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PREFACE

NASA has an interest in turbines related primarily t<) ,wr<mautics and

space applications. Airbreathing turbine engines pr()vide jet and turb()-

shaft propulsion, as well as auxiliary power for aircraft, l)r()pellant -

driven turbines provide rocket propulsion and auxiliary p()wer for space-

craft. Ch)sed-cycle turbine engines using inert gases, org'mie fluids, and

metal fluids have been studied f()r providing long-durati()n ele('tric power

for spacecraft. Other applications of current interest for turbine engines

include land-vehicle (cars, trucks, buses, trains, etc.) 1)ropulsi(m power
and ground-based electrical p_)wer.

In view of the turbine-system interest and efforts at Lewis Research

Center, a course entitled "Turbine Design and AI)plicati_n" was l)re-
sented during 1968-69 as part of the In-He)use Graduate Study l'r_)gram.

The course was somewhat revised and again presented in 1972-73. Various

aspects of turbine technology were covered including thermodynamic and

fluid-dynamic concepts, fundamental turbine concepts, velocity dia-

grams, losses, blade aerodynamic design, blade cooling, mechanical de-
sign, operation, and performance.

The notes written and used for the course have been revised and edited

for pub]ication. Such a publication can serve as a foundation for an intro-

ductory turbine ct)urse, a means for self-study, or a reference f_r selected

topics. The first volume presented the material covering therm_dynamic

and fluid-dynamic concepts, fundamental turbine concepts, and velocity

diagram design. This second w)lume presents the material related tt)
b]ade aerodynamic design and turbine energy losses.

Any consistent set of units will satisfy the equations presented. Two

commonly used consistent sets of units and constant values are given

after the symbol definitions. These are the SI units and the U.S. cus-

tomary units. A sing]e set of equations covers both sets ()f units by in-

cluding all constants required for the U.S. customary units and defining

as unity those not required for the SI units.
ARTHUR J. GLASSMAN

o..
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CHAPTER4

BladeDesign

By WarnerL.Stewartand
ArthurJ. Glassman

Th(, &,sign ()f a turbine e.nsists of three major steps. The first, is the

det(,rminal ion of th(' overall requirements of flow, work, and speed. These

are usually estal)lished by the particular application. The second step is

the ew)lution of velocity diagrams consistent with the desired efficiency

and/or mlmber of stages. This was discussed in chapter 3. The third step

is th(, design of the blading that will produce the flow angles and velocities

required by the velocity diagrams. This step involves the determination of

the size, shape, and spacing of the blades.

This chapter covers seine of the more important, aspects of blade design.

The height of the blad(' is set by the overall requirements of flow, speed,
and inh,t state c,nditions and ttu, selected velocity diagram, which dictates

the fluid state conditions through.ut the, turbine. The blade chord is

usually seleet('d )-h(, a minimum vahw ccmsistent with mechanical con-
si(h'rat ions. Th(, rh(sd must be long enough to allow accurate fabrication

and assure structur'll inl(,gri(y during operation. The selection of t)lade

spacing, which can be expressed nr)ndimensionally as solidity (ratio of

chord to spaeing) or axial s()lidity (ratio of axial chord to spacing), in-

volw's many considerations that will be discussed in the first part of this

chapter. Blade profile design, which includes blade exit and inlet geome-
tries as well as the eom_ec)ing surface profiles, is then discussed in the last

part of this chapter. Channel flow theory, which is the basis for the
anal::tical procedures used to accomplish the profile design, is discussed

in the next ehat)ter.



TURBINE DESIGN AND APPLICATION

SOLIDITY

One of the important aspects of turbitm blading design is the selection

of the blade solidity, which is tho ratio of chord or axial chord to spacing.

A minimum value is usually d(,sir(,d from the standp()int ()t" reducing

weight, cooling flow, and cost. ttow(w(,r, chord r('duction is limited t)3'
m('chanical eonsid(,rations, and iner(,ased spacing ('v('nlually r('sulls in
decreased blad(, ('ffi(!i(,ncy due to s('t)arat('d flow. This s(,ction will conc(,rn

its(,lf with tit(, a(,r()(tynami(' factors "lff(,eting s.lidity s(,h,cli(m. Th(, dis-

cussion will includ(' t lw ('ff('ct ()f v,+)cit y (liagr'm/ro(luir(,m(,nt s on solidity
and th(, r(,lali(m b(,t w(,(,n I)h_(l(_h)a(ting and solidity. Als()in('lud('d will t)(, a

descrit)ti.n ()t' advanc('d blading c()n('(.pts that al'_' l)('in_z stu(ti(,d for us(' to

suppr('ss separati()n 'rod th(,r(,1)y r(,duc(, th(, ])(,rmissibh, s()li(tit.v.

Effect of Velocity Diagrams on Solidity

Figur(, 4-1 shows a typical s(.t ()f l)la(h, inh,t and _,xit diagrams as w(ql
as th. static-pr(,ssur(, distribution ar()und a I)I.M(,. Th(, v(,h,(.iti(,s in this

figur(' ar(' shown as al)s()lute v('h)cili(,s. Tlw dis(:ussi()n in this chapt(,r

pertains to r()l()r |)lad(, rows as w(,l] as t_) star ()r t)]a(h, r_,ws. Wh(,n r(,f(,rring
to a r()t()r, w(, must us(, r('httiv(, rath(,r than :d)s.htt_' v('h)citi('s in the

(,quations and figur('s. Sine(, in this ('hapt(w w(_ ar(, ('.n('(,rn(,d with I)ladc

rows rath(,r than with stag(,s, th(, angle (.)nv(,nt i.n will di ff(,r slighl ly from

that used in pr(,vi()us ('hapt(ws. "1"t1(,('xit tangential-v(,lo(.ity (:()mpon(,nt

and flow anglo ar(. tak(,n as negativ(, values. Th(, inh,t wdu(,s ar(, positive

if the inlet and exit tang(,ntial-veh)(,ity compon(,nts ar(. in ol)posit(_ dir(,c-
tions, and n(,gative if in the same dir(,ction.

If one consid(,rs th(, two-dim(,nsional flow through a passag(' of unit

height betw('(,n two blades, th(,n tit(, tang(,ntial for('(, ('x(,rt(,d by the

fluid as it fl(tws from blad(, inh,t (sut)s('ript l) t() (,xit (subscript 2) is

1
I",, =- ._p21".,2 ( V,,,1-- V,, ,o) (4-1)

g

where

F_

g

P

"_,Tx

_Y u

tang(,ntial fore(,, N; lb

c()nv(,rsion constant, 1 ; 32.17 (ll)m) (ft)/(lbf) ( s.("-' )

blitdo spacing, m; ft

(h,nsity kg/n?; ll)/ft :_

axial compon(,nt of v(qocity, m/'s(,('; ft/s(,c,

tangontial compon(,nt of v('locity, m/see ; ft/s(w

This t'mg('nti'd f()rc. ('x(,rt(,(t by th(, fluid must I)(, tit(, sam(, qs th(, for('(,

due to th(, statie-pr(,ssuro distribution around the bla(h,, :ts was discuss(,d

in chapt(w 2. Th(' h)w(,r part of figure 4 1 sh()ws a typical static-pressure

2
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]:IGI;RI'; 4 I. Typical bltuh_-row velocity diagrams and surface static-pressure
dist rilmli.n.

(list rilmtion around t lw hlad(, row as a funet ion of axial distance. The area

])('tw('on th(' two em'v(,s rol)r(,s(,nts tho total Mad(, forco acting on the

flow in lb. tangential dir('('lion. Thus,

_.VII(_F( '

Pp

P.

The axial solidity, _, is

L' (t)l".=c. (p.-- p.J d
C

axi,d chord, m;ft

l)ressuro-surf-t(!(' static pr(,ssuro, N/m_-; lt)/ft 2

suet ion-surfae(, star ie pr(,ssur(,, N/m°-; lt)/ft -°

axi'd distance, m; ft

('.r

G z

(4 2)

(4-a)
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Substituting equations (4-1) and (14-2) into equation (4-3) the, yields

pWx,2( V,, ,1- V,, ,_)
_ - (4-4)

/o'g (pp--p,) d

At this point, we introduce two tangeiltial loading coetlicients (hal have

been used to relate the actual blade loading to an ideal blade loading. The

first is the widely used coeificient b_troduced by Zweifel (ref. 1 ). This

coefficient is based (m an ideal loading t httt assumes ( 1 ) the stal ic pressur(,

on the pressure surface to b(' c(mstarlt aIld e(lual t() th(, inlet total pressure

and (21) th(, st._t ic l)ressure on the stwt ion surfac(, to t)e ctmst'm! and ('(lu'tt
to the exit static pressure. I, ('(luati(m f¢)rm,

(p,- p,_) d

p,'- p.
_4-._)

where

_z

])1 _

1)2

Zwcifel loading coefficient

inlet total pressure, N/re"; 1t). ft _

exit star ic I)ressure, N/m-_; ll)/ft 2

The secoild coefficient is similarly defined <'xc('pt that lhe assmned

constant static pressure (m lhe suction sm'fa('e is ('qual t() the minimum

value of static pressure (see fig. 4-1) (m that surfa('e. This h_ading coeffi-

cient can never exceed a value of 1, a_d for all practic,d purposes, it must

always be less than 1. The Zweifel c,,eiticie,lt, ()n 1he ()lh('r hand, can ex-

ceed a value of 1. In equation form, this sec(,_d ],)adintz (',wtficient ¢/is de-
fined as

1 (2£ (p,-p,) d .r

¢_=-., - (4-6
])1 -- ])s ,m in

where p ....... is the minimum static l)ressure (m the suction surface in
N/m "_(>r Ib/ft'-'.

The vcl<)city components in terms of velocity and flow angle are ex-
pressed as

V,, = V sin a (4-7)

and

1"._= I" cos a (4-8)



IH,AI)E l) IG'q (; N

vvher(,

|" fluid velocity, m/see; ft/see

a fluid flow anglo, (leg

Substitulin_equ'dions 14 5) or (4-6), (4-7), and 14 8) into equation

(4 -t) and using lho lrig.nomelrie relalion sin 23=2 sin a cos a yields

(K--I sin2a., 2,(/ (K-1)sin2a2 (4 9)
(7, = .... =

\P_ -/) .......,,/ ¢' \ pl -- p_./ ¢_

where K is the ral i,) of t'mgent ial velocity eoml)Onont (l',, A) at the blade
inh'l, to that (1"._.) at the blade exit.

l)erirotion of i.compres.sibh_-flo., rclatiol_s.--llelations involving solidity,

v('loeity diagrams, and h)a(li)lg are usually evolvod t)y assuming incom-

pr('ssibh' flow _vith no loss. With this assumpti(m, density p is constant,
and l_('rnoulli's (,(luati(m

1

P'= P+ 2y pI'2 (4-10)

can be us(,(t. Substituting equation (4 10) into e(luation (4-9) yields

(K-l) sin 232 (K--l) sin2a2
,r,= (4 11)

4' \ IV" /

_v]>r_' V..... is the w,loeity m_ the suction surface where p=p,.,._..

l.et us now define a Stletion-surfa(.o diffusion parameter D, as

1).=- U_'"' (4-12)
I"2 2

._l'my l)ar:tmet(,rs of this type have l)e('n used to ret)resent a measure of
the (h,(:oh,ral ion of the flow on the suction surface. This deceleration is an

indi('ati,m ()f the sus('('l)libility of the flow on the blad(, to separate. Using

thisd(,finition (('(t. (4 12)) in equation (4-11) yields

{K-- 1 ) sin 232 (K- 1 ) sin 23:
_, - = (4-13)

e/1)_ J/.

l';(luatio.. (4 13) shmvs lhat the solidity parameter a.ffD, or a_ff. is

(:(mslant f_>r ,,aeh l)arli(_ular v('h)<qty-diagram re(tuirement. Since loading

('oettiei(,nt ¢, which oannot ('x('eed a value of 1, does not vary greatly, it
e'm be se(,n that d('cr('asing solidity rosults l)rimarily in increased suction-
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surface diffusion (higher D,), the conse(tu(,nc(, of which will be discussed

later in this chapter. The solidity paranwt(,r is l)l()ited against the tan-

gential velo(:ity ratio K for several values of exit flow angle in figure

4-2(a). A wlhw of K=0 r(,pr(,s,,iits a r(,actio,l })]'id,, with axial inlet, a

value of K=- 1 r(,presents an ilnt)uls(' |)lad(', and "t value of K <- 1

retir('s('nts a n(,gative reaction blade. Posilive values of K r(,t)r(,s(,nt inlet

and exit tangential v('locities in th(, sam(, dir(,cti,)n and are ,'neountered

primarily in the tip sections of rotor blad('s. As seen from ('(tuati(m (4-13),

solidity param(,t,,r is equal to zero for all exit angles f(_r K = 1. This rel)re-
sents the case wh('re there is no turning ()f the flow. The solidity l)aram(,ter

increas('s with (t(,('r(,asing K values. Thus, if exc[,ssiv(, suction-surface

diffusion is to b(' avoided, solidity must increase as the velocity diagrams

move from r(,a('li()n toward impulse. It can tie seen thttt for any giv(,n

value of K, a maximum value of solidity t)'trameter is (_l)tained with an

exit angle of 45 °.

Equati(m (4-13) can be m(_(tifi(,d to a function of the inlet and exit

angles to yMd th(. equation derived in ref,'r('nc(' 1.

2 COS _2 .

_- sm (a,- a2) (4-14)
_z COS _1

For brevity, this is expressed only in t(,rms of the coefficient _b,. Equation
(4-14) shows that th(, solidity p:mmwl('r a_b_ can be expr('ss('d in t('rms

of the flow angh's only. Solidity l)aram('ter is l)lotl('d against exit flow

angl(' for several values of the inh,t flow angle in figur(' 4-2(t)). For a

given (,xii angl(', solidity i)aramet('r increases with increasing inlet angl(,.

In t h(, region of most interest (a,> 0°, a_.< -45°), solidity parameter for

each inlet angle d(,creas(,s with (h,er(,asing exit angle.

A third relation can b(' (,v()lved, this ,me in t(,rlns of 1)lade reaction R,

which was (h'fi,wd in eh'q)t(,r 2 as

_12

R _ 1 -- -- (4-15)
| "22

Substituting ('(tuaiion (4-8) into ('(luati()n (4-15) yMds

R= a-( c°s a2"]2 (4-16)
\cos all

for the two-dimensional, incompressible-flow case, where V:.,=I'_,2.

Substitution of equation (4-10) tia('k inlo e(lualion (4 14) then yMds

2
a_=-- %/] -It' sin Aa (4-17)

_/%

wkere Aa is ai--a._.
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3

_2

e,J

(a)

0
.5

Exit-flow angle,

a2,
de9

-45

-60 or -30

_/./....../- 75 or -15

1 I I J
0 -.5 -1.0 -1.5

Tangential velocity ratio, K

.. 3 r _lnlet-flow angle,

Y,

o1/-_ J I 1
-30 -45 -60 -15

Exit-flow angle, a2, deg

1
-_)

ID

r-

E

B
O

2

1

0
-. 25

- Turning angle,
A_
deg

f 90
,, ,,- 60 or 120

0 .25 .50 .75 1.(Y)
Reaction, R

(a) Effect of tangential-velocity ratio and exit-flow anglc.

(t)) Effect of exit- and inlet-flow angles.

(c) Effect of reaction and turning angle.

FIovaE 4-2.--Effect of velocity di,_grams on solidity.



TURBINE DESIGN AND APPLICATION

Equatior_ 4-17) expresses the solidity parameter iu terms of blade

reaction and turning angle. The solidity parameter is plotted against

reaction f()r several values _)f turning angle in figure 4-2(c). It can be seen

that, as indicated previously, the solidity parameter decreases with in-

creasing reacti_n. The solidity parameter is a maximum for a turning

angle of 91)° and varies little with turning unless very high or very low
turnings arc used.

Radical t'¢,riatiol_.--(;hapter 3 discussed the radial variations in velocity

diagrams that must (_ccur in order t(_ satisfy both the varying blade speed

and radial e(tuilibrium. Since axial sr)lidity was shown to vary with

varying veh)city diagrams, there will be a radial variation in the desired

value nf axial s_)lidity. The nature nf this radial variation will be illustrated

by an example. ('(resider a single-stage turbine having axial inlet and exit

flows (zero inlet and exit swirls), c(_nstant axial velocities, a constant

hub-to-tip-radius ratio of 0.7, an impulse rotor hub with a starer-hub exit

flow angle of -70 °, and free-vortex swirl distribution. For this case, the

flow angles at the hub and tip and the c()rresponding solidity-parameter

values computed from e(luation (4-14) are shown in the following table:

Stator It.(,tor

Inlet Exit Solidity Inlet Exit Solidity

angle, angle, parameter, angle, angle, parameter,

(teg (teg rr_¢, (leg (leg a_/,_

Hub ' 0 - 70 0.64 54 - 54 1.90

Tip 0 - 62 . 83 - 2 - 63 . 79

Note again that the angle convention being used in this chapter is some-

what different from that of previous chapters. Herein, stator exit angles

are negative. Assume that the loading coefficient _b, is to be maintained

constant radially. This is a reasonably desirable condition, and the

assumption enables us to proportion solidity directly to the solidity

parameter.
Let us now determine how the hub and tip values of solidity parameter

shown in the preceding table can be made physically consistent. The axial

solidity variation in an), blade row must be inversely proportional to
radius (because blade spacing is directly proportional to radius) and



BLADE DESIGN

directly proportional to axial chord. For the stator, the axial solidity

parameter at the hub is 0.64. If axial chord were held constant, then the

corresponding tip value of the axial solidity parameter would be
0.64X0.7=0.45, which is almost half of the desired value of 0.83. There-

fore, a considerable axial taper from tip to hub is often used so that the

axial chord can increase with radius and yield the higher so]idities desired
at the tip.

In the case of the rotor, the axial solidity parameter at the hub is 1.90.

If axial chord were held constant, then the corresponding tip value of the

axial solidity parameter would be 1.90×0.7= 1.33, which is still larger

than the desired value of 0.79. Therefore, axial taper from hub to tip is

often used in rotor blades so that axial chord can decrease with increasing
radius and yield the lower solidifies desired at the tip. Taper from hub to

tip in the rotor is not ()lily aerodynamically desirable, but is also mechani-

cally desirable from the standpoint of reducing blade stress. To simplify
fabrication in many cases, especially for smaller turl)ines, axial taper is not

used, and there results a radial variation in loading coefficient. With the

axial solidity selected on the basis of the mean-section velocity diagrams,

this radial variation in loading coefficient in many cases, especially those
where the blading is not highly loaded, will not have a severe effect on
turbine performance.

Effect of compressibility.--The term

1

2g P_V2_

t

in equation (4-9) reduces to 1/D, for incompressible flow conditions, as

shown by equation (4-13). For a compressible flow case having the same

loading coefficient ¢_as for incompressible flow, division of equation (4-9)
by equation (4-13) yields

1
___ r 2

2g p2_ _ D,
(7 x

o'z,i,_c pl' -- p_,rnin

(4-18)

where _,_._ is the incompressible flow value as determined from an

equation such as (4-13), (4-14), or (4-17). By introducing the relations

between critical velocity ratio, density, and pressure (eqs. (1-3), (1-52),

(1-61), (1-63), and (1-64)) and using the definition of D, (eq. (4-12)),
equation (4-18) is modified to
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y+l_' I 1-y-_1_4-1(_'%_) 2V2]I"("-I) (IVI_)ZD,z

(4-19)

where

7 ratio of Sl)ecific heat at constant pressure to specific heat at

constant 'v()]un] o

V,., critical velocity, m/see; ft/sec

Then, t)y using binoxlfial expansion and by neglecting the secondary terms,

equation (4 1(.I) call be al)proximated as

O"x

- 1 ..... + (4-20)
z_,,,_ y+l 2(y+l)

The appr(_ximation represented by e(luation (4-20) is quite good for

(1"/'1",_)2 values up to about 1. The solidity ratio affz_,,, is plotted against

suction-surfac(, diffusion param(,t(,r f,r several values of critical velocity

ratio in figure 4 3. The compressibility effect bcconws more pronounced

as D_ eith('r i,er(,ases or decreases from a value of 2. At D, = 2, there is no

compressibility ('fleet for any value of (I'/1%_)2. For D._ values of less than

2, the required solidity decreases with increasing values of (V/V_,)2.

1.50 --

1.25-

.ff 1.00

.75

.5O

Exit critical-velocity
Vatio,

IVcr)2

1.2

1.0.6

0

I I
2 3

Suction-surface diffusion parameter, Ds

Fmum.: 4-3. -Effect of compressibility on axial solidity.
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For D, values of more than 2, a region that is only of academic interest

because it is beyond the limits of good design practice, the solidity ratio
increases with increasing (V/Vcr)2. Experience has shown that D8 values

should be maintained below about 2 to avoid excessive losses.

Relation of Loss to Solidity

It is well recognized that the loading of a turbine blade or of a com-

pressor blade is an important function of both solidity and reaction.

Correlation of blade loss with a compressor diffusion parameter was

described in reference 2 and is used widely within the compressor field.
This parameter includes two terms, one reflecting reaction and the second

reflecting turning and solidity. An analogous diffusion parameter was

evolved for the case of the turbine in reference 3, where an overall diffusion

parameter is defined as the ratio of the sum of the decelerations in kinetic

energy on the suction and pressure surfaces to the exit kinetic energy. If it

is assumed that the pressure surface minimum velocity is low enough to
neglect (Vp._n = 0), then the overall diffusion parameter is defined as

D--- V_,,- V::+ V12
V: 2 (4-21)

With the use of the definitions of D, (eq. (4-12)) and R (eq. (4-15)),
equation (4-21) reduces to

As seen from equation (4-13),

D=D,-R (4-22)

¢_=@D. (4-23)

Substitution of equations (4-23) and (4-14) into equation (4-22) then
yields

2 cosa2 .
D= sin Aa-R (4-24)

ffx_ cos _1

This relation is like that for compressors, with the two terms involving
reaction and solidity.

Attempts have been made to correlate turbine blade loss with both

overall (ref. 4) and suction-surface (ref. 5) diffusion parameters. A

definite trend of increasing loss with increasing diffusion was established,
but complete correlation could not be obtained. Such a correlation of

blade loss with diffusion parameter alone would not be expected, since
different values of reaction and solidity giving the same value of D do

not give the same loss.

Consider first the effect of reaction on loss, as shown qualitatively in

figure 4-4(a). As reaction is reduced from a relatively high value near

11



TURBINE DESIGN AND APPLICATION

unity, there occurs a gradual increase in blade loss. Further reductions in
reaction to negative values cause the loss to increase rapidly. This varia-
tion in loss with reaction is caused by the change in boundary-layer

characteristics (which are discussed in chapter 6) as the nature of the

flow varies from highly accelerating to diffusing. The negative reaction

regime, although desired in many applications, is usually avoided because

of the high loss encountered when conventional blading is used.

The effect of solidity on loss is indicated in figure 4-4(b). A minimum

loss occurs at some optimum solidity. As solidity increases, the amount of

frictional surface area per unit flow is increasing. As solidity is reduced,

on the other hand, the loss per unit surface area is increasing because of
the increased surfacc diffusion required. A minimum loss occurs as a result

of these opposing factors. The value of the suction-surface diffusion

(

o
Reaction,R

o

(b)

Axial solidity, ox

(a) Reaction.

(b) Solidity.

Fmvnr: 4-4.--Loss trend with reaction aad solidity.

12



BLADE DESIGN

parameter corresponding to the optimum solidity is a function of many

factors such as Reynolds number, shape of suction surface velocity dis-

tribution, and rate of turning, hi general, as mentioned previously, values

not exceeding about 2.0 arc used.

Selection of Optimum Solidity

Both analytical and experimental attempts have been made to identify

optimum solidity. According to reference 1, minimum loss occurs when the

Zweifel loading coefficient ¢Jz is equal to 0.8. By using this value in equa-
tion (4-14), optimum axial solidity can be determined as a function of

the blade-row inlet and exit flow angles, and this is plotted in figure 4-5 (a)

for a wide rang(; of angles. The dashed (long-short) curve represents the

locus of points for impulse blading.

In order to determine the optimum values in terms of actual solidity,

it is necessary to determine the stagger angle a,, because

_x

a_-- (4-25)
COS _#

An analytical blade model was used in reference 6 to relate stagger angle

to the flow angles and the axial solidity. Thus, optimum values of actual
solidity were obtained as a function of inlet and exit angles, as shown in

figure 4-5(b). The authors of reference 6 compared an optimum solidity
determined in this way with the data of reference 7, where efficiency was

measured with four different rotor solidities, as shown here in figure 4-6.

The solidity determined as optimum in reference 6 from a figure such as

figure 4-5(b) is seen to be quite close to that yielding maximum efficiency
for this case.

Loss coefficients based on cascade data are presented in reference 8 as a

function of pitch/chord ratio (inverse of solidity) and exit angle for

reaction blades (al = 0) and impulse blades (al = - a2). These coefficients,

in relative terms, are replotted here in figure 4-7 against solidity for

various exit angles. These curves indicate the importance of selecting

optimum solidity. For the larger (more negative) values of exit angle, the
curves are rather flat in the region of minimum loss, and some deviation in

solidity from optimum does not cause any significant increase in loss. As

the exit angle gets smaller, the minimum loss region becomes more pro-

nounced and the loss penalties become more severe as solidity departs

from the optimum value. It must be recognized that curves such as those

of figure 4-7 are usually obtained by using a given blade shape and varying

the spacing. Thus, the blade shape and resultant velocity distribution
cannot be optimized for each solidity, and the significance of such a
correlation is somewhat clouded.

13
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Inlet-flow
\-- \ angle,

\ \ \ _ Typeof

_ _ _ _)_ bladerow

\ \ _ Accelerating
_ "" _ \ .. \ ------ Decelerating

. "_ _ _u \ Impulse

__ 3 - 4o \ \\\\k \\

i'L_ (a)
o/ I 1 I I I 1

_4
I0

32
_3

0
-20

Inlet-flow
- \ \ ang4e,

\ \ %
\ \ deg

\ \
\ N7o

- \\6o \ \\ \
\ \ \

\
-- 4o \ \ \

\ k \

-30 -40 -50 -_ -70 -80

Exit-flowangle, ap deg

(b)

(a) Axial solidity.

(b) Actual solidity.

FIGURE 4-5.--Effect of inlet and exit angles on optimum solidity. ZweifeI loading

coefficient _, = 0.8.
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l:mtrm,: 4 7. l'iffe('t .f s<,lidity and exit :ingle .n hl:uh' l.ss (,<_efli('i('nt.

The optimum soliditi('s ot)tained from the cascade resttlls shown in

figure 4 7 are plott('d against exit angl(, in figure 4-_ "rod qr(, (,(mqmrod

with those obtain('d analyti('tflly and shown in fi_zure 4-5 (1>). It ix ot)vious

that agreement betwe('n tit(, (,xperim(,ntal "rod lhe atmlytir'd results is

not good for most exit-angle values. Although tim (,xp(,rintenta[ and the

analytical cttrves do cross ettch other for both the rea(!l ion '_1 = 0) ))lading

attd the impulse ((n = - e_o) hln(lin_, th(, indieah'd variations in opt illltll/l

solidity with exit angle arc just not sitnilar. All thai can t)(' said at this

time is that the analytical r(,sults inv<)lv(' mtmy assumt)tions, t}l(, (,xp(,ri-

mental r(,sulls pert'tin to <m(' parti('ul'n" ]_]a(h' t)r(_fih', 'rod ther(, qre many

factors that act t() (h,t(,rmin(' .ptimtml solidily in n matm('r lhat w(' (h)

15
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-- Basedon analytical results of fig. 4-_b)

------ Basedon experimental results of fig. 4-7

3 Inlet-fluw angle,
of

..._....-----._7_. _ de9
S LI

o I I 1 I I _2
-30 -40 -50 -60 -70 -80

Exit-flow angle, e?, deg

["l_ilrt{]; I S. (!<mllmt'i>_m ,_l',q_th,mtn s,_lfiliii,..s.

not yet fully und,,rstl/nd. Aualytic.d r_,sttlls, sm'h ns _h_,s_, <,1' figure 4 5,

qre more fre{itwtdly usi'd to d_.ternline ()1)i imtull s(,lidii v 1hltll Ill'(' ('xperi-

mental I'('>_lllts, SlI{'}I _.IS [}I()SC SII, IWI! ill tiKur{' .1 7. ('llrr{q_t &'sign l)raclice

is t_) use _ v:thics of 0.9 t_l I.(), x, llicli is sli/hll3 }iivhl'r than the 0.g

]'(W()llllll(ql(liq{ in I'('[('I'(ql('(' 1.

Ultralow-Solidity Blading

In tit{, p'tst, thv lilnilati{m ici r_,du('ti,m.'- h, s,,liditv has been separalion

,w(!urring _>tl th<' sttcti_>n Slll'facl, of Ill(, llla,l+,. '1"<+:tdli,'v,' lmvcr solidilies,

s<ml_' l,iodiii<'ati<,r ill hhtdu c_lnceI)l liillSt i,!' uiilix<',l S/t,qi thai Sl'lmralion

is snpl_rcssed au<l ill_, ass(wiat,_t high h,>_,.s d_ Hid lJt'(qll'.

Tt> tl'{':lIlil('lll of tiw ])l)ltlld:lI'V ]a\(T ill l.h(, l'{'_i{m id' s(,l);traiion is OllC

apl:lr(>:.tc]l ill re(hlc,'_] ,,<,lidiiy. Sttch tl'l';tillifqlf s e,,uht tilt'hid{' I'('IIIOV]II_ t ]1("

J;,()tllid.:tr.v laver t,v Stlclil>ii, i,ilc,z'_iZiilX l lie IJlJtilidlil'y ]ayl,r })y lilov, in_, (it"

incrcq.shig; lhi, lttl'iJtlllqi('c (d' lhl, lt_,tliidarv hty('r t>y tl>(' ,li' lliil)li]_l.l_)i's ,",it

the I)hich,. ('c,rlain ill Ihesl, i,Otl('{,]>ts hav(, IJ(,(ql ext)l_Ji'cd with nlar<_inal

SllCe('sS. T',\o a]ll,l'llilte I)]ade ('{lli('('t)ls l tlai }laVe, l_erhal)S, ])(qt('I' l)otential

:i.I'(' l ii(' lalldClli itllt[ jel-llal)t>l:l@'s. "_\liich are ilht< ral!'d hi figure ,t-(t.

Sttidi_'s at)plyili K the l)Olllldary-lay(T tl'(,ltilll('lil C{illCellls as _'11 its the

Itlll'l'il,:tto lihtdc' c+ml"olits 1,) sl:itllr blades and i'(_I_1" 14ad(,s lit,, sUnllnttrized

in I'(,[(,l'l'llcl's !t ;tu(l l(i, respcclively. ('ascad{' t(,sts <d' h,w-s,,lidily l)]tt.in,

lanldt'lli, alia jl,t-lht 13llkuh,s ttl'(, i:lr(,s('ilt('<i i/i I'(,t'cr_.,liCCs 11 to 14. Tllrliin(_

lest resillls with h>xv-s<)liditv lalid_,nl and j(,l-fl,till l't_t_,ls all! prest,nted in

l'Cfl'l'tqll'('s 15 and Ill, r('spi'('tiv('ly.

Till, lalldl'lll t_la&' ()p(,r:tt_,s +ill llie princit)h' tll:d, :llllu>ugh _l tiitz>]l value

of suct il>li-suri'ac(' difl'usilm is utiliz<'d (t)('r]i:itis 2 ). lhe fr_>Iit flail is ter-

minatl,d :it ,:tltotil the plfint of sel)zir:tlilm. Tho rcnlainilig diffusion then

16
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TI'ItBINI_ I)I.]_V;N AND AI'PLI('AT[_)N

ar(Jund on(' such blade with th(. j_'l (d'f and on. With the' j('t on, th('re is no

l()n_z('r a requir('n,onl f(lr th(' v(+)citi('s ()n lh(' suet i()n and [Ir('sstlr(' 81|rf'Ic('s

t_) bt' (,qual ,it th(, blade trailing (,dg('. Th(' 1,)'tdin_ diagram now apilro't('h(_s

a r(wttm_zular shap(', xvilh th(, l(Jad (.(_(,tii(.i(,nl 4' m_,r(' cl(Js(,lv al)l)roa('hing

unils'..\Is(), th(' dift'usi,m (tn tit(, su(:li_m surfact' ix sut)slanlially r_'dtw('(t,

lhus sUill)r('ssi|_ t h_'t(,n(l('n('y t (_ s('l/arat('.
B()t h t h(, j(q -flap-I dad(' and _lmt and('m-I )la(h' ('_tn('('l)t s _ff('r t h(_ })(Jr('n-

lial f_,r s_di(tily r(,du(gi(ms. Th(, j[q flap, h()xv(,v[w, will llr(_l)al)ly b(' eon-

si(l(,r(,d o_dy f(w at)lllic:tti_ms xv|wr(' a s(w_mdary :tit- fhlw is r_'(tuir('d for

oth(,r pm'p_s('s, such as 1,lad(' ('(l(ding.

BLADE-PROFILE DESIGN

Aft('r 1tl(' ldmh' <'hord l('nlzlh has ll<','n ._[d(,('l_'d and lh(, |)lad( _ spacing

(l(_l_,rmin_d from1 s_,li(til,," (_onsi(h,rati_lnS, the, lllad(' i_s_.li' must 1)(' (t(,sign('d.
This inw)lv(,s d,,t(,rminati(m _tf lh(' inl(q and _'xil _(,om_qri_'s "rod tlw

eonn_'('li|lg surfa('(' t)r_di]('s. Tim inhg and (,xil parts _d' th(' Illa(t(' must bc

(t(,sign('d 1,_ w, wi(h' a sm(_)lh, (,[ti('i(,n( lr:msiti_tn b(qw('('n th(, blade
(!]I,'./[IIH']:111(ttilt' ['l'_(_S[['('.[/tll. Th(' surfa('(' llr_lfih's r'()ml('('ting lit(' inl(q and

(,xil_ mu._( llr(wid_' _h(' r(,quir('d tlmv _urnin_ wil h minhnmn htss.

Exit

(',msid('ration of lh(' Ill:M(' _'xit s_'(qi(m in('ht(h's th(' lr'_iling ('dg_', tim

thr_)at, and lh(' sucti(m surfat'(_ t)_,l_v(_('n tim thro:tl and Ill(' trailing (,(tg('.

T_',/lh_9 _¢fffc. In lh(, d_'si_n of turllitws, it is xvis(, l(_ uliliz(' lit(, sm'ill(,.,.'t
lr ilin_ ('(t_z(' u_,nsisl('ni wilh ml,chani('al el)nsitl(,rali_ms. ,,ks shown in

r(,l'(,r(,n('(' 17, 'm in('r_'as(' in Irailing-('(lg(' lhi('kn['ss _':m._'s an iner(,as(' in
lit(' Ida(t(' l_)ss. 'l'hi._ (,ff(,ct is (tis('uss('d furlh('r as part _)t' tlw turl)in('-l_ss

(liscus._i_m in (!httl)l_'r 7. In :_d(tili(m, lr'61ing-('d_(' (hi(.kn(,s.'_ also has a

si,,z,'nifi(':mt (,l'f_,(:l ()n the, fhlw l)h)('l_ag_' in ih[, lda(l_' (,xil r(,_i(m.
('()nsi(l('rali_m _i' lit(' bl_'k:t_(' (,ff_,('l will b(' mad(' with lh(' us(' (_f tigur_

4 1 l, _hieh sh,,ws _'xa|nlll(' Ida(l(' s(,(gi_lns wilh lh_' n¢)m_'n¢'latur(' us('d. A

n(_w _,xit-v(,l(wily diagram is ('(msiru('l('d ,'tt sl'tii_m 2_r, whi('h is bw'tt('d

jusl within lh(' Ida(t(' lrailin_z-('diZ(' r(,_ion. Th(. r(,du('(,(I :m'a (hw l(_ tim
trailit,_-('(l_z(' ld(wkag(' r(,sulls in a higlwr v(,l(wily :_1 slati_m 2a than at

station 2, _vhi_'h is I(wat('d .iusl b(w(md th(, bla(t(' mdling-(,(t_(, r(,gion.

"l'h(, ('(lua_i(ms lhat have' 1)('('n us('d t_) (d)tain lhis "within-tlw-blad("'

(tia/ram :_1 2:_ inchM(' (_ons('rvaii_m ,)f tang_'niial m(mt(,n(um:

V,,,_,_= V,,o (4 2_i)

and eontinuily :

( ' )' V (4-27)_p .,2. 1 (pl'_),.,
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where/is the trailing-edge thickness, in meters m' fl'('t. Tim flow :m_h. a2,,

is determined from equations (4-26) and (4 27) by "tssumin_ t].. flow

between stations 2a and 2 to be either incompressible (since the eh:mgos

are usually snmll) or isentropie. The hi'Me must be designed to have "m

exit an_le of a.,.. in order to produce a w'locity-dingram nngle a2 at station

2 outside the bl'tde row.

'1'|1¢, 3[ach mmd_er at station 2t_ can also be determined fr_ml the

preceding equations and assumplions. Because the angle a.. is often large

(63 ° or _ro'itvr) and the flow _\htcll uund.,r at the l)lade exit (st'tti,,n 2)

is .f'ten specified to b. in the high subs, role region, tim lrailin_-.dg.

blocka_e can cause st at ion 2a to bee_ mw ch,d¢ed. I t is, t here/'(,re, imp,,rl ant

to detormitw whether choking inside lhe blade row will r,ceur such that

the design flow r'tt e cannot be obt'fined.

Throat.--Since, in _eneral, a t urbino blade row .perates :is a nozzle, wit h

the flmv 'tc0eleratin_ up t_ the t hro'lt, .r minimum nrea, the determination

of the throat _penin/z, o (see fig. 4-11 ) hee_mws a rather m'itic'd aspect of

the th'sign procedure. ()he technique used successfully t_ _ivo this dimen-

si.n nml<es use of the "insi(le-the-trailin_-edVe" voloeity diag'ram. If ,,he

assumes no (,h:mg. in flow condilions "rod :t straight suction Sltl'f'teO
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).,tw(,(,u the' thr,,_tt a,,d stali<)u '2., th('rl th(, _hr,,'._l dim(.nsi(m can be

i,})laillt,d l'ri)lll t}l.c v(,h)ciiy ditl_rttlll at statism 2,, tLv using I]W following

('qllat i()II :

"(, 'i/= - ('()s<_,, (4 28)
,_ ,_,' (!()s 0_'2

xxlt(,r(, o is fllt, lhroat ()p('niri_, it'_ ]iwl(,rs (it' f('(q.

If it is :i_.>lll)l('d lh'l( (h(' v<,l<)cilv ;i)l(l l()ss (h) il,)l .h:ttl_(' l)(,l_x('('n ill('
t]It'()_t( ;iIl_[ tilt' "I'I'('('-_tl'('alli" _tati<)n 2, lli('n

o

= ,'()s,_,: (t ')())
,%.

k\'h(')_ '(hi-_ nlo)h()(l is ux('d. (lw (.ff('ct ,)fi)':d]i)la-(,d,.¢,. ihi<'kn('ss chtui_('s

(h(' an_l(' (,f ;h(. (}i)',):t( l)()sili,,n hut il,,l it_ l(.n_lh, l'l<)ih nwl]i()(Is ((,qs.
(I '.2Si :rod I 2!),! ,.,iv<, ,..ilifi]'ir lhi'<,_i) <limc')isi(ms. I t('f('r('n('(' S COml)ar(.s

li_(.;tsur.([ (.×i)-fh)w :li)_l('>_ x_ith lh()._(, I)r('(li(')<'d l)v. ('(lti_i( i(m I:-I _.)).9(This

c',)mp;iri..)t_ i).li(':)t('._ ('l()s(' :i_)'('<'ni('t_l :it ('xil an.(.z,h's_.r('ai('r than 60 ° and

(h...'i:ll i(>)t._,)i' u)) (,) .-)°f()r (.×it _m_l<,s d,)w)l l,)3,-) °. ThS. <h,vii_(i<m e()uld be
([u(, l<)]<)%_(,r .-,,li<li'_i('_ ;t,.. %\(,II ti_< htr,o('r _l':i(]i(,lltS I}itiI '.;())11(I()c('tll" tl('r()_s

Th<, )hi',,:ll-<>l,('ilin_ (lini(,ilsi<>)i "t,<d(q('rniiiwd fr,,m ('(luali())i (:4 '.2S)

()r tl 2!)_ ;tl)l)li,"_ i,, lh(' (':is(, _h(,r(, th(' l)l:.l(,-r<,x_ ,,xi( ll()\v is siibs()nie.

Ii' ih(' fl,,_ _i![liil lh_' l>bld(, r()w (.xliaii(Is t,);_ _lil>('i's(mi(' v(.locily, th(,)i

(his (',,Hq!_i)<,,i ([11'():it (lili.,)i_.i, >)inlu'_i 1,(' m<>difi(,(l i,, :i('('<)un( f()r <'×l)tltlsi()ii

fr<)))_ (he, --<,Ili..,_).liti,m :li ill<, (llr,>:t( 1(, (If(, _Ul)('i's(mi(' c())Idili()n a) (h('.

('xit. V,>r ('xit .\[:_('h )iml]l)(,rs _)'<,:)t(.r lll;IH ;d),)Ul I.:_, ih(' ('h(Jl<.iw_ s('(qi()n

_l}lD)itt } 1111l"-1 1)_' I( )('ttl ('(l })tlt'f; Wit}lill |}l('('}lt/llll('] ",tl('}l llltt) it ('OIlV('F_Ollf-

(liv('r_('Ni l)ti'.'-:t_,' i.', (,l)l:li)wd. l"()r ],)xx ".lII),')'s(,ili(' .\l',t('h mlml)(,rs (up to,

i)t,rhal)s, 1.3:,. i) ha>. l)<,(,)i f()Imd thal saIi.4tiv)(,rv l)(.rf<)rm'ulco can b(,
a<.hi(.v(.d ir lh<, )}li.<,;l) 5< ..<till l<,(.at,.d al ih(' ('xi) ,,1")h<' ('h'lllli('l, H]I(I tilt'

•t, hliii,,ii:tl fl,>_ ('xl):ii,>i,,il ,,_','tlr: (l_)xvw-)r(':lln rr,,l,_ (}i_, (hr,)'l(. ll, tlff.<

(':is('. ih(' r(,(lilir(,d .h:uiu(,l (,xi( _li,li,,)l..i,))_ . _(>_II<I I)(, ('()mlm)('d l)\" lh('

1',,ll<)x_ilia ('(ill:it i_ >ll;

\vh(q.(,

tlir,):tt +>l)<'liiil_ (',)iillml('(l fr,)lil ('(lltati¢)H

_lll)('i"<( >r_i,'V<'I+.'it y, ill ; j'l'

[[t)_, _, tll'(':l t'()l' S!IIiI<' Itf)\V, 111'2; l'i 2

11')_ "il'(':i t'(>i' Stll)('l',",()ili(' ft()w, lii2; i'i _

,:.I 2S) ()r (4-'2!)) for

2O
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1.0

I I I I
.0 1.1 1.2 1.3 1.4

Mach number

l.'i+;I ](i ] I _'. ',,';tt.i;tti_m irl fl(:,v ar(_:l ,Ail}l <ql])(*l'_lllit. ttl_','_ _|:tl'}[ IJqlltt[)Pl'.

This area ¢',a'r,'¢'li<m, \',ith :tssum<'d is+'ntropic flmv lJ<'t\v_,,,n lhroat _u)d

exil, is shown in figttr+' 4 12.

.",',eli,, ._,_f,e+' d+,+v,._:cc+,, .i',,,+ H_co,t. The, s_.l+.+.ti+,ll +>f the' type' of
_(IFI'II('(' I)('I\'CI'('II Ill(' |}11"11;)1 UIl{] trnilin_ +'(]_+'¢)11 t}l(' Stl(qi()II ,_)H'f;/('(' l'OlIS{

t7+, m:l(h, from stt+'h <'+msi&.rati,ms :ts slrtt('tura] ir)l_'_zz'il', in th( +tt'ailiu_z-
('dg_' r+'gi+m, 31'u4t Imml_+'r h'vl'l an<l assoeiat_,d Iossv.-, (h,sir_,d h,vvl _f

stt<'ti_m-surl'a_'+, <liffusi,m I 1).,), and tTI,qdv surl':_<'_' :tt'_':_ r_'sttltin_ fv_m'_ ILL{'
&'sign.

A "st r:ti_ht lmel,:" <h'si_t_ is us_'d v,h,t) hm v:thws ,Tf IL ('tpproxi|nnt<'ly

tlnily) "tr'l' Sllecili{'d .ttl_d I+m_ tr'dling <'<lg<,sat{' p{,rmissil>l< lli_zh sul)sonie

or lr:tnsonic bhtdit_g, 'ts would 1,' imlival{'d by the, discussi+m in lh<, next

Imr:_._'rnph, uses lhis lyl)l, +_fsurf')+'+' in ord<,r 1+t pr_'w,nt flow aced_,rzttion

on the lail +7t' th+, blade, :tn<l ku+,p lh_, :_ssouinl_,d l+_ss+,s low. t_rin(.ipa]

l)rold_'ms x_ilh :t sl]'ai_,ht surf,:te(' Dl'(+lhltl )hi" low ])s v'lhlus lTr<'cht<t(' Iow-

solidily d<,sig_ns and lh(' hmg lrailing +'dff,('e:tn 1)(,u_m_u st fuel ttralty flimsy.
.\l+)st <'_mv+'nli+Tnal g:_.s-tur'llin(' bhuling ulilizes sore+' nmounl of curva-

l)lr(' }_'t w('<'n Ill<' lh)'{,al "tnd l l'nilin_-+,(l_, r+,Ki<m. This l)+'rl_fits s,ml_' dif-

t'usi,m and :uldili+ma] hmdin_ _t) lh+' tail +_tlh+' bl'uh +,and it adds e,msi&,r-

:d)lv t<_ the slru<'ltmll int_,_rily <_flh{' Ida&, 1)3" in) r,_dtt<'in_ :t w_'d_:' angh,

:tl lh_' i,xil. If wmw,rdion:d]3: hm&'d bhtding is us_,d, lh{, +'ff<'(!l of this

('urw'd surf:u., _,t) l,,ss is n.+ _r-,al..ks il,ti+':tl,,d 173 figure 4 13 (which is

fr',,n_ r_q'. £), if lh<' i'xil-flow ,_[auh nttmbur is l+,ss than O.,R, th_+ ettrvalurl,

_,ff+.¢'tis snml]..\t high+,r ,xil 3I:t('1) ntmd>_,rs (ff,r+,at(,r than 0.£), th+' _,ft'uet
(111 ]+lSS I":111 })('1"111111' N('V('F('. Wh(q'(,f(,l'(,, d{,sigI, ('11I'V:11 l|Fl':"q S}IOUI(1 })(' ]+_'_\'('F ill

th(' hig;h¢'r _\l:l('h mnnt_(,r r'_'g:icms."l'h_, 13p_, <d' cttrvnttm, s¢,l_.(.l_,d for ih_'

sueli+msurf:w_,l.dw_,_,n(h_'throat_nd Irniling_'_Ig<'}ms nr)+'ff_'+'t.n the

stteli,m-st|rf:w¢, vdo+'ity dislribution. In g+,n<'r'tl, th+' v_'I_mity distribution

is ilnpt'_ved if lh+' cttrvalur<, th'er+,as+,s l'r+m_ throat 1o trnilir_ ('dg_' inst+'ad
of rvtnainit)ff, e¢>nslal!l.
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ANI) APPIA('ATI_)N

Mach
number

1.0

_ .9

1 I I _'61
.2 .4 .6 .8

Ratio of bladespacing to surface radius of curvature

Fl(;Ultl: | 1;{. V:tri:tli,m of t)r(dile loss with _la('h ntilllltvr :tnll slll'f:tce i.tlrv:ittlre

Imtvceen lhl'l)at :tn(] exit (frlml re]'. _).

Inlet

The h,ading-e(lg(' ge.nwtry of a turlfin(, bit,(l(' r.w is usually less critical

than th,, {,xil-rr_i(m _eometry. At tit{, 14:uh' inh't, n rd'ttivdy large

l(,ading-odgr r:t(litls ('Jill tlStl't]ly })(' I|s('(l, b('caus(' t}l¢' .\[:tr'h lltlllli)('r is g.n-

erally h)w at the inh,t and then iner('asos throuAh thr 14a(h' rmv. Tlw lead-

ing e(lg(' I)(,romos "t serious (umc(,rn fl)r h_w-r(,a('ti(m blading and high _\lach

number blading, in the case of h.w-r<,,'ti,,n Idacling, vxcessiv(,ly high

vt,lo('itic's in the inh,l region ran load to high v'fluos -f su(qion-surface

diffusi.u tllld _t tendency toward i:|crt-ls(,d ]()ssos. \Vith high inlet, Nlach

llllllI])('l"S, (';ll'(' III/ISt })0 t:Ik('n (}mf the 'tr('a ('ontr:t('ti(m is n()t so sever(" as

to ('lmke lh(' })]tld(' tit t]l(' inh't, l.:qualions (4 26) lind (4 27), which were

used t', w the bl./(h, exit, can also be usod t,) dotormin, a blado-inh't op(,ning

and "wilhin-lho-blado" flmv anggh' and .\lath mmflwr to cheek for blade-

inlet ('h.king.

Allh,m,,z.h circul;n" l(,ading; edgos aro usually specilh'd, this is arbitrary

and c.uld limit th(' fre(,d()ln ()f vvh_rity-distritmti(.l s('le('tion in the

h':tding-('dge r(,gion. Tho larg:e ('au'v:ttur('s ass(wi:ttod with ('irrular h"tding

rd_os (':m result in und('siral)le v('hwity l)('al.:s .n b(,th tim su('ticm- "rod

l)r(.ssur(,-sm.f:t..o i),wli(ms ()f the h,'l(ling (,(t_('. ()th(,r _(,(m.,tri('s, su('h as

dlil)s('s, whi.h p,'rmit variat ions in curval ur. "rotund tt.' h,ading: .'(t_z(', can

t)e us('(t to minimize (w (,limiwlt(' th(, w,l,,('ily p(,nks.

Blade-Surface Profile

()rico th(' leading- and trailing-cdg(' go,,m('tri('s h:tvr t)(,(,n s(,h'('t('d, the

task re n fiuing is to join dwm with a 1)r(,lih' that yi('lds thl" r(,quir('d flow
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turning and a satisfactory velocity distribution around the t)]ade. The

design procedure must describe the flow conditions through the blade rows

to an accuracy sufficient to impose design controls (e.g., diffusion limits).

Two of the major flow considerations are illustrated in figure 4-14.

V(,locity gradients occur across the channel from the suction to thc

pressure surface as a result ()f the static-pressure difference required to

turn the flow. Radial variations in streamline position and, ther(,f()re,
velocity occur as a result of radial-equilibrium considerations. Since both

of th(,se factors influence the blade-surface velocity distribution, the design
procedures used should be at least of a (tuasi-thre(,-dimensional nature.

The channel flow analysis theory that, serves as the basis for these design

procedures and the comput(,r programs available t() pcrfl)rm the com-

putations are discussed in the next chapter.

Pressure T Suction

surface 7 _surface

'i* /

\

Flow"_

(a)

surface surface_...

Cross-channel distance

.:_._::_:_:_:;:;- I ::;:::::::::::::::: ::::::.

_tator _/i] ', I/i_}/Rotorfiiil

Flow ' ":_''_'''_'': ::';:::::::::"
t " '_'':i'_!'_:!:i_'_'
_ .y.._.. ..::_.:

t ,.. "'" :."

Tip

Hub

(b)

I "-Tip

,-Hub
!

Velocity

(a) Cross-chamlcl variation.

(b) Radial wtriation.

FIGURE 4-14. -Turbine bl'zde-r.w velocity variations.
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BLADE DESIGN

SYMBOLS

A flow area, m2; ft 2

c chord, m; ft

D diffusion parameter

F force, N; lb

g conversion constant, 1; 32.17 (Ibm) (ft)/(lbf) (sec 2)

K ratio of inlet to exit tangential components of velocity ( V, .l/V,,.2)
o throat opening, m; ft

p absolute pressure, N/m2; lb/ft _
R reaction

s blade spacing, m; ft

t trailing-edge thickness, m; ft

V absolute velocity, m/see; ft/sec

x axial distance, m; ft

a fluid absolute angle from axial direction, deg

a, blade stagger angle from axial direction, deg

ratio of specific heat at constant pressure to specific heat at
constant volume

p density, kg/m3; lb/W
solidity

_b loadiBg coefficient defined by equation (4-6)

¢_, loading coefficient defined by equation (4-5)

Subscripts:

cr critical

inc incompressible
max maximum value

rain minimum value

opt optimum

p pressure surface
s suction surface

ss supersonic

u tangential component

x axial component
1 blade row inlet

2 blade row exit

2a within trailing edge of blade row

Superscript:

absolute total state
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CHAPTER5

ChannelFlowAnalysis

By TheodoreKatsanis

The design of a proper blade profile, as indicated in the last section of

chapter 4, requires calculation of the blade-row flow field in order to

determine the velocities on the blade surfaces. This chapter presents the
analysis theory for several methods used for this calculation and also

discusses associated computer programs that were developed at NASA
Lewis Research Center.

The actual velocity distribution throughout a blade-row flow field

cannot be calculated at this time because of the extreme complexity of

nonsteady, viscous, three-dimensional flow through geometl'ically complex

passages. To calculate a theoretical velocity distribution, therefore, certain
simplifying assumptions must be made. The three-dimensional flow is

simplified to flow on or through various two-dimensional surfaces. Such

surfaces are illustrated in figure 5-1 for the case of a radial-inflow turbine.
Similar surfaces are used for an axial-flo(v turbine. A flow solution on the

mean hub-to-shroud stream surface (commonly called the meridional

surface), shown in figure 5-1(a), does not yield blade-surface velocities

directly, but provides information required for the blade-to-blade surface

(fig. 5-1 (b)) and orthogonal surface (fig. 5-1 (c)) solutions, which yield
the desired blade-surface velocities.

There are two parts to a method of analysis to obtain a velocity dis-
tribution over one of these surfaces. The first part is the mathematical

formulation of the problem, and the second part is the numerical solution

of the mathematical problem. For the mathematical formulation of the

problem, we will discuss stream- and potential-function methods and

velocity-gradient (stream-filament) methods. The stream- and potential-
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Hub-to-shroud
streamsurface-_

?

(a)

Bla(le-to-bla(le

surface7

,- 0 rthogonal
surface

't
(¢)

(a) Hub-to-shroud stream surface. (b) Blade-to-blade surface.
(c) Orthogonal surface across flow passage.

FmURE 5-1.--Surfaces used for velocity-distribution calculations.
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CHANNEL FLOW ANALYSIS

function methods will be described relative to the blade-to-blade surface

solution. A similar type of analysis can be made for the meridional surface.

The velocity-gradient equation to be presented is general and can be used
for solutions on any of the surfaces.

The following assumptions are made in deriving the various methods
of analysis discussed herein:

(1) The flow is steady relative to the blade. This means that the

surface velocity at any given point on the blade does not vary with time.

Thus, if the blade is rotating, the flow would not be steady relative to a
fixed coordinate system.

(2) The fluid obeys the ideal-gas law

p=pRT (5-1)
where

p absolute pressure, N/mS; lb/ft 2
p density, kg/m_; lb/ft 3

R gas constant, J/(kg) (K) ; (ft) (lbf)/(lbm) (°R)
T absolute temperature, K; °R

or is incompressible (p = constant).

(3) The fluid is nonviscous. A nonviscous fluid has no boundary layer.
The blade-surface velocity is calculated, therefore, as if the free stream
extends to the blade surface.

(4) The fluid has a constant heat capacity.
(5) The flow is isentropic.

(6) The total temperature and total pressure are uniform across the
inlet.

(7) For the stream- and potential-function analyses, the additional

assumption is made that the flow is absolutely irrotational. Therefore,

curl V = VX V = 0 (5-2)

where V is the absolute velocity vector. Intuitively, this means that

particles do not change their absolute orientation with time, although

their shape may change. For example, figure 5-2 shows a hypothetical

particle at times t and t+At. In the absolute frame of reference, the

particle changes its location and shape at a later instant of time, but the
net rotation is zero. Of course, in a frame of reference relative to the

blade, the particle has rotated, because the frame of reference has rotated.
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TURBINE DESIGN AND APPLICATION

Direction of rotation

Time = t

_Time= t + At I I

(Absolute frame of reference)

Time = t + At

(Relative frame of reference)

FIGURE 5--2.--Absolutely irrotational flow.

Some numerical techniques for solving the mathematical equations will

also be discussed. However, it must be emphasized that there are many

techniques for solving these equations, and we will discuss only a few. An
excellent theoretical discussion of flow in two-dimensional cascades is

given in Chapter IV of reference 1.

STREAM- AND POTENTIAL-FUNCTION ANALYSES

Stream-Function Method

The stream function can be defined several ways, but perhaps the

simplest is in terms of streamlines. Suppose we consider two blades of a
cascade as shown in figure 5-3. It is assumed that there is two-dimensional

3O



CHANNEL FLOW ANALYSIS

Mass

flow

fractbn

.8t

.et

.41

o

FIGURE5-3.--Streamlines for a stator cascade.

axial flow here, so that the radius r from the centerline is constant and

there is no variation of the flow in the radial direction. There may be
rotation about the centerline.

Shown in figure 5-3 are a number of streamlines. The mass flow between

the blades is w. The number by each streamline indicates the fraction of w

passing between the upper surface of the lower blade and the given stream-

line. Thus, the upper surface (which is a streamline) has the value 0, and

the lower surface of the upper blade has the value of 1, while the remaining
streamlines have values between 0 and 1. Note that a value can be asso-
ciated with any point in the passage. This value is called the stream-

function value and can be used to define thc stream function.

It will be recalled that mass flow can be calculated for a one-dimensional
(or uniform) flow by

w=pVA (5-3)
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where

w rate of mass flow, kg/sec; lb/sec

V fluid absolute velocity, m/sec; ft/sec
A flow area normal to the direction of the velocity V, m2; ft _

This can be extended to a varying flow by using an integral expression:

w=f, pvdA (5-4)

Since this stream-function analysis applies to both stationary and rotating

cascades (blade rows), the fluid velocity will be expressed in terms of

relative velocity W, which for a stationary blade row reduces to absolute

velocity V. We will assume that our cascade has a uniform height b. Then,

the mass flow wl._ between any two points QI and Q2 in the passage (see

fig. 5-4) can be calculated by

pW,,bdq (5-5)

-/-JQ1

FIGURE 5-4.--Arbitrary curve joining two points in flow passage.
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where W, is the relative velocity component in the direction of the right-
hand normal of the line going from Q_ to Q_. This sign convention means

that wi.2 will be negative if Q2 is below a streamline passing through QI.
The integral is a line integral between the points Q_ and Q_ and is in-
dependent of path for steady flow relative to the cascade.

With the use of equation (5-5), an analytical expression can be written
for the stream function u at a point (x, y) :

/Q("'Y) pW,,b dq
o

u(x, y) = (5-6)
W

where Q0 is any point on the upper surface of the lower blade, and the
integral is taken along any curve between Q0 and (x, y). This is indicated
in figure 5-5.

Since the integral in equation (5-6) is independent of path, it is rela-

tively easy to calculate the partial derivatives of u. For example, we will

calculate Ou/Ox at the point (x, y). Let x0<x such that the point (Xo, y)
is still in the flow passage, as shown in figure 5-6. Then

fc_ pW,,b dqT /c _ pW,b dq

u(x, y) =
W

(5-7)

FIGURE 5-5.--Curve joining (x,y) with a point on the upper surface of the lower blade,
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(x o, Y)/- C2, (x,y)

Wy _ W

FIGURE 5-6.--Curve joining horizontal line through (x,y) with a point on the upper
surface of the lower blade.

where C1 is an arbitrary curve between Q0 and (x0, y), and C2 is a hori-

zontal line between (x0, y) and (x, y). The integral along C1 does not

depend on x. Along C,, we have W, = -Wv and dq = dx. Hence,

0 f; pW_b dx (5-8)0U(x,y)=__xx o wOx

or

Ou_= _ pW_b (5-9)
cOx w

In a similar manner, we can calculate

cOu=pW=b (5-10)

Oy w

Now we will make use of the fact that the flow is absolutely irrotational.

From the definition of the curl operator and the above assumption,

curlV=\_yy _-z/iW_z Ox/J-F_k_x _Y] =0 (5-11)

wherei, j, and k are the unit vectors in the x, y, and z directions, respec-
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tively, and Vx, V_, and V, are the absolute velocity components (in

m/see or ft/sec) in the x, y, and z directions, respectively. Since we are

considering two-dimensional flow only,

V,=O (5-12)
and

0 V, 0V_
--- =0 (5-13
Oz Oz

Hence, equation (5-11) requires only that

Since

and

OV_ OV:
-- = (5-14)
Ox Oy

v_=wx (5-15)

Vv = Wu+o_r (5-16

where ¢o is the angular speed (in rad/see) and the radius r is constant,
equation (5-14) can be expressed in terms of relative velocities as

OW u OW,

Ox Oy
(5-17)

Actually, the flow is irrotational with respect to the moving coordinates

in this particular case. Now, from equations (5-10) and (5-9),

w Ou

Wx = pb Oy (5-18)

w Ou

w,=-o-gox (5-19)

Substituting equations (5-18) and (5-19) into equation (5-17) yields

0 (10u\ 0 (lOu_ 0ox ,,; (5-20)
since w and b are both constant.

For incompressible flow, p is constant, and

02u O_u

V2u = Ox_+Oy_ = 0 (5-21)

which is Laplace's equation. Any function satisfying Laplace's equation is

called a harmonic function. There is a great deal of theory concerning
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harmonic functions that is related to the theory of analytic functions of

complex variables.
The important thing to know here is that there are a tremendous

number of functions that satisfy equation (5-21), and we must find a

solution that satisfies certain boundary conditions. The solution to either

Laplace's equation (5-21) or equation (5-20) will be determined by

specifying two things: (1) a finite region, and (2) a boundary condition

along the entire boundary of the region.

The first thing that must be specified is the solution region. A typical

two-dimensional cascade is shown in figure 5-7. Since the flow is the same
in every passage, we can consider a finite solution region as shown in

figure 5-8. It is assumed that AH is sufficiently far upstream so that the

flow is uniform along this part of the boundary and that the flow angle

/_, is known. Similarly, it is assumed that the flow is uniform along

DE, and that the flow angle/_o_t is known. From the way the stream

function was defined, we can specify boundary conditions on the entire

boundary ABCDEFGHA. Along BC, u=0; and along FG, u-- 1. Along

AB, HG, CD, and FE, a periodic condition exists; that is, the value of u

along HG and FE is exactly 1 greater than it is along AB and CD. Along

AH and DE, Ou/O_ is known, where _ is the distance in the direction of
the outer normal.

Fmu_ 5-7.--Two-dimensional infinite cascade.

x
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Unil°rml l
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FIGURE 5--8.--Finite solution region.
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Consider the differential of u in the direction of the velocity W:

du = au dx-k_y dy = 0 (5-22)ax

The differential is 0 because the stream function is constant along a
streamline, and the velocity vector must be tangent to a streamline.
Along AH,

OU OU

07 Ox

and substitution from equation (5-22) yields

(5-23)

However,

Ou Ou dy

07 - Oy dx (5-24)

dy
d-_ = tan B (5-25)

Further, Ou/Oy is constant along AH, since it is assumed that the flow is
uniform there. Therefore,

Ou [u(H)-u(A)] 1

Oy s s (5-26)

where s is the blade spacing in the y direction. Substituting equations
(5-25) and (5-26) in equation (5-24) gives along AH

,. = (5-27)8
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Similarly, along DE, one can calculate

0___t_ tan _out (5-28)
O_l lout S

We now have a boundary condition along the entire boundary of the region

shown in figure 5-8. These boundary conditions will always determine a

unique solution to Laplace's equation (5-21). For compressible flow (eq.

(5-20)), a unique solution is always determined if the flow is strictly

subsonic throughout the region.

There are numerous techniques for solving equation (5-20) or (5-21).

After the stream function is obtained, blade-surface velocities and velocities

throughout the passage can be obtained by differentiation of the stream

function. This is what is known as the direct problem. A method of solving

this problem will be discussed later. The indirect, or inverse, problem is to

specify a desired velocity distribution on the blade surface and from this
determine a blade shape that will give this velocity distribution. This will
not be discussed here.

Potential-Function Method

For two-dimensional irrotational fow, a potential function can be

defined. If lines of equal potential are drawn, they will be orthogonal to

streamlines. The potential function will not be defined in the same detail

as the stream function, but the main properties and relations will be given.

If the potential function • exists (i.e., the flow is irrotational), then it can
be defined so that

and

04
--=V, (5-29)
0x

04
--= V_ (5-30)
Oy

We will refer to absolute velocities here, since we must have flow irrota-

tional relative to the coordinate system used. This, coupled with the

assumption of absolute irrotational flow, implies that the coordinate

system does not rotate. This does not exclude use of the potential function

for pure axial flow, since the rotation has no effect if there is no change in

radius; that is, the flow is actually irrotational with respect to the blades,
as we saw in the discussion of the stream function.

From the continuity relationship for steady flow,

o(pv2 o(pv_)
-_ 0 (5-31)

Ox Oy
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Substituting equations (5-29) and (5-30) in equation (5-31) yields

0 (5-32)
If the flow is incompressible, p is constant, and

02_ 02_

v2®= =0 (5-33)

So, the potential function satisfies Laplace's equation. Thus, for incom-

pressible, irrotational flow, both the stream function and the potential

function satisfy the same differential equation (Laplace's equation). The
difference lies in the boundary conditions.

We can consider the same solution region shown in figure 5-8. We can

specify boundary conditions over the entire boundary as follows: Along
BC and FG,

- Vn =0 (5-34)
07

where Vn is the velocity normal to the blade surface. Along AH,

in

and along DE,

out

The inlet and outlet axial velocities are given by the equations

W

(Vx),, p,_bs (5-37)

and

W

(V_)o_, po_tbs (5--38)

Along AB, GH, CD, and EF, a periodic condition exists. Since the flow is
uniform along AH,

Substituting

(0yy_) [_(H)- q,(A)-] (V_) _. (5-39)
8

V, = V, tan B (5-40)
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into equation (5-39) yields

¢(H) = _(A) Ts( V_),. tan _,n (5-41)

Because of the periodicity, • is exactly s(V_)_. tan f_ greater along HG

than along AB. Similarly, at the outlet,

4_(E) = ¢(D) _-s(V_)o,,_ tan f_o_, (5-42)

Equation (5-42) gives the difference in • along the lines FE and CD.

This completes the boundary conditions for equation (5-32) or (5-33).

The boundary conditions, however, do not determine a unique solution,
but only a solution within an arbitrary additive constant. If the value of

¢ is specified at one point, these boundary conditions will determine a

unique solution to equation (5-33) for incompressible flow, or to equation

(5-32), for strictly subsonic compressible flow throughout the region.
As for the stream function, there are numerous methods for solving

equation (5-32) or (5-33) subject to the preceding or equivalent bound-

ary conditions. A method for solving the inverse problem of specifying

the velocity distribution to determine the blade shape is described in
references 2 and 3.

Choice of Stream- or Potential-Function Method

If the flow is steady, irrotational, and incompressible, there is little to

choose between the stream function and the potential function. In this

case, the choice is made on the basis of ease of solution for the boundary

conditions (the differential equation is the same: Laplace's equation).

However, if any of the three assumptions (steady, irrotational, or incom-

pressible flow) is not applicable, then we may be restricted as to the
choice of stream function or potential function.

The existence of the stream function is proven from the continuity

equation. For the stream function to be defined, the mass flow crossing

a line between two points must be independent of path. This requires

that the flow be either incompressible or steady. Some additional assump-

tion is necessary for the flow to be unique. We used the assumption that

the flow was absolutely irrotational, which turned out to be irrotational

relative to the blade for the axial-flow case considered. However, other

assumptions could be made for other problems. Another restriction on
the stream function is that it can be defined only for two-dimensional flow.

This can easily be seen since the stream function is defined as a percentage

of mass flow between two points, and this is meaningless in three
dimensions.

The existence of the potential function can be shown if the flow is
irrotational relative to the given coordinate system. This is necessary
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because we must have equality of mixed second partial derivatives; that
is, if

0_ a2_

axay-oyox (5-43)

then

0 V -0 V. (5--44)
Ox _-Oy

and the flow must be irrotational. A similar situation exists in three-

dimensional flow; that is, the potential function exists only if the flow is

irrotational with respect to the coordinate system being used. Finally,
an assumption must be made to assure a unique solution. This can be
done by using the continuity equation.

Finite-Difference Solution for Stream-Function Method

As stated before, there are many ways of solving various problems

posed by stream-function or potential-function theory. We "will consider

in further detail the finite-difference solution of the direct problem for the

stream function for the simplest case of steady, incompressible, irrotational
flow. In this case, we must solve Laplacc's equation subject to the bound-

ary conditions discussed in the section on. the stream function. The method

of solution for the potential function is quite similar, but with a lower
rate of convergence for the finite difference solution.

The first step is to establish a rectangular grid of mesh points in the
region shown in figure 5-8. A typical grid is shown in figure 5-9. Then a

finite-difference approximation to Laplace's equation (eq. (5-21)) can be
written at each mesh point where the stream function is unknown. A

typical mesh point with four neighboring mesh points is shown in figure

5-10. The point in consideration is labeled 0, and the four neighboring
points are labeled 1 to 4, as shown. The distance between points 1 and 0 is

denoted ]11, and similarly, the other distances are h2, h3, and h4 as indicated

in figure 5-10. The value of u at points 0 to 4 are labeled u0 to u4, respec-
tively. With the use of a Taylor series expansion for u in the x- and y-direc-

tions, equation (5-21) can be approximated by using only values of u at

mesh points. (Further explanation of this is given in ch. 6 of ref. 4.)
When this is done, the following expression is obtained:

2Ul 2u_

h_(hx-k-h_) -{ h_(h_Th2)
2Uo ] ]- 2U3 2tt4 2Uo ] 0
h-_,J+[hn(h-_h4)-_ h,(ha+h,) h_,J =

(5-45)
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FIGURE 5-9.--Mesh used for a finite-difference solution.

]
D

h 3

h2

h4
-4

h 1

FmVaE 5-10.--Notation for adjacent mesh points and mesh spaces.
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Solving equation (5-45) for u0 yields the expression

4

Uo=Zaiui (5-46)

i-i

where

h_-{-h4
al - (5-47)

aohl

h3+h4
a, - (5-48)

aoh2

ha+h_
a3 = -- (5-49)

aoh3

hlA-h2
a4 - (5-50)

aoh4

1 1 1 1

ao=(h3+h4) (_+_)+(h'+h') (h3+h4)
(5-51)

Equation (5-46) holds at every interior mesh point. If one of the neigh-

boring points is on a blade surface, then the value of u at that point can be
used. At other points along the boundary, equation (5-46) cannot be used,

but the boundary conditions can be used to obtain alternate equations at

these points. For example, along the upstream boundary AH in figure 5-9,

Ou/On is given by equation (5-27). If point 0 is on line AH, then, a finite

difference approximation gives

(5-52)

Similarly, if point 0 is on line DE,

Uo= u3- h3 (tan_ °_) (5-53)

For the points along AB and CD, equations can be derived by using

the periodic boundary condition. If the point 0 (fig. 5-11) is on the

boundary between A and B, the point 1 is outside the boundary. However,
it is known that ul=ul.,-1, where the point 1,s is a distance s above

point 1 in the y-direction, as shown in figure 5-11. Substituting this
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H 2

I

u2 " u2,-s + 1

A 2,-s B

FIGUaE 5--ll.--Mesh point on line AB.

condition in equation (5--46) gives

4

uo=alul,t,q-- _ aiui--al (5--54)
i--2

This equation holds along CD (fig. 5-8) also.

The points along HG need not be considered, since they are just 1

greater than the corresponding point along AB. The equation for the first
mesh line below HG, therefore, must be modified, since point 2 is on line

HG. In this case, ua=u2._,+l, where the point 2,-s is a distance s

below point 2 in the negative y-direction, as indicated in figure 5-12.
Substituting this condition in equation (5--46) gives

Uo= alul-t- anu2._,-_ asu8 + a4u4 -J- a2 (5--55)

This equation also applies to the first mesh line below FE (fig. 5--8).
One of equations (5--46) or (5-52) to (5-55) can be applied to each

mesh point for which the stream function is unknown in the region of
interest to give the same number of linear equations as there are un-

knowns. These points where the stream function is unknown will be
referred to simply as unknown mesh points.

Suppose that there are n unknown mesh points. We then have n equa-
tions in n unknowns. The points can be numbered consecutively from 1 to

n. The values of u will then be ul at the first point, u2 at the second point,

and so forth up to u. at the last point. At each point, one equation will
apply. The equation at a typical point, i, could be written
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A B

FIouaE 5-12.--Mesh point on first line below HG.

n

__, aljui = kl (5-56)
j--1

The values of the aij are determined by one of equations (5-47) through

(5-55). All but five, at most, of the aij are zero, and the all=- 1. The

value of ki is always zero, except for the outermost unknown points

around the boundary. It can be shown that the alj matrix is always non-

singular; hence there is always a unique solution for the uj.

A numerical solution to equation (5-56) can be obtained by iterative

techniques. These techniques are particularly valuable in solving systems

of linear equations of this type; that is, where there are a large number of
unknowns, but few terms in each equation. Storage requirements are

small, and roundoff error is minimized with iterative methods. To start

the iteration, an initial estimate of u at every unknown mesh point is

required. The simplest iterative procedure is relaxation. This consists of
changing the estimated value of u at each point in succession so as to

satisfy the equation for that point. After this is done at every point, the

procedure is repeated until there is negligible change in the values of u.

The procedure is simple and it always converges for this problem. How-

ever, the convergence rate is extremely slow, so that exci_ssive computer

time is required. The convergence can be accelerated greatly by increasing

the change in u at each iteration by a factor o:, called the overrelaxation

factor. When ¢0= 1, the procedure is straight relaxation, and when oJ> 1,
it is overrelaxation. It is proven in reference 4 that overrelaxation (or

underrelaxation) is convergent if 0 < _0< 2. However, the greatest rate of

convergence occurs when 1 <w<2. In fact, there is an optimum value of _o
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between 1 and 2 which gives the most rapid convergence. This optimum
overrelaxation factor can be calculated as explained in reference 4.

To give an explicit expression for the overrelaxation procedure, we will
use a superscript on the us. That is, uV" is the m th iterate of ul. The initial

estimates are denoted u? and may be any value. For example, an initial

estimate of u?=O is satisfactory. Then, if u__ is known for all i, we can
calculate ul m+_, for i= 1, 2,..., n in succession by

}_im÷l = uim2v¢O -- _ ai_uj re+l- aijujm+kl--ui m
j-i j-i+l

(5-57)

After a solution for u is obtained by overrelaxation (or any other

method), it is necessary to calculate the velocities with the use of equa-
tions (5-9) and (5-10) as

Wz

pb
(5-58)

and

w(O;)
W_ = (5-59)

pb

The partial derivatives Ou/Ox and Ou/Oy must be estimated from the

calculated discrete values of ui. This can be readily done, either by finite

differences, or by fitting a smooth curve, such as a spline curve, through

the points. The resultant velocity is calculated from the two components

at unknown mesh points. On the blade surface, the velocity is calculated
from one component and the blade tangent angle.

Computer Programs for Stream-Function Analyses

As can be seen, the solution of Laplace's equation and the calculation

of velocities is a lengthy calculation procedure which is best done by com-
puter. Several computer programs have been written at the NASA Lewis

Research Center for the analysis of flow through turbomachine blading
by stream-function methods. Most of these programs are for blade-to-

blade analysis (region shown in fig. 5-9). The program called TURBLE,

which is described in reference 5, can be used to analyze axial, radial, or
mixed flow. In accordance with the constraints associated with the

stream-function method, the flow must be subsonic throughout the entire

solution region. The TSONIC program, described in reference 6, super-
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sedes TURBLE in that it performs all the same calculations and, in

addition, extends the solution to transonic (local supersonic velocities)

flow problems. Transonic solutions are obtained by using a velocity-
gradient equation of the type described in the next section to extend a

preliminary (lower mass flow rate) subsonic stream-function solution. A

program called TANDES[, which is described in reference 7, can be used
to analyze flow in tandem or slotted blade rows or blade rows with

splitters. Another program, called MAGNFY and described in reference

8, obtains a detailed solution in the leading- or trailing-edge regions of any
blade or in the slot region of tandem or slotted blades. The TANDEM

and ._IAGNFY programs are restricted to subsonic flow.

Flow in the meridional plane (mean hub-to-shroud flow surface, as

indicated by fig. 4-14(b) or fig. 5-1(a)), of any axial- or mixed-flow

turbomachine can be analyzed by a program called 5IERIDL, which is

described in references 9 and 10. Transonic solutions can be obtained by

the use of a velocity-gradient equation to extend a preliminary subsonic
stream-function solution.

VELOCITY-GRADIENT ANALYSIS

As indicated previously, the stream-function and potential-function
methods of analysis are limited to solutions that are entirely subsonic

within the computation region. By use of a velocity-gradient equation and

additional assumptions, however, the subsonic solution can be extended to

give an approximate solution in the transonic flow regime. It is also

possible to use a velocity-gradient method of analysis alone to obtain sub-

sonic, transonic, or supersonic solutions without assumptions other than

the basic ones indicated earlier. The velocity-gradient analysis is often

called a stream-filament analysis because the velocity-gradient equation

involves the streamline, or stream-flament, curvature and position.

A velocity-gradient method of analysis can only give solutions within a
guided passage; that is, a passage where both ends of all streamline

orthogonals intersect a solid boundary. Therefore, the usefulness of this

method depends on the degree of flow guidance provided by the turbine

blades. For a well-guided passage (high solidity and/or small angles),
such as shown in figure 4-11, most of the suction surface is within the

guided region, and the associated surface velocity distribution can be well

defined. On the other hand, for a low-solidity blade row, such as that
shown in figure 5-9, less than half of the suction surface is within the

guided region, and surface velocities can be computed only on the front

half of the suction surface. In this latter case, the stream-function analysis
must be used if better definition of the suction-surface velocity distribution
is required.
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Method

The idea of a velocity-gradient method can be demonstrated by con-

sidering a simple case. Suppose we have two-dimensional flow through a

narrow passage as shown in figure 5-13. We assume the height of the

passage to be b, and the width d. If the mass flow is known, the average

velocity can be calculated approximately from continuity by

w

W,,o pbd (5--60)

However, there is a variation in velocity across the width of the passage,
and in turbomachinery it is this velocity difference we are interested in.

With a force-equilibrium equation, by balancing centrifugal force against

the pressure gradient as was done in chapter 3 for consideration of radial

equilibrium, it can be shown that

dW W
(5-61)

dq r,

where q is the distance from the suction (convex) surface, and rc is the
radius of curvature for the streamline. The sign convention for rc is

important; r_ is positive if it is concave upward, and negative if it is con-

cave downward. For the simple case shown in figure 5-13, equation (5-61)

can be integrated along a radial line by assuming the streamline radius of

curvature to be equal in magnitude to the passage radius. There results,

for integration from the inner radius to any point in the passage,

W r, (5-62)
W, r

(
Flow

FIGURE 5-13.--Flow through a curved passage.
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where

W,

rs

r

relative velocity on inner, or suction, surface, m/sec; ft/sec

radius of inner, or suction, surface, m; ft

radius of passage, m; ft

The mass flow through the passage is expressed as

w = pWb dr (5-63)

and substitution of equation (5-62) into (5-63) and integration, with

constant density assumed, yields

W

W, = (5-64)

pbr, In (1+ d )

In a similar manner, the outer, or pressure, surface velocity can be com-

puted as

W

Wp = (5-65)

pbr°(l_-d) ln(1-_.)

Thus, an estimate of the blade-surface velocities can be obtained simply

by using equation (5-62), which is a velocity-gradient equation. We are
not necessarily restricted to two-dimensional flow. If there were some

variation of velocity in the height of the passage, a velocity gradient could
be calculated in that direction also.

We will now consider a very general velocity-gradient equation. Since

we are interested in turbomachinery, we will use a rotating cylindrical

coordinate system with radius r, angle O, and axis x, as shown in figure
5-14. Also indicated are the velocity components, Wr, Wx, and W0. The

meridional component W, is the resultant of W, and Wx. The meridional

plane is a plane containing the x axis. Also shown in figure 5-14 are a, the

angle between W_ and the x axis, and f_, the angle between W and the

meridional plane. The following relations hold for the components:

W0 = W sin t_ (5-66)

W., = W cos _ (5--67)

W. = W_. sin a (5--68)

W. = W.. cos a (5-69)
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X

W2 . W2+ Wx2m r

FIGURE 5-14.--Cylindrical coordinate system and velocity components.

In addition to the r-, O-, and x-coordinate, it is convenient to use an

m-coordinate. The m-coordinate is the distance along a meridional stream-

line, as shown in figure 5-15. The m-distance is less than the true stream-

line distance if the angle _0. The meridional streamline is the projection

of a streamline in the meridional plane; that is, the 0-coordinate is

neglected. The curvature of the meridional streamline is 1�re, where rc is

the radius of curvature of the meridional streamline. The sign of rc is

positive if the streamline is concave upward.

We want the velocity gradient along an arbitrary curve. Let q be the

distance along this curve. For the case of constant total temperature and

constant angular momentum (rV,) at the inlet,

dW dr dx dO

dq- a Yq+c eq-- (5-7O)

where

a= wc°sac°s_/3 Wsin_/3_-sinacos/3_m--2_sin/3 (5-71)
re r
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Meridional /
streamline7 _"

//

r

I _
Axis

_X

FIGURE5-15.--The m-coordinate.

dW_
W sin a cos _ f_ _-cos a cos 3 (5-72)b_ --

re dm

/dWe'2_ sin a)c = W sin a sin 3 cos 3-_r cos 3 _-_m" (5-73)

These equations are derived as equations (B13) and (B14) of reference 11.

In using any velocity-gradient equation, it is necessary to solve a differ-

ential equation involving streamline-geometry parameters, such as cur-

vature, a, and f_. These are not known precisely in advance. However,
for a guided channel, these parameters can be estimated reasonably well.

A great number of special cases can be obtained from equations (5-70)

to (5-73). For example, suppose we have an annular passage with no

blades, as shown in figure 5-16, and no velocity component in the tangen-

tial (0) direction (into page). We can calculate dW/dn, where n is the
distance normal to the streamline. Let q=n in equation (5--70). Since

We=0, then dO/dn=O and 3=0. Further, from figure 5-16, it can be

Merldlo.nal \dn_dr_ a_a J

_lnner wall

FIGURE5-16.--Annular passage with no blades.
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seen that dr/dn = cos a and dx/dn = -sin a. Then, from equations (5-70)
to (5-73),

dW W

dn re (5-74)

Thus, for this case, equation (5-70) reduces to the simple form of equa-
tion (5-61).

Computer Programs

Several computer programs for the analysis of flow through turbo-
machine blading by velocity-gradient methods have been written at the

NASA Lewis Research Center. One that was used for many years is the
CTTD program, which is described in reference 12 and is limited to axial-

flow turbines. This program has now been superseded by the more general
and easier to use CHANEL program, which is described in reference 13.

The CHANEL program can be used to analyze axial-, radial-, or mixed-
flow turbines or compressors. Velocity-gradient equations are used to

determine velocity variations both from hub to tip along meridional-

streamline orthogonals and from blade to blade along hub-, mean-, and

tip-streamline orthogonals. This results in a flow solution for an orthogonal
surface, as illustrated in figure 5-17, which satisfies a specified mass flow

rate. Computations are made for a number of these surfaces along the
blade passage. This program can also be used to compute the maximum

(choking) mass flow rate for the channel. The program gives good results

for medium- to high-solidity blading. As indicated previously, more
definition than can be provided by this program may be needed for low-

solidity blading, because solutions can only be obtained for fully guided
sections of the passage.

Velocity-gradient methods have also been used to obtain meridional-

plane and blade-to-blade plane solutions. The basic method for a meridi-

onal-plane analysis for mixed-flow centrifugal impellers is presented in

reference 14, which uses the velocity-gradient equation along streamline

orthogonals. Since the orthogonal lengths are not known in advance, it
was more convenient to base a computer program on the use of the

velocity-gradient equation along fixed straight lines, which were called

quasi-orthogonals. Such programs for meridional-plane analysis are

presented in reference 11 for a radial-inflow turbine impeller and in
reference 15 for backward-swept or radial impellers and vaned diffusers of

centrifugal compressors. A program for a blade-to-blade plane analysis
that uses quasi-orthogonals for a radial-inflow turbine impeller is described
in reference 16.

A further use of the velocity-gradient equation, as mentioned pre-
viously in this chapter, is to extend a subsonic stream-function solution to
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obtain local supersonic velocities. The subsonic solution is used to obtain

the flow angles and streamline curvatures required for the velocity-
gradient equation. Programs for transonic-flow solutions based on this

method are presented in references 9 and 10 for a mcridional solution and
in reference 6 for a blade-to-blade solution.

Orlhogonal / `/

su rface --_
/

t

Tip
_-to-blade ,-Suction

i surface

Mean

Parallel to axis

of rotation-_

Hub

FmVtCE 5-17.--Turhine blades with three-dimensional orthogonal surface across

flow passage.
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SYMBOLS

flow area, m2; ft 2

coefficients for equation (5-46)

cascade height, m; ft

passage width, m; ft

distance between mesh points, m; ft
constant in equation (5-56)

distance along meridional streamline, m ; ft

distance normal to streamline, m; ft

absolute pressure, N/m2; lb/ft 2

distance along arbitrary curve, m; ft

gas constant, J/(kg) (K) ; (ft) (lbf)/(lbm) (°R)

radius, m; ft

blade spacing, m; ft

absolute temperature, K; °R
time, sec
stream function

absolute velocity, m/see; ft/see

relative velocity, m/see; ft/sec

mass flow rate, kg/sec; lb/sec

fluid absolute angle of inclination from axial direction in the

meridional plane, deg

fluid flow angle, relative to blades, out of the meridional plane

(in the tangential direction), deg

distance in direction of outer normal to cascade boundary, m; ft
angular distance in direction of rotation, rad

density, kg/m3; lb/ft 3
potential function

oangular velocity, rad/see
verrelaxation factor

Subscripts:

C

in

m

n

out

P
r

8

x

Y
Z

curvature

inlet

meridional component

component normal to streamline
outlet

pressure surface

radial component
suction surface

axial component

component in y-direction
component in z-direction
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0

°t1, 2,

3, 4

tangential component

mesh-point designations
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CHAPTER6

Introductionto Boundary-
LayerTheory

By WilliamD. McNally

As shown in chapter 2, the pressure ratio across a turbine provides a

certain amount of ideal energy that is available to the turbine for pro-
ducing work. The portion of the ideal energy that is not converted to
work is considered to be a loss. One of the more important and difficult

aspects of turbine design is the prediction of the losses.

Before losses can be predicted, it is necessary to understand their

causes. The primary cause of losses is the boundary layer that develops
on the blade and end-wall surfaces. Other losses occur because of shocks,

tip-clearance flows, disk friction (windage), flow incidence, and partial-

admission operation. This chapter gives an introduction to boundary-
layer theory, which is used to calculate the parameters needed to estimate

viscous (friction) losses. 5Iethods for determining the basic viscous loss

and the associated trailing-edge and mixing losses are presented in the
next chapter.

NATURE OF BOUNDARY LAYER

When a real fluid (such as air) flows past a turbine blade at normal

velocities, the influence of viscosity on the flow is confined to a relatively

thin layer in the immediate neighborhood of the blade. This layer is called

the boundary layer. At the outer edge of this layer the flow is frictionless,
and conditions there agree with those calculated with the use of ideal

(frictionless, nonviscous) flow assumptions. At the wall, on the other

hand, the velocity of the fluid is zero in all directions (no-slip condition).
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TURBINE DESIGN AND APPLICATION

It is the frictional, or viscous, forces in this thin layer that reduce the fluid

velocity from its free-stream, frictionless value to zero at the wall.

A boundary layer on a turbine blade is illustrated in figure 6-1. The

boundary layer develops from a small finite thickness at the stagnation

point at the leading edge of the blade and grows along both the suction

and pressure surfaces. The initial portion of the boundary layer is always

laminar. In a laminar boundary layer, fluid layers parallel to the blade

surface slide over each other. Any minute local fluctuations in velocity are

sufficiently damped so that they have negligible influence on the smooth-

ness of the overall flow. The velocity at a point is either steady with time

or changes in some smooth way, as figure 6-2(a) indicates.

hIost flows being ducted to a turbine, or entering it from a combustor,
are turbulent in nature. The fluctuating components of velocity have a

significant influence in this type of flow. With this overall flow, the

boundary layer on the blades cannot remain laminar for any great dis-
tance. It usually passes through a transition region and becomes a tur-

bulent boundary layer. In the transition region, weak disturbances in the

flow are amplified, and this leads to the r'_ndom fluctuations in velocity
that are characteristic of turbulent flow. In the turbulent boundary layer,

as in turbulent flow, the velocity at any point oscillates in a random

fashion about a mean value, as figure 6-2(b) indicates.

Figure 6-1 also shows a separated region in the turbulent boundary

layer. Separation can likewise occur in the laminar boundary layer. When

a boundary layer separates, the fluid moves away from the blade surface.

The manner in which this happens is illustrated in figure 6-3. As the free-

stream velocity decreases along the rear portion of the suction surface of
a turbine blade, static pressure corresponding]y increases. This positive

r Transition r-Turbulent

Laminar _region / boundary
_unda ry _ layer

er --._

' region -/
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(a) Laminar flow. (b) Turl)ulent flow.

Florae 6-2.--Variation of velocity with time at a point.

FmuaE 6-3.--Boundary-layer separation.

pressure gradient (adverse pressure gradient) retards the flow in the

boundary layer and causes it to lose energy. The flow in the boundary
layer can be retarded to such a degree that very close to the wall it moves

in a direction opposite to that of the mean flow passing the blade. This is

separation. The point at which the flow reverses itself is the separation

point. The laminar boundary layer at the leading edge of a turbine blade
can also separate and immediately reattach itself to the surface as a

turbulent boundary layer. This is illustratcd in figure 6-4.

Finally, it should be noted that both laminar and turbulent boundary
layers CaD be either incompressible or compressible, depending on the

level _)f the 5[ach number. Just as there are diffcrent equations to repre-

sent laminar and turbulent boundary-layer flow, there are different

equations for the incompressible and compressible variations of each.
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Turbulent

boundary

Sepa rat ion layer 7
Laminar bubble 7 j...-__

boundary _¢_....__III _I 1_I II 1_' ' '

l.yer-,, ....
, /.S_.liii'menl

point

FIGURE 6-4.--Laminar separation and reattaehment.

Boundary layers should be considered compressible if the free-stream

relative ._laeh number exceeds values of 0.3 to 0.4. The boundary-layer
equations for these various cases arc derived and solution methods are

discussed in this chapter.

DERIVATION OF BOUNDARY-LAYER EQUATIONS

The general equations of motion of viscous fluids are called the Navier-

Stokes equations. In normal coordinate systems, there are three such

equations, one for each of the coordinate directions. The boundary-layer

equations can be derived from the Navier-Stokes equations. The Navier-

Stokes equations themselves can be derived by applying the law of con-

servation of momentum to a fluid element. This exercise is lengthy, and

will not be repeated here. References 1 and 2 both have the complete
derivation, in two somewhat different forms.

There are various forms of the Navier-Stokes equations, depending on

what assumptions are made during their derivation. The following equa-

tion represents the Navier-Stokes equations combined into vector form
for a compressible fluid with constant viscosity:

dU=gf_g Vp+g - V_u+ _ __V(V-u) (6-1)
dt p p p

where

u general velocity vector, m/sec; ft/see

t time, sec

g conversion constant, 1; 32.17 (Ibm) (ft)/(lbf) (sec 2)
f general body force acting on a unit mass of fluid, N/kg; lbf/lbm
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p density, kg/mS; lbm/ft 3

p static pressure, N/m_; lbf/ft _
t_ dynamic viscosity, (N) (sec)/m2; lbm/(ft) (sec)

In this equation, u represents a general velocity vector with components

u, v, and.w in the three coordinate directions x, y, and z, respectively.

u=ui+vj+wk (6-2)

where i, j, and k are the unit vectors in the three coordinate directions.

The total, or substantial, derivative of u is du/dt. In any of the coordinate

directions,

d 0 0 0 0

4t = 0-]+ u _x+V _y+W 0z (6-3)

In equation (6-1), the Laplacian operator V_ is applied to the vector u
rather than to a scalar function. If the term V2u is expanded into simple

vector quantities, equation (6-1) becomes

e--_=ge-'-qvp+"- v(v.u)-"- [vx(vxu)3+_ v(v.u) (6-4)
dt p p p

Expressing the V operator in terms of gradients, curls, and divergences,

which may be more familiar to the reader, equation (6-4) becomes

du __-,q
u=gf--p grad p+#-p grad(div u) p curl(curl u) +_ p grad(div u)

(6-5)

In order to derive the boundary-layer equations, equation (6-1) has

to be expanded into three scalar equations, one for each of thc coordinate

directions. The three resulting equations are

Ou Ou Ou Ou , g Op + _ /O_u O_ d_u\
_+u_+v_+W0z:gJ,-_ ;(,_+_+_)

1_ 0 [Ou Ov Ow\

+-3;_(,_x+_+_) (6-6)

_+u _x+V_+_ _--g_,- +_ I,_+_+_)

1_ 0 /Ou Ov Ow\
+_- _ (,_+_+_) (6-7)
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Ow Ow Ow Ow g Op . _ ['02w O:w 02w\

¥+u

1 a /Ou Ov Ow\
+5"-

where f,, f_, and f, are the components of the body force f.

(6-8)

Laminar Incompressible Boundary Layer

In order to derive Prandtl's boundary-layer equations for laminar

incompressible flow, the following assumptions will t)e made:

(1) Viscosity is a constant. This has already been assumed in the
writing of the preceding equations.

(2) Flow is incompressible. Since for ineoinpressible flow the con-
tinuity equation is

=(0u 0v 0w\
V.u:div u \_xx+_y+_-z ) =0 (6.9)

the final terms in equations (6-6) to (6-8) can be eliminated.

(3) Flow is two-dimensional. This eliminates equation (6-8) from

consideration, as welt as all terms involving w or O/Oz in equations (6-6)
and (6.7).

(4) Flow is steady. This eliminates O/Ot terms.

(5) Body forces are negligible in relation to inertia and viscous forces.

Thus, f_ andfu can be discarded from equations (66) and (6-7).

With these assumptions, the Navier-Stokes equations reduce to the

following two equations for the x- and y-direetions:

Ou _-v Ou g Op __". /02u 02u\
 'ox o. o (6.1o)

Ov Ov g Op __". /Oh, Oh,\
u--+Vox Oy...... , Oy p _x_+_y :) (6-11)

Likewise, the continuity equation becomes

Ou Ov
--+--=0 (6-12)
Ox Oy

In order to make equations (6-10) to (6-12) suitable for the analysis of

boundary-layer flow, the equations are traditionally made dimensionless,

and an order-of-magnitude check is performed on the various terms to

show that some are negligible with respect to others. Figure 6-5 shows the

velocities and coordinate directions pertinent to the boundary layer.
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_6folt rra_l.g

FIGURE 6-5.--Boundary-layer velocities and dimensions.

The following dimensionless parameters are defined :

X
X---

L
(6-13a)

y=_
L

(6-13b)

where

X

L

Y

U

U0
V

It
U =-

Uo

V

V-
Uo

gP
P-

pUo_

pLUo
Re _ --

dimensionless x-coordinate

characteristic length (in this case, the blade chord), m; ft

dimensionless y-coordinate

dimensionless velocity in x-direction

free-stream velocity upstream of blade, m/sec; ft/sec

dimensionless velocity in y-direction

(6--13c)

(6-13d)

(6-13e)

(6-13f)
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P dimensionless pressure
Re Reynolds number

From figure 6-5, we see that since x is proportional to L, X is of order 1.

And since y is proportional to the boundary-layer thickness 6i, u, Y is of

order 6i.u/L = _, a quantity much less than 1. Likewise, since u is of order

Uo, U= u/Uo is of order 1. And V=v/Uo is of order t, since velocities in

the y-direction in the boundary layer are much smaller than those in the
x-direction.

In order to put equations (6-10) to (6-12) in terms of dimensionless

quantities, equations (6-10) and (6-11) are multiplied by L/Uo _, and

equation (6-12) is multiplied by L/Uo. The resulting dimensionless
equations are

OU OU OP 1 [02U O_U\

V_+Vo_= OX_et,_+_) (6-14)

OV OV OP 1 /02V 02V\

UUx+V --=OY --_ + Re _-Of2+_) (6-15)

OU OV

(6-16)

The order of magnitude of the various terms in these equations can now

be compared with each other. Since X and U are of order 1, and Y and V
are of order ,,

oU 1
-= 1 (6-17a)0X 1

oU 1
(6-17b)OY

OV
-- _-= _ (6-17c)
OX 1

OV
--_-= 1 (6-17d)
OY

02U 1
- = 1 (6-17e)

OX _ 1.1

O_U 1 1
-- --_-- = (6-17f)
OY _ _.e d
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02V e
_-- =_ (6-17g)

dX _ 1.1

02V _ 1
(6-175)

OY _ e._

Furthermore, the change in P with respect to X is of the same order of

magnitude as the change of U with respect to X, so that OP/OX is of
order 1.

Relating these orders of magnitude to the terms in equations (6-14)
to (6-16) yields

u OU v OU OP 1 /02U O2U\

(1)(1)+(e)(_)=--lT(e2)(l+_)

OV v OV OP 1 [O_V 02V\
U _+ -_= OY F-_e[_+_) (6-19)

(1) (_) + (_) (1) = -_+ (e2) (_+!)

OU OV

_+0--_ =0 (6-20)

1+1

By examining equations (6-18) to (6-20), the following conclusions
can be reached:

(1) In boundary-layer theory, it is assumed that the viscous terms

1/Re[(O:U/OX 2) + (O_U/OY _) ] are of the same order of magnitude as the

inertia terms U(OU/OX)+V(OU/OY). For this to be true in equation

(6-18), 1�Re must be of order _2, since O_U/OY _ is much larger than

O_U/OX 2 and dominates the two terms in parentheses. Therefore, the
Reynolds number must be relatively large.

(2) In equation (6-19), with 1�Re of order _2 and with 02V/OY2

dominating O_V/OX 2, the terms are of order _. Therefore, unless OP/OY

is to dominate, it too must be of order _ or less. Therefore, OP/OY is much

smaller than OP/OX, and P can be considered a function of X alone. There-

fore, P=P(X) or p=p(x), and OP/OX=dP/dX or Op/Ox=dp/dx. This

allows us to assume that the pressure across the boundary layer in the
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y-direction is essentially constant. It can be assumed equal to the potential

flow pressure existing at the outside of the boundary layer.

(3) Since the first equation is of order 1, and the second equation is of

order _, the second equation can be neglected completely.

(4) In equation (6-18), O_U/OX _ can be neglected because it is so

small in comparison with O:U/OY _. This leaves the following dimension-

less equations :

OU OU dP 1 02U (6-21)dx

OU OV

(6-22)

These are Prandtl's boundary-layer equations in dimensionless form.

The boundary-layer equations in this form are useful in determining

the influence of the Reynolds number on the size of the boundary layer

for different fluids. From equation (6-21) we see that as Re increases in

magnitude, the viscous-force terms (1�Re) (02U/OY 2) will get smaller and

smaller. The boundary-layer thickness will correspondingly decrease. So,

as Re increases, 5],,, decreases. Furthermore, increasing Re corresponds to

decreasing viscosity if pLUo is constant. So, as a general rule, the thickness

of the boundary layer decreases as the viscosity decreases.

The boundary-layer equations can be put in terms of dimensional

variables by multiplying equation (6-21) by Uo2/L and equation (6-22)

by Uo/L. The resulting equations are

Ou Ou g dp tL 02u
u -- + v .... { (6-23)

Ox Oy p dx p Oy2

Ou Ov

(6-24)

These are Prandtl's boundary-layer equations for two-dimensional,

]aminar, incompressible flow. Density and viscosity are assumed constant

and known. The pressure gradient along the blade surface, dp/dx, is also

known from an ideal-flow solution. The remaining unknowns are u and v,

and equations (6-23) and (6-24) are sufficient for their calculation.

It should bc noted that the boundary-layer equations are not valid in

the presence of shock waves (i.e., where instantaneous adverse pressure

gradients of large magnitude occur). Just as flow phenomena in the
boundary layer depend on mainly the Reynolds number, conditions in a

shock wave depend on primarily the Mach number. Since the influence of
Mach number is not included in the boundary-layer equations, they tell

us nothing about the interaction of shock waves and boundary layers.
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The boundary-layer equations are not completely reliable as separation
is approached. One of the assumptions used in their derivation is that the

velocity v is much smaller than _. Very close to the separation point, the
boundary layer grows rapidly, and v begins to be of the same order as u.

Nonetheless, the boundary-layer equations are generally used in cal-

culations right up to the separation point, since the region where V is

significant is very small, and little error in the location of the point of
separation is incurred. However, these equations should not be used for

detailed calculations in the neighborhood of a separated flow region.

The Navier-Stokes equations (6-6) to (6-8) used in the development

of the boundary-layer equations were derived for an orthogonal system
of coordinates in which the radius of curvature of each of the coordinate

axes is quite large (i.e., where curvature effects are negligible). The

question arises as to how the boundary-layer equations would change for

flow over a curved wall. If a curvilinear orthogonal coordinate system
(fig. 6-6) is introduced wherein the x-axis is in the direction of the curved

wall and the y-axis is normal to it, a new set of Navier-Stokes equations
can be derived for flow in such a system. These equations are given in

reference 1. The terms in the equations are very dependent on _hc radius

of curvature r at a position x along the blade surface. The relative orders

of magnitude of the individual terms can be estimated in the same manner

as was done previously. With the assumption that the boundary-layer

thickness is small compared with the radius of curvature of the wall, and

for the case where no large variations in curvature occur, so that dr/dx.-_ l,
the same boundary-layer equations result as were obtained for flat walls.

Therefore, the flat-plate boundary-layer equations may be applied to

curved walls as well, provided there are no large variations in curvature,
such as would occur near sharp edges.

y

X X

Y

FIGURE 6--6.--Curvilinear coordinate system on a blade.
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Laminar Compressible Boundary Layer

An order-of-magnitude analysis can also be performed to derive the

equations for a compressible boundary layer. In the incompressible case,

viscosity and density were assumed constant, temperature variations were

neglected, and the energy equation was not used. For the compressible

case, density is no longer constant, viscosity is considered a function of

temperature, the equation of state is used to relate pressure and density to

temperature, and, if the process is not isothermal, some form of the energy

equation is required. The boundary-layer equations for compressible,
nonisothermal, variable-viscosity flow will involve three parameters which

can be related to temperature. These are viscosity, specific heat, and

thermal conductivity.

There are several relations for viscosity as a function of temperature.

The most common is probably Suthcrland's relation (ref. l)

tt (T_3/2To+S
_0 = \To/ T+S (6-25)

where

T

To
S

dynamic viscosity at the reference temperature To, (N)(sec)/m2;
lbm/(ft) (sec)

absolute static temperature, Is:; °R

reference temperature, K; °R

a constant, K; °R (for air, S=llO K or 198 ° R)

A less complicated, but also less accurate, temperature-viscosity relation

is the power law

- = 0.5 <_ < 1.0 (6-26)
tto

where _0 is a constant. For air, o_is approximately 0.65.

Specific heat and thermal conductivity can be related to temperature

by least-squares polynomial-curve fits for the particular gas and tem-

perature range involved. With these variables related to temperature,
the unknowns in the compressible-boundary-layer problem reduce to u,

v, p, and T. The four equations relating these variables will be the con-

tinuity equation, one component of the momentum equation, the state

equation, and the energy equation.

The order-of-magnitude analysis of the continuity and momentum

(Navier-Stokes) equations for compressible flow is almost identical to

that for incompressible flow. For compressible flow with nonconstant

viscosity, the equations analogous to (6-10) to (6-12) are the following:
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au au ap, o r O_ 2 /0_ ov\l 0 [ /Ou Ov\l

(6-27)

Ov Ov Op, 0 F Ov 2 /au Ov\l O [ /Or au\l

(6-28)

a(pu) __a(pv)=0 (6-29)
Ox Oy

If an order-of-magnitude analysis is performed on these equations similar

to that for the incompressible-flow equations, the following boundary-

layer equations result:

ou ,tp, o (6-3o)

a(pu) __a(pv) =0 (6-31)
Ox Oy

The equation of state is also required for the solution of compressible

boundary-layer flow. The state equation is

p= pRT (6-32)

where R is the gas constant, in J/(kg) (K) or (ft) (lbf)/(lbm) (°R).

The final equation required besides the continuity equation, the

momentum equation, and the equation of state, is the energy equation.

The energy equation for a compressible boundary layer is derived from

the energy equation for a perfect gas by means of another order-of-

magnitude check. The folh)wing is the energy equation for compressible,
two-dimensional steady flow of a perfect gas, written in full :

pc,, (uOT aT\ uOp . v Op . O /, aT\ O (kOT_+ u ,_

where

Cp

J
k

and

(6-33)

specific heat at constant pressure, J/(kg)(K); Btu/(lbm)(°R)
conversion constant, 1;778 (ft) (lbf)/Btu

thermal conductivity, W/(m) (K); Btu/(see) (ft) (°R)

F/auV /avV1 /Or auV 2/au avV
(6-34)
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If an order-of-magnitude check is performed on tile above equations, the
following boundary-layer energy equation results:

pcp (u OT OT\ udp 0 /k OT\ u (Ou_ 2 (6-35)

Equations (6-30), (6-31), (6-32), and (6-35) are the laminar boundary-
layer equations for nonisothermal, two-dimensional, compressible flow of
a gas obeying the ideal gas law.

Turbulent Boundary-Layer Solution Methods

It is desirable to have a turbulent boundary layer over the major portion
of turbine blades. If the boundary layer is not turbulent, separation will

probably occur on the blades, with a resulting decrease in their per-

formance. Turbulent flow has irregular fluctuations (mixing or eddy
motions) _uperimposed on the main fluid motion (see fig. 6-2). These

fluctuations are so complex that closed-form solutions are not feasible at

present. Yet, the mixing motion is very important, since the stresses in

the fluid due to fluctuating components of velocity are often of greater
magnitude than those due to the mean motion.

There are two approaches to the solution of turbulent boundary-layer
flow. The first is the exact solution of the time-dependent, three-dimen-

sional, Navier-Stokes equations. The three-dimensional equations are

required, since two-dimensional calculations could newer represent the
stretching of eddies, which is a prime mechanism of turbulent flow. How-

ever, even the largest computers available at the present time cannot.

handle three-dimensional solutions of these equations on a small enough
mesh to represent the fluctuating components of velocity of turbulent
flOW.

The second approach is to write the equations of continuity, momentum,

and energy in terms of mean and fluctuating components of pressure,

density, temperature, and velocity. In this approach, the time average
of the u component of velocity, for example, is denoted by zZ and the

w_locity of fluctuation by u'. So the velocities, density, pressure, and
temperature are writ ten as follows:

u = a+ u' (6-36a)

v=_+v' (6-36b)

P= P+ P' (6-36c)

P=P+P' (6-36d)

T = 7"+ T' (6-36e)

The fluctuations in viscosity, thermal conductivity, and specific heat are
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negligible and are not considered. So these three parameters are calculated

as functions of the time-averaged value of temperature.

If the flow properties listed in equations (6-36) are substituted into the

continuity, momentum, and energy equations for incompressible and

compressible flow, a new set of stress terms arises in thees equations.
These are called the "apparent" turbulent stresses, or Reynolds stresses.

They are of the form pu'----iand ou'v---_, where u'v' is the average over time of

the product of u' and v'. These new terms in the equations add additional
unknowns to the boundary-layer problem for which additional equations

are not presently available. For this reason, empirical expressions or

approximations are substituted for the Reynolds stress terms before th_

turbulent boundary-layer equations can be solved.

Turbulent Incompressible Boundary Layer

Substituting the relations of equations (6-36) into equations (6-10),

(6-11), and (6-12), and then performing an order-of-magnitude analysis

yields the following equations for turbulent, incompressible, boundary-

layer flow:

oa oa dp. 0 ( oa .__.,'_
aft _x+p_ _ = --g _x-t-_y \t* -Z---Puoy v /I (6-37)

0_+0__ = o (6-38)
Ox Oy

These equations are analogous to equations (6-23) add (6-24) for laminar

flow. Notice, however, the presence of the Reynolds stress term ill the

momentum equation. This adds a new unknown (u'v') to the original two

(_ and _), thereby making three unknowns with only two equations.

Turbulent Compressible Boundary Layer

Substituting the relations of equations (6-36) into equations (6-27),

(6-28), (6-29), (6-32), and (6-33) and then performing an order-of-

magnitude analysis yields the following equations for turbulent, com-

pressible, boundary-layer flow:

O(_(t) __O(li_) +O(p'v'_._))=0 (6-39)
Ox Oy Oy

-g v} (6-4o)

= _R_ (6-41)
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Y� y Jdx+Oy Oy/

1 0 # k O_ 0 (6-42)

where T_ is the absolute total temperature, in K or °R, and is defined as

T,= T+ <.43)

We have now derived the basic boundary-layer equations for two-

dimensional, laminar and turbulent, incompressible and compressible

boundary-layer flow. We should note at this time that this is really only
the starting point as far as boundary-layer solutions are concerned.

These equations are only the basis for the many, many methods which
presently exist for obtaining boundary-layer solutions under various
circumstances.

SOLUTION OF BOUNDARY-LAYER EQUATIONS

After velocity profiles are discussed and the important boundary-layer
parameters defined, some of the solution methods will be discussed.

hicluded will be the flat-plate, incompressible solution, as well as com-
pressible methods.

Velocity Profiles

One of the principal results obtained from most boundary-layer solu-

tions is a description of the velocity profile in the boundary layer along

the blade surface (fig. 6-7). The velocity profile describes mathematically

Outeredge , Uej_

ofboundary
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Outeredgeol
boundarylayer_

/ I

(a) Laminar (b) Turl)ulent

profile, profile.

FmvlcE 6-8.--Laminar and turbulent velocity profiles.

the dimensionless veh)city u/u. as a function of the dimensionless distance

Y/SI,, from the blade. The velocity u is the velocity in the boundary layer
at a distance y from the surface, and the velocity ue is the external free-

stream velocity at a distance equal to the boundary-layer thickness,
5I,,,,, from the surface. Alternately, 5iu,z is often defined as that distance

from the blade where the velocity differs by 1 percent from the external
velocity, u,.

Velocity profiles for laminar flow (fig. 6-8(a)) tend to be parabolic in

shape, while those for turbulent flow are blunted (fig. 6-8(b)). A com-

monly used mathematical expression for u/u, in laminar flow is that

originated by Pohlhausen (see ref. 1) :

?_e _full \_s,,./

The constants a, b, c, and d are defined in terms of a dimensionless shape

parameter

X- _'' du, (6-45)
t_ dx

where

a=2+_ (6-46a)

b= --- (6--46b)
2

k

c= -2+_ (6-46c)
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Shapeparameter.
X

- 7.052yJ_Ji

/o/JSJ

• 2 S "_]6'_

I I I I l
.2 .4 .6 .8 1.0

Fraction of boundary-layer height, y/6full

FIGURE 6-9.--Laminar velocity profiles.

x
d = i - - (6-46d)

6

Velocity profiles for various values of X are shown in figure 6-9.

Velocity profiles for turbulent flow are often represented by the power

law

,'_( 7J _},fn (6-47)
Ue- \(_[. ll/

Pipe-flow experiments show that the exponent n is a mild function of the

Reynolds number and varies from 4 up to about 10. The value of n= 7
is most appropriate for boundary-layer flow on a fiat plate. The exponent
n can be related to other boundary-layer parameters, namely the dis-

placement thickness _ and the momentum thickness 0, which are described
in the next section.

Definitions of Important Boundary-Layer Parameters

Solutions of the two-dimensional boundary-layer equations are most

often obtained in terms of three important parameters. These are the dis-

placement thickness _, the momentum thickness 0, and the form factor H.
In order to define these parameters, it is necessary to first define the

thickness of the boundary layer, _l_zz. The definition of boundary-layer

thickness is rather arbitrary, since transition from the velocity inside the

boundary layer to that outside it tak('s place asymptotically. This is of

little importance, however, because the velocity in the boundary layer
attains a value which is very ch)se to the external velocity at a small

distance from the wall. It is possible to define the boundary-layer thick-
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equal mass flow.

FIGURE 6-10.--l)isplacement thickness of a houndary layer.

for

ness as that distance from the blade where the velocity differs by 1 percent
from the external velocity ue.

The displacement thickness _, for compressible boundary-layer flow,

can be defined with the help of figure 6-10. As seen from figure 6-10(a),
the decrease in mass flow within the boundary layer due to the influence of
friction is given by

[ass defect =/_:_i.- (p_u_-- pu) dy (6-48)
y-.0

where pe is the density, in kg/m 3or lbm/ft ._,in the free stream outside of

the boundary layer. This integrated mass defect can be represented by a

distance _, the displacement thickness, as shown in figure 6-10(b). It is

the distance by which the external potential field of flow is displaced

outward as a consequence of the decrease in velocity in the boundary
layer.

As figure 6-10 shows, the distance _ can be defined by the equation

fy=51ult

p_Le_= ] _0 (p,u_-pu) dy (6--49)

Solving for $ gives

a=p--uu, j,_0 (p.u,-pu) dr= pu

The displacement thickness for incompressible flow reduces to

5= (_,-u) dy= dy (6-51)
Ue v-o w-o \ _te/

The loss of momentum in the boundary layer due to the presence of
friction is given by
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._Iomentum defect = r]_ =_l,,. pu (Ue-- U) dy (6-52)
J_ y=0

This momentum defect from the momentum of purcqy potential flow

can be represented by a distance 0, defined by the equation

Y=_fuHp_ue20= p_ ( _te-- u) dy (6-53)
"y--O

Solving for 0 in this equation gives the definition of the momentum thick-

ness for compressible boundary layers as

0=-- pu(_--_) ely= pu 1 -u_- dy (6-54)
Pe _le2 _ y=O _ 1/=0 pc?le %k _e/

The momentum thickness for incompressible flow reduces to

0=-_ 2 -o .(,l_--u) dy=] -- 1-"-
y--O ;_le \ He/

The form factor H for both compressible and incompressible flow is

defined as the ratio of displacement thickness to momentum thickness:

5
H = - (6-56)

0

There are many other boundary-layer parameters besides 5, 0, and H for

two-dimensional, and especially for three-dimensional, boundary layers.

These three, however, are the principal parameters used in general

boundary-layer studies.

Physical Interpretation of Separation

When separation of flow from a blade or a casing occurs, some of the
retarded fluid in the boundary layer is transported away from the surface

toward the main stream. When a region with an adverse pressure gradient

exists along a surface, the retarded fuid particles cannot, in general,

penetrate too far into the region of increased pressure because of their

small kinetic energy. Thus, the boundary layer is deflected away from the
surface and moves into the main stream. In general, the fluid particles

behind the point of separation follow the pressure gradient and move in a

direction opposite to the external stream. The point of separation is
defined as the limit between forward and reverse flow in the layer in the

immediate neighborhood of the wall. At separation,

Figure 6-11 illustrates separation occurring along a surface.
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>0 _ -0 (__u_

- "Separation ...._x\\\'_ ' '_ _ y'O < 0

point

FlG(_'l¢l.: 6--1 l.--Velocity gradients as flow undergoes separation.

By examining Prandtl's boundary-layer equations and considering the

relation between pressure gradient dp/dx and velocity distribution u(y),

it is possible, to infer that separation in a steady flow will occur only in

the presence of an adverse pressure gradient (i.e., decelerated flow),

dp/dx>O. From equation (6-23), with the boundary conditions at the

surface being u = v = 0, we have

(O2u_ dp
_' \og_/,=o = g (Ix (6--58)

We can now relate velocity profiles to Ou/Oy, 02u/Og 2, and finally to

dp/dx through equation (6-58). The e(luation indicates that in the

immediate neighborhood of the wall, the curvature of the velocity profile,

02u/Oy _, depends only on the pressure gradient, dp/dx, and the curvature

of the velocity profile at the wall changes its sign with the pressure

gradient.

Figure 6-12(a) shows a velocity profih_ that would exist in a boundary

layer subjected to a decreasing pressure. For such a profile, figure 6-12 (b)

(b) Ic)

(a) Velocity (b) Velocity (c) Velocity-

profile, gradient, profile
eurv._ture.

FIGURE 6-12.--Velocity distribution in a boundary layer with pressure decrease.
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indicates that Ou/Oy is positive for all y and decreases as y increases.

Furthermore, figure 6-12(c) indicates that O_u/Oy _, which is the slope of

Ou/Oy, is negative for all y. From equation (6-58), we know that negative
O_u/Oy 2 corresponds to negative dp/dx. Consequently, a boundary layer

subjected to a decreasing pressure (negative dp/dx) will have velocity
profiles which are not indicative of impending separation (the form of

fig. 6-12 (a)).

Figure 6-13(a) shows a profile which would cxist in a boundary layer

with decelerated flow due to an increasing pressure (adverse pressure
gradient). Here, figure 6-13(b) indicates that Ou/Oy has a positive slope

near the blade surface; that is, O*u/Oy 2 is positive (fig. 6-13(c)). This

corresponds to positive dp/dx. However, since in all cases O_u/Oy _ must
be less than zero at some distance from the surface, there must exist a

point for which O_u/Oy_= O. This is a point of inflection of the boundary-

layer velocity profile. It follows that in a region of retarded potential flow

y
Point of

__"_ _ _
Inflect;on

////,

(a) Velocity (t)) Velocity (c) Velocity-

profile, gradient, profile curvature.

FmuR_ 6-13.--Velocity distribution ill a boundary layer with pressure increase.

-_$. tacjnat ion

_- Adverse gradient

FIGURE 6-14.--Pressure distribution on a turbine blade.
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(positive dp/dx), the velocity profile in the boundary layer will have a

point of inflection. Since the velocity profile at the point of separation

(with Ou/Oy = 0 at the surface) must have a point of inflection, it follows

that, with the assumptions used in deriving equation (6-23), separation

can occur only when the potential flow is retarded (i.e., in regions of
axiverse pressure gradient).

Figure 6-14 indicates a typical pressure distribution on the surface of a

turbine blade. The danger zone, as far as separation is concerned, is

readily seen to be the rear portion of the suction surface, where the major
part of the blade diffusion is taking place.

Laminar Incompressible Boundary Layer on a Flat Plate

Prandtl's boundary-layer theory was first reported in 1904 in Germany.
It was later translated and published in 1928 as an NACA Technical

Memorandum (ref. 3). The first mathematical solution of Prandtl's

equations to be published was the flat-plate solution of Blasius in 1908.

This German work was also later translated by NACA (ref. 4).

On a fiat plate with steady flow at zero incidence, the velocity from the

potential solution is constant. Therefore, p (x) is constant and dp/dx = O.
The boundary-layer equations, therefore, reduce to

Ou Ou 02u
u _+v _ (6-59)

ay Oy2

where v is the kinematic viscosity u/p, in m2/sec or ft2/sec, and

Ou c_v

(6-60)

The following are the boundary conditions:

u=v=O at y=O

u=u, at y=
(6-61)

With the use of a stream function _h, Blasius transformed the partial

differential equation (6-59) into the following ordinary differential
equation:

fdd_2+2 d3f 0dy---_=

whel;e f is a normalized stream function

(6--62)

f(') - %/v-x_ (6-63)
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which depends on the dimensionless y-coordinate, 7, where

Y
(6-64)

This equation has the following boundary conditions:

f=d_f =0 at 7=0
ay

df
--=1 at 7=
dy

(6--65)

Equation (6-62) cannot be solved exactly. Blasius obtained an approxi-

mate solution in the form of a power series expansion about 7=0 and an

asymptotic expansion for 77= _, the two solutions being joined at a suit-

able point. More recently, Howarth (ref. 5) solved the Blasius equation

(6-62) with a high degree of accuracy, and provided tabular values for f,

df/dy, and d:f/dy 2as functions of 7. Since df/dy = u/ue, the solution gives

the velocity profile of figure 6-15. This profile possesses a very small

curvature at the wall and turns rather abruptly further from it in order

- 5

_3

c

2

e

e-

_- 0 .2 .4 .6 .8 1.0

Boundary-layer velocity ratio, u/u e

FIGURE 6-15.--Blasius-Howarth velocity profile for flow on a fiat plate.
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to reach the asymptotic value. At the wall itself, the curve has a point of
inflection, since for y = O, 02u/Oy 2= O.

From the order-of-magnitude analysis performed to obtain Prandtl's

boundary-layer equations, we had the relation

1
_ _8_zl_w- (6-66)

For a semi-infinite flat plate, the Reynolds number can be expressed as

U_

Re= = -- (6-67)
p

In order to make equation (6-66) dimensionally correct, we can say

8_ull ¢¢ 1
X2 Re= (6-68)

or

_j':z__ v_ (6-69)

The constant of proportionality can be obtained from Howarth's numerical

solution and is equal to 5. So, for a semi-infinite flat plate at zero incidence

in laminar flow, we obtain the useful relation for the boundary-layer
thickness

_/_z_= 5.0 _ (6-70)

With the use of Howarth's solution to the Blasius equations, the follow-

ing relations for other important boundary-layer parameters for laminar
flow on a flat plate can also be obtained:

8=1.72 _ (6-71)

0=0.664 v_, (6-72)

gr_ 0.332
= 0.332 _l"

1
_3_8

D = b%/_pluo _ (6-74)
g
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where

1.328
CI= 1.328 _]-_

"uet
(6-75)

Tw

D

b

l

Cf
Rez

shear stress on the surface, N/m:; lbf/W

total drag on both sides of fiat plate, N; lbf

width of flat plate, m; ft

length of fiat plate, m ; ft
dimensionless drag or skin friction coefficient for fiat plate

Reynolds number based on plate length l

It should be noted that all of these relations are valid only for laminar

flow; that is, they are valid only where Re_< 106, a value that is indicative
of laminar flow over the entire length of the plate. For Ret> 106, transition

to turbulent boundary layer will probably occur, and the expressions in

equations (6-71) to (6-75) will be valid only from the leading edge of the

plate to the transition point. If transition to turbulent boundary layer does

occur, then the drag will be larger than that calculated by equation

(6-74).

Integral Methods for Solving the

Laminar-Boundary-Layer Equations

The two principal means of solving the laminar-boundary-layer equa-

tions are by integral methods and by finite-difference methods. Both

means provide approximate solutions, since exact solutions are extremely
cumbersome.

Integral methods are based on yon K£rm_in's momentum integral
formula. Von K_rm_.n's original work was published in 1912 in Germany

and was later translated by NACA (ref. 6). Von Kgrmgn realized that it

was not necessary to satisfy the boundary-layer equations for every fluid

particle. Instead, he satisfied the boundary-layer equations close to the
wall and in the region where external flow is approached by satisfying the

boundary conditions. In the remaining region of fluid in the boundary

layer, only a mean over the differential equation is satisfied. Such a mean
is obtained from the momentum equation (eq. (6-23) or (6-30)) by

integration over the boundary-layer thickness. If equations (6-23) and

(6-30) are integrated from y =0 to y = _1,,u, and if the definitions of dis-

placement thickness (eq. (6-50)) and momentum thickness (eq. (6-54))
are introduced, the following equations result. For laminar, incom-

pressible flow,

dO du_ gr_ (6-76)
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For laminar, compressible flow,

dO dub grw (6--77)
u_ dx -{-(20+_- Me20)ue -_x = p_

where the subscript e denotes conditions at the outer edge of the boundary

layer.

Equation (6-76) or (6-77) leads to an ordinary differential equation
for the boundary-layer thickness, provided that a suitable form is as-

sumed for the velocity profile, u/u,. This allows us to calculate the dis-

placement thickness, 3, the momentum thickness, 0, and the shearing
stress at the wall, rw. Pohlhausen was the first to use equation (6-76) to

obtain a solution for incompressible boundary layers. His work was

published in 1921 (refs. 7 and 1). The velocity profile assumed by

Pohlhausen was discussed earlier in this chapter, under "Velocity Pr<)-

files." Although Pohlhausen's solution is probably the simplest, it is known

to giw, poor results in regions of rising pressure. As a result, various authors

have tried to improve and extend his method by assuming different

families of velocity distributions.

A famous work among those which followed Pohlhausen's was that of

Thwaites (ref. 8). Thwaites collected and compared all known velocity

distributions from exact and approximate solutions for laminar incom-

pressible flow. Thwaites' method does not require the solution of ordinary

differential equations. He relates the wall shear, its derivative at the wall,

and the form factor to one another without specifying a type of velocity

profile. To do this, nondimensional forms of these quantities were defined

and evaluated with the use of exact solutions for the laminar boundary

layer. It developed that a nearly universal relation existed among these

quantities for favorable pressure gradients. For adverse gradients,

Thwaites selected a single representative relation. A unique correlation

was chosen that reduced the solution of an incompressible problem to the
evaluation of a single integral. Thwaites' method was extended to com-

pressible fluids by Rott and Crabtree (ref. 9). They recognized that when

heat transfer is negligible, and the Prandtl number is equal to 1, a trans-

formation proposed by Stewartson (ref. 10) could be used to relate

compressible to incompressible boundary-layer solutions.

One of the best integral methods to appear to date for the solution of
laminar boundary layers is that of Cohen and Reshotko (refs. 11 and 12).

Their method applies to compressible or incompressible flow over two-

dimensional or axially symmetric surfaces. It handles arbitrary free-

stream pressure distribution and performs well in areas of adverse pres-

sure gradient. A surface temperature level may be specified, and heat
transfer is calculated. Cohen and Reshotko's method is based on Thwaites'

correlation concept. Stewartson's transformation (ref. 10) is first applied

83



TURBINE DESIGN AND APPLICATION

to Prandtl's equations. The resulting nonlinear, first-order differential

equations are expressed in terms of dimensionless parameters related to

the wall shear, the surface heat transfer, and the transformed free-stream

velocity. Then Thwaites' concept of a unique interdependence of these

parameters is assumed. The evaluation of these quantities is then carried

out by utilizing the exact solutions of reference 11. With the resulting

relations, methods are derived for the calculation of all the important

boundary-layer parameters. In 1960, Luxton and Young published a

method (ref. 13) which is as general as Cohen and Reshotko's, but which
allows the Prandtl number to have values slightly different from 1.

Finite-Difference Methods for Solving the

Laminar-Boundary-Layer Equations

Finite-difference methods for solving the boundary-layer equations

have recently come into prominence because of the development of

digital computers. Smith and Clutter have done a considerable amount of

work in developing this technique (rcfs. 14 and 15). Another recent
reference of interest is that of Krause (ref. 16). These methods give very

good results with relatively short running times on the computer.

Eddy-Viscosity and Mixing-Length Concepts in

Turbulent Boundary-Layer Flow

Bcfore referencing any of the current, methods for solving turbulent

boundary-layer flow, the concepts of "eddy viscosity" and "mixing

length" should be discussed. These approximation concepts have been
used in many of the methods developed to date to relate the Reynolds

stresses produced by the mixing motion to the mean values of velocity

components. By this means, the Reynolds stresses are given a mathe-
matical form which, upon substitution into the governing equations,

leads to differential equations containing only mean values of density,

velocity, and pressure. These transformed differential equations con-
stitute the starting point for the calculation of the mean boundary-layer

flow.

Boussinesq first worked on this problem in 1877. In analogy with the
coefficient of viscosity in Stokes' law for laminar flow

r, - (6-78)
g 0Y

where rt is the laminar shear stress, in N/m 2 or lbf/ft 2, he introduced a

mixing coefficient, A,, for the Reynolds stress in turbulent flow by putting

A, 0_i
r, - (6-79)

g Oy
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where r, is the turbulent shear stress, in N/m 2or lbf/ft _. In 1880, Reynolds

introduced the concept of eddy, or virtual, viscosity, _, where

Ar

= -- (6-s0)
P

Thus, the eddy viscosity is analogous to the kinematic viscosity _=t_/p.
Turbulent stress can then be expressed as

p O_ -- p u_v--_T, =- _ --= -- (6-81)
g Oy g

With the use of this concept, terms in equations (6-37) and (6-40) such as

Y /

can be written as

A similar concept can be applied to the energy equation where an eddy,

or a virtual, conductivity can be defined. The difficulty with applying the

eddy-viscosity method is that A, and hence e depend on velocity. It is,
therefore, necessary to find empirical relations between these coefficients
and the mean velocity.

In 1925, Prandtl introduced a completely different approximation for

the Reynolds stresses. His argument is called Prandtl's mixing-length

hypothesis, since the mixing length is somewhat analogous to the mean
free path in the kinetic theory of gases. The main difference is that kinetic

theory concerns itself with the microscopic motion of particles, whereas

Prandtl's concept deals with the macroscopic motion of large clusters of

fluid particles. Deriving Prandtl's expression for shear stress requires a
good deal of discussion of his physical model of turbulent flow, all of which

is contained in reference I. His final expression is

r, =- l2 = _o_ u'v' (6-82)
g g

where l is the mixing length, in m or ft.

On comparing Prandtl's expression (eq. (6-82)) with that of Boussinesq

(eq. (6-81)), it appears that little has been gained. The unknown eddy
viscosity _of the first expression has merely been replaced by the unknown

mixing length l of the second expression. However, Prandtl's equation
(6-82) is generally more suitable for the calculation of turbulent motion

than is equation (6-81). Turbulent drag is roughly proportional to the
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square of velocity, and the same result is obtained from (6-82) if the
mixing length is assumed to be independent of the magnitude of velocity.

So, mixing length is a purcly local function, although we cannot say it is a

property of the fluid. It is far simpler to make assumptions about the
mixing length 1 than about the eddy viscosity e, and this constitutes the

superiority of Prandtl's expression over that of Boussinesq.

Integral Methods for Solving the
Turbulent Boundary-Layer Equations

Just as with the laminar-boundary-layer equations, there are both

integral methods and finite-difference methods for solving the turbulent

boundary-layer equations. Both of these provide approximate solutions,
since exact solutions for turbulent flow are now impossible.

Gruschwitz was the first to propose a method for solving the equations

for an incompressible turbulent boundary layer. His work was published

in Germany in 1931. A rash of works followed, most of them making

improvements to the calculational technique and empirical data used by
Gruschwitz. Ludwieg and Tillmann, whose work was published in Ger-

many in 1949 and was translated by NACA in 1950 (ref. 17), proposed an

empirical relation for the skin-friction term in the momentum integral

equation. This relation is still used in many current methods. Stewartson's
transformations (ref. 10) are likewise used in many methods for solving

the turbulent-boundary-layer equations.

_[askell, in 1951 (ref. 18), proposed an improved method for incom-

pressible turbulent boundary layers. He replaced the momentum equation

by an empirically determined approximation which is directly integrable
and thus determines the momentum thickness. A profile parameter is

obtained from an empirical auxiliary differential equation. The Ludwieg-
Tillmann skin-friction formula is used to calculate the skin-friction dis-

tribution and to determine a separation point for flows with adverse

pressure gradient.
Truckenbrodt, whose work was published in Germany in 1952 and was

translated by NACA in 1955 (ref. 19), proposed solutions for both laminar

and turbulent incompressible boundary-layer flows. The method is simple

and, like Maskell's method, does not use the momentum integral equa-
tion. It applies to both two-dimensional and rotationally symmetrical

flows. Because of its simplicity and relatively accurate results, Trucken-

brodt's method is still used for incompressible turbulent boundary layers.

Compressible turbulent boundary layers were first treated adequately

with the use of integral methods by Reshotko and Tucker in 1957 (ref.

20). Prior to their work, the Kgrmgn momentum integral equation had
been utilized with an assumed boundary-layer velocity profile, usually the

power law, and one of several empirical skin-friction relations. When
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pressure gradient was present, an auxiliary equation, usually the moment-

of-momentum equation, was used. (This equation is obtained by mul-

tiplying the integrand of the momentum integral equation by a distance

normal to the surface and then integrating with respect to that distance.)

The momentum integral equation and the auxiliary equation were then
solved simultaneously.

Reshotko and Tuckcr's method, applicable to compressible flow with
heat transfer and pressure gradient, also uses the momentum and moment-

of-momentum integral equations. These are expressed in incompressible
form and are uncouplcd with the use of Stewartson's transformation

(ref. 10) and the results of Maskell (ref. 18). The Ludwicg-Tillmann

skin-friction relation is used in a form suitable for compressible flow with

heat transfer through application of Eckcrt's rcference-enthalpy concept

(rcf. 21). An approximation for the shear-stress distribution through the

boundary layer and the power-law velocity profile arc used to simplify the

moment-of-momentum equation. Separation is located as the point where

the skin friction, when extrapolated, becomes zero. This method, until

several years ago, was the best available for compressible turbulent

boundary layers. It is still widely used in many computer programs today.

One of the best integral methods available today for compressible

turbulent boundary layers is that of Sasman and Cresci (ref. 22). It is
simply an extension of the Reshotko-Tucker method. It uses somewhat

the same analysis, but no attempt is made to uncouple the momentum

and moment-of-momentum integral equations. These equations arc solved

simultaneously after introduction of boundary-layer shear-stress dis-

tributions obtained from recent numerical results of equilibrium turbulent
boundary-layer analysis. The Sasman-Cresci analysis is better than that of

Reshotko-Tucker at predicting separation in regions of adverse pressure
gradient. McNally (ref. 23) has developed a computer program based on

the Cohen-Reshotko (refs. 11 and 12) and Sasman-Cresci (ref. 22) tech-

niques. An additional source of information on compressible turbulent

boundary-layer analysis is the work of Herring and Mellor (ref. 24).

Finlte-Difference Methods for Solving the

Turbulent Boundary-Layer Equations

Finite-difference methods for solving the turbulent boundary-layer
equations have recently begun to appear. Cebeci and Smith have done a

large portion of this work to date (refs. 25, 26, and 27). Bradshaw, Ferriss,

and Atwcll have also developed methods for the turbulent boundary layer

(refs. 28 and 29) based on the use of the turbulent energy equation.

Patankar and Spalding have developed still another method for handling

the turbulent boundary-layer equations (refs. 30 and 31). A great deal of

work is going on in this field at the present time, and no method is yet
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clearly superior to any of the others. Two relatively recent publications

(refs. 32 and 33) compare many of the most prominent methods, both

integral and finite difference, for solving the turbulent boundary layer.

CONCLUDING REMARKS

The selection of a method of solution suitable to a particular boundary-

layer problem requires some familiarity with the various methods avail-
able. This can be achieved by studying some of the more recent references

that have been mentioned herein. The present discussion of the methods

of solution has been intended to show the historical development of

solution techniques, the variety of methods available, and the complexity

of the whole boundary-layer problem, especially where turbulent flows
are involved.
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SYMBOLS

A, turbulent flow mixing coefficient, (N) (sec)/m2; lbm/(ft) (see)
a constant in eq. (6-44)

(width of flat plate, m; ft
b _constant in eq. (6-44)

CI skin-friction coefficient for a flat plate
c constant in eq. (6-44)

c_ specific heat at constant pressure, J/(kg)(K); Btu/(lbm)(°R)
D total drag on flat plate, N; lbf

d constant in eq. (6-44)

f Blasius dimensionless stream function defined by eq. (6-63)
f general body force vector, N/kg; lbf/lbm

f_ component of body force f in x-direction, N/kg; lbf/lbm

f_ component of body force f in y-direction, N/kg; lbf/lbm

f, component of body force f in z-direction, N/kg; lbf/lbm

g conversion constant, 1; 32.17 (lbm) (ft)/(lbf) (seC)
H form factor, defined by eq. (6-56)
i unit vector in the x-direction

J conversion constant, 1 ; 778 (ft) (lbf)/Btu

j unit vector in the y-direction

k thermal conductivity, W/(m) (K) ; Btu/(sec) (ft) (°R)
k unit vector in the z-direction

L characteristic length (e.g., the blade chord), m ; ft

fPrandtl mixing length, m; ft
l _length of flat plate, m; ft

M, Mach number external to the boundary layer

n exponent on the turbulent velocity profile, eq. (6-47)

P dimensionless pressure, defined by eq. (6-13e)

p static pressure, N/mS; lbf/ft 2

R gas constant, J/(kg) (K); (ft) (lbf)/(lbm) (°R)

Re Reynolds number based on L and U0, as defined by eq. (6-13f)
Re_ Reynolds number based on l, as defined in eq. (6-75)

Rex Reynolds number based on x, as defined by eq. (6-67)

r radius of curvature of blade surface, m; ft

S constant in eq. (6-25), K; °R

T absolute static temperature, K; °R

Tt absolute total temperature, K; °R

To reference temperature used in eq. (6-25), K; °R
t time, sec

U dimensionless velocity in x-direction, defined by eq. (6-13c)

U0 free-stream velocity upstream of blade, m/see; ft/sec

u component of general velocity vector u in the x-direction, m/sec;
ft/sec
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u general velocity vector, m/see; ft/sec

u, free-stream velocity at the outer edge of the boundary layer,

m/sec; ft/sec
V dimensionless velocity in y-direction, defined by eq. (6-13d)

v component of general velocity vector u in the y-direction, m/sec;

ft/sec

w component of general velocity vector u in the z-direction, m/see;

ft/sec
X dimensionless x-coordinate, defined by eq. (6-13a)

ix-coordinate, m; ft
x _coordinate parallel to boundary surface, m; ft
Y dimensionless y-coordinate, defined by eq. (6-13b)

[y-coordinate, m; ft
Y _coordinate perpendicular to boundary surface, m; ft

z z-coordinate, m; ft

displacement thickness, m; ft

_f_u boundary-layer thickness, m; ft

[eddy viscosity defined by eq. (6-80), m2/sec; ft2/sec
_,a dimensionless quantity much less than 1

Blasius transformed y-coordinate defined by eq. (6--64)
0 momentum thickness, m; ft

dimensionless shape parameter defined by eq. (6-45)

dynamic viscosity, (N) (sec)/mS; lbm/(ft) (see)
m dynamic viscosity at reference temperature To, (N)(sec)/m2;

Ibm/(ft) (see)
v kinematic viscosity, m2/sec; ft2/sec

p density, kg/m 3; lbm/ft _
p, free-stream density external to the boundary layer, kg/m*;

lbm/ft 3
rl laminar shear stress, N/m2; lbf/ft s

rt turbulent shear stress, N/mS; lbf/ft 2
• w shear stress at the wall, N/mS; lbf/ft 2

function defined by eq. (6-34)

_b Blasius stream function, m2/sec; ft2/sec

constant in eq. (6-26)

Superscripts:

time average

fluctuating component
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CHAPTER7

Boundary-LayerLosses

By HermanW.Prust,Jr.

The primary cause of losses in a turbine is the boundary layer that
builds up on the blade and end-wall surfaces. In particular, these losses

are the friction loss resulting from the flow of the viscous fluid over the

surfaces, the pressure-drag loss resulting from the flow of fluid past the

blade trailing edge, and the loss downstream of the blades resulting from

the mixing of the low-velocity boundary-layer fluid with the high-velocity

free-stream fluid. Chapter 6 presented an introduction to boundary-layer

theory, by means of which the surface boundary-layer buildup can be

analytically described. This chapter covers analytical and experimental

methods for determining the friction, trailing-edge, and mixing losses

associated with the boundary layer. The theory presented herein refers

primarily to two-dimensional blade-section boundary layers. Methods for

obtaining three-dimensional blade plus end-wall losses from the two-
dimensional results are also discussed.

A fundamental objective in blade-row design is to minimize the energy

loss resulting from the flow of fluid through the blade row. Therefore, the

final expressions for loss developed in this chapter are in terms of kinetic-

energy loss coefficients. These coefficients express the loss in fluid kinetic

energy as a fractional part of the ideal kinetic energy of the actual flow

through the blade row. Efficiency based on kinetic energy can be obtained

by subtracting these coefficients from unity, and this is consistent with

the blade-row efficiency definition used in chapter 2.

Before proceeding with the discussion of boundary-layer parameters
and loss coefficients, the blade-row station locations and associated

pressure and velocity distributions will be introduced with the aid of figure
7-1. These pressure and velocity distributions and the associated dis-
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cussion refer to an attached boundary layer only. A separated boundary

layer, with its associated reversal of flow at the surface, is thicker, yields a

higher loss, and cannot be analyzed in the same manner, if at all.

Figure 7-1(a) indicates the four station locations that will be referred

•_---- S------_

(a)

Station

0

r la

Station 0

-- Total pressure

.... Static pressure

--- Velocity

Vfs.la /

Station la

Station 1

......t
Station 2

_b_

(a) Station locations.

(b) Pressure and velocity distributions.

FIGUaE 7-1.--Station locations and associated pressure and velocity distributions.
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to in this chapter. Station 0 represents the inlet to the blade row. At this

station, a uniform total pressure po' is assumed, as indicated in figure

7-1(b). Station la is just within the trailing edge of the blade. The

boundary layers developed on the blade surfaces result in velocity and

pressure profiles as shown in figure 7-1 (b). Velocity varies from the free-

stream value Vj,.1, to zero at the blade surfaces. There is, of course, no

flow through the region of the solid trailing edge. Total pressure varies

from the free-stream value p_,,1, = p0' to the static pressure pl_ at the blade

surfaces. This static pressurc is assumed constant across station la, as is

the flow angle al,. At station la, only the surface friction loss has occurred.

Station 1 is just beyond the blade trailing edge, where the boundary-

layer fluid has filled the void, but where little mixing with the free stream

has occurred. This is indicated in figure l(b) by the station-1 profiles

showing flow throughout the entire wake region. Here too, static pressure

and flow angle are assumed constant across the station. Between stations

la and 1, the trailing-edge loss occurs. Station 2 is located at a distance

sufficiently downstream of the blade rot. that completc mixing, with the

associated mixing loss, has taken place. The velocity and total-pressure

profiles are again uniform.

In order to simplify analysis and discussion, a number of variables
have been assumed constant across the various stations. Uniformity of

inlet conditions is a universal convenience that usually can be approached

in component tests but seldom exists in actual applications. Experiments

have shown that static pressure and flow angle do vary somewhat across
both free stream and boundary layer at stations la and 1. In some in-

stances, which will be later identified, this variation can be accounted for.

Although some downstream mixing of the flow does take place, a com-

pletely uniform downstream state is merely a hypothetical convenience.

BOUNDARY-LAYER PARAMETERS

When a real fluid riot's over a surface, a loss results due to both friction
between the fluid and the surface and friction between the layers of fluid

in the region adjacent to the surface. As shown by figure 7-2, the fluid

velocity in the boundary-layer region varies from zero velocity on the

surface to free-stream velocity Vf, at the full boundary-layer height

_I_u. To describe the losses in flow, momentum, and energy resulting from

the presence of the boundary layer, certain parameters are used. Some of

these (displacement thickness, momentum thickness, form factor) were

introduced in the last chapter and will be reviewed here; in addition, others

specifically used for obtaining the desired kinetic-cnergy coefficients will
be introduced and defined.
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Free-stream velocity,

Vfs iJ

Velocity, V _;/

_/
Surface

," Full boundary

layer height. 6full

FIGURE 7-2.--Typical boundary-layer velocity profile.

The displacement thickness 6, which is indicative of the loss in mass

flow, is defined by

6full LS/ull
_(pV)I. = (pV)], dY-- (pV) dY (7-1)

v 0

where

6

_f=u
V

P

Y

():.

displacement thickness, m; ft

boundary-layer thickness, m; ft

fluid velocity, m/sec; ft/sec

fluid density, kg/m3; lb/ft _

distance in direction normal to boundary layer, m; ft

free-stream (ideal) conditions

Equation (7-1) states that the loss in mass flow of the fluid in the bound-

ary layer is equal to the ideal flow which would pass through a length

(or an area) equal to the displacement thickness. Solving for _ yields

f:=" f/=" pVdY-- (7-2)
=-o vo (_-)/ dY

The momentum thickness 0, which is indicative of the momentum

loss, is defined by

fsj., dy_ fo_:=.O(pV2):" =-o (pVV:,) pV 2dY (7-3)

where 0 is the momentum thickness, in m or ft. Equation (7-3) states that

the loss in momentum of the fluid in the boundary layer is equal to the
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ideal momentum of the ideal flow which would pass through a length (or

an area) equal to the momentum thickness. Solving for 0 yields

0 fs/=zt oV dy_ff/"'t pV'- dY (7-4)=-o (pv):. (pv')/---_.

The lossin kineticenergy can be similarlyexpressed in terms of an

energy thicknessdefinedby

f':"" 1["""- (pV 3) dY (7-5)1 _b(pVa)/.= _ (pVV_,) dY--_-o
2 "o

where _b is the energy thickness, in m or ft. Equation (7-5) states that

the loss in kinetic energy of the fluid in the boundary layer is equal to the
ideal kinetic energy of the ideal flow which would pass through a length

(or an area) equal to the energy thickness. Solving for ¢ yields

f,:.z, pV ,/.z_
='o] (P-_/_ dY- fo PVa¢

(pV3) :' dY (7-6)

Ratios of the aforementioned thickness terms are also used as basic

boundary-layer parameters. The form factor H is defined as

U = - (7-7)
0

Substituting equations (7-2) and (7-4) into equation (7-7) and defining a

dimensionless distance y as

Y
y = -- (7-8)

yields

1 1

d,-/0
(pW)f$

H - (7-9)

fo I pV . [i pV 2(_-): aY-Jo (p-_): dy

An energy factor E is defined as

E= -_ (7-10)
O

Substituting equations (7-6), (7-4), and (7-8) into equation (7-10)

yields
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_o_ pV , fl pV _ dy
(_-)i. aY-Jo (pv3),_

E=

1 p V _o 1 dv(pV_)f.

(7-11)

Velocity profiles for turbulent flow are often represented by a power
profile of the type

V
-y_ (7-12)vj.

where the value of the exponent n is most often between 0.1 and 0.25.

Note that this power profile is here expressed as YL while the same

profile in chapter 6 (eq. (6-47)) is expressed as y_/n. The exponent ex-

pressed as 1In is consistent with general boundary-layer theory usage.

The exponent expressed as n, however, is consistent with reference 1,
wherein the equations that follow are derived. Therefore, the specific

numerical value to be used for n will depend on the form being used for

the exponent.

With this velocity profile, equations (7-9) and ( 7-11 ) can be integrated
in series form, and the form and energy factors for turbulent flow can be

expressed in terms of the exponent n and the free-stream eritical velocity
ratio V/Vcr. The resulting equations derived in reference 1 are

1 3At, 5A_,

H- (7-13)

and

E=

1 AI. A_.

(n._F1)(2n+l)_-(3n+l)(4n+l) T (5n_F1)(6n+l) t-'..

1 A I,2 (n+l)_3n+l)+(3n+l)(5n+l)+

]

(5n+l) (7n+l) J

where

1 A s,

(n+l) (2n+l) + (3n+l) (4n+l)
+

AL
(Sn+ 1) (6n+l) +""

AI. - _- 1

(7-14)

(7-15)
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and _, is the ratio of specific heat at constant pressure to specific heat at

constant vMume, and Vcr is the fluid velocity, in m/sec or ft/see, at the

critical (Mach 1) flow condition. For incompressible flow, where V/V,

approaches zero, equations (7-13) and (7-14) reduce to

and
H,,c=2n+ l (7-16)

2(2n-F1)

E,,¢- 3n+-----_ (7-17)

Values of the form and energy factors for turbulent compressible flow

are shown in figure 7-3 for V/V, varying from 0 to 1.4 and n varying
from 0 to 1.5. It can be seen that the form factor varies much more than

does the energy factor. For any constant exponent n, the energy factor
is almost independent of V/V,.

The boundary-layer parameters just presented are general and can

refer to a boundary layer on any type of body. They are directly useful in
certain aerodynamic work. For instance, the drag of a body can be ob-

tained directly from the momentum thickness. In turbine work, however,

where the flow is confined to the physical boundaries of the blade row, it is

simpler and more meaningful to express the losses as a fractional part of

the ideal quantities that could pass through the blade row. The thickness

parameters so expressed are herein termed "dimensionless thickness

parameters" and are defined on the basis of zero trailing-edge thickness.

W

t.

Free-st ream
critical-

velocity

ratio,

(VNcr)fs

r0
///- 0.6

-- 1.0 PowernZ 2 /////r
// , 1.4 7 ,-0 used in

.... .' ' velocity

_k _ ,,-O.I0 " equation

1.81-\\\ \
I "__ ro.5o ,-o75 _l.oo/ -_-_ _ , " r125

.... , /. /-iSO].4| I r--_T- i , I
1 2 3 4 5 6 7

Formfactor,H

FIGURE 7-3.--Effect of compressibility on variation of energy factor with form factor.

(Data from ref. I.)
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t 5

°1a

FIGURE 7-4.--Nomenclature for trailing-edge region.

These dimensionless thickness parameters must represent the sum of the

suction- and pressure-surface thicknesses.

With the assumption that flow conditions in all channels are the same,

the dimensionless thickness parameters are obtained by dividing the

losses in flow, momentum, and energy for a single blade-row channel by

the corresponding ideal quantities that could pass through one blade-
row channel. The total losses for one channel, as indicated in figure 7-4,

are composed of the suction-surface loss plus the pressure-surface loss, or

8tot = 8.+8p (7-19)

4J_ot--_b.+ _, (7-20)

where the subscripts tot, s, and p denote total value, suction-surface value,

and pressure-surface value, respectively. Thus, in terms of the previously

defined boundary-layer thicknesses, the dimensionless boundary-layer

thicknesses are expressed as

$,o,(pV)f. _,°,
$*= - (7-21)

s cos a(pV)f, s cos a

#,o,(pV2)/. 0,o,
#* = - (7-22)

s cos a(pV2)/, s cos a

_to_
_b*.... (7-23)

8 COS
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dimensionless displacement thickness
dimensionless momentum thickness

dimensionless energy thickness

blade spacing, m; ft

fluid flow angle from axial direction, deg

Equations (7-21), (7-22), and (7-23) express the losses in flow, momen-

tum, and energy, respectively, as fractions of their respective ideal quanti-
ties for the blade row if the trailing-edge thickness is assumed to be zero.

These equations can be subscripted to apply at either station la, within
the trailing edge, or station 1, beyond the trailing edge.

BLADE-ROW LOSS COEFFICIENTS

As mentioned previously, the losses are to be expressed in terms of

kinetic-energy loss coefficients. In this section, methods for evaluating the
friction, trailing-edge, and mixing losses and expressing them in terms of

the kinetic-energy loss coefficients will be presented.

Surface-Friction Losses

The kinetic-energy loss coefficient _1,, defined as the loss in kinetic

energy as a fraction of the ideal kinetic energy of the blade-row actual

flow, can be expressed in terms of the boundary-layer dimensionless
thicknesses as

*
_l.s cos a_. (pV 3)i,,1a

e_"-- (s cos al.--_*as cos ale--t) (pVa)1.a, (7-24)

where t is the blade-row trailing-edge thickness, in m or ft. (Refer to fig.

7-4 for the nomenclature in the region of the trailing edge of the blade.)

Since this coefficient is referenced to station la, just within the blade-row

trailing edge, it represents only the surface-friction loss. If a trailing-edge
dimensionless thickness is expressed as

t
t* = _ (7-25)

S COS O_la

equation (7-24) reduces to

$_°= 1 --$*.-- t* (7-26)

In order to evaluate the loss coefficient e_. from equation (7-26), it is

necessary to know the values of the dimensionless energy thickness _b_*_
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and the dimensionless displacement thickness 51"- These can be evaluated
either experimentally or analytically, as will be discussed herein.

Experimental determination.--In determining experimental loss values,

it is impractical to measure the density and velocity directly. Instead,

pressure data are taken, and the density and velocity are related to

pressure functions. The pressure data required for computing the friction

loss consist of (see fig. 7-1) the upstream total pressure p0', the blade-exit

static pressure pl., and the total-pressure loss survey data po'-p'_o for one

blade space Since the dimensionless boundary-layer thicknesses express
the losses of the blade row as a fractional part of the ideal quantities which

could pass through the blade row, the dimensionless displacement thick-

ness can be expressed in terms of the flow across one blade pitch as

m

s cos al,(pV)i,a,--t*s cos al,(pV)/,a_-eos al_ fo (pV)I. du

_1"= (7-27)
s cos al,(pV)I,._,

where u is the distance in the tangential direction, in m or ft. Equation
(7-27) simplifies to

C)61"=l-t,-[ .v d (7-28)
_0 la

In a similar manner, the dimensionless momentum and energy thick-
nesses can be expressed as

81"=

1 _ 1

(PV2)I,,I=

i 1 V (:) (7-29)

and

1 U 1

*
_/la

(pI.V].) 1=

V _ pV
=fo [1-- (V-_I,)I,] (_),, d (u) (7-30)

Assuming that the total temperature T' and the static pressure p_ in
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the boundary layer are the same as in the free stream, the density ratio

(P/Pl.) 1_ can be related to the pressure ratio p_./po t as follows: From the

isentropic relation,

(_),. = \_]1. (7-31)

p "p ,,1Iv

Since ' ' ' ' ' 'p1..1.=po and pidpl..1,,--pl°/po (from the ideal gas law, with

T'I.= T'I.._.= To'), division of equation (7-31) by equation (7-32) yields

The velocity ratio (V/VI.)_. can be related to the pressure ratios

(pip') _. and p_Jpo' as follows: From the total-temperature definition and

isentropic relation, equations (1-51) and (1-52) of chapter 1, we can
write

V 2 T (p _(,-1)/,
2gJcvT , l-v-- 1-\_/ (7-34)

conversion constant, 1; 32.17 (lbm) (ft)/(lbf) (sec 2)
conversion constant, 1; 778 (ft) (lb)/Btu

specific heat at constant pressure, J/(kg) (K); Btu/(lb) (°R)

where

g
J

Cp

Subscripting equation (7-34) once for station la and again for free-stream

values at la, dividing the first of these equations by the second, and

recalling that p'] .,_. = po' and T_ .,_°= T'I,, yields

1- --;-
\PxJV

,,-,,,,

With the density and velocity ratios expressed in terms of the measured

pressures by equations (7-33) and (7-35), it is now posaible to integrate

equations (7-28), (7-29), and (7-30) and evaluate the dimensionless

boundary-layer thicknesses. Then, the kinetic-energy loss coefficient _1.

can be computed from equation (7-26).

The kinetic-energy loss coefficient thus determined is a two-dimensional
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coefficient; that is, it is based on data either from a two-dimensional

cascade or from a constant radius of an annular cascade. (The annular

cascade can be, and often is, the full stator or rotor from a turbine.) In

order to obtain a three-dimensional loss coefficient for a blade row, data

are taken at a number of radii sufficient to adequately cover the annulus,

and the two-dimensional dimensionless boundary-layer thicknesses are

calculated as shown previously for each radius. Three-dimensional bound-

ary-layer thicknesses are then obtained by radial integration from hub

to tip:

L " 5* ( pV ) ]. ,I. cos al. r dr
h

5* --
la,3D --

" (pV) s.,l.cosa_ r dr
h

(7-36)

' O_(PV2)/.,t_ cos alo r dr

0_,,D= (7-37)

' (pV2) [.,,_ cos at. r dr

' _b*a(PV') /.,1. cos alo r dr

_b*,,D-- (7-38)

., (PV3) s.,l. cos alo r dr
k

In terms of the measured pressures, these integrals are expressed as

"'c.(p,o),/,Pl (p_o_(v-_)Iv]_/s
L,, L -\_/ J cos ala r dr

51",,D-

S,:'<.,=>,,.[,_c.-v'-""l'"\_I j cosal.rdr

(7-39)
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, e*(p,_) '/* 1--\_ot ] jcosai.rdr

", [1_ fpl.y*-"/_]
L, (PI')I/" L \p01/ .] cosal.rdr

(7-40)

L, _bl*'(P':)l/" L \_/ 2 cosaiordr

_bi.,aD-- (7--41)

L:' (P'<')'7"t[ 1-fpi"_¢'r-')/'r1311\_/ j cos a,: r dr

The three-dimensional kinetic-energy loss coefficient is then obtained

in a manner similar to equation (7-26) :

_la,$D

_i.,3D _ 1 -- _*o,ID-- t,.* (7--42)

where t,* is the trailing-edge dimensionless thickness at the mean radius

and is used to represent the average value for the blade row.
Analytical determination.--The kinetic-energy loss coefficient ll. can

also be evaluated with the use of analytically determined boundary-layer

thickness parameters. While not as reliable as experimental values, ana-

lytical values are much less costly and time consuming to obtain. Ana-

lytical methods for calculating the basic boundary-layer parameters are
discussed and referenced in chapter 6. The boundary-layer solutions are

not simple, and the better methods require computer solution. Boundary-

layer computer programs currently in use at the NASA Lewis Research

Center include one (ref. 2) based on an integral method solution and
another based on the finite difference method of reference 3.

An equation used in the study of reference 4 to compute turbulent

boundary-layer momentum thickness was

01a

0.231

<,+-,->:_.c.,.,.

×Io
!

l-f,>v ]o.,--- -- (1 -As.) °'_7 dx
Lkp v=J/. \V<,ls. J ,,pvIs.

lO O,Sli(ln+i)

0.7886

(7-43)
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where

AI° parameter defined by equation (7-15)

x distance along blade surface from forward stagnation point, m; ft

l blade-surface distance from forward to rear stagnation point,
m; ft

viscosity, (N) (sec)/m2; lb/(ft) (sec)

The development of this equation is presented in reference 4. It is as-

sumed that the boundary layer has a power-law velocity profile. In

reference 4, the exponent n was obtained from the referenced equation

1TM1 2.6 x (7-44)
n LkP- lya _I

Equation (7-43) must be evaluated for both the suction and pressure

surfaces of the blade. The free-stream velocities and densities required for

equations (7-43) and (7-44) are those free-stream values adjacent to the

blade-surface boundary layers. These can be obtained by any of the
channel flow analysis techniques discussed in chapter 5.

Values of the form factor H as required in equation (7-43) and of the
form factor H,_ and energy factor EI_ at station la for each surface can be

obtained from equations (7-13) and (7-14). With 0_a, Hla, and E,_ known

for both the suction and pressure surfaces, the various boundary-layer
thickness parameters and the kinetic-energy loss coefficient $_a can be

evaluated from the equations presented earlier in this chapter. For the

turbine stator blade studied in reference 4, the analytical values, as

calculated from equation (7-43), of the boundary-layer momentum

thickness for the blade and for the two surfaces individually were reason-

ably close to the experimental values. In general, however, results ob-
tained from equation (7-43) will not be as accurate as those obtained
from the computer programs of references 2 and 3.

Three-dimensional boundary-layer parameters could be calculated

directly from equations (7-36) to (7-38). The two-dimensional thickness

parameters would have to be analytically determined at a number of radii

sufficient to establish the variation over the blade length and would also

have to be determined, somehow, over the end-wall surfaces. Such a

procedure would require considerable effort, so the simplified method of
reference 5 for predicting three-dimensional losses from two-dimensional

mean-section losses is commonly used. Results obtained by this method
have shown good agreement with experimental results.

In the method of reference 5, the following assumptions are made:

(1) The average momentum loss for the blade surface can be represented

by the dimensionless momentum thickness at the blade mean section;
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Approximate
areaofone

FIGURE7-5.--Schematic diagram of equivalent two-dimensional blade used to calcu-
late the effect of end-wall area on blade loss.

(2) the momentum loss per unit area on the inner and outer end walls is

the same as the average momentum loss per unit area on the blade surface;

and (3) the blade configuration can be satisfactorily approximated by an

equivalent two-dimensional blade, as shown in figure 7-5, having a con-
stant cross section, spacing, and stagger angle equal to those at the mean

section of the given blade. The surface area of one equivalent blade
(see fig. 7-5) is

A b= 2ch (7-45)
where

Ab total surface area (sum of suction-surface and pressure-surface
areas) of one blade, mS; ft 2

c blade chord, m; ft

h blade height, m; ft

The inner and outer end-wall area for one passage is

where

A_

Aw = 2sc cos a, (7-46)

total surface area of passage end walls (sum of inner and outer

end-wall areas), m2; ft 2

a, blade stagger angle, deg

Now, taking the average momentum loss 0"1_,,_over the blade radial length
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and modifying it to include the end-wall losses yields

\{Ab+A_--O*.Ab/ ( scosa,\
01*m) = O*,o,m - +--T--) (7-47)

The three-dimensional energy and displacement thickness parameters
are then calculated as

*= EIo,.,OI_,3D (7-48)

and

la,3D- Hla,,.Ola,aD (7-49)

Mean-section values are used for the energy and form factors. Although
the energy and form factors were originally defined in terms of individual

boundary-layer thicknesses, it is indicated in reference 4 that they can be
satisfactorily used as is done in equations (7-48) and (7-49). The three-

dimensional kinetic-energy loss coefficient is then obtained from equa-
tion (7-42).

Trailing-Edge Loss

The kinetic-energy toss coefficient 6e that represents the loss associated

with flow past the blade trailing edge can be determined either experi-
mentally or analytically.

Experimental deterrnination.--Experimental values of blade trailing-
edge loss coefficient _t, are obtained from differences between experimental

two-dimensional loss coefficients _t, which include both surface-friction

loss and trailing-edge loss, and loss coefficients _1_,which include only the
blade surface-friction loss. Thus,

= (7-50)

Loss coefficients _o, which include only surface-friction loss, are ob-

tained as described previously. Loss coefficients *_, which include both

surface-friction loss and trailing-edge loss, are determined in exactly the

same manner except that the total-pressure loss and static pressure are
measured at different locations. The surface-friction loss coefficients were

based on data obtained just within the blade trailing edge at station la,

where the trailing-edge loss has not yet occurred. To determine the loss

coefficients which include both surface-friction loss and trailing-edge loss,

the measurements must be made at a location just downstream of the

blade row, corresponding to station 1 in figure 7-1, where the trailing-edge

loss, but little mixing, has occurred.

Analytical determination.--In reference 6, experimental drag coefficients

are presented for a large number of surface discontinuities. Included in

the reference are experimental data for sheet-metal joints of different
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{pV21fsl2g _i

v/////////,_////////////////////z

FIGURE 7-6.--Schematic diagram of body in boundary layer.

geometry, bolt and rivet heads of different geometry, and airfoil trailing

edges. It is indicated that the pressure-drag loss due to the discontinuity

behaves similarly regardless of the flow direction over the discontinuity.

Therefore, the loss due to flow past a trailing edge will be treated ana-

lytically as if the loss were due to a body placed in the path of a boundary

layer.
As indicated in reference 6, the drag of a small body of height h, equal

to or less than the full boundary-layer height 5].m placed in a turbulent

boundary layer, as shown in figure 7-6, corresponds approximately to the

effective dynamic pressure of the part of the boundary layer equal to the

height of the body. Thus,

where

D

h

CD

D = q_//hCD (7-51)

drag on body, N/m; lb/ft

height of body, m ; ft

drag coefficient

and the effective dynamic pressure q,z: is expressed as

1 foh pV 2dY (7-52)qe:/=h 29

Drag is related to momentum thickness as

D= O(pV_):" (7-53)
g

Therefore, a dimensionless momentum thickness 0"_ representing the

trailing-edge loss is obtained by combining equations (7-51) and (7-53)

with a lbroperly subscripted form of equation (7-22) :
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O,te __ qey/hCD (7-54)

(pV2):.
8 COS Oq --

g

The flow angle _1 is related to the angle al_ as discussed in chapter 4 (eqs.
(4-26) and (4-27)).

Before equation (7-54) can be evaluated, the effective dynamic pres-

sure must be determined. The ratio of the effective dynamic pressure to
the free-stream dynamic pressure is equal to

q:. h dY (7-55)

For turbulent flow, the variation of velocity in the boundary layer can be

expressed with the use of the simple power profile presented previously.
Combining equations (7-8) and (7-12) yields

V:. \_/,m/ (7-56)

Assuming that the total temperature and static pressure in the boundary

layer and frec stream are the same and using the ideal gas law and equa-
tion (1-64) of chapter 1 gives

To' "y+ 1. Vcr.:.

To' 7+1 I7_

(7-57)

Substituting equations (7-56) and (7-57) in equation (7-55) and using
the parameter A:. defined by equation (7-15) yields

h

qe:] 1 (I_A:.) 1 ( Y _'"
qf.-h \_t,,t,./ dY (7-58)

(YY I
l-A:. \6:../ J

o

Performing a binomial expansion and integrating then gives

r/h v- 1 : h A s.
q'f:-(1-A:.)q]. [_6_z,) 2-_+_5-_,m) (4n+l)

+( h_']'" A_-. )+...] (7-59)\6:,,u/ (6n+l
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Substituting equation (7-59) in equation (7-54) and using trailing-edge
thickness t in place of body height h finally yields

. 1 A,.tCD (l--A/,) +
Ot*-2s cos ax L\_f, zt/ _ _t (4n+l)

+ (6n+l_+... (7-60)

The boundary-layer thickness _i,u to be used in equation (7-60) should

be the sum of the suction- and pressure-surface values.

Equation (7-60) is for compressible flow. In many cases, at least when

n is not well known, the following simplified equation, which assumes

incompressible flow and n=l/_ (commonly used for turbulent flow),

is adequate:

e*=o.3752/t_ re. (7-61)
_futl 8 COS Oil

The information in reference 6 indicates that the drag coefficient CD can

be set equal to 0.16 for a rounded trailing edge and 0.22 for a square

trailing edge. The corresponding values reported in reference 7 and con-

verted to the same basis as equation (7-61) arc 0.14 for a rounded trailing

edge and 0.22 for a square trailing edge. Frequently, _,o, instead of _iuu

will be available. In such a case, for incompressible flow,

/f/,,u = (5,ot(_-1-1) (7-62)

and for compressible flow,

_tot

_fuu (7-63)

[ 1 A f, A_,
1--(l-A/,) _n-_+3-_+5-_+- .-)

Equations (7-60) and (7-61) give the fractional loss in blade-row

momentum due to the blade trailing edge. To find the corresponding

kinetic-energy loss coefficient, it is necessary to find the fractional losses

in flow and kinetic energy. As a simple approximation, the form and energy

factors, evaluated from equations (7-13) and (7-14) for compressible

flow and from equations (7-16) and (7-17) for incompressible flow, are
used to obtain

_*e= H O*, (7-64)

and
* *

_b,, = EO,, (7-65)
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At station 1, which is just downstream of the blade trailing edge, fluid has

flowed into the area behind the trailing edge and there is no longer a void

due to trailing-edge blockage• Therefore, a kinetic-energy loss coefficient
is obtained as

¢*,
e,.= 1_8. _ (7--66)

This loss coefficient expresses the loss in kinetic energy as a fraction of the

ideal kinetic energy of the flow that would exist if the trailing-edge loss

were the only loss. The trailing-edge kinetic-energy loss coefficient for

incompressible flow is plotted against trailing-edge thickness in figure 7-7

for several values of the ratio of trailing-edge thickness to boundary-layer

thickness. This figure is based on the momentum loss as expressed by

equation (7-61). The flow loss associated with blade-surface friction is

not included in equation (7-66). Therefore, this trailing-edge kinetic-

energy loss coefficient is approximately, but not rigorously, additive with

the surface-friction loss coefficient. Expression of the combined friction
and trailing-edge loss in terms of a kinetic-energy loss coefficient is dis-
cussed in the next section.

o

c
"a

'E
b--

0,, /ii
//

•010-- J_ . 1

•_5_

0 .05 .10 .15

Dimensionlesstrailing-edgethickness,t*

Ratio of

trai li ng-edge

thickness to

boundary-layer

height,

t/_ull

FIGURE 7-7.--Effect of trailing-edge blockage on kinetic-energy loss coefficient. Form

factor H = 1.3; energy factor E = 1.8; drag coefficient CD =0.16.
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Combined Friction and Trailing-Edge Loss

As stated in the discussion of the trailing-edge loss, the boundary-layer

thickness parameters and a kinetic-energy loss coefficient expressing the

combined friction and trailing-edge loss can be obtained by making the

experimental measurements at a location corresponding to station 1,

which is just downstream of the trailing edge. In this way, we obtain

experimental values of $1", 01", and _bl* from appropriately subscripted

versions of equations (7-28), (7-29), and (7-30). The value of 61 is then
obtained as

$1- (7-67)
1 - $1"

Analytically, the boundary-layer thickness parameters at station 1 are

obtained by adding the surface-friction loss to the trailing-edge loss.

Before the friction and trailing-edge boundary-layer thickness parameters

can be added, they must be expressed on the basis of the same ideal flow.

The friction-loss dimensionless thicknesses at station la (_1", 01*, _bl*) are

expressed in terms of an ideal flow without trailing-edge blockage. How-

ever, there is a trailing-edge blockage at station la, where the ideal flow

with blockage must be comparable to the ideal flow at station 1, where

there is no blockage. Therefore, the friction-loss boundary-layer thickness

parameters are adjusted to account for the true (with blockage) ideal
flow as follows:

$, _$. ( s cos,l, _ (7-68)
1,I- lo \S COS o la--g/

and

0" -0" ( s c°s a_° (7-69)

/ \
, , ( s_cos al___) (7-70)

_1.1 = ¢/1. \s cos al.-t�

where the subscript f refers to the loss due to surface friction. Adding the

friction and trailing-edge loss parameters then yields the combined loss

parameters at station 1:

* * (7-71)$1" = $1,i+$ t.

01"= 01,f_O,. (7-72)
and

_1* * *= _bl,y_-_b,, (7-73)

And the value of _1 is then obtained from equation (7-67).

113



TURBINE DESIGN AND APPLICATION

After-Mix Loss

The after-mix loss is the total loss that includes the surface-friction loss,
the trailing-edge loss, and the mixing loss. The after-mix loss coefficient

$2is determined as described in this section, and the mixing loss, if desired,
is obtained by subtracting the previously determined St from $2.

To determine the after-mix loss experimentally would require that the

pressure measurements be made downstream of the blading where com-

plete mixing has occurred. This is impractical for several reasons: (1)

The length for complete mixing, while quite long, is unknown; (2) the
after-mix loss would have to be corrected for side-wall friction for the

mixing length, thus leading to possible error; and (3) after the flow had

mixed, values of after-mix po'-p2' would be constant and small enough

that the possibility of measurement error would be relatively large. For
these reasons, values of after-mix loss are obtained analytically with the

use of either experimentally or analytically determined before-mix
(station 1) loss parameters.

The basic equations for determining the after-mix conditions are

those for conservation of mass, momentum in the tangential direction,

and momentum in the axial direction during mixing. Equating the mass

flow rate before mixing (station 1) and after mixing (station 2) yields

fo (pV)l cos d =cos a2(pV)2
(7-74)

From conservation of momentum in the tangential direction we get

f0 (pV2)t at at a_ cos a2 (pV2)2 (7-75)
=sin

and from conservation of momentum in the axial direction we get

f 1 (:)a 4 ptd q- (pV 2) costard (7-76)

Although these equations are subscripted for two-dimensional flow, they

can also be applied to three-dimensional flow by integrating radially.

If experimental survey data were available at station 1, the integrals in

the above equations could be directly evaluated even with variations in

static pressure and flow angle. These conservation equations could be

written for any before-mix location at which data were available, and then

used to evaluate the after-mix loss coefficient. In the case where the

before-mix station is not station 1, it would not be possible to determine
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the mixing loss completely by experimental means. In most cases, how-

ever, it is only the final after-mix loss that is desired, and survey measure-

ments are usually made a little farther downstream of the trailing edge,
where angle and pressure variations have somewhat damped out.

If static pressure and flow angle are constant across station 1, it is

possible to express equations (7-74) to (7-76) in terms of the previously

used boundary-layer parameters, as was done in reference 1. The analysis
herein differs from that of reference 1 only in that the before-mix station

used in reference 1 corresponds to station la herein. Equation (7-28)

subscripted for station 1, where there is no trailing-edge void, can be
written as

,fo (pY)Id =(1-_l*)(pV)/,n (7-77)

Subscripting equation (7-29) for station I and combining it with equation
(7-77) yields

,fo(pV2)l (1- _l*--0x*) (pVZ)/°.l (7-78)

Substituting equations (7-77) and (7-78) into equations (7-74) to
(7-76) yields the following equations for conservation of mass and

momentum in terms of the boundary-layer parameters previously deter-
mined:

cos al (1 - _1") (pV) Io,1 = cos a2 (pV) 2 (7-79)

sin al cos al(1--Sl*--01*) (pVS)1,.1=sin as cos as(pVS)s (7-80)

Opt+cos s al(1-_*-0_*) (pVS) i,,1 = cos s as(pV2)s+gps (7-81)

These equations, along with the ideal gas law and the conservation-of-

energy equation (Ta'= Ts'), can be solved simultaneously as shown in

reference 1 to obtain Ss, the after-mix kinetic-energy loss coefficient,
for both compressible and incompressible flow.

For incompressible flow, the solution for _ is

sin s al (1 - _I*- 01"\ s__$--_ /'+cos a,(1-_,*)'

_--1 l+2cosSal[_(l__,)2_(l__, 8,)_ ] (7-82)

For compressible flow, no explicit solution was found, and the following
steps are required to obtain Ss:
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(1) The parameters C and D are computed from

3"-I-1 V _
(1- A,.n) --_-+cos' aff l-6,*-Ox*) (_-_.),..,

C-
V

e°s at(1 --_1") (G)f., 1

V sin al
D= V,, 1,.1 \ 1--61" ]

(2) The quantity (V,/V¢r)2 is obtained from

(3) The density ratio (p/p')2 is obtained from

3,-1

(4) The total pressure ratio p2'/po' is obtained from

(7-83)

(7-84)

(7-85)

(7-86)

p0 _

cos al(1 --_1")
p Vc, l,,t

pV,,
'V\p ,r/2

(7-87)

(5) The pressure ratio (p/p')2 is obtained from

P P(;),
(6) Finally, $2 is obtained from

(7-88)

P°'_ (_-_)/_' 1
ps-;]

6-

po'_ (_-t)/_
kp2 /

(7-89)

Values of 6 include all the blade-row loss; that is, the frictional loss of

the blade row, the trailing-edge loss, and the mixing loss. Values of $1

116



BOUNDARY-LAYER LOSSES

include all the blade-row losses except mixing loss. Therefore,

_._, = _- _ (7-90)

where Sm_ is the fractional loss in available energy due to mixing.

BLADE-ROW LOSS CHARACTERISTICS

In this section, experimentally and analytically determined losses of

the various types considered will be presented and compared, and the

effect of blade-row geometry on losses will be discussed.

Distribution and Comparison of Losses

Figure 7-8, taken from reference 8, compares experimentally and

analytically determined values of kinetic-energy loss coefficients at three

different angle settings for a given stator and at three stations repre-

senting different losses. The loss coefficient _x.... obtained just within the
blade trailing edge, represents the surface-friction loss at the mean

(arithmetic mean radius) section; the coefficient $1.,, obtained just

beyond the trailing edge, represents the friction loss plus trailing-edge loss
at the mean section; and the coefficient _.3D represents the total loss for

the annulus including blade and end-wall friction, trailing-edge drag, and

mixing. In general, agreement between the experimental and analytical

loss eoefiicients is reasonably good.

.0_

.0]

(

-_ .o2

¢..

_ 0 Experimental results

[2 Analytical results

2,30 Mixin_and

""""_- _'_'1_ end-wall losses
el, m Tralli_-

edgeloss
...-------'_ -_ ela, m

_ Mean-section

bladesurface
! friction loss

0 I I J
lO I_ DO

Percentstatorateasettlno

F1Oua_. 7-8.--Comparison of experimental and analytical loss coefficients for different

stator ares settings. (Data from ref. 8.)
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FIOURE 7-9.--Variation of loss coefficients with velocity. (l)ata from ref. 9.)

Figure 7-8 gives some idea of the distribution of losses in a stator blade

row, but does not separate the mixing and end-wall losses. Figure 7-9,
taken from reference 9, shows the variation in loss coefficient with ve-

locity. Loss coefficient is seen to decrease slightly with increasing velocity.
This figure also shows separately the mixing and end-wall losses, as well
as the other blade-row losses.

In this particular case, the friction loss was about 2 percent of the stator

ideal energy and about one-half of the total stator loss. The trailing-edge

loss was about one-quarter of the total loss. In general, the trailing-edge

loss will vary with trailing-edge blockage as was shown in figure 7-7.

The end-wall loss, which was about 15 percent of the total loss for this
ease, will vary with the design, depending primarily on radius ratio and

spacing. The mixing loss made up the remaining 10 percent of the total

loss. The loss breakdown will, of course, vary with the stator design, but
the comparison does indicate that each of the losses may be of con-

sequence.

Effect of Blade-Row Geometry on Losses

A study of the effect of turbine geometry on turbulent-flow boundary-

layer loss is presented in reference 10. In that study, the assumption was
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made that the momentum loss per unit blade surface varies as the inverse

of the chord Reynolds number to the m power:

_tot

-- _: ReT" (7-91 )
C

where Re¢ is a Reynolds number based on blade chord c. Expanding

equation (7-91) by multiplying and dividing by like terms, substituting

into equation (7-22), and then using equation (7-47) to express the

three-dimensional effect yielded an equation of the form

,,; Fl+cos..l (7-92)

,(-:)
where Reh is a Reynolds number based on blade height h. As indicated,

the three-dimensional momentum thickness parameter can be expressed

as a function of the geometric variables--height-to-spacing ratio h/s,
blade solidity c/s, and height Reynolds number Reh. The reference value

of OtoJC, as explained in reference 9, is based on the minimum loss for a

given solidity and, therefore, becomes a function of solidity. The ex-

ponent m is set equal to _j in the analysis.

In reference 10, the derivative of the dimensionless momentum thick-

ness 0a* with respect to each of the geometric variables was obtained in
order to find the minimum-loss value of each variable in terms of the other

variables (there is no minimum for height Reynolds number). With the

optimum values known, the relative variations in momentum loss around

the minimum values were then determined. The results of the analysis

from reference 10 are shown in figures 7-10, 7-11, and 7-12. Also shown in

each figure is the nature of the geometry variation associated with the

change in each variable.

Figure 7-10 shows that a wide variation (50 percent or more) in h/s

value around the optimum causes little increase in momentum loss. This

results from the two counteracting effects of changes in chord Reynolds

number and end-wall area. Figure 7-11 shows that the solidity of a blade

may be varied considerably from optimum with some, but not excessive,

loss. Comparison of the results in figures 7-10 and 7-11 shows that the

loss is more sensitive to solidity than to the height-to-spacing ratio. The

curve shape of figure 7-11 reflects also the counteracting influences of

chord Reynolds number and end-wall area.
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Figure 7-12 shows the variation of momentum-thickness ratio with

height Reynolds number ratio. While the figure indicates a change in

Reynolds number due to change in geometry, the change in Reynolds

number could also result from change in inlet flow conditions. The curve

shape, then, results from the loss being inversely proportional to the

Reynolds number to the m=_ power. These results show that an in-

crease in height Reynolds number results in improved performance. The

height Reynolds number is sometimes used in correlating the performance

of different turbomachines.
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SYMBOLS

A, surface area of one blade, m2; ft 2

AIo parameter defined by equation (7-15)

A. surface area of end walls for one passage, m2; ft 2

C parameter defined by equation (7-83)
C_ drag coefficient

c blade chord, m; ft

cp specific heat at constant pressure, J/(kg) (K) ; Btu/(lb) (°R)

[drag, N/m; lb/ft
D [parameter defined by equation (7-84)

E energy factor
kinetic-energy loss coefficient

0 conversion constant, 1 ; 32.17 (Ibm) (ft) / (lbf) (sec 2)
H form factor

[blade height, m; ft
h _height of body placed in boundary layer, m; ft

J conversion constant, 1; 778 (ft) (lb)/Btu

l blade surface distance from forward to rear stagnation point,

m; ft

m exponent in equation (7-91)

n turbulent boundary-layer velocity profile exponent

p absolute pressure, N/m2; lb/ft _

q dynamic pressure, N/mS; lb/ft _

Re_ chord Reynolds number
Re_ height Reynolds number

r radius, m; ft

s blade spacing, m; f_

T absolute temperature, K; °R

t trailing-edge thickness, m; ft

u distance in tangential direction, m; ft
V fluid velocity, m/sec; ft/sec

x distance along blade surface from forward stagnation point,

m; ft

Y distance from surface normal to boundary layer, m; ft

y distance from surface normal to boundary layer expressed as

fraction of boundary-layer thickness

a fluid flow angle from axial direction, deg

a, blade staggerangle from axial direction, deg

-y ratio of specific heat at constant pressure to specific heat at
constant volume

5 boundary-layer displacement thickness, m; ft

_/., boundary-layer thickness, m; ft
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boundary-layer momentum thickness, m; ft

viscosity, (N) (sec)/m2; lb/(ft) (sec)

density, kg/m_; lb/ft 3

boundary-layer energy thickness, m ; ft

Subscripts:

cr critical flow conditions

eft effective

f friction

fs free stream
h hub

i ideal

inc incompressible
m mean section

rain minimum

mix mixing

opt optimum

p pressure surface

ref reference
s suction surface

t tip

te trailing edge
tot total

x axial component
0 blade-row inlet

1 just beyond trailing edge of blade row

la just within trailing edge of blade row
2 downstream uniform state

3D three dimensional

Superscripts:

absolute total state

* dimensionless value
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CHAPTER8

MiscellaneousLosses

By RichardJ. Roelke

In the last chapter, the boundary-layer losses associated with the flow

process in the blade channel were discussed. To determine the overall

design-point efficiency of a turbine, other losses must also be considered;
these include tip-clearance loss and disk-friction loss. In some instances,

these losses represent a very small part of the turbine output and may be

neglected; however, in other instances, these losses can be of such mag-
nitude as to influence the selection of the turbine design point. The sum

of these losses normally comprises all the losses that are considered in the

design of a full-admission axial-flow turbine. If, however, a partial-

admission turbine is being considered, there are additional losses that

must be included. The partial-admission losses usually considered are the

pumping loss in the inactive blade channels and the filling-and-emptying

loss in the blade passages as they pass through the admission arc. Finally,

a loss that occurs at off-design operation of any turbine is the incidence

loss, which will also be covered herein.

TIP-CLEARANCE LOSS

Because a turbine must operate with some clearance between the tips

of the rotor blades and the casing, some fraction of the fluid leaks across

the tips, thus causing a reduction in turbine work output. This leakage

loss is affected, first of all, by the nature of the tip geometry; that is, by

the amount of radial clearance, by recesses in the casing, and by tip

shrouds. For a given tip geometry, the amount of blade reaction affects

the leakage loss, since a large pressure difference across the tip (high

reaction) causes more higher-kinetic-energy flow to leak through the tip
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gap from the pressure side to the suction side of the blade. With an un-

shrouded blade, this leakage flow not only causes a loss due to its own

reduced work, but also causes an unloading of the blade, primarily in the

tip region. Analytical evaluation of the drop in turbine efficiency caused

by tip-clearance leakage is inherently difficult because of the complex flow
problem. Several empirical expressions for clearance loss have been

developed, and some of these are summarized in reference 1; however,

they are rather complicated, and the author states that none is entirely
satisfactory.

A number of tests have been made at the NASA Lewis Research Center

to determine the effect of tip clearance and tip geometry on axial-flow
impulse and reaction turbines. An examination of some of the results of

these tests helps to obtain a better understanding of the tip-clearance

loss. Figure 8-1 shows the angle traces at the blade exit of a 5-inch single-

stage turbine (ref. 2). Two things to be noted from the angle traces are

that the flow in the clearance space and near the tip was not fully turned,

i+

Ro_lon_

Tipclearance,
percentof

pessageheight Axl ,
_ direction"0 1.2

A 3.1o ,0
o if- 

i Innerwall OuterwallIl I I J i
.6 .7 .8 .9 1.0

Ratioof hubrNlus totipradius

FIovRz 8--1.--Variation of exit flow angle with raditmratio for four rotor tip clearances.
(Data from ref. 2.)
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J Turbine

J 0 1-Stage, reaction (ref. 2)

I [D 2-Stage, reaction (ref. 3)

Z_ l-Stage, impulse (ref. 4)

J - - - Estimate (ref. 5) for ref. 2 turbine

l ----Estlmate(ref. 5)for ref. 4turbine

•

,o

!- al.g
'._ .N

.76 I I I I I I
0 .0_ .04 .06 .08 .10 .12

Tip clearance, fractinn n_ ,, _ =no hoinht

FIGURE 8-2.--Effect of tip clearance on efficiency.

even at the smallest clearance tested, and that underturning of the flow
increased with increasing tip clearance, and this effect occurred all the

way down to the hub. This underturning of the flow unloads the blade

aerodynamically and results in lower turbine output and efficiency. The

decrease in efficiency for this turbine, as well as for two others, is shown
in figure 8-2.

The solid lines in figure 8-2 represent test results from single-stage

(ref. 2) and two-stage (ref. 3) reaction turbines and from a single-stage

impulse turbine (ref. 4). All turbines were unshrouded. The importance
that the level of reaction plays in the clearance loss is clearly evident from

the figure. For the same ratio of tip clearance to blade height, the losses in

efficiency for the reaction turbines were about double that for the impulse
turbine.

The dashed lines in figure 8-2 are estimates of the efficiency losses for
the two single-stage turbines (refs. 2 and 4) as obtained from the curves

published in reference 5 (as fig. 1.6) and reproduced here as figure 8-3.

Extrapolation of the experimental data of figure 8-2 shows that figure 8-3
gives satisfactory estimates of tip-leakage loss for small tip clearances.
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Fmua_. 8-3.--Tip-clearance correlation for unshrouded blades• (Data from ref. 5.)

Reviewing the results shown in figures 8-2 and 8-3, it is apparent that the

loss in efficiency increases with increasing reaction, and for moderate to

large ratios of tip clearance to blade height, the loss is appreciable.

In addition to reducing the tip clearance, methods for reducing the tip-

leakage losses include recessing the casing above the blade tip while in-

creasing the blade height, and adding a tip shroud. These loss-reduction

schemes can be used either individually or in combination. The single-

stage impulse turbine of reference 4 was tested at several ratios of tip

clearance to blade height, both without and with the recessed casing and

the tip shroud. Figure 8-4 shows the three general configurations tested

in reference 4, and the turbine-performance results are shown in figure 8-5.

A clearer understanding of the performance characteristics is possible if

the loss mechanisms are considered. The factors affecting turbine work

for the reduced blade-height configuration as compared to a zero-clearance

configuration consist of (1) reduced blade loading area, (2) clearance-gap

leakage flow, (3) mixing of the leakage flow with channel throughflow,
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Recessedcasing_

I

Flow

blade

(b)

Tip shroud-_

',-Rotor

blade

(c)

(a) Reduced blade height (relative to (b) Recessed casing.

zero-clearance blade height).

(c) Shrouded rotor.

_FIOURE 8-4.--Tip-clearance configurations investigated for impulse turbine (ref. 4).

and (4) blade unloading (as a result of flow going from the pressure side

to the suction side). With the recessed-casing configuration, the blade

extended to the passage outer radius and was of constant height as the

clearance gap was changed by varying the amount of casing recess. There-

fore, the reduced blade loading area was eliminated, and the leakage flow
was reduced because of the indirect leakage path. With the shroud added

to the blade, the blade unloading was eliminated, and the leakage flow was

further reduced. Note from figure 8-5, however, that at tip-clearance
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FIGURE 8-5.--Effect of tip-clearance configurations on turbine efficiency. (Data from
ref. 4.)

fractions below some value, about 0.035 in this instance, the shroud no

longer provides an increase in efficiency. This can be attributed to an

increasing friction loss between shroud and casing as the clearance gap
is decreased.

The comparative results shown in figure 8-5 for different blade-tip
geometries are dependent upon that particular design and may not apply

to other turbines. This is particularly true of the shrouded blade, since

the leakage flow depends not only on the clearance span and pressure
difference but also on the number of seals used. With respect to the

recessed-casing configuration, it should be noted that the blade should not

extend into the recess. If it does, the overlapping section will just be
churning stagnant fluid and creating additional losses.

In summary, tip-clearance loss presents a complicated flow problem
influenced by many factors and is not easily predicted with consistent

accuracy. The clearance gap required for a turbine depends primarily on

diameter (larger clearance for larger diameter) and, as seen previously,
the loss increases as the ratio of clearance gap to blade height increases.
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For any given diameter, therefore, the tip-clearance loss increases with

increasing hub- to tip-radius ratio. It becomes increasingly difficult to

maintain a desired small ratio of clearance gap to blade height as the

turbine, and hence the blade height, becomes smaller. For a given radius

ratio, therefore, the loss is more severe for small turbines and less severe

for larger turbines. If tip leakage is considered to be a problem in a

particular case, it might be worthwhile to carry out tests to evaluate the

leakage effects.

DISK-FRICTION LOSS

The disk-friction loss (or windage loss) is due to the skin friction and

circulation of fluid between the rotating disk and the stationary casing. In

addition, some turbines for hot applications, for example aircraft engines,

have a small steady stream of lower-temperature gas that bathes and cools

the rotor disk. This cooling gas flows along the rotor-disk surface from

near the engine centerline outward to the base of the blades. The qualita-
tive nature of the flow patterns around rotor disks without and with

throughflow of cooling gas are shown in figure 8-6. Equations for es-

timating the associated losses are presented herein.

No Throughflow

For the case with no throughflow, as in figure 8-6(a), the thin layer of
fluid close to the rotating surface is thrown outward by centrifugal action

(a) lz!////_//!I

T

(b)

(a) Without throughflow. (b) With throughflow.
FIGURE 8-6.--Flow patterns for rotating disks.
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and returns via the stationary wall to the inner radius, thereby building

up a continuous circulatory effect. Consider an element of area on one
side of the disk

dA = 27rr dr (8-1)

where A is the area, in m _or ft 2, of one side of the disk, and r is the radius,

in m or ft, of the area element dA. The fluid shear stress r, in N/m _ or

lb/ft 2, acting over this area at the radius r produces a resisting torque to
the disk rotation of

dMo
-- = r2rr _ dr (8-2)

2

where Mo is the resisting torque, in N-m or lb-ft, for both sides of a disk

in the case of no throughflow. The shear stress can be expressed as

where

CI

g

P

Vu

C$

r=_g pVJ (8-3)

fluid shear-stress coefficient

conversion constant, 1; 32.17 (lbm) (ft)/(lbf) (sec 2)

density, kg/m3; lb/ft '_
tangential component of fluid absolute velocity, m/sec; ft/sec

At the disk surface, the fluid tangential velocity is

V_ = r_ (8-4)

where w is the angular velocity, in rad/sec. By substituting equation (8--4)

into (8-3), the total torque for both sides of the disk can be written as

"2

Mo= fo g Cypo_2r4dr (8-5)

where a is the disk rim radius, in m or ft. Performing the integration yields

w2a 5
Mo = CM.oP -- (8--6)

2g

where C.,o is a torque coefficient for the case of no throughflow. The disk-

friction loss expressed as power is then the torque times the angular

velocity:

AioW CM,o Pw'_a5 (8-7)
Pdl =-7 = 2gJ

where Pdy is the disk-friction power loss, in W or Btu/sec, and J is a
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conversion constant (equal to 1, or 778 (ft)(lb)/Btu). The form of

equation (8-7) that is found in most handbooks is

Paj = KdlpNaD 5 (8-8)

where

K_I disk-friction power-loss coefficient

N rotative speed

Dr disk rim diameter

A number of investigators have published values of the constant K_f in

equation (8-8) to be used for different circumstances, while others have

made small changes to the exponents to better fit the available data. The

wide assortment of semiempirical equations used to predict this loss is, no

doubt, due to variations of the test-apparatus geometry, the somewhat

oversimplified model from which equation (8-7) is derived, and the

existence of different types of flow that can occur in the space between the

rotor and the casing. One thing that can be noted from equation (8-7)

or (8-8) is that for a given blade speed, lower loss is obtained by having

a smaller diameter and a higher rotative speed.

An extensive investigation has been conducted (refs. 6 and 7) to deter-

mine the effect of chamber proportions on disk friction and to present a

clearer picture of the several modes of flow that may exist. In general,
four modes of flow, or flow regimes, can exist in the axial space between the

casing and the rotating disk, depending on the chamber dimensions and

the flow Reynolds number. The torque coefficient CM.o was evaluated

both theoretically and experimentally in each regime. A description of

each regime and the associated equations for the torque coefficient are as
follows:

Regime I: Laminar Flow, Small Clearance. Boundary layers on the
rotor disk and casing are merged, so that a continuous variation in

velocity exists across the axial gap s. Figure 8-7 (a) indicates the nature
of the variations in the radial and tangential components of fluid velocity

at a given radius in the gap. The best equation for torque coefficient, both

theoretically and empirically, is

2_ (s-9)
CM.o-- (s/a) R

where s is the axial distance, in m or ft, between disk and casing, and R is

the Reynolds number defined as

R =_a2p (8-10)

where _ is the dynamic viscosity, in (N) (sec)/m _or lb/(ft) (sec).
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FmuaF, 8-7.--Velocity patterns around rotating disks without throughflow.

Regime I I: Laminar Flow, Large Clearance. The combined thick-

ness of the boundary layers on the rotor and on the casing is less than the

axial gap, and between these boundary layers there exists a core of rot aN

ing fluid in which no change in velocity occurs. Figure 8-7(b) shows

the variations in the radial and tangential velocity components for this

case. The best theoretical and empirical equations for torque coefficient
are

VII
_q

C.v,o R1/2 (8-11)

where CII is a function of (s/a), as shown in figure 8-8(a), and
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FIGURE 8-8.--Evaluation of torque coefficients. (Data from ref. 6.)

CM,o-- 3.70 (s/a)_/1o (8-12)
RII2

respectively.

Regime III: Turbulent Flow, Small Clearance• The turbulent

counterpart of Regime I. The best theoretical and empirical equations

for torque coefficient are

0.0622

CM,o-- (s/a) '/4R'/_ (8-13)

and

0.O8O

CM,o= (s/a) l/eR1/4 (8-14)

respectively.
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Regime IV: Turbulent Flow, Large Clearance. The turbulent

counterpart of Regime II. The best theoretical and empirical equa-
tions for torque coefficient are

C Cxv

u '° = -R-f-A (8-15)

where Czv is a function of (s/a), as shown in figure 8-8 (b), and

CM,o = O. 102 (s/a) ,/10
R1/_ (8--16)

respectively.

The particular flow regime that exists at any Reynolds number can be

determined by plotting torque coefficient against Reynolds number from

equations (8--9), (8-11), (8--13), and (8-15), as shown in figure 8-9 for

several values of s/a. The discontinuities (changes ill slope) in the lines

of figure 8-9 indicate transition from one regime to another. In this figure,

the flow regimes are determined by matching the slopes of the lines with

Slopeof curve Flow I Description
reg,mej

I Laminarflow; merged
boundarylayers

II Laminar flow; separate
boundary layers

III Turbulent flow; merged
boundarylayers

IV Turbulent flow; separate
,.. boundarylayers

Ratioof axial'gap
to disk rim radius,

s/a

----- 0.01
.02
.05
.20

F1GURE 8-9.--Theoretical variation of torque coefficient with Reynolds number for no
throughflow. (Data from ref. 6.)
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those shown in the insert in the figure. Torque-coefficient values (ref. 6)
determined experimentally with a 50.8-centimeter (20-in.) disk rotated in

water and oil for several values of s/a verify the theory.

Throughflow

For the case of the rotating disk with throughflow, as in figure 8-6(b),

the friction torque increases with the throughflow. This problem has been

analyzed for low values of throughflow with regime-IV flow. In this case,
it is assumed that the fluid enters the chamber near the centerline with no

angular velocity and leaves at the rim with some angular velocity K,_a.

The symbol Ko represents the ratio of the angular velocity of the rotating

core of gas to the angular velocity of the disk. The increase in torque,

AM, over that without throughflow is the rate of change of angular
momentum of the fluid flowing through the system:

hM=2p Q- (gg_a)a=2p Q gj_a _ (8-17)
9 9

where Q is the volumetric throughflow rate, in m_/sec or ft3/sec, in the

clearance space on one side of the disk. The total torque for the through-
flow case is then

M=Mo+AM CM'°p_2aS+2 P-QK_a 2 (8-18)
2g g

The value of Ko is approximately 0.45 for s/a ratios from 0.025 to 0.12.

An assessment of the power loss can be obtained by calculating the
friction torque of the throughflow case compared to that of the no-
throughflow case:

.4Ko Q
M__._= 1+ 2pog_'°a_ - 1_M_M.o _a 3 (8-19)
Mo 1

"_C M,op_a 5

Substituting equation (8-16) for CM.o yields

M K°R1/5 -_Q.= 1+39.2 Ko
M---_= 1+0.0255 (s/a)mo _a" (s/a) mo-- v (s-2o)

where T is a dimensionless throughflow number defined as

O
T = _ R 1/5 (8--21)

oja 3

According to the data of reference 7, equation (8--20) predicts values

that are somewhat high; moreover, the effect of s/a is not accurately
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Fmua_ 8-10.--Empirical variation of torque with throughflow number. (Data from

ref. 7.)

given by (s/a) _/L°. Empirically, the test data are represented to within

±5 percent by the relation

M T

i---: = 1 +13.9K0 (s/a)z/-----_ (8-22)

Equation (8-22) is plotted in figure 8-10 for several s/a values.

PARTIAL-ADMISSION LOSSES

Full-admission axial-flow turbines are used for most applications;

however, unusual conditions sometimes arise for which a partial-admission

turbine may be a better choice. If, for example, the design mass-flow rate is

so small that a normal full-admission design would give very-small blade

heights, then it may be advantageous to use partial admission. The losses

due to partial admission with long blades may be less than the leakage

and low Reynolds-number losses of the full-admission turbine having short

blades. In addition, for a given rotative speed, partial admission allows the

freedom of larger diameter and higher blade-jet speed ratios. Also, the

use of partial admission may be a convenient way to reduce power output
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of an existing full-admission turbine (physically block some of the stator

passages). In general, partial-admission turbines have high specific-work

output and low volumetric-flow rates.

As mentioned previously in this chapter, the partial-admission losses

are the pumping loss in the inactive blade channels and the filling-and-

emptying loss encountered as the blades pass through the active sector.

This latter loss has been referred to as expansion, scavenging, or sector

loss. The mechanisms of partial-admission losses are not clearly or fully

understood, but they do result in a decrease in output power and efficiency

when compared to the same turbine operating with full admission.

The pumping loss is that loss caused by the inactive blades rotating in

a fluid-filled casing, and expressions for it are somewhat similar in form to,
and often combined with, the expression for the disk-friction loss. These

expressions all seem to trace back to reference 8, where the results of

several experimental investigations are summarized. The equations for

estimating pumping-power loss that resulted from these investigations

showed that the effects of blade height and diameter on the pumping-

power loss are quite uncertain, as evidenced by variations in the exponents

on these terms. Further, the nature and location of obstructions (adjacent

blade rows, casing wall, etc.) or lack of such in the vicinity of the three

open sides of the blade channel were accounted for only by differences in

the empirical loss coefficient. Therefore, it appears that a generally
applicable expression for pumping-power loss is yet to be found.

The one equation perhaps most often used is

where

Pp

K_
U,

l

D.

E

PI, = K_,pU,,,Sl I'BD- ( 1 - _) (8-23)

pumping-power loss, W; (ft) (lb)/sec

pumping-power loss coefficient, 1/m'/_; (lbf) (sec _)/ (Ibm) (ft 3/_)

blade mean-section speed, m/sec; ft/sec
blade height, m; ft

blade mean-section diameter, m; ft
active fraction of stator-exit area

The value of the coefficient Kp as reported in reference 8 and converted

to the units used herein is 3.63 l/m 1I_, or 0.0105 (lbf) (sec2)/(lbm) (fta/2),

for an unenclosed rotor. For the same rotors enclosed, the coefficient

values were one-quarter to one-half of the above values. More recently,
the combined disk-friction and pumping losses for a single-stage rotor

enclosed by the turbine housing were reported in reference 9. If a disk-

friction loss estimated by equation (8-7) is subtracted from the combined

losses of reference 9 and if the remaining loss is converted to the form of

equation (8-23), the coefficient Kp is found to be 5.92 1/m 1/_, or 0.0171

(lbf) (sec _) /(lbm) (ft_/_). This is significantly higher than the coefficients
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reported in reference 8, and the difference is attributed to primarily the

lack of an adequate loss model.

The other partial-admission loss shall herein be called the sector loss.

Imagine a blade channel as it just starts to enter the active sector. It is

filled with relatively stagnant fluid that must be pushed out by the high-
momentum fluid leaving the nozzle. This scavenging will continue until

the blade channel is completely within the active sector. As the blade

channel passes out of the active sector, a second sector loss occurs. As the
inlet to the blade channel is cut off from the nozzle active arc, less and

less high-momentum fluid enters the channel. Since this fluid has the

entire blade channel area to flow into, it is rapidly diffused as it flows

through the rotor. These losses cause an overall decrease in the momentum
of the fluid passing through the rotor, thus decreasing the available energy

of the fluid. It was reported in reference 10 that this decrease in momen-

tum may be found by multiplying the rotor-exit momentum by a loss
coefficient

K,=(l-_f) (8-24)

where p is the rotor-blade pitch, in m or ft, and f is the nozzle active arc

length, in m or ft. Effectively, K, is a rotor velocity coefficient that ac-
counts for the sector loss.

The effect of the sector loss on turbine efficiency is determined as

follows. With the use of equations (2-6) and (2-14), from volume 1, and

the associated velocity diagram geometry, we can express the specific

work of an axial-flow turbine as

z_h'= (W_ a- W_,,) -- -_ (W, sin B_- W, sin B,) (8-25)

where

W_
W

turbine specific work, J/kg; Btu/lb

tangential component of relative velocity, m/sec; ft/sec

relative velocity, m/see; ft/sec

fluid relative angle measured from axial direction, deg

The subscripts 1 and 2 refer to the rotor inlet and exit, respectively. For

an impulse turbine (which most partial-admission turbines are), where

,_, =U., W1 sin _I(1-t-K_) (8-26)
gJ

where K. is the rotor relative-velocity ratio W_/WI for the full-admission

turbine. For the partial-admission turbine, applying the sector loss
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coefficient yields

W2 ffiKwK,W1

So, for the partial-admission turbine,

Ah'_= U__ W_ sin _1(1 +K_K,)
OJ

Since efficicncy is

(8-27)

(s-2s)

(8-30)

into equation (8-30) then

Ah'

= Ahid (8-29)

where Ahld is thc turbine ideal specific work, in J/kg or Btu/lb, the ef-

ficiency of the partial-admission turbine with respect to that of the full-
admission turbine is

_, Ah'
_a

Ah'

and (8-28)Substituting equations (8-26)

yields

1 +K_K,
(8-31)

_=_ I+K_

The efficiency penalty expressed by equation (8-31) accounts for the

sector loss only; the pumping loss discussed earlier will reduce the overall

efficiency further. Equation (8-24) indicates that a partial-admission
turbine rotor should have closely spaced blades to reduce the sector loss;

however, as more blades are added to the rotor, the blade profile loss will

increase. Also, the effect of the number of rotor blades on the pumping

loss is not known. Therefore, the complete optimization of a partial-

admission design cannot be done analytically at present.

In the study of reference 9, the efficiency of a small axial-flow turbine

was determined over a range of admissions from 12 to 100 percent. The

total loss due to partial-admission operation was taken as the difference

between the full- and the partial-admission efficiencies. The blade pumping

and disk-friction losses were measured separately and were subtracted

from the total partial-admission loss to give what was called other partial-

admission losses. These other losses include the sector loss and any loss

due to leakage from the active sector to the inactive sector. The partial-

admission losses of reference 9 are plotted against admission-arc fraction

in figure 8-11. The combined pumping and disk-friction loss increased

with decreasing arc fraction, while the other losses remained nearly con-

stant over the range of arcs tested.

Predicted efficiencies (from ref. 10) are plotted against blade-jet speed
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FIGURE 8-12.--Design-point performance of partial- and full-admission turbines.

(Data from ref. 10.)

ratio (see discussion in vol. 1, ch. 2) in figure 8-12 for a particular turbine

operating with full admission and with three different amounts of partial

admission. The expected reduction in peak efficiency with reduced arc of

admission is seen. The important thing to note from this figure is the
reduction in optimum blade-jet speed ratio as admission arc is reduced.

Aerodynamic efficiency is a maximum at a blade-jet speed ratio of 0.5,
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irrespective of admission arc, and decreases with decreasing blade speed.

Blade-pumping and disk-friction losses, which decrease with decreasing

blade speed, become a larger part of the gross aerodynamic power as
admission arc decreases. Therefore, as admission arc is reduced, the

maximum net output power (aerodynamic power minus blade-pumping
and disk-friction power) is obtained at lower blade speeds. Thus, for the

design of a partial-admission turbine, the partial-admission losses must be

factored int.() the design before an optimum or near-optimum blade-jet
speed ratio can be selected.

INCIDENCE LOSS

The incidence loss is that loss which occurs when the gas enters a blade

row (either stator or rotor) at some angle other than the optimum flow

angle. Flow incidence would normally only occur at off-design conditions,

since, theoretically at least, all gas and blade angles are matched at the

design condition. The nomenclature used when speaking of incidence is

shown in figure 8-13. The dashed line running through the blade profile

is the camber line and defines the blade inlet angle. The incidence angle
is defined as

where

i

a

Ctb

i = a-- _ (8-32)

incidence angle, deg

fluid flow angle from axial direction, deg

blade inlet angle from axial direction, dog

The fluid flow angle must be the absolute angle for stators and the relative

angle for rotors. The incidence angle may be positive or negative, as

indicated in figure 8-13. The sign of the incidence angle is important
because cascade tests have shown that the variation of loss with incidence

angle is different for positive and negative angles.

Axial

direction
IP

%_../ Vn J I-a-a b

FmURE 8-13.--Blade incidence nomenclature.
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Inciderce angle, i

F]QUaE 8-14.--Characteristics .f blade incidence loss.

FmuaE 8-15.--L.cal flow separation on })lade surface.

The general nature of the variation of incidence loss with incidence angle

is shown by figure 8-14, which represents a summary of cascade test

results. The loss curve is not symmetrical about the zero incidence angle,

but shows a loss that is larger for positive incidence than for negative

incidence. This may be due to some local separation on the suction surface

at large positive incidence, as indicated in figure 8-15, and the lack, or
smaller area, of separation at the same value of negative incidence. Also,
blades in which the mean acceleration of the gas flow is large (high-

reaction blades) have a wide range of incidence over which loss is low,

whereas low-reaction blades have higher losses for the same incidence

range.
Another thing to be noted from figure 8-14 is that the minimum loss

does not occur at zero incidence, but at some small amount of negative

incidence. This may be explained by the sketch of figure 8-16. The stag-

nation streamlines for two inlet flow angles are shown; one at zero in-

cidence and the other at some small negative incidence with respect to

the blade inlet angle. Both tests and theory show that the stagnation

streamline curves upward as the flow impacts on the blade leading edge,
and the true zero incidence occurs when there is some negative incidence
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a<Q

%

FIGURI'_ 8-16.--Curvature of stagnation streamline at blade inlet.

relative to the free-stream flow. The incidence angle at minimum loss is

usually -4 ° to -8 °. Because of this, some turbine designers design their
blades with a small amount of negative incidence, while others do not
because of the small difference involved.

The magnitude of the incidence loss takes on importance when the

off-design performance of a turbine must be predicted. A method for

determining incidence loss based on test data is described in reference 11.

An analytical method is described here with the aid of figure 8-13. The

inlet velocity V_ can be resolved into a component V, normal to, and a

component Vp parallel to the blade inlet direction (camber line at inlet).
If it is assumed that the parallel component passes through the blade row

without any entry loss and that the normal component is entirely lost,

the recovered kinetic energy is

Vl' (V y V,,
2oS - 2gS \-_x] = _OJ cos' i (8-33)

and the kinetic-energy loss due to incidence is

L_- V12
- 2_ (1 - cos 2 i) (8-34)

In order to account for the differences in loss variation with positive

and negative incidence, the effect of blade-row reaction, and the minimum

loss not occurring at zero incidence, equation (8-34) has been generalized
to

L,=_O J I-l-cos" (i-iop,) ] (8--35)

where io_,, is the optimum (minimum-loss) incidence angle. This type of

equation has proved satisfactory when used in off-design performance

145



TURBINE DESIGN AND APPLICATION

prediction methods such as that of reference 12. Where specific incidence-

loss data are lacking, values of n = 2 for negative incidence and n = 3 for
positive incidence have been used satisfactorily.
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SYMBOLS

area on one side of rotor disk, m_; ft _
disk rim radius, m; ft

coefficient used to evaluate CM.o in regime II by equation (8-11)

coefficient used to evaluate CM.o in regime IV by equation (8-15)
fluid shear-stress coefficient

torque coefficient with no throughflow
diameter, m; ft

nozzle active arc length, m; ft

convcrsion constant, l; 32.17 (lbm) (ft)/(lbf) (sec _)
turbine specific work, J/kg; Btu/lb

turbine ideal specific work based on ratio of inlet-total pressure
to exit-static pressure, J/kg; Btu/lb

incidence angle, deg

conversion constant, 1 ; 778 (ft) (lb)/Btu

disk-friction power-loss coefficient

ratio of rotating-core angular velocity to disk angular velocity

pumping power loss coefficient, 1/ml/2; (lbf)(sec2)/(lbm)(ft 3/2)
sector loss coefficient

rotor velocity coefficient for full-admission impulse turbine
incidence loss, J/kg; Btu/lb

blade height, m; ft

frictional resistance torque for both sides of rotor disk, N-m;
lb-ft

rotative speed, rad/sec; rev/min

exponent in equation (8-35)

disk-friction power loss, W ; Btu/sec
pumping power loss, W ; Btu/sec

rotor-blade pitch, m; ft

volumetric throughflow rate, m'_/scc ; ft'_/sec
Reynolds number

radius, m; ft

axial distance between rotor disk and casing, m; ft
blade speed, m/sec; ft/sec

absolute velocity, m/sec ; ft/sec

relatiw, velocity, m/see; ft/sec

fluid flow angle from axial direction, deg

blade inlet angle from axial direction, deg

fluid relative angle measured from axial direction, deg
active fraction of stator exit area

turbine static efficiency

dynamic viscosity, (N) (sec)/m2; lb/(ft) (sec)

density, kg/m._; lb/ft a
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fluid shear stress, N/m_; lb/ft 2 -_

T throughflow number defined by equation (8-21)
angular velocity, rad/sec

Subscripts:

m mean section

n component normal to blade inlet dircction

o no throughflow

opt optimum

p component parallel to blade inlet direction

pa partial admission
r disk rim

u tangential component

_rotor inlet
1 [blade-row inlet
2 rotor exit
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