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FOREWORD

This is the Phase 1 Final Report of the Scheduling Language
and Algorithm Development Study performed by Martin Marietté
Corporation, Denver Division, pnder Contract NAS59-13616. The pur=-
pose of this study was to conceive and specify a high—levél com-
puter programming language and a program library to be ﬁsed in
writing programs for scheduling complex systems such as the Space
Transportation System. This report is presented in three volumes
plus an appendix:

Volume I - Study Summary and Overview

Volume II - Use of the Basic Language and Module Library

Volume III - Detaile& functional Specification for the Basic
Language and the Module Library |

Appendix - Study Approach and Activity Summary

Volume I summarizes the objectives and requirements of the
study and discusses the "why' behind the objectives and require-
ments. Unique results achieved during the study or unique fea-
tures of the specified language and program library are then de-
scribed and related to the "whyﬁ of the objectives and require-
‘ments. Finally, a description of the significance of study re-
sults, in terms of expected benefits, is provided.

Volume II summarizes the capabilities of the specified sched-
uling language and the program module library. It is written with
the potential user in mind and, therefore, provides maximum in-

sight on how the capabilities will be helpful in writing scheduling
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programs. Simple examples and illustrations are provided in
Volume IT to assist the potential user in applying the capabilities
of his problem.

'The detailed functional specifications presented in Volume III
are the formal product of Phase 1., These specifications are written
as requirements for software implementation of the language and the
program modules, and are almed at a specific audience.

A .separate Appendix summarizes the analyses, describes the
approach used to identify and specify the capa?jlities required
in the bésic language, and presents results of the algorithm and
problem modeling analyses used to define specifications for the
scheduling module library. The appendix is directed toward the
reader who is interested in how the study conclusions and results

were reached.
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1.0

INTRODUCTION

Volume II presents both PLANS (Programming Language for Allo-
cation and Network Scheduling) and the programming library modules
from the user's vi:gpoint. It describes capabilities and gives
many specific examples to provide insight to the potentiai use-
fulness of the language for buillding scheduling and resource allo-
cation software.

' This vélume is intended to provide a basiec understanding of
the nature and use of PLANS. It is not a detailed user guide such
as might be used by a programmer for actual coding. While this
document is meant to serve that function on an interim basis, a
detailed user guide wiil be produced as a part of the PLANS imple-
mentation (Phase II) effort. The discussion in this volume is not
meant to serve as a functional specification of PLANS. .The_de-
tailed functional specifications form a part of Volume III of this
report.

Section 2.0 of this volume describes the characteris£ics of
the PLANS language itself. Section 3.0 discusses the character-
istics of scheduling problems and how they can be modeled. The
framework described is referred to here as a generic scheduling
operations modél. The application of various library modules in-
cluding solution algorithms is diécussed in the context of thié

model. Illustrative examples are included in Section 4.0 where

both modeling and coding afe presented.
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2.0

2.1 '

USE OF THE PLANS LANGUAGE

PLANS {(Programming Language for Allocation and Network Sched-
uling) is a computer programming language designed for use in the
eipression of procedures for solving schedule construction and
resource allocation problems. It is a high—level.language in-
tended to allow easy, direct expression of the kinds of functions
frequently found in scheduling programs and algorithms.. The close
corréspondence between basic functional opefations and PLANS
statements is intended to allow the scheduling program designer
to easily accomplish for himself both initial programming and
Prdgram modification. A detailed discussion of these considera-

Vtions, together with the analytical results ﬁhich caused PLANS to
take ifs current form, can be found in the appendix to this report.

BASIC LANGUAGE STRUCTURE AND STATEMENTS

For reasons cutlined in the appendix, the basilc program struc-

- ture and syntax of PLANS are similar to those of PL/I. A brief de-

seription of their basic characteristies is given below. For a
more detailed introduction, see A Guide to PL/I for FORTRAN Users,
IEM Document 5C20-1637-3. For detailgd general information, see -
IBM System/360 Operating System PL/I (F) Language Reference

Maruazl, IBM Document GC28-8201-4, and the cofresponding Programmer s

Guide, GC28-6594, or other similar manuals.



The basic structure of PLANS is a hierarchic block structure.
Groups of statements may be combined into logical blocks called

PROCEDURE blocks, BEGIN blocks, and DO-groups. These blocks are

preceded by PROCEDURE, BEGIN, or DO statements and followed by
END. These blocks may then be nested at will, yielding a hier-
archic structure such as that shown in Fig. 2.1-1.

Note in Fig. 2.1-1 that statements are terminated by semi-
colons and that statement labels are indicated by colons. FLANS,
like PL/I, is a free-format language with no card columm re-
strictions for specific types of information. A statement may be
several cards long or, conversely, several staéements may appear
on a card. Indentation has no significance to PLANS and can be

used as desired to improve program structure visibility.

A: PROCEDURE;
statement - al
statement - a2
B: BEGIN;
statement - bl
statement - b2
C: PROCEDURE;
statement - ¢l
statement - c2
D: DO
statement - 41l
statement - d2
E: BEGIN;
statement - el
statement — el
END:
statement d3
END;
statement - c3
END;
gtatement - b3
END
statement - a3
END;

Fig. &.1-1 .
PLANS (and PL/I) Hierarchic Block
Program Structure



Procedure blocks correspond to main programs or subroutines.
If a procedure appears within another procedure (as PROCEDURE C
is within PROCEDURE A, for instance), it is executable only by
means of a CALL statement. Thus, if statement-b2 is not a CALL
or other £ransfer-of-control statement, it will be followed
logically by statement-b3, with transfer of control skipping a-.
round PROCEDURE C. BEGIN blocks and DO-groups, on the other hand,
are executed in line and are for many practical purposes equiv-
alent to single statements.

Aside from the fact that block-structured languages simplify
program structure and may improve program readability considerably,
they also tend to increase the power.of the language by providing
a natural mechanism for treating a whole block of statements as |

a logical entity. Thus, by way of simple example, the statements

SuM = 0;
IF K < 10
.THEH DO J = 1 TO K;
SUM = SUM + J3 ’
END;

sum the first K integers if, and only if, K < 10, Otherwise
Sud = 0.

It is a basic property of block-structured languages that
variables have global (rather than local) scope unless specified
otherwise. Thus, where a FORTRAN subroutine is written as a
separate entity from the calling program and uses variables whose

names are meaningful only within the subroutine (i.e., names that



are local), the procedures (subroutines) of a hierarchic language
are usually nested within the calling program, and have access to
all its variables unless explicitly excluded.

When using a procedure as a subroutine, it is usually desirable
to pass a parameter list as part of the procedure call and return.
This can be explicitly accomplished in very much the same way as
in most languages, using statements of the form
CALL EVAL W(X1, Y1, Z1, W);
and
EVAL W: PROCEDURE(X, Y, Z, W);
where the names used for the parameters are free to vary between
the two statements. Incidentally, note use of the underline
(__ ) symbol, This, combined with a maximum name length of 31
characters for most purposes, allows one to use meaningful and
readable labels, variable names, etc (e.g., THIS_IS A READABLE NAME).

This has been a rather cursory treatment of the PLANS (PL/I)
program structure. While this structure is easy to use success-
fully, its more sophisticated ramifications clearly exceed the
scope of this volume. The reader is again referred to the PL/I
documents mentioned at the beginning of this section for further
details.

PLANS incorperates a fairly complete set of ordinary arith-
metic, transfer-of-contrel, and conditional and iterative state-
ments that are treated in essentially the same way they are used
in PL/I. Illustrative examples of these statements follow with

brief descriptions but without ripgorous definitiom.,



PLANS uses conventional arithmetic assignment statements such
as
XVAR = (Y%3.0)-((2%%2)/26)%Y;

Conventional operator priorities and left—to—{ight performance
ruleé apply for the most part, so that the statement

XVAR = Y * 3.0 - Z**2/26*Y;

has the same meaning as the statement above.

Aside from the CALL statement, which hés already been dis-
cussed, the only transfer-of-control capability required for most
purposes is the simple GO TO statement. This statement has the
form
GO TO A STATEMENT_LABEL;
where A STATEMENT LABEL is a statement label, as
A STATEMENT LABEL: XVAR = Y*3.0-Z**2/26%*Y; .

Conditional statements are similar to those of PL/I and
therefore are a good deal more powerful than those familiar to
FORTRAN programmers. The IF...THEN...ELSE... syntax is used
(IF...THEN... is legal), and IF statements can be nested. No
parentheses are required around the conditional expression (after
"IF"). Thus, £he following program segment is legal and behaves
in a way that should be familiar.

IF YIELD SIGN =1
THEN IF TRAFFIC COMING = 1
THEN GO TO STOP;
ELSE GO TO GO;
ELSE IF STOP_SIGN = 1
THEN GO TO STOP;
ELSE GO TO GO; .

Tn addition to the noniterative D0-group shown in Fig. 2.1-1 and



2.2

the two special iteration statements that are peculiar to PLANS,
PLANS also uses two common forms of iterative DO statements.

The first of these is the usual delimited form

DO I =1 T0 10;

or

DO I =2 TO 20 BY 2;

or ] '

DO I = (K-1}**2-14 TO A*B*C,

while the setcond is an open-ended form

DO WHILE (A*X**2<27); .

In each of these forms, the condition is test?d at the beginning
of the DO-group, rather than at the end, so that a D0-group
starting

DO I =1 T0 0;

or

A= 20;
DO WHILE (A < 10);

would not be executed at all., Of course, the use of END to ter-
mirate the D0-group obviates the need to refer to a statement
label in the D0 statement.
LABELED TREES

The principél difference between PLANS and most other pro-
gramming languages is that PLANS is oriented primarily toward the
manipulation of ordered, labeled tree structures. In preparation
for a discussion of the PLANS tree operations, this section will
define a ldbeled tree and establish both graphical and textual

conventions for representing such trees.

8



Figure 2.2-1 illustrates a labeled tree, as well as our
graphical format for trees. The tree is, of course, a hierarchical
data structure. The branching points are called nodes, and the
root node is shown at the top. The nodes are represented graphiec~
ally by circles. The name of the tree, in this case $PAYLOAD, is
shown above the root node. The dollar sign is a special character
used to identify tree names so the PLANS compiler can discriminate
them from variable names. Each node has a label (the character
string to the right of the node), but the label may be mu%}. In
the figure, the only node shown with a null label is the root
node, but any node can conceivably have a null label.

The nodes exactly one level below a given node are called its
deseendants. The root nocie of the tree in Fig. 2.2-1 has four
descendants. The node labeled LIFESCIENCE has two descendants,
which, in turn, are labeled WEIGHT and WINDOW. Nodes that have
descendants are called nonterminal nodes; nodes without descen-
dants are calie& terminal nodes. There are 11 terminal and 9 non-
terminal nodes in the figure. In éddition to a label, a terminal
node has a value, which may be either a character siring or a
numeric value. Values are shown Helow their terminal nodes. Like
labels, values may be null.

While the gréphical format ié convenient for displaying con-
ceptual tree structures and for demonstrating the effect of
specific PLANS statements, it is_too cumbersome and rigid for
convenient use in the display of specific tree‘structures; espe~

cially large ones. For this purpose, the textual format is used.
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$PAYLOAD

I-g'z “bag

LD

(irrescence ( rewescore () wAnUFACTURING (| )GEOPHYSICAL

. WEIGHT . WINDOW . WINDOW . WINDOW LENGTH wEIGHT . WINDOW

18 8000

START END

10 143 40 216 8 840 A 241 318

Fig. 2.2-1 A Labeled Tree



The tree of Fig. 2.2-1 is expressed in the form shown in Fig.
2.2-2. 1In this case, the structure is defined by the indentation
pattern, rather than by node-connecting 1ines. Each line of text
represents a node. The information oécurring first on a line is
the node label, while the values of terminal nodes are separated
from the c&rresponding labels by a hyphen (-) character that is
surrounded by blanké. In order to allow rigorous definition of
tree structures in which some nodes have £ull labels, it is nec-

essary to employ a special convention for representing them, Null

$PAYLOAD
LIFESCIENCE
WEIGHT - 9000
WINDOW
START - 10
END - 143
TELESCOPE
WINDOW
START - 40
END - 216
MANUFACTURING
WINDOW
START - 8
END - 840
GEOPHYSICAL
LENGTH - 18
WEIGHT - 8000
WINDOW
START - 241
END - 318

Fig. 2.2-2 The Tree of Fig. 2.2-1 in Textual Format
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labels are represented by a cent sign (¢). This convention is
occasionally employed in the graphical format, although it is
unnecessary there.

It can be seen in Fig. 2.2-2, that while numeric values are
given for terminal payload descriptor nodes, physical units are
not; i.e. 9000 is given for the weight and 10 for the window start
time of the lifescience payload, but no indication is given whether
these are pounds, kilograms, seconds, etc. The option exists to-
specify these physical units in the application program logic,
in which case the informatiom in the example is adequate. The
alternative is to enter physical unit values as character string
input dat; in the tree structure textual format, For readability,
a shorthand format has been adopted to present the value of phy-

sical units, thus

$PAYLOAD
LIFESCIENCE
WEIGHT - 9000
- LBS
WINDOW
START - 10
- HRS
END - 143
- HRS .

This is a shorthand form in the sense that the numeric and char-
acter string data are properly different values for two different

null labeled nodes, that is

$PAYLOAD
LIFESCIENCE
WEIGHT
¢ - 9000
¢ - LBS .

12



Entry of multiple values for a labeled node, as in this example,
would require the inclusion of logic within the application pro-
gram, to recognize the character string node Valueé and associate
them correctly with the numeric node values,

An additional convention, which has been adopted, is the use
of parenthesized labels and values to represent variable data in
the definition of a particular tree application. If a label or
value occurs without parentheses, it is assumed that the character

string shown is literally present in the tree. For example, the

tree
$PAYLOAD
LIFESCIENCE
WELIGHT - 9000
LENGTH - 27

contains only actual values and labels. But if one wanted to
show only the nature of the information contained in this tree,

the following form might be used.

SPAYLOAD o
(PAYLOAD NAME)
(CHARACTERISTIC) - {VALUE)
(CHARACTERISTIC) - {VALUE)

(PAYLOAD NAME)

PLANS TREE ACCESS MECHANISMS
PLANS provides the programmer with a number of simple and
powerful means of accessing and updating the information con-

tained in the labeled tree structures discussed in the previous

13



section. These methods are based on the notion that the programmer
can "point" to a particular tree node by specifying which tree it
is iﬁ, which descendant of the root node it is under, which de-
scendant of that node 1t is under, etc. (Remember that the term

1"

"descendant," as used here, means immediate descendant.)

Suppose, for example that information about the telescope pay-
load in Fig. 2.2-1 is desired. Because the name of the tree is
$PAYLOAD and the name of the payload in question is TELESCOPE,
the programmer might write $PAYLOAD.TELESCOPE to access this in-
formation. This is an example of qualification by label.

Alternatively, qualification can be done by position, using
the familiar subscript notation. As was mentioned before, but not
explained in detail, PLANS trees are ordered trees; that is, the
ordering of the descendants of a node is significant., Unless
action is taken to change or reorder a tree structure, the order
remains constant. In the present example, since TELESCOPE is the
second payload, information about that payload can be referred to
as SPAYLOAD(2), as well as $PAYLOAD.TELESCOPE. Examples of simple
qualification by label and by subscript are shown in Fig. 2.3-1.

Figure 2.3-1 also illustrates the use of one of two keywords,
LAST and NEXT, which have special meaning when used as subscripts
in PLANS tree access and update statements. LAST allows the pro-
grammer to refer to the last information appended below a given
node without knowing either the label or the index of the node he

wants. Thus, for example $PAYLOAD{LAST) refers to the geophysical

payload in the figure. Similarly, NEXT refers to the next submode

14



eT

g. . $PAYLOAD
o /
¥
r A S U 1
LIFESCIENCE| (" )TELESCOPE | () manvractring (" )sEOPHYSICAL |
| [ / I
l | / |
| | / |
' | / |
(" uezent()wnoou || (Owmoow | ( Jwrnoou ()evern( uerent ( uinoo |
9000 | l \13 8000 l
| , \ I
| ' \ |
STARTEND | STARTEND ,l STARTEND \ TARTEND{
| \
10 143 L40___ . 2_15 _ _,' 8 840 L 241 318 J
$PAYLOAD . TELESCOPE $PAYLOAD (LAST)
(OR. $PAYLOAD (2) ) (OR $PAYLOAD.GEOPHYSICAL

OR $PAYLOAD (4))

Fig., 2.3-1 Basic Tree Access Mechanisms



after the last one appended below a given node. The reference
is therefore to a node that does not yet exist. NEXT is mean-
ingful only in the context of updates, but is mentioned here be-
cause of its association with LAST.

Access qualified by label or by subseript can be continued
to any desired depth in the tree, and labels and subscripts can
be mixed at will. Consider for example, the node with wvalue 216

in Fig. 2.3-1. Several ways of "pointing" to the node are:

$PAYLOAD. TELESCOPE.WINDOW. END
$PAYLOAD. TELESCOPE.WINDOW(2)
$PAYLOAD. TELESCOPE(1).END
$PAYLOAD(2).WINDOW(2)
$PAYLOAD. TELESCOPE (LAST) (LAST)
$PAYLOAD(Z2)(1)(2)

References to particular nodes may be intended to refer to a
tree substructure (i.e., the node "pointed" to, including its
label, and anything below that node in the tree) or to a value.
The meaning of a tree reference depends on the context in which
the reference occurs. Thus, a statement which commands that a

node be "pruned" (i.e., deleted from its tree) is obviously a

structure reference, while a statement like

WINDOW_DURATION=$PAYLOAD(2).WINDOW.END
-$PAYLOAD(2) . WINDOW . START;

refers, because of its arithmetic nature, to the values (216 and
40) of the two tree nodes used in the statement.

Tree relational expressions are a source of considerable
power in PLANS. These are logical (Boolean) exp?essions that have

a value of TRUE or FALSE. These expressions are analogous to

16



arithmetic relational expressions (e.g., AVAR < YVAR) and are
usable in IF...THEN...ELSE statements.

PLANS tree relations include IDENTICAL TO, SUBSET OF,
and SUPERSET OF. The expression $TREE_A IDENTICAL TO STREE_B
has the value TRUE if, and only if, the entire substructure of
$TREE_A (or the value of $TREE_A , if it has no descendants) is
identical to that of $TREE B with respect to structure and order,
labels, and values. The expression $TREE_A SUBSET OF $TREE B
has the value TRUE if, and only if, for each first-order sub-
structure of $TREE A , there exists an identical first-order
substructure in $TREE B . The expression $TREE_A SUPERSET OF
$TREE B is equivalent to $TREE_B_SUBSET OF $TREE_A .

In each of the sample expressions above, any node reference
can be substituted for $TREE A and $TREE_B, and these Boolean
expressions can be combined with Boolean AND (&) and OR ()
operators in the usual fashion. Thus, -one can write a statement

like
IF $PAYLOAD(I)SUBSET OF $CANDIDATES
& $PAYLOAD(I).WINDOW.END > LAUNCH DATE
THEN GO TO THIS PAYLOAD OK;
Note that this statement contains node references that are
structural and a node reference that is arithmetical.
Tree relational expressions are mest useful in conjunction
with two keywords, FIRST and ALL, which have special meaning
when used as label qualifiers in PLANS tree node references.

$PAYLOAD.FIRST, when used by itseif, is a legal expression with

the same meaning as $PAYLOAD(1). The important usage of FIRST
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is in an expression like $PAYLOAD.FIRST:(CONDITION}. This ex-
pression means "find the first descendant of the node $PAYLOAD

that satisfies the condition in parentheses,'" whers the condition
is a Boolean expression. An example is shown in Fig. 2.3-2. The
operation desired by the programmer might be stated, "find the
first descendant of $PAYLOAD whose launch window duration is
greater than 150 days.”" Expressed in more procedural terms, the
operation might be, "Consider each element (i.e., each descendant
of $PAYLOAD) in turn. Caleulate the launch window duration of
the element being considered. If greater than 150, proceed as if
it had been referenced by name." Note the correspondence of thé
use of the word ELEMENT in this procedural description and in the
corresponding tree node reference, $PAYLOAD.FIRST:{ELEMENT.WINDOW.
END - ELEMENT.WINDOW.START > 150)

The label qualifier ALL works in a similar manner, but rep-
resents a reference to more than one descendant. Thus, if
$PAYLOAD refers to the tree structure of Fig. 2.3-1, then
$PAYLOAD.ALL refers to the portion of that structure indicated
in Fig. 2.3-3. Writing $PAYLOAD.ALL is equivalent to "pointing"
to SPAYLOAD(1), $PAYLOAD {2),..., $PAYLOAD(LAST), each in turn.
$TREE.ALL is therefore a way of referring to the substructure
of a node without including the node itself.

It should be noted that'the position of a'label or sub-
script qualifier in a PLANS tree node reference always corres-
ponds to the level of the node in the structure itself. (A so-

phisticated reader who has looked at a PLANS program that uses
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subroutines may deﬁect an apparent exception to this statement.
Please be assured that it is nét an exception, but merely a ques-
tion of tree name scope.) While this correspondence of position
is clear in a tree node reference like $PAYLOAD(2).WINDOW.END, it
will be helpful to ﬁhe user to keep in mind that it also applies
to the use of FIRST and ALL. Thus $PAYLOAD.ALL is a reference

to one or more nodes that are one level below $PAYLOAD

As in the case of FIRST, ALL is most usefully employed in
expressions like $PAYLOAD.ALL:{condition), where the condition is
a Boolean expression. In this case, instead of a single node, the
reference is to all the subnodes of a particular node that satisfy
the stated condition. An example is shown in Fig. 2.3-4. This
"all such that'' capability is very powerful as a means of filter-
ing sets of elements for a particular set of characteristics,

Sometimes the programmer needs to refer to the label on a
node rather than to its walue or the structure it represents.

For this purpése; PLANS provides the speciél function LABEL.
For examﬁle, the reference LABEL($PAYLOAD(3)) applied to the
tree of Fig. 2,3-1 yields the character string MANUFACTURING.

A second sbecial function of PLANS is NUMBER. This function
returns the number of descendants possessed by a givgn node. -
Thus, the expression NUMBER($PAYLOAD) applied to the tree of
Fig. 2.3-1 yields the numerical value 4.

A particularly important tree access feature is indirect
referencingﬁ Unless the prOgrammer;resorts to very expensive

iterative tree searching there is no way, without indirect
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referencing, that he can write a program to schedule shuttle
flights that do not contain words like PAYLOAD, ORBITER, etc. In
order to access information about these resources, he wants to
use them as labels for qualified access or, conceivably, as tree
names. What is needed is a capability that allows the character-
istics of a problem to reside iIn the data, rather than the pro-
gram. Only in this way can a program that schedules shuttle flights
aléo.schedule machine shop operations. What the programmer needs
is the capability to read in, as data, the labels he will use to
acceés particular tree nodes. Accordingly, PLANS ailows the kind
of indirec;_referenéing illustrated in Fig. 2.3=-5. What the-pro—
' grammer ;s attempting to do in this illustration is to access in-
formation about the resource types named in a tree called
$RESOURCE REQUIREMENTS . He therefore writes the tree node expres-
sion $RESOURCE_}NFO.#($RESOURCE_REQUIREMENTS(1)) to access infor-
mation about the first such resource type. This expression might
be read, "the descendant of the node $RESOURCE_}NFO whose "label is
the character string found as the cufrent value of the ncde
$RESOURCE_REQUIREMENTS(1)". The programmer is in effect saying,
"Behave as if I‘had-written $RESOURCE INFO.ORBITER, but allow me
the freedom to use some other label than ORBITER by changing the

data, without changing the program.
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Fig. 2.3-5 Indirect Referencing

PLANS TREE UPDATE MECHANISMS

The basiec PLANS tree update mechanism is the tree assignment
statement. The reader is undoubtedly familiar with the properties
of such ordinary arithmetic assignment statements as
XVAR = YVAR;
The function of such a statement might be described algorithmically
as: (1) destroy the current "contents" of the variable XVAR, (2)
make an exact copy of the current "contents" of the variable YVAR
without modifying YVAR, and (3) place the copy "in" XVAR. While

the execution of such a statement is more direct than this
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algorithm would indicate, the analogy with tree assignment state-
ments should be clear if the reader will think in terms of this
algorithm while considering the statement

$XTREE = $YTREE: .

This statement (1) destroys the current value or substructure
of $XTREE, (2) creates a copy of the node and vaiue or substruc-
ture of $YTREE, and (3) places the resulting structure at $XTREE.
The net result, as with the arithmetic assignment statement, 1is
.one of replacement or assignment of a new value.

Of course, the treé node expressions in a tree éssignment
statement méy be more complex than simple tree names. Several
examples are shown in Fig. 2.4-1, and should be considered in de-
tail. Figure 2.4-1 (a) shows the initial condition éf gwo treeé,
$X and $Y, which will be successively médified by the execution
of a series of tree assignqent statements. The first such stafe-
ment, $X(3) = $Y.C, modifies the tree $X, as shown in (b). Note
that the origiﬁal-third subnode of $X has been deleted and re-
placed wifh a copy of the node $Y.C, and that the tree $Y has not
been altered at all.

Beginning with the trees in (b), the statement $X.D = $Y{LAST)
reéults in the modified $X shown in (c). If $X had had a node
labeled "D", it would have been replaced as in the previous ex—
ampie. Because the left-hand side of the tree assignment state-
ment referred to a node not vyet infExistence, a new subnode of $X

was ereated. The new éubnode is always added at the right. Thus,

25



$X

2 4 7 1 3 . 6 8

(a) Original Trees

$X
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(¢) Trees after $X.D = $Y(LAST)
$X $Y
A C D A B C
2 6 8 1 3 6

(d) Trees after $X(2) = $Y.E

Fig. 2.4-1 Resulte of a Sequence of Tree Asstignment Statements
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in the absence of a node $X.D, the statement $X.D = $Y(LAST)
behaves like the statement $X{NEXT) = $Y{LAST).

What if the right-hand side represents a nonexistent node?
This case is illustrated in {(d). 1In (c), there is.no node $Y.E.
Therefore, the statement $X{2) = $Y.E (1) deletes the contents
of $X{(2), (2) makes a copy (null) of $Y.E, and (3) replaces $x(2)
with the copy. That is, $X(2} is replaced by a null node under
these circumstances. This convention is consistent with the ex-
ecution of the statement when the node in question exists, and
has the advantage that it allows the programmer to test expli-
citly for a null node {"IF $X(2) = $NULL THEN...") if he is in
doubt about the existence of the node referred to on the right-
hand side of the tree assignment statement. This same behavior
occurs when a conditional tree access is used in which the con-
dition is not satisfied. Suppose, for example, that the program-
mer had wanted to replace $X(2) in the example by a copy of the
first descendant of $Y that had a substructure. He might.have
written $X(2) = $Y.FIRST:(NUMBER({ELEMENT) > 0). Because none of
the descendants of $Y satisfies the condition, the result would
have been identical to that resulting from $X(2) = $¥Y.E . Both
statements yield the same result as $X(2) = SNULL

Section 2.3 gave several illustrations of automatic con-
version in which PLANS tree node references occurring in an
arithmetic context were implicitly evaluated (i.e., the value of

the referenced node was used, rather than the node itself, which
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is a structure). Analogously, character strings and arithmetic
expressions may appear in tree assignment statements, as illus-
trated in Fig. 2.4-2.

Figure 2.4-2(a) shows the initial condition of the tree $X.
Figure 2.4-2(b) shows $X as modified after the execution of the
statement $X.B = 'ABC'. Described algorithmically, here is what
has happened: (;) the value or substructure of $X.B has been
deleted, because $X.B occurs on the left-hand side of a tree
assignment statement; (2) the right-hand side of the statement has
been evaluated a8 a tree expression, because that is what is
called for by the tree assignment statement, and (3) a copy of the
tree structure referred to on the right-hand side has replaced the
value or substructure of $X.B. By this description, then, this
tree assignment statement operated like any other. But how is
something, evaluated as a tree empression when it is in fact a
character string?

Any time a character string or arithmetic expression occurs,
#hen the context clearly calls for a tree expression, a dummy tree
is created. This dummy tree has only a single node, the root
node, which has a null label. The value of the node is the string
or arithmetic value specified in the PLANS expression, in this |
case the string 'ABC'. AThe dummy tree is then used just as if the
programmer had‘explicitly created the tree and placed the‘tree’s
name in the program. In the case of the example, the result is
the same as if the programmer had written $X.B - $DUMMY , where

$DUMMY is a tree with one node, no label, and the string value 'ABC'.
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(a) Original Tree

$X

2 ABC 6
(b) Tree after $X.B = 'ABC' |

fc) Tree of (a) after $X.B = 2%4

$X

2’ 13.5 6
(d) Tree of (a) after $X.B = $X.C + 7.5

Fig. 2.4-2 Type Comversion in Tree Assignment Statements
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As suggested in the explanation above, the same mechanism
applies when an arithmetic expression appears in a context that
requires a tree node reference. Thus, application of the state-
ment $X.B = 2%4 to the tree of 2.4-2(a) yields the result shown
in (¢). The value of the arithmetic expression, in this case 8,
is calculated, placed on a dummy node, and becomes the value of
$X.B. It maj cccur to the reader that the same behavior éould
as well be described as‘replacement of the value (or-substruc-
ture) on the left by the value of the expression on the right.
Ag the discussion of Fig. 2.4-4 will show, this is not always
true, It will be helpful, therefore, to think in terms of the
generation of a dummy node when considering statements of this
type.

Figure 2.4-2(d) shows a statement of the same basic sorf as
that of (c). In this case, the arithmetic expression on the
right-hand side involves a tree node reference. Because $X.C
occurs within.an arithmetic expression, it has the value 6, just
ag if $X.C were an arithmetic variable name. Therefore, the
statement $X.B = SX.C + 7.5 results in substitution of the nu-
meric value 13.5 at $X.B.

The previous discussion has shown a mechanism whereby the
value or substructure of a node can be replaced. Sometimes it
is the node label that requires modification. In this case, the
label assignment statement is used. LABEL is a special PLANS
function that takes as its argument a tree node reference.

LABEL{$X{1}) is a reference not to the node $X{1) and its
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sugstructure, but to its label alone. The LABEL functien can
appear anywhere a character string can appear in a PLANS program.
In addition, it can appear on the left-hand side of an equal sign,
as Fig. 2.4-3 shows. Such a statement is a command to replace the
current label of the specified node with the new string, which is
obtained by evaluating the expression to the right of the equal
sign. |
Consider Fig. 2.4-3; (a) shows the initial state of the tree
$X. Figure 2.4-3 (b) illustrateg the effect of the label assign-
ment statement LABEL($X{(1)) = 'D'; , which simply replaces the cur-
rent label of the node $X{1), "A", with a new string, "D". The
label assignment statement only replaces labels, having no struc-
tural effect 1if the referenced node already exists. If the in&i-
cated node does not exist, it is established, with a null value
and the indicated label. |
The statement illustrated in (e¢) has exactly the same effect
~as that of (b). It makes no difference whether the node is ref-
erenced by label ($X.A) or by subscript ($X(1)). The effect of
the statement is the saﬁe. As the discussion of Fig. 2.4-4 will
show, this is not true of all tree statements.
Figure 2.4-3 (d) is another illustration of automatic conver-
sion. The right-hand side of the statement LABEL(3X{1)) = $x.C
is a tree expression, but the context calls for a string or numer-
ical valué. The value of $X.C is therefore obtained, and replaces
the label of $X(1). An additional concept is illustrated here:

labels can be numerical values. In fact, anything that can be a
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Fig. 2.4-3 Label Assignment Statements
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value can be a label, and vice versa. However, nodes that have
numerical values (or strings not having identifier syntax) cannot
be accessed by label in a PLANS program. Thus, $X.6 is not a
legal expression. On the other hand, $X{1) is still a legitimate
way to refer to this node. This property can be used to advant-
age in some numerical applications. |

Figure 2.4-4 illustrates an important property of PLANS tree
operations, the treatment of the label on the Pase node of the
operation. The '"base node" is the node at which a modification
occurs. In the case of a tree assignment statement, the node
named on the left-hand side 1s the base node. ‘The question is,
When does the existing label on the base node remain, and when
is it replaced? It is unlikely that any decision rule that might
be incorporated inte PLANS would successfﬁlly anticipate the de-
sires of the programmer in all cases. Therefore, a simple de-
cision rule has been incorporated that should be right most of
the time. If £hé base node was accessed by label, the label re-
mains; if-by subscript, the label is replaced.

In Fig. 2.4-4(b), for example, the statement $X.B = $X.C has
been executed on the tree of (a). The base node, $X.B, retains
its original label, "B'", because the programmer specified the
ﬁode by that label. Thus, wﬁile the value or substructure of
$X.C will appear on the node $X.B after execution of this state-
ment, the base node label will be_left unchanged. In (¢), on the
other hand, the base node label 1is replaced. In this case, the

statement $X(2) = $X.C involves a base node access by subscript.
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Pig. 2.4-4 Trveatment of Base-Node Labels
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Notice that the new label, "C," is copied from tﬁe structure
referred to on the right-hand side.

Figure 2.4-4 (d) shows a situation similar to (b). Again, by
spécifying the base node by label, the programmer has made an
assertion about which label is to appear on the node after ex~
ecution of the statement. The fact that the expression on the
right-hand side is a string expression has no special result
here. Figure 2.4-4(e) on the other hand, deserves special at-
tention. Because the node $X(2) was not specified by label, the
‘existing label on this node is deleted. But the DUMMY node defined
in the right-side expression has-a null label. Therefore the ap-
'parent result of a statement like $X(2) = 'ABC' is to delete the
existing base node label. As mentioned previcusly, fecognition
of those cases in which a dummy structure'is created will assist
the programmer in assuring that the desired operations are
achieved. |

Another property of PLANS tre; operations that should be well
understood is the exclusivity of values and substructures. A
node may have a null value or it may possess either a value or a .
substructure, but it may never havé both a value and a substruc-
ture. Fipure 2.4-5 illustrates this concept. In (b), execution
of $X.A = $Y(1) places a new value on the node $X.A, with the
resﬁlt that the previous substructure of $X.A is deleted. Figure
2.4-5 shows the converse case in which placement of a new sub-
structure on the node $X.B deletes the previous value of that

node.
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Fig. 2.4-5 Value-Substructure Exelusiviiy
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Figure 2.4~6 illustrates some tree assignments to previously
nonexistent nodes. Figure 2.4-6(b) shows the tree of (a) as
modified by the statement $X.D = 8., It should be noted that this
statement has assigned a value and a label to the new node. Any
time the referenced node does not exist, it is caused to exist as
specified. If it was specified by label, this means the indicated
label must be placed on the new node.

Figure 2.4-6{c) shows the result of a statement in which a
nonexistent node was specified by subscript. Because no label
was used to indicate the node and the expression on the right has
no label (it is a dummy node), the resulting nocde has a value, but
no label. Figure 2.4—6(d5 involves a new node with a label, but
no value. In the figure this result was achleved by the state-
ment LABEL($X(NEXT)) = 'D'. However, because two prime (quote)
marks together refer to the null character string, the same re-
sult would be observed after execution of the statement $X.0 = "'
This statement.pléces a2 null string on the ﬁode as a value, but
that is completely equivalent to no value at all.

Figure 2.4-6(e) shows what happens when an assignment is
made to a node specified by a subscript that is tqo large. (1t
is, of course, only too large if the programmer did not want the
result shown in the figure.) The programmer has stated that the
fifth subnode of $X is to acquire the value 8. But this can only
occur if, after execution of the statement, $X has at least five
descendants. Because there were only tﬁtee descendants before

the statement was executed, twW¢ new nodes will be created. Only
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Pig., 2.4-6 Assignments to Nonexistent Nodes
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the latest of these newly created nodes is involved in a tree
assignment statement; therefore, only the last node can acquire

a label or a value. The remaining new node(s), in thié case $X(4),
will be null.

In addition to the tree assignment statenent, Which usually
replaces the current contents of a specified node with a copy of
the contents of another node, there are three other basic tree
manipulation statemeﬁts that perform somewhat similar functions.
These are the GRAFT, INSERT, and GRAFT INSERT statements. Instead
of simple replacement, the INSERT and GRAFT INSERT statements
result in an insertion, with no deletion of information from the
target tree. Instead of copying the information to'be added to
the target tree, the GRAFT and GRAFT INSERT statements remove
the specified structure from its original location and move it to
the target tree. Examples of these statements are shown in Fig.
-2.4-7 (GRAFT), 2.4-8 (INSERT), and 2.4-9 (GRAFT INSERT). In each
case, the results of the statements should be compared with one
another (they are parallel cases) and with the corresponding
tree assignment statements in Fig. 2.4-1.

Figures 2.4-1(b), 2.4-7(b), 2.4-8(b), and 2.4=-9(b) show the

$Y.C; GRAFT $Y.C AT $X{(3);

effects of the statements $X(3)
INSERT $Y.C AT $X(3); and GRAFT INSERT $Y.C AT $X(3); respectively.
These statements all perform parallel operafions, differing only
by virtue of the special properties of the four statement types.
It should be noted in particular that: (1} the tree assignment -

and GRAFT statements have the same effect (replacement) on $X,
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(¢) Trees of (b) after GRAFT $Y(LAST) AT $X.D
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(d) Trees of (c) after GRAFT $Y.E AT $X(2)

Fig. 2.4-7 GRAFT Statements
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Fig. 2.4-8 INSERT Statements
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Fig, 2.4-9 GRAFT INSERT Statements
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the target tree;‘(Z) INSERT and GRAFT INSERT have the same effect
(insertion) on $X; (3) the tree assignment and INSERT statements
have no effect on $Y; and (4) GRAFT and GRAFT INSERT have the
same effect (deletion) on $Y. It should also be noted that in-—
gertions are made at (or, if you prefer, before) the named nede.
The named node, and all others to the right, are "moved" one node
to the right.

Parts (c) of the four figures show additional parallel opera-
tions of these four types. It should be observed that the INSERT
and GRAFT INSERT operations of (c) result in two subnodes of $X
that possess the same label. This is quite allowable,.but‘the
" programmer should be aware that, if this occurs, the ?ubsequent
reference $X.D is a reference to only the first such node. Either
node can still be referenced by subscript, howeﬁer, and a refer-
ence of the form $X.ALL:(LABEL(ELEMENT = 'D')) would access all ,
such nodes in one operation.

Parts (d) of the four figures are included to ﬁake it .clear
that in all cases an update to the target tree is performed. If .
the operation calls for a nonexistent node to be inserted or
placed into a tree, a null node will result. The programmer can
then test for the presence of a null node and, if desired, remove
it.

A final note on these four statements is particularily impor-
tant., The GRAFT, INSERT, and GRAFT INSERT statements give the
appearance of being more complex than the tree assignment state—r

ment, and the programmer may naturally assume that the latter is
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more efficient and should be given preference whenever there is a
choice. A little reflection on the underlying structural opera-
tions will show that this is not true. The tree assignment and
INSERT statements require the generatiom of a complete c¢opy of an
existing structure. The execution cost of these statements (and
the storage space required) is largely a function of the size of
the structure that must be copied. The GRAFT and GRAFT INSERT
statements, on the other hand, require only the alteration of a
few pointers so that an existing structure can be moved, com-
pletely intact, to another tree location. The execution cost of
‘these statements is minimal, no additional storage is involved,
and the cost is entirely independent of the size of the struc-
ture that is moved. It cannot be overemphasized that GRAFT and
GRAFT INSERT operations are not only very powerful, but are also
very efficient!

It is frequently necessary to remove a structure from a tree
without placing it anywhere else. This simple deletion operation
is accomplished by means of the PRUNE statement, illustrated in
Fig. 2.4-10. The programmer simply specifies the node (or nodes)
that, together with the éssociated substructure, is to be removed.
This operation allows the removal of undesired information from
a tree. Tt may also be uséd, particularly as in (d), to release
computer storage that 1s ne longer needed. It should be kept in
mind while programming in PLANS that the programmer is really
doing his own dynamic storage allocation (althouéh PLANS handles

all the details for him). When information is no longer needed,
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ta) Original Tree
$X

(b) Tree after PRUNE $X.C
$X

(c) Tree of (a) after PRUNE $X.C, $X.D
$X

(d) Tree of (a) after PRUNE $X
$X

5 l

Fig. 2.4-10 PRUNE Statements
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its storage can be reused, but only if the programmer releases-
it by means of a PRUNE statement.
SPECTAL STATEMENTS

The previous sections have discussed the basic dynamic tree
manipulation capabilities of PLANS. These capabilities have been
provided because they fulfill the essential requirements of sched-
ule development and optimization programming. It should be ap~-
parent, though, that the capabilities of PLANS have been kept
quite general in nature. This provides the flexibility that is
needed to span a problem space as broéd as that of scheduling.
There remain, however, a small number of operations that are com-
plex, and well-defined, that occur frequently in scheduling
operations, and are difficult to handle with basic PLANS. These
include ordering (sorting) and the generation of the combinations
or permutations of a set of elements. Special statements have
been provided in PLANS for the performance of these glightly more
specialized functions;

The ORDER statement is used to place the subnodes of a partie-
vlar node in ascending or descending order by a particular prop-
erty they possess. Lf, for éxample, it is desired to order a
group of payloads by weight, heaviest first, oné might write
ORDER $PAYLOADS BY WEIGHT; or if they were to be ordered by
length, shortest first, with ties broken by width, narrowest
first, a statement of the form ORDER $PAYLOADS BY -LENGTH,

-WIDTH; would be appropriate.
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Figure 2.5-1 illustrates a few of the properties of the ORDER
statement. It should be apparent that an ORDER statement refers
to a node, which, in turn, has subnodes to be ordered. Each sub-
node has, at least potentially, the property or properties on which
ordering is to occur. Ordering can be in either ascending or de-
scending order. Figure 2.5-1(b) illustrates an ORDER statement
in which the subnodes of the node $X are sorted into descending
order on the basis of property Y. Note that, where the property
in question is not possessed by a particular subnode (e.g., $X.C
has nc subnode labeled Y), a value of zero is assumed and the sort
is performed accordingly. Note also that the normal ordering is
descending; that is, the largest wvalue occurs first. Thus, after
execution of ORDER $PAYLOADS BY WEIGHT, the heaviest payload will
be $PAYLOAD(1). 1If ascending order is desired, the property name
should be preceded by a minus.sign (~), as in ().

PLANS provides‘a special D0 statement for the generation of
all the combinations or permutations of a2 set, taken a specified
number at.a time. Thus, for example, one can write DO FOR ALL
COMBINATIONS OF $X TAKEN 2 AT A TIME, with the result that the
DO-END group that begins with this statement will be executed
once for each 2-element combination of the subnodes of $X. The
particular combinatlion that is relevant during an iteration of
this DO-END group may be referred to within the DO-END group by
the reserved tree name $COMBINATION (or $PERMUTATION in the case
of a DO FOR ALL PERMUTATIONS... statement). Figure 2.5-2 shows

an example. $X has three elements with labels A, B, and C.
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$X

12 -3 21 19

(a) Original Tree

21 19 -8 -4
(b) Tree after ORDER $X BY Y

-4 8 12 -3
(c) Tree after ORDER $X BY -X

Fig. 2.5-1 ORDER Statements
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2 4 6
(a) Original Tree

$COMBINATION

2 4

(b) TFirst Iteration of DO FOR ALL COMBINATIONS
OF $X TAKEN 2 AT A TIME '

$COMBINATION

2 6
(c) ‘Second Iteration

$COMBINATION

4 6
{d) - Third Iteration

Fig. 2.5-2 Automatic Generation of Combinations
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The combinations of these elements taken 2 at a time are {A, Bl,
{A, C}, and {B, C}. It will be observed that the tree $COMBINATION
contains the node (and, in fact, the entire substructure) of $X.A
and $X.8 during the first iteration of the DO-END group, $X.A and
$X.C during iteration two, and $%.D and $X.C during iteration
three. The DO-END group is automatically exited before iteration
four, just like the usual DO I = 1 TO 3 statement. The combina-
tions (or permutations)'are generated in standard (lexicographic)
order. They, therefore, provide a mechanism for aytomatic gener-
ation of combinations in standard sequence, and if a complete
1ist of combinations of all sizes is needed, nested DO-END groups

of the form

DO I = 1 TO NUMBER(SX),
DO FOR ALL COMBINATIONS OF $X TAKEN I AT A TIME;

END;
END;

can be used.

In order to provide efficient execution of these commands,
the tree SCOMBINATION (or $PERMUTATION) is not actually generated.
The existing tree (in the example, $X) from whieh the combinations
are generated is actually used. $COMBINATION is merely a conven-
ient way of referencing only those subnodes that are involived in
the current combinafion. Thus, although $X(1) is the element A,
$X(2)is B, and $X{3) is C, during the second iteration
$COMBINATION(1) is the element A, $COMBINATION(2) is the element

C, and there is no $COMBINATION (3). The important point to
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understand is that modifications made to $COMBINATION are actually
‘being made to $X. Furthermore, no structural modifications are
allowed at the base node level. In the example, one could change
the value of $COMBINATION(2) or add a substructure to it, but no
immediate descendants of either $X or $COMBINATION may be added,
deleted, or reordered inside the DO-END group.
2.6 A SIMPLE EXAMPLE
To assist the reader in gaining greater intuitive feeling for

PLANS dynamic tree operations, a simple (but useful) PLANS program
will now be considered in some detail. The program is called
ORDER BY PREDECESSORS, and its function is to place a list of jobs,
any one of which may havé any of the others as a required prede-
cessor, into an order such that the pgedecessors, if any, of each
job occur earlier in the list than does the job itself. This
'funcﬁion, fairly difficult in most programming languages, 1s very
simple and straightforward in PLANS. While there are many func-
tionally equivalent ways to write this program, ome of the sim-

plest and most efficient is as follows,

1 ORDER_BY_PREDECESSORSI PROCEDURE (3J0BLISTs SORDERED.LIST) 3

2 DECLARE STEMP, SNAME_)L IST LOCAL 1§

-3 LOOP? ' S

GRAFT SJOB%IST.FIRSTSlELEMENT.PREDECESSOR SUBSET OF SNAME_LIST)
AT STEMP 13

IF STEMP IDENTICAL TO SNULL THEN RETURN 3§

SNAME_LIST(NEXT) = LABEL(STEMP) 13

GRAFT STEMP AT SORDERED_LIST(MEXT) 3

60 TO LOOP 3 '

END ORDER_BY_PREDECESSORS 3

Woo~m o o
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Let us consider the execution of this program for a simple data
case.

Notice, first (line 1), that the program is a called procedure
with the explicit parameters $JOBLIST and $ORDERED LIST. The call-
ing program will initialize these trees as desired. Rather than
attempting to reorder $JOBLIST, ORDER_BY_PREDECESSORS will move
the jobs, one at a time, from $JOBLIST to $ORDERED LIST; so that
the $ORDERED LIST will become a correct ordering of the jobs
that were originally in $JOBLIST. $JOBLIST, on the other hand,
will be returned null, assuming all goes well. Upon return from
ORDER BY PREDECESSORS, then, the calling program will use
$0RDERED_LIST where $JOBLIST was used before (or will GRAFT
$ORDERED LIST AT $JOBLIST) after checking $J0BLIST for a null
condition.

In line 2, $TEMP and $NAME LIST are declared to be local
trees. This means two things: (1) any use of these tree names
within this procedure is entirely local, and will not affect trees
of the same name outside this procedure, and (2) each time
ORDER BY PREDECESSORS is called, $TEMP and SNAME LIST will be
initially null, and any storage they use will be made available
for reuse upon return without any other action on the programmer's
part.

Let us assume the initial data shown in part (a) of Fig. 2.6-1.
$JOBLIST describes a predecessor network in which job B has no
predecessor jobs, jobs C and D must each be preéeded by job B, and

job A must follow both C and D. The diagram shows only information
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$J0BLIST $ORDERED_LIST $TEMP $NAME_LIST

O O O

PREDECESSOR

(g) Initial State

$JOBLIST $URDERED_LIST $TEMP $NAME_LIST

O 0 O

PREDECESSOR

PREDECESSOR

PREDECESSOR

c D B B
(b) After GRAFT $JOBLIST.FIRST:({ELEMENT,PREDECESSOR SUBSET OF $NAME_LIST)
AT $TEMP
§JOBLIST $ORDERED_LIST $TEMP $NAME_LIST

O O

D
B
PREDECESSOR PREDECESSOR PREDECESSOR
c 0 B B
(c) After SNAME_LIST(NEXT) = LABEL($TEMP)
$JOBLIST $ORDERED _LIST STEMP $NAME LIST
D B
B

PREDECESSOR

PREDECESSOR PREDECESSOR

c D B B
(d) After GRAFT $TEMP AT $ORDERED LIST{NEXT)

- Pig. 2.6-1 CRDER_BY FREDECESSORS: ITERATION 1
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essential for present purposes. However, it is assumed that
other information about each job (e.g., duration, resource require-
ments, etc) is also present. Because wWe can access predecessor
information by label without regard for its ordinal pesition, any
other information about these jobs is irrelevant, so long as the
labél PREDECESSOR is used only with the meaning assumed here.
$0RDERED_LIST is assumed to be null. Ordinarily this condition
will be assured by the calling program. $TEMP and $NAME_LIST
are automatically initialized to a null cendition.

Consider now the effect of the GRAFT statement of line 4 on
these trees. This statement specifies that a particular job is
to be removed from $JOBLIST and placed at $TEMP. The job to be
selected is to be the first job whose predecessor set is a subset
of $NAME_LIST. S$NAME_LIST will be used to collect the names of
the jobs in $ORDERED_LIST, so that the SUBSET OF relation can be
used to automatically determine whether the pPredecessor require-
ment of a particular job is satisfied. Because $NAME_LIST is
presently null, the only job of $JOBLIST that can ﬁossibly satisfy
the conditional access is a job that has no predecessors. Note
that job B fulfilis this requirement, and that it is not nec-
essary in this case that a node labeled PREDECESSOR even appear
under job B because a nonexistent node has all the properties of
a null node, including null subnode structure. Job B therefore
satisfies the conditional access, and is removed From $JOBLIST
and placed at $TEMP, as shown in Fig. 2.6-1(b). While the diagram

includes no subnodes of the job B base node, that node and all its
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substructure have replaced the previously null root node of the
tree $TEMP.

The statement of line 5 now tests for failure of the previous
GRAFT statement. In the event that no subnode of $JOBLIST sat-
isfied the access condition, $TEMP will.now be null, and detection
of this condition can be used to trigger return from ORDER BY
PREDECESSORS. In the present case, however, $TEMP is not null.

A node is defined as null only if it either does not exist or has
both a null value and a null label. Regardless of any substruc-
ture, the node $TEMP.now has.the label "B" and is therefore not
null, and no return occurs.

The statement of line 6 is therfore executed, placing the
lname of the job that was found into JNAME_LIST. Several things
should be noticed here. Since $NAME_LIST is currently null,
SNAME _LIST{NEXT) is equivalent to $NAME LIST(1). LABEL($TEMP)
is a character string. Therefore, a dummy node is established,
with a null label, and placed at $NAME_LIST&NEXT). The statement
causes the job name, "B" to be a Qalue of $NAME LIST(1), éo that
subseqﬁent comparisons of $NAME LIST and PREDECESSOR nodes will
find job names as values in both places.

Finally, line 7 is executed, moving the found job, with all
descriptive information, from $TEMP to the next available position
in $ORDERED LIST. Note that $TEMP again reverts to a null condi-
tion. Trees always have root nodes, although they may be null.
Thus, th; removal of the node labéled "B" causes another (null)

node to be placed at $TEMP.
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The program has now found the first job that can be executed
and has moved it into SORDERED LIST. Another iteration is there-
fore initiated (line 8) by jumping back to LOOP.

Figure 2.6-2 shows the tree manipulations that occur during
iteration 2. The iﬁitial state, part (a), is the same as that at
the end of iteration 1. The conditional GRAFT statement of line
4 again searcheslfor a job whose predecessors, if any, are all
named in $NAME LIST. Since $NAME LIST now contaiﬁs fhe job name
"B,“Ieither a job with no predecessors or a job with only the
predecessor "B" will satisfy the access condition. The first
such job nmow in $JOBLIST is job C, which is therefore grafted at
$TEMP [Fig. 2.6-2(b)]. Because $TEMP is not null, no return is
made at line 5.

The statement at line 6 places the name of the found job at
the next awvailable subnode of $NAME_LI5T. As shown in Fig.
2.6-2(c), $NAME LIST now contains the names of the two jobs (B
and C) found so far. $TEMP is grafted (line 7) onto the next
available position of $ORDERED LIST [part (d)], which now con-
tains all the information about jobs B and C (in that order) that
was originally in $JOBLIST. Only the jobs not yet placed in
$ORDERED LIST still remain in $JOBLIST. Line 8 then causes another
iteration to begin.

This process 1s repeated two more times, once for job D and
once for job A, with the result shown in Fig. 2.6-3(a). All jobs
have now been moved to $0RDERED LIST. When the conditional GRAFT

statement of line 4 is executed, no job will be found, and a null
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$JOBLIST $ORDERED_LIST $TEMP SNAME_LIST

O

B
PREDECESSOR PREDECESSOR PREDECESSOR
C D B B
(a) After Iteration 1 ‘
$JOBLIST $ORDERED_LIST $TEMP $NAME_LIST
c
A D B PREDECESSOR
' B
PREDECESSOR PREDECESSOR
B
c D B
(b) After GRAFT $JOBLIST.FIRST:(ELEMENT.PREDECESSOR SUBSET OF $NAME LIST) AT $TEMP
$JOBLIST $ORDERED_LIST $TEMP SNAME_LIST
¢
PREDECESSOR
A D B
B C
PREDECESSOR PREDECESSOR
‘ B
¢ D B ‘
(d) After GRAFT $TEMP AT $ORDERED_LIST(NEXT)
$JOBLIST $ORDERED LIST $TEMP $NAME_LIST
A D B c
B C
PREDECESSOR PREDECESSOR PREDECESSOR
c 0 B B ’

Fig., 8.6-2 ORDER_BY PREDECESSORS: ITERATION 2

57



86

o $JOBLIST $ORDERED_LIST $TEMP $NAME_LIST
L)

e
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1
[N}

B C D A
PREDECESSOR
B ¢ D
(a) After Iteration 4
$JOBLIST $ORDERED _LIST $EE>MP © BNAME_LIST
B C D A

B B c D |
(b) After GRAFT $JOBLIST.FIRST:(ELEMENT.PREDECESSOR SUBSET OF $NAME LIST) AT $TEMP

. Fig. 2.6-3 ORDER_BY_PREDECESSORS: ITERATION 5



node will be placed on $TEMP (b). This condition allows the re-
turﬁ to occur in line 5. $JOBLIST and $ORDERED LIST will be re-
turned to the calling program, while $TEMP and SNAME_LIST will be
pruned automatically in order to free their storage.

It may occur to the reader to question the use of $TEMP be-
cause a found job could be grafted (line 4) directly at
$ORDERED_LIST(NEXT). However, this would require two additional
apcesées to $0RDERED_LIST(LAST), one to test for a null condition
(line 5) and one to extract the label (line 6). In addition, be-
fore exit, the extra null node that would have been grafted ﬁnto
$ORDERED LIST would have to be removed. It should always be borne
in mind that node access time is a function of the number of sub-
.nodes that must be scanned (left to right) before the desired
node is found. Thus, $TEMP is more efficient to access than is
$ORDERED_LIST(LAST), and the difference is more pronounced as the
$ORDERED LIST grows. Because GRAFT statements are very efficient,

the use of $TEMP is preferable here.
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3.0

3.1

3.1.1

SYSTEM OPERATIONS AND PROBLEM MODELING

The successful computer-aided solution of scheduling and re-

source allocation problems requires an integrated approach using

‘three conceptual and analytical tools: (1) a computer programming

language, (2) a descriptive model or representation of the system
and its operations, and (3) problem solving approaches or decision
making rules (algorithms). The scheduling language (PLANS) speci-
fied during this study supplies the first of these tools. The
special features of PLANS that facilitate this effort have been
described extensively in Chapter 2.0 of this volume as well as in
Volumes I and ITII. A library of routines (modules) that perform
operations model and algorithm functions is also specified in
Volume III. This section discusses the use of the PLANS modules

for problem description and sclution.

~ A GENERIC SCHEDULING OPERATIONS MODEL

The scheduling modules like the language itself are applicable
to complex systems in general and are not specific'to the Space
Shuttle. The reasons for, and expected benefits of, a generic ap-
proach are discussed in Volume I and are not repeated heré. It is
appropriate however to raise the question, "What are the conse-
quences of using a generic modeling approach for the potential
user of the PLANS programming system?'

Generic Modeling Consequences for the User

One price the PLANS user must pay to benefit from the general

problem nodeling approach developed by this study, is to learn a

generic system description nmomenclature. He must also learn to

61



recognize the functional elements, physical resources, and oper-

ational processes (activities) of his system and their interrela-

tionships within the operations model framework. If he does this,
he will gain, from the following pages, an understanding of how
various techniques can be applied effectively using PLANS.

Before a generic approach to operational system and problem
modeling is described, two important points should be stated.

1) There is no substitute for knowledge of the system that is to
be modeled (aﬁd scheduled):

2) The automation of systems scheduling and resource allocation
should not be accepted on an g priori basis without qualifica-
tions.

The significant increase in capabilities due to the power of the

PLANS language and module library should not promote the miscon-

ception that the user will not need to think about his problem

applications in depth.

Because a generic modeling approach was used to develop speci-
fications, the PLANS module user will not find an input data struc-
ture including explicit labels such as, PAYLOAD NAME, PAYLOAD
LENGTH, ORBITER SERIAL NUMBER, or ORBITER PAYLOAD BAY LENGTH.

With the generic model, it 1s up to the user to know that these

input items, when expressed generically, have the form RESOURCE :

TYPE; NAME; PARAMETER; CLASS; etc. Similarly he does not find

BRIEF CKEW or CHECKOUT PAYLOAD, but finds instead PROCESS: NAME;
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3.1.2

DURATION; TYPE; RESOURCES GENERATED; RESOURCES DELETED; and RE~-
QUIRED SOURCES; etc. All of these generic elements are de-
scribed and properly related to each other in Section 3.4.

Note that nothing prevents the use of PLANS to program models
and algorithms with explicit RESOURCE or PROCESS labels, if the
user is willing to trade the flexibility and other benefits of
the generic approach for the presumed advantages of explicit
labels in the basic program structure and logic. Héwever, it
should be understood that although generic labels are uéed in a
basic program code, the data for that code will contgin the
problem-specific data in explicit terms and thus will provide
descriptive detail in a user-oritnted format. This compensates
for the use of generic labels in. the program logic while pre-
serving the flexibility of that ;ogic.

Even more significant than the percéption of system elements
in terms of generic elements, is the choice of correct resources
and processes for the model and the determination of the appro-
priate level for resource and process description. Selection of
these items requires a knowledge of the sytem as well as a knowl-
edge of the approach that will be used to obtain a solutiion.
Elements of the Generic Scheduling Operations Medel

Drawing upon the Shuttle system as an example, it can be
recognized that the description of Shuttle operations is char-
acterized mainly by interrelated sets of activities or processes

that integrate various physical system resources to achieve a
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final launch configuration. This configuration must, of course, be
capable of achieving specific objectives. Because scheduling is

of primary concern, the parameters used to describe system opera-
tions consist of a set of processes that require specific rasources
for particular time intervals. The association of specific re-
sources with a time interval constitutes a schedulé unit, i.e., a
basic element of a schedule. The concept of using processes to
associate resources into schedule units is illustrated in Fig.
3.1-1.

The recognized technique to describe relationships between
activities or events is the metwork or flow diagram. Figure
3.1-2 is a sample diagram that illustrates the flow of Shuttle
mission operations on a top-level basis. Such diagrams visually
depict one or more cperations sequences in terms of predecessor-
successor relationships and also contribute to the recognition
of more general temporal relaticms.

A fundamental concept of the generic operations model is
that for scheduling and resource allocation purposes an opera-
tional system can be described in terms of RESOURCES, PROCESSES
and OPERATIONS SEQUENCES. This concept leads directly to the
specification of standard PLANS data structures that containr
descriptive information arranged with the same logical separa-
tion. The operations model data structures are described in

detail in Section 3.5.
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The use of ghe generic oprations model concept requires not
only an understanding of the conventions for descriBing the sys—
tem to be scheduled, but also the conventions used to establish

_any procedural logic associated with the model. 1In particular,
a conceptual framework is needed for understanding.how desecrip-
tive information is communicated to decision logic algorithms
to solve a scheduling problem. The roles of the model and the
algorithm may be interpreted in terms of a dialog; the algorithms
request information about a system and its operation on which to
base a schéduling decision and the operations modgl supplies tﬁe
data. Any functions that must be performed to supply the algo-
rithms with appropriate model information can be régarded as
cperations model functions. A typical integration of operatiogs
model functions and algorithm functions 1s shown in Fig. 3.1-3.
Annotations on the figure relate to the OSARS (NASA-MPAD) pro-
gram currently used to assign resources ﬁo flights.,

The logical separation between operations model functions and
algorithm functions serves to define logiec boundaries for the
PLANS module library: The user who perceives this distinction
and who uses the descriptive conventions of the generie oﬁera—
tions model will find that the PLANS module library will provide
many powerful capabilities that are easily incorporated into his

PLANS program.
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3.2

PROBLEM TYPES ACCOMMODATED BY THE OPERATIONS MODEL

To assist the reader whose interest is in a special problem
or class of problems, this section states some typical problems
without detail, characterizes those problems in terms of the
opefations model described in Section 3.4, and suggests the sub-
sections where modeling details can be found. This information
is provided in Taﬁle 3.2-1. Each problem type in Table 3.2-1
could require any or all of the descriptive generality contained
in Section 3.4. The reader should not assume that the subsec-

tions referenced contain the only relevant material.
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Table 3.2-1

Use of PLANS Geweric Operations Model for Deseribing Typical Problem (lasses

Typical Plans
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Sections of Volume 11
Giving More Detail
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Scheduling
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Scheduling
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Scheduling
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Personnel Resource
Allocation
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& Eguipment Allocation

pooled resources

General temporal
relations with
item-specific
resources

Item—specific
resources, quasi-
enumerative
solution techniques

Predecessor network
with item-specific
resources

General temporal
relations with
pocled resources

Predecessor networks
with pooled resources

Splittable jobs
poocled resources

Item-specific resources,
quasi~-enumerative
solution techniques

Pooled resources,
explicit descriptors
for pooled resources

Item-specific
& pooled resources

Problem Class Characterization Paragraph Page
Project Planning Predecessor networks, 3.4.1 thru 3.4.6
& Control splittable jobs, 3.6

3.4.1 thru 3.4.6
3.6

3.4.1 thru 3.4.5
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3.3

PLANS LIBRARY MODULES

Functional specifications for a library of routines, called
modules, have been developed in parallel with the specifications
for the programming language (PLANS). The contents of such a
library of modules have been integrated using the generic opera-
tions model concepts described in Section 3.1. Decisions on what
level of detail to include are necessarily somewhat arbitrary and

based on nonquantifiable judgments. However, the current modules

have resulted from a functional analysis of many classes of schedul-

ing problems using the following criteria:

1) Each module in the current specification should be limited to
a single logical function. Although it is possible to group
several of the specified modules together, based on high-
level functional similarity, to do so either restricts flexi-
bility or increases the computational inefficiency of the
functions represented. Therefore, the deules specified for
the program library perform a single separable logical func-
tion.

2) Each module specified performs a function that is common or
likely to occur in developing typical scheduling software,
Alfhough this criteria seems self-evident, it is easy to con-

'ceptualize numerous modules that are applicable to only an
infrequent special case or that are required only in unen-
lightened or highly encﬁmbered,approaches to a scheduling

problem. In those cases where a function would be required
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by one approach to a problem but not required by an alterna-
tive and clearly superio% approach, a module to perform that
function has not been specified.

Fach module specified does not contain judgments or decision-
making logic for which the criteria are cpen to cpinion. For
example, no modules assume spécific economic models, queuing
service policies, or criteria for resolving resource alterna=-
tives. There are no approximations of dependent wvariables by
polynomials or plecewise-linear functions buried in any module
logic. These judgmental matters have been considered too
problem-dependent and inflexible for an initial library speci-
fication. Because of the criterion for functional simplicity
and separability [eriterion 1) above], the specified obera~
tions model modules perform elementary operations and gener-
ally return information on which decisions can be made rather
than the decisions themselves. The modules that are specified
as algorithms make simple decisions based on quantitative cri-
teria that are easily perceived by the user. A clear dis-
tinction has been attempted between simple decision-making
modules (i.e., algorithms) and information providing modules
(the operations model) so that all of the latter are equally
applicable whether exercised interactively by a user making
real-time decisions or in a batched system design where

algorithm modules make the scheduling decisions.



The criteria stated are appropriate for specifying the first
modules to be placed in a program library because flexibility and
commonality of application are prime considerations.. It is not
intended to imply, however, that future additions to the module
library should be restricted by these criteria. Analyses are
currently underway that will lead to the specification of higher-
level modules. Such modules will combine the functions of many
of the currently specified modules through special purpose exe-
cutive logic. Special attention is being paid to methods for
translating generalized problem formats into the more restrictive
structures required by existing solution methodologies.

Table 3.3-1 contains a brief description of the moduleé speci-
fied in this study. Detailed functional descriptions for all
modules are provided in the sections of Volume III indicated in
the table, The reader who 1s interested in the use of a partic-

ular module should refer to the sections indicated in the table.
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Table 3.3-1 Summary of PLANS Module Library Contents

Module Name

Volume II
References

Brief Description of Intended Usage

Paragraph

Page

Volume III
Specificatiens

DURATION

ENVELOPE

INTERVAL_UNION

INTERVAL INTERSECTION

FIND MAXIMUM

FIND MINIMUM

CHECK_FOR_PROCESS_
DEFINITION

GENERATE JOBSET

CHECK_EXTERNAL
TEMP_RELATIONS

CHECK_INTERNAL_TEMP_
RELATIONS

CHECK_ELEMENTARY
TEMP_RELATION

Calculates the duration of any
standard (simple or multiple)
interval

Calculates an interval that is the
smallest cover of a given standard
{simple or multiple) interval

Calculates a standard interval that

is the union of two standard intervals,
i.e., all points in the output standard
interval are in one or both of the
input standard intervals.

Calculates a standard interval that
is the intersection of two standard
intervals, i.e., all points in the
output standard interval are in both
the input standard intervals.

Finds the maximum value in a numeric
set and all the elements that have
that maximum value.

Finds the minimum value in a numeric
set and all the elements that have
that minimum value.

Checks for input data consistency,
i.e., checks that all operations
sequences named in $0BJECTIVES are
defined in $0PSEQUENCE and that all
processes in those operations se-
quences or in $OBJECTIVES are defined
in $PROCESS.

Creates individual jobs for each
occurrence of a process specified
explicitly or via an operations
sequence in $OBJECTIVES. Merges
information contained in $0BJECTIVE,
$OPSEQUENCE, and $PROCESS into a
tree called $JOBSET. .Jobs in
$JOBSET are ready for the decision
algorithms to make explicit assign-
ments.

Tdentifies temporal constraint
vieolations that would occur if two
sets of job assignments were merged.
Useful for checking if a potential
assignment will be consistent with
existing assignments,

Identifies temporal constraint
violations that exist within a set
of job assignments, Useful in find-
ing constraint viclations after
multiple assignments have been made
with temporal constraints relaxed.

Checks satisfaction of a single
binary temporal relation given
specific assignments for the two
jobs named in the temporal relation.

4.3

3.4.10

3.4.10

3.4.,10

2.4.1

2.4.2

2.4.3

2.4.5

2.4.6

2.4.7

2,4.8

2.4.9

2.4,10

2.4.11

74




Table 2.3-1 (aont)

Volume II

References Volume IIT

Module Name

Brief Description of Intended Usage

Page

Specifications

NEXT SET

RESOURCE PROFILE

POOLED_DESCRIPTOR_

COMPATIBILITY

DESCRIPTOR_PROFILE

UPDATE_RESOURCE

WRITE_ASSIGNMENT

UNSCHEDULE

COMPATIBILITY SET_

GENERATOR

FEASIBLE_PARTITION_

GEMERATOR

PROJECT DECOMPOSER

REDUNDANT _
PREDECESSOR_
CHECKER

‘Determines a set of specific resource

items to meet the requirements of a
job and permit the earliest possible
execution of that job. ‘
Determines future times the job
requirements can be met with any
combination of appropriate resource
types,

Determines the profile of a resource

pool over a given time interval for
both 'normal' and ‘contingency' levels)
Determines the profile of the assigned
portion of a pool and gives the jobs
to which the resources are assigned.

Determines if a single assignment
of a job using pooled resources
with explicit descriptors is (will
be) compatible with existing de-
gcriptors for resources required
by that job.

Determines the descriptors for an
item-specific resource that are

valid after a set of jobs involving
those resources have been scheduled.
Uses the assigmment information in
$RESOURCE to determine the descriptor
set at a particular time.

Records the scheduling of a schedule
unit (job) by writing assignments in
$RESOURCE for all resources used

in the schedule unit,

Writes a single assignment for a re-
source and adds the assignment node
in chronological order in $RESOURCE.

Deletes assignments from $RESOURCE
for all resources assoclated with a
specified job to be deleted.

Enumerates all compatible subsets of
an input set using externally
supplied compatibility criteria.

Generates all sets of integers with
a given number of elements that

sum to a given total. Useful in
fathoming many branches in enumer-
ative heuristics.

Identifies at subprojects within
a project description; i.e., finds
subnetworks that contain all pre-~
decessors and successors of 1its
member activities.

Identifies and eliminates redundant
specifications of predecessors in
$J0BSET; e.g., in A < B B <(

A < ¢, the last specification is
redundant.

2.4.12

2.4.,13

2.4.14

2.4,15

2.4.16

2.4.17

2.4.1%

2.4.20

2,4.21

2.4.22
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Pable 3.3-1

{cont)

Module Name

Brief Description of Intended Usage

Volume II
References

Paragraph

Page

Volume II1
Specifications

CRITICAL_PATH_
CALCULATOR

PREDECESSOR_SET _
INVERTER

NETWORK_CONDENSER

CONDENSED_NETWORK_
MERGER

NETWORK ASSEMBLER

CRITICAL_PATH_
PROCESSOR

NETWORK_EDITOR

CHECK_DESCRIPTOR
COMPATIBILITY

ORDER_BY_PREDECESSOR

RESOURCE_ALLOCATOR

RESOURCE_LEVELER

Calculates early and late start and
finish times as well as total and
free float in a network of jobs.

Creates, from a set of jobs with
predecessors, an equlvalent set of
jobs with successors., Used in
critical path analyses.

Eliminates activities (jobs) from
a network leaving only events linked
by critical delays as branches.

Merges two condensed networks into a
single composite condensed network,

and computes the critical path data

for the composite network.

Assembles a master network from sub-
networks with interfacing events.
The relations hetween the subnet-
works may be more general than those
describable by nesting operations
sequences,

Condenses, merges and computes
critical path data for a master net-
work, Performs executive function,
which calls NETWORK CONDENSER,
CONDENSED NETWORK MERGER, and
CRITICAL PATH CALCULATOR..

Identifies and eliminates both
redundant predecessors and cycles
specified in the specification of
precedence networks. Performs
executive function, which calls
ORDER_BY PREDECESSCOR and REDUNDANT _
PREDECESSOR_ELIMINATOR.

Determines if a single assignment

of a job using item-specific resources
with explicit descriptors is (will be)
compatible with existing descriptors
for resources required by that job.
Identifies scheduled jobs that change
the incompatible deseriptors.

Produces a list of jobs where all
jobs appear in the list only after
all their predecessor have appeared;
i.e., produces a nonunique tech-
nological ordering.

Allocates resources to jobs to
satisfy all resource censtraints
and heuristically produce a minimum
duration schedule. Uses project
scheduling problem model.

Reallocates resources to smooth the
usage of resources while maintaining
schedule constraints, Uses project
scheduling problem model.

3.4.2, 3.4.4
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2.4.23

2.4.24

2,4.25

2.4.26

2.4.27

2.4.28

2.4.29

2.4.30

2.4.31

2.4.32

2.4.33
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Tabilez 3.,3-1

{eonel)

Module Name

Brief Description of Intended Usage

Volume II
References

Paragraph

Page

Volume IIIL

Specifications

"HEURISTIC_SCHEDULING
PROCESSOR

GUB_LP

MIXED_INTEGER
PROGRAM

PRIMAL_SIMPLEX

DUAL_SIMPLEX

INTEGER_PROGRAM

Performs both time-progressive re-
source alleocations/job scheduling
and resource leveling, Performs

| executive function for RESOQURCE
ALLOCATOR and RESQURCE LEVELER.
Uses project scheduling problem
model,

Solves special-purpose linear
programs that arlse as simplified
models of transportation, distri-
bution, and multi-Iitem scheduling
problems. Uses generalized upper
bounding LP format.

Solves linear programs that contain
beth continuous and integer-valued
decision variables.

Solves linear programs that arise in
the process of solving scheduling
and resource allocation problems
with multi-level algorithms.

Solves dual linear programs that
arise as a result of the structure
of multi-level scheduling and re-
source allocation algorithms. Uses
primal simplex format.

Sclves the linear form of the binary
decision making problem.

3.4.5
3.4.6
3.6

3.6

3.6

3.6

3.6

2.4.34

2.4,35

2.4.36

2.4.37

2.4.38

2.4.39
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3.4

PROBLEM DESCRIPTION USING THE OPERATIONS MODEL .
This section classifies scheduling problem descriptions. The
material is presented in sequence from the simplest scheduling
problem descriptions to the most complex as illustrated in Fig.
3.4-1. Each section briefly discusses an additional generality
to a problem description that results in a more complex problem
from the point of view of programming logic and/or solution method.
The sequence of presentation i1s a logical one, but the section
does not require beginning-to-end reading to enable the identifi-
cation of descriptive characteristicé appropriate for any particu-
lar problem. Furthermore, the presentation sequence does not
imply that any specific problem descriptiqn will include all gen-

eralities to the left of a particular point in Fig. 3.4-1.
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3!4!1

Simple Predecessor Networks

The simplest scheduiing problem model permits only simple
predecessor relationsﬁips between jobs.. Job A is a predecessor
of Job B 1f, and only if, Job A is completed at & time before or
equal to the start of Job B, This simple relationship permits
an entlre precedence network to be completely defined by a list
of jobs with an associated list of predecessors for each job.
A simple precedence network is illustrated in Fig. 3.4.1-1.
The information contained in the network diagram of Fig. 3.4-1
is shown in Table 3.4.1;1.

Table 3.4.1-1 Basic Information of a Predecessor Network

Job Predecessors

Mate External Tank _-—

to SRBs
Mate Orbiter to Mate External Tank to SKBs
External Tank Perform Payload Operations

Refurbish Launch Pad -

Perform Payload - -
Operations

Perform Crew Perform Payload Operations
Training
Launch -Perform Crew Training

Mate Orbiter to External Tank
Refurbish Launch Pad

Refurbish Launch Pad |- ——
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Elementary operations can be performed with the simple
precedence network defined. If, in the example, "Perform Payload
Operations” were given as a predecessor of 'Launch," the specifi-
cation is redundant as long as '"Mate Orbiter to External Tank"
is specified as a predecessor of '"Launch." In more complex
networks, redundant specifications are easily constructed. There-
fore, the module library includes a module, REDUNDANT PREDECESSOR
CHECKER, that will detect and remove a redundant specification.

Tt is also common to inadvertently . .specify a loop in a network.
This is illustrated below:

JOB A
PREDECESSOR
JOB B
JOB B
PREDECESSOR
JoB C
JOB C
PREDECESSOR
JOB A

The module library contains a module NETWORK EDITOR that detects
and eliminates cycles or loops in a network.

A list of jobs and their associated predecessors that consti-
tute a precedence network may be ordered so that each job appears
on the list only after all its predecessors have appeared. The

simple illustration network can be presented in such an ordering

as shown in Table 3.4.1-2.
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Table 3.4.1-2
Ordering Network Jobs by
Predecessors

Perforﬁ Payload Operations
Mate External Tank to SRBs
Refurbish Launch Pad

Perform Crew Training

Mate Orbiter to External Tank
Refurbish Launch Pad

Launch

1

Obviously this ordering is not unigue, it represents, however,
a sequence in which jobs could be completed without violating
any precedence constraints. The module ORDER_BY_ PREDECESSORS
produces a proper ordering. An ordering that produces the se-
guence in which all predecessor relationships are satisfied is

called a technological ordering.
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3.4.2

Networks with Job Durations

If job durations are added to the network information, addi-
tional computaéions can be made. The minimum time schedule can
be determined for this problem model. All paths in the netwbrk
for which no unscheduled time is possible in the minimum time
schedule are called critical paths. All other paths contain
slack, i.e., time intervals associated with one or more jobs
within which the start times may be altered without causing a
delay to the minimum time schedule. ; simple illustration of
these definitions is shown 1in Fig. 3.4.2-1. A1l CPM (Critical
Path Method) and PERT (Project Estimation and Review Technique)
analyses are based on simple networks containing jobs with fixed
durations and predecessor sets. The PLANS module library con-
tains five modules that perform computations on CPM problem
models. They are:
l). CRITICAL_PATH_PROCESSCR
2) CRITICAL PATH CALCULATOR
3) NETWORK CONDENSER
4) CONDENSED NETWORK_MERGER
5) NETWORK ASSEMBLER
The first is an executive routine and the second calculates param-
eters for a simple network. The others provide computations
associated with more general networks that are addressed in a

subsequent section.
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3.4.3 Simple Resource Pools

If each job in the problem model requires a specified number
of resource units as illustrated in Fig. 3.4.3-2, then the net-
work analysis becomes a project scheduling problem. Statéd simply,
project scheduling is network scheduling plus resource/job relation-
ghips. 1In project scheduling, the relationships between each job
and its required resources are quite simple. Each job requires a
fixed number of resource units of one or more types. A pool exists
for each type. A job may be scheduled if the pools contain the
required number of resource units for the duration of the job. An
illustration of a feasible project schedule is shown in Fig. 3.4.3-1

for two resource types and three jobs.

pnits of | A Maximum Allowable Number of
R 1 a2X1lmum owa e umper o
eeotree ?\\ JOB B J ng C Resource Units
/J0B A7/ Tl JOB  Requires
Units of A 1 Unit Type 1
Resource 2 IR —_— 2 Units Type 2
I B 1 Unit Type 1
JOB IR ERR Y
) TR 1 Unit Type 2
C 3 Units Type 1
1 Unit Type 2

Fig. 3.4.3-1 Feastble Project Scheduling Example

Notice that if the total number of resources had not been con-
strained, all three jobs could have been scheduled concurrently
producing a shorter schedule. Thus adding resource constraints to
the problem model usually does alter the CPM (i.e., simple network

with job durations) schedule.

87



88

rm
Perform Perfo

Crew
Payload
Operations Training

g-g°5¢ "Bul

Speclalists

{ 4 Electronics ©
10 Ground Crewmen

Mate
Orbiter to
Begin Mate
Operations External Ex;:;zal
Cycle Tank to

SREs

{14 Ground Crewmen}
3 Cranes

Resource Pools

45 Ground Crewmen
7 Electronics Specialists

5 Cranes Refurbish
Launch
Pad
{26 Ground CreWmen}
2 Cranes
Fig., 3.4.3-2

Assoctation of Requirements for Fooled Resourees with Network Jobe

t

- Launch

Indicates Partial
Resource Requirements
for Job



It is obvious that the problem model for simple project
scheduling utilizes pooled resources and that each job selects
indiscriminately from the pools and returns resources to the
pooig upon completion. A job utilizes prescribed quantities
from the pools. From the resource point of view, the job creates
an assignment interval during which these quantities are de-
scribed as "in process' until the job is completed, at which
time they are described as "available.” The descriptors 'in
process" and "available" are called implicit descriptors because
they can be inferred from the existence of an assignmént inter-
val; i.e.,, if we kno# that Job A uses three units of Rescurce 1
and Job A is scheduled, then we know implicitly that three units
of Resource 1 have the descriptor "in process" during the dura-
tion of Job A. The resources used in the project scheduling
 problem model can, therefore, be described as pooled resources
with, tmplicit dgscriptors only. Although this description appears
at this point to be a terminology overkill, it will be useful
later in distinguishing the project séheduling model from more

generalized models.
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3.4.4 Events in Job Networks

It 15 useful to be able to place events into & network in ad-
dition to jobs. An event may be thought of as a zero duration
Job that requires no resources. This function is fllustrated in
Flg. 3.4.4-1. Its basic usefulness is to permit the integration
of two or more networks. A large network may be decomposed into
smaller networks by defining the interfacing events between the
smallef networks. This may permit netwo#k analysis to be accom-
plished on networks that are too large to be analyzed without
decomposition.

The PLANS module library contains several routines that per-
form operations on generalized networks. The PROJECT_DECOMPOSER
identifies networks within larger networks so that analyses can
be performed independently on the smaller networks. The NETWORK_
CONDENSER module eliminates the jobs In a network leaving only
the events. The branches in such an event node network represent
delay times, The condgnsation of a network permits a CPM analysis
on a very large network usiﬁg decomposition principles. The
PREDECESSOR_SET_INVERTER module converts all predecessors in a
network into equivalent successér sets. This inversion is nec-
essary for performiné a CPM analysis (the CRITICAL_PATH_PROCESSOR
and CRITICAL_PATH _CALCULATOR modules are applicable) or for con-
deﬁsing a network Into an event node network,

The permissibility of events in networks alléws the problem
analyst to describe complex networks in terms of subnetworks with

interfacing events. A subnetwork is itself a network, which
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contains the immediate predecessors and successors of all its
member jobs or events that are not interfacing events. Because
any subnetwork may, itself, have one or more interfacing events
to still other subnetworks, a heirarchical relationship between
networks can be described. Scheduling with resource constraints
may require a single master network. This capability 1is ;;rovided

in the library by the NETWORK_ASSEMBLER routine.
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3.4.5  Job Splittability

The simple network can be generalized slightly by permitting:
splittable jobs as illustrated in Fig. 3.4.5-1. Splittable jobs
are jobs that can be terminated before completion and restarted
from the interrupt point at any later time. The sum of the dura-
tions of the job segments is equal to the duration of the original
job. The HEURISTIC SCHEDULING_PROCESSOR module and the three
modules it calls, all permit the description of jobs that are

splittable or nonsplittable.
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3.4.86

Vafiable Resource Requirements

A simple generalization of the problem model is possible while
maintaining compatibility with the project scheduling module called
the HEURISTIC SCHEDULING_PROCESSOR. This generalization permits
plecewise constant resource profiles éuch as that shown in Fig.
3.4.6-1.

The PLANS library modules that have been specified for solv-
ing project scheduling problems are all capable of handling piece-
wise constaﬁt resource profiles associated with any job. When
many resource pools are included in the problem model and when
theée resources are shared between many jobs, the resolution of
resource conflicts becomes a signifiéant problem. This can be
appreciated by examining Fig. 3.4.6-2, which illustrates only
two resources associated with thrée jobs. The modules specified
for the PLANS library will satisfy the complex resource constraints
associated with a large number of resources and jobs. The
HEURISTIC SCHEDUL ING_PROCESSOR serves as the executive module,
which calls the NETWORK ASSEMBLER, the RESQURCE _ALLOCATOR, and
the RESOURCE LEVELER modules. See Section 3.6.

just as the resource reqpirements for a single job may be
variable, so can the total resource pool levels be variable with
time. Figure 3.4.6-3 illustrates a profile that reflects the

fact that fluctuations will occur in availlable manpower.
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3.4.7

Item-Specific Resources

Many scheduling problems cannot be adequately formulated using
resource pools.- This usually results from the necessity to keep
track of the assignﬁents for specific resource items. For ex-
ample, it might not be acceptable to froduce a schedule that pro-
vided only the information that one truck (from a pocl) was used
from 9:00 am to 9:12 am. It is only acceptable to specify that
truck number 90526 was used. When specific traéeable assignments
are required, the problem modei must include "item-specific re-

' Some item-specific resources that might be required

sources,'
by the jobe in the illustration used in previous sections are
shown in Fig. 3.4.7-1. The inclusion of item-specific resources
in the-operations_model permits resource allocation to be coupled
into scheduling. Problems using item-specific resources are those
that reqﬁire the determination of not only when a job 1s to be
done and how many resources are to be used, but also which re-
sources are to be used. Table 3.4.7-1 provides several examples
of pooled and item=-specific resoufces. Because the use of item-
specific resource descriptions adds to the complexity of the prob-
lem model, solutions require more sophisticated techniques that
are much more costly to execute. In addition,‘tracking all item-
specific resources adds substantially to computer storage re-

quirements. Thus, the use of item-specific resources should not

be done unnecessarily.
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Table 3.4.7-1
Examples of Pooled and

Item-Specific Resources

Pool Item-Specific

Crewmen Jones
Clayborn
Betts
Blackburn

Vehicle Seating Bus 6

~ Units Shuttlebus

Van

Food Units Meal 6
Supplement 2
Meal 4

Computer Storage Disec 2

Cells Tape 6

Core Block 2

Machines

Lathe 1
Auto Lathe
Lathe 6
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3.4.8

Respurce Alternatives
Many problems require the consideration of alternative (sub-

stitutable) resources, as illustrated in Fig. 3.4.8-1. These

alternatives may be directly substitutable (i.e., an adjustable

' wrench may be substituted for an open-end wrench) or only func-

tionally comparable (i.e., a conveyer may be functionally equiva-
lent to three laborers). The.selection between alternatives may

be based on a preset priority with the availability of the re-

‘source as the criterion. Other alternatives may influence some

problem "figure of merit" such as duration, teotal cost, or re-
source utilization smoothness. In tﬁis case, an executive logic
could be empowered to evaluate the effects of its selections.
Typically a heuristic decision rule must be used to make the
selectibps between resource alternatives during the algorithm
operations.

Within the operations'model, the fequired resources are de-
fined in the definition of a process as a series of "and" and "or"
resources. That is, a process requires each of the resources of
the "and" portion plus one of the alternatives of each partition
of the "or" section of the process definition. This approach

readily identifies those resources in a process definition that

have suitable alternatives.
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3.4.9 Process Alternatives
Process alternatives such as the one shown in Figure 3.4.9-2
may arise in a problem description as a means of handling resource
alternatives or because a processing option must be modeled. A
conversion from resource alternatives to process alternatives
results if each combination of resource alternatives is consid-

ered as a distinct process. (See Fig. 3.4.9-1.)

Change
Tire
Manually

Hand Wrench

Hand Wrench

OR Change >
Tire OR

Pneumatic
Wrench
Prneumatic
Wrench
RESQURCE PROCESS

ALTERNATIVE ALTERNATIVE

Fig. 3.4.9-1
Conversion from Resource Alternatives
to Process Alternatives

This approach becomes very cumbersome if many of the resources
required for a process have alternatives because each .combination
of rescurce alternatives implies a unique process definition. A
substitutable process 1s created either by alternative resource

combinations or by the existence of functionally equivalent and
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and redundant activities (i.e., any number of the required re-
sources may be different). In network form, these process alter-—

natives can be shown as in sketch A where process B and C represent

the alternatives. Similarly, alternative subnetworks can be spec-
ified if more than one process is inveolved in the alternative

subnetworks. For example, the subnetworks B and C, as shown in

sketch B, would define alternative subnetworks.

In subsequent discussions of the operation model, netwerks

and- subnetworks are referred to as operations sequences, because
the latter term Is more descriptive of the temporal. relations
between processes.

At this point it may be necessary to make a distinction be-
tween alternative operations sequences and conditional branches
_in formulating his solqtion strategy.  For this purpose, consider

the "alternative operations sequences' as functionally equivalent

109



subnetworks for which the selection criterion is based on a prob-
lem objective such as least .cost, minimum time, resource avail-
ability, etc. This decision would, therefore, have to depend on
the contents of the subject subnetworks and a prediction or simu-
lation of the impact of choosing each alternative. In contrast,
consider a "conditional branch'" as a switch between separate sub-
networks, which may or may not be functionally the result of ac—
tivities complefed earlier in the network. This selection would
be independent of the overall problem objective function and,
therefore, independent of the contents of the subnetworks.

To illustrate this distinction, consider a machining activity
in which a part may be produced by either mechanical milling or
chemical milling. Each method could be modeled as a subnetwork
in a larger shop model. Because the beginning and end states of
the particular part are identical, the selection of method to be
used could be based on comparative cost or duration, or possibl;
some other problem constraint such as least manpower required.
Thus, these functionally equivalent subnetworks would be "alter-
native operations sequences.' Conversely, a Shuttle operations
model might contain two or more subnetworks that define checkout
sequences fof payloads. The selection criterion in this case
would depend on the characteristics of the payload under consid-
eration. Because the particular payload would be selected earlier
in the operations "loop'", the "conditional branch' selection
would not be based on an objective function of‘the problem or

contents of the submetworks, but on operational constraints.
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3.4.10 General Temporal Relations

Occasionally, the sequences between processes must be described
with relationships that are more general than the siﬁple prede-
cessor relationship (If the end of activity A must occur before
the beginning of activity B, then A is simply a predecessor of B.)
In a more general operations model, however, other temporal re-
lationships may exist such as the one illustrated in Fig. 3.4.10-1.

1f ; set of "alternative operations sgquences" exists in a
network (as shown in the sketch), it would be Incongruous to spec-
ify both alternatives as predecessors to the subsequent éctivity
{0) because both predecessors cannot be completed. However, 1t
is necessary to indicate the direction of flow regardless of the
alternative selected. 1In this case, unambiguous specification
would label the subsequent activity (D) as a "successor" ﬁo both

alternatives.

-O— O

Temporal relations that are more general than either prede-

cessors OF successors may be represénted as

+h
[=s
viv A A
Fhoow
[
e,
+
=

where i and j atre any activities or events in the project and "s"

denotes a start time while "f" signifies a finish time. The
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addition of fixed time intervals (K) or inequalities containing
constant time interﬁals has many applications in system modeling.
For example, a system involving the pburing of concrete may have
a constraint specifying that the troweling activity must begin
within 30 minutes of completion of the pouring. Similarly, an
éctivity involving a sealing coat may be constrained not to start
within 48 hours of completion of the pouring activity. The PLANS
module library contains three modules that can be used with gen-
erai temporal relationships. These are CHECK EXTERNAL_TEMP_
RELATIONS, CHECK INTERNAL_TEMP RELATIONS, and CHECK_ELEMENTARY_
TEMP_RELATION. All perform checking for constraint satisfaction.
Cur approach to handling the generalized temporél relation-
ships 1s to reduce the network to closely continucus and ordinary
predecessors or successors by introducing "dummy' activities.
Dummy activities have finite durations, but differ from regular
activities in that no resources may be required. Thus, they rep-
resent a span of time in a network or subnetwork. 'Closely con-
tinuous' implies that the end time of a preceding activity equals .
the start time. of the successor activity. Although methods exist
for handling general temporal relationships, they are substantially
more complex than methods that handle only predecessors and suc-
cessors. The modeler is, therefore, encouraged to use general
temporal relationships only when simple predecessor/successor

relationships have proven inadequate.
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3.4.11 Item-Specific Resources with Explicit Descriptors

Processes require many resources that change their previous
characteristics and thus must have additional explicit descriptors.
For example, in Fig. 3.4,11-1, the job "Mate Orbiter to External
Tank'" 1s shown to require one orbiter with a status descriptor
REFURBISHED. It is a property of explicit-descriptors that Ehey
qhénge only at the end of the process time and that the way they
change must be specified explicitly as a part of the process def-
inition. For example, if a given resource, Truck 87, had béen
assigned to two activities that first loaded the truck and then
drove it to Los Angeles, it might have a descriptor LOAD STATUS
with a corresponding value LOADED, and a descriptor LOCATION with
a value LOS ANGELES. These data would be retained as part of |
the two assignments for the resource. If a subsequent activity
moved the truck to San Francisco, the result would be to change
the descriptor LOCATION. The descriptor LOAD STATUS would be
unaffected by the current process and any inquiry concerning
Truck B7 at a subsequent time would find the lpaded truck in San
Francisco. (Because the driver is considered a separate resource,
it should not be inferred that the driver was found loaded in
San Francisco!)

It should bé noted that explicit descriptors must have mutually
exclusive values for any given descriptor. That is, if, in the
example just discussed, the truck were moved to DOCK 23, an ad-

ditional descriptor (i.e., DOCK LOCATION) should be added if the

location SAN_FRANCISCO) were to be retained.
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It should also be noted that if activities are being placed
on a timeline ahead of some previously scheduled activities (time-
‘transcendant scheduling), the resource profile for all times later
than the new acti§ity may be altered. The module library contains
a routine called CHECK DESCRIPTOR_COMPATIBILITY, which determines
conflicts that would result in attempting to schedule a job re-

quiring an item-specific resource with explicit descriptors.
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3.4.12 Pooled Resources with Explicit Descriptors

Pooled resources represent a very difficult extension of the

generalization cépability of explicit descriptors. Because ex-
_plicit descriptors alter a resource so that it does not revert

to its original state at the end of the scheduled activity, a
pool is continually repartitioned as resources are allocated to
various activities. This repartitioning is illustrated in Fig.
3.4.12-1. Since it is necessary to know from which partition a
set of resources is to be drawn, it becomes necessary to describe
the partitioning.of the entire pool‘for each agsignment madei
This obviously becomes very cumbersome as the size of the pool

or the number of assignments grows. The problgm is compounded

if time-transcendent scheduling is attempted or if activities
previcusly scheduled must be unscheduled. The module POOLED
DESCRIPTOR_COMPATIBILITY is designed to identify the descriptor
conflicts that occur when attempting to iInsert a job on the time-
line that requires pooled resources with explicit descriptors.
When unscheduling, pooled resources for all activities occurring
at a later time-must be repartitioned to reflect the unscheduled
reséurces.

Both of these techniques become extremely. cumbersome and time-
consuming as the size of the problem increases. If the exﬁlicit
descriptors required to describe a given resource can be antic-
ipated and the number of such descriptors is small, the various
partitions of the pooled feéource can, themselves, be considered

a pooled resource. In this case, the pooled resource can be
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treated as if it had only the implicit descriptors of IN PROCESS
or AVAILABLE, thereby avoiding the complexity of modeling using
pooled resources with explicit descriptors. Although data struc-
tures, conventions, and library modules are provided for schedul-
ing that accommodate the most complex problem models, it is rec—
ommended that substantial effort be devoted to analyzing modeling
alternatives that will permit greater use of well-developed tech-
nology and substantially less demanding logic design and checkout
Effdrts. Alternatives include the definition of separate pools
¥
withoﬁt explicit descriptors for each anticipated partition, and

the substitution of item-specific resources with explicit des—

criptors for elements of the pool,
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3.5

OPERATIONS MODEL DATA STRUCTURES

This report has discussed the basic data structure of PLANS
and‘presented the rationale for assuming a general hierarchical
form. It should be noted that any "standardized" modules must
make some assumptions as to the location of particular data within
the overall structure. Therefore, this section defines some
standard data trees for modeling an operational system. The trees
discussed are summarized in Table 3.5-1. These standardized trees
are an important part of the Operations Model, which is used as
a framework for the library modules specified in Volume III. Ob-
viously, these structures may be augmented to accommodate partic-—
ular program peculiarities as the programmer‘deems necessary, or
may be disregarded completely if no modules are used that assume
the standardized structures. It should be recognized that the
trees are defined from a "modeling" viewpoint and that few, if
any, modules will use the entire content gf any gilven tree. The
"mandatory'" contents assumed by each module for any given tree
structure are defined in the functional specification of that
module. No modules have been specifigd for the library that
recognize the absence of required data and initiate loéic to sup-
ply the missing data. PLANS coding can be used to build such
routines, however. For example, logic that reads a node called
DURATION and, finding no numeric value, calls a routine whose
name appears asithe value is easgily written in PLANS. Neverthe-

less, no PLANS library modules contain such logic. Therefore,
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it is the programmer/user's responsibility to ensure that required
data are supplied to a called library module. In general, the
order of nodes at a given level is insignificant.

Table 3.5-1 Operations Model Data Siructures

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

User-Defined Data Trees are

$RESOURCE Describes the resources of the system

7 + (3.5.1) S

$PROCESS Describes the activities of the system
(3.5.2)

$OPSEQ Describes the operational sequences of

the system (3.5.3)

SOBJECTIVES Describes the objectives and comstraints
of a problem

The problem descriptions of Section 3.4 can be used in PLANS
programs to generate schedules and/or resource allocations.
The information associated with problem solutions can alsoc be
represented in hierarchical data trees compatible with the
PLANS language.

Program-Created Data Trees are

$J0OBSET Describes each single occurrence of a
process of a problem (3.5.5)
$SCHEDULE Describes each job and the associated

resources that are assigned to a spe-
cific time interval (3.5.6)

ASSIGHMENT Subnode Describes the assignments made for each
of $RESOURCE resource of a problem (3.5.7)

The Operations Model standard data trees can be classified
either as user—defined or as program—created as shown in Table
3.5-1. User-defined data trees are structures built by a user to
describe the system of interest. They provide the mechanism by

which the user provides data to the program. Program-created
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data trees are generated during the execution of the scheduling
logic. These'fundame#tal structures are created of used by many
of the library modules. Therefore, they serve to integrate the
modules and should form a basis for specific program executiye

logic.
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
nierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$RESOURCE Describes the resources of
the system
$PROCESS Describes the activities

of the system
$OPSEQ Describes the operational
sequences of the system
$OBJECTIVES Describes the objectives
and constraints of a problem
The probiem descriptions of Section 3.4 can be utilized in FLANS
programs to generate schedules and/or resource allocations. The
Information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.
THE PROGRAM-CREATED DATA TREES ARE:
$JOBSET Describes each single occur-
rence of a process of a
problem
$SCHEDULE Describes each job and the
associated resources that
are assipgned to a spécific
time interval

ASSIGNMENT subnode Describes the assignments

of $RESOYRCE made for each resource of

©=24

a problem



3

3.1

$RESQURCE

$RESOURCE provides the structure to define all supplies, ele-
ments, or resources needed to perform any activities to be modeled
in the system of interest., This definition includes the quantity
and characteristics of thé resource as well as a record of allo-
cations or ASSIGHNMENTS made for the given resource. (Because
the ASSIGNMENTS are not defined by the user but result from ex-
ecution of the program, this portion of $RESOURCE will be discussed
in the next section). As illustrated in Fig. 3.5.1-1, $RESOURCE
prOQides two levels of resource classification; these are arbi-
trarily referred to as TYPE and NAME. These two levels allow
relatively quick access to a specific resource or a given class
of resources. The lower level of classification (resource name)
may define either an_item—sPecific resource or reéource pool,

As discussed previousi&, it is necessafy to distinguish be-
tween ltem-specific and pooled rescurces. Therefore, the next
sublevel contains a node labeied CLASS with expected values being
either SPECIFIC or POOL. In addition, this level provides the
initial time and description of the given'resource. This descrip-
tion has a node for each descriptive parameter required. The
node label names the parameter and the node value gives the cor—'
responding parametric value. Thus, descriptive characteristics
such as length, weight, color, location, etc that apply to the

resource at the initial time may be specified.
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- Initial quantities for pooled resources may be time~-varying.
To accommodate this possibility, a node labeled INITIAL PROFILE
appears in $RESQOURCE. The substructure under this node provides
the mechanism for defining variable piecewlse constant profiles
for both normal and contingency quantity levels. The profile
data are typically used with project scheduling techniques. It
should be stressed that all the values under the INITIAL PROFILE
node and the other nodes at that level represent initial values.
Any subsequent changes to the descriptive characteristics re-
sulting from assignménts to specific processes would be recorded
in the assignment po?tion of $RESOURCE. See Section 3.5.6.

An 1llustration of the use of $RESQURCE for a Shuttle applg—

cation is shown in Fig. 3.5.1-2.
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OPERATIONS MODEL DATA STRUCTURES
The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.
THE USER-DEFINED DATA TREES ARE:
$RESOURCE Dezcribes the resources of

the system

$PROCESS Describes the activities

of the system

$OPSEQ Describes the operational
sequences of the system
$OBJIECTIVES Describes the objectives
and constraints of a problem
The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage,
THE PROGRAM-CREATED DATA TREES ARE:
$J0BSET Describes each single occur-
rence of a process of g
problem
$SCHEDULE Describes each job and the
associated resources that
are assigned to a specific
time interval
ASSIGNMENT subnode Describes the assignments

of $RESOURCE | made for each resource of

a problem
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3.5.2

$PROCESS i

This data structure defines the ac;ivities or processes of
the system to be modeled. Obviously, the level of detail to be
included determines the content of the $PROCESS tree. For ex-
ample, a top-level analysls of a system may group many activities
into one process with a correspeonding total duratien. In such
instances some or all of the resources involved in the activities
may not be specified. In contrast, the problem objective may
require such detail as the skill profile of each person who is
considered a resource, and/or variable use of resources during
the process time interval. The structure of $PROCESS, as shown
in Fig. 3.5.2-1, allows both extremes to be modeled. Again it
should be emphasized that only applicable portions of the struc-
ture need to be specified. Thus, conceivably, a process defini-
tien could consist of as little as the process name and a cor-~
responding duration.

The first level subnodes to the process name define the proc-
ess duration and type. In this usage, type refers to whether or
not a process may be split into segments to facilitate scheduling
around constraints, Expected values would be either SPLITTABLE
or NOT_SPLITTABLE. A programmer may wish to provide a default
value for type to permi£ simplification of program input, but
the functional specifications for library modules leave all de-
fault nodes to the discretion of the implementer. This level also
labels the nodes needed to define the relationship of resources

to the process being defined.
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The substructure of REQUIRED RESOURCES contains the most spe=-
cific information required to ensure a satisfactory resource se-
lection for the process. Thus, if any resource of a given Zype
(first sublevel to REQUIRED RESOURCE) will .suffice, only the
resource type is defined. (The name level is left null.) Con-
versely, a process may require a resource of a given ¢ype and
name, and iIn addition require a particular value of a given
descriptor at the initiatjon of the process. 1In this instance,
an INITIAL DESCRIPTOR would be specified for the given resource.
As 1llustrated in the structural diagram of $PROCESS, any number
of respurce typee and/or names may be required by a given process.
It is assumed that each resource denoted by a node at the name
level is required to complete the process. For each resource
name (indicated by a node), anﬁ number of descriptors may be spec-
ified for a given time interval. It is assumed that any initial
descriptor defines & requirement on the resource that must be
met for a resource to be an acceptable candidate. lA FINAL_DES-
CRIPTOR only indicates a change in a particular descriptor re-
sulting from the accomplishment of a process. The START and END
values specified for a given INTERVAL will define an interval
relative to the process duration. Thus, if the valué of DURATION
is 10, a START and END value of 5 and 10, respectively, would

indicate that the resource was only required for the last half

of the process.
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Processes are the mechanism for associating resources with
activities. For this reason, multiple requirements for resources
defined within a single process will be satisfied by a collection
of resources and the assignments of each resource will be identi-~
fied by the process. name but not by a separate requirements iden-
tifier. For example, a single process that has a requirement for
one crewman and another requirement for a different crewman will
ultimately cause two crewmen to have assignments identified by
the process name. It is assumed that the association of each
crewman with a particular requirement will not be preserved. If
the association is to be preserved, two separate processes should
be defined. In the Operations Model, a process contains a set
of requirements to which resources can be assigned unambiguously,

The format of the data structures subordinate to ALTERNATE_
RESOURCES, RESOURCES GENERATED, and RESOURCES _DELETED is similar
to that for REQUIRED RESOURCES, but functionally, each serves'a
different purpose, ALTERNATE RESQOURCES defines any number of
sets of alternative resources. FEach set is represented with a
vell label (shown as "¢" in Fig. 3.5.2-1). It is assumed that
one alternative from each set must be provided for completion of
a given process. Thus, an executive program must consider both
ﬁodes, REQUIRED_RESOURCES and ALTERNATE_RESOURCES, when determin-
ing the availability of resources required to complete a process.

RESOURCES GENERATED and RESOURCES DELETED specify what happens
to resources during a process. In some cases resources will be as-

sembled (or disassembled) to create new resources. Correspondingly,
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the initial elements will no longer exist as the described re-
source, For ex;mple, 1f a process mates an Orbiter to a stack,
the resulting assembly may be referred to as a Shuttle, In this
case, the resource Orbiter and stack would be described as
RESQURCES_DELETED and the resource Shuttle would be a RESOURCE
GENERATED, These nodes, therefore, allow a means of traceability'
for a particular resource. These two substructures also describe
resources that are usually thought of as "expendables" or "con-
sumables". A resource, such as power, dollars, or fuel, that is
in fact consumed and will not reappear in the system at a later
time, would be a deleted resource. Similarly, a "negative" con-
sumable, such as the refining of a petroleum product, would create
resources during a process. An illustration of 'a portion of

$PROCESS for a Shuttle application is shown in Fig. 3.5.2-2.
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Fig. 3.5.2-2
UJse of $PROCESS for a Shuttle
Application ‘
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QPERATIONS MODEL DATA STRIUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$SRESOURCE Describes the resources of
- the system
$PROCESS Describes the activities
of the system
$OPSEQ Describes the operational
Sequences of the system
$OBJECTIVES Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-

guage.
THE PROGRAM~CREATED DATA TREES AREr

$J0BSET

$SCHEDULE

ASSIGNMENT subnode
of $RESQURCE

Describes each single occur-
rence of a process of a
problem

Describes each job and the
associated resources that
are assigned to a specific
time interval

Describes the assignments
made for each resource of

a problem
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3.5.3 - $0PSEQ

The operations sequence data structure serves to define the
relationship between processes that are combined into a network.
As illustrated in Fig. 3.5.3-1, the labels of the first level
subnodes are the names of different operations sequences. The
labels of the second-level subnodes are the names of the elements
of the above-named operations sequence. The element is either
a process or another operations sequence; if it is am operations
sequence, its name will also ;ppear elsewhere at the first level
to define its substructure. If the element is a process, its
characteristics are described by the $PROCESS tree. The element
TYPE is defined by the next level subnode with an expected value
of either PROCESS or OPSEQ. The module CHECK PROCESS DEFINITION
provides a capability to check whether all processes referred to
in the nested operations sequences are defined in $PROCESS.

This level also defines the general t?mporal relationship of
an elemgnt to any other element in the same operations sequence.
This data structure (see Fig. 3.5.3-2) allows the user to specify
classical predecessors and successors as well-as generalized tem-
poral relations. The general temporal relation 1s specified by
six ordered subnodes as indicated in Fig. 3.5.3-2. (It is pos-
sible that appropriate labels could be designated, and interpreted,
to eliminate the requirement to be ordered; but since the order
ig logical and unambiguous, the labels have not been assumed by

any library modules.)
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$0PSEQ

{OPSEQ NAME) (OPSEQ NAME) {OPSEQ NAME)
{PROCESS OR (PROCESS OR (PROCESS OR
OPSEG NAMB OPSEQ NAMD OPSEQ NAME}

TEMPORAL RELATIONS ALTERNATIVES

*PROCESS" | “OPSEQ" {SEE GENERAL SUBSTRUCTUREI

Fig. 3.5.3-1 $0PSEQ Standard Data Structure
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Finally, any alternatives to an element may be listed as
values of subnodes to ALTERNATIVES. Alternatives represent OR
gatés in an operations sequence. As discussed in the previous
section, these alternatives may be either processes or operations

sequences.

An illustration of the use of $0PSFQ for a Shuttle application

is shown in Fig. 3.5.3-3.
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER-DEFINED DATA TREES ARE:

$RESOURCE

$PROCESS

$OPSEQ

Describes the resources of
the system

Describes the activities
of the system

Describes the operational

sequences of the system

$OBJECTIVES

Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data treeg compatible with the PLANS lan-

guage.,
THE PROGRAM-CREATED DATA TREES ARE:

$JOBSET

$SCHEDULE

ASSIGNMENT subnode
of $RESOURCE

Describes each single éccur—
rence of a pfocess of a
problem

Describes each job and the
associated resources that
are assipgned te a specific
time interval

Describes the assignments
nade for each rescurce of

a problem
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3.

5.4

$OBJECTIVES

The three previous data trees provide a method for describing
an operational system {or any number of systems). These trees
ﬁay berconstructed at any time and stored and are independent of
the particular problem of interest at any given time. As a mat-
ter of fact, they are independent of the scheduling function for
which they will probably be used. However, there also exist cer-
tain data that are required as input for a particular problem con-
cerning a given system. These data may be structured in a variety
of ways, and will contain different Information for different
problems. $0BJECTIVES, as defined here, presents some data needed
by certain library modules in a structure that may be used and
augmented by a program developer. As programs are developed in
PLANS, $OBJECTIVES will certainly evolve beyond those presented
here with additional conventions and structure.

As shown in Fig. 3.5.4-1, the first level subnodes include
a method of inputing a problem name. Obviously,'other problenm
identifiers may be included by additional nodes. A Figure of
Merit node is shown to indicéte a location for the name input
for a routine that calculates the objective function of the prob-
lem. Because none of the specified library ﬁodules require these
particular data, the detailed specification is not provided here.
Siﬁilarly, a CONSTRAINT node is indicated for probable inclusion
by a user of $OBJECTIVES. These constraints would apply to the
overall problem--not to a specific process or operations sequence.

Constraints could include the earliest and latest start and end
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Fig. 3.5.4-1 SOBJECTIVES Standard Data Structure



times {absolute times), maximum total duratiom, and/or specific
"windows" that may or may not be used for scheduling. For ex-
ample, a given shop operation to bé scheduled may have an earliest
start date specified because ‘of expected shipping. of supplies.
Also, all weekend dates may be unavailable for scheduled activities
because the shop works on a five-day work week.

The information in $0BJECTIVES that is required by the cur-
rently-specified library modules is the list of operatioms se-
quences to be scheduled and any specific resources to be associated
with any process or operations sequence. The first level subnodes
to OPSEQ list the processes and/or operations sequences that must
be scheduled for successful completion of a problem. The next
sublevel lists the TYPE (either PROCESS or OPSEQ) and any temporal
relationships- that exist between that element and.any other ele-
ment under OPSEQ. The format of the temporal relationship is the
same as discussed in the preceding sectioq on $0PSEQ. Obviously,
one way of setting up a problem would be to create an operations
sequence in $0PSEQ containing all the elements desired for a given
problem. Then $0BJECTIVE would only list one operations sequence
to be considered and the problem input would be greatly simplified.
In fact this would be a recommended approach if a similar problem
ﬁefe to be considered numerous times. However, the basic philosephy
has been to consider a more flexible appreoach in which more ele-
mental subnetworks are created from individual processes. A num-
ber of these operations sequences could then be called out in

$0BJECTIVES to synthesize a given problem. The substructure of

145



the ASSOCIATED RESOURCES is the same as the $PROCESS. (NAME) .REQUIRED
RESQURCES) substructure and is used to specify any specific reséurces
the user wants associated with the corresponding operations se-
quence. It is assumed that the characteristics of the particular
resource have previously been filed in the $RESQURCE tree. This
substructure would be used if the user wished to execute an op-
erations sequence such as LAUNCH PAYLOAD three separate times
with an associated res;urce for each launch of PAYLbAD 14, PAYLOAD
27, and PAYLOAD 87, respectively.

An example of the uée of $OBJECTIVES for a specific préblem

appears in Section 4.2.
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3.5.5

$JOBSET

This data tree will be created near the beginning of a prob~
lem from the three defined data trees $0BJECTIVES, $OPSEQ,
and $PROCESS by the module GENERATE_JOBSET (see Volume III). As
illustrated by Fig. 3.5.5-1 this tree combines processes with all
required resources {whether they are specified or generic) into
Jobs. Thus, a Job i a single ccourence of a process and is the
element of the Operations Model that is scheduled by the solution
algorithm. Once created, $JOBSET contains most of the input data
required to work a given problem and makes further reference to
the stored trees $0PSEQ and $PROCESS unnecessary.

The first~level subnodes of $JOBSET represent a collection
of single occurrences of the processes in an operations sequence.
The descendents of these nodes are unique job identifiers. The
first level subnodes to the job identifiers specify a JOB TYPE,
which indicates whether a job may be Interrupted and scheduled
in more than one segment. The JOB INTERVAL node contains a rela-
tive Interval equal to the duration of the process involved. The
substructure of RESQURCES will be created for each %equired re-
source and the most specific input information. Other informa-
tion such as identifiers, alternatives, and temporal relation-

ships to other jobs are also included in $JOBSET.
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OPERATIONS MODEL DATA STRUCTURES
The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.
THE USER-DEFINED DATA TREES ARE:
$RESOURCE Describes the resources of
the system
$PROCESS Describes the activities
of the system
$OPSEQ Describes the operational
sequences of the system
$0BJECTIVES Describes the objectives
and constraints of a problem
The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem sclutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.

THE PROGRAM-CREATED DATA TREES ARE:

$JOBSET Describes each single occur-

rence of a process of a

problem
$SCHEDULE Describes each job and the
| | assoclated resources that
are assigned to a specific

time interval

ASSIGNMENT subnode Describes the assignments
of $RESOURCE made for each resource of
a problem

ST



3.5.6 $SCHEDULE
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OPERATIONS MODEL DATA STRUCTURES

The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.

THE USER~DEFINED DATA TREES ARE:

$RESOURCE

$PROCESS

$OPSEQ

$OBJECTIVES

Describes the resources of
the systen

Describes the activities
of the system

Describes the operational
Sequences of the svstem
Describes the objectives

and constraints of a problem

The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-

guage.

THE PROGRAM-~CREATED DATA TREES ARE:

$JOBSET Describes each single occur-
rence of a process of a
problem

$SCHEDULE Describes each job and the

associated resources that
are assigned to a specific

time interval

ASSIGNMENT subnode

of $RESOURCE

Describes the assignments
made for each resource of

a problem

ST~



3.5.6

$SCHEDULE

$SCHEDULE contains the answer to the scheduling problem, That
is, it contains the same jobs as $JOBSET, but now each job in-
terval contains specific times (i.e., not relative) and specific
resources have been identified for each job. No resource or job
alternatives exist in $SCHEDULE because these selections have
been made and no temporal relationships are needed because absolute
times have been assigned for each jbb. Resource intervals rela-
tive to the job interval have been replaced with absolute times.
In other words, the schedule has been concretized (see Fig. 3.5.6-1
for the basic structure), $SCHEDULE consists of any number of
gschedule unite, thch contain of all of the substructure for any
one job identiffer. This schedule unit 1s considered the smallest
element thag may be sghéduled. The individual schedule unit
contains all information necessary to maintain a record of re-
source allocations made and corresponding descriptors that apply

to the specified resource and time interwval.
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OPERATIONS MODEL DATA STRUCTURES‘
The problem descriptions of Section 3.4 can be represented as
hierarchical data trees compatible with the PLANS language.
THE USER-DEFINED DATA TREES ARE:
$RESOURCE Describes the resources of
the system
$PROCESS Describes the activities
of the system
$OPSEQ Describes the operational
sequences of the system
$OBJECTIVES Describes the objectives
and constraints of a problem
The problem descriptions of Section 3.4 can be utilized in PLANS
programs to generate schedules and/or resource allocations. The
information associated with problem solutions can also be repre-
sented in hierarchical data trees compatible with the PLANS lan-
guage.
THE PROGRAM-CREATED DATA TREES ARE:
$JOBSET Describes each single occur-
rence of a process of a
problem
$SCHEDULE Describes sach job and the
| assoclated resources that

are assigned to a specific

time interval

ASSIGNMENT subnode Describes the assignments
of $RESOURCE made for each resource of

a problem

A0S




3.5.7

ASSIGNMENT Subnode of $RESOURCE

While the basic inputs to $RESOURCE consist of resources and
their characteristics as defined by a user, an equally importaht
function of the $RESOURCE tree is to maintain a record of all al-
locations made for each resource. Even though these allocations
are handled by the scheduling program, the close relationship
between the initial resource descriptions and the subsequent des-
criptions brought about by assignments to certain activities,
justifies the existence of both in the same data tree. Therefore,
as shown in the $RESOURCE tree in Fig. 3.5.1-1, all assignments
are recorded as a substructure to the ASSIGNMENT node of $RESOURCE.

Assignments are arranged by increasing start times with equal
start times being ordered by earligst end time. Such an ordering
will facilitate the checking for resources by subsequent schedul-
ing attempts. Each assignment is indicated on the $RESOURCE tree
diagram by a mull labeled (¢) node. The.aésignment will consist
of an INTERVAL, DESCRIPTORS, and any other information included
as a corresponding part of the schedule unit from which the up-
date of the assignment file is made. Library modules WRITE_
ASSIGNMENT and UPDATE RESOURCE have been designedrto_accomplish
this update. Additional identification information will have to
be included in the basic schedule unit to allow subéequent WH-
séﬁeduling. These data, to be included as first-level subnodes
to the null assignments nodes, could include the problem name, the
operations sequence involved, etc. The library module UNSCHEDULE

has been designed to remove assignments from the $RESOURCE tree.
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The DESCRIPTORS portion of the assignment structure allows
subsequent investigation to determine the hAistory of any given
resource. That is, the state of an item-specific resource or
the partitioning and corresponding quantities of pooled resources
may be determined as a function of time. The library module
RESOURCE _PROFILE is designed to determine the quantity in a re-
source pool as a function of time for the pooled resources with
implicit descriptors. Two variables determine the available
quantity of a pooled resource. The assignments affect the availl-
able guantity because any resources assigned are assumed to be
unavailable during the assignment interval. Secondly, resourcés
may be either generated or deleted as the result of a process.

For purposes of creating a profile, it is assumed that any quantity
deleted or generated is reflected at the end time of the process
interval. This would be indicated by an appropriately labeled
FINAL_DESCRIPTOR with a value of either GENERATED or DELETED. The
corresponding quantity would be indicated witﬁ the subnode QUANTITY,

DESCRIPTOR_PROFILE is a module that uses the assignment infor-
mation in SRESOURCE to determine the history of changes to the
descriptors for an item-specific resource. These resources haye
an initial description that is updated as assignments are made.
Obviously, if a resource is being considered for a specific proc-
ess, it will be necessary to know the current set of descriptors
that apply for a time interval of interest. Also, recognizing
that an item-specific resource may be assembled with other re-

sources to generate a new resource; a FINAL DESCRIPTOR of DELETED
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could apply. Therefore, when assessing the availability of an
item-specific resource, it is not sufficient to check only for
conflicting assignments. A further check must be made of the
final descriptors for the most recent assignment to ensure that
the resource was not deleted.‘ Similarly, an item specific re-
source may be generated (or regenerated) by the disassembly of

a resource.
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3.6

HEURISTIC AND MATHEMATICAL PROGRAMMING SOLUTION TECHNIQUES

An analysis of the state-of-the-art in computerizable shed-
uling techniques leads to the conclusion that two major bodies
of standardized methodology are available (see Appendix). The
first is referred to here as project scheduling and is based on
heuristic scheduling rules. The second is called mathematical
programming and is based on procedures that produce mathematically
optimal solutions. The specified PLANS module library contains
routiﬁes in both classes of solution methods. However, each class
of methods is capable of dealing with problem models that have
only limited generality or dimensionality. Problems that are
described with more general models and/or higher dimensionality,
however, will be solved by building problem—dependent legic. While
PLANS is designed to aid in programming such logie, tﬁe analyst
will make better use of the PLANS progrémming system by describing

his problem in a format that makes one of the two standardized

methodologies applicable. If this is done, the capabilities rep-
resented in the module librafy can then be applied, and will per-
mit much more rapid program development aﬁd checkout.-

The purpose of this section is to describe the characteristics
of the problem models that are compatible with existing standard-
ized solution methodologies so that the user of both PLANS and
the PLANS module library will have the maximum ﬁapabilities avail-
able to him. It should be noted at fhis point that nothing in

PLANS precludes its use with nonstandard methodologies. To be éure,

PLANS makes customized scheduling logic much easier to program.
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Similarly, the module library is not limited Lo capabilities as-
sociated with project scheduling, mathematical programming, or
solution methods; in fact, many of the modules perform functions
that must be performed in typical problem-dependent scheduling
logic.

Combination of the generalized network modules and the re-~
source allocation and smoothing modules specified for the module.
library constitutes alproject scheduling system.thét is applicable
to very large problems that have the problem models described
above. The logical relationships of these modules is shown in
Fig. 3.6~1. The collection of project scheduling modules provides
state-of-the-art solution capability for that class of problems.
It should be noted that each individual module performs a separ-—
able and useful function in its own right and thus may be used in
any custom-made logic that the user designs. Executive modules
(i.e., NETWORK EDITOR, CRITICAL_PATH_PROCESSOR, and HEURISTIC_
SCHEDULING_PROCESSOR) are alsc provided, however, that call other
modules in order to execute a particular solution strategy. Thisl
strategy produces near-minimal time schedules;lwhich satisfy both
resource lével constraints and network constraints (precedences)
and aléo produce gmoothed resource demand profiles.

The problem characteristics that are accommodated by the
PLANS project scheduling moduleg include those described in Sub-
sections 3.4.1 through 3.4.5 and illustrated in Fig. 3.6-2. In
addition, project scheduling techniques can be applied to more

general problem descriptions by applying special reformatting
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Project Schedule System within the PLANS Module Library
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cachniques; Examples include creating dummy processes and regarding
item-specific resources as pools of the gquantity one. Studies

are underway to identify and automate such reformating techniques
£hat will extend the capabilities provided by project scheduling.
Results will be reported in subsequent documentation.

In a strict sense, the problem characteristics that can be
handled by mathematical programming methods are not limited. It
is the dimensionality of the problem that limits its compatibility
with mathematical programming techmiques. All scheduling problems
that can be solved using mathematical programming techniques can
be characterized és emall in dimensionality. Such problems may
occur in preliminary scheduling or may represent intenticnal sim-
plifications made for the purpose of establishing performance
goals or limits. If a problem involves only a small number of
processes, each with a small number of resources, and if few al-
ternatives exilst for choosing between resources Or processes,
then mathematical programming solution techniqueé could'ﬁe ap-
plicable. An increase in generality of any problem model leads
to a very rapid Increase in the dimensionality of the correspond-
ing mathematical programming formulation. For example, jobs that
require nonconstant quantities of resources, as illustrated in
Fig. 3.6-3, lead to additional choices (i.e., decision wvariables)

and, therefore, to an increase in deimensionality.

159



Resource

Level

Required
Job With
Nonconstant Resource
Requirements

Fig. 3.6-3 Example of Nonconstant Resource Demand Profile

It follows that model simplicity is an indirect necessary con-
dition for using mathematical programming techniques for scheduling.
Some problems associated with resource allocation may have

small enough dimensionality to be amenable to mathematical
programming techniques. An example is the development of a

set of compatible combinations of resources such as grouping
pavloads that have composite length, weight, and power require-
ments that fall below a set of limits. The PLANS library contains
modules, called COMPATIBILITY SET GENERATOR and FEASIBLE _
PARTITION GENERATOR, which apply to this problem. They are based
on quasi-enumerative techniques and produce mathematically op-
timal solutions.

Other problems with small dimensionality can be solved with
other PLANS mathematical programming modules. Figure 3.6-4 rep-
resents a decision structure that leads either tfo an appropriate
algorithm choice, or to an indication that mathematical programming
techniques are not applicable. This simple diagram contains

order-of-magnitude decision thresholds concerning dimensionality
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and should assist the problem analyst in determining whether he
should consider using mathematical programming. Secondarily,
the figure is useful in suggesting characteristics of his problem
that prevent the applicability of existing mathematical programming
methods. Such knowledge could lead to minor réstructuring of the
problem model to take advantage of logic from the module library.
The use of Fig. 3.6-4 presumes the ability to scope the.di—
mensionality of a problem. For estimating purposes, the dimen-
sionality of a problem can be approximated by summing (over all
jobs) the number of time intervals during which each job may
start. The upper bound on the number of intervals during which
a job may start is, of course, the number of intervals in the
scheduling horizon being considered. If a critical path analysis
is performed, the user can determine the exact number of inter-
Qals for each job as the number of slack intervals for that job.
The tests for Genefalized Upper Bounding structure {(abbreviated
GUB in Fig. 3.6-4) refer to a sﬁecial structure within the tableau
in linear programming that permits the use of this technique.
The GUB structure arises in problems that require the selection
of one, and only one, candidate from each of several groups of
candidates. For example, in a scheduling prdbiem one, and only
one, start time must be chosen for each jeob (from the groups of
candidate start times for that job). No jobs may be left out and
no jobs may be assigned more than one start time. Another example
where the GUB structure would occur is in assigning personnel with
special skills to a job requiring one electrician, one plumber, one

mason, etc pgiven that sets of personnel with these skills exist.
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4,0 ILLUSTRATIVE EXAMPLES

D D T P —— —— T . dm . B e e e e o

4.1 ORDERING OF A PRECEDENCE NETWORK
4,1.1 Problem Statement
In Section 2.0 of this volume, the logic of the module ORDER
BY_PREDECESSORS is used to illustrate the PLANS language features.
The same example is repeated here with emphasis placed on how the
data structures are modified as the logic is executed. A simple

four-job network is used for illustration; the network can be

depicted as shown in the sketch,.

The problem is simply to generate, from a randémly ordered list
of jobs, an ordered list that has the property that any job will
appear in the ordered list only after all its predecessors have
appeared.
4.,1,2 Problem Model
For this simple problem, the input network information is
provided in a tree called $JOBLIST that, initially, has the

structure shown in Stage 1 of Fig, 4.1-1.
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STAGE 1

J0B_A

PREDECESSOR

SNAME_LTSY SORDERED_LIST

O O

SJOBLIST

J0B_C J08_D

PREDECESSOR PREDECESSOR

J0B_C  JOBD JOB_B JOB_B
STAGE 2 $J0BLIST SNAHE_LIST $ORDERED_LIST
JO& B
JOB_A JOB_C J0B_D -
Jos_e
PREDECESSOR

PREQECESSOR

PRECECESSOR

J0B_C JOB_D 08 B J0B_B
ORDERED_L1ST
Stage 3 $ -
$JOBLIST SHAME L1ST
J0B_¢
JOB_A J0B B
J0B_B JOB_C
PREDECESSOR PREDECESSOR PREDECESSOR
J08_C JOB_D JOB_B JOB B
AGE 4 SJ0BLIST SNANE LIST $ORDERED_LIST

J0B_C

J0B_D

JOB_A

JOBB JOBC  JOBD
PREDECESSOR
PREDECESSOR

060 208 B J08_8

STAGE 5

$ORDERED LIST

$JOBLIST SHAME_LIST

O

JOBE  JOBC JOBD  JOBA
PRERECESSOR

PREDECESSOR PREDECESSOR

J0B B JOE B JOB_C JOB_D

Fig. 4.1-1 Data Structures Illustrating OFDER_BY_PREDECESSORS
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4.1.3

oW1 U N

Program Logic

The $JOBLIST tree shown at Stage 1 is passed as a parameter
to the module, ORDER BY PREDECESSORS (see Fig. 4.1-2). Because
$NAME LIST is declared to be local to the module, it is empty each
time the module is entered. $ORDERED LIST is usually empty, but
may contain joEs that are to precede all jobs in $JOBLIST. This
allows ORDER BY PREDECESSORS to be res#artable, in case a re-~
quired job was missing from $JOBLIST on a previous call to ORDER_
BY PREDECESSORS. $ORDERED LIST is passed to the module as a
parameter. Its initialization is the respomsibility of the call-

ing progran.

ORDER_BY PREDECESSORS: PROCEDURE ($JOBLIST, $ORDERED_LIST)

DECLARE $NAME LIST, $TEMP LOCAL

LOOP:

GRAFT $JgBLIST.FIRST: (ELEMENT .PREDECESSOR SUBSET OF $NAME_LIST)
AT $TEMP;

IF $TEMP IDENTICAL TO $NULL THEN RETURN ;

$NAME_LIST (NEXT) = LABEL ($TEMP) ;

GRAFT S$TEMP AT $ORDERED LIST (NEXT)

GO TO LOOP

END ORDER BY PREDECESSORS ;

Fig. 4.1-2 PLANS Subroutine for Ordering Jobs by Predecessors
Since SNAME LIST is initially empty, the GRAFT statement at
line &4 searches for the first job in $JOBLIST that has no pre-
decessors (JOBwB), removes that job from $JOBLIST, and places it
at $TEMP. Because a job was found (i.e., because $TEMP is not

null), line 6 fails to cause a return. The name of the job found

 is, therefore, added to $ORDERED LIST. The GO TO statement at

line 9 then starts the process aver again at LOOP. The tree

gtatus at this point is shown in Fig. 4.1-1, Stage 2.
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The GRAFT statement at line 4 again searchés for the first job
in $JOBLIST whose predecessors are a subset of SNAME LIST. 1In
this case, SNAME LIST contains only the name, JOB_B. Thus, the
first job (JOB_F) in $JOBLIST that either has no predecéssors or
has only JOB B as a predecessor will satisfy the condition and be
removed from $JOBLIST and placed at $TEMP. The exit test fails,

the name JOB C 1s added to $NAME_LIST, and the job itself is

removed from $TEMP and added to $0RDERED_LIST. The tree status
at this point is shown in Fig. 4.1-1, Stage 3. Note that the
entire substructure representing information about JUB_C is now
in SORDERED LIST.

The third pass starting at LOOP transfers JOB D to $ORDERED
LIST because its only predecessor, JOB B, is named in $NAME LIST.
The tree status at this point is shown in Stage 4.

Now that both JOB C and JOB_D are named in $NAME_LIST, the
conditional GRAFT statement is satisfied by JOB A, which is there-
fore moved to $ORDERED LIST, yielding the status shown in Stage 3.

Finally, the GRAFT statement at line 4 fails to find in
$JOBLIST (which is empty) a new job whose predecessors are in
$NAME LIST. A null node is, therefore, placed at $TEMP, éausing
the exit test (line 6) to succeed. Note that the module would be
exited if the conditional GRAFT statement failed even if $JOBLIST
were not empty. This conditien would indicate a cycle or a miss-
ing job in $JOBLIST. It is the responsibility of the calling
program to test for this condition if such a test is considered

necessary.
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4.2

4.2.1

b

2.2

PAYLOAD GROUPING
Problem Statement

The problem is to find a composite payload whose character-
istics satisfy Shuttle Orbiter limits. For simplicity, we restrict
the characteristics to be those that can be evaluated by summing
the properties éf the individual payload (e.g., length, weight, etc).
Any combination of payloads that satisfies all the Shuttle limits
is considered a candidate for a mission. The best composite pay-
load is to be selected by an existing routine., Therefore, the
logic to be written must find all feasible combinations and pass
those combinations to the selection routine. A composite payload
could consist of a single payload, a pair of paquads, a triplet
of payloads, etc, i.e. combinations of.order l, 2, ... up to a
prescribed maximum order. For example, payload 12 could, itself,
be a feasible composite payload as could the triplet consisting
of payload 12, 5, and 17.
Problem Model

This problem is not, in the strictest sense of the word, a
scheduling problem because no assignment of times to the activ-

ities is involved. However, neither PLANS nor the library modules

" have been designed with such a limited view of scheduling in mind.

This problem deals with the characteristics of resources that can

be described within the $RESOURCE tree structure, as:

' $RESOURCE

SHUTTLE_WITH_KICK_STAGE
¢
LIMIT
BAY LENGTH - 32
WEIGHT - 4400
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PAYLOAD

AS001
CHARACTERISTICS
LENGTH ~ 13
WEIGHT - 1807
PHOO?

The information needed to generate the candidate-feasible
combinations and to call the payload selection routine can be

arranged within the $0BJECTIVES structure as shown below:

$OBJECTIVE
FIG_OF MERIT
¢ - MINIMIZE
¢ - NUMBER
CONSTRAINT
MAX_IN COMBO - 3

4.2.3 Program Logic
The logic consists of nested loops of PLANS code. The inner-
most loop sums one characteristic over all payloads in a par-—
ticular combination. This summation is repeated for each char-~
acteristic as the next higher loop is executed. The combination
loop, a unique capability of PLANS, generates each payload com-
bination of order K, where K ranges from 1 to the value of MAX

IN_COMBO in the outermost loop. The PLANS code is shown below.

I FIND_BEST_COMPODTTF_PAYLOANE FROCEDURE (B0BJECTIVESs SKESOURCE) 3§

2 /% GENEHATE ALL INTERNALLY FEASIHLE PAYLNAD COMBINATIUNS, “/
3 DO K = 1 Ton SURJECTIVES.CONSTRATINT MaxX_IN_COMARQ §

4 DO FOR ALl CUMBINATIONS OF SHESNUHCE PAYLOAD TAKEN K AT A TIME 1

5 DO U = 1 T MUMAFR{SPRFSGURCFE (SHUTTLF_WITH_KICK_STRGFE (1) JLIMIT) %
6 $SUMI) = 0 &

7 Do L=1ToKS? 3

8 BSUMJ) = KSUMIL) + RCOMATNATION(L) «CHARACTERISTIC(JY ¢

El ENL 2

10 IF BSUMIJ) > SHFSQUKCE (SHIUTTLF _WITH_KICK_STAGE (1) ,LIMIT( )

11 THEN GO Tn EMO_CUMAQ_LNOR 1

12 ENnD 3

13 FFEASIRLF_SET(NFXT) = SCOMATMATION

14 GRAFT $5UM AT SFEASIRLE_SET{LAST).SUMS ¢

15 END_COMBO_| DOPY  END 3§ -

16 END 3 Reprodugt‘adb1ff°$py.
17 CALL BESTSET(SOBJUECTIVES $FEASIRLE_SFTsSREST) 3 best available

18 WRITE SHEST 13
19 END FIND_BEST_CU~PRSITF_PAYLOAD §



The code presented assumes that the subroutine BESTSET has
the capability to interpret the information and structure of
$OBJECTIVES.

Notice should be taken of the use of the special indices,

NEXT and LAST, in statements 13 and l4. These statements add a
new combination of payloads to $FEASIBLE SET. Because PLANé is
a tree manipulation language, the structure of the data trees
actually changes during program execution.

As the combination loop is executed, the structure $COMBINATION
is maintained. $COMBINATION is a special tree that does not
actually have subnodes of its own; Instead, $COMBINATION is
maintained, with a set of pointers, in the already existing
structure from which the combinations are to be formed {$RESOURCE.
PAYLOAD). This economizes on time and storage by avoidingﬂun—
necessary duplication of data. For a second—-order combination,

it might look like:

$COMBINATION $COMBINATION
ASO01
CHARACTERISTIC
LENGTH - 13

AS001 PLO15

WEIGHT - 1807

PLO15

- CHARACTERISTIC
LENGTH - 27
WEIGHT - 3645

CHARACTERISTIC CHARACTERISTIC

LENGTH LENGTH WEIGHT

13 1807 27 3645
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where both payload designators are first order subnodes of

$COMBINATION.

If this combination were feasible, the statement

$FEASIBLE_SET (NEXT) = $COMBINATION would cause the following

modification of $FEASIBLE SET.

Structure prior to
Statement execution

Structure after
Statement execution

$FEASIBLE_SET

¢
¢

or

$FEASIBLE_SET

$FEASIBLE_SET
¢
¢
¢

AS001
CHARACTERISTIC
LENGTH - 13
WEIGHT - 1807

PLO15
CHARACTERISTIC
LENGTH - 27
WEIGHT - 3645

or

$FEASIBLE SET

AS001 PLO15

CHARACTERISTIC

CHARACTERISTIC

LENGTH

WEIGHT LENGTH

WEIGHT
13 1807 27 3645
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The next statement, GRAFT $SUM AT $FEASIBLE SET{LAST).SUMS results

in:

Structure prior to
Statement execution

Structure after
Statement execution

$5UM
¢ - 80
¢ - 5452

ar

$SUM

40 5452

$3SUM

or

SSUM

$FEASIBLE SET

¢
¢
¢
AS001
CHARACTERISTIC
LENGTH - 13
WEIGHT - 1807
PLO1S
CHARACTERISTIC
LENGTH - 27

WEIGHT - 3645

or

$FEASIBLE_SET

Asgol

CHARACTERISTIC

1807

27

13

PLO15

3645

CHARACTERISTIC

WEIGHT

SFEASIBLE_SET

¢
4
AS001
CHARACTERISTIC
LENGTH - 13
WEIGHT - 1807
PLOLS
CHARACTERISTIC
LENGTH - 27
WEIGHT - 3645
SUMS
¢ - 40
¢ - 5452

or

SFEASIBLE_SET

SUMS

CHARACTERISTIC CHARACTERISTIC

5452

LENGTH WEIGHT

13 18¢7

27 3645
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4.2,4

Note that because the assignment statement 13 builds a new node
in $FEASIBLE _SET, the GRAFT statement {14) must refer to the LAST
(not NEXT) node if the SUMS are to apply to the correct combina-
tion. If the code had been incorrectly written as:

$FEASIBLE SET(NEXT) = $COMBINATION; GRAFT $SUM AT $FEASIBLE SET
(NEXT) .SUMS;

the structure of $FEASIBLE SET would have been:

SFEASIBLE_SET

¢
¢
AS001 h
CHARACTERISTIC
LENGTH - 13
WEIGHT - 1807 >
PLO15
CHARACTERISTIC Incorrect code causes the
LENGTH - 27 loss of the association of
WEIGHT - 3645 g these data.
¢
SUMS
¢ - 40
¢ - 5452

Changes to Problem Scope

It can be recognized that the code 1s independent of the number
of payloads in the problem, the number of characteristics being
considered, and the maximum number of individual payloads allow-
able in any combination. Furthermore, it is possible to write the
BESTSET logic in PLANS to interpret tree data in $OBJECTIVES so
that changes in the problem objectives are easily accommodated.

PLANS permits coding of this routine to be even less sensi-
tive to problem changes than the code illustrated. Suppose, for

example, the power requirements and weights of instruments were
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4.3

4.3.1

to be summed to check for feasibility as a part of a sortie
module design. The apbearance of the label PAYLOAD in the code
is therefore restrictive. The problem would have been avoided
by placing the resource name to be considered in a special place
in the data structure such as in $OBJECTIVES as follows:
$OBJECTIVES
FIG OF MERIT
¢ - MINIMIZE
¢ - NUMBER
CONSTRAINT
MAX_IN_COMBO - 3
PROBLEM_RESUURCE - PAYLOAD
The statements in the illustrated coding that contain the label

PAYLOAD could have been coded with an indirect reference. For

example:

DO FOR ALL COMBINATIONS OF
$RESOURCE . #{ $OBJECTIVES .PROBLEM_RESOURCE)
TAKEN K AT A TIME ; -

Thus to change from payloads to instruments would be accomplished
by adding instruments to $RESOURCE and changing the value of the
PROBLEM_RESUU#CE-node of $OBJECTIVES. ‘
PROJECT SCHEDULING
Problem Statement

A project comsists of 11 activities, each requiring resources
from three different resource pools. To be specific, consider
each pcol to be a manpower pool, containing six men with a common
skill. The activities in the project are related to each other
by simple precedence relations; i.e.,'certain activities cannot
begin before others are finished.‘_The objective of the schedule
is to find the earliest time that all jobs can be completed with-

out using more from an§ pool than are available.
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4.3.2 Problem Model
This problem is precisely the basic project scheduling model.

The characteristics that make it so are:

1) Relationships between jobs (temporal relations) are simple
predecessors;

2) Resources required are pooled resources with no special char-
acteristics that are altered after an assignment. (Pooled
resources with impficit descriptors only, i.e;,.with no
explicit descriptors).

The temporal relations of the problem can be illustrated by a

network diagram. The diagram of Fig. 4.3-1 shows the job dura-

tion below each job and the quantitites of required resources

from each of the three pools above each job.

(3,2,1) (3,1,2) (3,2,3)
I

Fig. 4.3-1 Network Diagram for Project Scheduling
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The standard data structures presented previously accommodate

project scheduling information.

Relations between jobs are in-

cluded in the structure $OPSEQ which, for this problem, would

look like:
$0PSEQ
PROJECT -~ A
A
TYPE - PROCESS
B
TYPE - PROCESS
C
TYPE - PROCESS
TEMPORAL RELATIONS
PREDECESSOR
¢ - A
D
TYPE - PROCLSS
TEMFORAL_RELATIONS
PREDECESSOR
¢ - A
E
TYPE - PROCESS
TEMPORALHRELATIUNS
PREDECESSOR
¢ -D
F :
TYPE - PROCESS
TEMPORAL RELATIONS
PREDECESSOR
¢ -D
G
TYPE - PROCESS
TEMPURAL_RELATIONS
PREDECESSOR
¢ - B
H

TYPE ~ PROCESS
TEMPORAL RELATIONS

PREDECESSOR
¢ - F
¢ -6

TYPE - PROCESS
TEMPORAL RELATIONS
PREDECESSOR

¢ - C
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TYPE - PROCESS
TEMPORAL RELATIONS

PREDECESSOR
¢ -1
¢ -E

TYPE - PROCESS
TEMPORAL RELATIONS
PREDECESSOR

¢ -J

The relationships between jobs and their resources are described
in the $PROCESS tree. For this project scheduling problem,

$PROCESS 1looks like the following:

$PROCESS
A
REQUIRED RESOURCES
MANPOWER
LABOR 1
DESCRIPTORS
¢
INITIAL
QUANTITY - 3
LABOR 2
DESCRIPTORS
INITIAL
QUANTITY - 2
LABOR 3
DESCRIPTORS
INITIAL
QUANTITY - 1
DURATION - 3
B
REQUIRED RESQURCES
MANPOWER
LABOR 1
DESCRIPTORS
¢
INITIAL
QUANTITY - 4
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LABOR 3 .
DESCRIPTORS
¢

INITIAL
QUANTITY - 2
DURATION - 5

The descriptions of the resourceés modeled in the system are de-
fined in the $RESOURCE tree. For this problem, $RESOURCE would
include:

$RESOURCE
~ MANPOWER
LABOR 1
TLASS - POOL
INITIAL PROFILE
NORMAL

QUANTITY-6
LABOR 2
CLASS - POOL
INITIAL PROFILE
NORMAL

QUANTITY -6
LABOR 3
CLASS - POOL
INITIAL PROFILE
NORMAL
¢
QUANTITY-6
The fact that there is a single occurrence of the operation
sequence PROJECT A, is modeled simply By éonstructing $OBJECTIVE
as shown below, The PROBLEM RESOURCE node identifies MANPOWER
as the critical resource to be considered in this problem. This

allows the programmer to use indirect references, thus making

his code more generally applicable.
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4.3.3

4.3.4

$OBJECTIVE
OPSEQ
PROJECT A
TYPE - OPSEQ
PROBLEM_SESQURCE - MANPOMWER

Program Logic

Because this problem is purely a project scheduling problem,
the'project scheduling routines from the module library apply
directly. The recommended method of solutien for this example
would be to use the time-progressive heuristic of the RESOURCE _
ALLOCATOR module. Volume III of this report contains the de-
tailed functional specifications for this module, and the solu-
tion for this example problem that results from the application
of the heuristic procedures is specified in RESOURCE_ALLOCATOR.

The PLANS program code to solve this example merely calls.the
specified library module called RESOURCE_ALLOCATOR. Therefore,
the code is simply: ‘

PROJECI_SCHFRUL Imnb:  PRACEDSURE §
HEAU BOPSFUs b kOCE 5SS RIS CE s WO JECTIVES s TNTEGEH» 3 TANTSEND

STYRE = $NHJECTIVES FROR| o _RESAURCE § O"?f@&ODO

CALL GFNFHAIE _JORSET{FNHJECTTVF Qe RORSEQ s SPHOCESS s INTEGERSJURSET) 1t

D0 =1 TO NUMHEZ ($RFSOUPCE . (STYPEY) 1§ Q} O@
CALL RESOUHCF _PROF[LE ( 6+FSHIACF 4% TYPE y 4{
LAREL [SAr SOURFE 8 {STYPEY 1)) o STAHTab NN $PROFTE) ¢ 'QS{

GRAFT SPRUFILF AT SPROFILES(EXT) 3
END & O@ Oﬁr

CALL mESOURCE_AI LUCATOR | %diHSET « PRNF T FSe RSCHEUULEY 1 p

e TSR T O e
Alternative Approach

An alternative .to the time-progressive heuristic scheduling
Strategy, used within the RESQURCE ALLOCATOR module, is a time—
transcendent strategv. A sing;e time-transcendent strategy with
sufficiently general applicability cannot be specified and there-

fore is not provided in the module library. However, the PLANS
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/ code for constructing such a solutlon strategy is quite simple.
To illustrate this, consider the loglc of Fig. 4.3-2, which is
a time-transcendent loglc. For the example probiem presented,
the program shown in Flg. 4.3-3 could be written to implement
the logic on the flow chart,.

4.3.5 Changes to Problem Scope

| It should be noted that this program is independent of the
total number of jobs, the definition of their predecessor rela-
tionships, the number of resource pools, the problem resource
type, and the time increment. That is, in order to vary these
pfoblem characteristics, the programmer needs only to change the
input data, However, throughout this example it has been as-
sumed that $JOBSET contains only one SUBNET_ID subnode. This
will be the case'for this particularrexample problem because
there i1s only one subnode of $OBJECTIVES:OPSEQ; but, generally,
there will be several such subnodes. This problem can be elim-
inated by inserting the following block of code after the CALL
GENERATE. JOBSET statement near the beginning of the program.
DO I=1 TO NUMBER ($JOBSET) ;

DO J=1 TO NUMBER ($JOBSET(I));
GRAFT $JOBSET(I}{J)}. AT $JOBLIST{NEXT);
END; '

END; :
PRUNE $JOBSET;
This code eliminates all of the SUBNET ID nodes found in $JOBSET.,
It creates a new data tree called $JOBLIST that contains all of
the "job" nodes one level below the root nmode. Therefore, in

the remainder of the program all occurrences of $JOBSET(1) should

be replaced with $JOBLIST.
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START

v

Read Input Data

v

Apply Critical Path Method Generating
1) Earliest start times
2) Latest start times

3) Total slack

Order the list of jobs by
1) Total slack
2) Earliest start times

3) Duration

v

Check the job list.

If any job occurs before its
predecessors, move its
predecessors ta a position
immediately above the job in
the list. The predecessors
should be moved in order of
smallest

1} Latest finish time
2} Total slack

3} Duration

Select the first job in the ordered list

Select next job in list

Select the earliest start time
for the current job ST0P

Increment
time

Fig. 4.3-2

Model Interface

T

is
current
job
‘Tesource-feasible
at this
time?

Schedule the current job
at the desired time and
write the associated
resource assignments

|
|
|
_

Flow Logic for Time Transcendent Project Scheduling Algorithm
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s% TAIS PROGRAM USES A TIWF=TRAMSCENDENT STRATEGY Tu 0LVF THE e/
/% BASIC PROJEGT SCHENULIYG PRORLFM, w/

PROJECT_SCHEDULInGE  PROCENURE 3
REAU SNAJECTLUFSe SNPSEG. »PHOCFSSs SRESAURCEs OELTA_TIMEs INTEGER 3
CaLL GENEDAlt_JuasrT(»nndﬁcr1vrc.snpsanoiPRnCHSS-INTEGEF- SINHSET) 1
CALL CHRITTCAL_PATH_CALLULATOH(SUNASET) §
OKDER % JORSFIT1) AY =FLRAT, TOTAt e =5TARTLEARLYs =JOM_INTERVALLEND ¥
NUMHMER_NF_JOBS = NUMAFIRJUBRET 1Y) 8
P .
THIS LNOB ORGFRS THE JNKS kY BOFELECLSSNRS. WITHIN EACH GROUP OF
PREDECESSUKRS [HE JOHS AMF FUT TH ASCENDING ORDEN ACCORNRING TN LATFST
FINISH TIMES, TOTAL SLACH® AND NUSATION. =/
DO 1=1 TO NUsGER_UF_JOkRS §
SCAN_JURSET!
IF wgORSET Uy (1) W TEMPROMEL RELATIONS (PRENECESSOKS  SURSET nF
SNAMELIST
THEM MNAMELISTINEXTY = LARFL ($JOBSETIL) (1) %
FLSFE Du ¥
Y KeTel TO NUMRFR_DF_JOAS 3§
iF LARFIUBJDRSFT (1Y (k)] SURSEY OF
LJARSET (1Y 4T e TEMPORAL HELATIONS ,PREDECESS0RS
THEN BRAFT SJ0ASFT (L) (K} AT STEMP{SERAT) 1
Emid ot
OROER sTFMP =Y P InTSWLATEs FLOATLTATALY WHaTION 3
LU L=l T NyMgek (4TEMP) g
GHAFT IRSEGT wlEMP (1) AS SJOASET(L) (L) 3

_END %
GU T SCAN_JURSET &
ENE Y

END % '
PRUNE $NAMELLIST 3 ®TYPF = *0AJFCTIVES.PROALEM_HFESOURCE §
/e ’

THLS LODP GAES THANUGH THr 40K LLTST AND SCHEOULES £ACH JOHB AS SO0M

A% A TIME L5 OFFERMIMEDN To WhicH all OF ITS REWUIRED RESOURCES ARF

AYAILAHLE. #/

00 Jel TO NUMSER_OF_JOBS 3 TImF = ®JOASET{1) (U} oSTAHTLEARLY 3
CHECK RESNURCE_ AvATLARTILTIY !

UG Kal Tu aUMHER(RRESIUVCR 48 ¢RTYRE) ) 8
CALL WESUUHCF_PHOFILL {%RESOURCEs ETYPEs
| ABFL (SRESDURCE (AW (STYPFIIRI 3} e TIMEs TIME, SPROFILFY )
1§ $PRUFILE S IN_DSF{L1) 0UANTITY «
SJNRSET{1Y (1Y dFEQUIRED_FFENJIRCESH#{STYPE) (n) (1) JUESCRIPTAORS
(1o INTTIAL JAQUANTITY
> hHESAUHCE o4 (TYHF Y K W TRTTIAL _PHOFILENURMAL (1} NUANTITY
THEN DN ¥ TIME = TT&E » NELTA_TIME 3
GO0 TO CHECK _ESOURCF _AVALLAWILITY 4P
en 3 <ﬁb
END C%?
. - 4?

NOw THE JUR Al BE SCHEDULEND AY URDATING THE ASSIGNMENT INFNR aﬁbn 8%?

FUUNL TN TARE [HEFs SWESQURCE, &/ \4: %
SASSIGNMEUT _UNITLINTERVAL,START = VIME | 4b,
SASSTIGRMENT _UNTF INTERVAL JEND = TIME « SJUHSET{L) {J) JOURATION ¢ *ﬂ(? .
LU L=l TO WMHER(SRESNDACE ¥ (STYPE)) ¥ @

NEENED_AMT = SUNKSET (1) (1 (FERUIREN_RESOQURCES# (STYPE} (L) (1), %ﬁp
DESCRIPTORS (1) o INETYAL.QUANTTTY & )
IF NEFUFL_AMT == @ 6%29
THEN 110 4

$ASSIGNNEN7_UNlT.nESCRIPTURI1}.lNITlAL.GUANTITY =
NEEDED_AMT
CALL WHITE_ASSIGNMEMT (SASSIGNMENT_UNLTe
SRESOURCE «# (STYPE) (L) JASSIGNMENT) ¢
. EnD #
END §
ENUD 3
Fid .
THE ENTIRE SCHEDULF IS5 PRINTED OUT AY THE LNQP BELUW,.
ALL RESOURCES AND THEIH SPECIFTC g0R ASSIGNMENTS ARE DISPLAYED, #/
DO I=1 TQ NUMNER (FRESOURCESBISTYPE))
SNAME = LASEL (3RFSOURCE«# (STYPEY (1)) 3
WRITE §NAMEs SRESOUNCE .# (3TYPE) (1) ASSTBNMENT }
END 3
END PHUJECT_SCHERWLING 1

Fig. 4.3-3 PLANS Code for Time Transcendent Project
Scheduling Algorithms
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4.4

4.4.1

4.4.2

FLIGHT ASSIGNMENT
Problem Statement

The problem to be solved is to find launch dates for a set
of payloads, each of which has a launch window; i.e., an interval
during which it must be launched if it is launched at all. Re-
sources that are required to launch the payloads are specified
by quantity énd type. For example, each launch requires one
orbiter, two solid rocket motors, three crewmen, etc. Since the
resources may be reused after a flight, the scheduling must as-
sign the cycling resources in a way that permits as many payloads
to be launched as possible.
Problem Model

All resources for the problem can be modeled as item-specific
resources. That is, each specific orbiter, crewman, launch pad,
etec shouid be given a separate identity so that each can be"
tracked through the launch and turnaround processes geparately.

It is sufficient in this example to define a single process,

FLIGHT, with the appropriate required resources as illustrated

below:
$PROCESS
FLIGHT
REQUIRED RESOURCES
PAYLOAD
¢
¢
INTERVAL

START - 0
END - 21
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ORBITER
¢

INTERVAL
START - 0
END - 21
SRM

INTERVAL
START - 0O
END - 14
DESCRIPTORS
¢
INITTAL
QUANTITY - 2

Each of the resource types appearing in $PROCESS should ap-
pear in the $RESOURCE tree with the specific resources under each
type. In addition, the payloads and their windows should appear
in $RESOURCE. At input, $RESOURCE would have the structure:

$RESOURCE
ORBITER
ORBITER 02
ORBITER 05
ORBITER 06

SRM .
SRM_5190
SRM A6

PAYLOAD
PAYLOAD_07
WINDOW
START - 217
END - 238
PAYLOAD 09
WINDOW
" START - 240
END - 271
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4.4.3

Program Logic

In the program, illustrated in Figure 4.4-1, the module
NEXTSET performs the function of finding tﬁe next time after a
given input time that a complete set of required resources of
the correct types and quantities will be available. It examines
the assignments in $RESOURCE to find this time, In addition, the
module returns the identifiers of the specifie resources that
correspond to this time. Thus, NEXTSET provides the fundamental
logic needed to build a time-progressive scheduling heuristic.
(See Volume III, Section 2,4.12 for a complete functional descrip-

tion of the NEXTSET module).

FL.IGHTASSIGNMENT! PROCEDURE (SRESOURCEs SPROCESS) |
ORDER SRESQURGE«PAYLOAD BY =ELEMENT,WINDOW,STARTs
=ELEMENT ,WINDOWLEND |
IFLIGHT a SPROCESS,FLIGHT
SFLEIBHT ,JOB_INTERVALSTART = 0 |
GRAFT SFLIGHT ,DURATION AT SFLIGHT,J0B_ INTERVALGEND 2
AUILOSCHEDOULE_UNETY
il
THE MODULE 'NEXTSET' MAKES ALL OF THE RESOURCE ASSIGNMENTS FOR THE
NEXT FLIGHT AND CREATES A TREE (SNEXTSET) WHICH IS READY To &g
PLACED IN SSCHEDULE, HERE IT IS aSSUMED THAT THE PAYLOAD WITH THE
NEARESY WINDaW CPENING TIME WILL BE USED, *#/
CALL MEXTSET(<FLIGHT+SRESOURCE,PAYLGADI)) (MINDOW,5TART,
SRESQURCE s PAYLOAD (1) « WINDOWLEND + SRESOURCE s SNEATSET + SWINDOWS) ©
IF SNEATSET IDENTICAL TO SNULL THEN GO TO QUTPUT 1§
START TIME ® SNEATSET.JOB_INTERVAL ,START ¢

il
THE CODE HBELOW DETERMINES IF a4 OIFFERENT PAYLOAD SHQULD BE SURSTI=-
TUTED oN THIS FLIGHT OUE TO ITS NEARER WINDOW CLOSING TIME. e/
SCANDIDATES = SRESOGURCE,PAYLOAD ALL? (ELEMENY ,MINDOWoSTART <=
START_TIME & ELEMENT,WINDOW.ENUG >® START_TIME) 1
IF SCANDIDATES IDENTICAL TO SNULL .
TREN SKEEP = LABEL (SRESCURCE, PAYLOAD(I1) 1
ELSE DO ¢ N = INFINITY §
FIND_MINIMUM_END_TIME:
GRAFT SCANDIDATES.FIRSTS{ELEMENT,WINDOW.END < N) AT STEWP 1
IF STEMP NOT IDENTICAL TO SNULL
THEN DO 8 N = STEMP,WINDOWSEND § SKEEP & LABEL (STEMP)
GO TO FIND_MINIMUM_END_TIME |
END
END #
Fdl
SINCE THE PAYLOAD HAS BEEN CHOSEN» THE NEXT FLIGHY CAN BE SCHEDULED
AFTER UPDATING THE *ASSIGNMENT' INFORMATION IN SRESDURCE, e/
LABEL {SNEXTSET,RESOURCES PAYLOADLL)) = LABEL (SKEER) |
GRAFT SRESOURCE.PAYLOAD.WLABEL {SXKEEP) AT $SCHEDULED.PAYLOADS (NEXT) |
GRAFT SNEXTSET AT $J0B())
CALL UPDATE _RESOURCE (SJOB»%RESOURCE) ) <§}
GRAFT $J0B(1} AT SSCHEDULE INEATH
50 TO BYILD_SCHEDULE_UNIT 3 C39
QUTPUTS WRITE SSCHEDULE 3

" %
SINCE THIS PROGRAM MODIFIES THF STRUCTURE QF SHRESQURCEs THE LonP Q}
8ELOW [S NEERED TOQ RESTORE IT Tn 1TSS ORIGINAL FORM, ./ "Q

0O L=l TO NUMRER(SSCHEDULEV_PAYLOADS!) |
GRAFT INSERT SSCHEDULED_PAYLOADS(l) AT SRESOURCE.PAYLOAD(1] '(’O

sToR ) | ‘1(?@ ‘7‘?)

END FLIOHT_ASSIGNMENT {9

Fig., 4.4-1 Ezample of PLANS Code for FLIGHT «000?,'3,

ASSIGNMENT 4lgovithm ¢
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4.4.4

After the next flight time and set of resources are deter-
mined by NEXTSET, a choice of payloads may exist for that flight.
The leogic illustrated finds all the payloads whose windows con-
tain the next flight time and then chooses the one whose window
closes the soonest after the flight time,

Finally, the logic updates $RESOURCE by calling the module
UPDATE RESOURCE and adds a new flight to the schedule being
stored in $SCHEDULE., The detailed specifications for UPDATE
RESOURCE are found in Volume III, Section 2.4.16.

Changes to Problem Scope

The code illustrated applies to any combination of resources
in any quantitites properly defined in $PROCESS aﬁd $RESOURCE.
For example, new cycling resources could be added; that is,
ver;ical assembly building, flight ;ontrol centers, etc could
be added to the flight resources without ghanging the code.
Furthermore, the process called FLIGHT need not require all of
its resources for the same time intervals; the diagram below

illustrates a resource set that is accommodated merely by chang-

ing the $PROCESS data without changing the illustrated code.

ORBITER (1) ;
CREWMEN (4) !
RECOVERY SHIP (2) —
SRMS (2) e

LAUNCH PAD (1) —

REFURBISHMENT
FACILITY (1)

6 S 1

T

Yl

TIME
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Another illustration of a change in the problem scope that
éould be accommodated without a coding change concerns the model-
ing of resources that undergo descriptor changes as a result of
being assigned. Suppose that the process FLIGHT were defined to
require erewmen with no previous flight experience. $PROCESS

might look like:

$PROCESS
FLIGHT .
REQUIRED RESOURCES
CREWMAN
¢
¢
DESCRIPTORS
¢
INITIAL
EXPERIENCE - NONE
FINAL

EXPERIENCE - VET

The appearance of the intial descriptor, EXPERIENCE, with a
value NONE would cause the module NEXTSET to look only for crew-
men with no experience. After being assigned to a flight, a crew-
man would have a value VET for EXPERIENCE as a result of the
action of the module UPDATE RESOURCE and thus, would not be chosen
again. Thus, without changing the code, we have introduced non-
recycling resources into the system. In the terminology of the
operations model, this has been accomplished by generalizing
item~specific resources, with implicit descriptors only, to item-
specific resources with explicit descriptors. WNote that explieit
descriptors have the distinguishing property of being changed
by a process and retaining their new value after the process has

terminated.
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