@ https://ntrs.nasa.gov/search.jsp?R=19740025363 2020-03-23T04:36:09+00:00Z

VOLUME TWO NASA SP-290

CA

SE FJ
copyF

TURBINE DENIGN
and APPLICATION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION







NASA SP-290

TURBINE DENIGN
and APPLICATION

VOLUME TWO

Edited by Arthur J. Glassman
Lewis Research Center

Scientific and Technical Information Office 1973
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C.




For sale by the Superintendent of Documents

U.8. Government Printing Office, Washington, 1).C. 20402
Price $1.80 Stock Number 3300-00535

Library of Congress Catalog Card Number 79-185105



PREFACE

NASA has an interest in turbines related primarily to aeronauties and
spacc applications. Airbreathing turbine engines provide jet and turbo-
shaft propulsion, as well as auxiliary power for aireraft. Propellant-
driven turbines provide rocket propulsion and auxiliary power for space-
craft. Closed-cycle turbine engines using inert gases, organic fluids, and
metal fluids have been studied for providing long-duration eleetric power
for spacceraft. Other applications of current interest for turbine engines
include land-vehicle (cars, trucks, buses, trains, ete.) propulsion power
and ground-based clectrical power.

In view of the turbine-system interest and efforts at Lewis Research
Center, a course entitled “Turbine Design and Application” was pre-
sented during 1968-69 as part of the In-House Graduate Study Program.
The course was somewhat revised and again presented in 1972-73. Various
aspects of turbine technology were covered inceluding thermodynamie and
fluid-dynamic concepts, fundamental turbine coneepts, velocity dia-
grams, losses, blade acrodynamic design, blade cooling, mechaniecal de-
sign, operation, and performance.

The notes written and used for the course have been revised and edited
for publication. Such a publication can serve as a foundation for an intro-
ductory turbine course, a means for self-study, or a reference for selected
topics. The first volume presented the material covering thermodynamic
and fluid-dynamic concepts, fundamental turbine concepts, and veloeity
diagram design. This sccond volume presents the material related to
blade aerodynamic design and turbine energy losses.

Any consistent set of units will satisfy the equations presented. Two
commonly used consistent sets of units and constant values are given
after the symbol definitions. These are the SI units and the U.S. cus-
tomary units. A single set of equations covers both sets of units by in-
cluding all constants required for the U.S. customary units and defining
as unity those not required for the SI units.

ARTHUR J. GLASSMAN
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CHAPTER 4
Blade Design

By Warner L. Stewart and
Arthur J. Glassman

The design of a turbine consists of three major steps. The first is the
determination of the overall requirements of flow, work, and speed. These
are usually established by the particular application. The second step is
the evolution of veloeity diagrams consistent with the desired efficiency
and/or number of stages. This was discussed in chapter 3. The third step
is the design of the blading that will produce the flow angles and velocities
required by the veloeity diagrams. This step involves the determination of
the size, shape, and spacing of the blades.

This chapter covers some of the more important aspects of blade design.
The height of the blade is set by the overall requirements of flow, speed,
and inlet state conditions and the selected velocity diagram, which dictates
the fluid state conditions throughout the turbine. The blade chord is
usually seleeted to be a minimum value consistent with mechanical con-
siderations. The chord must be long cnough to allow aceurate fabrication
and assure structural integrity during operation. The selection of blade
spacing, which can be expressed nondimensionally as solidity (ratio of
chord to spacing) or axial solidity (ratio of axial chord to spacing), in-
volves many considerations that will be discussed in the first part of this
chapter. Blade profile design, which includes blade exit and inlet geome-
tries as well as the conneeting surface profiles, is then discussed in the last
part of this chapter. Channel flow theory, which is the basis for the
analvtical procedures used to accomplish the profile design, is discussed
in the next chapter.



TURBINE DESIGN AND APPLICATION

SOLIDITY

One of the important aspeets of turbine blading design is the sclection
of the blade solidity, which is the ratio of chord or axial chord to spacing.
A minimum value is usually desired from the standpoint of reducing
weight, cooling flow, and cost. However, chord reduction is lmited by
mechanical considerations, and inercased spacing eventually results in
deereased blade efficieney due to separated flow. This seetion will concern
itsclf with the acrodynamic factors affecting solidity selection. The dis-
cussion will include the effeet of veloeity diagram requirements on solidity
and the relation between blade loading and solidity. Also included will he a
deseription of advanced blading concepts that are heing studied for use to
suppress separation and thereby reduce the permissible solidity.

Effect of Velocity Diagrams on Solidity

Figure 4-1 shows a typical set of blade inlet and exit diagrams as well
as the statie-pressure distribution around a blade. The veloeities in this
figure are shown as absolute velocities. The discussion in this chapter
pertains to rotor blade rows as well as to stator blade rows. When referring
to a rotor, we must use relative rather than absolute veloeities in the
equations and figures. Since in this chapter we are coneerned with blade
rows rather than with stages, the angle convention will differ slightly from
that used in previous chapters. The exit tangential-velocity component
and flow angle are taken as negative values. The inlet values are positive
if the inlet and exit tangential-veloeity components are in opposite diree-
tions, and negative if in the same direcetion,

If one considers the two-dimensional flow through a passage of unit
height between two blades, then the tangential foree exerted by the
fluid as it flows from blade inlet (subseript 1) to exit (subseript 2) is

1
I"MZ‘SP‘Z]‘v:,Z(Ivu‘I_1774,2) (4‘1)
g

where

F. tangential foree, N; 1b

g conversion constant, 1; 32.17 (Ibm) (1t) 7/ (1bf) (see?)
s blade spacing, m; ft

P density, kg/m?; 1b/ft?

V., axial component of veloeity, m/see: ft/see

Ve tangential component of veloeity, mysee: ft/see

This tangential foree exerted by the fluid must be the same as the foree
due to the statie-pressure distribution around the blade, as was discussed
in chapter 2. The lower part of figure 4-1 shows a typieal static-pressure
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Stations 1 2

Pressure X

I surface~"

~Suction
surface

‘

Cx

LY
—
>
[
(%3
Y
—
a

== Ps, min

Axial distance

Fravre 4-1. Typical blade-row velocity diagrams and surface statie-pressure
distribution,

distribution around the blade row as a funetion of axial distance. The arca
between the two curves represents the total blade foree aeting on the
flow in the tangential direction. Thus,

! x
F“=c,f (pp—ps) (l< ) (4-2)
0 Cr

where

Cs axial chord, m; ft

o pressure-surface static pressure, Ny/m?; 1h/ft?
Ds suction-surface static pressure, N/m?; 1b/ft2
z axial distance, m; ft

The axial solidity, o,, 1s

o= (4-3)
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Substituting equations (4-1) and (4-2) into equation (4-3) then yvields

I E I u, I'“ )
_ P2 2( 1— 2 (4‘4)

g/ (Pp—ps) ﬂ’( )

At this point, we introduce two tangential loading coeflicients that have
been used to relate the actual blade loading to an ideal blade loading. The
first is the widely used cocfficient introduced by Zweifel {ref. 1). This
coeflicient is based on an ideal loading that assumes (1) the static pressure
on the prmsur(- surface to be constant and cqual to the inlet total pressure
and (2) the static pressure on the suction surface to be constant and equal
to the exit static pressure. In cquation form,

/ (1)—1))(]( >

])1 — e

where

¥, Zweifel loading cocfficient
m inlet total pressure, N/m?; Ih/ft2
Pe exit static pressure, N/m?; lh/ft2

The sceond coeflicient is similarly defined except that the assumed
constant static pressure on the suetion surface is equal to the minimum
value of static pressure (see fig. 4-1) on that surface. This loading cocffi-
cient ean never exeeed a value of 1, and for all practical purposes, it must
always be less than 1. The Zweifel eocflicient, on the other hand, can ex-
ceed a value of 1. In equation form, this second loading coefficient ¢ is de-

fined as
/ (pp -p)rl( )
(]

o (4-6)

where pymim is the minimum static pressurc on the suction surface in
N/m?or Ih/ft2
The veloeity components in terms of veloeity and flow angle are ex-
pressed as
V=1 sina (4-7)
and
V=1 cosa (4-8)
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where
V Aluid veloceity, in/see; {t/see
« fluid flow angle, deg

Substituting cquations (4-5) or (4-6), (4-7), and (4-8) into cquation
(4 1) and using the trigonometrie relation sin 2a=2 sin « cos a yields

| 1
9 S P2 Va2 2 ) MVZ'“’
q (K—1) sin 2as q (K—1) sin 2aq
e T e T et CSL)
[)l — Meomin w [)1 _1)2 ¢z

where K is the ratio of tangential veloeity component (17,1) at the blade
inlet to that (17, 2) at the blade exit.

Derivation of incompressible-flow relations.—Relations involving solidity,
veloeity diagrams, and loading are usually evolved by assuming incom-
pressible flow with no loss, With this assumption, density p is constant,
and Bernoulli’s equation

1
pl=pt el (4-10)
29
can be used. Substituting cquation (4-10) into equation (4-9) yields
(K—1) sin 20 (K—1) sin 20

g,= "~
lv‘l . lpz
v (u)

where V,,.: is the velocity on the suetion surface where p=p, min.
Let us now define a suetion-surface diffusion parameter D, as

(4-11)

Vonas (4-12)

Ve

I

D,

Many parameters of this type have been used to represent a measure of
the deceleration of the flow on the suetion surface. This deeeleration is an
indication of the susceptibility of the flow on the blade to separate. Using
this definition (eq. (4-12)) in equation (4-11) yields

e (4-13)
v, .

Fquation {4-13) shows that the solidity parameter oD, or o, is
constant for each particular velocity-diagram requirement. Sinee loading
coeflicient ¢, which cannot exceed a value of 1, does not vary greatly, it
:an be seen that deereasing solidity results primarily in inereased suction-

5
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surface diffusion (higher D,), the consequence of which will be discussed
later in this chapter. The solidity paramcter is plotted against the tan-
gential velocity ratio K for several values of exit flow angle in figure
4-2(a). A value of K =0 represents a reaction blade with axial inlet, a
value of K= —1 represents an impulse blade, and a value of K< —1
represents a negative reaction blade. Positive values of A represent inlet
and exit tangential veloeities in the same dircetion and are encountered
primarily in the tip secetions of rotor blades. As seen from cquation (4-13),
solidity parameter is equal to zero for all exit angles for K = 1. This repre-
sents the case where there is no turning of the flow. The solidity parameter
increases with deercasing K values. Thus, if exeessive suction-surface
diffusion is to be avoided, solidity must inercase as the veloeity diagrams
move from reaction toward impulse. Tt can be seen that for any given
value of K, a maximum value of solidity parameter is obtained with an
exit angle of 45°,
Jquation (4-13) can be modified to a function of the inlet and exit
angles to vield the equation derived in reference 1.
2 cos az

or="
Y. COS

sin (a1 — oz) (4-14)

For brevity, this is expressed only in terms of the coeflicient .. Equation
(4-14) shows that the solidity parameter o0, can be expressed in terms
of the flow angles only. Solidity parameter is plotted against exit flow
angle for several values of the inlet flow angle 1 figure 4-2(bh). For a
given exit angle, solidity parameter increases with increasing inlet angle.
In the region of most interest (ag>0°, ae< —45°), solidity parameter for
each inlet angle decreases with decreasing exit angle.

A third relation can be evolved, this one in terms of blade reaction It
which was defined in chapter 2 as

V2 .
IfEI—]“_) (4-15)
Substituting cquation (4-8) into equation (4-13) yields
cos az\?
R=1—(— (4-16)
COS oy

for the two-dimensional, incompressible-flow case, where Vo=V,
Substitution of equation (4-16) back into equation (4-14) then vields

2 N
7= V1=FR sin Aa (4-17)

z

where Aa 18 a1 — as.

6



Solidity parameter, o, ¥ Solidity parameter, o,4D. or o,¥
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Solidity parameter, 0,4,

(a) Effect of tangential-velocity ratio and exit-flow angle.

w

BLADE
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| !

|
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Inlet-flow angle,
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0 ]
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ir Turning angle,
Aqg,
deg
2 790
[/ 60or 120
(s ~450r 135
1 —
(c)
0 l 1 | 1
-.25 0 .25 .50 .15 1.00
Reaction, R

(b) Effect of exit- and inlet-flow angles.
(c) Effect of reaction and turning angle.

Figurg 4-2.—Effect of velocity diagrams on solidity.
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Equation (4-17) expresses the solidity parameter in terms of blade
reaction and turning angle. The solidity parameter is plotted against
reaction for several values of turning angle in figure 4-2(c¢). It can be seen
that, as indieated previously, the solidity parameter decreases with in-
creasing reaction. The solidity parameter is a maximum for a turning
angle of 90° and varies little with turning unless very high or very low
turnings are used.

Radial rariation.—Chapter 3 discussed the radial variations in velocity
diagrams that must oceur in order to satisfy hoth the varying blade speed
and radial equilibrium. Since axial solidity was shown to vary with
varying velocity diagrams, there will he a radial variation in the desired
value of axial solidity. The nature of this radial variation will be illustrated
by an example. Consider a single-stage turbine having axial inlet and exit
flows (zero inlet and exit swirls), constant axial velocities, a constant
hub-to-tip-radius ratio of 0.7, an impulse rotor hub with a stator-hub exit
flow angle of —70°, and frec-vortex swirl distribution. For this case, the
flow angles at the hub and tip and the corresponding solidity-parameter
values computed from equation (4-14) are shown in the following table:

Stator Rotor
Inlet Exit Solidity Inlet Exit Solidity
angle, angle, parameter, angle, angle, parameter,
deg deg oo, deg deg o
Hub 0 —-70 0.64 54 —H4 1.90
Tip 0 - 62 .83 -2 - 63 .79

Note again that the angle convention being used in this chapter is some-
what different from that of previous chapters. Herein, stator exit angles
arc negative. Assume that the loading coefficient . is to be maintained
constant radially. This is a reasonably desirable condition, and the
assumption cnables us to proportion solidity directly to the solidity
parameter.

Let us now determine how the hub and tip values of solidity parameter
shown in the preceding table can be made physically consistent. The axial
solidity variation in any blade row must be inversely proportional to
radius (because blade spacing is directly proportional to radius) and

8
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directly proportional to axial chord. For the stator, the axial solidity
parameter at the hub is 0.64. If axial chord were held constant, then the
corresponding tip value of the axial solidity parameter would be
0.64 X0.7=0.45, which is almost half of the desired value of 0.83. Thore-
fore, a considerable axial taper from tip to hub is often used so that the
axial chord can increase with radius and yield the higher solidities desired
at the tip.

In the casc of the rotor, the axial solidity parameter at the hub is 1.90.
If axial chord were held constant, then the corresponding tip value of the
axial solidity parameter would be 1.90X0.7=1.33, which is still larger
than the desired value of 0.79. Therefore, axial taper from hub to tip is
often used in rotor blades so that axial chord can decrcase with increasing
radius and yicld the lower solidities desired at the tip. Taper from hub to
tip in the rotor is not only acrodynamically desirable, but is also mechani-
cally desirable from the standpoint of reducing blade stress. To simplify
fabrication in many cases, especially for smaller turbines, axial taper is not
used, and there results a radial variation in loading coefficient. With the
axial solidity selected on the basis of the mean-section veloeity diagrams,
this radial variation in loading cocfficient in many cases, especially those
where the blading is not highly loaded, will not have a severe effeet on
turbine performance.

E ffect of compressibility.—The term

1
— 5 Va2
ng 2

’
])1 —pa.min

in equation (4-9) reduces to 1/D, for incompressible flow conditions, as
shown by equation (4-13). For a compressible flow case having the same
loading coefficient ¢ as for incompressible flow, division of equation (4-9)
by equation (4-13) yiclds

1
=~ V2D,
2gP2 2

3

(4-18)

=7
Tz, inc 7)1 —pa,min

where o in. is the incompressible flow value as determined from an
equation such as (4-13), (4-14), or (4-17). By introducing the relations
between critical velocity ratio, density, and pressure (eqs. (1-3), (1-52),
(1-61), (1-63), and (1-64)) and using the definition of D, (eq. (4-12)),
equation (4-18) is modified to



TURBINE DESIGN AND APPLICATION

_ 7\ 2V (v—1) 7 \?
e I AN
-y—+—l ‘Y‘+—1 I cr/ 9 V” 2

ag
= : - (4-19)
Tr,ine - 2 Ty (r—1
y—1/1
1—- [1 Tt 1 (i‘> I)\J
Y+1\V/,
where
¥ ratio of specific heat at constant pressure to specific heat at
constant volume
Fer eritical veloeity, m/see; ft /see

Then, by using binomial expansion and by neglecting the sccondary terms,
equation (4-19) can be approximated as

7\ 2 N2
(%), »(v)
Vol D\VL)
Tt (4-20)
UI'INC FY+1 2(‘Y+1)

The approximation represented by equation (4-20) is quite good for
(V/Ver)2 values up to about 1. The solidity ratio o,/0, .. is plotted against
suction-surface diffusion parameter for several values of critical velocity
ratio in figure 4-3. The compressibility effeet becomes more pronounced
as D, either inereases or decreases from a value of 2. At D, =2, there is no
compressibility cffeet for any value of (17/V ., )s. For D, values of less than
2, the required solidity deereases with increasing values of (V/ V).

Exit critical-velocity

L3~ ratio,
)
1.2
@125k
£ 10
Rl
(=]
Py 6
g L00 0
'
£
=
3 15—
| ]
.50
1 2 3

Suction-surface diffusion parameter, Ds

Ficure 4-3.- Effect of compressibility on axial solidity.
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For D, values of more than 2, a region that is only of academic interest
because it is beyond the limits of good design practice, the solidity ratio
increases with increasing (V/V,,)s. Experience has shown that D, values
should be maintained below about 2 to avoid excessive losses.

Relation of Loss to Solidity

It is well recognized that the loading of a turbine blade or of a com-
pressor blade is an important function of both solidity and reaction.
Correlation of blade loss with a compressor diffusion parameter was
described in reference 2 and is used widely within the compressor field.
This parameter includes two terms, one reflecting reaction and the second
reflecting turning and solidity. An analogous diffusion parameter was
evolved for the case of the turbine in reference 3, where an overall diffusion
paramecter is defined as the ratio of the sum of the decelerations in kinetic
encrgy on the suction and pressure surfaces to the exit kinetie energy. If it
is assumed that the pressure surface minimum velocity is low enough to
negleet (V,,min=0), then the overall diffusion parameter is defined as

V?nnz - VZZ + V12
V,?

D= (4-21)

With the use of the definitions of D, (eq. (4-12)) and R (eq. (4-15)),
equation (4-21) reduces to

D=D,—R (4-22)
As seen from equation (4-13),

v.=y¢D, (4-23)

Substitution of cquations (4-23) and (4-14) into cquation (4-22) then
yields

2 cosay

D= sin Ae— R (4-24)

o COS ay

This relation is like that for compressors, with the two terms involving
reaction and solidity.

Attempts have been made to correlate turbine blade loss with both
overall (ref. 4) and suction-surface (ref. 5) diffusion parameters. A
definite trend of increasing loss with increasing diffusion was established,
but complete correlation could not be obtained. Such a correlation of
blade loss with diffusion parameter alone would not be expeeted, since
different values of reaction and solidity giving the same value of D do
not give the same loss.

Consider first the effect of reaction on loss, as shown qualitatively in
figurc 4-4(a). As reaction is reduced from a relatively high value near

11
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unity, there occurs a gradual increase in blade loss. Further reductions in
reaction to negative values cause the loss to increase rapidly. This varia-
tion in loss with reaction is caused by the change in boundary-layer
characteristics (which are discussed in chapter 6) as the nature of the
flow varies from highly accelerating to diffusing. The negative reaction
regime, although desired in many applications, is usually avoided because
of the high loss encountered when conventional blading is used.

The effect of solidity on loss is indicated in figure 4-4(b). A minimum
loss occurs at some optimum solidity. As solidity increases, the amount of
frictional surface area per unit flow is increasing. As solidity is reduced,
on the other hand, the loss per unit surface area is increasing because of
the increased surface diffusion required. A minimum loss occurs as a result
of these opposing factors. The value of the suction-surface diffusion

Loss

(a) ]

Reaction, R

Loss

Axial solidity, o

(a) Reaction.
(b) Solidity.
Fioure 4-4.—Loss trend with reaction and solidity.
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parameter corresponding to the optimum solidity is a function of many
factors such as Reynolds number, shape of suction surface velocity dis-
tribution, and rate of turning. In gencral, as mentioned previously, values
not cxceeding about 2.0 are uscd.

Selection of Optimum Solidity

Both analytical and experimental attempts have been made to identify
optimum solidity. According to reference 1, minimum loss oceurs when the
Zweifel loading cocfficient ¢, is equal to 0.8. By using this valuc in cqua-
tion (4-14), optimum axial solidity can be determined as a function of
the blade-row inlet and exit flow angles, and this is plotted in figure 4-5(a)
for a wide range of angles. The dashed (long-short) eurve represents the
locus of points for impulse blading.

In order to determine the optimum values in terms of actual solidity,
it is necessary to determine the stagger angle a,, because

Oz

o=

~ (4-25)
COS o,

An analytical blade model was used in reference 6 to relate stagger angle
to the flow angles and the axial solidity. Thus, optimum values of actual
solidity were obtained as a function of inlet and exit angles, as shown in
figure 4-5(b). The authors of reference 6 compared an optimum solidity
determined in this way with the data of reference 7, where efficicney was
measured with four different rotor solidities, as shown here in figure 4-6.
The solidity determined as optimum in reference 6 from a figure such as
figure 4-5(b) is seen to be quite close to that yielding maximum efficiency
for this case.

Loss cocfficients based on cascade data are presented in reference 8 as a
function of pitch/chord ratio (inverse of solidity) and exit angle for
reaction blades (a1 =0) and impulse blades (a1= — a3). These cocfficients,
in relative terms, are replotted here in figure 4-7 against solidity for
various exit angles. These curves indicate the importance of sclecting
optimum solidity. For the larger (more negative) values of exit angle, the
curves arc rather flat in the region of minimum loss, and some deviation in
solidity from optimum does not cause any significant increase in loss. As
the exit angle gets smaller, the minimum loss region becomes more pro-
nounced and the loss penaltics become more severe as solidity departs
from the optimum value. It must be recognized that curves such as those
of figure 4-7 are usually obtained by using a given blade shape and varying
the spacing. Thus, the blade shape and resultant velocity distribution
cannot be optimized for each solidity, and the significance of such a
correlation is somewhat clouded.

13
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6— Inlet-flow
N N \ angle,
\ \ gl' Type of
\ * blade row

St \ 0

- N\ \ Accelerating

>~ \ ) \ — —— Decelerating

al— o AN \ — -~ Impulse

nN

Optimum axial solidity, o, opt
w

1
(a)
0
60— inlet-flow
N \ angle,
N\ \ o
\ \deg
S~ - \ \80
~ AN
N \70 \
~ \
3 ‘r h X \\ \
2 N \ \
£ N \
g 3 N \
g |m——= NN \
Pt S N
5o -~ N
\
0
1=
2 (b)
0 | ] | | | ]
-2 -30 -4 -9 -60 -70 -8

Exit-flow angle, a,, deg

(a) Axial solidity.
(b) Actual solidity.

Fieure 4-5.—Effect of inlet and exit angles on optimum solidity. Zweifel loading
coefficient ¥, =0.8.
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Fiaure 4-6.

Relative foss coefficient

Frcunre 41-7.

.90

.88

BLADE

Optimum solidity from

figure 4-5(b)~ Number

of
blades

24
32
44
64

[ | I l
8 1.2 1.6 2.0 2.4
Solidity, o

ML pooo

10 — Reaction blades (a} = 0) Exit-flow
— —— Impulse blades (oy = -ay) angle,
N v

2.0 2.5
Solidity, ¢

3.0

DERIGN

~Variation of efficiency with solidity for four turbines of reference 7.

Effect of solidity and exit angle on blade-Joxs coeflicient.

The optimum solidities obtained from the cascade results shown in
figure 4-7 arc plotted against exit angle in figure 4-8 and are compared
with those obtained analytically and shown in figure 4=5(h). It ix obvious
that agreement between the experimental and the analytical results 18
not good for most exit-angle values. Although the experimental and the
analytical curves do cross each other for both the reaction (e =0) blading
and the impulse (ay= —a») blading, the indicated variations in optimum
solidity with exit angle are just not similar. All that can be said at this
time is that the analytical results involve many assumptions, the experi-
mental results pertain to one particular hlade profile, and there are many
factors that act to determine optimum solidity in a manner that we do
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Based on analytical results of fig. 4-%b)
——— Based on experimental results of fig. 4-7

3 inlet-flow angle,

-

Optimum solidits, 5.,

. | 1 | | J

-30 -40 -50 -60 -70 -80
Exit-flow angle, a,, deg

Fravis 4-5. Comparizon of optinuon =ohidiies,

not vet fully understand. Analytical results; such as those of figure 4- 5,
are more frequently used to determine optimum =olidity than are experi-
mental results, such us those shown i tigure -+ 70 Churrent design practice
s to use . values of 0.9 to 1.0, whicl 1s slightlyv higher than the 0.8
recommended in reference T,

Ultralow-Solidity Blading

In the past, the linitation to reductions in =olidity has been separation
oeeurring on the suction surface of the blide, To achicve lower solidities,
some modifieatior in blade coneept must he utilized such that separation
is suppressed and the assoctated high lossex do not ocear.

The treatment of the hboundary laver in the region of separation is one
approach to redueed solidity, Such treatments could inelude removing the
bhoundary layer by suetion, energizing the hboundary keyver by hlowing, or
inercasing the turbulence of the boundary laver by use of turbulators on
the blade. Certain of these coneepts have been explored with marginal
success. Two alternate blade coneepts that have, perhaps, hetter potential
are the tandem and jet-flap blades, whieh are illustrated in figure 4-9,
Studies applying the boundarv-layer treatment coneepts as well as the
alternate blade coneepts to stator blades and rotor blades are summarized
in referenees § and 10, respeetively. Caseade tests of Tow-solidity plain,
tandem, and jet-flap blades are presented in references 11 to 14, Tuarbine
test results with low-solidity tandem and jet-flap rotors are presented in
references 13 and 16, respectively.

The tandem blade operates on the prineiple that, although a high value
of suction-surface diffusion is utilized (perhaps 2). the front foil is ter-
minated at about the point of separation. The remaining diffusion then
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takes place on the rear foil with a elean boundary laver and with perhaps
20 ta 30 pereent of the mainstream air going through the slot,

The jet-flap blade operates with a secondary air stream jetting out the
trailing edge perpendicnlar to the main stream. This jot moves the rear

stagnation point around the trailing edge, thereby substantiallyv inereasing
the hift. In addition, the jet delivers some foree to the blade through its
own momentum. Figure 1 10 shows experimental veloeity distributions

Mach number

n O Jet off
[ Jet on {4 percent flow)

- 'D,—-D\D,El\%

20 40 60 0 100
Axial chord, percent

Fraven £-100 Jet-flap experimental veloeity distribmtions.
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around one such blade with the jet off and on, With the jet on, there is no
longer a requirement for the veloeities on the suetion and pressure surfaces
to be equal at the blade trailing edge. The loading diagram now approaches
a reetangular shape, with the load coeflicient ¢ more elosely approaching
unity. Also, the diffusion on the suction surface is substantially reduced,
thus suppressing the tendeney to separate.

Both the jet-flap-blade and the tandem-blade concepts offer the poten-
tial for soliditv reductions. The jet flap, however, will probably be con-
sidered only for applications where a secondary air flow is required for
other purposes, sueh as blade cooling,

BLADE-PROFILE DESIGN

After the blade chord length has been seleeted and the blade spacing
determined from solidity considerations, the blade itself must be designed.
This involves determination of the inlet and exit geometries and the
conneeting surface profiles. The inlet and exit parts of the blade must be
designed to provide a smooth, efficient transition hetween the blade
channel and the free stream. The surface profiles connecting the inlet and
exit must provide the required flow turning with minimum loss.

Exit

Consideration of the hlade exit seetion ineludes the trailing edge, the
throat, and the suction surface between the throat and the trailing edge.

Trailing edge.—In the design of turbines, it is wise to utilize the smallest
trailing edge consistent with mechanical considerations. As shown in
reforence 17, an inerease in trailing-edge thickness causes an inerease in
the hlade Toss. This effeet is diseussed further as part of the turbine-oss
discussion in chapter 7. In addition, trailing-edge thickness also has a
significant effeet on the flow blockage in the hlade exit region.

Consideration of the blockage effeet will be made with the use of figure
4-11, which shows example blade seetions with the nomenelature used. A
new exit-veloeity diagram is construeted at station 2a, which is located
just within the blade trailing-edge region. The reduced area due to the
trailing-cdge hlockage results in a higher veloeity at station 2a than at
station 2, which ix located just hevond the blade trailing-edge region.
The equations that have heen used to obtain this “within-the-blade”
diagram at 2a include conservation of fangential momentuny:

"’u R ['/1,?. (ﬁl*?(;)

and continuity:

{
(pVo)oa <1~———>—('p1',)-_, (4-27)
8 COS A
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Station

Fraure 4-11. Blade section and nomenelature.

where ¢ is the trailing-edge thickness, in meters or feet. The flow angle as,
is determined from equations (4-26) and (4-27) by assuming the flow
between stations 2a and 2 to be cither incompressible (since the changes
are usually small) or isentropic. The blade must he designed to have an
exit angle of ag, in order to produce a veloeity-diagram angle e at station
2 outside the blade row.

The Mach number at station 2¢ can also be determined from the
preceding equations and assumptions. Beeause the angle as is often large
(65° or greater) and the flow Mach number at the blade exit (station 2
is often specitied to be in the high subsonic region. the trailing-cdge
blockage can cause station 2a to beeome choked. Tt is, therefore, important
to determine whether choking inside the blade row will occur such that
the design flow rate cannot he obtained.

Throat.—Since, in general, a turbine blade row operates as a nozzle, with
the flow accclerating up to the throat, or minimum area, the determination
of the throat opening o (sce fig. 4-11) hecomes a rather eritical aspect of
the design procedure. One teehnique used sueeessfullv to give this dinmen-
sion makes use of the “inside-the-trailing-cdge” veloeity diagram. If one
assumes no change in flow conditions and a straight suetion surface
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hetween the throat and station 2¢, then the throat dimension ean be
obtained from the veloeity diagram at station 2¢ by using the following

equation:
o t e mon
={]—- - - ) cos o, (4-28)
N N COS @,

where o is the throat opening, in meters or feet.
If it s assuned that the veloetty and loss do not change between the
throat and the “free-stream’ station 2, then

0 .
- COR @ 1-29)
s

When thi< method is used. the effeet of trailing-cdee thickness changes
the angle of the throat position but not its length. Both methods (eqs.
CE28and ) 290 give xinnlar throat dimensions, Referenee 8 compares
measured exit-flow angles with those predicted hy equation (1 29), This
comparizon indientes eloke agreenient at exit angles greater than 60° and
deviations of up to 5% Tor exit angles down 1o 357 This deviation could be
due to lower solidities as well as Lurger gradients thut would occur across
the throat.

The throat-opening dimension as determined from equation (4-28)
or 4 241 applies to the case where the blade-row exit flow ix subsonie.
I the flow within the blade row expands to a =upersonie veloeity, then
this computed throat dimension must he moditicd 1o aecount for expansion
from the <onie eomdition at the throat 1o the =supersonie condition at the
exit, For extt Much numbers greater than ahout 1.3, the choking section
(throats must he located baek within the channel such that a convergent-
divergent passage is obtained. Por low supersonic Mach numbers (up to,
perhaps, 131, 1t hax been found that =atisfactory performance can be
achioved it the throat is still loeated at the exit of the ehannel, and the
additional flow expunsion oceurs downstream from the throat. In this
ease, the required channel exit dimension o would he computed by the

A )
():(Aﬁ< ‘ -> (4-30)

. throat opening computed itom equation 0128y or {4-29) for
supersonie veloeity, ny; ft

following cquation:

where

'

A, flow aren for sonte flow, s (-
AL flow wrea for supersonie flow, m?; {t?
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Fravme 1120 Varintion in flow area with <npersonic flow Maeh umnber,

This arca correction, with assumed isentropie flow hetween throat and
exit, s shown in figure 4 12,

Suctton sirface downstream from throat.—"The sclection of the type of
surface between the throat and trailing edge on the suetion surface must
be made from such eonsiderations as struetural integrity in the trailing-
cdge region, Mach number level and associated losses, desired level of
suetion-surface diffusion (1., and blade surface arca resulting from the
design,

A fstradght haek™ design is used when low values of Dy (approximately
unity} arc specified and long trailing edges are permissible, Iligh subsonie
or transonic blading, ax would be indicated hy the discussion in the next
paragraph, uses this type of surface in order to prevent flow aceeleration
on the tail of the blade and keep the associated losses low. Principal
problems with a straight surface are that the low D, values prechude low-
solidity designs and the long trailing edge can beeome structurally flimsy.

Most conventional gas-turbine blading utilizes some amount of curva-
ture hetween the throat and trailing-cdge region. This permits some dif-
fusion and additional loading on the tail of the blade, and it adds consider-
ably to the structural integrity of the blade hy introducing u wedge angle
at the exit. If conventionally loaded blading is used, the effeet of this
curved surface on loxs is not great. As indicated by figure 4 13 (which is
from el 8y it the exit-flow Mach number is less than 0.8, the curvature
effeet is small. At higher exit Mach numbers (greater than 0.8), the effeet
on loss can beeame severe. Therefore, design curvatures should be lower in
the higher Mach number regions, The type of curvature selected for the
suetion surface hetween the throat and trailing edge has an effeet on the
suction=surface veloeity distribution, In general, the veloeity distribution
is improved if the curvature deercases from throat to trailine edge instead
of remaining constant.,
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Frevne 4 13, Viarndion of profile loss with Mach number and surface eurvature
hetween throat and exit (from ref. Sj.

Inlet

The leading-cdge geometry of a turbine blade row is usually less eritical
than the exit-region geometry. At the blade inlet, a relatively large
leading-cdge radius can usually be used, heeause the Mach number is gen-
erally low at the inlet and then inercases through the blade row. The lead-
ing edge hecomes aserious concern for low-reaction blading and high Mach
number blading. In the case of low-reretion hlading, excessively high
veloeitios in the inlet region ean lead to high values of suction-surface
diffusion and a tendeney toward inereased losses. With high inlet Mach
numbers, eare must be taken thet the area contraction is not so severe as
to choke the blade at the inlet. Lguations (4-26) and (4-27), which were
used for the blade exit, ean also be used to determine ablade-inlet opening
and “within-the-blade” flow angle and Mach number to cheek for blade-
inlet choking.

Although circular leading edges are usually specified, this is arbitrary
and could limit the freedom of velocitv-distribution seleetion in the
leading-edge region. The large eurvatures associated with ¢irceular leading
edges can result in undesirable veloeity peaks on both the suction- and
pressure-surfaee portions of the leading edge. Other geometries, such as
ellipses, which permit variations in curvature around thel qding edge, ean
be used to minimize or eliminate the veloeity peaks.

Blade-Surface Profile

Onee the leading- and trailing-edge geometries have been seleeted, the
task remaining is to join them with a profile that vields the required flow
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turning and a satisfactory veloeity distribution around the blade. The
design procedure must deseribe the flow conditions through the blade rows’
to an accuracy sufficient to impose design controls (e.g., diffusion limits).
Two of the major flow considerations arc illustrated in figure 4-14.
Veloeity gradients oceur across the channel from the suction to the
pressure surface as a result of the statie-pressure difference required to
turn the flow. Radial variations in streamline position and, therefore,
veloeity oceur as a result of radial-equilibrium considerations. Since both
of these factors influence the blade-surface veloeity distribution, the design
procedures used should he at least of a quasi-three-dimensional nature,
The channel flow analysis theory that serves as the basis for these design
procedures and the computer programs available to perform the com-
putations arc discusscd in the next chapter.

Pressure v Suction
surfacey \surface
! \

-~
Velocity

,~Pressure Suction
\ " surface surface~._
Flow\ Cross-channel distance
(a)
Ti hY
P ~Tip
3
=
o
~Hub
Hub — -
Velocity
(b}

(a) Cross-channel variation.
(b) Radial variation.
Figure 4-14. —-Turbine blade-row velocity variations.
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SYMBOLS
A flow area, m?; ft2
c chord, m; ft
D diffusion parameter
F force, N; 1b
g conversion constant, 1; 32.17 (1bm) (ft) / (Ibf) (sec?)
K ratio of inlet to exit tangential components of velocity (V. 1/ Vas)
0 throat opening, m; ft
P absolute pressure, N/m?; 1b/ft?
R reaction
s blade spacing, m; ft
t trailing-edge thickness, m; ft
|4 absolute velocity, m/sec; ft/scc
z axial distance, m; ft
« fluid absolute angle from axial dircetion, deg
a, blade stagger angle from axial direction, deg
¥ ratio of specific heat at constant pressure to specific heat at
constant volume
p density, kg/m?; 1b/ft3
o solidity
v loading coefficient defined by equation (4-6)
V. loading coefficient defined by equation (4-5)
Subscripts:
or critical
inc incompressible
mazx maximum value
min minimum value
opt optimum
P pressure surface
8 suction surface
88 supersonic
u tangential component
z axial component
1 blade row inlet
blade row exit
2a within trailing edge of blade row
Superscript :

absolute total state
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CHAPTER 5

Channel Flow Analysis

By Theodore Katsanis

The design of a proper blade profile, as indicated in the last section of
chapter 4, requires calculation of the blade-row flow field in order to
determine the velocities on the blade surfaces. This chapter presents the
analysis theory for several methods used for this calculation and also
discusses associated computer programs that were developed at NASA
Lewis Research Center.

The actual velocity distribution throughout a blade-row flow field
cannot be calculated at this time because of the extreme complexity of
nonsteady, viscous, three-dimensional flow through geomettically complex
passages. To calculate a theoretical velocity distribution, therefore, certain
simplifying assumptions must be made. The three-dimensional flow is
simplified to flow on or through various two-dimensional surfaces. Such
surfaces are illustrated in figure 5-1 for the case of a radial-inflow turbine.
Similar surfaces are used for an axial-flow turbine. A flow solution on the
mean hub-to-shroud stream surface (commonly called the meridional
surface), shown in figure 5-1(a), does not yield blade-surface velocities
directly, but provides information required for the blade-to-blade surface
(fig. 5~1(b)) and orthogonal surface (fig. 5-1(c)) solutions, which yield
the desired blade-surface velocities.

There are two parts to a method of analysis to obtain a velocity dis-
tribution over one of these surfaces. The first part is the mathematical
formulation of the problem, and the second part is the numerical solution
of the mathematical problem. For the mathematical formulation of the
problem, we will discuss stream- and potential-function methods and
velocity-gradient (stream-filament) methods. The stream- and potential-
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Hub-t-shroud Blade-t0-blade
stream surface 1
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(a) Hub-to-shroud stream surface. (b) Blade-to-blade surface.

(¢) Orthogonal surface across flow passage.
F1oure 5-1.—Surfaces used for velocity-distribution calculations.
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function methods will be described relative to the blade-to-blade surface
solution. A similar type of analysis can be made for the meridional surface.
The velocity-gradient equation to be presented is general and can be used
for solutions on any of the surfaces.

The following assumptions are made in deriving the various methods
of analysis discussed herein:

(1) The flow is steady relative to the blade. This means that the
surface velocity at any given point on the blade does not vary with time,
Thus, if the blade is rotating, the flow would not be steady relative to a
fixed coordinate system.

(2) The fluid obeys the ideal-gas law

p=pRT (5-1)
where

P absolute pressure, N/m?; b /ft?

p density, kg/m3; lb/ft?

R gas constant, J/(kg) (K); (ft) (Ibf)/(1bm) (°R)
T absolute temperature, K; °R

or is incompressible (p= constant),

(3) The fluid is nonviscous. A nonviscous fluid has no boundary layer.
The blade-surface velocity is calculated, therefore, as if the free stream
extends to the blade surface.

(4) The fluid has a constant heat capacity.

(5) The flow is isentropic.

(6) The total temperature and total pressure are uniform across the
inlet,.

(7) For the stream- and potential-function analyses, the additional
assumption is made that the flow is absolutely irrotational. Therefore,

curl V=YX V=0 (5-2)

where V is the absolute velocity vector. Intuitively, this means that
particles do not change their absolute orientation with time, although
their shape may change. For example, figure 5-2 shows a hypothetical
particle at times ¢ and t+At. In the absolute frame of reference, the
particle changes its location and shape at a later instant of time, but the
net rotation is zero. Of course, in a frame of reference relative to the
blade, the particle has rotated, because the frame of reference has rotated.
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Direction of rotation
— i

Blade 1—- “_Blade 2

Time =1

Time =t + At

{Absolute frame of reference}

Blade 1 —. _.—Blade 2

Time =1+ At
(Relative frame of reference)

Froure 5-2.—Absolutely irrotational flow.

Some numerical techniques for solving the mathematical equations will
also be discussed. However, it must be emphasized that there are many
techniques for solving these equations, and we will discuss only a few. An
excellent theoretical discussion of flow in two-dimensional cascades is
given in Chapter IV of reference 1.

STREAM- AND POTENTIAL-FUNCTION ANALYSES
Stream-Function Method

The stream function can be defined several ways, but perhaps the
simplest is in terms of streamlines. Suppose we consider two blades of a
cascade as shown in figure 5-3. It is assumed that there is two-dimensional
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Mass .6
flow
fraction 4,

Fi1GURE 5-3.—Streamlines for a stator cascade.

axial flow here, so that the radius r from the centerline is constant and
there is no variation of the flow in the radial direction. There may be
rotation about the centerline.

Shown in figure 5-3 are a number of streamlines. The mass flow between
the blades is w. The number by each streamline indicates the fraction of w
passing between the upper surface of the lower blade and the given stream-
line. Thus, the upper surface (which is a streamline) has the value 0, and
the lower surface of the upper blade has the value of 1, while the remaining
streamlines have values between 0 and 1. Note that a value can be asso-
ciated with any point in the passage. This value is called the stream-
function value and can be used to define the stream function.

It will be recalled that mass flow can be calculated for a one-dimensional
(or uniform) flow by

w=pVA (5-3)
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where

w rate of mass flow, kg/sec; Ib/sec
v fluid absolute velocity, m/sec; ft/sec
A flow area normal to the direction of the velocity V, m?; ft?

This can be extended to a varying flow by using an integral expression:
w=[ oV d4 (5-4)
A

Since this stream-function analysis applies to both stationary and rotating
cascades (blade rows), the fluid velocity will be expressed in terms of
relative velocity W, which for a stationary blade row reduces to absolute
velocity V. We will assume that our cascade has a uniform height b. Then,
the mass flow w; ; between any two points Q and Q. in the passage (see
fig. 5-4) can be calculated by

Qsz
wra= / oW.b dg (5-5)
Q1

FIGURE 5-4.—Arbitrary curve joining two points in flow passage.
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where W, is the relative velocity component in the direction of the right-
hand normal of the line going from Q; to Q,. This sign convention means
that wi,, will be negative if Q, is below a streamline passing through Q.
The integral is a line integral between the points Q; and Q, and is in-
dependent of path for steady flow relative to the cascade.

With the use of equation (6-5), an analytical expression can be written
for the stream function u at a point (x, y):

(x,y)
[ Wb
Qo

4%, y) = (5-6)

where Qo is any point on the upper surface of the lower blade, and the
integral is taken along any curve between Qo and (x, y). This is indicated
in figure 5-5,

Since the integral in equation (5-6) is independent of path, it is rela-
tively easy to calculate the partial derivatives of u. For example, we will
calculate du/dz at the point (x,y). Let xo<x such that the point (xo, y)
is still in the flow passage, as shown in figure 5-6. Then

/ oW b dg+ / oW dg
Ci C2

u(x,y) = - (5-7)

x,y)

F1gure 5-5.—Curve joining (x,y) with a point on the upper surface of the lower blade.
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G2
Xy y)/ (x, y}

FiGURE 5-6.—Curve joining horizontal line through (x,y) with a point on the upper
surface of the lower blade.

where C; is an arbitrary curve between Qo and (Xo, y), and C; is a hori-
zontal line between (xo, y) and (x,y). The integral along C; does not
depend on z. Along Cs, we have W.=—W, and dg=dz. Hence,

ou d (*pW,bdx
E ey =5 | (5-8)
x ar/,, W
or
] Wb
ou AP (5-9)
dx w
In a similar manner, we can calculate
a W.b
T (5-10)
oy w

Now we will make use of the fact that the flow is absolutely irrotational.
From the definition of the curl operator and the above assumption,

av, av v, a8V av, av
1V=(———F)i -] ——"———’)k= 11
eur (ay az>l+( a9z ax)']+( dx Oy 0 (5-11)

wherei, j, and k are the unit vectors in the x, v, and z directions, respec-
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tively, and V,, V,, and V, are the absolute velocity components (in
m/sec or ft/sec) in the x, y, and z directions, respectively. Since we are
considering two-dimensional flow only,

V,=0 (5-12)
and
oV,
=m=0 (5-13)
0z 0z

Hence, equation (5-11) requires only that

8V, _oV. (5-14)
dxr Ay
Since
V=W, (5-15)
and
Vy=W,+wr (5-16)

where o is the angular speed (in rad/sec) and the radius r is constant,
equation (5-14) can be expressed in terms of relative velocities as

aw, ow,
Y= (5-17)
ox Iy
Actually, the flow is irrotational with respect to the moving coordinates
in this particular case. Now, from equations (5-10) and (5-9),

w du

= — 518
b 3 ( )

w du
W,=——— 5-19
V=T b ar ( )

Substituting equations (5-18) and (5-19) into equation (5-17) yields

d /19 d /19
R
dx \pdx/ 9y \p dy
since w and b are both constant.
For incompressible flow, p is constant, and

Viu=—4-— =0 (5-21)
T

which is Laplace’s equation. Any function satisfying Laplace’s equation is
called a harmonic function. There is a great deal of theory concerning
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harmonic functions that is related to the theory of analytic functions of
complex variables.

The important thing to know here is that there are a tremendous
number of functions that satisfy equation (5-21), and we must find a
solution that satisfies certain boundary conditions. The solution to either
Laplace’s equation (5-21) or equation (5-20) will be determined by
specifying two things: (1) a finite region, and (2) a boundary condition
along the entire boundary of the region.

The first thing that must be specified is the solution region. A typical
two-dimensional cascade is shown in figure 5-7. Since the flow is the same
in every passage, we can consider a finite solution region as shown in
figure 5-8. It is assumed that AH is sufficiently far upstream so that the
flow is uniform along this part of the boundary and that the flow angle
B:n 18 known, Similarly, it is assumed that the flow is uniform along
DE, and that the flow angle 8,.. is known. From the way the stream
function was defined, we can specify boundary conditions on the entire
boundary ABCDEFGHA. Along BC, ¥=0; and along FG, u=1. Along
AB, HG, CD, and FE, a periodic condition exists; that is, the value of u
along HG and FE is exactly 1 greater than it is along AB and CD. Along
AH and DE, du/dy is known, where 75 is the distance in the direction of
the outer normal.

b

Flow

J)I))

=¥

Ficurke 5-7.—Two-dimensional infinite cascade.
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F1agure 5-8.—Finite solution region.
Consider the differential of % in the direction of the velocity W:
du ou
du=—dr+— dy=0 (56-22)
oz dy

The differential is 0 because the stream function is constant along a

streamline, and the velocity vector must be tangent to a streamline.
Along AH,

d i)
L (5-23)
an axr
and substitution from equation (5-22) yields
du dudy
—== 5-24
dn Jdydx ( )
However,
d
Y _tang (5-25)
dx

Further, du/dy is constant along AH, since it is assumed that the flow is
uniform there. Therefore,

6_u=[u(H)_u(A)]=_ (5—26)
oy s ]

where s is the blade spacing in the y direction. Substituting equations
(5-25) and (5-26) in equation (5-24) gives along AH

(a—“) _tan B (5-27)

9 s
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Similarly, along DE, one can calculate

d tan Bo.
(—“) _ _tan o (5-28)
377 out §

We now have a boundary condition along the entire boundary of the region
shown in figure 5-8. These boundary conditions will always determine a
unique solution to Laplace’s equation (5-21). For compressible flow (eq.
(5-20)), a unique solution is always determined if the flow is strietly
subsonic throughout the region.

There arc numerous techniques for solving equation (5-20) or (5-21).
After the stream function is obtained, blade-surface velocities and velocities
throughout the passage can be obtained by differentiation of the stream
function. Thisis what is known as the direct problem. A method of solving
this problem will be discussed later. The indirect, or inverse, problem is to
specify a desired velocity distribution on the blade surface and from this
determince a blade shape that will give this velocity distribution. This will
not be discussed here.

Potential-Function Method

For two-dimensional irrotational flow, a potential function can be
defined. If lines of equal potential are drawn, they will be orthogonal to
streamlines. The potential function will not be defined in the same detail
as the stream funection, but the main properties and relations will be given.
If the potential function ® exists (i.e., the flow is irrotational}, then it can
be defined so that

ad
—=V, (5-29)
ox

and
ad
—=V, (5-30)
dy

We will refer to absolute velocities here, sinee we must have flow irrota-
tional relative to the coordinate system used. This, coupled with the
assumption of absolute irrotational flow, implies that the coordinate
system does not rotate. This does not exclude use of the potential function
for pure axial flow, since the rotation has no effect if there is no change in
radius; that is, the flow is actually irrotational with respect to the blades,
as we saw in the discussion of the stream function.
From the continuity relationship for steady flow,

0(sV2) , 3(oV) _

0 5-31
ax ay ( )
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Substituting cquations (5-29) and (5-30) in equation (5-31) yields

9 ( @>+ 9 ( 6<I>>_0 (5-32)
oz pax dy ”ay B

If the flow is incompressible, p is constant, and

Vi 62¢+62<I> 0 (5-33)
= — —_— = D—
ar? 9y

So, the potential function satisfies Laplace’s equation. Thus, for incom-
pressible, irrotational flow, both the stream function and the potential
function satisfy the same differential equation (Laplace’s equation). The
difference lies in the boundary conditions.

We can consider the same solution region shown in figure 5-8. We can
specify boundary conditions over the entire boundary as follows: Along
BC and FG,

ad
—=V,=0 (5-34)
an

where V', is the velocity normal to the blade surface. Along AH,

ad
<—) =— (V)i (5-35)
677 tn
and along DE,
b
(—) = (V2)out (5-36)
67] out
The inlet and outlet axial velocities are given by the equations
(V) in= s (5-37)
P:‘nbs
and
w
(Vz)out= (5_38)
Poutbs

Along AB, GH, CD, and EF, a periodic condition exists. Since the flow is
uniform along AH,

() ~Ee-sw_ (5-39)
ay in $
Substituting

V,=V.tan g (5-40)
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into equation (5-39) yields

(H)=®(A)+5(V,) i tan i, (5-41)

Because of the periodicity, ® is exactly s(V,) .. tan 8., greater along HG
than along AB. Similarly, at the outlet,

P(E) =®(D) +5(V2)ous tan Bou (5-42)

Equation (5-42) gives the difference in ® along the lines FE and CD.

This completes the boundary conditions for equation (5-32) or (5-33).
The boundary conditions, however, do not determine a unique solution,
but only a solution within an arbitrary additive constant. If the value of
& is specified at one point, these boundary conditions will determine a
unique solution to equation (5-33) for incompressible flow, or to equation
(5-32), for strictly subsonic compressible flow throughout the region.

As for the stream function, there are numerous methods for solving
equation (5-32) or (5-33) subject to the preceding or equivalent bound-
ary conditions. A method for solving the inverse problem of specifying
the velocity distribution to determine the blade shape is deseribed in
references 2 and 3.

Choice of Stream- or Potential-Function Method

If the flow is steady, irrotational, and incompressible, there is little to
choose between the stream function and the potential function. In this
case, the choice is made on the basis of ease of solution for the boundary
conditions (the differential equation is the same: Laplace’s equation).
However, if any of the three assumptions (steady, irrotational, or incom-
pressible flow) is not applicable, then we may be restricted as to the
choice of stream function or potential function.

The existence of the stream function is proven from the continuity
equation. For the stream function to be defined, the mass flow crossing
a line between two points must be independent of path. This requires
that the flow be either incompressible or steady. Some additional assump-
tion is necessary for the flow to be unique. We used the assumption that
the flow was absolutely irrotational, which turned out to be irrotational
relative to the blade for the axial-flow case considered. However, other
assumptions could be made for other problems. Another restriction on
the stream function is that it can be defined only for two-dimensional flow.
“This can easily be seen since the stream function is defined as a percentage
of mass flow between two points, and this is meaningless in three
dimensions.

The existence of the potential funection can be shown if the flow is
irrotational relative to the given coordinate system. This is necessary
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because we must have equality of mixed second partial derivatives; that
is, if

e P
=—— 543
0xdy OJyox ( )
then
i) d
—Vy=—17, 544
32 "oy (5-44)

and the flow must be irrotational. A similar situation exists in three-
dimensional flow; that is, the potential function exists only if the flow is
irrotational with respect to the coordinate system being used. Finally,
an assumption must be made to assure a unique solution. This can be
done by using the continuity equation.

Finite-Difference Solution for Stream-F unction Method

As stated before, there are many ways of solving various problems
posed by stream-function or potential-function theory. We ‘will consider
in further detail the finite-difference solution of the direct problem for the
stream function for the simplest case of steady, incompressible, irrotational
flow. In this case, we must solve Laplace’s equation subject to the bound-
ary conditions discussed in the section on the stream function. The method
of solution for the potential function is quite similar, but with a lower
rate of convergence for the finite difference solution.

The first step is to establish a rectangular grid of mesh points in the
region shown in figure 5-8. A typical grid is shown in figure 5-9. Then a
finite-difference approximation to Laplace’s equation (eq. (5-21)) can be
written at each mesh point where the stream function is unknown. A
typical mesh point with four neighboring mesh points is shown in figure
5-10. The point in consideration is labeled 0, and the four neighboring
points are labeled 1 to 4, as shown. The distance between points 1 and 0 is
denoted hy, and similarly, the other distances are hs, hs, and h, as indicated
in figure 5~10. The value of u at points 0 to 4 are labeled uo to u,, respec-
tively. With the use of a Taylor series expansion for « in the x- and y-direc-
tions, equation (5-21) can be approximated by using only values of u at
mesh points. (Further explanation of this is given in ch. 6 of ref. 4.)
When this is done, the following expression is cbtained:

[ 2u, + Qu, _ %] +[ 2us + Quy 2&] ~0
hi(hithe) * ho(ha+-hy)  hohg hs(ha+ha) * he(hs+hs)  hshe]
(5-45)
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o

Figure 5-9.—Mesh used for a finite-difference solution.

Fraure 5-10.—Notation for adjacent mesh points and mesh spaces.
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Solving equation (5-45) for u, yields the expression

4
Uo= P Qilki (5-46)
i1
where
ha+-hy
n=- (5-47)
ha+hq
== (5-48)
hi+he
az= aohn (5-49)
hy+-h
=t (5-50)
auh4
= () (F+ )+ O (i+1) 5-51)
a°_34h1h2 12h3h4 (

Equation (5—46) holds at every interior mesh point. If one of the neigh-
boring points is on a blade surface, then the value of u at that point can be
used. At other points along the boundary, equation (5-46) cannot be used,
but the boundary conditions can be used to obtain alternate equations at
these points. For example, along the upstream boundary AH in figure 5-9,
du/an is given by equation (5-27). If point 0 is on line AH, then, a finite
difference approximation gives

8

t in
u0=u4+h4( anB ) (5—52)
Similarly, if point 0 is on line DE,

U= Uz— h3 <tansﬂ0ut> (5—'53)

For the points along AB and CD, equations can be derived by using
the periodic boundary condition. If the point 0 (fig. 5-11) is on the
boundary between A and B, the point 1 is outside the boundary. However,
it is known that ui=wu;.—1, where the point 1,s is a distance s above
point 1 in the y-direction, as shown in figure 5-11. Substituting this

43



TURBINE DESIGN AND APPLICATION

F1GURE 5-11.—Mesh point on line AB.

condition in equation (5-46) gives

4
uo=a1u1,,+zaiui—a1 (5-54)
=2
This equation holds along CD (fig. 5-8) also.

The points along HG need not be considered, since they are just 1
greater than the corresponding point along AB. The equation for the first
mesh line below HG, therefore, must be modified, since point 2 is on line
HG. In this case, U2=us,—s+1, where the point 2,—s is g distance s
below point 2 in the negative y-direction, as indicated in figure 5-12.
Substituting this condition in equation (5-46) gives

Uo= Q11+ AoUz, s+ A5tz + Agus+ ap (5-55)

This equation also applies to the first mesh line below F E (fig. 5-8).

One of equations (5-46) or (5-52) to (5-55) can be applied to each
mesh point for which the stream function is unknown in the region of
interest to give the same number of linear equations as there are un-
knowns. These points where the stream function is unknown will be
referred to simply as unknown mesh points.

Suppose that there are n unknown mesh points. We then have n equa-
tions in n unknowns. The points can be numbered consecutively from 1 to
n. The values of « will then be w1 at the first point, u, at the second point,
and so forth up to u, at the last point. At each point, one equation will
apply. The equation at a typical point, i, could be written
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F16URE 5-12.—Mesh point on first line below HG.

Ea,-ju,~=lci (5—56)
j=1
The values of the ai; are determined by one of equations (5—47) through
(5-55). All but five, at most, of the a;; are zero, and the a;;=—1. The
value of k; is always zero, except for the outermost unknown points
around the boundary. It can be shown that the a;; matrix is always non-
singular; hence there is always a unique solution for the u;.

A numerical solution to equation (5-56) can be obtained by iterative
techniques. These techniques are particularly valuable in solving systems
of linear equations of this type; that is, where there are a large number of
unknowns, but few terms in each equation. Storage requirements are
small, and roundoff error is minimized with iterative methods. To start
the iteration, an initial estimate of u at every unknown mesh point is
required. The simplest iterative procedure is relaxation. This consists of
changing the estimated value of u at each point in succession so as to
satisfy the equation for that point. After this is done at every point, the
procedure is repeated until there is negligible change in the values of u.
The procedure is simple and it always converges for this problem. How-
ever, the convergence rate is extremely slow, so that excessive computer
time is required. The convergence can be accelerated greatly by increasing
the change in u at each iteration by a factor w, called the overrelaxation
factor. When w=1, the procedure is straight relaxation, and when w>1,
it is overrelaxation. It is proven in reference 4 that overrelaxation (or
underrelaxation) is convergent if 0 <w<2. However, the greatest rate of
convergence occurs when 1 <w<2. In fact, there is an optimum value of w
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between 1 and 2 which gives the most rapid convergence. This optimum
overrelaxation factor can be caleulated as explained in reference 4.

To give an explicit expression for the overrelaxation procedure, we will
use a superscript on the u;. That is, u;™ is the m** itcrate of u;. The initial
estimates are denoted :® and may be any valuc. For example, an initial
estimate of u;°=0 is satisfactory. Then, if u;™ is known for all 1, we can
calculate ui™*, fori=1,2,.. ., nin succession by

i—1 n
wi™H =y +w {—Za,-;u;"‘“— Z a;juj’“-f—ki—uim} (5—57)
j=1 j=i+1

After a solution for u is obtained by overrelaxation (or any other
method), it is necessary to calculate the velocities with the use of equa-

tions (5-9) and (5-10) as
)
wl =
dy

pb

*()

W,=—-
v ob

and

(5-59)

The partial derivatives du/dz and du/dy must be estimated from the
calculated discrete values of ;. This can be readily done, either by finite
differences, or by fitting a smooth curve, such as a spline curve, through
the points. The resultant velocity is calculated from the two components
at unknown mesh points. On the blade surface, the velocity is caleulated
from one component and the blade tangent angle.

Computer Programs for Stream-Function Analyses

As can be seen, the solution of Laplace’s equation and the calculation
of velocities is a lengthy calculation procedure which is best done by com-
puter. Several computer programs have been written at the NASA Lewis
Research Center for the analysis of flow through turbomachine blading
by stream-function methods. Most of these programs are for blade-to-
blade analysis (region shown in fig. 5-9). The program called TURBLE,
which is described in reference 5, can be used to analyze axial, radial, or
mixed flow. In accordance with the constraints associated with the
stream-function method, the flow must be subsonic throughout the entire
solution region. The TSONIC program, described in reference 6, super-
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sedes TURBLE in that it performs all the same calculations and, in
addition, extends the solution to transonic (local supersonic velocities)
flow problems. Transonic solutions are obtained by using a velocity-
gradient equation of the type described in the next section to extend a
preliminary (lower mass flow rate) subsonic stream-function solution. A
program called TANDENAI, which is described in reference 7, can be used
to analyze flow in tandem or slotted blade rows or blade rows with
splitters. Another program, called MAGNFY and described in reference
8, obtains a detailed solution in the leading- or trailing-edge regions of any
blade or in the slot region of tandem or slotted blades. The TANDEM
and MAGNFY programs are restricted to subsonic flow.

Flow in the meridional plane (mean hub-to-shroud flow surface, as
indicated by fig. 4-14(b) or fig. 5-1(a)), of any axial- or mixed-flow
turbomachine can be analyzed by a program called MERIDL, which is
described in references 9 and 10. Transonic solutions can be obtained by
the use of a velocity-gradient equation to extend a preliminary subsonic
stream-funetion solution.

VELOCITY-GRADIENT ANALYSIS

As indicated previously, the stream-function and potential-function
methods of analysis are limited to solutions that are entirely subsonic
within the computation region. By use of a velocity-gradient equation and
additional assumptions, however, the subsonic solution can be extended to
give an approximate solution in the transonic flow regime. It is also
possible to use a velocity-gradient method of analysis alone to obtain sub-
sonic, transonic, or supersonic solutions without assumptions other than
the basic ones indicated earlier. The velocity-gradient analysis is often
called a stream-filament analysis because the velocity-gradient equation
involves the streamline, or stream-filament, curvature and position.

A velocity-gradient method of analysis can only give solutions within a
guided passage; that is, a passage where both ends of all streamline
orthogonals intersect a solid boundary. Therefore, the usefulness of this
method depends on the degree of flow guidance provided by the turbine
blades. For a well-guided passage (high solidity and/or small angles),
such as shown in figure 4-11, most of the suction surface is within the
guided region, and the associated surface velocity distribution can be well
defined. On the other hand, for a low-solidity blade row, such as that
shown in figure 5-9, less than half of the suction surface is within the
guided region, and surface velocities can be computed only on the front
half of the suction surface. In this latter case, the stream-function analysis
must be used if better definition of the suction-surface velocity distribution
is required.
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Method

The idea of a velocity-gradient method can be demonstrated by con-
sidering a simple case. Suppose we have two-dimensional flow through a
narrow passage as shown in figure 5-13. We assume the height of the
passage to be b, and the width d. If the mass flow is known, the average
velocity can be calculated approximately from continuity by

w

Wava = W

(5-60)
However, there is a variation in velocity across the width of the passage,
and in turbomachinery it is this velocity difference we are interested in.
With a force-equilibrium equation, by balancing centrifugal force against
the pressure gradient as was done in chapter 3 for consideration of radial
equilibrium, it can be shown that

aw W

S= (5-61)

dqg 7.
where ¢ is the distance from the suction (convex) surface, and r, is the
radius of curvature for the streamline. The sign convention for r. is
important; r. is positive if it is concave upward, and negative if it is con-
cave downward. For the simple case shown in figure 5-13, equation (5-61)
can be integrated along a radial line by assuming the streamline radius of
curvature to be equal in magnitude to the passage radius. There results,
for integration from the inner radius to any point in the passage,

W
—uz—; (5-62)

Fiaure 5-13.—Flow through a curved passage.
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where

W, relative velocity on inner, or suction, surface, m/sec; ft/sec
T radius of inner, or suction, surface, m; ft
r radius of passage, m; ft

The mass flow through the passage is expressed as
re+-d
w= f oWb dr (5-63)

and substitution of equation (5-62) into (5-63) and integration, with
constant density assumed, yields

W= (5-64)

pbr, In (1 +i)
Ts

In a similar manner, the outer, or pressure, surface velocity can be com-
puted as

W,= o (5-65)

o (1)1 (142)
Ts Ts

Thus, an estimate of the blade-surface velocities can be obtained simply
by using equation (5-62), which is a velocity-gradient equation. We are
not necessarily restricted to two-dimensional flow. If there were some
variation of velocity in the height of the passage, a velocity gradient could
be calculated in that direction also.

We will now consider a very general velocity-gradient equation. Since
we are interested in turbomachinery, we will use a rotating cylindrical
coordinate system with radius r, angle 6, and axis z, as shown in figure
5-14. Also indicated are the velocity components, W., W., and W,. The
meridional component W,, is the resultant of W, and W,. The meridional
plane is a plane containing the z axis. Also shown in figure 5-14 are «, the
angle between W, and the z axis, and 8, the angle between W and the
meridional plane. The following relations hold for the components:

Wo=W sin 8 (5-66)
Wan=W cos 8 (5-67)
W,=Wnsina (5-68)
W.=W, cos o (5-69)
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2 owl 2
Wi = WE + Wy

w2 w2 + Wj

Ficure 5-14.—Cylindrical coordinate system and velocity components.

In addition to the r-, 8-, and z-coordinate, it is convenient to use an
m-~coordinate. The m-coordinate is the distance along a meridional stream-
line, as shown in figure 5-15. The m-distance is less than the true stream-
line distance if the angle 8#0. The meridional streamline is the projection
of a streamline in the meridional plane; that is, the #-coordinate is
neglected. The curvature of the meridional streamline is 1/7., where r, is
the radius of curvature of the meridional streamlinc. The sign of r, is
positive if the streamline is concave upward.

We want the velocity gradient along an arbitrary curve. Let g be the
distance along this curve. For the case of constant total temperature and
constant angular momentum (V) at the inlet,

aW_ dr o dr do

_ dar 5-70
dg adq+ dg " dg e
where
2 o2 aw,, .
a=WcosaCOS B_Wsin 6+sinaCOSB i —2wsin B (5-71)
" ” dm
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Meridional
streamline 5
7

Axis

FiGure 5-15.—The m-coordinate.

. . aw.
b=——————W Sin & €08 6+003acosﬁ lid (5-72)
Te dm
. . dWs .
¢=W sin asin 8 cos 8+7 cos 3 i + 2w sin o (6-73)

These equations are derived as equations (B13) and (B14) of reference 11.
In using any velocity-gradient equation, it is necessary to solve a differ-
ential equation involving streamline-geometry parameters, such as cur-
vature, a, and 8. These are not known precisely in advance. However,
for a guided channel, these parameters can be estimated reasonably well.

A great number of special cases can be obtained from equations (5-70)
to (5-73). For example, suppose we have an annular passage with no
blades, as shown in figure 5-16, and no velocity component in the tangen-
tial (8) direction (into page). We can calculate dW/dn, where n is the
distance normal to the streamline. Let ¢=n in equation (5-70). Since
Ws=0, then df/dn=0 and §3=0. Further, from figure 5-16, it can be

Quter wall—\

Meridional
streamline ~

Linner wall

TiGURE 5-16.—Annular passage with no blades.
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seen that dr/dn=cos a and dz/dn= —sin a. Then, from equations (5-70)
to (5-73),

= (5-74)

Thus, for this case, equation (5-70) reduces to the simple form of equa-
tion (5-61).

Computer Programs

Several computer programs for the analysis of flow through turbo-
machine blading by velocity-gradient methods have been written at the
NABA Lewis Research Center. One that was used for many years is the
CTTD program, which is described in reference 12 and is limited to axial-
flow turbines. This program has now been superseded by the more general
and easier to use CHANEL program, which is described in reference 13.
The CHANEL program can be used to analyze axial-, radial-, or mixed-
flow turbines or compressors. Velocity-gradient equations are used to
determine velocity variations both from hub to tip along meridional-
streamline orthogonals and from blade to blade along hub-, mean-, and
tip-streamline orthogonals. This results in a flow solution for an orthogonal
surface, as illustrated in figure 5-17, which satisfies a specified mass flow
rate. Computations are made for a number of these surfaces along the
blade passage. This program can also be used to compute the maximum
(choking) mass flow rate for the channel. The program gives good results
for medium- to high-solidity blading. As indicated previously, more
definition than can be provided by this program may be needed for low-
solidity blading, because solutions can only be obtained for fully guided
sections of the passage.

Velocity-gradient methods have also been used to obtain meridional-
plane and blade-to-blade plane solutions. The basic method for a meridi-
onal-plane analysis for mixed-flow centrifugal impellers is presented in
reference 14, which uses the velocity-gradient equation along streamline
orthogonals. Since the orthogonal lengths are not known in advance, it
was more convenient to base a computer program on the use of the
velocity-gradient equation along fixed straight lines, which were called
quasi-orthogonals. Such programs for meridional-plane analysis are
presented in reference 11 for a radial-inflow turbine impeller and in
reference 15 for backward-swept or radial impellers and vaned diffusers of
centrifugal compressors. A program for a blade-to-blade plane analysis
that uses quasi-orthogonals for a radial-inflow turbine impeller is described
in reference 16,

A further use of the velocity-gradient equation, as mentioned pre-
viously in this chapter, is to extend a subsonic stream-function solution to
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obtain local supersonic velocities. The subsonic solution is used to obtain
the flow angles and streamline curvatures required for the veloeity-
gradient cquation. Programs for transonic-flow solutions based on this
method are presented in references 9 and 10 for a meridional solution and
in reference 6 for a blade-to-blade solution.

Orthogonal -~

surface —(
|

#Hub-to-tip orthogonal
~Pressure surface

. m-blade ~Suction

/—orthogonal ! surface

Tip

Midchannel

streamline-
Ll

Mean

Parallel to axis
of rotation—\k

Hub

Figure 5-17.—Turbine blades with three-dimensional orthogonal surface across
flow passage.
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SYMBOLS

flow area, m?; ft?

coeflicients for equation (5-46)

cascade height, m; ft

passage width, m; ft

distance between mesh points, m; ft

constant in equation (5-56)

distance along meridional streamline, m; ft

distance normal to streamline, m; ft

absolute pressure, N/m?; Ib/ft?

distance along arbitrary curve, m; ft

gas constant, J/ (kg) (K); (ft) (Ibf) /(Ibm) (°R)

radius, m; ft

blade spacing, m; ft

absolute temperature, K; °R

time, sec

stream function

absolute velocity, m/sec; ft/sec

relative velocity, m/sec; ft/sec

mass flow rate, kg/sec;b/sec

fluid absolute angle of inclination from axial direction in the
meridional plane, deg

REFPUS TN* I I I AT N

i} fluid flow angle, relative to blades, out of the meridional plane
(in the tangential direction), deg
n distance in direction of outer normal to cascade boundary, m; ft
] angular distance in direction of rotation, rad
p density, kg/m3; 1b/ft?
d potential function
© {angular velocity, rad/sec
overrelaxation factor
Subscripts:
c curvature
in inlet
m meridional component
n component normal to streamline
out outlet
P pressure surface
r radial component
s suction surface
z axial component
¥ component in y-direction
z component in z-direction
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tangential component

, mesh-point designations

-
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CHAPTER 6

Introduction to Boundary-
Layer Theory

By William D. MeNally

As shown in chapter 2, the pressure ratio across a turbine provides a
certain amount of ideal energy that is available to the turbine for pro-
ducing work. The portion of the ideal energy that is not converted to
work is considered to be a loss. One of the more important and difficult
aspects of turbine design is the prediction of the losses.

Before losses can be predicted, it is necessary to understand their
causes. The primary cause of losses is the boundary layer that develops
on the blade and end-wall surfaces. Other losses occur because of shocks,
tip-clearance flows, disk friction (windage), flow incidence, and partial-
admission operation. This chapter gives an introduction to boundary-
layer theory, which is used to calculate the parameters needed to estimate
viscous (friction) losses. Methods for determining the basic viscous loss
and the associated trailing-edge and mixing losses are presented in the
next chapter.

NATURE OF BOUNDARY LAYER

When a real fluid (such as air) flows past a turbine blade at normal
velocities, the influence of viscosity on the flow is confined to a relatively
thin layer in the immediate neighborhood of the blade. This layer is called
the boundary layer. At the outer edge of this layer the flow is frictionless,
and conditions there agree with those calculated with the use of ideal
(frictionless, nonviscous) flow assumptions. At the wall, on the other
hand, the velocity of the fluid is zero in all directions (no-slip condition).
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1t is the frictional, or viscous, forces in this thin layer that reduce the fluid
velocity from its free-stream, frictionless value to zero at the wall.

A boundary layer on a turbine blade is illustrated in figure 6-1. The
boundary layer develops from a small finite thickness at the stagnation
point at the leading edge of the blade and grows along both the suction
and pressure surfaces. The initial portion of the boundary layer is always
laminar. In a laminar boundary layer, fluid layers parallel to the blade
surface slide over cach other. Any minute local fluctuations in velocity are
sufficiently damped so that they have negligible influence on the smooth-
ness of the overall flow. The velocity at a point is either steady with time
or changes in some smooth way, as figure 6-2(a) indicates.

Most flows being ducted to a turbine, or entering it from a combustor,
are turbulent in nature. The fluctuating components of velocity have a
significant influence in this type of flow. With this overall flow, the
boundary layer on the blades cannot remain laminar for any great dis-
tance. It usually passes through a transition region and becomes a tur-
bulent boundary layer. In the transition region, weak disturbances in the
flow arc amplified, and this leads to the random fluctuations in velocity
that are characteristic of turbulent flow. In the turbulent boundary layer,
as in turbulent flow, the velocity at any point oscillates in a random
fashion about a mean value, as figure 6-2(b) indicates.

Figure 6-1 also shows a separated region in the turbulent boundary
layer. Separation can likewise occur in the laminar boundary layer. When
a boundary layer separates, the fluid moves away from the blade surface.
The manner in which this happens is illustrated in figure 6-3. As the free-
stream velocity decreases along the rear portion of the suction surface of
a turbine blade, static pressure correspondingly increases. This positive

lami v Transition  ~Turbulent
minar ' region / boundary
boundary | ! layer

\\ point
- Stagnation
streamline

Fi1gure 6-1.—Boundary layer on blade.
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Steady
sy A
v V /’
v
t t
Unsteady _
Unsteady ‘rV
v \ v /
(a) (b
t t
(a) Laminar flow. (b) Turbulent flow.

F16URE 6-2.—Variation of velocity with time at a point.

Separation point ~~

Turbulent
eddy

Ficure 6-3.—Boundary-layer separation.

pressurc gradient (adverse pressure gradient) retards the flow in the
boundary layer and causes it to lose energy. The flow in the boundary
layer can be retarded to such a degree that very close to the wall it moves
in a direction opposite to that of the mean flow passing the blade. This is
separation. The point at which the flow reverses itself is the separation
point. The laminar boundary layer at the lcading edge of a turbine blade
can also separate and immediately reattach itself to the surface as a
turbulent boundary layer. This is illustrated in figure 6-4.

Finally, it should be noted that both laminar and turbulent boundary
layers can be cither incompressible or compressible, depending on the
level of the Mach number. Just as there are different equations to repre-
sent laminar and turbulent boundary-layer flow, there are different
equations for the incompressible and compressible variations of each.
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Turbulent
boundary
Separation layer
Laminar bubble » .
boundary el

layer—
\

Turbine
blade

¥
L Stagnation
point

Fioure 6-4.—Laminar separation and reattachment.

Boundary layers should be considered compressible if the free-stream
relative Mach number exceeds values of 0.3 to 0.4. The boundary-layer
equations for these various cases are derived and solution methods are
discussed in this chapter,

DERIVATION OF BOUNDARY-LAYER EQUATIONS

The general equations of motion of viscous fluids are called the Navier-
Stokes equations. In normal coordinate systems, there are three such
equations, one for each of the coordinate directions. The boundary-layer
equations can be derived from the Navier-Stokes equations. The Navier-
Stokes equations themselves can be derived by applying the law of con-
servation of momentum to a fluid element. This exercise is lengthy, and
will not be repeated here. References 1 and 2 both have the complete
derivation, in two somewhat different forms.

There are various forms of the Navier-Stokes equations, depending on
what assumptions are made during their derivation. The following equa-
tion represents the Navier-Stokes equations combined into vector form
for a compressible fluid with constant viscosity:

d 1
-t vp e var-tv(v.u (6-1)
dt P P 3p

where

u general velocity vector, m/see; ft/sec

t time, sec

g conversion constant, 1;32.17 (Ibm) (ft)/ (Ibf) (sec?)

f general body force acting on a unit mass of fluid, N/kg; lbf/lbm
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P density, kg/m?; lbm/ft?
P static pressure, N/m?; 1bf/ft?
m dynamic viscosity, (N) (sec)/m?; lbm/ (ft) (sec)

In this equation, u represents a general velocity vector with components
u, v, and w in the three coordinate directions z, ¥, and #, respectively.

u=ui+vj+wk (6-2)

where i, j, and k are the unit vectors in the three coordinate directions.
The total, or substantial, derivative of u is du/dt. In any of the coordinate
directions,

¢_9 + i + i + 8 (6-3)
—=—4u—+v —4w - —
dt ot dx  dy dz
In equation (6-1), the Laplacian operator V?is applied to the vector u
rather than to a scalar function. If the term V?u is expanded into simple
vector quantities, equation (6-1) becomes

%Z=gf__vp+ v(V. u)——[vx vxu)]+~—V(V u) (6-4)

Expressing the V operator in terms of gradients, curls, and divergences,
which may be more familiar to the reader, equation (6-4) becomes

d
Eg—gf—— grad p+ grad (div u) —— curl(curl u) +— - grad(d.lv u)

(6-5)

In order to derive the boundary-layer equations, equation (6-1) has
to be expanded into three scalar equations, one for each of the coordinate
directions. The three resulting equations are

6u+ 6u+ 6u+ ou fo g op u(azu, du 62)

u—Fv—+tw —=f: —

o Yoz oy == oz p \oz ay* ' oz
lp 0 fAu  dv >
L 6-6
i (Eel) oo

v g op u(azu % a%)

+u x+ + —gf,, ay p \dz* dy* 92
lu d fou v ow
+—ﬁ—<— —+—> (6-7)
3pdy\dx dy 9z
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dw gop (62w 0w 62w>
p 0z

E+u~+ —+w——gf——— dr? 92

1u6<6u D) aw)
SES(EL T TEY (68
3pd ax+6y+az ( )

where f., f,, and f, are the components of the body foree f.

Laminar Incompressible Boundary Layer

In order to derive Prandtl’s boundary-layer equations for laminar
incompressible flow, the following assumptions will be made:

(1) Viscosity is a constant. This has alrcady been assumed in the
writing of the preceding equations.

(2) Flow is incompressible. Since for incompressible flow the con-
tinuity equation is

(6-9)

du dv Ow
Veu=divu= < )—

6x+6y dz

the final terms in cquations (6-6) to (6-8) can be eliminated.

(3) Flow is two-dimensional. This climinates equation (6-8) from
consideration, as well as all terms involving w or 8/9z in cquations (6-6)
and (6-7).

(4) Flow is steady. This climinates 8/t terms.

(5) Body forces are negligible in relation to inertia and viscous forces.
Thus, f, and f, can be discarded from equations (6-6) and (6-7).

With these assumptions, the Navier-Stokes equations reduce to the
following two cquations for the z- and y-directions:

(5] 6 a ?u  9?
L2 w_ gop p ( u u) (6-10)
ox ay pdr p \dx? 9Jy?
dv v 3 % W
e SR (— —) (6-11)
dr 3y pdy p\ox? ay*
Likewise, the continuity equation becomes
du
AL (6-12)
ar Jdy

In order to make equations (6-10) to (6-12) suitable for the analysis of
boundary-layer flow, the equations arc traditionally made dimensionless,
and an order-of-magnitude check is performed on the various terms to
show that some are negligible with respect to others. Figure 6-5 shows the
velocities and coordinate directions pertinent to the boundary layer.
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Up= Ug

Fieure 6-5.—Boundary-layer velocities and dimensions.

The following dimensionless parameters are defined:

z
X=-—
L
y
V==
L
_u
-7
v
V=-—r
Uo
_op
pUd
LU
Re—= p [}
m
where
X dimensionless z-coordinate
L characteristic length (in this case, the blade chord), m; ft
Y dimensionless y-coordinate
U dimensionless velocity in z-direction
U frec-stream velocity upstream of blade, m/sec; ft/sce
|4 dimensionless velocity in y-direction

Trailing
edge

(6-13a)

(6-13b)

(6-13c)

(6-13d)

(6-13e)

(6-13f)
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P dimensionless pressure
Re Reynolds number

From figure 6-5, we sec that since z is proportional to L, X is of order 1.
And since y is proportional to the boundary-layer thickness 8,11, ¥ is of
order é;,1/L =¢, a quantity much less than 1. Likewise, since u is of order
Us, U=u/U,is of order 1. And V=v/U, is of order ¢, since velocities in
the y-dircction in the boundary layer are much smaller than those in the

z-direction.

In order to put cquations (6-10) to (6-12) in terms of dimensionless
quantitics, equations (6-10) and (6-11) arc multiplied by L/Ug, and
equation (6-12) is multiplied by L/U, The resulting dimensionless

cquations are

USo4+V o=

aY aY  Re

(6-14)

(6-15)

(6-16)

The order of magnitude of the various terms in these equations can now
be compared with cach other. Since X and U are of order 1, and ¥ and V

are of order e,
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atV e

ax 1 (6-17g)
iV e 1

LAV 6-17h
aY? €€ ¢ ( 7h)

Furthermore, the change in P with respect to X is of the same order of
magnitude as the change of U with respect to X, so that dP/9X is of
order 1.

Relating these orders of magnitude to the terms in equations (6-14)
to (6-16) yields

aU oU aP 1 /92U a:U
Uit e Gty 6
1 1
(1) (1) + (¢) (Z)=“1+<f2> (”E)
v 1% 3P 1 [0V 9V
UtV e Gtay)  ©19)
1
(1) () +(e) (1) = —e+ (&) (‘*:)
a0 (6-20)
X 'Y
141

By examining equations (6-18) to (6-20), the following conclusions
can be reached:

(1) In boundary-layer theory, it is assumed that the viscous terms
1/Re[(8*°U/8X?%) + (8*U/aY?) ] are of the same order of magnitude as the
inertia terms U(aU/dX)+V (aU/3Y). For this to be true in equation
(6-18), 1/Re must be of order ¢, since 3*U/9Y? is much larger than
d?U/8X? and dominates the two terms in parentheses. Therefore, the
Reynolds number must be relatively large.

(2) In equation (6-19), with 1/Re of order ¢ and with 32V/9Y?
dominating 4°V/dX? the terms are of order e. Therefore, unless 9P/9Y
is to dominate, it too must be of order € or less. Therefore, 3P/3Y is much
smaller than dP/3X, and P can be considered a function of X alone. There-
fore, P=P(X) or p=p(z), and dP/3X =dP/dX or dp/dzx=dp/dz. This
allows us to assume that the pressure across the boundary layer in the
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y-direction is essentially constant. It can be assumed equal to the potential
flow pressure existing at the outside of the boundary layer.

(3) Since the first equation is of order 1, and the second equation is of
order ¢, the second equation can be neglected completely.

(4) In equation (6-18), 82U/8X? can be neglected because it is so
small in comparison with 92U7/9Y? This leaves the following dimension-
less equations:

U ypiU__dP L oU -1
aX  3Y  dX ReaY:

o+ =0 (6-22)

These are Prandtl’s boundary-layer equations in dimensionless form.

The boundary-layer equations in this form are uscful in determining
the influcnce of the Reynolds number on the size of the boundary layer
for different fluids. From cquation (6-21) we see that as Re increases in
magnitude, the viscous-force terms (1/Re) (62U /3Y?) will get smaller and
smaller. The boundary-layer thickness will correspondingly decrease. So,
as Re increases, 8;,;; deereases. Furthermore, increasing Re corresponds to
decreasing viscosity if pL Uy is constant. So, as a general rule, the thickness
of the boundary layer decreases as the viscosity decreases.

The boundary-layer equations can be put in terms of dimensional
variables by multiplying equation (6-21) by Us*/L and cquation (6-22)
by Uo/L. The resulting equations arc

du  du gdp ud®u

I 6-23
“ ax_H 3y p (lx+p ay? ( )

Ju dv
—+—=0

= 6—24
dr Jy ( )

These arc Prandtl’s boundary-layer ecquations for two-dimensional,
laminar, incompressible flow. Density and viscosity arc assumed constant
and known. The pressure gradient along the blade surface, dp/dz, is also
known from an ideal-flow solution. The remaining unknowns are » and v,
and equations (6-23) and (6-24) arc sufficient for their caleulation.

It should be noted that the boundary-layer equations are not valid in
the presence of shock waves (i.e., where instantancous adverse pressure
gradients of large magnitude occur). Just as flow phenomena in the
boundary layer depend on mainly the Reynolds number, conditions in a
shock wave depend on primarily the Mach number. Since the influence of
Mach number is not included in the boundary-layer equations, they tell
us nothing about the interaction of shock waves and boundary layers.
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The boundary-layer equations are not completely reliable as separation
is approached. One of the assumptions used in their derivation is that the
velocity v is much smaller than . Very close to the separation point, the
boundary layer grows rapidly, and » begins to be of the same order as .
Nonetheless, the boundary-layer cquations are gencrally used in cal-
culations right up to the separation point, since the region where V is
significant is very small, and little crror in the location of the point of
separation is incurred. However, these cquations should not be used for
detailed calculations in the neighborhood of a separated flow rogion.

The Navier-Stokes cquations (6-6) to (6-8) used in the development
of the boundary-layer equations were derived for an orthogonal system
of coordinates in which the radius of curvature of cach of the coordinate
axes is quite large (i.c., where curvature effects are negligible). The
question arises as to how the boundary-layer equations would change for
flow over a curved wall. If a curvilinear orthogonal coordinate system
(fig. 6-6) is introduced wherein the 2-axis is in the direction of the curved
wall and the y-axis is normal to it, a new set of Navier-Stokes equations
can be derived for flow in such a system. These equations are given in
refercnce 1. The terms in the equations are very dependent on the radius
of curvature r at a position r along the blade surface. The relative orders
of magnitude of the individual terms ean be estimated in the same manner
as was done previously. With the assumption that the boundary-layer
thickness is small compared with the radius of curvature of the wall, and
for the casc where no large variations in curvature oceur, so that dr/dz~1,
the same boundary-layer equations result as were obtained for flat walls.
Thercfore, the flat-plate boundary-layer cquations may be applied to
curved walls as well, provided there are no large variations in curvature,
such as would occur near sharp edges.

Fi6urE 6-6.—Curvilinear coordinate system on a blade.
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Laminar Compressible Boundary Layer

An order-of-magnitude analysis can also be performed to derive the
equations for a compressible boundary layer. In the incompressible case,
viscosity and density were assumed constant, temperature variations were
neglected, and the energy cquation was not used. For the compressible
case, density is no longer constant, viscosity is considered a function of
temperature, the equation of state is used to relate pressure and density to
temperature, and, if the process is not isothermal, some form of the energy
equation is required. The boundary-layer equations for compressible,
nonisothermal, variable-viscosity flow will involve three parameters which
can be related to temperature. These are viscosity, specific heat, and
thermal conductivity.

There are several relations for viscosity as a function of temperature.
The most common is probably Sutherland’s relation (ref. 1)

T\"* To+ S
Mo To T+ b
where
Mo dynamic viscosity at the reference temperature 7Ty, (N) (see) /m?;
Ihm/ (ft) (sec)
T absolute static temperature, I(; °R

T, reference temperature, K; °R
S a constant, I{; °R (for air, S=110 IX or 198° R)

A less complicated, but also less accurate, temperature-viscosity relation
is the power law

‘—‘—=<—T—> 0.5<w<1.0 (6-26)
wo \Th
where w is a constant. For air, w is approximately 0.65.

Specific heat and thermal conductivity can be related to temperature
by least-squares polynomial-curve fits for the particular gas and tem-
peraturc range involved. With these variables related to temperature,
the unknowns in the eompressible-boundary-layer problem reduce to ,
v, p, and T. The four equations relating these variables will be the con-
tinuity cquation, one component of the momentum cquation, the state
equation, and the energy equation.

The order-of-magnitude analysis of the continuity and momentum
{Navier-Stokes) equations for compressible flow is almost identical to
that for incompressible flow. For compressible flow with nonconstant
viscosity, the equations analogous to (6-10) to (6-12) are the following:
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ou du dp o[, ou 2 ou ov\] o[ [ou dv\]
pu—+pv —=—g —+— Lz + +@ p\ =+

9z © ay oz "ozl oz 3" \ex 9y 3y ' oz
(6-27)
8v+ o ap+i "2 v 2 (i’ﬁ+a_”)7+i— (av+6u>_
puax ””ay_ gay 6yb“6y 3“ dx dy/ | axU‘ éx dy/ ]
(6-28)
a i)
(pu)+ (o) _o (6-29)
Jx Yy

If an order-of-magnitude analysis is performed on these equations similar
to that for the incompressible-flow cquations, the following boundary-
layer equations result:

6u+ u dp+6 ( 6u> (6-30)
U—Fpp—=—g—+—\lu— —
P TPy Tz oy \M oy

a(pu)  3(pv) _

0 6-31
ax oy ( )

The equation of state is also required for the solution of compressible
boundary-layer flow. The state equation is

p=pRT (6-32)

where R is the gas constant, in J/ (kg) (K) or (ft) (ibf)/(Ibm) (°R).
The final equation required besides the continuity equation, the
momentum cquation, and the equation of state, is the cnergy equation.
The energy equation for a compressible boundary layer is derived from
the energy equation for a perfect gas by means of another order-of-
magnitude check. The following is the energy equation for compressible,
two-dimensional steady flow of a perfect gas, written in full:

3T oT\ uédp v ap a(aT) a(aT> m

AT Pt T I i e el W Bl & s 6-33
Per (uax+v6y> Taz 7oy Tae\Far ) Tay "oy ¢ )
where

Cp specific heat at constant pressure, J/ (kg) (K); Btu/(lbm) (°R)
J conversion constant, 1; 778 (ft) (1bf) /Btu
k thermal conductivity, W/ (m) (K); Btu/(sec) (ft) (°R)

3u\t  [av\? g u\: 2/ou dw\?
e=2((G:) +(3r) ]*(55*@) —ﬁ(a?s;) (6-34)
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If an order-of-magnitude check is performed on the above equations, the
following boundary-layer encrgy equation results:

aT  aT\ wudp o ( 6T> K (au)2
—tp = (I KO _
Per <u or t 6y> J dx+ay Ay +gJ Ay (6-35)

Equations (6-30), (6-31), (6-32), and (6-35) arc the laminar boundary-
layer equations for nonisothermal, two-dimensional, compressible flow of
& gas obeying the idcal gas law,

Turbulent Boundary-Layer Solution Methods

It is desirable to have a turbulent boundary layer over the major portion
of turbine blades. If the boundary layer is not turbulent, separation will
probably occur on the blades, with a resulting decrease in their per-
formance. Turbulent flow has irregular fluctuations {mixing or eddy
motions) superimposed on the main fluid motion (sce fig. 6-2). These
fluctuations are so complex that closed-form solutions are not feasible at
present. Yet, the mixing motion is very important, since the stresses in
the fluid duce to Auctuating components of velocity are often of greater
magnitude than those due to the mean motion.

There are two approaches to the solution of turbulent boundary-layer

flow. The first is the exact solution of the time-dependent, three-dimen-
sional, Navier-Stokes cquations. The three-dimensional equations are
required, since two-dimensional caleulations could nover represent the
stretehing of eddies, which is a prime mechanism of turbulent flow. How-
ever, even the largest computers available at the present time cannot
handle three-dimensional solutions of these equations on a small enough
mesh to represent the fluctuating components of velocity of turbulent
flow, .
The second approach is to write the equations of continuity, momentum,
and energy in terms of mean and fluctuating components of pressure,
density, temperature, and velocity. In this approach, the time average
of the u component of velocity, for example, is denoted by @ and the
velocity of fluctuation by «’. So the velocitics, density, pressure, and
temperature are written as follows:

u=a-+u’ (6-36a)
v=i4 (6-36b)
p=p+p (6-36¢)
p=p+yp’ (6-36d)
T=T+T7 (6-36¢)

The fluctuations in viscosity, thermal conductivity, and specific heat are
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negligible and are not considered. So these three parameters are calculated
as functions of the time-averaged value of temperature,

If the flow properties listed in equations (6-36) are subatituted into the
continuity, momentum, and ecnergy equations for incompressible and
compressible flow, a new set of stress terms arises in thees equations.
These are called the “apparent’”” turbulent stresses, or Reynolds stresses.
They are of the form pu? and pw/v’, where u'v’ is the average over time of
the product of u’ and . These new terms in the equations add additional
unknowns to the boundary-layer problem for which additional equations
are not presently available. For this reason, empirical expressions or
approximations are substituted for the Reynolds stress terms before the
turbulent boundary-layer equations can be solved.

Turbulent Incompressible Boundary Layer

Substituting the relations of equations (6-36) into equations (6-10),
(6-11), and (6-12), and then performing an order-of-magnitude analysis
yields the following equations for turbulent, incompressible, boundary-
layer flow:

ou o1 dp a( ou T)
1 pp = —g - | p = —pV 6-37
puax+pv 3 gdx+ay o pu'v ( )
ou oy
R, (6-38)
dx dy

These equations arc analogous to equations (6-23) and (6-24) for laminar
flow. Notice, however, the presence of the Reynolds stress term in the
momentum equation. This adds a new unknown (u'v") to the original two
(% and 7), thereby making three unknowns with only two equations.

Turbulent Compressible Boundary Layer

Substituting the relations of equations (6-36) into cquations (6-27),
(6-28), (6-29), (6-32), and (6-33) and then performing an order-of-
magnitude analysis yiclds the following equations for turbulent, com-
pressible, boundary-layer flow:

3(pn)  3(pD)  3(oV) _

0 (6-39)
dx ay ay

% ;1 —" 7} dp 9 [ ou _>
i — B —adpt —=—g —+— | p——puV 6—40
pu ax+ﬁvay+pt 3 gdx+8y (p P pu'v ( )

p=pRT (6-41)
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= <_6_T,+_<?z¢>+c,—,?_7l_’l_ld_ﬁ+i< aT‘)
Por\ ¥ ax " y wp oy Jdz Ay dy

1 4 k _on ad =TT
+g_J @ [(,;-c—) (u @)]_é; Lep(v'T)]  (6-42)

where T, is the absolute total temperature, in I or °R, and is defined as

u2+ v2

T.=T
‘ +2ch,,

(6-43)

We have now derived the basic boundary-layer equations for two-
dimensional, laminar and turbulent, incompressible and compressible
boundary-layer flow. We should note at this time that this is really only
the starting point as far as boundary-layer solutions are concerned.
These equations are only the basis for the many, many methods which
presently exist for obtaining boundary-layer solutions under various
circumstances.

SOLUTION OF BOUNDARY-LAYER EQUATIONS

After velocity profiles are discussed and the important boundary-layer
parameters defined, some of the solution methods will be discussed.
Included will be the flat-plate, incompressible solution, as well as com-
pressible methods.

Velocity Profiles

One of the principal results obtained from most boundary-layer solu-
tions is a description of the velocity profile in the boundary layer along
the bladc surface (fig. 6-7). The velocity profile describes mathematically

Outer edge u
of boundary

Figure 6-7.—-Boundary-layer velocity profiles.
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Figure 6-8.—Laminar and turbulent velocity profiles.

the dimensionless veloeity u/u, as a funetion of the dimensionless distance
/87,0 from the blade. The velocity w is the velocity in the boundary layer
at a distance y from the surface, and the velocity u, is the external free-
stream velocity at a distance equal to the boundary-layer thickness,
8sunt, from the surface. Alternately, 8,1 is often defined as that distance
from the blade where the velocity differs by 1 percent from the external
velocity, u..

Velocity profiles for laminar flow (fig. 6-8(a)) tend to be parabolic in
shape, while those for turbulent flow arc blunted (fig. 6-8(b)). A com-
monly used mathematical expression for u/u, in laminar flow is that
originated by Pohlhausen (sce ref. 1):

2 3 4
“ .Y 1 (L) te (L) +d (_1/_) (6-44)
U, Srunt Srunt Srutl Sfull

The constants a, b, ¢, and d arc defined in terms of a dimensionless shape
parameter

2
n= Sruus Ite (6-45)
uw dr
where
A
a=2+6 (6—46&)
A
b=—§ (6—46b)
A
c= —2+§ (6—46¢)
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Figure 6-9.—Laminar velocity profiles.

A
d=1_6 (6-46d)

Velocity profiles for various values of A are shown in figure 6-9.
Velocity profiles for turbulent flow are often represented by the power

law
w_ ( L)“" (6-47)

Ue \djuul

Pipe-flow experiments show that the exponent n is a mild function of the
Reynolds number and varies from 4 up to about 10. The value of n=7
is most appropriate for boundary-layer flow on a flat plate. The exponent
n can be related to other boundary-layer parameters, namely the dis-
placement thickness § and the momentum thickness 8, which arc described
in the next seetion.

Definitions of Important Boundary-Layer Parameters

Solutions of the two-dimensional boundary-layer equations are most
often obtained in terms of three important parameters. These are the dis-
placement thickness §, the momentum thickness 6, and the form factor H.
In order to define these parameters, it is necessary to first define the
thickness of the boundary layer, 8,,,. The definition of boundary-layer
thickness is rather arbitrary, since transition from the velocity inside the
boundary layer to that outside it takes place asymptotically. This is of
little importance, however, beeause the velocity in the boundary layer
attains a value which is very close to the external velocity at a small
distance from the wall. It is possible to define the boundary-layer thick-
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Ye

6’U" Ug
(b}
(a) Actual velocity profile. (b) Equivalent profile for

equal mass flow.
Figure 6-10.—Displacement thickness of a boundary layer.

ness as that distance from the blade where the velocity differs by 1 percent
from the external velocity u..

The displacement thickness s, for compressible boundary-layer flow,
can be defined with the help of figure 6-10. As scen from figure 6-10(a),
the decrease in mass flow within the boundary layer due to the influence of
friction is given by

v=3sull

Mass defect =/ pelte—ptt) dy (6—48)
v

(
=0
where p, is the density, in kg/m?® or Ibm/ft?, in the free stream outside of
the boundary layer. This integrated mass defect can be represented by a
distance 3, the displacement thickness, as shown in figure 6-10(b). It is
the distance by which the external potential field of flow is displaced
outward as a consequence of the decrease in velocity in the boundary
layer.

As figure 6~10 shows, the distance 6 can be defined by the equation

v=3full
patd= / (pette—put) dy (6-49)
y=0

Solving for & gives

1 y=38sutl y=38full
= / (pette— pt) dy=/ (1— 2 ) dy  (6-50)
y=0

Pell, y=0 Pell,
The displacement thickness for incompressible flow reduces to
1 rv=bru v=3rull u
5=~/ (te—u) dy=f (1——) dy (6-51)
Ue /g =0 e
The loss of momentum in the boundary layer duc to the presence of

friction is given by

75



TURBINE DESIGN AND APPLICATION

y=Frull
AMomentum defect = / pu(u.—u) dy (6-52)
y=0

This momentum defeet from the momentum of purely potential flow
can be represented by a distance 6, defined by the equation

y="0jull
p,u,20=/ pulu.—u) dy (6-53)
Yy

Solving for 8 in this cquation gives the definition of the momentum thick-
ness for compressible boundary layers as

1 y=0full y=3full
o= [ putwm = (1—3‘-)dy (6-54)

petiel J g gm0 pell. U

The momentum thickness for incompressible flow reduces to

1 y=6sull y=brul o, ”
0=——2/ u(ue—u) dy=/ f<1—‘> dy (6-55)
Ul /g

=0 U, Ue

The form factor H for both compressible and incompressible flow is
defined as the ratio of displacement thickness to momentum thickness:

=- (6-56)

There are many other boundary-layer parameters besides é, 8, and H for
two-dimensional, and cspecially for three-dimensional, boundary layers.
These three, however, are the principal parameters used in general
boundary-layer studies.

Physical Interpretation of Separation

When separation of flow from a blade or a casing oceurs, some of the
retarded fluid in the boundary layer is transported away from the surface
toward the main stream. When a region with an adverse pressure gradient
exists along a surface, the retarded fluid particles cannot, in general,
penetrate too far into the region of increased pressure beeause of their
small kinetic energy. Thus, the boundary laycr is deflected away from the
surface and moves into the main stream. In general, the fluid particles
behind the point of separation follow the pressure gradient and move in a
direction opposite to the external stream. The point of separation is
defined as the limit between forward and reverse flow in the layer in the
immediate neighborhood of the wall. At separation,

Ju
(5;>V-o=° (6-57)

Figure 6-11 illustrates separation occurring along a surface.
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<Separation
point

Freurk 6-11.—Velocity gradients as flow undergoes separation.

By examining Prandtl’s boundary-layer equations and considering the
relation between pressure gradient dp/dx and velocity distribution u(y),
it is possible to infer that separation in a steady flow will occur only in
the presence of an adverse pressure gradient (i.e., decelerated flow),
dp/dz>0. From cquation (6-23), with the boundary conditions at the
surface being u=v=0, we have

*u dp
u <~) =gL (6-58)
9y*/ yma dzx

We can now relate veloeity profiles to du/dy, d*u/dy? and finally to
dp/dx through ecquation (6-58). The cquation indicates that in the
immediate neighborhood of the wall, the eurvature of the veloceity profile,
9%u/8y*, depends only on the pressure gradient, dp/dr, and the curvature
of the velocity profile at the wall changes its sign with the pressure
gradicnt,

Figurc 6-12(a) shows a veloceity profile that would exist in a boundary
layer subjected to a decreasing pressure. For such a profile, figure 6-12(b)

y y
(@ (b (c)

-

U —Zouldy= /azu,ayz =~
(a) Velocity (b) Velocity (c) Velocity-
profile. gradient. profile

curvature.

Fieure 6-12.—Velocity distribution in a boundary layer with pressure decrease.
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indicates that du/dy is positive for all ¥y and decreases as y increases.
Furthermore, figure 6-12(c) indicates that 9%u/dy?, which is the slope of
du/dy, is negative for all y. From equation (6-58), we know that negative
d%u/dy? corresponds to negative dp/dx. Consequently, a boundary layer
subjected to a decreasing pressure (negative dp/dz) will have velocity
profiles which are not indicative of impending separation (the form of
fig. 6-12(a)).

Figure 6-13(a) shows a profile which would exist in a boundary layer
with decelerated flow due to an increasing pressurc (adverse pressure
gradient). Here, figure 6-13(b) indicates that du/dy has a positive slope
near the blade surface; that is, 9*u/dy® is positive (fig. 6-13(c)). This
corresponds to positive dp/dz. However, since in all cases 92u/dy? must
be less than zero at some distance from the surface, there must exist a
point for which 8%u/dy*=0. This is a point of inflection of the boundary-
layer velocity profile. It follows that in a region of retarded potential flow

y y
(b} (c} :
7 /0uldy/, ;;/azulayz 7.
(a) Velocity (b) Velocity (¢) Velocity-
profile. gradient. profile curvature.

Figure 6-13.—Velocity distribution in a boundary layer with pressure increase.

Stagnation

Pressure
surface

~~ Adverse gradient

Fi1cure 6-14.—Pressure distribution on a turbine blade.
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(positive dp/dr), the velocity profile in the boundary layer will have a
point of inflection. Since the velocity profile at the point of separation
(with du/9y =0 at the surface) must have a point of inflection, it follows
that, with the assumptions used in deriving equation (6-23), separation
can occur only when the potential flow is retarded (i.e., in regions of
adverse pressure gradient).

Figure 6-14 indicates a typical pressure distribution on the surface of a
turbine blade. The danger zone, as far as separation is concerned, is
readily scen to be the rear portion of the suction surface, where the major
part of the blade diffusion is taking place.

Laminar Incompressible Boundary Layer on a Flat Plate

Prandtl’s boundary-layer theory was first reported in 1904 in Germany.
It was later translated and published in 1928 as an NACA Technical
Memorandum (ref. 3). The first mathematical solution of Prandtl’s
equations to be published was the flat-plate solution of Blasius in 1908.
This German work was also later translated by NACA (ref. 4).

On a flat plate with steady flow at zero incidence, the velocity from the
potential solution is constant. Therefore, p(z) is constant and dp/dx=0.
The boundary-layer equations, therefore, reduce to

u—+v—=v—y— (6—59)

Zroo (6-60)

‘The following are the boundary conditions:

u=v=0 at y=0

(6-61)
u=1u, at y=o

With the use of a stream function ¢, Blasius transformed the partial

differential equation (6-59) into the following ordinary differential
equation:

&f  df

—~ 49 7 _ 2
fot2 =0 (6-62)
where f is a normalized stream function

) = (6-63)
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which depends on the dimensionless y-coordinate, 7, where

= (6-64)

vr

U

This equation has the following boundary conditions:

d
f=—f=0 at =0
dy
q (6-65)
d
aiyz at n:w

Equation (6-62) cannot be solved exactly. Blasius obtained an approxi-
mate solution in the form of a power series expansion about n=0 and an
asymptotic expansion for = «, the two solutions being joined at a suit-
able point. More recently, Howarth (ref. 5) solved the Blasius equation
(6-62) with a high degree of accuracy, and provided tabular values for f,
df/dy, and d*/dy? as functions of . Since df/dy = u/u., the solution gives
the velocity profile of figure 6-15. This profile possesses a very small
curvature at the wall and turns rather abruptly further from it in order

2l

&
I

w
f

T

T

| 1 | { |
.2 4 .6 .8 1.0
Boundary-fayer velocity ratio, u/ug

Transformed coordinate distance perpendicular % surface,

<

F1Gure 6-15.—Blasius-Howarth velocity profile for flow on a flat plate.
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to reach the asymptotic value. At the wall itself, the curve has a point of
inflection, since for y =0, 3%u/3y?=0.

From the order-of-magnitude analysis performed to obtain Prandtl’s
boundary-layer equations, we had the relation

1
‘2z53uuzﬁ (6-66)

For a semi-infinite flat plate, the Reynolds number can be expressed as

Re,= 2= (6-67)

14

In order to make equation (6-66) dimensionally correct, we can say

8 1
ekl (6-68)
or
5'/.‘11(1‘\‘56 (6—69)
Ue

The constant of proportionality can be obtained from Howarth’s numerical
solution and is equal to 5. So, for a semi-infinite flat plate at zero incidence
in laminar flow, we obtain the useful relation for the boundary-layer
thickness

Srun=5.0 4/ (6-70)
U,

With the use of Howarth’s solution to the Blasius equations, the follow-
ing relations for other important boundary-layer parameters for laminar
flow on a flat plate can also be obtained:

§=1.72 \/;—; (6-71)
U,

6=0.664 \/E (6-72)
U

JTw vy 0.332
=0.332 \/: = 6-73
puet ux Re. ( )
1.328
D= ——-—?; b \/uplu.,"‘ (6-74)
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1.328
C,;=1.328 A| L =—=
! el \/Re,

(6-75)

where

Tw shear stress on the surface, N/m?; Ibf/ft?
D total drag on both sides of flat plate, N; Ibf

b width of flat plate, m; ft

l length of flat plate, m; ft

C; dimensionless drag or skin friction coefficient for flat plate
Re, Reynolds number based on plate length {

It should be noted that all of these relations arce valid only for laminar
flow; that is, they are valid only where Re; <10% a value that is indicative
of laminar flow over the entire length of the plate. For Re;> 108, transition
to turbulent boundary layer will probably ocecur, and the expressions in
equations (6-71) to (6-75) will be valid only from the leading edge of the
plate to the transition point. If transition to turbulent boundary layer does
occur, then the drag will be larger than that calculated by equation
(6-74).

Integral Methods for Solving the
Laminar-Boundary-Layer Equations

The two principal means of solving the laminar-boundary-layer equa-
tions are by integral methods and by finite-difference methods. Both
means provide approximate solutions, since exact solutions are extremely
cumbersome.

Integral methods are based on von Kdrmén’s momentum integral
formula. Von KKdrmén’s original work was published in 1912 in Germany
and was later translated by NACA (ref. 6). Von Kdrmén realized that it
was not necessary to satisfy the boundary-layer cquations for every fluid
particle. Instead, he satisfied the boundary-layer equations close to the
wall and in the region where external flow is approached by satisfying the
boundary conditions. In the remaining region of fluid in the boundary
layer, only a mean over the differential equation is satisfied. Such a mean
is obtained from the momentum equation (eq. (6-23) or (6-30)) by
integration over the boundary-layer thickness. If equations (6-23) and
(6-30) are integrated from y=0 to y=24,.., and if the definitions of dis-
placement thickness (eq. (6-50)) and momentum thickness (eq. (6-54))
are introduced, the following equations result. For laminar, incom-
pressible flow,

du, 7w

de
.t a—}- (26+6)u,a= (6-76)

82



INTRODUCTION TO BOUNDARY-LAYER THEORY

For laminar, compressible flow,

du. grw

dz  p.

u,? £+ (20+48—M.%0)u, (6-77)
where the subscript e denotes conditions at the outer edge of the houndary
layer.

Equation (6-76) or (6-77) leads to an ordinary differential equation
for the boundary-layer thickness, provided that a suitable form is as-
sumed for the velocity profile, u/u.. This allows us to calculate the dis-
placement thickness, 8, the momentum thickness, 8, and the shearing
stress at the wall, 7,. Pohlhausen was the first to use cquation (6-76) to
obtain a solution for incompressible boundary layers. His work was
published in 1921 (refs. 7 and 1). The velocity profile assumed by
Pohlhausen was discussed carlier in this chapter, under “Veloeity Pro-
files.” Although Pohlhausen’s solution is probably the simplest, it is known
to give poor results in regions of rising pressure. As a result, various authors
have tried to improve and cxtend his method by assuming different
families of velocity distributions,

A famous work among thosc which followed Pohlhausen’s was that of
Thwaites (ref. 8). Thwaites collected and compared all known velocity
distributions from exact and approximate solutions for laminar incom-
pressible flow. Thwaites’ method does not require the solution of ordinary
differential cquations. He relates the wall shear, its derivative at the wall,
and the form factor to one another without specifying a type of velocity
profile. To do this, nondimensional forms of these quantities were defined
and evaluated with the use of exact solutions for the laminar boundary
layer. It developed that a nearly universal relation existed among these
quantities for favorable pressure gradients. For adverse gradients,
Thwaites selected a single representative relation. A unique correlation
was chosen that reduced the solution of an incompressible problem to the
evaluation of a single integral. Thwaites’ method was extended to com-
pressible fluids by Rott and Crabtree (ref. 9). They recognized that when
heat transfer is negligible, and the Prandtl number is equal to 1, a trans-
formation proposed by Stewartson (ref. 10) could be used to relate
compressible to incompressible boundary-layer solutions.

One of the best integral methods to appear to date for the solution of
laminar boundary layers is that of Cohen and Reshotko (refs. 11 and 12).
Their method applies to compressible or incompressible flow over two-
dimensional or axially symmetric surfaces. It handles arbitrary free-
stream pressure distribution and performs well in areas of adverse pres-
sure gradient. A surface temperature level may be specified, and heat
transfer is calculated. Cohen and Reshotko’s method is based on Thwaites’
correlation concept. Stewartson’s transformation (ref. 10) is first applied
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to Prandtl’s equations. The resulting nonlinear, first-order differential
equations are expressed in terms of dimensionless parameters related to
the wall shear, the surface heat transfer, and the transformed free-stream
velocity. Then Thwaites’ concept of a unique interdependence of these
parameters is assumed. The evaluation of these quantities is then carried
out by utilizing the exact solutions of reference 11. With the resulting
relations, methods are derived for the calculation of all the important
boundary-layer parameters. In 1960, Luxton and Young published a
method (ref. 13) which is as general as Cohen and Reshotko’s, but which
allows the Prandtl number to have values slightly different from 1.

Finite-Difference Methods for Solving the
Laminar-Boundary-Layer Equations

Finite-difference methods for solving the boundary-layer equations
have recently come into prominence because of the development of
digital computers. Smith and Clutter have donc a considerable amount of
work in developing this technique (refs. 14 and 15). Another recent
reference of interest is that of Krause (ref. 16). These methods give very
good results with relatively short running times on the computer.

Eddy-Viscosity and Mixing-Length Concepts in
Turbulent Boundary-Layer Flow

Before referencing any of the current methods for solving turbulent
boundary-layer flow, the concepts of “cddy viscosity” and “mixing
length” should be discussed. These approximation concepts have been
used in many of the methods developed to date to relate the Reynolds
stresses produced by the mixing motion to the mean values of velocity
components. By this means, the Reynolds stresses arc given a mathe-
matical form which, upon substitution into the governing equations,
leads to differential equations containing only mean values of density,
velocity, and pressure. These transformed differential equations con-
stitute the starting point for the calculation of the mean boundary-layer
flow.

Boussinesq first worked on this problem in 1877. In analogy with the
coefficient of viscosity in Stokes’ law for laminar flow

=t (6-78)
g 9y
where r; is the laminar shear stress, in N/m? or Ibf/ft?, he introduced a
mixing coefficient, 4,, for the Reynolds stress in turbulent flow by putting
A, o0

Tt—

= — 6-79)
g 9y (
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where . is the turbulent shear stress, in N/m? or 1bf/ft2. In 1880, Reynolds
introduced the concept of eddy, or virtual, viscosity, ¢, where

A,
e=— (6-80)
p
Thus, the eddy viscosity is analogous to the kinematic viscosity v=pu/p.
Turbulent stress can then be expressed as
p 00 —p—

Ti=—e¢—=— v (6-81)
g 9% g

With the use of this concept, terms in equations (6-37) and (6-40) such as

6( 91 )
_— uU
ay\Fay P

[<,,+ ) Z'y‘]

A similar concept can be applied to the energy equation where an eddy,
or a virtual, conductivity can be defined. The difficulty with applying the
oddv-v1500s1ty method is that A, and hence e depend on velocity. It is,
therefore, necessary to find empirical relations between these coefficients
and the mean velocity.

In 1925, Prandtl introduced a completely different approximation for
the Reynolds stresses. His argument is called Prandtl’s mixing-length
hypothesis, since the mixing length is somewhat analogous to the mean
free path in the kinetic theory of gases. The main difference is that kinetic
theory concerns itself with the microscopic motion of particles, whereas
Prandtl’s concept deals with the macroscopic motion of large clusters of
fluid particles. Deriving Prandtl’s expression for shear stress requires a
good deal of discussion of his physical model of turbulent flow, all of which
is contained in reference 1. His final expression is

da
dy

can be written as

da__ b (6-82)

2
dyy

Tt=

P
g
where [ is the mixing length, in m or ft.

On comparing Prandtl’s expression (eq. (6-82)) with that of Boussinesq
(eq. (6-81)), it appears that little has been gained. The unknown eddy
viscosity e of the first expression has merely been replaced by the unknown
mixing length I of the second expression. However, Prandtl’s equation
(6-82) is generally more suitable for the calculation of turbulent motion
than is equation (6-81). Turbulent drag is roughly proportional to the
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square of velocity, and the same result is obtained from (6-82) if the
mixing length is assumed to be independent of the magnitude of velocity.
So, mixing length is a purely local function, although we cannot say itisa
property of the fluid. It is far simpler to make assumptions about the
mixing length { than about the eddy viscosity ¢, and this constitutes the
superiority of Prandtl’s expression over that of Boussinesq.

Integral Methods for Solving the
Turbulent Boundary-Layer Equations

Just as with the laminar-boundary-layer equations, there are both
integral methods and finite-difference methods for solving the turbulent
boundary-layer equations. Both of these provide approximate solutions,
since exact solutions for turbulent flow arc now impossible.

Gruschwitz was the first to propose a method for solving the equations
for an incompressible turbulent boundary layer. His work was published
in Germany in 1931. A rash of works followed, most of them making
improvements to the calculational technique and empirical data used by
Gruschwitz. Ludwieg and Tillmann, whose work was published in Ger-
many in 1949 and was translated by NACA in 1950 (ref. 17), proposed an
empirical relation for the skin-friction term in the momentum integral
equation. This relation is still used in many current methods. Stewartson’s
transformations (ref. 10) are likewise used in many methods for solving
the turbulent-boundary-layer equations,

Maskell, in 1951 (ref. 18), proposed an improved method for incom-
pressible turbulent boundary layers. He replaced the momentum equation
by an empirically determined approximation which is directly integrable
and thus determines the momentum thickness. A profile parameter is
obtained from an empirical auxiliary differential equation. The Ludwieg-
Tillmenn skin-friction formula is used to calculate the skin-friction dis-
tribution and to determine a separation point for flows with adverse
pressure gradient.

Truckenbrodt, whose work was published in Germany in 1952 and was
translated by NACA in 1955 (ref. 19), proposed solutions for both laminar
and turbulent incompressible boundary-layer flows. The method is simple
and, like Maskell's method, does not use the momentum integral equa-
tion. It applies to both two-dimensional and rotationally symmetrical
flows. Because of its simplicity and relatively accurate results, Trucken-
brodt’s method is still used for incompressible turbulent boundary layers.

Compressible turbulent boundary layers were first treated adequately
with the usc of integral methods by Reshotko and Tucker in 1957 (ref.
20). Prior to their work, the Kdrman momentum integral equation had
been utilized with an assumed boundary-layer velocity profile, usually the
power law, and one of several empirical skin-friction relations. When
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pressure gradient was present, an auxiliary equation, usually the moment-
of-momentum ecquation, was used. (This equation is obtained by mul-
tiplying the integrand of the momentum integral equation by a distance
normal to the surface and then integrating with respect to that distance.)
The momentum integral equation and the auxiliary equation were then
solved simultancously.

Reshotko and Tucker’s method, applicable to compressible flow with
heat transfer and pressure gradient, also uses the momentum and moment-
of-momentum integral equations. These are expressed in incompressible
form and are uncoupled with the usc of Stewartson’s transformation
(ref. 10) and the results of Maskell (ref. 18). The Ludwicg-Tillmann
skin-friction relation is used in a form suitable for compressible flow with
heat transfer through application of Eckert’s reference-enthalpy concept
(ref. 21). An approximation for the shear-stress distribution through the
boundary layer and the power-law velocity profile arc used to simplify the
moment-of-momentum equation. Separation is located as the point where
the skin friction, when extrapolated, becomes zero. This method, until
several years ago, was the best available for compressible turbulent
boundary layers. It is still widely used in many computer programs today.

One of the best integral methods available today for compressible
turbulent boundary layers is that of Sasman and Cresci (ref. 22). It is
simply an extension of the Reshotko-Tucker method. It uses somewhat
the same analysis, but no attempt is made to uncouple the momentum
and moment-of-momentum integral equations. These equations are solved
simultaneously after introduction of boundary-layer shear-stress dis-
tributions obtained from recent numerical results of equilibrium turbulent
boundary-layer analysis. The Sasman-Cresci analysis is better than that of
Reshotko-Tucker at predicting separation in regions of adverse pressure
gradient. McNally (ref. 23) has developed a computer program based on
the Cohen-Reshotko (refs. 11 and 12) and Sasman-Cresci (ref. 22) tech-
niques. An additional source of information on compressible turbulent
boundary-layer analysis is the work of Herring and Mellor (ref. 24).

Finite-Difference Methods for Solving the
Turbulent Boundary-Layer Equations

Finite-difference methods for solving the turbulent boundary-layer
equations have recently begun to appear. Cebeci and Smith have done a
large portion of this work to date (refs. 25, 26, and 27). Bradshaw, Ferriss,
and Atwell have also developed methods for the turbulent boundary layer
(refs. 28 and 29) based on the use of the turbulent energy equation.
Patankar and Spalding have developed still another method for handling
the turbulent boundary-layer equations (refs. 30 and 31). A great deal of
work is going on in this field at the present time, and no method is yet
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clearly superior to any of the others. Two relatively recent publications
(refs. 32 and 33) compare many of the most prominent methods, both
integral and finite difference, for solving the turbulent boundary layer.

CONCLUDING REMARKS

The selection of 2 method of solution suitable to a particular boundary-
layer problem requires some familiarity with the various methods avail-
able. This can be achieved by studying some of the more recent references
that have been mentioned herein. The present, discussion of the methods
of solution has been intended to show the historical development of
solution techniques, the variety of methods available, and the complexity
of the whole boundary-layer problem, especially where turbulent flows
are involved.
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SYMBOLS

turbulent flow mixing coefficient, (N) (sec) /m?; Ibm/ (ft) (sec)
constant in eq. (6-44)
width of flat plate, m; ft
constant in eq. (6-44)
skin-friction coefficient for a flat plate
constant in eq. (6-44)
specific heat at constant pressure, J/(kg) (IX); Btu/(lbm) (°R)
total drag on flat plate, N; 1bf
constant in eq. (6-44)
Blasius dimensionless stream function defined by eq. (6-63)
general body force vector, N/kg; Ibf/lbm
component of body force f in z-direction, N/kg; Ibf/Ibm
component of body force f in y-direction, N/kg; 1bf/Ibm
componcent of body force f in z-direction, N/kg; 1bf/lbm
conversion constant, 1; 32.17 (lbm) (ft) /(1bf) (sec?)
form factor, defined by eq. (6-56)
unit vector in the z-direction
conversion constant, 1; 778 (ft) (Ibf) /Btu
unit veetor in the y-direction
thermal conductivity, W/ (m) (K) ; Btu/ (sec) (ft) (°R)
unit vector in the z-direction
characteristic length (e.g., the blade chord), m; ft
Prandtl mixing length, m; ft
{length of flat plate, m; ft
Mach number external to the boundary layer
cxponent on the turbulent velocity profile, eq. (6-47)
dimensionless pressure, defined by eq. (6-13¢)
static pressure, N/m?; Ibf/ft?
gas constant, J/ (kg) (K) ; (ft) (Ibf) /{lbm) (°R)
Reynolds number based on L and U,, as defined by eq. (6-13f)
Reynolds number based on I, as defined in eq. (6-75)
Reynolds number based on z, as defined by eq. (6-67)
radius of curvature of blade surface, m; ft
constant in eq. (6-25), K; °R
absolute static temperature, K; °R
absolute total temperature, K; °R
reference temperature used in eq. (6-25), K; °R
time, sec
dimensionless velocity in z-direction, defined by eq. (6-13c)
free-stream velocity upstream of blade, m/sec; ft/sec
component of gencral velocity veetor u in the z-direction, m/sec;
ft/see
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u general velocity vector, m/sec; ft/sec
U, free-stream velocity at the outer edge of the boundary layer,
m/sec; ft/sec
v dimensionless velocity in y-direction, defined by eq. (6-13d)
v component of general velocity vector u in the y-direction, m/sec;
ft/sec
w component of general velocity vector u in the z-direction, m/sec;
ft/sec
X dimensionless z-coordinate, defined by eq. (6-13a)
. {z-coordinate, m; ft
coordinate parallel to boundary surface, m; ft
Y dimensionless y-coordinate, defined by eq. (6-13b)
{y-coordinate, m; ft
y coordinate perpendicular to boundary surface, m; ft
z z-coordinate, m; ft
) displacement thickness, m; ft
Spull boundary-layer thickness, m; ft
eddy viscosity defined by eq. (6-80), m?/sec; ft*/sec
a dimensionless quantity much less than 1
) Blasius transformed y-coordinate defined by eq. (6-64)
0 momentum thickness, m; ft
A dimensionless shape parameter defined by eq. (6-45)
m dynamic viscosity, (N) (sec)/m?; lbm/(ft) (sec)
o dynamic viscosity at reference temperature To, (N)(sec) /m?;
1bm/ (ft) (sec)
v kinematic viscosity, m?/sec; {t?/sec
p density, kg/m?; lbm/ft?
Ps free-stream density external to the boundary layer, kg/m?
lbm/ft3
7l laminar shear stress, N/m?; 1bf/ft?
T turbulent shear stress, N/m?; 1bf/ft?
Tw shear stress at the wall, N/m?; 1bf/ft?
P function defined by eq. (6-34)
¥ Blasius stream function, m?/sec; ft?/sec
w constant in eq. (6-26)
Superscripts:
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CHAPTER 7

Boundary-Layer Losses
By Herman W. Prust, Jr.

The primary cause of losses in a turbine is the boundary layer that
builds up on the blade and end-wall surfaces. In particular, these losses
are the friction loss resulting from the flow of the viscous fluid over the
surfaces, the pressure-drag loss resulting from the flow of fluid past the
blade trailing edge, and the loss downstream of the blades resulting from
the mixing of the low-velocity boundary-layer fluid with the high-velocity
free-stream fluid. Chapter 6 presented an introduction to boundary-layer
theory, by means of which the surface boundary-layer buildup can be
analytically described. This chapter covers analytical and experimental
methods for determining the friction, trailing-edge, and mixing losses
associated with the boundary layer. The theory presented herein refers
primarily to two-dimensional blade-section boundary layers. Methods for
obtaining three-dimensional blade plus end-wall losses from the two-
dimensional results are also discussed.

A fundamental objective in blade-row design is to minimize the energy
loss resulting from the flow of fluid through the blade row. Therefore, the
final expressions for loss developed in this chapter are in terms of kinetic-
energy loss coefficients. These coefficients express the loss in fluid kinetic
energy as a fractional part of the ideal kinetic energy of the actual flow
through the blade row. Efficiency based on kinetic energy can be obtained
by subtracting these coefficients from unity, and this is consistent with
the blade-row efficiency definition used in chapter 2.

Before proceeding with the discussion of boundary-layer parameters
and loss coefficients, the blade-row station locations and associated
pressure and velocity distributions will be introduced with the aid of figure
7-1. These pressure and velocity distributions and the associated dis-
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cussion refer to an attached boundary layer only. A separated boundary

layer, with its associated reversal of flow at the surface, is thicker, yields a

higher loss, and cannot be analyzed in the same manner, if at all,
Figure 7-1(a) indicates the four station locations that will be referred

S Station
0
{ (
\ ~la
B 1
2

(a)

Total pressure

;?: ______ = oo \s/tea:(t}iccig(ressure
I
Station 0 e——s
=~
\_ /
;{f]_____ [_— vfI \\l
L P
Station la
;t— v VT——\\\ IIF
-------- fs, 1
¢ F
Station 1
i o
o] V2
1 1

Station 2
b

(a) Station locations.
(b) Pressure and velocity distributions.
Figure 7-1.—Station locations and associated pressure and velocity distributions.
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to in this chapter. Station O represents the inlet to the blade row. At this
station, a uniform total pressure p,’ is assumed, as indicated in figure
7-1(b). Station la is just within the trailing edge of the blade. The
boundary layers developed on the blade surfaces result in velocity and
pressure profiles as shown in figure 7-1(b). Velocity varics from the free-
stream value V,.1. to zero at the blade surfaces. There is, of course, no
flow through the region of the solid trailing edge. Total pressure varies
from the free-stream value p}, ,,=po’ to the static pressure p, at the blade
surfaces. This static pressure is assumed constant across station la, as is
the flow angle ay,. At station 1a, only the surface friction loss has occurred.

Station 1 is just beyond the blade trailing edge, where the boundary-
layer fluid has filled the void, but where little mixing with the free stream
has occurred. This is indicated in figure 1(b) by the station-1 profiles
showing flow throughout the entire wake region. Here too, static pressure
and flow angle are assumed constant across the station. Between stations
la and 1, the trailing-edge loss occurs. Station 2 is located at a distance
sufficiently downstream of the blade row that complete mixing, with the
associated mixing loss, has taken place. The velocity and total-pressure
profiles are again uniform.

In order to simplify analysis and discussion, a number of variables
have been assumed constant across the various stations. Uniformity of
inlet conditions is a universal convenience that usually can be approached
in component tests but seldom exists in actual applications. Experiments
have shown that static pressure and flow angle do vary somewhat across
both free stream and boundary layer at stations la and 1. In some in-
stances, which will be later identified, this variation can be accounted for.
Although some downstrcam mixing of the flow does take place, a com-
pletely uniform downstream state is merely a hypothetical convenience.

BOUNDARY-LAYER PARAMETERS

When a real fluid flows over a surface, a loss results due to both friction
between the fluid and the surface and friction between the layers of fluid
in the region adjacent to the surface. As shown by figure 7-2, the fluid
velocity in the boundary-layer region varies from zero velocity on the
surface to free-stream velocity V,, at the full boundary-layer height
87.11. To describe the losses in flow, momentum, and energy resulting from
the presence of the boundary layer, certain parameters are used. Some of
these (displacement thickness, momentum thickness, form factor) were
introduced in the last chapter and will be reviewed here; in addition, others
specifically used for obtaining the desired kinetic-energy coefficients will
be introduced and defined.
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Free-stream velocity,
Vis

! layer height, 6full

Velocity, V _77 ~ Full boundary
7

7 7 S
Surface

Figure 7-2.—Typical boundary-layer velocity profile.

The displacement thickness §, which is indicative of the loss in mass
flow, is defined by

Srull Srull
sV) = oV)d¥—[ (V) av (7-1)
0 0
where
) displacement thickness, m; ft
Srunt boundary-layer thickness, m; ft
|4 fluid velocity, m/sec; ft/sec
p fluid density, kg/m?; Ib/fts
Y distance in direction normal to boundary layer, m; ft

()se free-stream (ideal) conditions

Equation (7-1) states that the loss in mass flow of the fluid in the bound-
ary layer is equal to the ideal flow which would pass through a length
(or an area) equal to the displacement thickness. Solving for & yields

Srund Srull 74
p
= — d _

The momentum thickness 8, which is indicative of the momentum
loss, is defined by

sull Srull
0oVDa= [ (oVVa) d¥— | evray (7-3)
0 0

where 6 is the momentum thickness, in m or ft. Equation (7-3) states that
the loss in momentum of the fluid in the boundary layer is equal to the
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ideal momentum of the ideal flow which would pass through a length (
an area) equal to the momentum thickness. Solving for 8 yields

dsull Srull sz
o= ) G T

The loss in kinetic energy can be similarly expressed in terms of an
energy thickness defined by

1 Srull 1 Srunt
—nl/(pV“)/.—é (pVV3.) dY—éf (oV?) dY (7-5)
0

where ¢ is the energy thickness, in m or ft. Equation (7-5) states that
the loss in kinetic energy of the fluid in the boundary layer is equal to the
ideal kinetic energy of the ideal flow which would pass through a length
(or an area) equal to the energy thickness. Solving for ¢ yields

Sfull Srult V3
YT
y= — / 7-6)
/(; PV)!c (pV“)/. (

Ratios of the aforementioned thickness terms are also used as basic
boundary-layer parameters. The form factor H is defined as

P (7-7)

Substituting equations (7-2) and (7—4) into equation (7-7) and defining a
dimensionless distance y as

Y
7-8
Srunt (-8)

yields

/ol dy_-/ol (:VI'/);- %
H= (7-9)
/ (V) s _/ BoP

An energy factor E is defined as

E=

@<

(7-10)

Substituting equations (7-6), (7—4), and (7-8) into equation (7-10)
yields
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/ / o
0 PV)la 0 PVs)fu

E= (7-11)
pV?

(pV)f.- (sz)f.

Velocity profiles for turbulent flow are often represented by a power
profile of the type

Vv

Vi

=y" (7-12)

where the value of the exponent n is most often between 0.1 and 0.25.

Note that this power profile is here expressed as y*, while the same
profile in chapter 6 (eq. (6-47)) is expressed as y'/». The exponent ex-
pressed as 1/n is consistent with general boundary-layer theory usage.
The exponent expressed as n, however, is consistent with reference 1,
wherein the equations that follow are derived. Therefore, the specific
numerical valué to be used for n will depend on the form being used for
the exponent.

With this velocity profile, equations (7-9) and (7-11) can be integrated
in series form, and the form and energy factors for turbulent flow can be
expressed in terms of the exponent n and the free-stream critical velocity
ratio V/V,,. The resulting equations derived in reference 1 are

1 34,, 5A§,
n+1 3n+1 bHn+1l

+ ..

H= (7-13)
1 + A/a + A,zfn
(n+1)(2n+1) * (3n+1) (4n+1) (5n+1)(6n+1)
and
2[ 1 N A n A3, -f]
(n+1)(Bn+1) " 3n+1)(5n+1) * (5n+1)(7Tn+1)
E=
1 + Afu _+_ A,Zfa +_.
(n+1) (2r+1)  (3n+1)(4n+1) (5n+1)(6n+1)
(7-14)
where
=1/ VY _
A= <V">;, (715)
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and v is the ratio of specific heat at constant pressure to specific heat at
constant volume, and V., is the fluid velocity, in m/sec or ft/sec, at the
critical (Mach 1) flow condition. For incompressible flow, where V/V.,
approaches zero, equations (7-13) and (7-14) reduce to

Hi.=2n+1 (7-16)
and
_2(2n+1)
Ei.= _3n+1 (7-17)

Values of the form and energy factors for turbulent compressible flow
are shown in figure 7-3 for V/V,, varying from 0 to 1.4 and = varying
from 0 to 1.5. It can be seen that the form factor varies much more than
does the energy factor. For any constant exponent n, the energy factor
is almost independent of V/V.,.

The boundary-layer parameters just presented are general and can
refer to a boundary layer on any type of body. They are directly useful in
certain aerodynamic work. For instance, the drag of a body can be ob-
tained directly from the momentum thickness. In turbine work, however,
where the flow is confined to the physical boundaries of the blade row, it is
simpler and more meaningful to express the losses as a fractional part of
the ideal quantities that could pass through the blade row. The thickness
parameters so expressed are herein termed “dimensionless thickness
parameters” and are defined on the basis of zero trailing-edge thickness.

Free-stream
critical-
velocity

ratio,
VNP

22

Energy factor, E
o

Lal_

Form factor, H

Ficure 7-3.—Effect of compressibility on variation of energy factor with form factor.
(Data from ref. 1.)
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——

Fioure 7-4.—Nomenclature for trailing-edge region.

These dimensionless thickness parameters must represent the sum of the
suction- and pressure-surface thicknesses.

With the assumption that flow conditions in all channels are the same,
the dimensionless thickness parameters are obtained by dividing the
losses in flow, momentum, and energy for a single blade-row channel by
the corresponding ideal quantities that could pass through one blade-
row channel. The total losses for one channel, as indicated in figure 74,
are composed of the suction-surface loss plus the pressure-surface loss, or

Stor= 6l+6p (7—18)
olot=01+0p (7—19)
\l’tot=‘l’l+‘l’p (7_20)

where the subscripts tot, s, and p denote total value, suction-surface value,
and pressure-surface value, respectively. Thus, in terms of the previously
defined boundary-layer thicknesses, the dimensionless boundary-layer
thicknesses are expressed as

5lo¢(PV)fa _ .

*= = -21
scosa(pV)s scosa (7-21)
0tol(PV2) I 9101
*= = —_
scosa(pV?, scosa (7-22)
1
Vior (5) (PVa)h
wtot
v = = (7-23)
8 COS @

8 COS a (%) (V¥ ,,
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where
3* dimensionless displacement thickness
6* dimensionless momentum thickness

v* dimensionless energy thickness
8 blade spacing, m; ft
a fluid flow angle from axial direction, deg

Equations (7-21), (7-22), and (7-23) express the losses in flow, momen-
tum, and energy, respectively, as fractions of their respective ideal quanti-
ties for the blade row if the trailing-edge thickness is assumed to be zero.
These equations can be subscripted to apply at either station la, within
the trailing edge, or station 1, beyond the trailing edge.

BLADE-ROW LOSS COEFFICIENTS

As mentioned previously, the losses are to be expressed in terms of
kinetic-energy loss coefficients. In this section, methods for evaluating the
friction, trailing-edge, and mixing losses and expressing them in terms of
the kinetic-energy loss coefficients will be presented.

Surface-Friction Losses

The kinetic-energy loss coefficient &,, defined as the loss in kinetic
energy as a fraction of the ideal kinetic energy of the blade-row actual
flow, can be expressed in terms of the boundary-layer dimensionless
thicknesses as

& = 'Vl'as COo8 ala(PVJ)fn.la
™ (s cos 12— 83,8 €08 a1a—1) (pV?) 44 14

(7-24)

where ¢ is the blade-row trailing-edge thickness, in m or ft. (Refer to fig.
7—4 for the nomenclature in the region of the trailing edge of the blade.)
Since this coefficient is referenced to station 1la, just within the blade-row
trailing edge, it represents only the surface-friction loss. If a trailing-edge
dimensionless thickness is expressed as

14
t*= (7-25)
8 CO8 ay4
equation (7-24) reduces to
Vi
g=———— 7-26
T (7-26)

In order to evaluate the loss coefficient &, from equation (7-26), it is
necessary to know the values of the dimensionless energy thickness i
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and the dimensionless displacement thickness 5}.. These can be evaluated
either experimentally or analytically, as will be discussed herein.
Ezperimental determination.—In determining experimental loss values,
it is impractical to measure the density and velocity directly. Instead,
pressure data are taken, and the density and velocity are related to
pressure functions. The pressure data required for computing the friction
loss consist of (see fig. 7-1) the upstream total pressure py’, the blade-exit
static pressure pi,, and the total-pressure loss survey data Po’ — Py, for one
blade space. Since the dimensionless boundary-layer thicknesses express
the losses of the blade row as a fractional part of the ideal quantities which
could pass through the blade row, the dimensionless displacement thick-
ness can be expressed in terms of the flow across one blade pitch as

8 €08 1a{pV ) se.2a—1*3 €08 @14 (V) fs.10— COS ay, f (V) 1a du
0

5 = 7-27
la 8 ¢08 a1, (pV) fe,1a ( :

where u is the distance in the tangential direction, in m or ft. Equation

(7-27) simplifies to
1
i ) oG @2

In a similar manner, the dimensionless momentum and energy thick-
nesses can be expressed as

[omas) [ o)
ot —

¢ (PVZ)!t.la

LEEIEA e
o) f o)

(p/'V?l) la

AR RIGARIE (-a0)

Assuming that the total temperature 7’ and the static pressure pi, in

and

*
'lllu =
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the boundary layer are the same as in the free stream, the density ratio
(p/ps4)1s can be related to the pressure ratio p;,/po as follows: From the

igentropic relation,
Vy
P P >
=] =l= (7-31)
(p’)la (p, la

Yy
().~ s

Since p}, ., =p and py,/pr,1.=Pi/Po’ (from the ideal gas law, with
T1.=T}.1.=Td), division of equation (7-31) by equation (7-32) yields

f N\ (r=1/y
(2).-G) -
4/ la

The velocity ratio (V/V;)1. can be related to the pressure ratios
(p/P")1a and p1a/po’ a8 follows: From the total-temperature definition and
isentropic relation, equations (1-51) and (1-52) of chapter 1, we can

write
1% T P (y—1/y
=l-==1—(= 7-34

2gJ ¢, T' T (p’) ( )

where

g conversion constant, 1;32.17 (Ibm) (ft)/ (Ibf) (sec?)
J conversion constant, 1; 778 (ft) (Ib) /Btu
cp specific heat at constant pressure, J/ (kg) (K); Btu/(Ib) (°R)

Subscripting equation (7-34) once for station 1a and again for free-stream
values at la, dividing the first of these equations by the second, and
recalling that p}, ,,=po’ and T}, ,,= T, yields

(vy=b/r
()
( v )2 Pla
Vil (pla)"’"”"
1__. —
P’

With the density and velocity ratios expressed in terms of the measured
pressures by equations (7-33) and (7-35), it is now possible to integrate
equations (7-28), (7-29), and (7-30) and evaluate the dimensionless
boundary-layer thicknesses. Then, the kinetic-energy loss coefficient &.

can be computed from equation (7-26).
The kinetic-energy loss coefficient thus determined is a two-dimensional

(7-35)

103



TURBINE DESIGN AND APPLICATION

coefficient; that is, it is based on data either from a two-dimensional
cascade or from a constant radius of an annular cascade. (The annular
cascade can be, and often is, the full stator or rotor from a turbine.) In
order to obtain a three-dimensional loss coefficient for a blade row, data
are taken at a number of radii sufficient to adequately cover the annulus,
and the two-dimensional dimensionless boundary-layer thicknesses are
calculated as shown previously for each radius. Three-dimensional bound-
ary-layer thicknesses are then obtained by radial integration from hub
to tip:

/ 85,(pV) e 1acOS asar dr
rA
830 = (7-36)
4]
/ (PV)J‘c.la CoOSay, T dr
rA

Tt
/ 6% (pV?) e 1a COS 1o T T
rh
0% 30= (7-37)
e
/ (pV?) fe1aCOS Q1a 7 dr
rA

/ Vi (0V?) 410 COS ato 7 dr
rh
Voo = (7-38)
/ (pV?) ss1aCO8 1, 7 dr
rA

In terms of the measured pressures, these integrals are expressed as

Tt (y=1)/y1/2
/ 83y (Pra) M [1—(?:) ] coS ay,rdr.
A (]

e D1a (y=1)/yJ1/2
[ (p1a) V7 [1—<——,> ] coS o T dr
ra Do

(7-39)

o —
810,30 =

104



BOUNDARY-LAYER LOSSES

£ P1a (r—-1/r
[ 0}, (p1a) V7 [1—(—,) ]cosm,,rdr
h Po

6a3p= (7-40)

re Dla (y=D /v
/ (Pra) V7 [1—<17) ]cos o rdr
rA 0

Tt P\ VT
/ Vi (pua) VY [1—(17) ] coB ay, rdr
rA 0
Viaap= (7-41)

r ' Pra\ D
/ (Pra) 7 [1—(—-,) ] COB aya 7 dr
™ Do

The three-dimensional kinetic-energy loss coefficient is then obtained
in a manner similar to equation (7-26):

*
'I/la.lD

1— 6l‘n,iD - tm*

(742)

€=

where t,,* is the trailing-edge dimensionless thickness at the mean radius
and is used to represent the average value for the blade row.

Analytical determination.—The kinetic-energy loss coefficient &, can
also be evaluated with the use of analytically determined boundary-layer
thickness parameters. While not as reliable as experimental values, ana-
lytical values are much less costly and time consuming to obtain. Ana-
lytical methods for calculating the basic boundary-layer parameters are
discussed and referenced in chapter 6. The boundary-layer solutions are
not simple, and the better methods require computer solution. Boundary-
layer computer programs currently in use at the NASA Lewis Research
Center include one (ref. 2) based on an integral method solution and
another based on the finite difference method of reference 3.

An equation used in the study of reference 4 to compute turbulent
boundary-layer momentum thickness was

0.231
01.=
(ppV ) ( 14 >(1+Hu)
’Vﬂ‘ fe,1a Vﬂ' fs.la
! 0.7886
(14+H)J1.268 0.268
< (GG (), a-amremal o
p cr/ fs cr/ fs P Je )

100 £678(2n+1)
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where

Ay, parameter defined by equation (7-15)

z distance along blade surface from forward stagnation point, m; ft

l blade-surface distance from forward to rear stagnation point,
m; ft

m viscosity, (N) (sec) /m?; 1b/ ({t) (sce)

The development of this equation is presented in reference 4. It is as-
sumed that the boundary layer has a power-law velocity profile. In
reference 4, the exponent n was obtained from the referenced equation

a[() ] "
n M S

Equation (743) must be evaluated for both the suction and pressure
surfaces of the blade. The free-stream velocities and densities required for
equations (7—43) and (7-44) are those free-stream values adjacent to the
blade-surface boundary layers. These can be obtained by any of the
channel flow analysis techniques discussed in chapter 5.

Values of the form factor H as required in equation (7—43) and of the
form factor Hy, and energy factor Ei, at station la for each surface ean be
obtained from equations (7-13) and (7-14). With 8,,, H 10, and E,, known
for both the suction and pressure surfaces, the various boundary-layer
thickness parameters and the kinctic-energy loss coefficient &, can be
evaluated from the equations presented earlier in this chapter. For the
turbine stator blade studied in reference 4, the analytical values, as
calculated from equation (7-43), of the boundary-layer momentum
thickness for the blade and for the two surfaces individually were reason-
ably close to the experimental values. In general, however, results ob-
tained from equation (7-43) will not be as accurate as those obtained
from the computer programs of references 2 and 3.

Three-dimensional boundary-layer parameters could be calculated
directly from equations (7-36) to (7-38). The two-dimensional thickness
parameters would have to be analytically determined at a number of radii
sufficient to establish the variation over the blade length and would also
have to be determined, somehow, over the end-wall surfaces. Such a
procedure would require considerable effort, so the simplified method of
reference 5 for predicting three-dimensional losses from two-dimensional
mean-section losses is commonly used. Results obtained by this method
have shown good agreement with experimental results.

In the method of reference 5, the following assumptions are made:
(1) The average momentum loss for the blade surface can be represented
by the dimensionless momentum thickness at the blade mean section;
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Approximate area
of one end wall
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Figure 7-5.—Schematic diagram of equivalent two-dimensional blade used to caleu-
late the effect of end-wall area on blade loss.

(2) the momentum loss per unit area on the inner and outer end walls is
the same as the average momentum loss per unit area on the blade surface;
and (3) the blade configuration can be satisfactorily approximated by an
equivalent two-dimensional blade, as shown in figure 7-5, having a con-
stant cross section, spacing, and stagger angle cqual to those at the mean
section of the given blade. The surface area of onc equivalent blade
(see fig. 7-5) is

Apy=2ch (7-45)
where

A, total surface area (sum of suction-surface and pressure-surface
areas) of one blade, m?; ft?

c blade chord, m; ft

h blade height, m; ft

The inner and outer end-wall area for one passage is

A, =2s¢ cos a, (7-46)
where

Ay total surface area of passage end walls (sum of inner and outer
end-wall areas), m?; ft?
a, blade stagger angle, deg

Now, taking the average momentum loss 8%, .. over the blade radial length
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and modifying it to include the end-wall losses yields

A+ A, s CoS a,
o:;,w=e:;,,.( o )=0:;,,.. (1+ ; ) (7-47)

The three-dimensional energy and displacement thickness parameters
are then calculated as

‘pra,SD = El“xme’l“a,aD (7_48)
and
6’1':;,3D=Hla .mera,sb (7‘49)

Mean-section values are used for the energy and form factors. Although
the energy and form factors were originally defined in terms of individual
boundary-layer thicknesses, it is indicated in reference 4 that they can be
satisfactorily used as is done in equations (7-48) and (7-49). The three-
dimensional kinetic-energy loss coefficient is then obtained from equa-
tion (7-42).

Trailing-Edge Loss

The kinetic-energy loss coeflicient &, that represents the loss associated
with flow past the blade trailing edge can be determined either experi-
mentally or analytically.

Ezxperimental determination.—Experimental values of blade trailing-
edge loss coefficient &, are obtained from differences between experimental
two-dimensional loss coefficients &, which include both surface-friction
loss and trailing-edge loss, and loss coefficients &, which include only the
blade surface-friction loss. Thus,

€e=E€—¢1, (7-50)

Loss coefficients &,,, which include only surface-friction loss, are ob-
tained as described previously. Loss coefficients &, which include both
surface-friction loss and trailing-edge loss, are determined in exactly the
same manner except that the total-pressurc loss and static pressure are
measured at different locations. The surface-friction loss coefficients were
based on data obtained just within the blade trailing edge at station 1a,
where the trailing-edge loss has not yet occurred. To determine the loss
coefficients which include both surface-friction loss and trailing-edge loss,
the measurements must be made at a location just downstream of the
blade row, corresponding to station 1 in figure 7-1, where the trailing-edge
loss, but little mixing, has occurred.

Analytical determination.—In reference 6, experimental drag coefficients
are presented for a large number of surface discontinuities. Included in
the reference are experimental data for sheet-metal joints of different
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F16UrRE 7-6.—Schematic diagram of body in boundary layer.

geometry, bolt and rivet heads of different geometry, and airfoil trailing
edges. It is indicated that the pressure-drag loss due to the discontinuity
behaves similarly regardless of the flow direction over the discontinuity.
Therefore, the loss due to flow past a trailing edge will be treated ana-
lytically as if the loss were due to a body placed in the path of a boundary
layer.

As indicated in reference 6, the drag of a small body of height &, equal
to or less than the full boundary-layer height &,,:;, placed in a turbulent
boundary layer, as shown in figure 7-6, corresponds approximately to the
effective dynamic pressure of the part of the boundary layer equal to the
height of the body. Thus,

D=g.hCo (7-51)
where

D drag on body, N/m; Ib/ft
h height of body, m; ft
Cp drag coefficient

and the effective dynamic pressure g, is expressed as
1 rhpVe
wr=7 | 2-dy 7-52
Qerr=3 /0 29 ( )
Drag is related to momentum thickness as

8(pV)y,
D=_(_P_l (7-53)
g
Therefore, a dimensionless momentum thickness 67, representing the
trailing-edge loss is obtained by combining equations (7-51) and (7-53)
with a properly subscripted form of equation (7-22):
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hC
63,= — LD (7-54)

(pV?)
g

S COS

The flow angle e is related to the angle aj, as discussed in chapter 4 (eqgs.
(4-26) and (4-27)).

Before equation (7-54) can be evaluated, the effective dynamic pres-
sure must be determined. The ratio of the effective dynamic pressure to
the free-stream dynamic pressure is equal to

Qess 1/"(P><V)2 ,
el _ -~ £ d _
qr hJy \pg Vi ! (7-55)

For turbulent flow, the variation of velocity in the boundary layer can be
expressed with the use of the simple power profile presented previously.
Combining equations (7-8) and (7-12) yields

v —< Y )ﬂ (7-56)
V/u— 5/ull

Assuming that the total temperature and static pressure in the boundary
layer and free stream are the same and using the ideal gas law and equa-
tion (1-64) of chapter 1 gives

T ( V)2
TO’ 'Y+1 Vcr 1

== (7-57)
Prs ] 'y—l(V>2
T y+1\V,,

Substituting equations (7-56) and (7-57) in equation (7-55) and using
the paramcter A, defined by equation (7-15) yiclds

a1 » 1 Y\
q”=}—l(1—A,.) (_) dY  (7-58)

qf" }7 2n afull
-G
6full
i}

Performing a binomial expansion and integrating then gives

. RO 1 " A,
e[ o)
qrs Sruit/ 2n+1 N\épa/ (4n+1)

B\" 42, ]
= ces 7-59
+<6[nll) (6n+1)+ ( )
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Substituting equation (7-59) in equation (7-54) and using trailing-cdge
thickness ¢ in place of body height h finally yields

tCp [( t )”" 1 < t )4" Ay,
0*=—2— (1—A4,) |{— L
te 28 cos 0(1( f) 6f.,11 2n+1+ 5/1,” (4n+1)

+< ‘ )6" A ] (7-60)
Bfull (6n+1)

The boundary-layer thickness 8;..; to be used in equation (7-60) should
be the sum of the suction- and pressure-surface values.

Equation (7-60) is for compressible flow. In many cases, at least when
n is not well known, the following simplified equation, which assumes
incompressible flow and n=14 (commonly used for turbulent flow),
is adequate:

ot,=0.375\3/ t o (7-61)
5/uu 8 COS ay

The information in reference 6 indicates that the drag coefficient Cp can
be set equal to 0.16 for a rounded trailing edge and 0.22 for a square
trailing edge. The corresponding values reported in reference 7 and con-
verted to the same basis as equation (7-61) arc 0.14 for a rounded trailing
edge and 0.22 for a square trailing edge. Frequently, 8., instead of 8.1
will be available. In such a case, for incompressible flow,

1
6full=6lol (;},+1> (7_62)

and for compressible flow,

b0
6/ull= o (7—63)

1 A, AL )
1=(1=4.) (n+1+3n+l+5n+l+

Equations (7-60) and (7-61) give the fractional loss in blade-row
momentum due to the blade trailing edge. To find the corresponding
kinetic-energy loss coefficient, it is necessary to find the fractional losses
in flow and kinetic energy. As a simple approximation, the form and energy
factors, evaluated from equations (7-13) and (7-14) for compressible
flow and from equations (7-16) and (7-17) for incompressible flow, are
used to obtain

85, =He’, (7-64)
and
‘pte=Egte (7_65)
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At station 1, which is just downstream of the blade trailing edge, fluid has
flowed into the area behind the trailing edge and there is no longer a void
due to trailing-edge blockage. Therefore, a kinetic-energy loss coefficient
is obtained as

N 2

€=
1%,

(7-66)

This loss coefficient expresses the loss in kinetic energy as a fraction of the
ideal kinetic energy of the flow that would exist if the trailing-edge loss
were the only loss. The trailing-edge kinetic-energy loss coefficient for
incompressible flow is plotted against trailing-edge thickness in figure 7-7
for several values of the ratio of trailing-edge thickness to boundary-layer
thickness. This figure is based on the momentum loss as expressed by
equation (7-61). The flow loss associated with blade-surface friction is
not included in equation (7-66). Therefore, this trailing-edge kinetic-
energy loss coefficient is approximately, but not rigorously, additive with
the surface-friction loss coefficient. Expression of the combined friction
and trailing-edge loss in terms of a kinetic-energy loss coefficient is dis-
cussed in the next section.

Ratio of
trailing-edge
thickness to

boundary-layer
. 00— height,
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=
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Dimensionless trailing-edge thickness, t*

Fiaure 7-7.—Effect of trailing-edge blockage on kinetic-energy loss coefficient. Form
factor H=1.3; energy factor E =1.8; drag coefficient Cp=0.16.
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Combined Friction and Trailing-Edge Loss

As stated in the discussion of the trailing-edge loss, the boundary-layer
thickness parameters and a kinetic-energy loss coefficient expressing the
combined friction and trailing-edge loss can be obtained by making the
experimental measurements at a location corresponding to station 1,
which is just downstream of the trailing edge. In this way, we obtain
experimental values of &*, 6,*, and y»* from appropriately subscripted
versions of equations (7-28), (7-29), and (7-30). The value of ¢ is then
obtained as

vt

é =
YT

(7-67)

Analytically, the boundary-layer thickness parameters at station 1 are
obtained by adding the surface-friction loss to the trailing-edge loss.
Before the friction and trailing-edge boundary-layer thickness parameters
can be added, they must be expressed on the basis of the same ideal flow.
The friction-loss dimensionless thicknesses at station la (8}, 65, ¥1,) are
expressed in terms of an ideal flow without trailing-edge blockage. How-
ever, there is a trailing-edge blockage at station la, where the ideal flow
with blockage must be comparable to the ideal flow at station 1, where
there is no blockage. Therefore, the friction-loss boundary-layer thickness
parameters are adjusted to account for the true (with blockage) ideal
flow as follows:

8 CO8 ayq
oy =01 (——) 7-68
M8 \s cos 01—t ( )
$ COS aa
et (22 ) o
W\ s o8 ana— ¢ ( )
and
« % SCOSau
= —_— 7-70
1=V (s cos a;.,—-t) ( )

where the subscript f refers to the loss due to surface friction. Adding the
friction and trailing-edge loss parameters then yields the combined loss
parameters at station 1:

& =3),+8% (7-71)

0% =0F,+67, (7-72)
and

W=y, +Vi (7-73)

And the value of ¢ is then obtained from equation (7-67).
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After-Mix Loss

The after-mix loss is the total loss that includes the surface-friction loss,
the trailing-edge loss, and the mixing loss. The after-mix loss coefficient
é:is determined as described in this section, and the mixing loss, if desired,
is obtained by subtracting the previously determined & from &,

To determine the after-mix loss experimentally would require that the
pressure measurements be made downstream of the blading where com-
plete mixing has occurred. This is impractical for several reasons: (1)
The length for complete mixing, while quite long, is unknown; (2) the
after-mix loss would have to be corrected for side-wall friction for the
mixing length, thus leading to possible error; and (3) after the flow had
mixed, values of after-mix py’—p,” would be constant and small enough
that the possibility of measurement error would be relatively large. For
these reasons, values of after-mix loss are obtained analytically with the
use of either experimentally or analytically determined before-mix
(station 1) loss parameters.

The basic equations for determining the after-mix conditions are
those for conservation of mass, momentum in the tangential direction,
and momentum in the axial direction during mixing. Equating the mass
flow rate before mixing (station 1) and after mixing (station 2) yields

/ (pV)1 cos ay d ('s—‘>=cos as(pV)2 (7-74)

From conservation of momentum in the tangential direction we get
! u
/ (oV?)1 sin s €08 ay d (—) —sin agcos aa(pV?)s  (7-75)
0 8

and from conservation of momentum in the axial direction we get
! u 1 u
g/ nd (;)’*'[ (pV?) cos’ an d (;>=gz>rl~cos2 az(pV?)s  (7-76)
1] 0

Although these equations are subscripted for two-dimensional flow, they
can also be applied to three-dimensional flow by integrating radially.

If experimental survey data were available at station 1, the integrals in
the above equations could be directly evaluated even with variations in
static pressure and flow angle. These conservation equations could be
written for any before-mix location at which data were available, and then
used to evaluate the after-mix loss coefficient. In the case where the
before-mix station is not station 1, it would not be possible to determine
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the mixing loss completely by experimental means. In most cases, how-
ever, it is only the final after-mix loss that is desired, and survey measure-
ments are usually made a little farther downstream of the trailing edge,
where angle and pressure variations have somewhat damped out.

If static pressure and flow angle are constant across station 1, it is
possible to express equations (7-74) to (7-76) in terms of the previously
used boundary-layer parameters, as was done in reference 1. The analysis
herein differs from that of reference 1 only in that the before-mix station
used in reference 1 corresponds to station la herein. Equation (7-28)
subscripted for station 1, where there is no trailing-edge void, can be
written as

u

1
[ v (;)= (1=52) (oV) 11 (7-17)
0
Subseripting equation (7-29) for station 1 and combining it with equation
(7-77) yields
u

1
/ @Vﬂxd<;)=(1—&*—ﬂﬁHpV”nJ (7-78)
0

Substituting equations (7-77) and (7-78) into equations (7-74) to
(7-76) yields the following equations for conservation of mass and
momentum in terms of the boundary-layer parameters previously deter-
mined:

cos a,(l—&l") (pV)/.,1=COS az(pV)z (7—79)

8in ay cos a3 (1—5*—6,*) (pV?) 4.1 =8in oy cos az(pV?), (7-80)
gp1+cos2 a;( 1 —61*—-01*) (sz) fe 1= cos? az(pV2)2+gpz (7—81)

These equations, along with the ideal gas law and the conservation-of-
energy equation (Ty'=Ty'), can be solved simultaneously as shown in
reference 1 to obtain &, the after-mix kinetic-energy loss coefficient,
for both compressible and incompressible flow.

For incompressible flow, the solution for & is

. 1—5*—6,%\?
sin? a; (l_lts*¢)'—i-cos2 a1 (1—4,*)2
— o0

142 cos? aa[ (1= 6%)2— (1— 8" — 6,%) ]

&=1 (7-82)

For compressible flow, no explicit solution was found, and the following
steps are required to obtain &:
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(1) The parameters C and D are computed from

v+
(I_A!n.l) 2‘Y

1 2
+cos? a1 (1—8*—6,*) ( 4 )
Vcr fl,l

C:

|4
cos a1 (1 —&") (—)
1 1 Vc, Jon

Vv . 1—- 61‘—0,*)
D= —
(Vcr)/.'l . ( 1-5;*

(2) The quantity (V./V.):is obtained from
) NG) -+ ()
_= —_—— — - 1 + D2
(Vcr 2 Y + 1 ¥ + 1 v + 1
(3) The density ratio (p/p’)2 is obtained from
2 --G) @]
Lol I 5 Dr+{ ==
(P’)z { (7+1 + Vcr 2

(4) The total pressure ratio ps’/po’ is obtained from
pzl

I'14
1 %
(p, Vcr)j.,x cos a1 (1—5,*)
po’ ( sz)
P’ Vcr 2
(5) The pressure ratio (p/p’): is obtained from

)0

(6) Finally, & is obtained from

Pn’ (v=-D/7y
&)

f=——

P D!)(v—l)/ ki
= ~1
(Pz

(7-83)

(7-84)

(7-85)

(7-86)

(7-87)

(7-88)

(7-89)

Values of & include all the blade-row loss; that is, the frictional loss of
the blade row, the trailing-edge loss, and the mixing loss. Values of &
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include all the blade-row losses except mixing loss. Therefore,
Emiz=6—28; (7_90)

where &.:, is the fractional loss in available energy due to mixing.

BLADE-ROW LOSS CHARACTERISTICS

In this section, experimentally and analytically determined losses of
the various types considered will be presented and compared, and the
effect of blade-row geometry on losses will be discussed.

Distribution and Comparison of Losses

Figure 7-8, taken from reference 8, compares experimentally and
analytically determined values of kinetic-energy loss coefficients at three
different angle settings for a given stator and at three stations repre-
gsenting different losses. The loss coefficient €, m, obtained just within the
blade trailing edge, represents the surface-friction loss at the mean
(arithmetic mean radius) section; the coefficient &,., obtained just
beyond the trailing edge, represents the friction loss plus trailing-edge loss
at the mean section; and the coefficient & sp represents the total loss for
the annulus including blade and end-wall friction, trailing-edge drag, and
mixing. In general, agreement between the experimental and analytical
loss coefficients is reasonably good.

o © Experimental results
O  Analytical results

Kinetic-energy loss coefficient, e
S

€. .
2,30
L03L- ' Mixing and

E: end-wall losses
g e-l, m

| Trailing-
: _ edge loss
cl/"87<8 “la,m
01— Mean-section
blade surface
friction loss
0 | |
10 100 120

Percent stator area setting

FiauRe 7-8.—Comparison of experimental and analytical loss coefficients for different
stator area settings. (Data from ref. 8.)
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F1aure 7-9.—Variation of loss coefficients with velocity. (Data from ref. 9.)

Figure 7-8 gives some idea of the distribution of losses in a stator blade
row, but does not separate the mixing and end-wall losses. Figure 7-9,
taken from reference 9, shows the variation in loss coefficient with ve-
locity. Loss coefficient is seen to decrease slightly with increasing velocity.
This figure also shows separately the mixing and end-wall losses, as well
as the other blade-row losses.

In this particular case, the friction loss was about 2 percent of the stator
ideal energy and about one-half of the total stator loss. The trailing-edge
loss was about one-quarter of the total loss. In general, the trailing-edge
loss will vary with trailing-edge blockage as was shown in figure 7-7.
The end-wall loss, which was about 15 percent of the total loss for this
case, will vary with the design, depending primarily on radius ratio and
spacing. The mixing loss made up the remaining 10 percent of the total
loss. The loss breakdown will, of course, vary with the stator design, but
the comparison does indicate that each of the losses may be of con-
sequence.

Effect of Blade-Row Geometry on Losses

A study of the effect of turbine geometry on turbulent-flow boundary-
layer loss is presented in reference 10. In that study, the assumption was
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made that the momentum loss per unit blade surface varies as the inverse
of the chord Reynolds number to the m power:

b1
'« Re;™ (7-91)

c

where Re. is a Reynolds number based on blade chord ¢. Expanding
equation (7-91) by multiplying and dividing by like terms, substituting
into equation (7-22), and then using equation (7-47) to express the
three-dimensional effect yielded an equation of the form

h m . 00 I-m
o;‘,,a(—> 145282 (——‘) (9) Re™ (7-92)
s 5 € /oer \8
)

(%) () e

where Re, is a Reynolds number based on blade height k. As indicated,
the three-dimensional momentum thickness parameter can be expressed
as a function of the geometric variables—height-to-spacing ratio h/s,
blade solidity ¢/s, and height Reynolds number Re;. The reference value
of 8..¢/c, as explained in reference 9, is based on the minimum loss for a
given solidity and, therefore, becomes a function of solidity. The ex-
ponent m is set equal to 3§ in the analysis.

In reference 10, the derivative of the dimensionless momentum thick-
ness 63, with respect to each of the geometric variables was obtained in
order to find the minimum-loss value of each variable in terms of the other
variables (there is no minimum for height Reynolds number). With the
optimum values known, the relative variations in momentum loss around
the minimum values were then determined. The results of the analysis
from reference 10 are shown in figures 7-10, 7-11, and 7-12. Also shown in
each figure is the nature of the geometry variation associated with the
change in each variable.

Figure 7-10 shows that a wide variation (50 percent or more) in h/s
value around the optimum causes little increase in momentum loss. This
results from the two counteracting effects of changes in chord Reynolds
number and end-wall area. Figure 7-11 shows that the solidity of a blade
may be varied considerably from optimum with some, but not excessive,
loss. Comparison of the results in figures 7-10 and 7-11 shows that the
loss is more sensitive to solidity than to the height-to-spacing ratio. The
curve shape of figure 7-11 reflects also the counteracting influences of
chord Reynolds number and end-wall area.
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Figure 7-12 shows the variation of momentum-thickness ratio with
height Reynolds number ratio. While the figure indicates a change in
Reynolds number due to change in geometry, the change in Reynolds
number could also result from change in inlet flow conditions. The curve
shape, then, results from the loss being inversely proportional to the
Reynolds number to the m=3£ power. These results show that an in-
crease in height Reynolds number results in improved performance. The
height Reynolds number is sometimes used in correlating the performance
of different turbomachines.
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BOUNDARY-LAYER LOSSES
SYMBOLS

surface area of one blade, m?; ft?

parameter defined by equation (7-15)

surface area of end walls for one passage, m?; ft?

parameter defined by equation (7-83)

drag coefficient

blade chord, m; ft

specific heat at constant pressure, J/(kg) (K); Btu/(lb) (°R)

drag, N/m:1b/ft

parameter defined by equation (7-84)

energy factor

kinetic-energy loss coefficient

conversion constant, 1;32.17 (lbm) (ft) / (1bf) (sec?)

form factor

blade height, m; ft

height of body placed in boundary layer, m; ft

conversion constant, 1; 778 (ft) (1b)/Btu

blade surface distance from forward to rear stagnation point,
m; ft

exponent in equation (7-91)

turbulent boundary-layer velocity profile exponent

absolute pressure, N/m?; Ib/ft?

dynamic pressure, N/m?; Ib/ft?

chord Reynolds number

height Reynolds number

radius, m; ft

blade spacing, m; ft

absolute temperature, K; °R

trailing-edge thickness, m; ft

distance in tangential direction, m; ft

fluid velocity, m/sec; ft/sec

distance along blade surface from forward stagnation point,
m; ft

distance from surface normal to boundary layer, m; ft

distance from surface normal to boundary layer expressed as
fraction of boundary-layer thickness

fluid flow angle from axial direction, deg

blade stagger angle from axial direction, deg

ratio of specific heat at constant pressure to specific heat at
constant volume

boundary-layer displacement thickness, m; ft

boundary-layer thickness, m; ft
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6 boundary-layer momentum thickness, m; ft
“ viscosity, (N) (see) /m?; Ib/ (ft) (sec)
P density, kg/m?; 1b/ft?

v boundary-layer energy thickness, m; ft
Subscripts:

cr critical flow conditions

eff effective

I friction

fs free stream

h hub

) ideal

inc incompressible

m mean section

min minimum

mix mixing

opt optimum

P pressure surface

ref reference

s suction surface

¢ tip

te trailing edge

tot total

z axial component

0 blade-row inlet

1 just beyond trailing edge of blade row
la just within trailing edge of blade row
2 downstream uniform state

3D three dimensional

Superscripts:

' absolute total state

* dimensionless value
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CHAPTER 8
Miscellaneous Losses

By Richard J. Roelke

In the last chapter, the boundary-layer losses associated with the flow
process in the blade channel were discussed. To determine the overall
design-point efficiency of a turbine, other losses must also be considered;
these include tip-clearance loss and disk-friction loss. In some instances,
these losses represent a very small part of the turbine output and may be
neglected; however, in other instances, these losses can be of such mag-
nitude as to influence the selection of the turbine design point. The sum
of these losses normally comprises all the losses that are considered in the
design of a full-admission axial-flow turbine. If, however, a partial-
admission turbine is being considered, there are additional losses that
must be included. The partial-admission losses usually considered are the
pumping loss in the inactive blade channels and the filling-and-emptying
loss in the blade passages as they pass through the admission arc. Finally,
a loss that occurs at off-design operation of any turbine is the incidence
loss, which will also be covered herein.

TIP-CLEARANCE LOSS

Because a turbine must operate with some clearance between the tips
of the rotor blades and the casing, some fraction of the fluid leaks across
the tips, thus causing a reduction in turbine work output. This leakage
loss is affected, first of all, by the nature of the tip geometry; that is, by
the amount of radial clearance, by recesses in the casing, and by tip
shrouds. For a given tip geometry, the amount of blade reaction affects
the leakage loss, since a large pressure difference across the tip (high
reaction) causes more higher-kinetic-energy flow to leak through the tip
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gap from the pressure side to the suction side of the blade. With an un-
shrouded blade, this leakage flow not only causes a loss due to its own
reduced work, but also causes an unloading of the blade, primarily in the
tip region. Analytical evaluation of the drop in turbine efficiency caused
by tip-clearance leakage is inherently difficult because of the complex flow
problem. Several empirical expressions for clearance loss have been
developed, and some of these are summarized in reference 1; however,
they are rather complicated, and the author states that none is entirely
satisfactory.

A number of tests have been made at the NASA Lewis Research Center
to determine the effect of tip clearance and tip geometry on axial-flow
impulse and reaction turbines. An examination of some of the results of
these tests helps to obtain a better understanding of the tip-clearance
loss. Figure 8-1 shows the angle traces at the blade exit of a 5-inch single-
stage turbine (ref. 2). Two things to be noted from the angle traces are
that the flow in the clearance space and near the tip was not fully turned,

Rotation
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F1GURE 8~1.—Variation of exit flow angle with radius ratio for four rotor tip clearances.
(Data from ref. 2.)
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Turbine
O 1-Stage, reaction (ref. 2)
O 2-Stage, reaction (ref. 3)
A 1-Stage, impulse (ref. 4)
= — —Estimate (ref. 5) for ref. 2 turbine
~— — Estimate {ref. 5) for ref. 4 turbine

Turbine efficiency, fraction of
efficiency with no clearance
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Ficure 8-2.—Effect of tip clearance on efficiency.

even at the smallest clearance tested, and that underturning of the flow
increased with increasing tip clearance, and this effect occurred all the
way down to the hub. This underturning of the flow unloads the blade
aerodynamically and results in lower turbine output and efficiency. The
decrease in efficiency for this turbine, as well as for two others, is shown
in figure 8-2.

The solid lines in figure 8-2 represent test results from single-stage
(ref. 2) and two-stage (ref. 3) reaction turbines and from a single-stage
impulse turbine (ref. 4). All turbines were unshrouded. The importance
that the level of reaction plays in the clearance loss is clearly evident from
the figure. For the same ratio of tip clearance to blade height, the losses in
efficiency for the reaction turbines were about double that for the impulse
turbine.

The dashed lines in figure 8-2 are estimates of the efficiency losses for
the two single-stage turbines (refs. 2 and 4) as obtained from the curves
published in reference 5 (as fig. 1.6) and reproduced here as figure 8-3.
Extrapolation of the experimental data of figure 8-2 shows that figure 8-3
gives satisfactory estimates of tip-leakage loss for small tip clearances.
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Reviewing the results shown in figures 8-2 and 8-3, it is apparent that the
loss in efficiency increases with increasing reaction, and for moderate to
large ratios of tip clearance to blade height, the loss is appreciable.

In addition to reducing the tip clearance, methods for reducing the tip-
leakage losses include recessing the casing above the blade tip while in-
creasing the blade height, and adding a tip shroud. These loss-reduction
schemes can be used either individually or in combination. The single-
stage impulse turbine of reference 4 was tested at several ratios of tip
clearance to blade height, both without and with the recessed casing and
the tip shroud. Figure 84 shows the three general configurations tested
in reference 4, and the turbine-performance results are shown in figure 8-5.
A clearer understanding of the performance characteristics is possible if
the loss mechanisms are considered. The factors affecting turbine work
for the reduced blade-height configuration as compared to a zero-clearance
configuration consist of (1) reduced blade loading area, (2) clearance-gap
leakage flow, (3) mixing of the leakage flow with channel throughflow,
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zero-clearance blade height).
(¢) Shrouded rotor.
Fioure 8-4.—Tip-clearance configurations investigated for impulse turbine (ref. 4).

and (4) blade unloading (as a result of flow going from the pressure side
to the suction side). With the recessed-casing configuration, the blade
extended to the passage outer radius and was of constant height as the
clearance gap was changed by varying the amount of casing recess. There-
fore, the reduced blade loading area was eliminated, and the leakage flow
was reduced because of the indirect leakage path. With the shroud added
to the blade, the blade unloading was eliminated, and the leakage flow was
further reduced. Note from figure 8-5, however, that at tip-clearance
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F1aure 8-5.—Effect of tip-clearance configurations on turbine efficiency. (Data from
ref. 4.)

fractions below some value, about 0.035 in this instance, the shroud no
longer provides an increase in efficiency. This can be attributed to an
increasing friction loss between shroud and casing as the clearance gap
is decreased.

The comparative results shown in figure 8-5 for different blade-tip
geometries are dependent upon that particular design and may not apply
to other turbines. This is particularly true of the shrouded blade, since
the leakage flow depends not only on the clearance span and pressure
difference but also on the number of seals used. With respect to the
recessed-casing configuration, it should be noted that the blade should not
extend into the recess. If it does, the overlapping section will just be
churning stagnant fluid and creating additional losses.

In summary, tip-clearance loss presents a complicated flow problem
influenced by many factors and is not easily predicted with consistent
accuracy. The clearance gap required for a turbine depends primarily on
"diameter (larger clearance for larger diameter) and, as seen previously,
the loss increases as the ratio of clearance gap to blade height increases.
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For any given diameter, therefore, the tip-clearance loss increases with
increasing hub- to tip-radius ratio. It becomes increasingly difficult to
maintain a desired small ratio of clearance gap to blade height as the
turbine, and hence the blade height, becomes smaller. For a given radius
ratio, therefore, the loss is more severe for small turbines and less severe
for larger turbines. If tip leakage is considered to be a problem in a
particular case, it might be worthwhile to carry out tests to evaluate the
leakage effects.

DISK-FRICTION LOSS

The disk-friction loss (or windage loss) is due to the skin friction and
circulation of fluid between the rotating disk and the stationary casing. In
addition, some turbines for hot applications, for example aircraft engines,
have a small steady stream of lower-temperature gas that bathes and cools
the rotor disk. This cooling gas flows along the rotor-disk surface from
near the engine centerline outward to the base of the blades. The qualita-
tive nature of the flow patterns around rotor disks without and with
throughflow of cooling gas are shown in figure 8-6. Equations for es-
timating the associated losses are presented herein.

No Throughflow

For the case with no throughflow, as in figure 8-6(a), the thin layer of
fluid close to the rotating surface is thrown outward by centrifugal action
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(a) Without throughflow. (b) With throughflow.

Fioure 8-6.—Flow patterns for rotating disks.
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and returns via the stationary wall to the inner radius, thereby building
up a continuous circulatory effect. Consider an clement of arca on one
side of the disk

dA =2xr dr (8-1)

where A is the area, in m? or ft?, of one side of the disk, and r is the radius,
in m or ft, of the area element dA. The fluid shear stress r, in N/m? or
Ib/ft? acting over this area at the radius r produces a resisting torque to
the disk rotation of

M,
—— =72xr2dr (8-2)

where M, is the resisting torque, in N-m or lb-ft, for both sides of a disk
in the case of no throughflow. The shear stress can be expressed as

C
r=T oV (8-3)
29
where
C; fluid shear-stress coefficient
g conversion constant, 1;32.17 (Ibm) (ft)/ (Ibf) (sec?)
p density, kg/m?; 1b/ft?
Va tangential component of fluid absolute velocity, m/sec; ft/sec

At the disk surface, the fluid tangential velocity is
Vi=rw (8-4)

where wis the angular velocity, in rad/scc. By substituting equation (8-4)
into (8-3), the total torque for both sides of the disk can be written as

a2
M= / T ot dr (8-5)
o 9
where a 1s the disk rim radius, in m or ft. Performing the integration yields
205
Mo=Cirop— (8-6)
29
where Cy , 1s a torque coefficient for the case of no throughflow. The disk-
friction loss expressed as power is then the torque times the angular
velocity:
(8-7)

where P4, is the disk-friction power loss, in W or Btu/sce, and J is a
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conversion constant (equal to 1, or 778 (ft) (Ib)/Btu). The form of
equation (8-7) that is found in most handbooks is

Pd]=depN3Drs (8_8)
where

Kq; disk-friction power-loss coefficient
N rotative speed
D, disk rim diameter

A number of investigators have published values of the constant K, in
equation (8-8) to be used for different circumstances, while others have
made small changes to the exponents to better fit the available data. The
wide assortment of semiempirical equations used to predict this loss is, no
doubt, due to variations of the test-apparatus geometry, the somewhat
oversimplified model from which equation (8-7) is derived, and the
existence of different types of flow that can occur in the space between the
rotor and the casing. One thing that can be noted from equation (8-7)
or (8-8) is that for a given blade speed, lower loss is obtained by having
a smaller diameter and a higher rotative speed.

An extensive investigation has been conducted (refs. 6 and 7) to deter-
mine the effect of chamber proportions on disk friction and to present a
clearer picture of the several modes of flow that may exist. In gencral,
four modes of flow, or flow regimes, can exist in the axial space between the
casing and the rotating disk, depending on the chamber dimensions and
the flow Reynolds number. The torque coefficient Cy,, was evaluated
both theoretically and experimentally in each regime. A description of
each regime and the associated equations for the torque coefficient are as
follows:

Regime I: Laminar Flow, Small Clearance. Boundary layers on the
rotor disk and casing are merged, so that a continuous variation in
velocity exists across the axial gap s. Figure 8-7(a) indicates the nature
of the variations in the radial and tangential components of fluid velocity
at a given radius in the gap. The best equation for torque coefficient, both
theoretically and empirically, is

27

Cauo= (s/a)R

(8-9)

where s is the axial distance, in m or ft, between disk and casing, and R is
the Reynolds number defined as

R= (8-10)

where u is the dynamic viscosity, in (N) (sec)/m? or lb/(ft) (sec).
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Ficune 8-7.—Velocity patterns around rotating disks without throughflow.

Regime II: Laminar Flow, Large Clearance. The combined thick-
ness of the boundary layers on the rotor and on the casing is less than the
axial gap, and between these boundary layers there exists a core of rotat-
ing fluid in which no change in velocity occurs. Figure 8-7(b) shows
the variations in the radial and tangential velocity components for this
case. The best theoretical and empirical equations for torque coefficient
are

CI!

C‘"'"=R—1/z (811)

where C1y is a function of (s/a), as shown in figurc 8-8(a), and
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3.70(s/a)1°
Cuo=="pm

(8-12)
respectively.

Regime III: Turbulent Flow, Small Clearance. The turbulent
counterpart of Regime 1. The best theoretical and empirical equations
for torque coefficient are

0.0622
Cuo= (5/a) AR (8-13)
and
0.080
Cumo= W (8-14)
respectively.
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Regime IV: Turbulent Flow, Large Clearance. The turbulent
counterpart of Regime II. The best theoretical and empirical equa-
tions for torque coefficient are

CMo_@

= (8-15)

where Crv is a function of (s/a), as shown in figure 8-8(b), and

_0.102(s/a)110

Cruo R/

(8-16)
respectively.

The particular flow regime that exists at any Reynolds number can be
determined by plotting torque coeflicient against Reynolds number from
equations (8-9), (8-11), (8-13), and (8-15), as shown in figure 89 for
several values of s/a. The discontinuitics (changes in slope) in the lines
of figure 8-9 indicate transition from one regime to another. In this figure,
the flow regimes are determined by matching the slopes of the lines with

Slope of curve Flow Description

regime
I |Laminar flow; merged

boundary layers

IT {Laminar flow; separate
boundary layers

I |Turbulent flow; merged
boundary layers

40x1072 IV |Turbulent flow; separate
f_ \\ boundary layers
2 _\\ ‘\ Ratio of axial gap
o 10— \x to disk rim radius,
= 6: N sla
[&)
- 4 \ —-—0.01
5 -
2 .05
¥ o1—
(%]
@ .6—
g .4—
= L2
A=
gt i N I B I R Y
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Reynolds number, R

F16URE 8-9.—Theoretical variation of torque coefficient with Reynolds number for no
throughflow. (Data from ref. 6.)
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those shown in the insert in the figure. Torque-coefficient values (ref. 6)
determined experimentally with a 50.8-centimeter (20-in.) disk rotated in
water and oil for several values of s/a verify the theory.

Throughflow

For the case of the rotating disk with throughflow, as in figure 8-6(b),
the friction torque increases with the throughflow. This problem has been
analyzed for low values of throughflow with regime-IV flow. In this case,
it is assumed that the fluid enters the chamber near the centerline with no
angular velocity and leaves at the rim with some angular velocity Kwa.
The symbol K, represents the ratio of the angular velocity of the rotating
core of gas to the angular velocity of the disk. The increase in torque,
AM, over that without throughflow is the rate of change of angular
momentum of the fluid flowing through the system:

AM=2p§ (K‘,wa)a=2p§K.,wa2 (8-17)

where @ is the volumetric throughflow rate, in m3/sec or ft3/sec, in the
clearance space on one side of the disk. The total torque for the through-
flow case is then

CM ,opw2a5

M=M,+AM =
2g

+22 QK wa (8-18)
g
The value of K, is approximately 0.45 for s/a ratios from 0.025 to 0.12.
An assessment of the power loss can be obtained by calculating the

friction torque of the throughflow case compared to that of the no-
throughflow case:

M 2pQKowa2 4K, Q
—=l4—=14—— = 8-19
. +1 + Coro od? ( )
5 Cu opw’a’
Substituting equation (8-16) for Cy., yields
M K, RY5 Q K,
—= ———— —=1+439.2 T 8-20
M, 1+O.0255(s/a) 110 (g3 + (s/a)1ne ( )
where T is a dimensionless throughflow number defined as
= Q R/s (8-21)

wa?

According to the data of reference 7, equation (8-20) predicts values
that are somewhat high; moreover, the effect of s/a is not accurately
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FiGure 8-10.—Empirical variation of torque with throughflow number. (Data from
ref. 7.)

given by (s/a)'". Empirically, the test data are represented to within
=5 percent by the relation

M =1+13.9K,

T
. __————(s/a)”s (8-22)

Equation (8-22) is plotted in figure 8-10 for several s/a values.

PARTIAL-ADMISSION LOSSES

Full-admission axial-flow turbines are used for most applications;
however, unusual conditions sometimes arise for which a partial-admission
turbine may be a better choice. If, for example, the design mass-flow rate is
so small that a normal full-admission design would give very-small blade
heights, then it may be advantageous to use partial admission. The losses
due to partial admission with long blades may be less than the leakage
and low Reynolds-number losses of the full-admission turbine having short
blades. In addition, for a given rotative speed, partial admission allows the
freedom of larger diameter and higher blade-jet speed ratios. Also, the
use of partial admission may be a convenient way to reduce power output
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of an existing full-admission turbine (physically block some of the stator
passages). In general, partial-admission turbines have high specific-work
output and low volumetric-flow rates.

As mentioned previously in this chapter, the partial-admission losses
are the pumping loss in the inactive blade channels and the filling-and-
emptying loss encountered as the blades pass through the active sector.
This latter loss has been referred to as expansion, scavenging, or sector
loss. The mechanisms of partial-admission losses are not clearly or fully
understood, but they do result in a decrease in output power and efficiency
when compared to the same turbine operating with full admission.

The pumping loss is that loss caused by the inactive blades rotating in
a fluid-filled casing, and expressions for it are somewhat similar in form to,
and often combined with, the expression for the disk-friction loss. These
expressions all seem to trace back to reference 8, where the results of
several experimental investigations are summarized. The equations for
estimating pumping-power loss that resulted from these investigations
showed that the effects of blade height and diameter on the pumping-
power loss are quite uncertain, as evidenced by variations in the exponents
on these terms. Further, the nature and location of obstructions (adjacent
blade rows, casing wall, etc.) or lack of such in the vicinity of the three
open sides of the blade channel were accounted for only by differences in
the empirical loss coefficient. Therefore, it appears that a generally
applicable expression for pumping-power loss is yet to be found.

The one equation perhaps most often used is

P,=K pU,' D, (1 —¢) (8-23)
where

P, pumping-power loss, W; (ft) (1b) /sec

K pumping-power loss coefficient, 1/m2; (Ibf) (sec?) / (Ibm) (ft3/2)
Un blade mean-section speed, m/sec; ft/sec

l blade height, m; ft

D, blade mean-section diameter, m; ft

€ active fraction of stator-exit area

b

The value of the coefficient K, as reported in reference 8 and converted
to the units used herein is 3.63 1/m!”2, or 0.0105 (1bf) (sec?)/(lbm) (ft*/2),
for an unenclosed rotor. For the same rotors enclosed, the coefficient
values were one-quarter to one-half of the above values. More recently,
the combined disk-friction and pumping losses for a single-stage rotor
enclosed by the turbine housing were reported in reference 9. If a disk-
friction loss estimated by equation (8-7) is subtracted from the combined
losses of reference 9 and if the remaining loss is converted to the form of
equation (8-23), the coefficient K, is found to be 5.92 1/m!2, or 0.0171
(Ibf) (sec?) / (Ibm) (ft*’#). This is significantly higher than the coefficients
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reported in reference 8, and the difference is attributed to primarily the
lack of an adequate loss model.

The other partial-admission loss shall herein be called the sector loss.
Imagine a blade channel as it just starts to enter the active sector. It is
filled with relatively stagnant fluid that must be pushed out by the high-
momentum fluid leaving the nozzle. This seavenging will continue until
the blade channel is completely within the active sector. As the blade
channel passes out of the active sector, a second sector loss occurs. As the
inlet to the blade channel is cut off from the nozzle active are, less and
less high-momentum fluid enters the channel. Since this fluid has the
entire blade channel area to flow into, it is rapidly diffused as it flows
through the rotor. These losses cause an overall decrease in the momentum
of the fluid passing through the rotor, thus decreasing the available energy
of the fluid. It was reported in reference 10 that this decrease in momen-
tum may be found by multiplying the rotor-exit momentum by a loss
coefficient

K.=<1_%) (8-24)

where p is the rotor-blade pitch, in m or ft, and f is the nozzle active arc
length, in m or ft. Effectively, K, is a rotor velocity coefficient that ac-
counts for the sector loss.

The effect of the sector loss on turbine efficiency is determined as
follows. With the use of equations (2-6) and (2-14), from volume 1, and
the associated velocity diagram geometry, we can express the specific
work of an axial-flow turbine as

Un Un . .
AR == (W a—Wua)=—7 (Wisin fi—Wssin )  (8-25)
gJ gJ

where

AR’ turbine specific work, J/kg; Btu/lb

W. tangential component of relative velocity, m/sec; ft/sec
w relative velocity, m/sec; ft/sec

B fluid relative angle measured from axial direction, deg

The subscripts 1 and 2 refer to the rotor inlet and exit, respectively. For
an impulse turbine (which most partial-admission turbines are), where

ﬁl= '—631
Unm .
Ah'=ﬁ Wisin 81(1+K,,) (8-26)

where K,, is the rotor relative-velocity ratio W./W, for the full-admission
turbine. For the partial-admission turbine, applying the sector loss
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coefficient yields

W.=K,K,W, (8-27)
So, for the partial-admission turbine,
; Un .

Ahf":_gj Wiysin 81(14+ K.K,) (8-28)

Since efficiency is
AR’
=— 8-2
LV (8-29)

where Ahyy is the turbine ideal specific work, in J/kg or Btu/lb, the ef-
ficiency of the partial-admission turbine with respect to that of the full-
admission turbine is

N
’%=Ki} (8-30)

Substituting equations (8-26) and (8-28) into equation (8-30) then
yields

1+ KK,

14K, (8-31)

Npa ="M

The efficiency penalty expressed by equation (8-31) accounts for the
sector loss only; the pumping loss discussed earlier will reduce the overall
efficiency further. Equation (8-24) indicates that a partial-admission
turbine rotor should have closely spaced blades to reduce the sector loss;
however, as more blades are added to the rotor, the blade profile loss will
increase. Also, the effect of the number of rotor blades on the pumping
loss is not known. Therefore, the complete optimization of a partial-
admission design cannot be done analytically at present.

In the study of reference 9, the efficiency of a small axial-flow turbine
was determined over a range of admissions from 12 to 100 percent. The
total loss due to partial-admission operation was taken as the difference
between the full- and the partial-admission efficiencies. The blade pumping
and disk-friction losses were measured separately and were subtracted
from the total partial-admission loss to give what was called other partial-
admission losses. These other losses include the sector loss and any loss
due to leakage from the active sector to the inactive sector. The partial-
admission losses of reference 9 are plotted against admission-are fraction
in figure 8-11. The combined pumping and disk-friction loss increased
with decreasing arc fraction, while the other losses remained nearly con-
stant over the range of arcs tested.

Predicted efficiencies (from ref. 10) are plotted against blade-jet speed
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= — — Estimated pumping and disk-friction losses

O  Pumping and disk-friction losses
O  Other partial-admission losses

Loss, fraction of ideal specific work
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FigUuRE 8-11.-—Variation of partial-admission losses with active fraction of stator
area. (1)ata from ref. 9.)
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F1gure 8-12.—Design-point performance of partial- and full-admission turbines.
(Data from ref. 10.)

ratio (see discussion in vol. 1, ch. 2) in figure 8-12 for a particular turbine
operating with full admission and with three different amounts of partial
admission. The expected reduction in peak efficiency with reduced arc of
admission is seen. The important thing to note from this figure is the
reduction in optimum blade-jet speed ratio as admission arc is reduced.
Aerodynamic efficiency is a maximum at a blade-jet speed ratio of 0.5,
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irrespective of admission arc, and decreases with decreasing blade speed.
Blade-pumping and disk-friction losses, which decrease with decreasing
blade speed, become a larger part of the gross aerodynamic power as
admission arc decreases. Therefore, as admission arc is reduced, the
maximum net output power (acrodynamic power minus blade-pumping
and disk-friction power) is obtained at lower blade speeds. Thus, for the
design of a partial-admission turbinc, the partial-admission losses must be
factored into the design before an optimum or near-optimum blade-jet
speed ratio can be selected.

INCIDENCE LOSS

The incidence loss is that loss which occurs when the gas enters a blade
row (either stator or rotor) at some angle other than the optimum flow
angle. Flow incidence would normally only occur at off-design conditions,
since, theoretically at least, all gas and blade angles arc matched at the
design condition. The nomenclature used when speaking of incidence is
shown in figure 8-13. The dashed line running through the blade profile
is the camber line and defines the blade inlet angle. The incidence angle
is defined as

i=a—ay (8-32)
where
1 incidence angle, deg
a fluid flow angle from axial direction, deg

ap blade inlet angle from axial direction, deg

The fluid flow angle must be the absolute angle for stators and the relative
angle for rotors. The incidence angle may be positive or negative, as
indicated in figure 8-13. The sign of the incidence angle is important
because cascade tests have shown that the variation of loss with incidence
angle is different for positive and negative angles.

Axial A s

direction
%X/,/ Vn'/ fea- %

Figure 8-13.—Blade incidence nomenclature.
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A €.

Loss

reaction
blades
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Incidence angle, i

Ficure 8-14.—Characteristics of blade incidence loss.

Figure 8-15.—Local flow separation on blade surface.

The gencral nature of the variation of incidence loss with incidence angle
is shown by figure 8-14, which represents a summary of cascade test
results. The loss curve is not symmetrical about the zero incidence angle,
but shows a loss that is larger for positive incidence than for negative
incidence. This may be due to some local separation on the suction surface
at large positive incidence, as indicated in figure 8-15, and the lack, or
smaller area, of separation at the same value of negative incidence. Also,
blades in which the mean acceleration of the gas flow is large (high-
reaction blades) have a wide range of incidence over which loss is low,
whereas low-reaction blades have higher losses for the same incidence
range.

Another thing to be noted from figure 8-14 is that the minimum loss
does not occur at zero incidence, but at some small amount of negative
incidence. This may be explained by the sketch of figure 8-16. The stag-
nation streamlines for two inlet flow angles are shown; one at zero in-
cidence and the other at some small negative incidence with respect to
the blade inlet angle. Both tests and theory show that the stagnation
streamline curves upward as the flow impacts on the blade leading edge,
and the true zero incidence occurs when there is some negative incidence
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a<ay

U'Ub

L
Fiaure 8-16.—Curvature of stagnation streamline at blade inlet.

relative to the free-strecam flow. The incidence angle at minimum loss is
usually —4° to —8°. Because of this, some turbine designers design their
blades with a small amount of negative incidence, while others do not
because of the small difference involved.

The magnitude of the incidence loss takes on importance when the
off-design performance of a turbine must be predicted. A method for
determining incidence loss based on test data is deseribed in reference 11.
An analytical method is deseribed here with the aid of figure 8-13. The
inlet velocity V) can be resolved into a component V, normal to, and a
component V, parallel to the blade inlet direction (camber line at inlet).
If it is assumed that the parallel component passes through the blade row
without any entry loss and that the normal component is entirely lost,
the recovered kinetic energy is

2 2 V 2 2

and the kinetic-energy loss due to incidence is

e (1—cos??) (8-34)
YT 2gd
In order to account for the differences in loss variation with positive
and negative incidence, the effect of blade-row reaction, and the minimum
loss not occurring at zero incidence, equation (8-34) has been generalized
to
Vi
i=——[1—cos" ({—1, 8-35
207 L (t—1opt) ] (8-35)
where 7,5, is the optimum (minimum-loss) incidence angle. This type of
equation has proved satisfactory when used in off-design performance
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prediction methods such as that of reference 12. Where specific incidence-
loss data are lacking, values of n=2 for negative incidence and n=3 for
positive incidence have been used satisfactorily.

DD
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11.

12.
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SYMBOLS

area on one side of rotor disk, m?; ft2

disk rim radius, m; ft

cocfficient used to evaluate Cy , in regime II by equation (8-11)

cocfficient used to evaluate Cy . in regime IV by equation (8-15)

fluid shear-stress coefficient

torque coefficient with no throughflow

diameter, m; ft

nozzle active arc length, m; ft

conversion constant, 1; 32.17 (Ibm) (ft) / (Ibf) (sec?)

turbine specific work, J/kg; Btu/Ib

turbine ideal specific work based on ratio of inlet-total pressure
to exit-static pressure, J/kg; Btu/Ib

incidence angle, deg

conversion constant, 1; 778 (ft) (Ib) /Btu

disk-friction power-loss coefficient

ratio of rotating-core angular velocity to disk angular velocity

pumping power loss coefficient, 1/m"?; (Ibf) (sec?)/(Ibm) (ft3/2)

sector loss coefficient

rotor velocity cocfficient for full-admission impulse turbine

incidence loss, J/kg; Btu/lb

blade height, m; ft

frictional resistance torque for both sides of rotor disk, N-m;
Ib-ft

rotative speed, rad/see; rev/min

exponent in equation (8-35)

disk-friction power loss, W; Btu/scc

pumping power loss, W; Btu/scc

rotor-blade pitch, m; ft

volumetric throughflow rate, m3/sce; ft3/sce

Reynolds number

radius, m; ft

axial distance between rotor disk and casing, m; ft

blade speed, m/sec; ft/sce

absolute velocity, m/scc; ft/sce

relative veloeity, m/sec; ft/see

fluid flow angle from axial direction, deg

bladc inlet angle from axial direction, deg

fluid relative angle measured from axial direction, deg

active fraction of stator cxit arca

turbine static efficiency

dynamic viscosity, (N) (sec) /m?;1b/ (ft) (sce)

density, kg/m3; 1b/ft3
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T fluid shear stress, N/m?; 1b/ft?
T throughfiow number defined by equation (8—21)
w angular velocity, rad/sec
Subscripts:
m mean section
n component normal to blade inlet direction
0 no throughflow
opt optimum
P component parallel to blade inlet direction
pa partial admission
r disk rim
u tangential component
1 {rotor inlet
blade-row inlet
2 rotor exit
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