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FOREUORD 

This computer program documentation w a ~  prepared by Rocketdyne, a Division of 

North American Rocbell Corporation, in accordance vith and in partial fulfill- 

ment of Article I, Tssk IV and Task VI11 (b) of Contract NAS7-746 with the 
National Aeronautics and Space Administration. 
for NASA by the Jet Propulsion Laboratory, Pasadena, California, whose Technical 
Manager -8 Dr. Raymond Kushida. 
Coultaa and Dr. D. T. Campbell vas the Project Manager. 

The contract was administered 

The Rocketdyne Program Manager -8 Mr. T. A. 

This document accompanies the 15 December 1971 version of the DER computer 
program. 
and replace their counterparts delivered to JPL in September 1970. 

September 1970 version and this December 1971 version are based on the evapora- 
tion coefficient (k' ) approach to propellant spray combustion, which is limited 
in application to subcritical conditions. This document is not concerned with, 

nor does it supercede, a March 1971 version of D W  which is based on a transient 
droplet heating and diffusion approach to spray combustion and which is intended 

for analyzing perf-rmance of systems whose chamber pressures are supercritical 
for one or both propellants. 

Both the documentation and computer program are intended to supercede 
Both that 

REVISIONS 

First Revision by W. D. Chadwick January 1974 
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NOMENCLATURE 

A * area 
a = local sound speed 
a,b,C1---C6 = empirical spray coefficients, Eq. (2) 
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drag coefficient 
thrust coefficient 
approximate evaporation coeff: nt 
nozzle discharge coefficient 

mixture ratio 
characteristic exhaust velocity 
specific heat at constant pressure 
droplet diameter 
mass median droplet diameter 
Rupe mixing efficiency factor (Ref. 7) 
drag force 

gravitational coefficient 
specific impulse 
heat of vaporization 
thermal conductivity 

droplet evaporation coefficient 
molecular weight 
droplet nnss or spray size group mass 
rate of change of mass 

droplet concentration (no/volume) 
number flowrate of droplets 
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number of stream tubes 
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nozzle th roa t  r ad ius  r a t i o  (curvature/opening) 

nozzle th roa t  opening r ad ius  

r a d i a l  coordinate  

stream tube p a t h  l eng th  

terqerature 

ve loc i ty  

propel lan t  mass f l u x  a t  a s p a t i a l  mesh point  

propel lan t  mass f l u x  con t r ibu t ion  from an i n j e c t i o n  

f lowrat e 

element t o  a mesh poin t  
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= stream tube gas f lowra te  Q 
g 

X = non dimensional d i s t a n c e  from nozzle  throa t  

X,YS= = rec tangular  coord ina tes  ( referenced t o  an i n j e c t i o n  

z = a x i a l  coord ina te  
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= i n i t i a l  plane f o r  beginning spray combustion ana lys i s  
0 z 
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chamber con t r ac t ion  r a t i o  

nozzle  expansion r a t i o  

decimal to le rance ,  convergence on t h r o a t  a rea  
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f o r  a gas / l i qu id  i n j e c t i o n  element 
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1. INTRODUCTION 

The Distributed Energy Release (DER) combustion analyeis computer program 
described i n _  this report has been developed to fill a need in, and t o  become 
a part o f ,  the JANNAF system of related computer programs for performing bi- 
propellant liquid rocket performance analyses. The DER program is concerned 
with formation, distribution, flow and combustion of liquid sprays and com- 
bustion product gases in conventional (cylindrical) rocket combustion chambers. 
The main spray flow direction must be essentially parallel to the chamber axis, 
but the injector surface can deviate from a simple flat plate norsal to the 

chamber axis. 
Although an earlier evaporation coefficient version of DER (Ref .1 and 2) also 
had a capability to analyze non-equilibrium, two-dimensional supersonic exhaust 

nozzle flow, this December 1971 version simply provides output data for  eubse- 
quent input to another computer program (TLX) for performing that analysis. 
Major modifications included in the current version are: 

1. 

2. 

3. 

4. 

5,  

6 .  

Simplified injection element specification for inputting the LISP program 

block, 
Replacement of the spray flux and mixture ratio distribution plotting sub- 

programs with simpler, reduced-run-time routines, 
Provision of a partial LISP capability for analyzing bipropellant injection 
involving one gaseous propellant, 

Removal of a modified, long-f om-option revision of the TDK program block 
from DER, 
Provision of a subroutine for punching out nozzle throat-plane data in the 
form of a partial data deck for subsequent use in running an improved 
multi-stream tube TTlK program. 

Interface option to punch cards i n  L I S P  for 3DC and to read punched 

cards from 3DC in STC. 

Regarding engine performance calculation, DER computes only characteristic 

velocity efficiency; all other performance parameters are presumed to result 
from the rubsequent TDK program analysis. 

A technical description of the DER computer p~ogram is given in Section 2 of 

thia report. 
concerned with Dm computer program usage. 

Beginning with Section 3,  the remainder of this report is 
Section 3.1 ehows the recommended 

1 
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program overlay s t r u c t u r e .  

of DER'S subrout ines ,  i n d i c a t i n g  t h e  major func t ions  t h a t  each performs. 

Section 3.3 is concerned w i t h  t h e  provis ion  of t h e  r a t h e r  considerable  amount 

of input data needed t o  make DER computer program runs. 
show t h e  c o r r e c t  sequence and formats f o r  va r i ab le  values  and include notes 

concerning opt ions  t o  bypass t h e  input  of c e r t a i n  da t a .  

t h e  va r i ab le s  and i n d i c a t e s  t h e i r  requi red  dimensions. 

some notes  concerning program opera t ion ,  e.g. , core size requirements,  output  

limits and execution times. 

L i t e r a t u r e  c i t e d  i n  t h e  body o f t h e  r epor t  is l i s t e d  i n  Sec t ion  4 and co r re l a -  

t i o n  c o e f f i c i e n t  v d u e s  used i n  t h e  LISP subprogram a r e  t abu la t ed  i n  Ref. 6 .  

Fina l ly ,  appended t o  t h e  r epor t ,  as a sepa ra t e  volume, a r e  a l i s t i n g  of t h e  

computer program (Rev. Jan.  74), an example da t a  deck l i s t i n g  and portions of 

t y p i c a l  output data.  

Sec t ion  3.2 contains  a b r i e f  s ta tement  about each 

Sample da t a  code s h e e t s  

A s e p a r a t e  l ist  def ines  

Sect ion 3.4 conta ins  

Sec t ion  3.5 descr ibes  t h e  computer program output .  

la  
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2. COMPUTER MODEL ANALYSIS 

Basically, two major subprogram blocks comprise the DER computer prop- 7 

These subprogram blocks can be executed individually or  fully coup. a s  a ..;le 

program. The first is the Liquid Injection Spray Pattern (LISP) pyQj:ram. Ll..J 

utilizes correlations for the propellant mass flux distributions for sinqle- 
injection elements 

combines outputs from all injection elements to calculate a complete mass flux 

distribution in a plane normal to the combustor's axis and a distance zo down- 
stream of the injector. Other outputs from this program block include mean pro- 
pellant droplet sites and velocity vectors, approximate calculations of the per- 

centages of propellants gasified upstream of zo, and data regarding the resultant 
combustion gas flowing through the plane z . 
are used. The output from LISP provides the necessary description of the two- 

phase flowfield for initializiug the second major subprogram block, the Stream 
Tube Combustion (STC) program. STC is designed to accept propellant flux data 
at r, 8 ,  z mesh points from LISP, combine them into several axisymmetric stream 

tubes and analyze spray gasification and combustion in all stream tubes 
simultaneously as the flow progresses downstream of zo. 

involves finite difference solution of coupled ordinary differential equations 

by marching along the chamber length. 

and, based on element design, location and orientatmi' data, 

Cylindrical combustor coordinates 
0 

0 

SX's basic method 

An optional procedure i s  provided to supplement the DE? analysis by executing 

a 2-phase, 3-dlmensional combustion program, 3DC, in between :he L I S P  and STC 

subprogram analyses. In the normal DER analysis, spray is considered to travel 
in straight flow paths completely independent of gas flow paths throughout the 
region modeled by the L I S P  subprogram and then iostantly forced at the start of 

the STC analysis to change direction to paths coincident with qas streamline 
flow. The 3DC analysis physlcally models the mixing of spray and gas as the 
original spray flow paths are redlrected by the transverse drag force with the 
gas flow. 
*This is the 3C-CfdMRUST (3DC model) reported on in Ref. 5 ,  only with slight 
modifications in order to accept punched card output from LISP and to provide 
punched card output for STC. 

d 

2 
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At some distance upstream of the combustor exhaust notzle'r throat, the STC 
program block calls upon subprogram block TRANS to provide informatiofi about 
the transonic flow's spatial pressure distribution. The geometric relation- 
ships among LISP, STC and TRANS prog.ram block analyses are indicated in Fig. 4 

(page 23). Application of the Two-Dimensional Kinetic (TDK) nozzle analysis 
computer program (Ref. 3) is also indicated there, although this is no longer 
an integral part of DER but must be accomplished by cubseqL,nt uc8e of DER out- 
put data. It is because TRANS and T t K  are formulated in two dj,nensions (r, z) 
that STC is designed t o  assemble asixymmetric stream tubes at plane to. 

Descriptions of the analytical bases for the major subprogram blocks are given 
in this section. 



2.1 1NJM;rTION AXD A!i!iOMIZA!l'ION: 
LISP Sl-..pROGR,AM BLOCK - 

The LISP computer program block has been developed, applied and improved in 
several successive rtages. It v a s  initially structured as the first of several 
individual programs in a system of computer progmms for analyzing injector/ 
chamber compatibility Ior liquid/liquid bipropellant combinations (Ref. 4) .  

That version was adapted to form a LISP subprogram block in the initial DER 
computer program (Ref. 1). 

were simplified, subroutines for producing computer-plotted mass flux contour 
and profile graphs were simplified and the formulation was expanded to include 
coaxial jet injection of gaseous f uel/liquid oxidizer propellants (Ref. 5 ) .  

Similarly, gas/liquid triplet injection was added during the current DER prc,gram 
effort . 

Subs iuently, the LISP input data requirements 

The LISP computer program calculate8 spray mass fluxes at mesh points (r,O,z ) 
by straightfornard summation of ma: a fluxes from all iiidividual injector 

e 1 emen te 

0 

The method can be v ed if: 
tRble spray flux patterns which can be measured and correlated with the main 
direction of spray flow parallel to the chamber axis: 
spray patterns of the various el.ements are not destroyed between the element 
impingement points and the plane zo by collisions between neighboring fans; 
and (3) vaporization of injected spray mass between the element impingement 
and plane z can be estimated. A detailed accounting is not made for any back- 

flow of spray toward the injector; overall axial flow continuity is enforced 
at the LISP collection plane. 

The necessary correlation for w. (r.O,zo) f o r  use in Eq. (1) is based upon the 
shape of single element spray flux distributions determined from cold-flow 

spray measurements. Flux patterns were fitted to the generaliTed :xgression: 

(1) the individual injector elements here predic- 

(2) the individual 

0 

A -  
1 

3 



A n 

which is appl ied s e p a r a t e l y  

coodinate system i n  Eq. (2 )  is referenced t o  t h e  element 's  impingement po in t  

from which its spray is presumed t o  emanate. 

a.b,wml and C 

(doublet .  t r i p l e t ,  e t c  .) impingement angle ,  o r i f i c e  diameter,  impinging stream 

momenta. o r i f i c e  length,  and manifold e f f e c t s .  The c o e f f i c i e n t s  are obtained bv 

c o r r e l a t i n g  d a t a  from i n j e c t o r  cold-flaw simu1atio.i t e s t s ,  i n  which immiscible 

p rope l l an t  simulants are c o l l e c t e d  i n  a plane beneath the  i n j e c t o r  and measured. 

The form of Eq. (2) w a s  chosen because it s a t i s f i e s  con t inu i ty ,  p r e d i c t s  t h e  

observed inverse square r e l a t i o n s h i p  between mass f l u x  and d i s t a n c e  from t h e  

impingement poin t ,  and because closed form i n t e g r a l s  of Eq. (2) ai:: its x and 

y moments over the  X. y plane allow s t r a igh t fo rward  evaluat ion of thc empirical  

c o e f f i c i e n t s ,  using experimental cold-f low data. A d e t a i l e d  discussion of t h e  

c o e f f i c i e n t  evaluat ion procedure, including an a c t u a l  example computation, is 

given i n  Ref. 6. That document is p r imar i ly  a ca t a log  of the  c o r r e l a t i o n  

c o e f f i c i e n t s  which are c u r r e n t l y  i n  t h e  LISP l i b r a r y  of c o e f f i c i e n t  subrout ines .  

t o  each p rope l l an t  from an element. The (x.y,z) 

The empirical  c o e f f i c i e n t s  

through C are func t ions  of such pm.uneters as element t-ype 
1 6 

LISP transforms t h e  x,y,z  coordinate  systems of t h e  ind iv idua l  i n j e c t i o n  

elements t o  t h e  r ,€) ,z  coordinates  of t h e  combustor and then sums t h e  p r o p e l l a n t  

mass f luxes  from the  

Advantage can he taken of i n j e c t o r  design eymtuetry t o  d e f i n e  a mesh system which 

occupies only a f r a c t i o n  of t h e  chamber. This reduces the amount of inpu t  d a t a  

and the  LISP program execution times, bu t  c a r e  m x s t  be exercised i n  de f in ing  

the  i n j e c t i o n  elements, t o  ensure t h a t  t h e  mesh system rece ives  t h e  c o r r e c t  

geometric proportion of t h e  t o t a l  p r o p e l l a n t  i n j e c t i o n  

0' i nd iv idua l  elements LO each r . 8  mesh point  i n  plane z 

rates. 

LISP assumes t h a t  d r o p l e t s  travel as rays from t h e  element ori:s-,ns (e.g., 

impingement po in t s )  t o  t h e  mesh po in t s  and t h a t  i n j e c t i o n  k i n e t i c  energy i s  

4 



conserved. 

v e l o c i t y  and the  d i r e c t i o n  cosine of i ts  path from the  i n j e c t o r  impingement 

point  t o  t h e  mesh point .  When expressed i n  a common re fe rence  frame ( t h e  

chamber geometry) t h e  mass-weighted drop v e l o c i t y  vec to r s  from ind iv idua l  

elements can be summed a t  a mesh po in t  t o  g i v e  mean v e l o c i t y  vec to r s  u 

and u 

P rope l l an t  f l u x e s  from neighboring elements are considered t o  pass through one 

another without i n t e r f e rence .  

elements o r  moderately widely-spaced elements. t h i s  assumption appears t o  be 

reasonably v a l i d .  

t.heory viewpoint, the  mean-free-path of a drop  w a s  estimated t o  he about 1/2 t o  

1-inch f o r  a t y p i c a l  rocke t  i n j e c t i o n  condi t ion of about 1 lb/sec-in2. 

Operation at  higher i n j e c t i o n  d e n s i t i e s  (higher chamher pressures  and/or lower 

con t r ac t ion  r a t i o s )  would tend t o  i n v a l i d a t e  t h i s  assumption, but no l i m i t  con- 

d i t i o n s  have been e s t ab l i shed .  

Gaseous p rope l l an t  i n j e c t i o n  is c u r r e n t l y  treated i n  LISP as i f  it w e r e  a low 

dens i ty ,  non-continuum spray. Modifications t o  t h e  LISP logic  were thus  

minimized, but t h i o  treatment obviously limits the ~ O W M  to .nalysln# eingle- 
el-% injecton or mltiple-element injector6 whose element. are far enmagh 

apart that tbeir gam f l o n  do not interaat mtroqly.  
element., the #as dirtribmtion can be rather poorly predicted; a ayrptom ef 
t h i s  condition my be the calculat ion of aria1 #u v e l o c i t i e n  between elements 

t h a t  are comparable with those downstream of t h e  elements. 

A very  

LISP is t h e  assignment of p rope l l an t  d r o p l e t  s i z e  d i s t r i b u t i o n s .  

computer program, LISP computations are concerned only wi th  a mass median 

diameter (D) f o r  each 

The v e l o c i t y  of a given drop is  t h e r e f o r e  given by its i n j e c t i o n  

u dz' d r '  

de' 

For many rocke t  designs.  wi th  moderately small 

When a spray was examined from a non-continuum. k i n e t i c  

With c l o m t l y - q ~ m e d  

e s s e n t i a l  part of t h e  combustion f i e l d  i n i t i a l i z a t i o n  performed by 

In  t h e  DER 

- 
prope l l an t ' s  spray. La te r ,  during STC program b lock ' s  

i n i t i a l i z a t i o n  of stre- tubes,  

number of d r o p l e t  s i z e  groups. 

d i r e c t ,  s t rong  inf luence on t h e  

Dm. Thiis, an e f f o r t  should be 

D are suppl ied t o  LISP. 

t h e  sprays are d i s t r i b u t e d  i n t o  a d i s c r e t e  

The magnitudes of t h e  D ' s  f r equen t ly  have a 
p rope l l an t  combustion e f f i c i e n c y  computed by 

made t o  ensure t h a t  t h e  most r e a l i s t i c  values of 

- 

For some i n j e c t o r  types,  mean d r o p l e t  s i z e s  a r e  ca l cu la t ed  wi th in  LISP i f  they 

a r e  not  supplied by t h e  program user. Here, empirical  equations a r e  used which 

3 



- 
relate D to inject,ion element hole sizes and injection velocities. 
formulae were derived from cold-flow studies of molten wax jets: empirical 

adjustments are included to account approximately for differences in liquid 
and gas properties between those experimental tiid coinhuetor conditions. 

discussion of LISP's D formulae and guidelines for selecting D ' s  to input 
to LISP are given in Ref. 6. 

The basic 

A - - 

Pnrtial propellant evaporatioa upstream of z 

integrated evaporation expression 

is calculated by a simplified, 
0 

A where w'  is the liquid @pray flux actually arriving at the point (r,  9, zo) .  

The coefficient C is related to the evaporation coefficient k' used in the 

sulmequent spray combustion analysis. However, beca-lse the liquid sprays are 

not fully atomized over the entire'lz distance, values of C 

vecti.m Nusselt number, are usually assumed to be oaly about 1/5 to 1/4 of the 

stagnant values of kf. 
celculation are summed over all mesh points to yield a single overall vapor flow 

rate for  each propellant. Use of such a simplified evaporation expression is, 
to some extent, justified by the relatively small percentage of evaporation in 
the spray formation zone. 

k' 

including a con- k' ' 

The propellant vapors said to be qenernted by thie 

To ensure continuity of both propellants, the LISP program performs sumrnatioirs 
over a l l  mesh points of local propellant flow rates and then scales each pro- 
pellant's meeh point flows and fluxes by the ratio of its total injected f l o w  

to its sesh point sum. This normalization process thus corrects the total 

flows for computational simplifications an4 errora. 

Inpiit to the LISP cornpoter progtmn consists of the numher, location orientation, 

siee, geometry, and type of injector elements, together with the geoaetry of 

combustion sone tneuh network and general data concerning the propellant densities 

and injector pressure drops. 
inany as 403 comhustioa zone inebh points can be prescribed. 

Up to 60 injector elements can be considered. A.9 

6 



1-1-74 

2 . 1 A  2-PHASED 3-DIMENSIONAL SUBSONIC FLOW: 3DC INTERFACE KITH DER 

COMPUTER PROGRAM 

Two d i s t i n c t  models f o r  analyzing flow i n  t h e  combustion chamber ex st  i n  t h e  

DER conputer programs: 

at  t h e  i n j e c t o r  face and t h e  o t h e r  is t h e  STC model which analyzes  t h e  region 

downstream of the  LISP region. 

executed sequen t i a l ly  i n  a s i n g l e  computer run. However, by execut ing t h e  two 

DER models separ .  e l y ,  t h e  o v e r a l l  ana lys i s  can be expanded t o  include t h e  3DC 

computer program f o r  modeling 2-phase, 3-dimensional flow i n  an intermediate  

region. In t e r f ac ing  of t h e  DER models with 3DC t s  not f u l l y  automated. To 

assist t h e  user i n  running t h e s e  models i n  sequence, t h e  bul': of t h e  flow da ta  

which must pass  between them is t ransmi t ted  v i a  computer-gene;-ated punched da ta  

cards:  

cards f o r  STC, and STC reads t h e  3DC-generated cards .  

one is  t h e  LISP model which analyzes a region s t a r t i n g  

These models are in t eg ra t cd  i n  DER t o  be 

LISP generates  da t a  cards  f o r  3DC, 3DC accepts  these cards  and punches 

Inclusion o f  3DC imposes a severe  requirement on t h e  mesh size used i n  LISP. 

The s e c t o r  which is rep resen ta t ive  of  t h e  c ross  sec t ion  must contain seven 

angular  mesh pos i t i ons  and 15 o r  less r a d i a l  mesh pos i t i ons .  

date a mesh size up t o  20 by 20 when 3DC i s  not  used, but must have t h e  same s ize  
mesh system as 3DC when t h e  la t ter  i s  used. 

mesh size may be too  course t o  ob ta in  s a t i s f a c t o r y  

LISP can accomo- 

For some i n j e c t o r  designs,  t h e  3DC 

;formance p red ic t ions .  

The length o f  t h e  LISP region is e5pec ia l ly  c r i t i c a l  i n  determining t h e  propel- 

l an t  mixing e f f i c i ency  when t h e  JDC ana lys i s  is  bypassed, because t h e  length 

cont ro ls  t h e  amount of overlap between neighboring spray fans.  Idea l ly ,  t h i s  

length is  not c r i t i c a l  when it is kept sho r t  and t h e  spray spreading i s  handled 

by t h e  3DC ana lys i s .  However, .':.le t o  p rac t i ca l  cons idera t ions  of modeling 

spray flow with a f i n i t e  element represen+at ion ,  t h e  LISP region length may o r  

may not  be very cr i t ical ,  depending on t h e  p a r t i c u l a r  spray-spreading charac te r -  

i s t i c s .  

d i r ec t ions  as t h e r e  a r e  i n j e c t i o n  elements. 

mean spray ve loc i ty  vec tor  replaces  t h e  mul t ip le  spreading sp ray  ve loc i ty  

In  t h e  LISP ana lys i s ,  spray a t  any mesh point  is  moving i n  as many 

In  i n t e r f a c i n g  w i t h  3DC, a s i n g l e ,  
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vectors a t  each mesh point.  

30C with LISP loses some v a l i d i t y  when propellant i s  injected from m r e  than 

one in ject ion element. 

appropriate length for the L ISP region, whether 3DC i s  used or not; however, 

i n  some cases, the judgmental selection i s  not c r i t i c a l .  

Therefore, the modeling of spray spreading using 

In general, user judgment i s  required tu select an 
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2.2 SUBSONIC FLOW AND COMBUSTION: 

- STC SUBPROCRNI BLOCK 

Selected data computed by LISP are transferred (via scratch data unit) to the 
STC subprogram block. There, by one of three alternate methods, several mesh 
points' propellant fluxes and flow areas are combined to form one of the stream 
tube flows to be analyzed by STC.* Model solutions for spray gasification 
and combustion are obtained numerically for several systems (one for each 
stream tube) of simultaneous ordinary differential and algebraic equations 
by starting from known conditions at the LISP c3llection plane and marching 
downstream in small axial steps. 

Input to the STC computer program consists of chamber wall profile, propellant 
properties, coabustion gas properties and either (1) initial-plane gaseous 
flowrate and mixture ratio and spray flowrates, velocities, and droplet diameters 
for all spray size-groups entering each stream tube or (2) data from LISP from 
which these vari-ables can be calculated. Up to 40 stream tubes can be 
initialized vith as many as 12 spray size-groups (fuel and oxidizer combined). 

# 

*When 3DC is used, these data are transferred v ia  punched cards generated 

by 3DC. 
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2.2.1 Stream Tube I n i t i a l i z a t i o n  from LISP Data 

Data t r a n s f e r r e d  t o  STC from LISP are: p rope l l an t  mass f luxes  i n  t h e i r  i n j e c t e d  

s t a t e s ,  mean d rop le t  v e l o c i t i e s  and mass median diameters a t  each mesh point:  

mesh point  coordinates;  and t o t a l  i n i t i a l  plane flow and how much o f  i t  is 

g a s i f i e d  f o r  each propel lant .  I f  t h e r e  i s  no spray p resen t  f o r  one of t he  

p rope l l an t s ,  i ts  gaseous mass f l u x  a t  each mesh point  is r e t a ined ,  otherwise,  

simple bulk propel lant  vapor flows are t r ans fe r r ed .  

mixture r a t i o  is considered t o  be uniform (constant)  ac ross  t h e  r,O,z plane. 

hisymmetric stream tube flows may be i n i t i a l i z e d  from these  d a t a  by means of 

the  following options: 

I n  e i t h e r  case, the  gas  

0 

(1) A l l  mesh p o i n t s  along each c i r c l e  ( r  = constant)  of LISP'S mesh p o i n t s  

are combined i n t o  one stream tube. Gasif ied p rope l l an t s  are handled i n  cnc 

of two ways, depending upon whether one p rope l l an t  is completely g a s i f i e d  or 

not: 

a )  I f  t he re  is no spray of one p rope l l an t ,  the bipropel lant  gas f l u x  d i s -  

tr ibut ions  t o  the mesh points  computed by LISP may either be reta ined 

or be averaged out  t o  fonn a uniform bulk gas flux before the  mesh 

points  are combined i n t o  stream tubes.  
I f  t h e r e  is spray of both p rope l l an t s ,  t he  gas mass f l u x e s  are 

i n i t i a l l y  approximated as being uniform: 
b) 

- 

Then the  gas mixture r a t i o  a t  each mesh point  is s a i d  t o  be equal t o  

t h e  spray mixture r a t i o  there :  

= W O i . - i  

ij Wf 
C 

ij 

I n  general ,  however, t hese  

conservation of propel lant  

(5) 

two assumptions w i l l  not  be compatible with 

spec ie s  flow rates, e . g .  : 
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Therefore,  t he  f u e l  and ox id ize r  c o n t r i b u t i o n s  t o  each mcsh poin t ' ? ;  

gas flow are sca l ed  s e p a r a t e l y  t o  preserve spec ie s  con t inu i ty :  

These d e f i n i t i o n s  complete the  s p e c i f i c a t i o n  of p rope l l an t  flows a t  

each mesh point.  

This i n i t i a l i z a t i o n  method may be appropr i a t e  f o r  i n j e c t o r s  t h a t  form e s s e n t i a l l y  

axisymmetric flows. When app l i ed  t o  i n j e c t o r s  which -1Yoduce angular  g r a d i e n t s  

i n  l o c a l  p rope l l an t  mixture ra t io ,  however, i t  can e f f e c t  s u b s t a n t i a l  mixture 

r a t i o  averaging and r e s u l t  i n  ove rca l cu la t ion  of combustion e f f i c i ency .  

(2)  
l o c a l  mesh po in t  mixture r a t i o .  D i s t r i b u t i c n  of t he  gaseous prope l l an t  flows 

is the  same as described i n  ( l a )  o r  ( l b ) ,  above. Following d i s t r i b u t i o n  of t h c  

gases amont t h e  mesh po in t s ,  a wall boundarv l a y e r  stream tube is es t ab l i shed  

by combining a l l  t h e  mesh po in t s  a t  the w a l l .  I f  t h a t  stream tube does not 

contain more than a s p e c i f i e d  percentage of the t o t a l  flow, the  next inward 

c i r c l e  of mesh po in t s  w i l l  a l s o  be combined i n t o  i t ,  e t c . ,  u n t i l  i t  does. 

Then the remaining LISP circles  of mesh point  a r e  dividcd i n t o  n s p e c i f i e d  

few (2 t o  4, perhaps) c i r c u l a r  o r  annular zones having roughly -.qual propel lant  
flow rates, as illustrated i n  Fig. la. 

Mesh po in t s  are combined i n t o  stream tubes on the  b a s i s  of p o s i t i o n  and 

Within each of t hese  zones, t he  mesh po in t  flows are accumulated i n t o  stream 

tubes according t o  t h e i r  t o t a l  p rope l l an t  mix tu re  r a t i o s ,  r a t h e r  than t o  t h e i r  

posi t ions.  The number of atream tubes p e r  zone i s  spec i f i ed  and they are 

assigned roughly equal p rope l l an t  flow rates. 

po in t s  are combined i n t o  the  f i r s t  stream tube u n t i l  i t s  f r a c t i o n  of t he  

zonal flow rate  is reached, the next lowest mixture r a t i o  mesh p o i n t s  are  

assigned to  the second stream tube, e t c . ,  RI illustrated i n  F i g ,  lh. 

9 
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a. Geometric Aesignment of Mesh Points to a Wall Boundary 
Layer Flow and to Two ApproximateIv-Equal Flow Rate Pones. 

I 

Mesh Point6 for 
2nd Stream Tube 

. .  . 
1,2,3,4,3,6,7----Mesh Pt, Indices 

(Sorted by O / F  Ratio) Cumul. Ut. Fraction Zonal Flow 

b, Mesh Point Assignments to Stream Tube8 within a Zone 

;1 

Figure 1. Illustration of Assignment of Mesh Point Flows 
to Stream Tubes of Like  Mixture Ratio 
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Finally, the resultant stream tubes are arbitrarily assigned radial positions 

within their respective zones, vith the fuel-rich stream tubes lying inside 

of the oxidizer-rich ones. 

T h i s  method preserves the angular averaging objected to before 0-11~ at the 
wall and is accepted for  a fraction of the flow in order to get a n l l -  
bounding stream tube that is characteristic of the mean wall mixture ratio. 
For the remainder of the flow. the non-physical com5ining of mesh points on 
the basis of mixture ratio has been found to effect only modest changes in 
calculated mixing efficiencies from those based on the full LISP distributions. 

2.2.2 System of Equations 

rhe system of equations for the i- th stream tube is: 

Gas Phase 
Zontinuity : 

Moment um : 

- b u . A  d ds i i 2 si ) - A  p [ -gc (* da + 2 (F.')j) J 
j ,n 

Adiabatic Energy Equation: 
n 
L - 1  -- "i (211 

oi Ti = Toi B 2 

where 
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a r e  tabulated* and 

This corresponds t o  f rozen expansion t o  l o c a l  condi t ions  from s tagnat ion  

equilibrium. Frozen values of the specific heat ratio, Y, a r e  ueed. 

The l o c a l  stream tube gas mixture r a t i o  is  obtained simply by i n t e g r a t i n g  the  

evaporation rates t o  ge t  g a s i f i e d  f lowrates:  

Mixture Ratio: 

4 oxid i (2) 

"fuel ,i 

S t a t e :  

Spray Phase (nth d rop le t  s i ze  group of j t h  propel lan t )  

Mass Continuity:  

g[b ."). (u ."). A ] = - A 
ds d j  1 d J  1 s i si J (&.")i 

Drop Number Continvity:  

a (N ."). (u ") A ] = 0 de L d j  1 d j  i si 

* 
These combustion gas p rope r t i e s  ar2 obtained from sepa ra t e  ca l cu la t ion  of 
equi l ibr ium chamber condi t ions  f o r  s eve ra l  mixture r a t i o s  and the nominal 
chamber pressure  f o r  a p a r t i c u l a r  case being analyzed. 
t i v e l y  weak funct ions of chamber pressure ,  but t h i s  dependence is neglected.  

They a r e  a l s o  r e l a -  
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o r ,  equiva len t ly ,  

('dj n 

Momentum: 

The independent va r i ab le  i n  these  one-dimensional flow equat ions is thc stream 

tube path length  or flow d i r e c t i o n ,  si. 

tube ' s  c y l i n d r i c a l  ( r , z )  coordinates  through the  d i f f e r e n t i a l  expression 

This v a r i a b l e  is r e l a t e d  t o  the  stream 

d s .  = (dzi2 + dFi2) 112 
1 

where 'r 
s o l u t i o n ,  however, approximation8 are used t h a t  dsi  = dz where the  chamber 

w a l l  is p a r a l l e l  to t h e  a x i s  and t h a t  

is the  stream tube 's  mean radius .  For numerical s t a b i l i t y  i n  the STC 
i 

i n  the  nozzle. The b a s i s  f o r  Eq. 21 may be seen by examining Fig. 2. 

I n  t h i s  formulation, As 

is to be found. The gas  phase equat ions a r e  constrained,  however, i n  terms 

of z-plane area: 

appears as a dependent v a r i a b l e  f o r  which a so lu t ion  
i 

wThis equation s t a t e e  t h a t  the  number flowrate of d rop le t8  i n  each p rope l l an t  
@pray group siee i e  constant .  
monodisperse epray) is s p e c i f i e d  f o r  L prope l l an t ,  the  program holds t h e  drop- 
l e t  diameter Constant f o r  t h a t  s i z e  gro-ip and i t 8  nurnber f lowra te  is decreased 
a13 epray vapor i za t ion  proceeds. 

However, i f  only a s i n g l e  s i z e  group ( i . e . ,  a 
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Figure 2.  Schematic I l lus tra t ion  of A s s ~  ?cal 
Conical Convergence of Stream 'I 

Therefore, the foregoing equations were modified for the  . . -.+ter program t c  

permit d irec t  so lut ion for  Az by subs t i tu t ing:  
i 

A = A Z z  dz 
i i S 

The sets of gas and liquid phase equations are coupled through mass and momen- 
tum exchange between phases. For droplet gasification, the simple evaporation 
coefficient model is utilized: 

where the evaporation coefficient is 

and 

Drag forces on spray droplets are expressed by 
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with the drag coefficient specified as - _ _ _  
-0.84 ” 

= 2h (llc .I1) ; ILc . 5 80 
J J .i cD 

0.217 n ; Rc 7 80 
j 

= 0.271 (Re.”) 
J 

( 2 6  

2.2.2.1 Performance Parameters 

Two separate parameters are calculated which are indicative of the overall 
degree of propellant mixing. These are calculated once in LISP, based on the 
flowrates associated with the LISP mesh points, and once in STC, based on the 
initi-1 flowrates supplied to the stream tubes. a mixing 

efficiency factor due to Rupe (Ref. 7)  which expresses a mass-weighted average 
approach of local oxidizer mass fracrions to the overall injected nass fraction: 

One parameter is E rn’ 

1 [ is1 is1 

- 
n G i (R-ri) n iSi ( R-;i) 

- E  T F i 7  E = 100 1 - *R m 

where : 
n = ntmber of samples with R>r 
Ti = number of samples with 2cr 

6 = local propellant flowrate, Ibm/sec 
0 = total propellant flowrate, lbm/sec 
r,r = local oxidizer mass fractions, 6 /+ 
R = injection oxidizer mass fraction, /k 

- 
O 

0 

which repres: its the ‘lc* ,mix’ The second parameter is a mixing c* efficiency, 
maximum attainable c* efficiency corresponding to complete propellant gasification: 

n+ii 
c*(c i i  i=l = 

“c*,mix c*(cinj)O 

where c 

(iSoi/6pi) and 3 0, n dnd have :he same meanings as above. Theore‘ical 
characteristic velocity is tabulated as a functio3 of c.ixture ratio. 

is the injection mixture ratio (i inj O F  ), ci is local mixture ratio 

i’ 
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During STC's milltiple stream tube analysis, a single value of c* efficiency 
I s  calclilated from the n stream tubes' data at the throat plane: t 

t n 

Note the distinction between Eq. 29 and 28: local gasified propellant mixture 
ratios and flowrates are used in Eq. 29 rather than local total mixture ratios 
and flowrates, as in Eq. 28. 

2.2.3 Method of Solution 

The numerical integration scheme used to solve each stream tube's system of 
equations is the simplest first-order Runge-Kutta (or Euler) method. Selected 
for its simplicity, mfnimal data storage requirements, low execution times and 
numerical stability, this method's accuracy is strongly dependent upon using 
sufficiently small step sizes. 
using backwards differencing ,n writing finite-difference equations and by 

solving the equations twice, using predicted values from the first, or predictor, 
solution as input data for a second, corrector, solution. 

This limitation is reduced in importance by 

The STC program is first run in a single stream tube mode, i.e., a one-dimen- 
sional subsonx combustion analysis is made for the entire chamber using 
appropriate sums and averages of initial stream tube variables. This is done 
for two reasons: (1) to verify consistency of input data (initial-plane pres- 
sure is adjusted until the cne-dimensional throat velocity is within a small 
tolerance of the caiculated throat sound speed), and (2) to provide a mean 
adiabatic expansion coefficient, 7, for combustion gas flow in the convergent 
part of the exhausL nozzle. 

The latter coef ficiqnt-is given by: 

where the subscript 1 refers to the beginning of nozzle convergence, the 
variables p* and p* are at sonic conditions and the over-bars refer to the 



one-dimensional flow analysis. It is used by the TRANS computer program 
(described in the next subsection) to calculate the coordinates of constant 
pressvre surfaces (isobars) for transonic flow in the nozzle. TRANS isobars 
are generated and transferred to STC in non-dimensional terms, so their use in 
STC requires knowledge of the nozzle throat radius, % (an input parameter), 
and sonic flow pressure, pf. Discussion of the evaluation of p* is included 
in the following outline of STC's multiple stream tube solution. 

Following STC average single stream tube analysis and TRANS analysis, the 
initial plane is reinitialized with its original input and the STC program 

is run in a multiple stream tube mode. Sequentially: 

1. The main iteration loop performs the z direction marching. It begins with 
estimates that the changes in chamber pressure, stream tube gas velocities 
and densities across the next Az increment are equal to their gradients 
in the preceding single stream tube analysis. 
These estimated properties are used to calculate predicted values for all 
spray behavior parameters. Drag, evaporation and other spray droplet 
size group parameters are computed with controls to: (a) limit evaporation 
if it is found to exceed the amount of spray available, and (b) avoid 
having the sign of 

overestimation of drag forces, i.e., jroplets cannot accelerate or 
decelerate past  the gas velocity within a given Az. 
Evapcrated spray weights are added to the previous gasified propellant sums 
and the gas phase mixture ratios are computed. 
correspondlng to these mixture ratios are obtained by linear interpolation 
in the properties table. 

temperatures, densities, and stream tube areas. 

2. 

change in a non-physical way due to ps - (Udj3.] z p  

3. 
Combustion gas properties 

Corrected estimates are then made of gas 

4. Spray gasification and dray, terms are next treated as known constants in 
an Implicit-explicit two-step solution for the gas phase properties, stream 
tube flow areas and chamber pressure in plane z 2 .  

pressure level in plane z 

distribution of stream tube areas in that plane. 
distribution of areas is assumed to be valid, making possible an explicit 
solution for the gas temperatures, densities and pressure at z2. 

In the first step, a 

is assumed in order to calculate a predicted 2 
In the second step, that 
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5. The foregoing pa:-agraphs 2 ,  3, and 4 desc r ibe  a p r e d i c t o r  cyc le .  ':'ht*ir 

c a l c u l a t i d n s  a l e  repeated i n  a c o r r e c t o r  cycle ,  using the p r e d i c t o r  cvc.lt1's 

ca lcu la t ed  z3-plane r e s u l t s  instead of t h e  estimated p r o p e r t i e s  (paragraph 1 ) .  

I f  evaporat ioc of a spray group is ca l cu la t ed  i n  the  c o r r e c t o r  cyc l i  t o  

exceed the  t o t a l  mass of t h a t  grou,), the  group is s a i d  t o  be completelv 

gas i f i ed .  (For improved accuracy, a use r  may e l e c t  to perform a d d i t i o n a l  

cov t - c to r  cycles.) 

L 

6. A t  t h i s  point ,  normal program flow is p r in tou t  of computed d a t a  at ~ l a n c  

z 2 ,  r e i n i t i a l i z a t i o n  of p l ane  z 

again throug!i the  paragraph 3. through paragraph 5 computations. T!iis 

procedure would cont inue f o r  non-axisymmetric stream tubes u n t i l  nozzle 

t h r o a t  plane w a s  reached. With DER'S axisymmetric annular stream tubes, 

however, the procedure is changed (as follows) a t  the pos i t i on  i n  tfic 

nozzle where cu rva tu re  of t he  i s o b a r i c  su r faces  is introduced, and marching 

cont inues f o r  as many as 25 Az's p a s t  t h e  th roa t  pl.ane. 

a t  plzDe z 1 2 €or  a new ilz and progressing 

7. An approximate value of p* is estimated from the  nozzle  t h r c a t  plane pres- 

s u r e  of t he  preceding averaged, s i n g l e  stream tube ana lys i s :  

p* = p* p(z&/G(zo). By mult iplying the  reduced pressures, p/p*, of t h e  

TRANS i soba r s  by t h i s  value of p*, abso lu t e  pressures  are ca l cu la t ed  for 

the t ransonic  flow f i e l d .  These are imposed upon the  mul t ip l e  stream 

tube nozzle f l o w .  

- 

The f u r t h e s t  upstream TRANS i soba r  may be p lana r  o r  curved, dcpcnding tipon 

the  nozzle 's  r ad ius  ra t io  and shape of i t s  convergent s ec t ion .  I f  i t  is 

curved, i t  i s  d e s i r a b l e  t o  introduce a gradual t r ; i n s i t i on  from pLanar 

i soba r s  t o  t h a t  f i rs t  curved i soba r  which the s o l u t i o n  encounters. Also, 

a gradual t r a n s i t i o n  is d e s i r a b l e  t o  smooth out any d i s c o n t i n u i t y  i n  

pressure l e v e l s  between those solved f o r  upstream and those imposed down- 

stream of the  t r a n s i t i o n .  The gradual t r a n s i t i o n  is provided by s topping 

t h e  so1ut:on fo r  p re s su re  l e v e l  a t  a p o s i t i o n  t h a t  is upstream of t h e  

nozzle t h r o a t  by 1.3 times the  ax ia l  d i s t a n c e  t h a t  the  furthest-upstream 

TRANS i soba r  i n t e r s e c t s  t he  nozzle wal l ,  &.id using l i n e a r  i n t e r p o l a t  ion 

t o  impose abso lu te  p re s su res  over the  t r a n s i t i o n  i n t e r v a l .  
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I n  tile t ransonic  region,  imposit ion of abso lu t e  pressures makes the  

paragraph 4 s o l u t i o n  f o r  pressure l e v e l  redundant, SL' t h a t  tiic gas ph;i.;e 

c a l c u l a t i o n  is reduced t o  a one-step, e x p l i c i t  s o . u t i o n  f o r  stream t 5e 

areas. Because abso lu te  pressures  have been imposer!, t hc  s o l u t i o n  r JL 

provides abso lu te  values  of stream tube a r e a s  and thcsc  may o r  m.3~ not . ~n 

t o  the l o c a l  nozzle flow a r e a  (i.e., s a t i s f y  area con t inu i ty ) .  BY ?his 

method, area c o n t i n u i t y  can be s a t i s f i e d  only by f i d i n g  the appropr i - i tc  

value of p* t o  d e f i n e  the  proper nozzle  p r e s s u r e  l eve l .  This is do.ie d y  

f o r  the minimum flow area, as follows. 

8. A s  t he  s o l u t i o n  marches through the  t r anson ic  flow regime, t h e  minimum 

va lue  of t h e  sum of the ca l cu la t ed  stream tube areas a t  any preceding 

z-plane is stored.  Later, a f t e r  t h e  s o l u t i o n  has  reached a z-plane ? h a t ' s  

WhOllYdownstream of the  TRANS i s o b a r  which i n t e r s e c t s  t he  nozzle w a l l  a t  

t h e  th roa t ,  :his minimum area sum is compared w i t h  the  input  geometric 

area of the nozzle th roa t .  It i s  the  match of t h e s e  a r e a s  t h a t  c o n s t i t u t e s  

s a t i s f a c t i o n  of t he  nozzle t h r o a t  boundary co rd i t i on .  I f  t he  f r a c t i o n a l  

dev ia t ion  is less tharl some input  t o l e ra -cd ,  E , t he  s o l u t i o n  is complete 

and d a t a  f o r  subsequent input  to  the  TDK computer program are punched out .  

I f  t h e  dev ia t ion  l i es  between one and th ree  t i m e s E A  , the value of p" is 
t 

ad jus t ed  and t h e  s o l u t i o n  is reca lcu la t ed  from the  point  i n  the  nozzl t -  

where abso lu te  pressures  were imposed. 

t h e  STC i n i t i a l - p l a n e  p res su re  is ad jus t ed  and t h e  e n t i r e  mul t ip l e  stream 

tube s o l u t i o n  is r eca l cu la t ed .  

A t  

For dev ia t i c  ns  exceeding t h r w  EA , 
t 

2.3 TRANSONIC NOZZLE FLOW: 

TRANS SUBPROGRAM BLOCK 

A t r anson ic  flow a n a l y s i s  s e c t i o n  was adapted from the  r e fe rence  TDK computer 

program (Ref. 8), as modified (Ref. 9 )  t o  u t i l i z e  an e l l i p t i c  coordinate  t rans-  

formation s o l u t i o n  method (Ref. l o ) .  This s e c t i o n  was removed from the  TDE 

program and modified so t h a t  i t  would generate  a family of i s o b a r i c  l i n e s  

throughout t h e  t r anson ic  flow regime and provi.de a computer-plotted graph of 

t h a t  family. The necessary input  d a t a  are obtained from t h e  averaged, s i n g l e  

strcam tube s o l u t i o n  of STC, so t h i s  TRANS subprogram block g ives  a hemogcncoit.c 

flow so lu t ion .  

r a t i o s  AS small as 518. 

For homogeneous flow, TRANS s o l u t i o n s  are s t a b l e  with r ad ius  
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tts input d a t a ,  TRANS needs values  ,mly of t he  nozzle  t h r o a t  r ad ius ,  s, ;rnd a 

mean expansion c o e f f i c i e n t ,  y. I soba r i c  coordinates  are ca l cu la t ed  i n  terms of 

a x i a l  d i s t ance ,  X ,  from the  t h r o a t  plane and r a d i a l  d i s t ance ,  R, from t h e  

nozzle a x i s ;  both dimensions are normalized t o  the  t h r o a t  radius .  hil!tivle 

i soba r s  are generated,  one a t  a t i m e ,  by s t a r t i n g  downstream of the  th roa t  and 

marching upstream with equal i n t e r v a l s ,  Aa, i n  the  angle between thc  nozzle 

axi8 and a l i n e  tangent t o  the  nozzle wal l  a t  t h e  isobar/wal l  i n t e r s e c t i o n  

poin t .  

f i f t h  i soba i  is at t he  th roa t ;  t h i s  i soba r  later becomes the  TDR s t a . . - ? i .  . 
Four isobar/wal l  i n t e r s e c t i o n  pi -nCs l i e  downstieam of the t h r o a t  (~'0) and 

the remainder l i e  upstream of the t h r o a t  (a<o). '!.:ti> m w h r  i n t .  .,i bctween 

i soba r s  is given by: 

- 

The program is s t r u c t u r e d  such t h a t  t h a t  i n t e r s e c t i o n  point  f o r  t he  

Aa - - (1 + $-) 
Generation of i s o b a r s  cont inues u n t i l  e i t h e r  (1) t h e r e  arc twenty of thcnr o r  

(2) an i soba r  e x h i b i t s  s i g n i f i c a n t  reverse ,  o r  upstream curvature .  

la t ter  case, t h a t  las t  upstream-curving i soba r  is replaced wi th  a planar  

surface.  

In  the 

Two computer-plotted examples from TRANS analyses  are shown i n  Fig. 3, where: 

t he  nozzle a x i s  is a t  the  bottom (R/RT = 0) ;  flow d i r e c t i o n  is from l e f t  t o  

r i g h t ;  a por t ion  of t he  nozzle w a l l ,  def ined by30 '  w a l l  angle 5 + Bo, i s  

shown as t h e  upper curve; i so l - t r s  are generated from r i g h t  t o  l e f t  a t  nozzle  

w a l l  angle i n t e r v a l s  of 2.00' (Eq. 31 w a s  not  used i n  these runs) .  The 

monotonic downstream curvature  of the  constant  n r e s s u r c  s u r f a c e s  is apparent,  

as is its accentuat ion by lowericg the  nozzle r ad ius  r a t i o .  Included on the  

f i g u r e  are t a b l e s  which l ist  the pressure r a t i o ,  p/p*, and Mach number f o r  

each i sobar .  

The TWJS program a l s o  c a l c u l a t e s  a nozzle discharge c o e f f i c i e n t  u s i n g  the 

3rd order  equat ion given i n  Ref. 10: 

c m - 1 -  

-2  - + 3 6 q  (754 v - 757v  
276,408(1+R$z d 

+ 
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Before proceeding t o  mult iple  stream tube STC program a n a l y s i s ,  the STC in i t i c t l -  

plane pressure which s a t i s f i e d  one-dimensional sonic  t h r o a t  flow is divided 

by su t o  ob ta in  an improved estimate of i n i t i a l  plane pressure and exped i t e  

convergence on the  nozzle t h r o a t  boundary condition. 

2.4 SUPERSONIC NOZZLE now: 
INTERFACE WITH THE E COMPUTER PROGRAM 

The previous vers ion (Ref. 2)  of DER included a T K  subprogram block f o r  per- 

forming supersonic nozzle expansion of mul t ip l e ,  axisymmetric, gaseous stream 

tube flows. That subprogram block was based on minimum modif icat ions of the 

TDI; long-form opt ion,  descr ibed i n  Ref. 8 ,  wherein only supersonic a n a l y s i s  

is performed. A supersonic s ta r t  l i n e  w a s  i n i t i a l i z e d  from STC computt-d da t a  

and from equi l ibr ium computations using the  ODE (one-dimensional equilibrium) 

s e c t i o n  of TDK. The TDK start  l i n e  d a t a  generated by STC were p r in t ed  n u t  a t  

the  end of STC computations and a corresponding punched-card deck was generated.  

Thus, TDK could be run, op t iona l ly ,  e i t h e r  i n  sequence with STC using d a t a  

t r ans fe r r ed  v i a  s c r a t c h  d a t a  units o r  s e p a r a t e l y  using punched card input  da ta .  

A s u b s t a n t i a l  discrepancy w a s  found t o  ex is t  between the  start l i n e  gas  

temperatures and d e n s i t i e s  computed by STC and those computed by TDK as s ta r t  

l i n e  equilibrj-um. 

frozen expansion from s t agna t ion  equ i l ib r ium and TDK's s t a t i c  equilibrium. 

Under another program (Ref. 11) a modified STC s o l u t i o n  method has been 

developed which el iminated t h i s  discrepancy. This method involved : expanding 

tlie input  t a b l e s  of equi1ib;ium gas p r o p e r t i e s  t o  be funct ions of both mixture 

r a t i o  and flow Mach number; using static equi l ibr ium p r o p e r t i e s  r a t h e r  than 

s t agna t ion ;  forming ( i n t e r n a l l y )  pseudo-stagnation temperatare a r rnvs  from 

the  input  s t a t i c  temperatures; and, i n t e r p o l a t i n g  t o  l o c a l  mixture r a t i o  and 

Mach number i n  these  t ab le s .  

The discrepancy is caused by the  d i f f e r e n c e  between STC's 

A t  the  same time, however, an improved ve r s ion  of TDK w a s  a l s o  developed (Ref. 3) 

which is capable of performing k i n e t i c  expansion analyses  f o r  mul t ip l e  gaseous 

stream tubes in subsonic and t r anson ic  flow regimes as w e l l  as i n  tlie super -  

son ic  nozzle flow. While i t  would have been posoible  t o  adopt t he  modified 
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STC subprogram block from R e f .  11 and modify the  improved TDK t o  accept STC 

d a t a  as input,  t hese  ac t ions  were not taken. Rather, t h c  TDK subprograci b lock  

was removed from DER and the frozen expansion from s t agna t ion  equi l ibr ium was 

re tained.  A subrout ine was added which p r i n t s  and punchcs, i n  NAMELIST format, 

the th roa t  plane d a t a  needed from STC t o  continue the mul t ip l e  stream tubc 

a n a l y s i s  v i a  the  improved TDI; computer program. 

Tnroat plane d a t a  punched out  (and the  TDK parameters t o  which they correspond) 

are: t h e  number of stream tubes (NZOINES), a stream-ttibe-area-wtighted mean 

s t agna t ion  pressure ( P ( l ) ) ,  

t n 

c po*i Ai 
i=l - 

P * =  
0 (33)  

and, f o r  each stream tube, the  g a s i f i e d  p rope l l an t  mixture r a t i o  (0FSKED) and 

mass f r a c t i o n  of the  t o t a l  g a s i f i e d  p rope l l an t  flow wi th in  t h a t  stream tube (XE).  

I t  i s  a n t i c i p a t e d  tha?  these  stream tube d a t a  may be used t o  i n i t i a t e  TDK 

nozzle expansion ana lys i s  at the th roa t  plane o r ,  i f  k i n e t i c  e f f e c t s  a r c  

believed t o  be important i n  the  subsonic flow, a t  some plane upstream of thc 

nozzle th roa t .  Thus, i t  i s  now poss ib l e  t o  overlap the spray g a s i f i c a t i o n  

ana lys i s  of STC with the  non-equilibrium combustion a n a l v s i s  of TDK, but i n  an 

uncoupled manner. 

program user ,  by spec i fy ing  the  con t r ac t ion  r a t i o  (ECRAT) f o r  t h a t  s t a r t  plane 

and also the subsonic area r a t i o  f o r  t h a t  plane (SUBAR(l), equal  t o  the  

con t r ac t ion  r a t i o ) .  

i n  Fig. 4 .  Other d a t a  needed f o r  i n i t i a l i z i n g  TDK are*: r eac t an t  cards  (pages 

6-9 and lo), r e a c t i o n s  cards  (pages 6-27 t o  31), nozzle design pa ranc te r s  

(pages 6-32 t o  3 4 ) ,  i n t e g r a t i o n  and p r i n t  co t - t ro ls  (pages  6-35 t o  37) and 

TDK c o n t r o l s  and nozzle divergence geometry (pages 6-42  t o  4 6 ) .  

The loca t ion  of the  TDK i n i t i a l  plane is designated by the  

This  non-physical stream tube d a t a  t r a n s f e r  is  i l l u s t r a t e d  

*Page numbers i n  parentheses r e f e r  t o  the  Program User's Manual Sect ion of 
R e f .  3. 
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Fig. 4 .  Rwieed STCITDK 1nterface.Permitting TDK 
Analyeis to Begin at Subsonic F low Fonditions 

%difications have been made to the improved TDK program to make it compatible 
with DER. TDK analyzes only the gasified propellant flow. Account is taken 
of the propellant mass loss represented by residual sprays passing through the 
throat, assuming no continued evaporation or acceleration that such sprays 
might undergo in the supersonic nozzle expansion section. 
not added to the TDK initial plane momentum. 

Residual spray is 
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3. DER PROGRAM USER'S GUIDE 

The DER computer program was developed for operation on Rocketdyne's IBMSystem 
360, Mod 50165 computer which is designed to run programs written in Fortran H. 

So that this program would be compatible with other computers, however, it was 
written in Fortran IV (which is a subset of Fortran H). There are, of course. 

some sub-programs which may not be operable on other than the Rocketdyne com- 
puter; for most other computers, these are probably restricted to the data- 
plotting functions and can be replaced by dummy subroutines without detriment 
to the rest of the program functions. 
computer, a user must supply program control cards that are compatible with 
his compiler, link editor, etc. The program makes extensive use of overlav in 
order to reduce computer storage requirements; the overlay structure is 
described in Section 3.1. Storage required and other operational considerations 
are discussed in Section 3 . 4 .  

In order to run the program on anv 

Operation of the DER computer program also depends upon a user-supplied data 
deck, through which he specifies details for the particular combustor and 
propellants he desires to analyze. 
expenditure of a substantial effort. There are separate sections of the data 
deck for each major subprogram block; they are assembled in the order in which 

the program calculations proceed. Details concerning data deck assemblage are 
given in Section 3.3.  

Assembling a data deck usually involves 

3.1 PROGRAM OVERLAY STRUCTURE 

The DER computer program can be overlayed to operate on a computer having only 
moderate storage capacity. The recommended overlay structure is shown in 

Fig. 5 ,  where the branches are set us such that most of them are required onlv 
once. 
occurs when the branch comprising CSPRAY, et seq., is loaded. Total storage 
used during execution on Rocketdyne's IBM System 360, Mod. 65 computer is 
about 47,200 words. 

The program length with this structure is 42,450words; maximum length 
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' FTSSB 
FLDPSA 
FLDPSB 

FLDPPA 
FSACBL 

R 
KPRIME 
ESUMB 

ORIGIN A 
L I S P  

/ELEM/ 
/SHAPEC/ 

/LADML/ 
I C P L B T I  
/GLSP/ 
/LAD41 
/LAC61 
/GLISPE/ 

l /ELIPEC/ 

FANIN 
MFLUX 
BNDY 
SUMM 
SUM2 
SUMV 
MIXEFF 
G F L W  
PUN 
GPUN 
XPUN 
XPUN I 
XPUNP 
?PUN 
S4MAT TRANS 

N4M41N 
HALL 
ITER 
PLBTT 
CDTRAN 

DER b i n  
HEADER 
TIME 
SCALE 
L INEG 
YQF 
LOCATE 
XITRP 
ITRPZ 

PLBTC 
PLBTN 
PLBTZ 
CRTBL 
MXM 
LGRID 
CBNTRE 
CBNTRP 
CBNTUR 
CLEVLS 

/CRTRE/ 

/ S E W /  

ORIGIN C 
CINPUT 
STAPE 
SCRMBL 
SBRTR4 

/SCR/ 
/ISCR/ 

WVD 

STC 
/SAVE/ 

/GRP/ 
/TBL/ 
/A9Z/ 
/as/ 
/KP/ 
/VAP/ ' 

/ P I  
/ws/ 
I P S /  
/SUM/ 
/ can?/  
!STKI/ 

C I R I T  
TABLES 
RC00RD 
STC2T 
CHA?IGS 
LLGRID 

CSPRAY 
EVAPS 
CGDYN 
QUAD 
CPRINT 
AVD30A 
'TER8 
PVSST 
PVSR 
PUl'lAME 

/PURNAM/ 

Figure 3.  DEB Program Overlay Structure 
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Label C@-M0N blocks needed only wi th in  a p a r t i c u l a r  segment are included i n  

the overlay s t r u c t u r e .  

block nane between /'s, e.g.,/CNTRE/. 

which are not shown i n  Fig. 5; these are understood t o  be p a r t  of t h e  root  

segment, i.e., t h a t  including DER, HEADER, e t  seq. 

Each is denoted i n  Fig. 5 by enclosing the  C0MM0N 
There are s e v e r a l  l a b e l  C0MM0N blocks 

3.2 PROGRAM SUBROUTINES 

Brief s ta tements  are given about each of t h e  subrout ines  i n  the  DER computer 

program, i n d i c a t i n g  the major funct ions performed. These are intended t o  ass is t  

the  i n t e r e s t e d  user i n  f ind ing  quickly where p a r t i c u l a r  ope ra t ions  are per- 

formed. 

f u l l y  t he  equat ions solved o r  the s o l u t i o n  methods used. The subprograms are 

divided i n t o  t h r e e  groups, corresponding t o  the  main stem (DEF, e t  seq.) ,  t he  

LISP branch and the  STC branch, r e spec t ive ly ,  of the  overlay s t r u c t u r e .  The 

sequence of subrout ines  i n  t h i s  s e c t i o n  zonforms t o  the  s t r u c t u r e  of t h e  

overlay c h a r t ,  Fig. 5. 

No attempt is made t o  give d e t a i l e d  d e s c r i p t i o n s  o r  t o  d e l i n e a t e  

3.2.1 DER (Main Stem).. Subroutines 

The DER main program is  a b r i e f  execut ive program t h a t  ca l l s  sub rou t ine  HEADER 
and, based on values  read-in t h e r e  f o r  c e r t a i n  c o n t r o l  parameters, c a l l s  

s e q u e n t i a l l y  subprograms LISP, STC, TRANS and PUNAME. 
t he  i n t e g e r  INERR i s  returned from LISP, t h e  rest of t h e  ca l l s  are bypassed 

and execution is terminated. 

I f  a noizero value of 

Subroutine HEADER reads a set of fou r  comment ca rds ,  d e s c r i p t i v e  of the  

p a r t i c u l a r  case being run, and a se t  of program flow c o n t r o l  i n t ege r s .  

then p r i n t s  ou t  a t i t l e  page f o r  the case being run. 

It 

Subroutine TIME p r i n t s  ou t  t h e  da t e ,  time of day and elapsed clock ( r e a l )  t ine  

s i n c e  the previous ca l l  of TIME. This subrout ine ca l l s  l i b r a r y  subrout ines  

CLQCK and CDATEV; i f  e i t h e r  of these  i s  unavai lable  i n  the  l i b r a r y  of a 

p a r t i c u l a r  computer, subroutin. TIME should be replaced by one which u t i l i z e s  

a v a i l a b l e  l i b r a r y  rou t ines  o r  by a dummy subrout ine TIML. 
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Subroutine SCALE determines wquired limits and increments for scaling the 

axes of computer-plotted graphs. It is referred to by subprograms CLEVLS, 
LGRID, P U T T ,  and LLGRID. 

Subroutine LINEC connects successive points of a computer-plotted function 
with straight line segments. Library subroutine LI-:.iV is called by I ' INEG. 

Function subroutine YgF (X, XT, YT, N,  NP) performs an NP-point Lagrangian 
interpolation to determine Y=YQF - f ( X )  corresponding to the point (X,Y) in 
the N-point array (XT, YT).  Subroutine LgCATE is called by YQ)F to find the 
first of the points ( X T ( K ) ,  YT(K)) for interpolation, where 1s K<N. Sub- 
routine XITRF' is called by Y0F EO perform the actual point-to-point inter- 
po lat ion. 

Subroutice I T R P 2  (Xl, T1, N1, 11, X2, T 2 ,  N 2 ,  12 ,  YT, L I ,  Y )  performs a 
double interpolation to find Y=f (X1,XZ) from the Y T ( N l , N 2 )  array corresponding 
to the position X1 in the Tl(1) to Tl!hi) array and the position X2 in the 
TZ(1) to T 2 ( N 2 )  array. Subroutine LgCATE is c.alled to determine the appro- 
priate first points and subrcutine XITRP performs the actual interpolation. 

3.2 .2  L I S P  Subroutines 

Subroutine L I S P  is quite large and, as the executive subroutine of this sub- 
program block, performs many functions. 
all of the data required for any of its associated subroutines. 
input data are tested, as they are read-in, for consistency. if there are 
inconsistencies in the data which would invalidate L I S P ' s  computations, an 
error message is written out and the case is deleted immediately. 
acceptable data, LISP next sets up the coordinates of the network of mesh 

points in plane z 0' 
CCXP, FANIN, MFLUX and BNDY are called to perform their functions, I f  sppro- 
priate. 
ensure conservation of total propellant flowrates, writes out the computed 
data (both before and after evaporation), generates a scratch data record of 
information to be transferred to STC, calls subroutine MIXSFF, calculates 

The first of these is reading-in 
Some of the 

Given 

Then, sequentially, subroutines EFLQW, DSIZE, SCQEFF, 

Subroutine L I S P  then scales the computed mesh point mass fluxes t o  
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and p r i n t s  mean p r o p e r t i e s  f o r  a combustion gas flow a t  z r e s u l t i n g  from gasi-  

f i c a t i o n  of p rope l l an t s  upstream of  t h a t  plane. 

PL0T2 and PL0TC are c a l l e d  '+' c o n t r o l s  have been set t o  gene ra t e  computer 

p l o t t e d  graphs of d a t a  and, f i n a l l y ,  t he  e n t i r e  LISP procedure is repeated i f  

a n a l y s i s  a t  a second (or  t h i r d )  LISP c o l l e c t i o n  plane 113s bren c a l l e d  f o r  Ls 
reading i n  non-zero ZdM2 (and ZflM3). 

0 
Subroutines PLdTN, CRTLBL, 

Subroutine EFL0W calculates p rope l l an t  i n j e c t i o n  f lowra te s  and v e l o c i t i e s  f o r  

each i n j e c t i o n  element of Types 1 through 5 and 7 and 8. 

element types (Types 6 ,  9 and l o ) ,  the  i n j e c t i o n  f!.owrates are supplied as 

i npu t  da t a .  Variables  denoting the  f lowra te s  of each p rope l l an t  from each 

o r i f i c e  (o r  equivalent  o r i f i c e )  of each element are a l s o  assigned. 

For the gzs/l iquir!  

Another funct ion performed i n  EZ0W is c a l c u l a t i o n  

a f o r  t he  gaseous ( f u e l )  p rope l l an t  of a Type 6 ( g a s l l i q u i d  coax ia l  j e t )  

element. This is done on the b a s i s  t h a t  t he  vaporized p o r t i o n  of t he  ox id ize r  

spray is d i f fused  and mixed uniformly wi th  the  gaseous f u e l  and t h a t  gas p'lase 

momentum is conserved. 

of c o r r e l a t i o n  c o e f f i c i e n t  

Subroutine DSIZE contains  e q b a t i m s  f o r  c a l c u l a t i o n  of p rope l l an t  mass median 

d r o p l e t  diameters for elements of Type 1 through 5. 

bypassed i f  non-zero d r o p l e t  diameters are suppl ied as inpa ;  d r t a .  

These campdtations are 

Subroutine SCdEF provides,  f o r  Type 1 through 6 ana Typc 9 elements, va l ?  -9 

of the mass f l u x  c o r r e l a t i o n  coeffic Lents, C1 through C 

p rope l l an t s .  These v a r i a b l e s  are read-in f o r  Type 8 and 10 eieuieiits. SC0EF 
ca l l s  upon appropr i a t e  c o e f f i c i e n t  l i b r a r y  subrout ines  FZA through FSAC0L. 

a snd b f o r  both 6' 

Subroutine CCKT c a l c u l a t e s  modified evaporat ion c o e f f i c i e n t s ,  Ck ,  (CKP1 and 21, 
i n  the event t h a t  t hese  v a r i a b l e s  were both read-in wi th  values g r e a t e r  than 1. 

I n  t h a t  case, the  read-in ? i ta  are taken t o  be the  p rope l l an t  l a t e n t  h e a t s  of 

vaporizat ion and t h i s  subrout ine r ep laces  them with a ca lcu la t ed  Clc,. 

bo th  read-in values  are less than un i ty ,  CCKP is bypassed. 

I f  
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4 Function subroutine FSA provides values for correlation coefficients a and C 
for Type 1 (unlike doublet) and 2 (like doublet) elements. Function sub- 
routine FSB provides values for coefficients b, C1, C2, C3, C 

1 and 2 elements. 
and C 5 6 for Type 

Both propellants are included. 

4 Function subroutines F'F'DSA and FPSSh provide values for coefficients a and C 
for the outer orifices and the central orifice, respectively, of Type 5 
(liquidlliquid 4-on-1) elements. 

Similarly, function subroutines FTPSA and FTSSA evaluate coefficients a aI?d 

C4 for the outer (fue1)orifices awl the central (oxidizer) orifice, res: 
of Type 3 (liquid/liquid triplet) elements. In like manner, coefficients b, 
C and C for the triplet's outer and central orifices are obtained from 
function subroutines FTDSB and m S S B ,  respectively. 

-tivelv, 

2 6 

Spray distribution coefficients for Type 3 (like doublet pair) injection 
elements are obtained from function subroutines FLDPSA, FLDPSB and FLDPgA. 

The a coefficicnts for each propellant differ in the (-x) direction from those 
in the (+x) direction. 
given propellant's doublet lies is obtained from FLDPSA and that for the 
.'opposite side" of the origin from JXDP8A. 

by FLDPSB. 

The value of a for the "same side" of the origin &-a 

The b coefficients are calculated 

Function subroutine FSACQL calculates coefficients a and C4 for the central 

liauid jet of a gasl'liquid coaxial jet element (Type 6 ) .  

Subroutine FANIN was originally intended to account for interference between 
the spray trajectorizs of closely-spaced, neighboring spray fans. This 
function has not been -rcvided, however, so the subroutine's only function 
is assigning and writing out values of coefficient a fox positions to the 
right (x>O) and left (~$0) of the element origins. 

Subroutine MFLUX performs primary functions of calculating each injection 
element's contributions to each collection plane mesh point, summing them 
to obtain mesh point propellant fluxes (both before and after accounting for 
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p a r t i a l  spray g a s i f i c a t i o n )  and c a l c u l a t i n g  mean mesh point  spray v e l o c i t v  

vectors .  Secondary func t ions  are concerned wi th  computing and printiny, sornc 

va r i ab le s  t h a t  are i n d i c a t i v e  of spray f lowrate  c o l l e c t i o n  e f f i c i e n c i e s .  

MFLUX ca l l s  upon a number of computer l i b r a r y  tr igonometric funct ions.  

Arithmetic statement func t ions  d e f i n e  funct ions SXND(X) .and CbSD(X) for 

angular arguments X i n  degrees;  t hese  d e f i n i t i o n s  should be removed i f  t h e  

l i b r a r y  contains  these  funct ions.  

Subroutine BNDY provides f o r  fo ld ing  p rope l l an t  flows which f a i l  ou t s ide  of 

t h e  defined chamber segment being analyzed back i n t o  p a r t i c u l a r  mesh points .  

Flow compuced t o  pass  r a d i a l l y  outward through the  chamber w a l l  is folded 

back i n t o  t h e  w a l l  mesh po in t s .  

through r a d i a l  planes of symmetry depends upon the  value of JSYM and upon 

whether t h e r e  are physical  b a r r i e r s  (e.g., r a d i a l  b a f f l e s )  there .  ENDY c a l l s  

upon subrout ines  SLMM t o  sum the  p r o p e l l a n t s  folded i n t o  tlie o u t e r  w a l l  mesh 

po in t s ,  SUI2 t o  accomplish the  fo ld ing  a t  r a d i a l  l i n e s  of synnnetrv and S W  

t o  c a l c u l a t e  appropr i a t e  adjustments of t h e  p rope l l an t  mean v e l o c i t y  vectcrs 

a t  mesh p o i n t s  which have received folded flowe. 

Treatment of flow which passes azimuthally 

Subroutine MIXEFT computes values  of Rupe’s mixing e f f i c i e n c y  f a c t o r ,  E 

a mass weighted mean c h a r a c t e r i s t i c  v e l o c i t y  e f f i c i e n c y ,  TI b&ised on 

mesh point propel lant  flows and a read-in t a b l e  of c* vs  mixture r a t i o  (O/F).  

and 
m’ 

c*,mis’ 

For Type 6 or  10 g a d l i q u i d  i n j e c t i o n  elements, subrout ine GFLdW c a l c u l a t e s  

and p r i n t s  ou t  l o c a l  mesh po in t  combustion gas condi t ions.  I t  is assumed t h a t  

the vaporized p o r t i o n s  of the  l i q u i d  sprays are mixed with the i n i t i a l  gaseous 

p rope l l an t  a t  uniform mixture r a t i o  but t he  gaseous mass f l u x  can be non- 

uniform. Combustion gas p r o p e r t i e s  are obtained as func t ions  of t h a t  mixture 

r a t i o  by i n t e r p o l a t i o n  i n  read-in t ab le s .  

A package of subroutines 

c a l l s  PUN t o  produce cards t o  specify spray drop s ize ,  ve loci ty  components and 

flowrates a t  each mesh point .  Also, i t  c a l l s  GPUN to produce cards t o  specify 

gas mixture r a t i o ,  density, ve loc i ty  and temperature a t  each mesh point .  

1s required for punching data cards for  I D C .  LISP 
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Subrout i n t  PUN uses some qeneral i red punch subroutines: PPUN, XPllN. XPUNI and 

XPIJN?. A var iable format i s  used in  PPllN which Is set up by subroutiw S4MAT. 

This l a t t e r  subroutine i s  dependent on thc type of computer used. i .t . . ,  i n  

respect to the number o f  H o l l e r i t h  charactcrS stored I n  each word location. 

lhc remilinin): LTSI' suhroiit incs  arc  ;i1 1 t -onwmcd w i t h  gcncrat ion oi' computcr- 

p lo t ted  Rraphicnl o u t p i t .  Thcy arc tlcsiencd t o  uti1i:c  Strornht~rS-C;irl~~~n 

SC-4r)lO equipment in producing 9x9-in CRT plots.  

cross-scct ional  graph of t h e  chambcr s e c t i o n  being analyzed i f  NCRT # 0. 
l oca t ion  of each clcmcnt's o r i g i n  i s  indicated thereon. Sibroutine PLaT2 

Siihroutine PI.@TN prodiiccs a 

The 

(Continued on next page) 
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is called i f  NCRT > 0;it plots propellant mass flu.; vs 8 along specified 
r = constai;t arcs.  

1 .UUI) .  Subroutine CHTI.BL wrltcs lnbtls on the abscissa and ordinate of encli 

Yi.#L'tl or P1.01'2 graph. 

'I'hc basic rectangular grid is established by subroutine 

Subroutine PL@K consLructs rtrcular plots of the system of LISP mesh points 
and, on aui'ce~uiv(* Kraplui, plots contour level maps of fuel, oxidizer and 
L o L i i I  propcllant f l u x  and one of it function of the basic mixture ratio. If the 
maximum and minimum mynitudce of tlrr contour variables are not specified, 
they are determined by Subroutine %MN. Subroutine CLEVLS establishes the 
actual contour levels plotted, assigning some convenient interval between 

levels. Subroutine C0NTUR is called to do tire actual contour line plotting. 

I t ,  in turn, calls upon subroutine C0NTRE to establish the contours position 
between four mesh points and C@NTRP to plot and label the contours in 
repeating pic-slice-shaped chamber segments. 

3.2.3 STC Subroutines 

Subroutinc STC is tlie main executive subroutine for the STC subprogram block 
of DER. 
initializing the start-plane conditlons, respectively, a main Db-loop is 
established which performs tlw marclitng from z through tlre nozzle thi-oat. 
Within this N, tlie combustion model equations are solved by stepping from 

'<noun conditions in one plane and calculating conditions in a second plane 
a small Az downstream. 
out the actual computations. Flow control for predictor-corrector cycle 
calculations resides in STC. The logic for testing to see if the single 
stream tube analysis has converged on a solution, for reinitializing multiple 
stream tubci conditions and for testing whether the multiple stream tube analysis 

has converged arc also in STC. 

After calling subroutines CINPUT ant! GINIT for reading-in data and 

0 

A timber of other subroutines are called upon to carry 

Subroutine CINPUT reads all of the punched card data needed as input by the 
STC subprogram block and, if appropriate, calls upon subroutine STAPE to 

read the ecratch data unit recorded by subroutine LISP and set up tlie initial 
stream tube areas, propellant flowrates, gas phase mixture ratio and spray 
properties. I f  the option i s  specified for starting the STC analysis from 
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30C data, STAPE reads data from cards punched by 3DC rather than from a scratch 

data u n i t  and droplet f lawrate,  ve loc i ty  and diameter a re  averaged a t  each mesh 

point by subroutine WVD. 
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Subroutine STAPE reads data transferred from LISP via scratch data unit 2 and 
uses it to set up the strealc tubes' initial cross-sectional areas and propel- 
lant flowrates an3 conditions at the STC start plane. STAPE calls subroutine 
SCRMBL to perform the assignment of mesh points to particular stream tubes 
and to do the appropriate summation and averaging of areas and propellant 

parameters. Data returned from SCRMBL are multiplied by an integer scale 
factor to convert from a pie-slice-shaped sector to a full circular chamber 
cross-section. Stream tube initialization data are punched-out so they may 

be used as input for subsequent STC subprogram block runs. 

Subroutine SCRMBL is a fairly complicated subroutine, as it contains the logic 
for accomplishing the several optional ways of combining mesh point flows into 
stream tube flows described on page 8 . When mesh points are to be combined 
on the basis of mixture ratio, subroutine SQRTR4 is called to sort the mesh 

points into a sequence with increasing mixture ratio. 
each mesh point with one value of a subscripted integer label IC(K) whose 
subscript K is uniquely related to the mesh points r,B subscripts. 

This is done by tagging 

Subroutine CINIT performs several functions in preparing for STC's main 
D0-loop marching solution. Dummy arrays are defined for saving stream tube 
initialization data for subsequent occasions when the start plane is reini- 
tialized and STC's computations are restarted. 
compute, store and print tables of propellant evaporation coefficients as 
functions of combustion gas static temperature. Subroutine AVAR is called 
to set up a table of chamber cross-sectional area vs chamber length and to 
define some other geometric parameters. 

is being prepared for, the stream tubes are (temporarily) combined into one; 
thus, only the first of NST stream tubes is properly defined for this option 
and it carries the total injected propellant flowrates and occupies the entire 
combustion chamber cross-section. CINIT also contains the logic for re- 
establishing the multiple stream tube conditions upon completion of single 
stream tube analysis. Other functions include initialization of the stream 
tube combustion gas properties and printing of some initial stream tube data. 

Subroutine KPRIME is called to 

If STC single stream tube analysis 
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Subrout ine TABLES interpolates in rend-in tables of combustion gas properties 

at local stream tube mixture ratio to fin2 local combustion gas stagnation 
temperature, g a m ,  molecular weight and viscoaitv. Local stagnation sound 
speed and throat static sound speeds are calculated. 

subroutine RCMRD establishes the radial coordinates of the dividing strcwm 
lines betwen stream tubes and the incremental stream tube path lcngth cor- 

responding to a Az axial increment. Downstream of the nozzle throat, the 
dividing stream lines' intersections with the fifth TRANS isobar arc solvrd for 
and printed out. 

Subroutine STCRT records thc dividing stream line radii as functions of chamher 
length and, upon completion of the chamber length marching analysis, generates 
an axial chamber cross-section plot. 

Subroutine CHANGS reassigns the values of stream tube parameters in the 
upstream t-plane as being equal to those in the downstream t-plane, as prepara- 
tion for another Az step. (When called from CINIT, subroutine C 1 W G S '  function 

is inverted, assigning upstream conditions to the downstream plenr:.) 

Subroutines RPRIME and AVAR were commented upon along with subroutine CINIT. 

Em * Subroutine ESUBM celculatcs a valu~ of the Rupe mixing cafficicncv factor, 

for the stream-tube-striated combustor flow. Total stream tube propellant 
flows are considered, so this value corresponds to complete propellant 

gasification. 

Subroutine T M S  is the executive program for the TRANS subprogram block. It 
is called by the DER main program. 

parameters, then writes out a table of input and control data before calling 
subroutine N4MAIN, which perfolms the transonic analysis. 

TRANS defines a number of control 

Subroutine N4MAIN solves for the radial and axial coordinates of points on 
isobaric surfaces in an axisymmetric nozzle's transonic flow rcgimr. Sub- 

routine HALL is called upon to perform a modified Hall solutton of transonic 
flow equations for a homogeneous constant flowrate gas. Subroutine IW!I is 
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c a l l e d  to  so lve  f o r  t h e  a x i a l  coordinate  roots .  Tlw i s o b a r i c  surfaces' 
coordinates are p lo t t ed  by subrout ine PLgTT and arc ti*h\1lnttd, togetlwr v i  t l r  

each l i n e ' s  reduced pressure,  Kwh number and flow d i r e c t  ions, by IV&NAIN. 

Subroutine CDTRAN is c a l l e d  by TRANS t o  c a l c u l a t e  and p r i n t  a nozzle  disclrar3e 

c o e f f i c i e n t  f o r  t h e  foregoing t r anson ic  so lu t ion .  

Subroutine CSPRAY cs:culstes chr behavior of propellant s p r a y  s i-e grLwps. 

Subroutine EVAPS is  c o l l r d  t o  compute the  s i z e  group g a s i f i c n t i o n  r;itt 's. 

CSPRAY then determines whether those rates are permissible ,  a d j u s t s  them i f  

necessary,  reduces the  l i q u i d  spray f lowrates  and c a l c u l a t e s  the  s i z e  group 

d rop le t  diameters and v e l o c i t i e s .  I f  t h e r e  are m u l t i p l e  s i z e  groups of n 

prope l l an t ,  t he  d r o p l e t  number f lowrate  i s  constant  and d rop le t  diameter is 

a var iable .  However, i f  t he re  is a s i n g l e  s i z e  group f o r  a prope l l an t ,  t he  

diameter is held constant and the  number f l o w r a t r  is reduced as p s i f i c a t i o n  

proceeds. 

Subroutine EVAPS c a l c u l a t e s  s i z e  group g a s i f i c a t i o n .  In  doing so, i t  calcu- 

l a tes  d r o p l e t  Reynolds numbers based on mean d r o p l e t  f i l m  properties.  

v i s c o s i t y  is approximated v i a  Wilke's equation. 

F i l v  

Subroutine CCDYN so lves  the  stream tube gas dynamic equations.  Four f i n i t c -  

d i f f e rence  cquat ions ( con t inu i ty ,  momentum, s t a t e  and ad iaba t i c )  i n  four 

v a r i a b l e s  (ve loc i ty ,  temperature, d e n s i t y  and e i t h e r  area or pressure)  brp 

combined t o  form a s i n g l e  quadra t i c  equat ion for gas  ve loc i ty .  

root is determined e x p l i c i t l y ,  v i a  funct ion QUAD, and is used i n  the  ind iv idua l  

equat ions to  s o l v e  e x p l i c i t l y  f o r  the  o the r  va r i ab le s .  D i f f e ren t  quadra t i c  

equations are used, depending upon whether presstire o r  stream tube area is 

(assumed to be) known a t  plane 2. 

is f i r s t  assumed t o  be known i n  plane 2 i n  order  t o  so lve  f o r  a d i s t r i b u t i o n  

of areas .  In  a second s t e p ,  t h a t  d i s t r i b u t i o n  of downstrcnm a r e a s  is  assumrd 

t o  be v a l i d  and the downstream pressures  a r e  solved far ;  on area-weighted 

mean pressure i s  assigned t o  the  plane. Obviously, i n  the case of R s i n g l c  

stream tube, t h e  downstream area is  known and t h e  f i r s t  s t e p  is not ncedcd. 

A gas  v e l o c i t y  

I n  t h e  mul t ip l e  stream rube casc, prcssure 
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S i m i l a r l y ,  imposit ion of abso lu t e  p re s su res ,  based on the  TRANS d i s t r i b u t i o n  

i n  the nozz?e, makes it  possible  t o  bypass t h e  second s t e p  f o r  the  mul t ip l e  

stream tube case. 

Function subprogram QUAD (A,B,C,Xl) so lves  t h e  quadra t i c  equation AX2 + BX + C=O 
f o r  the roo t  whose value is c l o s e s t  t o  t he  argument X1. I f  t he  discr iminant  

B'-4AC < 0, it is set equal t o  zero and the  s i n g l e  roo t  is returned.  
7 

Subroutine CPRINT's funct ion is t o  p r i n t  computed stream tube p r e s s u r e ,  area, 

gas stream and propel lant  spray d a t a  a t  s p e c i f i e d  mul t ip l e s  of Az from the 

STC start  plane. D i f f e ren t  formats are used f o r  the  s i n g l e  and mul t ip l e  

stream tube cases. 

Subroutine AVD3OA c a l c u l a t e s  a value of volume-number mean d r o p l e t  diameter,  

D30, f o r  each p rope l l an t .  

tube . _  p r i n t  out.  

Subroutine ITER8 records da t a ,  on s c r a t c h  d a t a  u n i t  No. 3, a t  the  plane 

immediately preceding t h a t  plane where a r a d i a l  d i s t r i b u t i o n  of p re s su res  is 

imposed on the mul t ip l e  stree-. tube flow. 

i n i t i a l i z e  stream tube combustion a n a l y s i s  w i th  adjusted values  of pressure,  

gas d e n s i t i e s  and v e l o c i t i e s  a t  t h a t  plane i f  the computed minimum stream tube 

area sum is not s u f f i c i e n t l y  c l o s e  t o  t h e  nozzle t h r o a t  area. Another d a t a  

record is recorded a t  the  th roa t  plane; i t  is read by subrout ine PUNME and 

used f o r  preparing inpu t  d a t a  f o r  t he  improved TDK. 

It  is c a l l e d  by subrou t ine  CPXINT f o r  s i n g l e  stream 

c 

These d a t a  may be used t o  re- 

Subroutine PVSST calculates t h e  r a d i a l  d i s t r i b u t i o n  of pres su re  i n  a z-plane 

and a s s igns  a pres su re  t o  each stream tube corresponding t o  its mean r a d i a l  

posi t ion.  

TRANS isobars .  

Subroutine PVSR is c a l l e d  t o  perform t h e  i n t e r p o l a t i o n  between 

Subroutine PllNAME reads d a t a  from d a t a  u n i t  No. 3 and c a l c u l a t e s  d a t a  f o r  

i n i t i a l i z i n g  the  improved ve r s ion  of TDK. A punched card deck is generated,  

using the  NAMELIST format appropr i a t e  f o r  TDK input  da ta .  

p r in t ed  out.  Addit ional ly ,  values  of a number of o t h e r  v a r i a b l e s ,  wh!ch mav 

by needed i n  :I f u t u r e  r ev i s ion  of TDK, are ca l cu la t cd  and p r in t ed  out.  

The deck is a l s o  
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3.3 PROGRAM INPUT DATA 

In genera l ,  each of the  two major program blocks LISP and STC performs its own 

input  and output  func t ions ,  and they can be run s s q u e n t i a l l v  o r  ind iv idua l ly .  

When executed sequen t i a l ly ,  coupl ing d a t a  are t ransmi t ted  v i a  s c r a t c h  da ta  

u n i t  from LISP t o  STC and o t h e r  d a t a  are suppl ied  d i r e c t l y  t o  STC as required 

v i a  punched card input .  When run i n d i v i d u a l l y , a l l  da t a  t o  a block are supplied 

v i a  card  input .  

(op t iona l ly  f o r  STC) f o r  convenience i n  running subsequent STC analyses  

without having t o  re run  LISP and €or  subsequent analyses  using the  improved 

TDK program (Ref. 3). (For example, t h e  same LISP output might be used f o r  

s e v e r a l  STC runs r i t h  d i f f e r e n t  chamber and nozzle  lengths ,  o r  TDK might be 

run more than once wi th  d i f f e r e n t  nozzle  contours  o r  expansion r a t i o s  using 

a s i n g l e  STC output.)  

Punched card output  of t he  coupling d a t a  a r e  a l s o  provided 

Input da t a  requirements a r e  ind ica t ed  i n  Tables 1 and 2. Table 1 shows, i n  

t he  required order ,  For t ran  code s h e e t s  f o r  a l l  of t!w required d a t a  cards .  

The "DESCRIPTION" column g ives  t h e  DER program's For t ran  name f o r  each 

va r i ab le ;  d e f i n i t i o n s  of these  input  v a r i a b l e s  and t h e i r  u n i t s  are l i s t e d  

a lphabe t i ca l ly  i n  Table 2. 

f i e l d s  occupying columns 1 through 72,  using the  format designated i n  t h e  

"IDENTIFICATION" space a t  the  bottom of each card i n  Table 1. 

are denoted i n  columns 73 through 80 which both l eave  room f o r  t he  maximum 

s i z e s  of subscr ip ted  a r r a y s  and ensure t h a t  t h e  d a t a  deck is so r t ab le .  I n  

some ins tances ,  where mul t ip l e  sets of the  same ca rds  may need to  be en tered ,  

blank spaces appear i n  t h e  sequence numbers. 

Values of t he  v a r i a b l e s  are entered i n  appropr ia te  

Sequence numbers 

Whether o r  not  c e r t a i n  d a t a  are a c t u a l l y  requi red  f o r  a p a r t i c u l a r  case  depends 

upon va lues  read-in earlier i n  the  case fui p a r t i c u l a r  c o n t r o l  parameters. 

These con t ro l s  are indica ted  i n  Table 1 e i t h e r  a s  a condi t ion  a t tending  major 

blocks of cards  o r  p a r e n t h e t i c a l l y  bes ide  the  card s p e c i f i c a t i o n ,  

Discussions guiding t h e  s e l e c t i o n  of input  d a t a  are subdivided under LISP 

and STC subheadings fol lowing Table 2. 
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TABLE 1 .  DER Computer Program, Input Data Cards 

A. Data Read by Subroutine Header, Every Case 

1 I NWBER DESCRIPTION 
r - , . , I , . * . .  1st DER Comnent Card-. 1 

13 
1 

I , * . . .  

I D E N T I F I C A T I O N  18A4 731 , . , , I , 1 0  i s 0  
- __ - 

2nd DER Comnent Card 
' C ' " ' " . '  

r 1 . 1 . 1  . . . . .  
1 

25 . 
37 

49 

61 

1 . 1 . .  . . I  

1 

1 -  

1 

, . I . . . - .  

- 1 . 1 . . . - .  

1 : 3 E N T I F I C A T I O N  18A4 731 . . . 2 .O I S O  

I D E N T I F I C A T I O N  18A4 7 3 1  . . , . 3 p 180  

, , . , , . , . . ! 4th DER Comnent Card 
13 

25 

37 

49 

61 

I 

I 

I 

I 

I 

- I . . . l I . . , ,  

- I . . . . .  

- I . . . . .  

I . . I I . . . . ,  

-- , . . . . . , , , .  
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TABLE 7 (C0I"iT'D) 

B. Data Read by Subroutine LISP, I f  ( IL ISP # 0)- 

I IDENTIFICATION pd64 7 3  I . , , . 2 . 0  t o 180 
- -  

(If ILISP = 0 ,  
omit cards 
2010 through 
4630) 
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TABLE 1 (CONT'D)  

IDENTIFICATION -31 . . , 2 0.6.0 180 
-_ . 

I 1  

61 - I . . . . .  S I . .  7nM1 
I 

IDENflFlCATION 6E12.8 731 , . 2 0, 7.0 1 8 0  

( f f  
NCRTsO 
omit. 
this 
card) 
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TABLE 1 (COIIT'D) 

1-1-74 

Proviae a Set o f  Cards 2-10 through 2-95 for Each Element Spec i f ica t ion  
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T B L L  1 (COJT'U) 
1 - 1  -74 

I 

I GAMFAN 
h . 1 . I . L .  

I I 
i f "  _ -  --+* A - T 

I SPFAN 

( O ~ I Y  for 
NTYPE-IO 

See p.  72b, 
' % 

(Only for 
FIT Y PE = 3 ) 
0 tlierwise. 

! 80 1 IOFNTIF I C A T I O N  6Ef2,8 131 ~ I . . z , 4 ~  

2 5 0 180 I IDENTIFICATION 6n2.8 731 . . . . . 
.- - - .- . 1 

1 

(For I DBARfO 
and for 

NTYPEz6) 
0 themi a e, 
omit this 
C a r d .  

(Only fo r  
NTYPE=9) 
Ot.herwise. 
omit .  this 
card. 
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TABLE 1 (CONT'D)  

fhly f o r  
!I TY P E  =8 

o r  10) 
Otherwise. 
omit these 
car 

(Only f o r  
NTYPE=10) 
Otherwise. 
omit t.his 
card. 

(Only f o r  
NTYPE=fi) 
Otherwire, 
omit thin 
card. 

42 



1-1-74 

Enter One of the Following Cards for Each I n j e c t i o n  Eleaent 

I I 

E 
I . . . . ,  F b ,  
1 

I 
I . . .  . .  
I 

. . . . . ,  

1 

( 1 s t  
Element ) 

(2nd 
C 1 e m n  t ) 

(Continue 
Through 

NEL 
E 1 emen t s  ) 

(Only i f  
KFC RT# 0 
K W R T f O  
KT C RT# 0 

o r  
KFFCRTPO 
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TABLE 1 (CONT'D) 

I IDENTIF ICATION -8 73  1 4. 0 ,2  0 180 

Provide Cards 4110 tbrouqh 4630 Only i f  NCSTRjO 

0 tlierui s e. 
omit these 
cards. 

( I f  NCSTRO 
0.  omit 
cards 4110 
t hrouglr 
4630) 

Y OF THE 
IS POOR 

( I f  NCSTR>6) 

( I f  NCSTR>12! 
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TABLE 1 (CONT'D) 

1 1 

NWBER 1 OESCRlPTlOn 1 

(Plus 4229 
& 4230, i f  
appropriate)  

(Plus 4320 
k 4330, if 
appropri a t e )  

~ 

ID E N T 731 - . . . 4 3 1 1  0 I 8? ! IF IC AT ION &3&8 

r 
, , . . - , I=l,NCSTR 
I I 

I . . . ,  1 I . . * ,  i 

1 . .  I . . . . .  
1 

I .  . . I  . . . . .  
I 

(Plus 442r3 
& 4430, i f  
appropriate) 

(Plus 4520 
k 4530, i f  
appropriate)  
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TABLE 1 (CONT'D) 
1 - 1  -74 

C. Data Read by Subroutine CINPUT, i f  ISTCfO 

(Plus 4620 & 
4630, if 
appropriate) 

(If ISTC= 
0, this 
is the end 
of the data 
deck) 
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TARLE 1 (CONT'D) 

-- 1 1  , . . . . I . . - .  I 

1 I D E N T I F I C A T I O W  731 . . 5 1 . n  n i 80 I 

The following cards 5110 through 5630 a r e  identical to cards 
4110 through 4630, preceding, if dSR = nCSTR 

(Through 5960 
if appropriate 
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TABLE 1 (CONT'D) 

LL " ' ' ' . * ' - 1 I- 

(Plus 5220 It 
5230, if 
appropriate) 

(Plus 5320 PI 
5330, i f  
appropriate) 

(Plus 5420 d 
5430, if 
appropriate) 
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TABLE 1 (CONT'D) 

i t  
L-. I-. I '  

> =  

- -1 
& . I . . . . .  . 

I 
- - ~  . CSTR(I), ! 

I 
$- I _.A _ L A -  

1=1 ,NMR +---- &-*---- 

(Through 5gu)  
i f  

appropriate) 
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TABLE 1 (CONT'D) 

I ' i t  i . .  1=1 ,NTK 

(Through 5940, 

appropriate)  
i f  

(Through 6@0, 

appropriate)  
i f  

(Through 6140, 

app r o p r i  a t  e)  
i f  

(Through 6260, 

appropriate)  
i f  
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TABLE 1 (CONT'D) 

25 

37 

49 

I 

- 
- 61 

i I l 
! , . . , . *  I WTMLVF 61 
4 

I D E N T I F I C A T I O N  6E12.8 731 , , 6 . 5  .1 0 i 80 i 
-. 

I 
l . I . . . I .  1 TNBB 

1 

L . L . I . . . . .  I TB0 i 
1 

1 . 1 . . & * .  i RHPNBB 
I . I . . . . .  RHBL0 

I . * . . . . .  MTMI Vo! j 

I 
1 

1 -  

1 

i 
I . . . . .  WTML0 I 

, IDENTIFICATION 6Fm 731 , , . 4 5 2 C  ! 80 A I 

--. 
I 

5 1  
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52 



1-1-74 
I F 

TABLE 1 (CONT'D) 

I if ND >6) k.1 , . . a  

I D E N T I F I C A T I O N  6E12.8 731 , , , , 6 , 6 , 1 , 0 180 
I , 

If IPUN3D=1, the data deck i s  completed wi th  the punched 

card output from 3DC. 

.- 11' PCI t , f '  
, 1 * I . . . . I  

I 
J 

REPRODUClBI1,ITY OF THE 
0RIC.INAL PAGE IS POOR 

13 
,25 , .  

* 

1 . I . . . . , ,  

I I (hclude cards 
ZSTART 

only  i f  ILISP=O . * ' ' ' ! ' ' ' . I  

1 Id I I 

I 1  
- 13 

- 25  

37 

A9 
- 

I . , I  I t , . , , , \ N G T  
l , , , l  I . . , , !  

I I 

I  , . . , , iNsT 
I , , , , , INASEG 
I 1 

I D E N T I F I C A T I O N  6112 7 3  

and 

. 6  . 7 , 2 ,  0180 

P U I t h O )  

5 3  



TARLE 1 (COST'DI 1-1 -74  
The following cards (7010 e t  seq.) a r e  punched by subroutine STAPE i f  ILISPfCr 

and IPllNfO in 51SP input, as preparation fo r  this input *her  TLISF=O 

t 

I 

I 
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1-1-74 
TABL, 2. DER IWUT DATA DEFINITIONS A.?.?D UNITS 

(ALPH4BETICAL O R D P I  CARD NO. 

Definition 
Fort ran 

Variable Name Units 

ALFA(1) 1 1II4NEL 

t 

1513:LSPEC 

AREA1 (J) 

ARTdLD 
~ ~ J ~ N S T  

BETA (I) 
~~ILNLSPEC 

CDDIAl, 2 (I) 
l~I<,XLSPEC 

CKPl,? 

CPVF,Q(J) 
ISIsNTK 
CR'IQL 

about its y-axis (see page 73) 
Discharge coefficient for orifice 1,2 of 

CST(1) 
~SIINCSTR 

- 

CSTR(1) 
L(1INMR 

DEAR?-, 2 (I) 

I 
1C I'iNLSP EC 

Modified k' evaporation coefficient for 

- or Latent heat of vaporization (see page 78) 
prope1lai.t l(fue1) , Z(oxidizer) 

Fuel, oxidizer vapor specific heat at 
constant pressure 

- 
Math 
Symbol 

in Isec 

BTU/lbm 

ETU 
lbm-'R 

a 

AZ 

€At 

5 

cD 

C. K' 

C 
rv 

C* 

C* 

- 
D 

Decimal tolerance, deviation of computed 
single stream tube throat contraction 
ratio from unity 

mixture ratio -(I) 
Theoretical characteristic velocity at 

Same as CST 

- 

ft 
sec 
f t  
sec 

- 
- 

I 

i 
Combustion Chamber Geometry Specificatlon i 

I 
I 

about its z axis (see page 73) 

APR($F(I,l) = Axial Distance 
APR@F(1,2) = Chamber Diameter 

radius ratio 
If AP20F{1,1) # 0, APRaF(1,l) = throat 

Cross-sectional area of orifice No. 1 of 

Stream tube cross-sectional area at 

Decimal tolerance, deviation of computed 

Type 6 or Type 9 element 

z - ZSTART 
minimum stream tube area sum from nozzle 
throat area, multiple stream tube analysis 

in 
in 

2 in 

in 2 

- 

55 



TABLE 2 (CONT'D 

Fortran 
Variable Name 

DELTZG,L(I) 
I = 6 or 10 

DENSl, 2 

DHVF, 0 

DIAl, 2 (I) 
lII<_NLSPEC 

DNSATl , 2 

DRADM 
DTHETM 

EPS 
FRACUM (I) 

GAME (1) 

1 % N D  

I<, mLSPEC 
(1) 

1s ISNLSPEC 
GAMMA(I) 
1< - -  FNLSPEC 

GASF'L (J) 
lLJlNS? 

GDIADl (I, J) 
12 CNGT 
lZJ(NST 

GWLD1 (I , J) 
If IfNGT 
l_(JZNST 

Nath 
Symbol 

6 6  
G ,  L 

D 

V 
AH 

D 

OS 

AP 

Ar 
A@ 

EC 

YF 

Y 

c 
g 

'Id" 
n 

Ud 

Definition 

Axial location of pseudo-impingement point 
for gas (fuel), liquid (0xidizer)of 
Ith element specification (see page 72a) 

at injector temperature 
Density of propellant 1 (fuel), 2 (oxidizer) 

Fuel, oxidizer latent heat of vaporization 

Diameter of injection orifice No. 1, 2 of 

Density of propellant 1 (fuel), 2 (oxidizer) 
Ith element specification 

at saturation temperature corresponding 
to the chamber pressure 

Spray size group diameter, D, divided by 5 :  
with FRACUM(I), gives spray distributioq 

Injection pressure drop for propellant 1 
(fuel) , propellant ? (oxidizer) 

Spacing between circumferertiai mesh lines 

Spacing between radial mesh lines 

Combustion chamber contraction ratio 
Mass fraction of spray assigned tc Ith size 

group, whose diameter is given by D@DBILR(I 
Stream impingement angle of ith element 

specification 
Fan cant angle of I t h  element specification 

(Type 3 only) 
Counterclockwise angle of element rotatfon 

about its x-axis (see page 7 3) 

Total stream tube gas flow at zrZSTART 

Propellant spray size group droplet diameter 

Propellant spray size group velocity 

1 "nits 

in 

%, 
2 
lbrn 
BTU - 
in 

lb, 
ft3 
- 

Ibf 3 
in 

legrees 
- 
- 

legrees 

legrees 

Legrees 

.bm/sec 

in 

ft - 
I 
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TABLE 2 (CONT'D) 
1-1  -74 

Fortran 
Variable N a m e  

C;USPR(I,J) 
~IISNGT 
1SISST 

ICRC 

I DBAR 

ILISP 

IPRMST , 
IPRSST 

IPUN 

IPrryglr 

IPUNL,R 

IRCRT (I) 
lSIrNCRT 

IST 

I STC 

ITDK 

ITRANS 

JSYM 

KFCRT , 
KQCRT , 
KTCRT and 
KFFCRT 

Math 
Synbo 1 

n 
d 0 

~~ 

Def in i t i on  Units  

Propel lan t  spray s i z e  group f l o v r a t e  

Number of co r rec to r  cyc les  ca l cu la t ed  a t  

In t ege r  i n d i c a t o r  of source of 6 data :  

each Az i n t e r v a l  (normally = 1) 

#0, 5 must be read i n  f o r  a l l  elements; 
=0, 'D ca lcu la t ed  i n t e r n a l l v  €or NTYPEIS 

subrout ine LISP t o  be c a l l e d  
Control i n t ege r ;  non-zero value causes 

Number of hz i n t e r v a l s  between mul t ip le ,  

Control in teger ;  a non-zero va lue  causes 

s i n g l e  stream tube p r i n t o u t s  

subrout ine STAPE t o  punch-out stream. 
tube i n i t i a l i z a t i o n  data;  a value of 1 

causes LISP t o  punch cards for 3DC 
Control integer; i f  equal t o  1, STC reads 

punched cards  from 3DC 
Obsolete con t ro l  i n t ege r s ;  e n t e r  zeroes 

Indices  of c i r cumfe ren t i a l  ( r=const)  mesh 
l i n e s  along which CRT p l o t s  of mass 
f l u x  are t o  be generated 

Redundant con t ro l  i n t ege r ,  set = 1 

Control i n t ege r ;  non-z2ro va lue  causes 
subrout ine STC t o  be c a l l e d  

Obsolete con t ro l  i n t ege r ;  leave blank 

Control i n t ege r ,  non-zero va lue  causes 
subprogram T W S  t o  be c a l l e d  

In t ege r  c o n t r o l l i n g  folding-in of f l u x  
from e x t e r i o r  r a d i a l  mesh l ines ;  
= 0, no fo ld ing;  = 1, mirror  image 
folding;  = 2. repea t ing  image fo ld ing  

CRT contour-plot con t ro l s ,  f o r  f u e l ,  
ox id izer ,  t o t a l  p rope l lan t  and modified 
f u e l  f r a c t i o n ,  respec t ivc ly .  A zero value 
suppresses  the  p lo t .  A p o s i t i v e  value 
denotes the  number of contour l i nes .  A 
negat ive value causes subrout ine SCALE to 
s e l e c t  approximately t h a t  number of 
contours  a t  rounded-off i n t e r v a l s .  
(Maximum va lues  = 35) 



TABLE 2 ( C O W ' D )  1 - 1  -74 

For t r an  
V m i a b l e  Name 

ISPM: ( I )  
IS  IsNn 

NAP 

NASM; 

NCSTR 

NCRT 

ND 

NEL 
KGF 

XGT 

NMR 

NMSTI 

Np 

m o p 1  ,2( I) 
1~ImLSpM: 

%til 
Symho 1 Def in i t i on  

Element specif  i c a t i o n  cal lout .  which 
desc r ibes  I t h  element 

(1~LsPEx;sNLsPEc) 

Number of po in t s  de f in ing  chamber geometry 

In t ega r  m u l t i p l i e r  f o r  i n i t i a l  stream tube 

Number of mixture r a t i o s  a t  which 

($12) 

areas 6nd f lowra te s ,  normally = 1 

combustion gas p r o p e r t i e s  are t abu la t ed  
i n  LISP i npu t  d a t a  (518) 

Number of CKT p l o t s  of mass f l u x  a long  

Number of s i z e  groups u s e d  t.0 d e f i n e  an 

r 3 cons tan t  mesh c i r c l e s  

element's spray d r o p l e t  s i z e  d i s t r i b u t i o n  
($12) 

Number of i n j e c t i o n  elements (s60) 

Number of f u e l  spray s i z e  groups i n  each 

To ta l  number of p rope l l an t  (f L l l+ox id ize r )  

stream tube ( 1sNGFsNGT) 

spray s i z e  groups in each stream tube 
(-2) 

(W 

Number of d i f f  ercslt element s p e c i f i c a t i o n s  
(i.e.. distinc.;  type and design)  

Same d e f i n i t i o n  aa NCSTR, bu t  f o r  STC inpu t  

Maximum number of complete o r  p a r t i a l  

d a t a  

passes (i .e. . marching from ZSTAR" o r  
ZPVSR through t h e  -oat)  i n  mul t ip l e  
stream tube analy: (Usually 53) 

Number of annular zones f o r  subdividing 
mesh po in t s ,  excluding those a t  t h e  w a l l ,  
t o  be combined i n t o  stream tubes 
{-ALL, b u t  u sua l ly  n o t  l a rg2 r  than 4) 

OPTlCt: lf=l one ST er  ra ia l  mesh 
Tota l  numb& of e-p!anes getween z=%$AE1T 

and nozz le  t h r o a t .  i n c l u s i v e  (s300) 

The index (= 1 f o r  f u e l ,  o 2 f o r  ox id i ze r )  
of t h e  p rope l l an t  f lowing through o r i f  ice 
no. 1,2 of I t h  element s p e c i f i c a t i o n  
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TABLE 2 (CONT’D) 1 - 1  -74 

Fort ran 
Variable Name 

NRBAFL,R 

NRML 

NRWALL 

NSSTI 

NST 

NSTPZ 
NTHML 
NTHL , R 

NTK 

NTYPE (I) 
IS~SNLSPEC 

N UG 

PCI 
PCTBL 

PRPR1,2 

Math 
Symbol Definition 

Number of circumferential mesh lines inter- 
sected by a radial baffle along the left, 
right boundary mesh line 

mesh lines (S20)1 

the chamber wall 

from z = ZSTART to throat, in single 
tube analysis 

Number af circumferential (constant radius) 

Number of circumferential mesh lines to 

Maximum number of complete passes. marching 

Number of stream tubes(s40, but usually,10-20) 2 

Number of stream tubes per zonebually 4 t O  10 ) 
1 Number of radial (constant 0)mesh 1 ines (520) 

Index of the radial mesh line which forms 
the left, right boundary of chamber 
slice analyzed 

Number of temperatures at which propellant 
vapor specific heats and film thermal 
conductivity are tabulated (520) 

Element type index for Ith element 
specification (lINTYPE510) as numbered on 
page 70. Index specifying uniform (NUPO) or non- 
uniform (NUG = 0) gas velocities for 
gas/liquid elements 

Static pressure at z = ZSTART 
Percent (or decimal) of total propellant 

flow rate to be assigned to a chamber 
wall boundary layer stream tube 

Propellant properties grouping @u/o) 
for propellant 1 (fuel), 2 (oxidizer) 

Liquid injection post recess for a 
coaxial jet (Type 6) element 

Radial coordinate of the lth element’s 
origin (e.g., impingement point) 

Units 

1 .  
2. 

Theee limits are imposed by the plotting routine PLBTC. 
The relationehip NST = l+N#ZON*NSTPZ holds if stream tuhes are init.ialiaed 
via option (2), page 9. 
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TABLE 2 (CONT'D) 

Fortran 
Variable Name 

RH0G 

RHaNBF, 0 

RMN0M 
SAL, 2 (I) 

SB1,2(I) , 
SCll, 2 (I) 

1s 1 s  LSP EC 

to 
SC61,2(1) 
UISNLSPEC 

SMRG(J) 
1SJQlST 

TC4)NVF,BU) 
llIlNTK 

TCRITF.0 
TGAM(1) 

1SIaM.R 

WUNCSTR 
TGM(1) 

riath 
Symbol 

7 3  

X 

Y 

k 

cr T 
Y 

Y 

I 
Definition Units 

I 

Combustion gas density a t  nciminal chamber 

Liquid fuel, oxidizer density at saturation 
temperature corresponding to PC 

Liquid fuel, oxidizer density at normal 
(latm.) boiling point 

Nominal bulk mixture ratio 
Spray coefficient a for orifice no. 1.2 

Ibid, coefficient b 

Ibid, coefficient C 

Ibid, coefficient C 

conditions 

for Ith element specification 

1 

6 

to 

Stream tube gas mixture ratio at 

Number of LISP mesh points combined to 
form a stream tube 

Spacing between doublets of a like-doublet- 
pair (Type 3) element 

Spacing between doublet's spray fans of 
a like-doublet-pair (Type 3) element 

Stream tube mean radius 

z = ZSTART 

Stream tube angular position 
(set = 0 in subroutine SCRMBL) 

radians 

Fuel oxidizer droplet saturation temperature 

Thermal conductivity of vaporfgas film 
surrounding fuel, oxidizer droplets 

Fuel, oxidizer critical temperature 
Combustion gas specific heat ratio 

Same as TGAM 

at Pc 

(frozen) at TMR(1) 
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TABLE 2 (CONT'D) 

Fortran 
Variable Name 

Math 
Symbol 

0 
T 

C 

lJ 

TO 

Definition Units 

Combustion gas stagnation temperature at 

Angular coordinate of Ith element's origin 

Angular coordinate of farthest-right radial 

Combustion gas mixture ratio array. defined 
as the flovrate r a t i o  of pro ellant 2 (oxi- 

Combustion gas viscosity at TMR(1) 

TMR(I) 

(e.g., impingement point) 

mesh line I 
I 

d i z e r )  t o  propel lant  1 (fuel P 

Combustion gas molecular weight at 
TMR(1) 

Fuel, oxidizer normal boiling temperature 
Liquid fuel, oxidizer temperature used for 

initial vaporization calculation. Same 
as TBF,@ Is recommended but injection 
temperature may be used 

Same as TG0 

Temperature at which CPVF,@(I) and 

Same as TMU 

TCQNVF, @(I) are tabulated 

Propellant 1 (gaseous fuel) flowrate for 
gaslliquid element specifications 
(Type 6 or 10) or flow fo r  or i f ice  1 
of a 'I'ypk.9 element 

Propellant 2 (liquid oxidizer) flowrate 
for gaslliquid element specification 
(Type 6 or 10) 

Molecular weight of liquid fuel, oxidizer 

Molecular weight of vapor fuel, oxidizer 

"R 

degree 

degree 

- 

14a- 
ft=sec 

lb, 
mole 

O R  

OR 

OR 

OR 

1bm 
n = z F  
lbm 
sec 

lbm 
sec 

14, 

14n 
mole 

mole 
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TABLE 2 (CONT * D) 

impingement point) for Ith specification 

spray mass fluxes are calculated 
Axial coordinate of first plane in which 

Ibid, second, third planes 
Axial coordinate of stream tube initiali- 

Fort ran 
Variable Name 

wu,0 
W.D,0 
VlFT 

W 2FF 

in 1 
in 
in 

W1T 
WIT 

=(I) 

Z8M 

Z0H2,3 

~XNLSPEC 

ZSTART 

Math 
Symbol -- 

E 2 

=0 

I Definition i Units I 
Lower limit of fuel, oxidizer flux contours ) Program 
Upper limit of fuel, oxidizer flux contours finds ' limits 

if both Lower limit of fuel fraction cottours 
(=O.> ! upper 

1 .  ZSTART may or may not be equal t o  the last Z$M analysed by LISP, 
ae discussed on page 84. 
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In Table 1, the type of FORTRAN input (integer, floating point decimal, alpha- 
numeric) and the subdivision of each card's first 72 columns into fields is 

indicated by its noted format. For decimal data, six 12-column fields are 
used; for integer data, either twelve six-column fields or six 12-column fields 
are used. 

Standard FDRTWi input formats are used. Specifically used are: 
Comment Cards (A-format) 18A4 

Integer Variables Beginning with Letters I thru N 6112(or 1216) 
(No decimal points, 12 (or 6 )  space field widths, 
last digit in last space of field, 6 (or  12 
consecutive values per card until WAD statement 
is finished) 

Decimal Variables Beginning with Letters Other Than I thru M 6E12.8 
(Use decimal point or account for implied 
decimal location, one value evxy 12 spaces, 
6 consecutive values per card) 

The "Description" column in Table 1 gives the FORTRAN code names of input 
variables as they appear in the program listing. 
for each coded variable unless it is subscripted. 
integer and decimal variables are indicated in this colcmn below the variable 
names. (With A-format data, the subscript ranges are not indicated; 18 fields 
per comment card are implied.) 
variable are read before proceeding to the next variable. 

the last group of stream tube initialization data which is part of the deck 
normally punched by STC's subroutine STAPE. The particular form used there 
permits use of very compact input/output statements and results in compact 
data decks, but is admittedly somewhat inconvenient €or  manual generation of 

data decks.) 

One value is to be entered 
Array sizes for subscripted 

For most of the data, all the values of one 
(Exceptions are in 

3.3.1 Selection of LISP Input Data 

Organization of the LISP input data in Table 1 is, roughly, as six blocks of 
cards. 
format, which permit the user t o  document the case with such information as 

The first block consists of two comment cards, in alphanumeric(A) 
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i n j e c t o r  name andlor  drawing number, p rope l l an t  combination, nominal chamber 

pressure and mixture r a t i o ,  da t e  of the computer run, e tc .  The information 

provided on these  cards  is p r in t ed  ou t  with c e r t a i n  d a t a  p r in tou t  headings 

and appears on computer p l o t t e d  graphs. 

The second block of ca rds  contains  t h e  d e s c r i p t i o n  of t h e  geometry of the  

sys t em (number of elements, mesh l i n e s  t o  be set  up, l o c a t i o n  of w a l l  and 

b a f f l e s ,  if any, etc.), l i q u i d  p rope l l an t  p r o p e r t i e s ,  and c o n t r o l s  f o r  the 

des i r ed  c a l c u l a t i o n s  and for CRT graph ica l  output.  

The t h i r d  block con ta ins  d e s c r i p t i o n s  of common c h a r a c t e r i s t i c s  of groups of 

elements which make up t h e  i n j e c t o r .  

element s p e c i f i c a t i o n  index LSPEC which ranges from uni ty  t o  NLSPEC. 

included are t h e  element type (doublet ,  t r i p l e t ,  e tc . )  , o r i f i c e  diameters 

and discharge c o e f f i c i e n t s ,  p rope l l an t s  i s s u i n g  from the  o r i f i c e s ,  and 

geometric s p e c i f i c a t i o n s ,  such as the  axial  coordinate  of t h e  impingement 

point and o r i f i c e  alignment angles. 

Each of t hese  groups is assigned an 

Data 

The fou r th  block of da ta ,  which contains  the information s p e c i f i c  t o  indi-  

vidual  elements, c o n s i s t s  of NEL cards where NEL is  the number of elements 

considered i n  the  ana lys i s .  

LSPEC which desc r ibes  the given element, the  r a d i a l  and angular coordinates  

of the  element's o r i g i n  and an element o r i e n t a t i o n  angle ,  ALFA, explained 

later. 

Each of the  ca rds  lists t h e  s p e c i f i c a t i o n  group 

The f i f t h  block of d a t a ,  i npu t  i f  contour p l o t s  are called f o r ,  is concerned 

with the  upper and lower limits of the  contour l i n e s .  

The s i x t h  block of c a r d s  con ta ins  t a b l e s  of the  equi l ibr ium combustior, gas 

p rope r t i e s  f o r  the  p rope l l an t  combination, I n  the order  of t h e i r  read-in, 

they c o n s i s t  of t h e  mixture r a t i o ,  the  gas s t agna t ion  temperature (OR), 

the  gas viscosity ( lbm/f t -sec) ,  t h e  r a t i o  of s p e c i f i c  hea t s ,  t h e  mean 

molecular weight ( lb ,bole) ,  and the c h a r a c t e r i s t i c  exhaust v e l o c i t y  ( f t / s e c ) .  

A minimum of two and a maximum of eighteen mixture r a t i o s  may br \pu t .  



A func t iona l ,  r a t h e r  than a card-by-card approach is taken i n  t h e  fol lowing 

discussions.  Reasonably self-explanatory d a t a  are not  commented upon. 

3.3.1.1 Geometric Considerations.  Cards 2030 through 2060 conta in  a number 

of con t ro l  i n t ege r s  and o the r  d a t a  pe r t a in ing  t o  tSe por t ion  of chamber cross- 

s e c t i o n  t o  be analyzed using an appropr ia te  system of mesh poin ts .  

s t r u c t u r e d  t o  t ake  advantage of i n j e c t a r  symmetry, so t h a t  the d a t a  s e l e c t i o n  

c o n s i s t s ,  b r i e f l y ,  of choosing a pie-shaped s e c t o r  of t he  i n j e c t o r  bounded by 

e i t h e r  planes of symmetry o r  b a f f l e s ,  such as shown i n  Figures  6 and 7, and ? 

overlaying t h i s  sectcr with a g r i d  of equal ly  spaced r a d i a l  and c i rcumferent ia l  

mesh l i n e s .  I n  both Figures 6 and 7, t h e  a rea  bounded by AOC becomes a satis- 

fac tory  segment f o r  ana lys i s .  

which permi t  t he  choice of combinations of as many as 20 x 20 o r  25 x 16 mesh 

- l i n e s  i f  des i rab le .  

60 i n j e c t o r  elements. 

LISP is 

LISP is dimensioned f o r  u p  t o  400 mesh points 

Simi lar ly ,  LISP is a l s o  dimensioned t o  desc r ibe  up t o  

It is of ten  appropr ia te  i n  LISP t o  employ a d d i t i o n a l  mesh l i n e s  and i n j e c t o r  

elements ou ts ide  t h e  chamber s l i c e  under ana lys i s .  

s l i c e  t o  be analyzed inc ludes  spray from nearby i n j e c t o r  elements when t h e  

s i d e s  of the  slice are planes of symmetry; spray from i n t e r i o r  elements w i l l  

c o l l e c t  on the  b a f f l e s  when they c o n s t i t u t e  the  s i d e  w a l l s ;  and some spray 

w i l l  impinge on tbe walls of t h e  t h r u s t  chamber ahead of t h e  plane being 

analyzed and ;un down t h e  w a l l s  to  ada t o  the  spray  d i r e c t l y  impinging on 

wall mesh po in t s  i n  t h e  plane.  To treat these  condi t ions ,  a number of op t ions  

are included i n  LISP. The opt ions  can be  descr ibed by re ference  t o  t h e  sample 

mesh l i n e  sys tem depicted i n  Fig. 8, which represents  an overlay of a mesh 

l i n e  system on t he  i n j e c t o r  segment of  Fig. 7. I n  t h i s  i l l u s t r a t i o n :  

The spray f l u x  wi th in  the  

I.. NR%* is the  number of c i rcumferent ia l  mesh l i n e s .  

2. NRWALL is the  number of c i rcumferent ia l  mesh l i n e s  t o  the  chamber w a l l .  

When (as i n  Fig. 8) NRWALL is less than NRML, t he  spray mass t o  t h e  mesh 

po in t s  beyond NRWALL is folded i n t o  t h e  w a l l  a t  the corresponding 

b l o c a t  ion. 

- 
*The nomenclatiire f o r  FQRTRAN var i ab le s  is given i n  Table 2 
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A 

Figure 6.  Se .ect ion of Segment of Injector for Analysis 
of Spray and Combustion Gas Flow F i e l d s  - 
Segment Bounded by Planes of Symmetry 
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Figure 7 .  Select ion of Segment of Injector  for  Analysis of 
Spray and combustion Gas Flow Fields - Segment Bounded 
by Combination of Planes of Symmetry and Baffles 
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,J = NTUL 
4 J=NTHML I 

e OXIDIZER 
0 FUEL 

BAFFLE 

L = NRWALL NRi3AFR 

Figure 8 .  Overlay of system of Mesh Lines Upon Lnjector 
S l i c e  to Permit Calculation of Spray Flux 
Distr ibut ion by LISP 



3. NTHML is the  t o t a l  number of r a d i a l  mesh l i n e s .  The r a d i a l  mesh l h e s  are 

indexed J=l t o  J=NTWL counterclockwise (i.e., from r i g h t  to  l e f t ) .  

NTHR and NTHL are tne r a d i a l  mesh l i n e s  which d e f i n e  r i g h t  and l e f t  

boundaries of the chamber s l i c e  to  be analyzed. It should be noted t h a t  

add i t iona l  r a d i a l  l!nes are defined ( i n  t h i s  case) to  the  r i g h t  and l e f t  

of NTHR and NTHL, respect ively.  

4, 

5 .  Because a b a f f l e  corresponds to the r i g h t  boundary of the slice, a code 

number NREAFR is input t o  LISP, which corresponds t o  the  number of cir- 
cumferential  mesn l i n e s  ( s t a r t i n g  from the  cen te r )  over which the b a f f l e  

2xtends. 

t o  NRWALL i n  t h i s  exampie.) The spray f l u x  t o  mesh po in t s  t o  t h e  r i g h t  

of NTHX will be folded i n t o  NTHR at t h e  corresponding r a d i a l  l oca t ions .  

Similar  results can be produced f o r  b a f f l e s  on t h e  l e f t  boundary of a 

slice by the  code number NRBAFL. The b a f f l e s  must begin a t  t h e  c e n t e r  of 

the  chamber but  they need z o t  extend t o  the  w a l l ,  i.e., MtBAFR and NRBAFL 

may be less -'ran NRWALL, 

(Since the b a f f l e  extends t o  t h e  w a l l  i n  Fig.8 , NRBAFR is equal  

6. The best 3,;. ,;erred way t a  account for the f a c t  that t h e  spray inside a 

slice may inciude con t r ibu t ions  from nearby elements ou t s ide  the slice is 

s imply  t o  include these  2emen t s  i n  the  input s p e c i f i c a t i o n s .  

i n  Fig. 6, s p e c i f i c a t i o n s  f o r  ~11  elements w i th in  the do t t ed  l i n e s  would 

be made i n  the  a n a l y s i s  of the  s l ice  AOC. 

For example, 

7. The procedure described i n  ( 6 )  above is the  recolllmended method 

accounting f o r  spray t r a v e l  ac ross  slice boundaries def ined by planes of 
symmetry; however, alternate methods are provided i n  LISP by t h e  NRTRAN 

code va r i ab le  JmM. 

When JSYM is defined as e i t h e r  1 or 2, only i n j e c t o r  elements w i th in  t h e  

area enc0mpasse.l by r a d i a l  mesh l i n e s  NTHR and NTHL are input  as d a t a ,  

but the spray from t h e  elements t o  mesh po in t s  ou t s ide  the  area are folded 

back i n t o  the corresponding mesh poir.ts i n s i d e  the area. When JSYW1, 

t h i s  folding is done on the b a s i s  that the  e l e n e n t s  t o  t h e  r i g h t  and 

l e f t  of both the  boundaries K'THR and NTHL are mirror images af each 

other .  I n  t h i s  case,  the spray f l u x  t o  mesh l i n e  (NTHR-1) is folded 

back i n t o  meah l i n e  (NTHR+l); similar r e l a t i o n s  hold arocnd boundary 

NTHL. 

When JSYWO, t h e  procedure i n  ( 6 )  above is employed. 

II the elements i n  and around s l i c e  AOC are r e l a t e d  as r epea t ing  
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s e t a *  SSW2 is defined and t h e  fo ld ing  of f l u x  from e x t e r i o r  t o  i n t e r i o r  

meah l i n e s  is done a c c e d i n g  t o  (NTHR-1) f o l d s  i n t o  (NlYLl),  e tc .  

In analper of several i n j e c t o r  deaignm a t  Rocke tdpe ,  it bar been experianced 

tht choosing m 0  o f f t r s  f e v e r  "tr8p." i n  metti- up 8 problem, puticu- 
l a r l y  vhere t h e  geometric d i r t r i b u t i o n  of i n j e c t o r  elements aav r equ i r e  

a s n m p t i o n s  of e f f e c t i v e  planes of ryaaactry vhich are no t  r i # o r o w l y  80. 

U t h o w h  a n y  planer  of spametry m y  be defined f o r  an i n j e c t o r ,  ura1p.i. 
of t h e  gar f l o v  v i t h i n  a given chanbcr s l i c e  w i l l  give meaningful r e r u l t a  

only i f  t h e  i n j e c t i o n  elements are spec i f i ed  such that t h e  c o r r e c t  geo- 

metric p ropor t iom of t o t a l  p rope l l an t  flow8 enter the slice; o thend8e .  

e r roneom mrns f l u x  l e v e l s  and chamber pressurea vi11 be ca lcu la ted .  For  

JSW-0, simply de f in ing  enough elcmente ou t s ide  the  chamber s l i c e  takea care 

sf  this. 
boundaries should be examintd c a r e f u l l y  and t h e i r  hole  s i z e 8  or flow rates 
anv have t o  be ad jus ted  a r t i f i c i a l l y  t o  ensure proper f lovs .  

For JSm.=lor  2, elcmmt. that fa l l  on (or very near )  t h e  

- 3.3.1.2 In j ec t ion  Element Conbrderationa. 

considerat ion of t h e  f o l l a v i n g  t en  types of i n j e c t o r  elements: 

The cu r ren t  v e r r i o a  of LISP pernits 

Unlike doublet  

L i  ke-doublet 

L i  ke-doub 1 et-pai  r 

T r i p l e t  

Four-on-one 

Gam/liquid coaxia l  jet  o r  concentric! tube 

Shoverbed * 
Special  c a l l o u t  by genera l  rpray f l u x  equat ion 

Gaseoua t r a n a p i r a t i o l  cooled i n j e c t o r  f a c e  

hs/l  i quid tr i p l  e t 

*Dimtribution c o e f f i c i e n t ,  h v e  no t  y e t  been evaluated for  t h e  rhawerhead 
element, which mur t  c u r r e n t l y  be t r e a t e d  (u a Type 8 element. 
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Element Specifications. Card 2030 carried a value of NLSPEC, the number of 

If all elements are alike, element specifications whic3 may range from 1 to 10. 

differing only in their position and orientation on the injector face, a single 
specification is needed (NLSP€C=l). 

from the others in element type, element design (e.&, orifice sizes, discharge 
coefficients, impingement angle and distance), propellant assignment to the 

orifices or element angular alignment (other than a simple rotation abcrut its 
z-axis) requires a separate element specification. 

Any element or group of elements that differs 

Element spe '-fication data -re entered in cards 2x10 through 2x95 where the 
x denotes eac' specification number. Mass flux distributions calculated by 
means of Eq. (1) and (2) nake use of correlaticn coefficients built into function 

subprograms in terms of such parameters as the element types, orifice sizes, 
stream impingement angles and momentum ratios, etc., for Type 1 through 6 

elements. 
Types 8 and 10 elements. 
e l a n t  flow rates of each propellant are computed within the LISP subprogram 

EFLW in  terms of the element orifice sfres, discharge coefficients, and the 
injection Ap's of the separate propellants. 

elements, propellant flowrates are supplied as input data. 

for propellant sprays amy be supplied directly as input data for all elemental 
types or, in the case of the first five element types, MY alternatively be 
calculated within the LISP subprogram DSIZE. 

The correlation coefficient: must be supplied by the user for 
For the first five element types listed above, the 

For type 6 and 10 gas/liquid 
Mean ckop sizes 

If an element or group of elements is defined as being type 8, the mean droplet 
sizn is read in as input data and the total flow from the element is calculated 
as if the element were a doublet with equivalent orifice diameters. 

flux distribution is calculated by means of Eq. (2) using spray distribution 
correlation ccefficients swplied directly as input data rather than being 

supplied by subprograms within LISP. 

a cold-flow characterization made of the single element (or elements) to be 

incorporated into a prospective injector and then to employ the correlated 
spray coefficients from the cold flow experiment in LISP. Such a procedure 

is useful .ot only for the situation where spray coefficients have not been 

determined previously for tt? intended elcmcntr, but it algo permit8 the designer 
to acca e :or factorr ouch ae short L/D orifices and msiifold cross-flw.fs in 'tis 

The mass 

This feature permits a designer to have 
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single element cold-flow experiments. 
together into a single effective source a numher of elements near the center of 

a large injector. 

A Type 8 callout mav also be used to lump 

In the care of a tranrpiration-cooled injector fate, the Type 9 element flow 
rate is red-in and is divided by the cross-sectional area of the clmmber 

slice to define a uniform mat18 flux at all r, 8 mesh points. 

Single Flement Geometry. LISP converts the (r,O,z) coordinate system of 
the thrust chamber into individual rectangular (xc.y.z) coordinate systems for 
each element baaed upsn particular origins of the elements. 

myntemn are illustrated in Fig.  9. 
elements, the x axis corresponds to the long axis of the spray fan formed by the 
impinging stream while the y axis lies in the plane of the impinging streams. 
For the 4on-1 and like doublet pair elements, the geometries shown in Fig. 9a 
were made a0 coasistent with the doublet and triplet as was conveniently possible. 
The z-axis origins for liquid/liquid elements are at t!ie el went impingement 

points and, so far an input data are concerned, are always directed along the 
bisector of the straam impingement angle. 

changed internall*- by LISP to lie along the resultant spray momentum vector.) 
T!:e definitions cf x and y axes for the type 8 element are equivalent to those 
specified for the liquid-liquid unlike doublet but the z-axis is not altered to 

follow the moaentum vector. 
shaverhad elementa is inmaterial unless they are canted with respect to the 
chamber u f m .  

Element coordinate 

For the liquid/liquid doublet an8 triplet 

(For unlike doublets, the z-axis i. 

From eymnetry, the definition of x and y axes for 

The coordinates for gas/lio_ id triplet and coaxial jet elements are illurtrated 
in Fig. 9b. 
triplet, with an origin at the geometric impingement point. 
are axieymetric so that, like the showerhead, definition of x and y axem 
matterr only if an element in canted with respect to the chamber axis. 
origin for the coaxial je.r lice on the element centerline and at the diaclrarge 
end of the liquid (oxidizer) injection tube (post). 
the variable f E  will be negative, 

The triplet definition8 parallel those for the liquid/liquid 

Coaxial jet elemento 

The 

If there is a "pomt-re~ess," 
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Figure 9a. Liquid/LiquiZ Injection Element Designations 
and Coordinate Systems 
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t ~ ~ e  IO: Trlrlet (Note levcrml o f  

@rlZIce Nmkro f r a  Liqaid/Liquid Trtplet) 

Figure 9b. Gas/Liquid Injection Element Deeignations 
and Coordinate Systems 
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LISP considers both the liquid and gas injected with a gaa/liquid element to be 
diet-ibuted as if they flowed as raya from point sources. Rather than lying at 
the element's coordinate origin, as vith the liquidiliquid elements, the point 
source8 are located at diatances of -6 and -bG upstream of the origin for the L 
liquid and gas. respectively. These parameters are derived during correlation 
of elemental cold-flow distribution data and values must be read-in for each 
gaa/liquid element. 

The orientation of the x, y, z coordinate system of an individual element to the 
chamber coordinate system is defined in terms of three rotation aqgles who3e 
revpoctive Sortran names are ALFA, BETA, and G U M .  If: 

1. The element is oriented on the injector such that its y axis (as defined 
by Pig. 9) is coincident with the chamber radius through the element 
impingement point, with positive y pointing radially outward, and 
The z axis of the individual element (as defined in Fig. 9) is parallel 
to the thrust chamber axis, 

.Z. 

then the angles ALFA, BETA, and GAMMA have zero values. If the element is not 
oriented in this "basic" or reference alignment, then 

1. ALFA is the counterclockwise angle of rotation around the basic z axis 
of the element's y axis from its orfginal alignment with the chamber radius, 
BETA represents counterclockwise r3tation around the y axis (in its new 
position after the first rotation); finally, 

2. 

3. GAMMA represents counterclockwise rg-cation around the x axis (i.1 its 
trrinsformed position after the first two rotations). 

For each rotation, "counterc1o2kwise" implies the rotation direction that would 
be seen by an observer looking along the positive axis toward the origin of the 
element. 
the geometry cf any single element. 

In most applicatinns, no more than one rotation will be applied to 

Each element, except €or Types 7 and 9 ,  is considered to consist of two 
equivalent orifices designated as 1 and 2. 

respond to these number designations are listed in Table 3 for all elemcrt 
types. 

The physical or4fices which cor- 
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The LISP program also l a b e l s  t he  i n j e c t e d  p rope l l an t  as e i t h e r  1 o r  2. 

f u e l  m u s t  be chosen as P rope l l an t  1 and the  o x i d i z e r  ..s Prope l l an t  2 .because 

of t he  combustion gas p r o p e r t i e s  vs mixture r a t i o  t a b l e s  and because they are 

expected t o  bea r  t hese  designat ions when d a t a  are t r a n s f e r r e d  from LISP t o  

STC. A l s o ,  f o r  a g a s l l i q u i d  p rope l l an t  c o d i n a t i o n ,  the  gaseous p rope l l an t  

is always assumed to  be the  fue l .  

The 

P rope l l an t  Flowrates. Except f o r  i n j e c t o r  elements def ined as Types 6 ,  9 

or 10, t h e  weight flow l b  / sec)  of each p rope l l an t  from each o r i f i c e  of t he  

element is ca lcu la t ed  i n  LISP by means of t h e  s tandard o r i f i c e  equation. 

LISP user  must i npu t  t h e  i n j e c t i o n  d e n s i t y  (lb / f t  ) and t h e  i n j e c t i o n  p res su re  

drop (ps i )  f o r  each p rope l l an t  as w e l l  as t h e  diameter and d i scha rge  c o e f f i c i e n t  

f o r  each o r i f i c e  of the  element. I f  t h e  i n j e c t o r  element is s p e c i f i e d  a s  

Type 8 ,  then t h e  use r  must s p e c i f y  t h e  diameter of t h e  c i rc le  of equivalent  area 
as t he  o r i f i c e  diameter because LISP treats t h e  Type 8 element as an u n l i k e  

doublet .  - 

m 
The 

3 
CI 

The Type 6 gaa/liquid coaxial jet element flawrates are defined as follows. 

Liquid oxidizer flow is calculated from element specification data on post 

diameter, DIA2, discharge coefficient, CDDIA2, and injection pressure drop, 
DPINJe 

cross-sectional area, A ~ I ,  of its atmular injec tiou passage. 

The gaseous fuel f lowrate, W @ 1 ,  is read-in along with the actual 



Table 3. Physical  Or i f i ce s  Corresponding t o  Equivalent 
O r i f i c e  Designations One and Two f o r  the  
Element Types Defined i n  LISP Progism 

r i g h t  of t he  y-axis of Fig. 9. 

I Element Type Equivalent Orif-ice 1 Equivalent O r i f i c e  2 I 
I 

(Unlike Doublet) 

2 
( L i k e  Doublet) 

3 
(Like-Double t-Pai r ) 

4 
(Tr ip l e t  ) 

5 
(4-on-1) 

6 
(GasILiquid doaxial)  

7 
(S howerhead) 

8 
(Special  Cal lout)  

9 
(Transpirat ion Face) 

10 
(Gas /Liquid T r i p l e t  ) 

The o r i f i c e  ly ing  on t h e  
nega t ive  y a x i s  of Fig. 9 
which i n j e c t s  toward t h e  
p o s i t i v e  y ax i s .  It is the  
f u e l  o r i f i c e  of Fig. 6 
(where the  r coordinate  
corresponds t o  the  y ax i s ) .  

Same as f o r  t he  Type 1 
element; however, the  1 and 
2 des igna t ions  are not 
important f o r  t he  Type 2 
element. 

The p a i r  of p o r t s  t o  t h e  
l e f t  of t he  y-axis of Fig. 9. 

The two o u t e r  impinging 
o r i f i c e s  cf Fig. 9. 

The o r i f i c e  l y i n g  on the  
p o s i t i v e  y axis of Fig. 9 
which i n j e c t s  toward the  
nega t ive  y axis. It is the  
ox id ize r  o r i f i c e  of Fig. 6. 

Same a s  f o r  t he  Type 1 
element. 

The four  ou te r  impinging 
o r i f i c e s  of Fig. 9 of Fig. 9 .  

The inner  impinging o r i f i c e  

The annual o r i f i c e  through 
which gas  flows. through which l i q u i d  flows. 

The inner  post  o r i f i c e  

The s i n g l e  po r t .  Not def ined.  

Treated as unl ike  doublet .  Treated as u n l i k e  doublet .  

The ent i re  c ross -sec t iona l  Not defined. 
area. 

Same as Type 4 
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Discharge codf icients of 0.84 are recommended for  liquid8 flowing through eliort 

L/Dorificer under mtor firing conditions and 0.80 under cold flov condition. 
However, the user is free to use whatever coefficients he deems appropriate. 
lie may, for example, use different coefficients within an element to account 
for effect of manifold cross flows in the injector, 9r use different coeffi- 
cients from element to element to approximate injector maldistribution effects. 

Spray litop Sizes. If the injector element is specified as being Type 1 
through Type 5 ,  LISP will calculate a mass median drop diameter for the propel- 
lant of each orifice of the element. These calculations are based upon the 
correlations of Dickerson et. al. (Ref.12) derived from hot wax experiments. 
Constants in the correlations have been modified to give characteristic 
diameters which make calculated c* efficiencies compatible with measured results 
for three injectors tested, analyzed and reported in Ref. 
by assigning a value greater than zero to the flag IDBAR, the LISP user may 
assign his own estimation of drop diameter to the flow from each orifice of a 

given elenrent. 
supplies his estimation of a characteristic drop size for each orifice of each 
element. 

5. Alternatively, 

For elements defined as Types 6 through 10, the user always 

The appropriate mean droplet diameter is the mass median diameter. 

With elements of Types 2 and 3 ,  the mean drop diameters are based on the 
empirical correlation of Falk, etc. (Ref. 13), modified to make c* efficiencies 
calculated by the STC computer program correlate with experimental data reported 
in Ref. 13. Additional input data are required for these elements: combustion 

gas density (lbm/ft ) at injection-end chamber pressure, chamber contraction 
ratio and, for each propellant, the liquid physical properties grouping pa/p 

3 entered a8 the parameters PRPRl and 2 on card 2080. 
u is surface tension (lb fft) and p is viscosity (lbm/ft-sec), all evaluated at 
injection conditione. 

3 

Here p is density (lbm/ft ),  

f 

Propellant and Combustion Gas Properties. The densities of both propellants 
at their injection temperatures and at their saturation temperatures corresponding 
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t o  t he  expected chamber pressure  a r e  required* (Cards 2070 and 2080). 

former a r e  used t o  c a l c u l a t e  i n j e c t i o n  flow r a t e s  and momenta; the  change i n  

dens i ty  t o  the l a t t e r  a r e  used i n  def in ing  the  output d rop le t  diameters.  

The 

Propel lan t  temperatures (Card 2090) are used i n  es t imat ing  an appropr i a t e  va lue  

of the evaporation c o e f f i c i e n t ,  Ck,. Normally, these  should be suppl ied as t h e  

s a t u r a t i o n  temperatures corresponding t o  the  expected chamber pressure.  

The required combustion gas p rope r t i e s  a r e  suppl ied  a s  t a b l e s  which r e l a t e  t h e  

given gas p rope r t i e s  t o  mixture r a t i o  a t  a s s u e d  chemical equi l ibr ium condi t ions.  

The t abu la r  property d a t a  suppl ied are lists of t he  s tagnat ion  temperature,** 

v i s c o s i t y ,  molecular weight,  s p e c i f i c  heat  r a t i o  (y), and c h a r a c t e r i s t i c  exhaust 

ve loc i ty  (c*) correspon6ing respec t ive ly  t o  a l i s t  of mixture r a t i o s .  These 

d a t a  are given on Cards 4110 through 4630. 

have been set up so t h a t  e s s e n t i a l l y  the  same s e t  of punch cards  may be used 

again as STC input  da ta .  

These combastisn gas property t a b l e s  

The number of e n t r i e s  i n  t h e  gas  p r o p x t y  t ab?es  a r e  defined by the  con t ro l  

va r i ab le  NCSTR. 
which should range from e s s e n t i a l l y  a l l  f u e l  vapors (zero o r  near  zero  mixture 

r a t i o )  t o  e s s e n t i a l l y  a l l  ox id i ze r  vapors (a mixture rat!.o of a t  least 100) t o  

prevent poss ib le  extxapolatiol;  e r r o r s  when l o c a l  reg ions  of extreme p rope l l an t  

mald is t r ibu t ion  car encountered i n  LISP analyses.  

e s t ed  i n  ca l cu la t ing  only the  spray mass d i s t r i b u t i o n  f o r  a given i n j e c t o r  

Configuration, then only two e n t r i e s  (one punch card)  a r e  required f o r  each of 

t he  s i x  gas property t a b l e s  l i s t e d  above (NCSTRm2). 

A maximum of e ighteen mixture r a t i o s  nay be used i n  the  t a b l e s  

I f  the  LISP user  is  i n t e r -  

*In the  case of a gas/Siquid propel lan t  combination, t he  dens i ty  Df t he  gaseous 
propel lan t  is suppl ied a t  its i n j e c t i o n  temperature and the  expected chamber 
pressure.  
i n i t i a l  vapor iza t ion  and drops ize  and w i l l  not e f f e c t  t h e  d e f i n i t i o n  of 
propel lan t  flow rat e. 

**The required p rope r t i e s  may be obtained,  for example, frocn runs of t h e  
JANNAF @DE (one-dimensional k i n e t i c )  computer program (Ref. 14) o r  an 
e q u i v a l m t  program (e .  g., Ref. 15) 

An e r r o r  i n  the es t imat ion  of chamber pressure  w i l l  e f f e c t  only 



P a r t i a l  p rope l lan t  evaporation between i t s  i n j e c t i o n  and the LISP c o l l e c t i o n  

plane is approximated by Eq. (3).  
value of C f o r  each propel lan t .  

of Ck, f o r  t he  va r i ab le s  CKPl and 2 on Card 2070; the  obvious impl ica t ion  is 

t h a t  he knows appropr ia te  values ,  

been b u i l t  i n t o  LISP: values  of Ck,  are ca l cu la t ed  i n t e r n a l l y  i f  the  user  

inputs  values  of l a t e n t  hea t  cf vapor iza t ion  f o r  CKPl  and 2. The program 

d i s t ingu i shes  between these  methods by examining t h e  magnitudes of the  input 

values: i f  both are l a r g e r  than uni ty ,  t he  values  are i n t e r p r e t e d  as h e a t s  of 

vapor iza t ion ,  

modified evaporat ion coe f f i c i en t s .  

The u s e r  needs t o  concern himself w i t h  a 

One method is f o r  the  user  t o  input  values  k' 

I f  t h a t  is not  t he  case ,  another method h a s  

Conversely, i f  e i t h e r  i s  less than un i ty  both  are r e t a ined  as t h e  

I f  

CCKP. An empirical s c a l e  f a c t o r  has been appl ied t o  the  t h e o r e t i c a l  va iues  t o  

fo rce  agreement between LISP's ca lcu la t ed  percentages burned a t  z =2 and those 

observed i n  an NTO/N2H4-UDMH (50-50)engine experiment (Ref. 5). 

Numerical values  of Ck,  w i l l  o r d i n a r i l y  range from approximately 2 x 10 

2 x 
computed later, i n  STC, for k' f o r  the  same prope l l an t s .  This  is appropr ia te  

because C is being appl ied ,  i n  LISP, t o  a spray t h a t  is incompletely atomized 

and whose d r o p l e t s  are not y e t  heated t o  t h e i r  s a t u r a t i o n  temperatures over much 

of the  travel d i s t ance  considered. 

CKPl and 2 are hea t s  of vapor iza t ion ,  Ck,'s are ca l cu la t ed  i n  subrout ine 

0 

-4 t o  

Typical ly ,  they are on the  order  of 115 t o  113 t he  values  2 i n  f sec .  

S 

k' 

CRT-PlottinP Options, Input  da t a  concerning computer generat ion of d a t a  

A non-zero value of NCRT p l o t s  are s c a t t e r e d  throughout t he  LISP input  da ta .  

on Card 2030 will r e s u l t  i n  a c ross -sec t iona l  p l o t  of t he  LISP mesh system, 

w i t h  a l l  element o r ig in  l o c a t i c n s  denoted, I f  NCRT is l a r g e r  than zero,  t h a c  

number of mass f l u x  p r o f i l e  p l o t s  w i i l  be produced. each showing the  f u e l  and 

oxid izer  f luxes  vs angular pos i t i on ,  8, a t  a f ixed  va lue  of chamber rad ius .  The 

r a d i a l  coordinates  f o r  these  p l o t s  a r e  prescr ibed  through the  v a r i a b l e  a r r ay  

IRCRT on Card 2050 ( e t  seq.). Each va lue  of ICRT denotes ,;re nvmberof a c i r -  

cumferent ia l  mesh l i n e ,  counting from the cen te r  of t h e  chamber out.  

Contour p l o t t i n g  is con t ro l l ed  by t h e  values  of t h e  va r i ab le s  KFCRT through 

KFFCRT on Card 2040. A non-zero value for any of these  v a r i a b l e s  r e s u l t s  i n  one 
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c o n t x r  p l o t .  A p o s i t i v e  value denotes the  number of contour l i n e s  which a r e  

t o  be p l o t t e d ;  value; between 10  and 15  o r d i n a r i l y  produce p l eas ing  graphs. 

A negat ive value denotes only approximately the  number of  contour l i n e s ;  t he  

a c t u a l  number is determined i n t e r n a l l y  by s e l e c t i n g  a rounded-off contour 

i n t e r v a l .  Use of a negat ive value is recommended. 

The maxinum and minimum rangec of contour p l o t t e d  v a r i a b l e s  can be con t ro l l ed  

by input  d a t a  on Cards 4010 and 4020. (These car;- , o needed if any of 

KFCRT through KFFCRT are non-zero.) I f  l i m i t  values  a r e  input  as zero,  

contour s c a l i n g  i s  dune i :r ternally.  Ord ina r i ly ,  one would not know, a p r i o r i ,  

appropriate  ranges f o r  1x18s f luxes ,  so zeros  would be entered f o r  WlF, 0 and 

T and f o r  W2F, 0 atid T. On a la ter  run, i t  might be des i r ed  t o  examine some 

contour i n t e r v a l  i n  xiore d e t a i l  by excluding some higher  o r  lower f l u x  values.  

Ordinar i ly ,  the  modified f u d  f r a c t i o n  is r e s t r i c t e d  t o  t h e  range WlFF=O, 

W2FF=l. 

Subscripts_. T'ne v a r i a b l e s  which appear i n  the  LISP ca lcb '  t t i ons  are sub- 

s c r i p t e d  according t o  e i t h e r  i n j e c t o r  element index (1-60), combustion zone 

mesh po in t  index (1-403), p rope l l an t  index (1-2), o r i f i c e  index wi th in  a 

s p e c i f i c  element (1-2), cr element s;xx;-f ;cat ion se t  (1-10). Of t h e s e  i n d i c e s ,  

the  element index, the mesh po in t  i n d m  and t h e  element s p e c i f i c a t i o n  i n d i c e s  

become the  r egu la r  Fortrag i n t e g e r  indices I ,  J ,  etc., f o r  use i n  D8 loops wd 

i n  WAD and WRITE statements.  

d i r e c t l y  i n t o  t h e  Fortran - i a r i ab le  names. 

P rope l l an t  1 from O r i f i c e  2. of i p j e c t o r  element 3 wouid appear -In t h e  Fortran 

code as WQT21(3) and spray flu& of P rope l l an t  1 from a l l  elements t o  mesh 

point  22 would appear as the  l 'ortran v a r i a b l e  STWl(22). 
the  program l i s t i n g  i n  Volume 2 and the  inpu t  v a r i a b l e  des igna t ions  included 

i n  Tables 1 and 2 should be made i n  t h i s  context .  

The r e m i n i n g  s u b s c r i p t s  are inco rpora t e  ' 

For example, t h e  weight f l i  i' "f 

I n t e r o r e t a t i o n  of 

Mult iple  Co l l ec t ion  P lace  Analyses. 

ZBM2 (and ZQW), spray mass d i s t r i b u t i o n s  w i l l  be ca l cu la t ed  by LISP a t  a 

second (and t h i r d )  col lect ion-?lane locat ion.  Data t r a n s f e r r e d  v i a  scraL .h 

d a t a  u n i t  2 t o  STC are from the  las t  c o l l e c t i o n  plane analyzed. 

By spec i fy ing  non-zero va lues  f o r  
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3 . 3 . 2  Selection of STC Input Data 

Input data for the STC subprogram block are read by subroutine CINPUT. Card 
sequence numbers begin with 5010, which provides values for some stream tube 
initialization control parameters. If ILISP=O, stream tube initial data are 
read-in via punched card so the parameters NSTPZ and NUG havc no meaning. 
In that case, the value of N0Z0N determines whether the stream tubes are 
analyzed assuming axisymmetry (N0Z0N>O) or not (N020N-0). 

If ILISP+O, stream tubes are to be initiaiized from LISP-generaced mesh point 
flow data. 
results in all LISP mesh points 011 each circle of mesh rc?. 's :i.e., those 
at equal chamber radii) being combined into one stream tube (option 1, page 8) 
and NSTfNRWALL. If N920N>1, its value denotes the number of circular or 
annular chamber zones (option 2,  page 9)  of mesh points s' 4 MS"P2 givss the 
number of stream tvbes per zone. Then, recognizing chat thc wall mesh points, 
at least, ar? combined into a wall-bounding stream tabe, the total number of 
stream tubes is NST=N020N*NSTPZ 4- 1. 

Then N0Zfl?I=G is forbidden and will cause job termination. N0ZBN=1 

With ILISPfO, a non-zero value of NUG causes all of LISP's gasified propellant 
flow to be distributed uniformly among the mesh points (i,e., constant gas 

flux). 

TFn option to  analyze stream tubes by suppressing data concerning geometric 
mesh point locations and forming stream tubes ent i re ly  ace rding t o  a mixture 
r a t i o  ranking i s  given by ILISP = 0 and N$Z$N = 0. 
byparred i n  t h i s  care, the portio- of the data deck which i n i t i a l i z e s  stream 
tube data must be provided ( e .g . ,  from a previous run i n  which LISP was run) 

If a non-axisymmetric nultiple stream :ube analysis is desired, tero values 
should be input I L . 3 P  and ITRANS. Also, it should be recognized that only one 
multiple stream tube analysis vi11 be perf0rK.d ia this case, i.e., there will 

be no iterative atialysis to converge on a solution satisfying a throat boundary 
condition. This does not prevent, however, the punchout of throat-plane data 
In NAMELIST form for subsequent iniut to 

Because LISP w i l l  he 

- - .- - - __ _ _ _ -  - . - _ _  

Improved TDK computer program. 
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Card No. 5020. The va r i ab le  NP design-tes the  number of z-planes between 

zo and t h e  nozzle th roa t  ( inc lus ive)  at which program c a l c u l a t i o n s  are t o  be 

made. 

c a l c u l a t e  NP by: 

The prefer red  Pethod is t o  select a des i r ed  magnitude f o r  A2  and 

5-0 N P = - + l  
A Z  

It is recomeaded t h a t  values  of Az be s e l e c t e d  i n  t h e  range 0.02 *i 0.10-in. 

such that t h e r e  are some convenient i n t e g r a l  number per  inch  f o r  improving 

p r in tou t  r eadab i l i t y .  The o t h e r  va r i ab le s  on t h i s  card  are self-explanatory.  

Combustion Chamber Geometry (Card No. 5030. et seq.). The geometry of t he  

colabustor is descr ibed through the  doubly subscr ip ted  array APR#F(J,L). 
ar ray  is entered i n  matched p a i r s  (L=1,2) f o r  each va lue  of 3. The va lues  

APNF (J.1) denote axial d i s t ances  ( in)  from the  i n j e c t o r  and t h e  va lues  

rrPMP (J,2) denote t h e  corresponding chamber diameters  ( in)  a t  these  pos i t ions .  

It  is required t h a t  d i s t a n c e  increase  wi th  inc reas ing  J and t h a t  the  a r r ay  

progress  from the  i n j e c t o r  plane t o  the  nozzle throa t .  

is assumed to be zero  and APMF (NAP,l) is t h e  i n j e c t o r  t o  th roa t  dis tance.  

The intermediate  values  wi th  l<J<NAP are used t o  desc r ibe  the  w a l l  p r o f i l e  

of an axispPDletric chamber. 

APNF (J+l,l), linear i n t e r p o l a t i o n  on diameter is used. 

This  

That is, AF'UF (1.1) 

For z-planes ly ing  between any APRdF (J,1) and 

A recomeended opt ion  is provided f o r  cases employing t h e  coxmon des ign  of a 

con ica l  nozzle  convergent s e c t i o n  which is tangent t o  a r ad ius  of curva ture  

through the  th roa t  sec t ion .  

of the th roa t  rad ius  r a t i o  ( w a l l  curva ture / throa t  openhg)  as APWF (1.1). 

i n  subrout ine AVAR, i t  is reset equal  t o  zero f o r  subsequent i n t e r p r e t a t i o n  as 

the  i n j e c t o r  f ace  plane. 

by the  next t o  the  last po in t ,  APlEQF (NAP-l,L), and the  nozzle th roa t  by last 

point  APMF (NAP,L). The nozzle p r o f i l e  between those two poin ts  is computed 

w i t h i n  subrout ine AVAR. 

This option is invoked by e n t e r i n g  t h e  va lue  

Later, 

Then, the  upstream end of the nozzle cone is spec i f i ed  

There are o the r  opt ions a v a i l a b l e  i n  subrout ine AVAR which are not  expected t o  

be usefu l  for  analyzing axisyrmaetric c y l i n d r i c a l  chambers so t h e i r  in f luences  

on APRQP (J,L) input  are not  discussed here.  



Multiple stream tube STC analysis is continued past the throat for several 

z-planes. 

assured such that areas at Z(NP+l) and Z(W-1) are equal, ecc. 
With the throat plane denoted by Z(NP), mirror-image symmetry is 

Combustion Gas Properties (Cards No. 5130. 5210-5630). Combustion gas 

properties, tabulated as functions of gas mixture ratio, are obtained from 
prior, peripheral computation using a thermodynamic equilibrium perfvrmance 

computer program. Rocketdyne's free-energy-minimitation program (Ref. 15) 
has been used here, but any comparable program is adequate. 

this :able are properties for equilibrium combustion products at stagnation 
conditions corresponding to the mean expected chamber pressure. 

parameters are assumed not to vary appreciably with pressure, but are taken 
to be functions only of mixture ratio. 

Data entered in 

The 

Propellant Vapor Properties (C3rds No. 5710-6230). Tables of fuel and 

oxidizer vapor specific heat and thenual conductivity as functions of tempera- 

ture are required, spanning the range of temperatures across the vapor/com- 

bustion gas films around spray droplets. At the lwer temperatures, specific 
heats at constant pressure may be conveniently obtained directly from propel- 
lant enthalpy tables or charts. At higher temperatures, dissociation is 
important and it is ap opriate to blend the low temperature, undissociated 
data into equilibrium dissociation data. 

The thermal conductivity needed is not simply that of the vapor, but that of 
the combustion gas-vapor rnivture between a droplet's surface and a surrounding 
flame-front. Again, a blending between undissociated propellant, dissociated 
propellant and propellant-rich combustion gases is appropriate at low tempera- 
tures with a gradual shift to the conductivity of the combustion gases alone 
at high temperatures. 

These properties are used In subroutine WRIME to calculate propellant droplet 
evaporation coefficier,.;, Eq. (23). More detailed discussions of these data 

concerning selection and the following miscellaneous properties) appear in 

Reference 16 together with some example data. 
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Miscellaneous P rope l l an t  P r o p e r t i e s  (Cards No. 6S10 t o  6530). The var ious 

t e m p e r a t u r e s ,  d e n s i t i e s ,  and molecular weights are explained adequately i n  

Table 2 ,  as are the l i q u i d  molecular weights. The vapor molecular weights 

w i l l  normally be lower than those of t h e i r  l i q u i d s ;  values  corresponding t o  

equi l ibr ium d i s s o c i a t i o n  a t  the mean f i l m  temperature are recommended here. 

Such d i s s o c i a t i o n  is considered, however, to t a k e  p l ace  f a r  enough from the  

d rop le t  su r f ace  t h a t  i t  has  l i t t l e  e f f e c t  on the  thermal g rad ien t s  there .  

Hence, i t  is no longer deemed appropr i a t e  t o  add a heat  of d i s s o c i a t i o n  t o  

the  heat  of vaporizat ion.  S i d l a r l y ,  approximating a d r o p l e t  warm-up e f f e c t  

by adding a l i q u i d  s e n s i b l e  heat t o  the  heat  of vapor i za t ion  is no longer 

recornmcrided, i . e . ,  the  value entered f o r  l a t e n t  heat  of vaporizat ion should 

be just t h a t .  

The heats of vaporizat ion are used i n  c a l c u l a t i n g  evaporat ion c o e f f i c i e n t s ,  

Eq. (23). 

behavior c a l c u l a t i o n s  and the  rest of these p r o p e r t i e s  are used i n  ob ta in ing  

mean f i l m  v i s c o s i t i e s  i n  subrout ine EVAPS. 

The l i q u i d  s a t u r a t i o n  d e n s i t i e s  are used i n  d r o p l e t  s i z e  and 

Program Control Variables  (Cards No. 6540 and 6550) .  An averaged, s i n g l e  

stream tube a n a l y s i s  of the  mul t ip l e  stream tube inpu t  is forced by i n t e r n a l  

assignment of IST=1, r ega rd le s s  of the value read-in. The main purpose of 

t h i s  is t o  ensure t h a t  the i n i t i a l - p l a n e  chamber p re s su re  (PCI) and t o t a l  

propel lant  f lowrates  are compatible with the  nozzle th roa t  boundary cond i t ion  

of maximum gas f lux .  

t h a t  the s i n g l e  stream tube 's  gas v e l o c i t y  at t h e  t h r o a t  be erlual t o  calcu- 

l a t e d  sound speed f o r  the combustion gases a t  the  ca l cu la t ed  th roa t  mixture 

r a t i o .  A required flow area is computed from a gas c o n t i n u i t y  equation; the  

r a t i o  of t h i s  area divided by geometric t h r o a t  area may d i f f e r  from u n i t y  

by CRTbL or less;  otherwise,  the  value of the  i n i t i a l  p re s su re  is ad jus t ed  

and the e n t i r e  s i n g l e  stream tube a n a l y s i s  is repeated. Convergence of the  

area r a t i o  t o  (1.00 2 CRT0L) is  required wi th in  NSSTI i t e r a t i o n s  be fo re  

proceeding t o  mul t ip l e  stream tube ana lys i s .  

NSSTI = 5 are recommended. 

The boundary cond i t ion  is approximated by r equ i r ing  

Values of CRTgL = 0.005 and 
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Single stream tube data are written out after each of the first four Az 
increments. Thereafter, the data are written out at intervals of IPRSST Az's 
until the neighborhood of the throat is reached. Data are then written out 

at every increment. 
identical except that the intermediate print interval is IPFfMST. 

F'rirt-out control in multiple stream tube analysis is 

0.08 Mass Fraction 
D/a 0.375 

Improved computational accuracy may result from repeating the sequential spray 
phase/gas phase solutions using updated values of flow parametera, in a 

"corrector" cycle. 
the variable ICRC which denotes the number of corrector cycle calculations 

to be made in each AZ increment. The recommended value is TCRC =: 1. 

Repetitive corrector cycles may be obtained by means of 

0.15 0.25 0.35 0.45 0.55 0.6s 0.75 0.85 

0.57 0.69 0.8 0.93 1.07 1.22 1.39 1.6 2.1 

0.95' 

The FORTRtYV variable ART$LD denotes the decimal tolerance "A 
page 18. 
analyses. 

discussed 011 
t 

A value of ARTBLD = 0.0025 ha8 been used successfully in checkout 

Other Data (Cards 6560-6610). The ZSTART plane is used as the initial 
plane for vaporization calculations in STC. 

the same as Z@, the LISP spray flux collection plane. 
for the last value of ZBM used in LISP is carried over into STC. 
value of ZSI'AR" is in the range WZSTAR!KZ$M, it may differ from Z@M. 
if ZSTART 

Its location is not necessarily 

The pattern calculated 
Then, if the 

However. 

0 or ZSTAELT>Z$M is entered, it is reassigned as being equal to Z$M. 

The variable PCTBL indicates the minimum percent (or,  equivalently, decimal 

fraction) of the total propellant flow rate to be assigned to the stream tube 
adjacent to the chamber wall (if ILISP&O). 
the STC computed data are going to be used in a wall boundary layer analysis. 

A zero value is recommended unless 

The two arrays FRACUM and I$DBAR allow the user to control the dietributions 

of apray droplet sizes about the values of b obtained from LISP. 
variables are not provided, the empirical distribution observed for like- 

doublet element8 (Ref. 12) ie used by default: 

If these 
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Stream Tube I n i t i a l i z a t i o n  Data (Card No. 7010. et seq.) Stream tube 

gases are completely def ined by input  of pressure ,  flow area, flow r a t e  and 

mixture r a t i o  at a s t a r t i n g  plane. 

from these using the  combL..tion gas p rope r t i e s  t ab le s .  The spray flow rate, 

ve loc i ty ,  and d rop le t  diameter f o r  each spray group d e f i n e  t h e  l i q u i d  input .  

Of the  NGT spray groups, th,- f i r s t  NGF are f u e l  spray and the  remainder are 

ox id ize r  spray. 

A l l  o the r  des i r ed  parameters are ca l cu la t ed  

Card 7010 carries the  area, gas flow rate and mixture r a t i o  f o r  the f i r s t  

stream tube. Addit ional ly ,  i t  has  f i e l d s  f o r  t h e  number of mesh p o i n t s  t h a t  

went i n t o  the stream tube and t h e  mean r and @ coord ina tes  of the stream tube. 

These last th ree  va r i ab le s  arc holdovers from an earlier program: they are 

w r i t t e n  out  but are not used i n  STC analyses .  It is thus immaterial :ghat 

t h e i r  va lues  are. 

3.4 PIIw;RAM OPERATION 

I n  add i t ion  t o  understanding program input  and output ,  a program user needs 

t o  know opera t iona l  information, such as requi red  core  s i z e ,  t y p i c a l  execut ion 

t i m e s ,  reasonable l i n e  count and CRT l i m i t s  and required a u x i l i a r y  d a t a  

un i t s .  

w i l l  be r e l a t e d  b r i e f l y  t o  provide prel iminary ind ica t ions ,  a t  least. 

Experience i n  these  regards on Rocketdyne's IBM System 360, :4od 50165 

With t h e  overlay s t r u c t u r e  shown i n  Fig. 5 ,  t h e  program length  is 42,450 

words. Tota l  s to rage  used during execut ion w a s  about 47,200 words. 

It is d i f f i c u l t  t o  be q u a n t i t a t i v e  about execut ion times f o r  s eve ra l  reasons.  

Foremost among these  i s  the  360's a b i l i t y  t o  process seve ra l  jobs  simul- 

taneously so t h a t  "time" becomes r a t h e r  nebulous. 

CPU time are v a l i d  i n d i c a t o r s  of what i t  c o s t s  t o  run cases .  For that 

reason, f i gu res  used here  a r e  Rocketdyne " b i l l i n g  uni ts" ,  which are calcu- 

l a t ed  by a complicated formula but  may be thougkof  roughly as "minutes of 

execution time". 

Nei ther  c lock t i m e  nor 

LISP runs t y p i c a l l y  cos t  about 1-112 t o  3 BU ( b i l l i n g  u n i t s )  f o r  analyzing 

one c o l l e c t i o n  plane. 

and many mesh points .  

Higher c o s t s  go along wi th  many i n j e c t i o n  elements 
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STC !Tuns t y p i c a l l y  cos t  3 t o  8 BU. 
a n a l y s i s  probably accounts f o r  about 115 t o  113 of t h a t  cos t  depending upon 

the  number of stream tubes. 

l ength  analyzed (or the  number of Az's), and t o  the  number of st ream tubes.  

i n f l u e n t i a l  v a r i a b l e s  are the  numbers of spray  group s i z e s ,  the number of 

c o r r e c t o r  cyc le s  u t i l i z e d ,  t he  number of CRT p l o t s  and t h e  i t e r a t i o n  

convergence tolerances.  

I n i t i a l i z a t i o n  and s i n g l e  stream tube 

The cost I s  -roughly p ropor t iona l  t o  t h e  chamber 

Other 

Dace Se t  
No. Var. lame 

Thus, a complete DER a n a l y s i s  amy vary i n  cos' 
b i l l i n g  un i t s .  

om about 4 t o  11 o r  more 

The example case given i n  V o l u m e  I1 c o s t  4.00 BU. 

Usage 

P r in tou t  1inecow.t  depends upon the  numbers of Az's, stream tubes, spray 
groups, i t e r a t i o n s  and p r i n t  i n t e r v a l s .  It is not  unusual f o r  one case  td  

p r i n t  10,000 l i n e s .  

10-12 graphs. 

Concerning CRT's, r a r e l y  does one ask f o r  more than 

2 
2 

3 

The DER program requ i r e s  tu0 d a t a  set u n i t s  o the r  than t h e  s tandard  inpu t /  

output  un i t s .  

used t o  t r a n s f e r  d a t a  between subrout ines ,  both between and wi th in  major sub- 

program blocks. 

These u n i t s ,  which may be e i t h e r  magnetic tapes  o r  d i sks ,  a r e  

Usage is shown I n  Table 4. 

M (1) Transfer  Data from LISP to STC (STAPE) 

(2) Save Data i n  STC f o r  P l o t t i n g  in  STCRT 

-- (1) Save and Ret r ieve  Data for I t e r a t i n g  i n  STC 
( ITER8) 

Table 4. Spec ia l  Data S e t  Usage 

r I 1 

3.5 PRDGRAMOUTPUT 

Each of t h e  major subprogram blocks has  its own d i s t i n c t  ou tput  and each is 
discussed sepa ra t e ly  below. 

also some graph ica l  and punched card outputs .  

Pr int-out  is the p r i n c i p a l  output and t h e r e  a r e  
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3.5.1 LISP Output 

The output of the LISP computer program is  provided both as the usual tabular 
printout, as computer-plotted CIlT graphs and a8 a scratch tape record of data to 

be read and used by the STC computer program. 

A sample of LISP tabular output is presented involume 11. 
tabulation of all input data, which permits both a full documentation of the 
computer run conditions for later analysis and a convenient method to check 

input for errors if unusual reaults a r e  calculated. 

folloved by a one page table of specific spray distribution coefficient values 

used for each element specification. 
coefficients m y  be preceded by a warning message that some unlike doublet 

design or flov parameter falls outside the c:>rrelation range in the LISP library 

of coefficients along vith values of pertinent parameters. 
coefficient subroutines provides such a message. 

First, there is a 

The input data table is 

As in the example case, this table of 

None of the other 

Additional diagnostic d a b  are printed out on the page following the distribu- 

tion coefficient values. These are: 
swE1 and 2; the integrated sum8 of propellant flowrates calculated at the 

collection plane, "MCS1 and 2; and, inverse collection efficiency factors, 
RCgNTl and 2, obtained by dividing swE1 by TMCS1 , for example. Here, tlie 

1 and 2 refer to the fuel and oxidizer, respectively. Overall continuity is 
subrequently enforced by multiplying all mesh point flows and fluxes by RCjhTl 

or 2 ,  aa appropriate. 

the sums of the elemental injection rates, 

The input data is folloved by a second table which cross references (by 
injector element) the calculated flow rates and drop sizes before evaporation 
to the read-in element coordinates 

The element reference table is followed by two tables referenced to the combustion 
zone mesh points. 
the coordinates of the mesh points in the chamber slice at tlie collection plane 

z,,. together with the weight flux (lbdinch scc), the total collected mass 
(lbpec), the three mean droplet velocity component8 (ft/sec). and the mean 

For the usual liquid/liquid injector, the third table lists 
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drop diameters (inch) of each propellant at the mesh points. 

collected m ~ s s  at a mesh point is defined as the weight flux times the 
arsociatad area at the merh point. The valuer in this third table are bared 

upon cold flow conditions, i.e., no vaporization ir asawned betveen elements 

and aesh point. 

radial and angular coordinate. 
the collected maas of each propellant at all the mesh-points of constant radial 
coordinate, i.e., lists the radial distribution of the spray PI(LIQ flux. 

The total 

The mesh points are listed in ascending order according to 
The last column of this table lists the sum of 

If the injector user gas/liquid elements, the definition of "Propellant 1" 
at the chamber mesh points is changed to mean the combuetion gar resulting 
from the mixing of the injected gaseous fuel and the evaporated liquid 
oxidizer. 
point coordinates and local weight fluxes and collected mass of each propel- 
lant (Propellant 1 having it8 altered meaning), but the three spray velocity 
components and m e a n  drop diameter are defined only for Propellant 2, liquid 

oxidizer. 

Under these circumstances, the third table again lists the mesh 

Lirted in the place of the mean droplet diameter for Propellant 1 

87a 



is the  weight f l u x  of evaporated oxid izer  which arrives a t  the  mesh poin t  as 

p a r t  of the  combustion gas. 

r a d i a l  coordinate  is made with gas l i q u i d  i n j e c t o r s .  

No l i s t i n g  of the  co l l ec t ed  propel lan t  mass by 

The four th  t a b l e  aga in  lists the  coordinates  of t he  mesh poin ts  i n  the  chamber 

s l i c e  i n  the  plane z 
diameters of t he  co l l ec t ed  spray a f t e r  evaporation. 

evaporation of the o r i g i n a l  spray f l u x  t o  each mesh point  i s  a l s o  l i s t e d  i n  

t h i s  tab le .  

f a c t o r ,  Em, the  mixing l imi ted  c* e f f i c i ency ,  t he  o v e r a l l  percent  vapor iza t ion  

of each propel lan t ,  and, f i n a l l y ,  the  average mixture r a t i o ,  t e rpe ra tu re ,  

ve loc i ty ,  and dens i ty  of the  (uniform) combustion gas at plane zom 

together  with the  reduced weight f luxes  and d r o p l e t  0’ 
A mass-weighted average 

A t  t he  bottom of the  fou r th  t a b l e  are l i s t e d  the  Rupe mixing 

The f i f t h  t a b l e ,  p r in t ed  only f o r  gas / l i qu ib  i n j e c t i o n  systems, aga in  l ists  

the  mesh po in t  coordinates ,  toge ther  with t h e  assoc ia ted  l i q u i d  s p r a y  f l u x  

and drop diameter a f t e r  evaporation, t he  f r a c t i o n  of t he  t o t a l  ox id i ze r  

a r r i v i n g  at the  mesh poin t  which is i n  t h e  vapor phase, t he  l o c a l  gas mixture 

r a t i o ,  temperature and axial  ve loc i ty ,  and the  a x i a l  l i q u i d  spray  ve loc i ty .  

A number of e n t r i e s  i n  t h i s  t a b l e  represent  r e p e t i t i o n s  of da t a  i n  o t h e r  

t a b l e s  which are grouped here  with l o c a l  gas  v a r i a b l e s  f o r  convenience i n  

in t e rp re t a t ion .  

The LISP graphica l  output is exemplified i n  Fig. 10 through 14. Fig. 10 

shows the  mesh system f o r  t h e  chamber sl ice analyzed and the  element o r i g i n  

loca t ions  f o r  a l l  i n j e c t i o n  elements considered t o  con t r ibu te  f l u x  t o  t h a t  

slice. 
around t h e  chamber s l i c e  a t  one f ixed  chamber rad ius .  Figures 12 and 13  

a r e  the contour p l o t s  of f u e l  and oxid izer  mass f l u x  f o r  t he  e n t i r e  chnrnber 

cross-section. A similar p l o t  f o r  t o t a l  mass f l u x  is not  shown. Figure 1 4  
is a contour p l o t  of a modified f u e l  f r a c t i o n  funct ion.  The expression 

p lo t t ed  is given a t  the top of the  f igure ;  i t  was chosen becacje  i t  is 

bounded between zero andun i tyand  has  a value of 0.5  a t  the i n j e c t i o n  mixture 

r a t i o .  

Fig. 11 is an example of t h e  f u e l  and ox id ize r  mass f l u x  p r o f i l e s  
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Bigure 10. Segment of Injector Analyzed by LISP 
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Figure 11. Fueh and Oxidizer Mass Flux P r o f i l e s  Computed 
by LISP at a Given Chamber Mdius 
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Figure 12. Contour Plot  of Fuel Mae8 Flux Computed by LISP 
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Figure 13. Contour Plot of OxiJlzer Mass Flux Computed by LISP 

I 
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Figure 14. Contour Plot nf Ysdif ied  Fuel Fraction Computed by LISP 
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3.5.2 STC Output 

A sample case of STC computer program printout is included in Volume XI. 
data are written out iamediately as they are read in. 
used for the particular case as vel1 as showing vhether or not the data vere 
read-in properly. 
o w e  that the intended input data vere actually wed. 

Input 
This documents tlie data 

The input section should be erslained for each case run to be 

Input data traenferred from JJSP are not printed out, but a table of diagnostic 

data from subroutines STAPE and SCRMBL is printed. 
table are, with flowrates in lb/sec: 

Parameters appearing in that 

SUElwl, 2 - Total fuel, oxidizer spray flowrates summed over all mesh 
points in STAPE 

UGF, 9 
TIF1, 2 - Total fuel, oxidizer flawrates transferred from LISP 

FF, FB 
K 

SMBL 

- Gaseous fuel, oxidizer f lawrates 
- The ratio TIFl/(!%Wl + WW), etc. 

- The number of circular ringe of mesh points from LISP 

- Total Flowrate assigned to the wall boundary layer stream 
tube 

m 
m 
Nl,N2 

- The ratio SMBL/(TIFl + TIF2) 
- The product PCTBL*(TIFl + TIF2) 
- The indices of circular rings of mesh points in a given 
geometric 20ne 

SUM - The cumulative total flowrate in a geometric zone and 
those set up prior to it 

The stream tube initialization data are tabulated and simultaneously punched 

out in cards. 

Bared on the stream tube initialization data, a table is printed out of stream 

tube total flowrates and overall mixture ratios. 

values of the Rupe mixing efficiency factor, Em, and a mixing c* efficiency for 

the stream tube f l m ,  

tube c* efficiency, rince it correspondr to complete evaporation and burning of 
sprayr within all stream tubes. 

This table ia followed by 

The latter represent8 an upper limit for  multiple stream 
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Subroutine AVAR s e t s  up t h e  a r r a y  of chamber area8 and w r i t e s  ou t  a tablt of 

chamber geometry informstiou. S imi l a r ly ,  subrout ine  KPRIME computes and mitts 

ou t  tables of evaporat ion c o e f f i c i e n t s .  

S ing le  stream tube a n a l y s i s  is preceded by writing out a one-page t a b l e  of inpu-i 

t o t a l  f l o v s  and averaged spray  and gas pareraeters. 
a n a l y s i s ,  d a t a  are w r i t t e n  o u t  aa they  are generated.  

p r in t ed ,  complete gas and p rope l l an t  spray group data are given. 

t h e  p t rcentager  of p rope l l an t s  evaporated and burned are l i s t e d  and volume 

number mean p rope l l an t  d r o p l e t  diameters ,  D30, are computed. 

During single stream tube 

A t  each z-plane t o  be 
Addi t iona l ly ,  

Calculated values of l o c a l  flow Mach number and s t agna t ion  p res su re  (obtained 

from s t a t i c  pres8ure, Mach number and frozen gamma v i a  t h e  i s e n t r o p i c  r e l a t i o n -  

sh ip )  are p r in t ed  in t h e  r i g h t  hand margin. 

t hese  have been t o r n  off. 

In t h t  p r i n t o u t  of Volume 11, 

Two values  each of flow a r e a  and con t r ac t ion  r a t i o  m y  be given. 

gas flow is subsonic, these should agree w i t h  each o the r  p rec i se ly ,  whereupon 

t h e  second set is n o t  p r in t ed ;  if they do no t  t h e r e  is  some discrepancy between 

the  read-in AW(J,L) and AREAl(NT) arrays. 

plane, t h e  two s e t a  may d i s a g r e e  becaust  t h e  gas v e l o c i t y  hae been set  equal 
t o  sound speed and t h e  l o c a l  nozzle  area ad jus t ed  t o  s a t i s f y  mass flow 

cont inui ty .  

Where the 

A t  o r  near  t h e  noasle throat 

The con t r ac t ion  r a t i o  calculated from con t inu i ty  a t  t h e  t h r o a t  



plane is --sed as a multiplier (if it differs from unity by more than CIZTQL) 

to adjust initial plane chamber pressure for a next iteration of single stream 

tube analysis. After the throat plane data are writte: out, a calculated c* 
efficiency is listed. 

When the foregoing analysis has converged on its solution, the input value of 

nozzle radius ratio and calculated value of mean nozzle expansion coefficient, 
7, are used by TRANS to generate transonic flow region isobars. 
coordinates and flow directions for each of 20 points along each isobar are 
writfen out, bepinning with the furthest downstream isobar and progressing 

upstream. Additionally, for the ax0 isobar, the absolute coordinates are 

written out for 40 points. Finally, a value is printed out for the nozzle 
discharge coefficient, CND. 

The reduced 

TRANS also generates a CRT plot of the isobars' coordinates. 

shown earlier in Fig. 3. 

Examples were 

Multiple stream tube analysis follows the foregoing single stream tube and 

TRANS analyses. Stream tube input data are re-initialized and some additions1 

data are written out t o  more completely define the initial-plane conditions. 

Initial-plane pressure is taken as the product of its value left in storage 

from the last preceding single stream tube iteration multiplied by the mixing 
c* efficiency and divided by TRANS'S nozzle discharye coefficient. 

At each prercribed t-plane for printing multiple stream tube remnlt~~, complete 
definitive data for combustion gases and propellant sprays are written out. 

Local chamber area and contraetion ratio are given; additionally, overall 

percentages of the propellants evaporated and burned are listed. Calculated 
etream tube stagnation pressures are printed in the right hand margin, which 

has been torn off in the printout of Volume 11. 
I 

At the throat position and intermittently downstream, diagnostic-type printouts 
containing data concerning dividing streamline intersections with the fifth, a=O, 

isobar are insetted between the regular z-plane printouts. 
of these data is given near the end of the multiple stream tube printout. 

Finally, a long summery table is given of the stream tubes' outer radii at 
each z-plane. This is terminated with the minimum value of the sum of stream 
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tube areas and the ratio of that value to throat area ratio. 
of this latter value's deviation from unity determines whether or not all, 
or a portion*, of STC's multiple stream tube analysis will be repeated. 
so, it is readily apparent in the printout. 

The magnitude 

If 

01-12 (or more) computer-plotted graphs accompany the printout discussed above, 
shoving the stream tubes' outer radii along the entire chamber length, 
illustrated in Fig. 15. 
through the multiple stream tube analysis. 

One of these graphs is plotted for each iteration 

Following the last pass through the multiple stream tube analysis, a table 
is prin* d which lists the NAMELIST data punched by STC for subsequent use 
in running the improved TDK computer program. 
data deck, with all appropriate title cards, a problem definition card and 

NAMELIST data file cards. 
STC, however, so comment cards are included to indicate the additional input 
data required before TDK can be run. 

narmeters calculated at the throat plane: 

These are in the form of a TDK 

Only a part of the required data can be provided by 

STC provides values for the following 

NZ$NES-------The number of stream tubes 
P( 1)---------Stream-tube-area-weighted mean stagnation pressure 
XM(J)--------Mass fraction of the total gasified propellant flow 

P)FSKED(J)----The gasified propellant mixture ratio of each stream 

carried by each stream tube 

tube 

velocity, VSUBS(J) at the position ZZPVSR where the TRANS 
is finsit invoked. Additional nozzle throat plane data are 
m"-9 fraction (gas and spray) of the total injected propel 
overall mixture ratio, jdFI(J), stagnation pressure. I'NS(J) 

efficiency, ETAVAP(J), and mean fuel and oxidizer spray ve 

Finally, a table is printed out of additional data in anticipation of their 
being needed and used in a future revision of TIX. 
tube's cross-sectional area, ASVBS(J), static pressure, PSUBS(J) and stream gas 

Included are each stream 

pressure distribution 
each stream tube's 
ant flowrate, XMI(J), 

mean evaporation 
oc i t i es , VBARF ( J ) and 

writes all pertinent data on scratch data unit 3 when the 
multiple stream tube analysis reaches the plane where absolute pressures 
are imposed on the nozzle. If only the subsequent portion of the analysis is 
tcj be iterated upon, ITER8 is recalled to read that record and reinitialize 
the analysis in that plane. 
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