strain-displacement rela-

tionship, and the superscript T denotes the matrix transpose. The integration

is taken over the volume of each element and the summation is over all elements

in the structure. For elements which are in an elastic state, (dao} = 0. The

total plastic-load vector is then computed as

I I-1

At the second stage of computation the new force system (Q]i is added to the

applied load vector and a new set of displacements is obtained. Again, some of

the stresses are likely to exceed the yield criterion and a new set of plastic-

load increments is computed. The iteration process is repeated until the change

in the plastic-load vector (Eq. (2)) is sufficiently small (0.1 percent of the

final values was chosen here). Usually, 5 to 15 iterations are required to

stabilize the plastic-load vector. However, for configurations which have large

strain gradients, more iterations are required. For the cracked plate considered

here and the particular element mesh used, 10 to 50 iterations were required.

In order to reduce the number of iterations, a relaxation technique was incor-

porated into the nonlinear analysis program by using the equation

Q (Qi- + g(dQ) (4)
I I-1

where g is the relaxation parameter. Because the displacements from the pre-

ceding increment or iteration are used to compute the plastic-load increment,

the plastic-load vector is underestimated. Thus, the relaxation parameter is
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used to increase the plastic.-load vector and, consequently, increase the rate of

convergence. For the finite-element mesh used here, the displacements were

found to converge roughly twice as fast using g = 2 than using g = 1 (usual

value for the initial-stress method).

Solution Procedure for Changing Boundary Conditions

As previously mentioned, the finite-element analysis of 
an extending crack

under cyclic loading must be able to account for changing boundary conditions

during a specified load history. Usually, boundary conditions (free or fixed)

in the finite-element method are satisfied by adding equations to, or deleting

equations from, the overall system of equations. But the approach selected here

was to connect two springs to each boundary node, as shown in Figure 3. One

spring was used to satisfy boundary conditions in the x-direction, 
and the other

to satisfy conditions in the y-direction. Therefore, all nodes in the system

had two degrees of freedom. For free nodes, the spring stiffness, ksx or ksy'

was set equal to zero. For fixed nodes, the spring stiffness was assigned an

extremely large value (1 0
7 times the modulus of elasticity of the plate material).

The spring stiffness was added to the diagonal coefficient in the conventional

elastic stiffness matrix. The use of springs to satisfy boundary conditions

was selected because an efficient technique to modify coefficients of the 
elastic

stiffness matrix was incorporated into the nonlinear analysis program. 
This

technique involved modifying the coefficients of the Cholesky decomposition [10]

of the elastic stiffness matrix. The number of computer operations required to

compute the modified Cholesky factors was of the order 
of n2 (n was the total

number of degrees of freedom). In contrast, the number of operations required

to obtain the original Cholesky factors was of the order of n . A detailed

discussion of the coefficient-modification technique may be found in [81 or [10].
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The coefficients of the elastic stiffness matrix are obtained from

M
[K] = f[B]T [D ][B] dV + [K s] (5)

m=l

where [De] is the elasticity matrix and the diagonal matrix [Ks] contains the

elastic stiffness of the springs connected to the boundary nodes.

The procedure for treating the nonlinear material behavior in the presence

of changing boundary conditions remains unchanged from that previously presented

for an elastic-plastic structure, except that all nodal displacements along the

crack line were monitored to determine whether the nodes are to be released

(crack extends), to open (crack opening), or to close (crack closure).

To extend the crack, the crack-tip node was arbitarily chosen to be released

at maximum load (the stiffness of the boundary spring was set equal to zero and

the stiffness matrix was updated) and the crack tip was advanced to the next

node. During the crack extension, the nodal force carried by the crack-tip node

was released. To insure that the stresses and total strain increments in the

adjacent elements satisfied the yield condition and the Prandtl-Reuss flow rule,

the iterative procedure, previously discussed, was used to redistribute the

force previously carried by the broken node, and to stabilize the plastic-load

vector.

During each load increment, the nodal displacements along the crack line

were monitored to determine whether the crack surfaces had opened (positive

displacement) or closed (negative displacement). If the crack surfaces had

opened, the stiffness of the boundary spring was set equal to zero and the stiff-

ness matrix was updated. If the crack surfaces had closed, the spring stiffness

was set to the extremely large value and the stiffness matrix was updated.

8



APPLICATION OF THE FINITE-ELEMENT ANALYSIS TO CYCLIC CRACK EXTENSION

Elber [4], on the basis of fatigue crack-closure experiments with constant-

amplitude loading, proposed the following equation for fatigue-crack-propagation

rates

Aa (6)
M C (Aeff)n

where C and n are material constants and AKeff is the effective stress-

intensity factor range. He proposed that the effective stress-intensity factor

range be calculated by

bKeff eff (7)

where a is the half-length of the crack, a is a boundary-correction factor,

and ASeff  is the effective stress range, given by

S = S - S for S > S

eff max o o- min (8)

where S is the maximum stress, S is the minimum stress, and S is the
max min o

crack-opening stress. Thus, the crack is assumed to propagate only during that

portion of the load cycle in which the crack tip is open. Equations (6)-(8)

suggest, then, that the crack opening stress can significantly influence crack

growth under both constant- and variable-amplitude loading.

The following sections give the results of applying the finite-element

analysis to an extending crack under cyclic loading. The center-cracked panel,

Figure 1, was subjected to either constant-amplitude or two-level block loading.
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In this study, no attempt was made to establish a failure criterion for crack

growth. For any cyclic loading, the crack-tip node (A, B, ... , or F in Fig. 2)

was arbitrarily chosen to be released at the maximum applied stress regardless

of the magnitude of the applied stress and of any prior stress history. Thus,

the model provides no direct information on the amount of crack growth per cycle;

this information must be obtained from Equation (6). Instead, the analysis pro-

vides only the crack opening stress, So, to be used in Equation (8).

The finite-element idealization and the coordinate system used for the

center-cracked panel are shown in Figure 2. The initial crack tip was located

at node A (see Fig. 2), so that the initial crack half-length, ai, was 27.3 mm.

The total panel width was 460 mm. The elastic-stress concentration (ratio of

a in the most highly stressed crack-tip element to the applied stress) was
yy

approximately 7.

The panel material was assumed to be elastic-perfectly plastic with a

tensile (and compressive) yield stress, ao, of 350 MN/m 2 and a modulus of elas-

2
ticity of 70,000 MN/m . These properties are representative of an aluminum alloy

material. The cyclic stress-strain curve assumed for this material is shown in

Figure 4. The cyclic stress-strain curve was also taken to be the stabilized

curve; that is, the stress-strain behavior was assumed to be unaffected by fur-

ther cycling. (Crews [11] has shown that in some materials the local stress-

strain behavior at a notch root stabilizes in approximately 10 cycles.) The

solid line in Figure 4 shows the behavior under tensile loading. The dashed

line indicates the typical behavior during unloading. The dash-dot line shows

the behavior during reloading from a compressive plastic state.
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Crack Extension Under Constant-Amplitude Loading

Stress Level - The constant-amplitude loading applied to the center-crack

panel is shown in Figure 5. The maximum gross stress was 0.3ao. As the cyclic

stresses were applied, the crack initially opened at an infinitesimal stress due

to the assumption of no prior plastic deformation. The symbol x indicates the

point at which the most highly stressed crack-tip element initially yielded. At

the maximum applied stress, node A (see Fig. 2) was allowed to displace (crack

extension) and the crack tip advanced to node B. (Note that the crack extension

increment, node A to node B, is solely a consequence of the element mesh size

used and does not imply a crack-growth law.) During unloading, node A was

found to close at a positive stress (solid symbol) and was constrained against

further motion. When the panel was reloaded, node A opened (open symbol) at a

slightly lower stress than at which it had previously closed. Again, upon

reaching the maximum stress, the next node (B) was also allowed to displace.

During unloading, node (B) closed at a slightly higher stress than that at which

node A had closed on the previous cycle. Further cycling and sequential release

of nodes indicated approximately the same closure and opening stresses. The

crack-opening stresses were approximately 50 percent of the maximum applied

stress.

Figure 6 shows another cyclic load history investigated, for which

S = 0.4a . Also shown are the calculated crack-closure and crack-openingmax o

stresses during constant-amplitude crack extension, indicated by the solid and

open symbols, respectively. In this case, the contact (closure) stresses near

node A after the first cycles were so large that material behind the crack tip

yielded in compression and the subsequent opening stress was considerably lower

than the previous closure stress. The closure stress rapidly stabilized to
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approximately 40 percent of the maximum applied stress. The opening stress

increased after each cycle until it converged to the previously established

closure stress.

Because the crack-closure and crack-opening stresses are a function of the

crack surface displacements, the variation of surface displacements with crack

extension was investigated. The crack surface displacements for constant-

amplitude crack extension with S = 0.4a are shown in Figure 7. The dis-
max o

placement, v, in the y-direction (Fig. 2) is plotted as a function of the

coordinate location, x. The lowest curve shows the displacements at maximum

stress with the crack tip located at node A (before crack extension). The other

curves represent the crack-opening displacements at the maximum applied stress

after each increment of crack extension. The sharp knee (slightly to the left

of node A) in the displacement curves is an indication of the extent of severe

plastic deformation.

To gain a qualitative understanding of the relationship between the residual

plastic deformations near the crack tip and the crack-closure stresses, crack-

surface displacements were computed for two similar configurations. The first

configuration is a crack, with the tip initially at node E, being opened for the

first time by the maximum applied stress (S = 0.4a ). The second configura-

tion is a crack which was grown incrementally from node A to node E by cyclic

loading (also with Smax = 0.4a0 ). The results are shown in Figure 8. The

dash-dot curve is the surface displacements for the first configuration under

the maximum stress. The solid curve is for the second configuration under the

same maximum stress. The fully dashed curves show the displacements for the

second configuration under a sequence of lower stresses for which the crack has

closed successively from node E to node A.
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The difference between the maximum surface displacements for the two config-

urations, as identified by the shaded region in Figure 8, is a measure of the

residual plastic deformations which are left in the wake of the advancing crack

tip, and which Elber has postulated as the major cause of crack closure during

unloading.

The displacement curves for lower stress levels further illustrate the

crack-closure phenomenon. For example, a drop to 0.17ao in applied stress

caused the crack to close back to node D. Upon complete removal of the applied

stress, the crack closed back to node A, but remained open to the left of node 
A.

The stress distributions near the crack tip associated with these stages of

unloading are shown in Figure 9. At the maximum applied stress, the near-tip stress

a (solid curve), reaches at plateau in front of the crack tip (characteristic of

an elastic-perfectly plastic material). Because the local stresses are computed

at the centroid of the elements (- 0. 3 mm from the crack surface), the stresses do

not drop to zero immediately behind the crack tip. During unloading, the crack sur-

faces contact initially at node D and the crack surfaces between nodes D and E begin

to support compressive stresses, as illustrated by curves 3-5 of Figure 9 .

As further illustration of the influence of stress level on crack closure,

Figures 10 shows the results of constant-amplitude crack extension with

Smax = 0.5ao. In contrast to the behavior at lower stress levels, this 
case

required six crack-growth increments to stabilize the 
crack-opening stress.

Again, the contact stresses near nodes A, B, and C caused yielding 
in com-

pression, as evidenced by the difference between the crack closure and opening

stresses. In this case, the closure stress required a few cycles to stabilize.

The opening stress increased with each cycle until it converged to the 
stabi-

lized closure stress at approximately 50 percent of the maximum stress.

13



Thus, for the cases considered here the magnitude of the maximum applied

stress apparently established the crack-closure stress which was found to 
be

higher for higher values of maximum applied stress. In addition, with a suf-

ficient number of cycles, the opening stress converged to the closure stress.

Stress Ratio.- To study effects of stress ratio on crack closure, calcula-

tions were made also for R = 0.5 and R = -1. Figure 11 shows a cyclic load

history with R = 0.5 and S = 0.3a . Again, nodes A, B, C, and D were
max o

released at succeeding occurrences of maximum stress. But in this case, the

crack surfaces never closed. The solid symbols denote that the closure stress

would have been approximately 0.08ao had the panel been allowed to unload

beyond the minimum stress. If crack propagation rates are related to the effec-

tive stress-intensity range (Eq. (6)), then, for stress ratios greater than

approximately 0.3 and Smax = 0.3o o , the present results suggest that crack-

growth rates should be independent of the closure or opening stresses. This

inference is consistent with the experimental results obtained by Katcher [12]

on 2219-T851 aluminum alloy where the crack-closure stress was found to be lower

than the minimum stress when the stress ratios exceeded approximately 0.3.

Figure 12 shows the crack-closure and crack-opening stresses for R = -1

and S = 0. 30 . During the compressive loading, all nodes along the crack

line closed. The crack-opening stress (at node A) after the first cycle was

considerably lower than the opening stress obtained for the R = 0 case (Fig. 5).

This implies that the applied compressive stress caused the material near node A

to yield in compression. However, after further crack extension, the closure

and opening stresses stabilized at approximately the same level that had been

observed previously at R = 0 (Fig. 5). Therefore, according to Equation (6)

the fatigue crack-growth rates for R = 0 and R = -1 should be approximately
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the same. This inference is consistent with results obtained by'Hudson [13],

who found very little difference between the crack-growth rates at R = 0 and

R = -1 in test of two different aluminum alloys.

Crack Extension Under Two-Level Block Loading

High-to-Low Loading - The high-to-low block loading is shown in Figure 13.

The maximum stress S (first level) was 0.4a and S (second level) was
max i  o max 2

0.30 . The crack-closure stresses for the three cycles of S maxl were identical

to those previously shown in Figure 6. At the maximum stress, Smax2 , node D

was allowed to displace. During unloading, node D closed at a stress which was

approximately 40 percent higher than the stabilized opening stress for S
max1

(dashed line). When the panel was reloaded, node D opened at about the same

stress at which it had previously closed. During further cycling, the closure

and opening stresses decreased after each cycle. If more than three cycles of

S were to be applied, the closure and opening stresses would be expected to
max 2

converge to the dash-dot line (the stabilized opening stress for S max; see

Fig. 5) as the crack grew out of the material yielded by S . Because the
max1

opening stresses for S are considerably higher than the stabilized open-
max 2

ing stress for S the crack-growth rates (computed from Eq. (6)) are
max 2

expected to be considerably lower than if the three cycles S had not been
max1

applied. This behavior has been experimentally observed and is referred to as

crack-growth retardation or delay (see, for example [14]).

Low-to-High Loading - Figure 14 shows the low-to-high block loading, for

which S = 0.3a0 and S = 0.40 . The crack closure and opening stresses
max1  o max2  o

for S were identical to those shown in Figure 5. When the stress first
maxi

reached S max2, node D was released. During unloading, node D closed at approxi-

mately 40 percent of the maximum applied stress. At zero applied stress, the

15



material near node D yielded in compression and the subsequent opening stress

was lower than the previous closure stress. During further cycling, the closure

stress remained nearly constant while the opening stress increased after each

cycle. The opening stress had nearly converged to the stabilized opening 
stress

after only three cycles of Smax2, similar to the behavior observed in Figure 6.

Because the opening stresses for S are lower than the stabilized opening

stress, the crack-growth rates (computed from Eq. (6)) are expected to be higher

than the crack-growth rates computed using the stabilized opening stress for

S . This behavior in crack-growth rates has also been experimentally observed

max2

and is referred to as crack-growth acceleration [15].

'CONCLUDING REMARKS

A two-dimensional (plane stress) finite element analysis which accounts for

both nonlinear material behavior and changing boundary conditions under cyclic

loading has been presented and used to study crack extension and crack-closure

in a center-cracked panel. The finite-element model of the panel was assumed

to be composed of an elastic-perfectly plastic material and was subjected to

either constant-amplitude or two-level block loading.

Although the failure criterion used in growing the crack was arbitrary, the

calculated crack-closure and crack-opening stresses under both constant-amplitude

and two-level block loading were qualitatively consistent with experimental

observations. The calculated crack-opening stresses, when used with Elber's

crack growth equation, gave crack-growth-rate trends (retardation or acceleration)

consistent with experimental measurements. Therefore, the finite-element analysis

gives further insight into the mechanism of fatigue-crack growth during cyclic

loading.
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