

~

MARTIN MARIETTA AEROSPACE

To: Recipients of MCR-74-314 NAS9-13616

%&&M V7433706

DENVER DIVISION

POST OFFICE BOX 179
DENVER, COLORADO 80201
TELEPHONE {303) 794-5211

56478

CR _jfIREE

Subject:f MCR-74-314 NAS9-13616, Phase 1 Final Report,

chieduling Language and Algorithm Development Study,

Volume II1I.

Detailed Functional Specifications for the

Language and Module Library

Attached are revision pages for the subject report. Please
add the attached new page vii to your book and replace all pages
currently in your book with the remaining attached replacement

pages.

o o gl
> 97/ ,\7///4 Cr

John F. Flater
Program Manager
NAS9-13616

2

(%

-

Page Intentionally Left Blank

"Page\missing from available version”

T

/‘-

?

et

N

V]
.

RN NNNNMNRONNNOMRNNONNNDNNODNDN
. 3 L[] . . - . . [] L

H e e e

NN
P

«24_ PREDECESSOR_SET_INVERTER v v v v v v v v v v v .

CONTENTS
Page

INTRODUCTION . & v v v 4 4 o &+ o o s o o o e s o o o o« o &« 1
0 SPECIFICATIONS FOR A PROGRAMMING LANGUAGE FOR

SCHEDULING APPLICATIONS+ & & & &+ o o o o o o & o =« 1-1
1. Specification Metalanguage e e e e e e e e s 1-5
1.1 The Abstract Translator & « o« ¢ o+ « o o o o o o = 1-5
1.2 The Metasyntactic Sublanguage « « . . 1-9
1.3 The Metasemantic Sublanguage « 1-20
1.4 A Simple Example + & « ¢ « ¢ 4 o 0 .o e e e 1-27
2 The PLANS Pseudomachlne e e e e se e e e e 1-37
2.1 Basic Description e e e e e e e e e e e e e e e e 1-37
2,2 " Definition of Individual Pseudomachlne Operations . 1-39
3 The PLANS Language Specification « .+ + « « . 1-47
0 SPECIFICATION OF A MODULE LIBRARY FOR SCHEDULING .

APPLICATIONS . . . & . v ¢ v v e o o o o o o o 2-1
.1 Representation Techniques for Data Trees- . e 2-3
2 Standard Data Structures for the Scheduling

Operations Model « + . . e e e e e e 2-9
3 Terminology and Definltlons of -the Scheduling '

- Operations Model e b e e e e e e e e e e 2-19
4 - Library Module Spec1f1cat10ns 2-21
4.1 DURATION e e e e e e e e e e e e e e e e e e 2.4.1-1
4.2 ENVELOPE ¢ . o o o o o o .. e e e e e 2.4,2-1
4.3 INTERVAL UNION-. . e e e e e e e e e e e e 2.4.3-1
4.4 JINTERVAL INTERSECTION o . . o o v v o0 v v 2.4.4-1
4.5 FIND MAXIMUM e e e e e e .. 2.4.5-1
4.6 FIND MINIMUM e e e e e e e 2.4,6-1
4.7 CHECK_FOR _PROCESS DEFINITION e e e e e e e e e e e .. 2.4.7-1
4.8 GENERATE JOBSET . . v v v v v e e e v e v e ™ e e e e ©2.4.8-1
4.9 CHECK_EXTERNAL_TEMP;RELATIONS 2.4.9-1
4.10 CHECK INTERNAL TEMP RELATIONS « o+ . . . 2.4.10-1
4.11. CHECK_ELEMENTARY TEMP RELATIONS e e e e e e e e e e e e 2.4.11-1
4.12 NEXTSET « « o o« .+ .« . e e T L U Ty e e e 2.4.12-1
4.13 RESOURCE PROFILE ¢ ¢ v v v v v v v v o o . e 2.4,13-1
4.14 POOLED DESCRIPTOR COMPATIBILITY 2.4.,14-1
4.15 DESCRIPTOR PROFILE «« . o o o 0 o v v v v .. 2.4.15-1
4.16 UPDATE RESOURCE e e e e e e e e e e 2.4.16-1
4.17 WRITE ASSIGNMENT e e e e e e e e e e e 2.4.17-1
4.18 UNSCHEDULE 2.4.18-1
4.19 COMPATIBILITY SET GENERATOR « . « v v v v v o 2.4.19-1
4.20 FEASIBLE PARTITION GENERATOR . e e e e e e e e e 2.4.20-1
4.21 PROJECT_DECOMPOSER e e e e e e e e e e e e e e e e e e 12.4.21-1
4.22 REDUNDANT PREDECESSOR CHECKER .- e e e 2.4,22-1
4.23 - CRITICAL PATH CALCULATOR e e e e e e e e e e 2.4,23-1
4 2.4.24-1

iv

Page Intentionally Left Blank

2.4.11-1
2.4.12-1
2.4.16-1

2.4.28-1

N
o~

.32-3

N
£

.32-4

N
g

.32-5

.33~-1
.33-2
.33-3
.33-4
.33-5
.33-6
.33-7

.34-1

N NDMDNNDNMNBNMNDNDDNDN
~ AP

N
g

.34-2

- 244:34-1—

Structures for Module: CHECK ELEMENTARY_TEMP_RELATION . 2.4.11-3
Minimum Required Input Structures from Standard Data
Structures for Module: NEXTSET - . 2.4.12-4
Minimum Required Input Structures from Standard Data
Structures for Module: UPDATE RESOURCE 2.4.16-2
Illustration of Interfacing-Event Data Structure for
Sample Subnetwork Complex of Fig. 2.4.28- 2 e e e e e 2.4.28-3
Sample Subnetwork Complex . . . e e e e e e 2.4.28-4
Constrained-Resource Problem with Three
Resource Types . . . 2.4.32-17
Trace of the Executlon of the RESOURCE ALLOCATOR
Algorithm on the Constrained-Resource Problem Shown
in Fig. 2.4.32-1, Using Contingency Resource

‘Thresholds on the First and Third Resources,
Respectively . . 2.4.32-18
RESOURCE / ALLOCATOR Solutlon to Constralned—Resource
Problem U51ng Resource Contingency Levels of 2, 0,
and 1, Respectively 2.4.32-22
Minimum Duration Solution to Constralned—Resource

" Problem Using No Resource Contingency Levels . .. 2.4.32-23
RESOURCE_ALLOCATOR Solution to Constrained-Resource

- Problem Using No Resource Contingency Levels . 2.4.32-25
Profile for Single Resource . 2.4.33-3
Time-Varying Resource Variables 2.4.33-7
Examples Project Network . . . e e 2.4.33-10
Nominal Schedule Using CPM Early Starts 2.4,33-11
Rescheduled Using RESOURCE LEVELER . 2.4.33-11
"Hand" Scheduled Solution e e e e e e 2.4.33-11
Detailed Diagram of min (I;Si e . 2.4.33-13
Sample Presentation of a General Temporal Relation
Using Closely-Continuous Successors 2.4.34-4
Sample Presentation of a General Temporal Relatlon
Using Closely-Continuous Successors . 2.4.34-4
Table
Sample-Characteristics of -Some Commercially-Available-- - S
Computer Programs with Constrained-Resource Network
Scheduling Capabilities 2.4.34-14

2.4.37-8

‘Minimum Required Input Structures from Standard Data

_ 2.4.37.8-1 Summary of Implementatlon Recommendatlon .

vi’

[N

REVISION STATUS SUMMARY

- o - -

The. following list identifies the revisions made to this specification

by symbol, & brief summary of the purpose of each revision, and the pages

revised. i
REVISION REVISION PURPOSE
SYMBOL PAGE NUMBER(S)
S _REVISION DATE ~
.) ORIGINATOR/APPROVAL
A

To incorporate revision status gummary page.

s _

To correct typographical and editorial errors in original issue,
iv, Vi, 1-14, 2-11, 2-12, 2-13, 214, 2-15, 2-16, 2.4.1=5, 2.4.3-1,
2ubolomly 2.6.5-2, 2.4.6-2, 2.4.7-1, 2.4.7-2, 2.4.7-3, 2.4.8-4, .

2.4.8-5, 2.4.9‘3, 2.4.9-4,‘2.4.10‘2, 2.4010’3, 204010-4’ 204.11,

204011-1, 204.11-3, 2.4.]1-5, 2.4.12, 2.4-12‘1, 2.4.12-2, 2.4.12’3,

2,4,12=4, 2.4,12=5, 2.4,12-6, 2,4.13-2, 2.4,13-3, 2.4.14=3,

2.4.14=5,

2.4.16=3,

2.4.22-3,

2.4.23-6,

2,4,25-4,

2,4,26-5,
2,4,29-2,
2,4,31-2,
2.4.33-1,

2.4,34=7,

2.4,14-8,
2.4.17-2,
2.4,23-1,
2.4,23-7,
2.4.25-5,
2.4.27=2,
2.4.20-3,
2.4,32-4,
2.4,33-2,

2.4,34-8,

2.4,14-9,
2;4.18-3,
2.4,23-2,
2.4.23-8,
2.4,25-6,
2.4,27-3,
2,4.29~4,
2.4,32-5,
2.4.33-8,

2.4,34=9,

2.4-1 5-2,
2,4,21-1,
2.4,23-3,

2.4.24-2’

2.4,25-7,

2.4,27-4,
2.4,30-4,
204032~6,

2.4.34-3,

2.4.34=10, 2.4,34=11, 2.4.34=17,

2,4,35, 2,4,36=3, 2,4,36-4, 2.,4.38-5

2.4,15-3,
2.4421-2,
2,4,28-4,
2.4,24-3,
2.4,25=8,
2.4,28-2,

2.4,30-5,

2,4,32-17, 2,4.32-24,

2.4¢34-4,

2.4,16-2,

2.4.22-2’

2.4-23-5,

204.24‘5’

2.4.26-2,

2.4,28~5,

2.4.30"6,

2.4034-6,

13 October 1974

J. Willough%gé%f,éﬁgézzég/ZZ;. "

vii

. Reading the definition from the top, it is said to be an,
laugmented-grammar definig;on éf the ianguage METASYNTAX. The rule
defining METASYNTAX indicg;es that a language definition starts
with the string .AUG_GRAM, followed by an identifier (the name of
the language), followed byAa RULE. The next character of the rule
METASYNTAX<i$ an iteration operator. The dollar sign has the

meaning '"zero or more occurrences of the eleﬁent.f. .Thus, after
the mandatory RULE. zero or more additional RULEs may appear.
Finally, the string .END-terminates the language definition.
The next rule defines a RULE as an identifier (the metavariable
name), followed by the string ":=", followed by an EXPRESSION.
Then zero or more occurrences of an elemgnt may oééqr, where the:
element consists of the single character-"]"~(vertical baf mean-
‘ .- ing "or") followed by an EXPRESSION. Note the use of parentheses
to, form a gfoup that can be treated as a single unit. The
EXPRESSION s€(" EXPRESSION)
pértion of the rule allows a RULE to contain alternatives. An

example is the NOUN rule of Fig. 1.1.1-1, which is read "a NOUN

consists of the word 'BOY', or the word 'GIRL', or the word 'DOG',

;or;thefword:fCAIJ", Finally, the RQPE is said to be teiminated by

a semicolon (the one in quotation marks) and the RULE rule,rgéviﬁg'
been completed, is itself terminated (by a semicolon without quota-
tion marks). Keep in mind‘ﬁhat symbolsAin quotation marks.répresent
terminal symbols in the language being defined (in this case

" METASYNTAX), while symbols not in quotation marks have meaning in

‘= the language in which the definition is written.

1-13

An EXPRESSION consists of an ELEMENT followed by zero or more
additional ELEMENTs. An ELEMENT iévan identifier (used for meta-
variable names), a string (used for'specific terminal symbols),
or any of the specific symbols ".ID", ".STRING", ".LABEL,"

" TREE", ".NUM", or ".EMPTY". ".EMPTY" is a reference to the null
character string, which represents a condition that, during pars-
ing, is alwa&s satisfied. It is used when optional elements are
involved. 1If, for example, one wisﬁed to define a number with or
without preceding signs (unary operators), the rule might take

the form

NUMBER t= (Men | Watt | EMPTY) oNUM 3

which specifies that either "+", ,» or nothing at all may precede
‘the number itself. . |

An additional alternative for ELEMENT (after ".EMPTY") is
WePEEK™ M(n JSTRING ')
which represents a look-ahead capability. The effect is to peek
ahead at the next input symbol to determine whether it is a spec-
ified string. The significanée will be clearer when pgrsiﬁg is
discussed in more detail. The final alternatives fof‘ELEMENT
represent a parenthesized éxpression and an itefaéion respectively.
Finally, the definition of METASYNTAX is terminated by the string
“.END".

It is suggested that the sefious readér consider this defini-
tion of.METASYNTAX.as a grammar for the simple language 6f Fig.
1.1.1-1 and as a grammar for the languége in which the definition
of METASYNTAX is Qritteﬁ, This familiarization will help consider-
ably when the metalanguage isused later in the definition of PLANS.
1-14

Rev A

"Page\missing from available version"

2-1
+o
2- 10

anmva

$5330¥d ‘

amva

03540 ‘

' (@

(.03100d.. | 4314123dS.)

SSY1d . + INJWNDISSY .

sangonazg vavg Pavpuvas INWNOSIYS 1-2°2 1624

3MvA)

a3 .

anva

1yvis .

amva

' .) ‘ auiwvoo ()

amva)

YN WTE0Hd .

amva

IVAULNI . . S¥0Ld1¥IS30 . oI 8or ‘

R ‘ ANIONLINGD .

3MVA)

(AUIWVHYd) .

mvaA)

Mioud Wi . 5 MWLM .

INNOSIYS

~

2-11
Rev A.

2INgONALS DIDY pavpUDES SSIN0Yd$ 8-2°8 “bud

anwa anwa amva anva

*e® ‘ eee . WAUINVEY D O MUNYD .
WIS . Witin .
. amvn amva
' . s . o . s .
$8014149530 . WAL '
?
' {® @
3dAl) . QdAL . (3WVN) . (OWYN) . IWYN} . .
s . ' ’ ' (3dAL) . BaAD . GdAD .
LIBVLNGSNON. | . NBYLINGS. ’ amva
3dAT$$12084 ﬁ@ﬁsxsxsﬁ . QUVANIT $3IUN0STY ' SIAIVNGLTY 20H00SIH . $304N0S34 038103 . NOILVENG . .

awN . awN . GWYN) .

$53004d$ -

2-12
' Rev A

$0PSEQ

(OPSEQ NAME) (OPSEQ NAME) {OPSEQ NAME)

(PROCESS OR
OPSEQ NAME)

{PROCESS OR
OPSEQ NAMB

(PROCESS OR
OPSEQ NAMD

TEMPORAL_RELATIONS ALTERNATIVES

("PROCESS" | "OPSEQ™ (SEE GENERAL SUBSTRUCTURD)

Fig. 2.2-3 $OPSEQ Standard Data Structure

- 2-13
(Rev A)

2anoMaag VIV pavpur2s SINILIING0S F-2°2 “Bud

(S324N0SIY IV INDIY "(IWVYN) : :
'$S3204ds 30 WNLINYULSANS 33S) . GULINULSANS WHINGD 335) «b35d0.. | ..$S320¥d.J

.-cmw“_%m« : SNOILV13Y WHOdW1L

SIALYNYALY

(3WVN 03540 .40 $S3004d)

(3WVN 03Sd0 ¥0 SSI00Ud) {3WVN D3Sd0 40 $S320¥d)

AmMvA) amvay

INIVHISNOD 03sd0 LI¥IW 40 34N914 IWYN WIgo¥d

SIALLI3M80%

2-14
Rev A

amvn amva amvA amvn

eee () ooo‘ ..E!B.:..

(3dAL)

SIAULVNYL WV EO

SNOILYI3Y TYE0dWAL

$304N0S3Y 03¥IN0TY .

" s

m&ﬁoxﬁm DID(q PIVPULES 13sgoes ¢-2°2 "brd

CTIGVLLINISNON, | VLGS

2-15

Rev A

$SCHEDULE

. {308 10) . 1J0B 10) . 108 1D) P)

PROBLEM_ J0B
() wonvee wwe = () orsia wrava, ()erocess () ResouRcrs

("SPLITTABLE" | "NONSPLITTABLE"} (VALUE) (VALUE) (VAWE

. , . START ‘ END . {rvee)

VAWE) . (VAWE)

‘ (NAME) ‘ (NAME)

. ¢ . ‘ . START . END

(VALUD) (VALUE)

‘ INITIAL . FINAL

'QUAan (PARAMETER) ‘ PP ' Y

(VALUE) (VALUE) © wawe (VALUE)

Fig. 2.2-6 $SCHEDULE Standard Data Structure

2-16

Rev A

$JOBSET. $JOBSET

(SUBNET 1D) (SUBNET -1D)

(JOB '1D) (J0B 1D)
JOB_ REQUIRED
INTERVAL RESOURCES
END (TYPE)
(value) (value)
(NAME)
$SCHEDULE
¢

() (308 10) INTERVAL

(") RESOURCES

START END

$JOBSET.

(SUBNET 1ID)

(J0B 1D)

RESOURCE _
ALTERNATTVES

(TYPE)

(NAME)

INTERVAL

(value) (value)
END
| SSCHEDULE o)
(J08_ID)
J0B_
INTERVAL
Oew END
(value) . (value) (value) (value)
Fig. 2.4.1-2 (concl)
e 2.4.1-5

Rev A

® ..

INTERVAL_UNION

2.4.3.1 Purpose and Scope
Given two standard intervals, this module constructs a
standard interval that represents their union, in the sense of

the sketch below.

$INTERVAL A — J
$INTERVAL B } N

2.4.3.2 Modules Called

None

2.4.3.3 Module Input _
$INTERVAL A and JINTERVAL B are standard intervals.

2.4.3.4 Module Output

$UNION is a standard interval.

2.4.3-1

Rev A

2.4.3.5 Functional Block Diagram

.$UNION equals
first subinterval
of $INTERVAL_A,
$INTERVAL;B

Find next
subinterval

of $INTERVAL_A,
$INTERVAL_ﬁ)

Does
it start within.
current subinterval

of $UNION?

$UNION equals
null interval

Empty ‘
? ”YES
Exhausted Return
2 YES
YES

. Next subinterval
- - of ‘$UNION equals
last found sub-
interval
.

Does
it end within
current subinterval

of $UNION?

NO

End of current
subinterval of

2.4.3-2

$UNION equals
end of last
found subinterval

2.4.4

INTERVAL_INTERSECTION

2.4.4.1 Purpose and Scopé

Given two standard intervals, this module constructs a °
standard interval which represents their intersection, in the

sense of the sketch below.

$INTERVAL_A —

o

$INTERVAL_B S - —

$INTERSECTION —

2.4.4,2 Modules Called

None

2.4.4,3 Module Input

$INTERVAL_A and $INTERVAL B are standard intervals.

2.4.4.4 Module Ouﬁput

$INTERSECTION is a standard interval.

2.4.4.5 Functional Block Diagram

(Enter }

$INTERSECTION
equals null
interval

|

$TEMP equals
next subinterval
of $INTERVAL_A,
$INTERVAL B

$TEMP equals
last found
_subinterval

)

Find next
subinterval of
$INTERVAL A, .
$INTERVAL_B

within $TEMP

Start of next subinter-
val of $INTERSECTION:
equals start of last
found subinterval, end
equdls end of $TEMP

Does
it start

?

Does
- it end
within $TEMP

?

YES

Return

Exhausted

2.4.4-2

New subinterval
of $INTERSECTION
equals last found
subinterval

2.4.5 FIND MAXIMUM

2.4.5.1 Pufpose and Scope

Given a set of numerical values (i.e., a node of a tree for
which each of the next lower level éubnodes is terminal and has
a numericai Qalue), find the maximum (minimum) of the values and
find the indices (i.e., the ordinal positions in the original
sét) of each of the subnodes for which the value equals-the

maximum (minimum).

2.4.5.2 Modules Called
(None)

2.4.5.3 Module Input

‘$SET is a tree of the form shown in the sketch. Minimum
‘ required data structure is a tree with at least one subnode at

the next lower level.
$SET
(X) (x) (X)
'_ (valgf)' - (value) (value)

- where each value is numeric.

2.4.,5.4 Module OQutput

MAXIMUM is an arithmetic variable whose value‘is the maximum

of the values of $SET.

2.4n5_l

$INDICES is a tree of the form

- $INDICES

(X) (X)

(index) (index)

where the indices are the ordinal positions in $SET of all nodes

whose value equals maximum.

2.4.5-2

>Reﬁ A

2.4.6

FIND_MINIMUM

2.4.6.1 Purpose and Scope

Given a set’of numérical values (i.e., a node of a tree for -

which each of the next lower level subnodes is terminal and has

a numerical value), find the minimum of the values and find the

indices (i.e., the ordinal positions in the original set) of each

of the subnodes for which the value equals the maximum minimum.

2.4.6.2 Modules Called

(None)

2.4.6.3 Module Input

$SET is a tree of the form shown on the sketch with at least

one subnode at the next lower level.

$SET

(X)

(value) | (value) (value)

_ - where each value is numeric.

2.4.6.4 Module Output

MINIMUM is an arithmetic variable whose value is the minimum

of the values of $SET.

2.4.6-1

$INDICES is a tree of the form

$INDICES

(index) (index)

where the indices are the ordinal positions in $SET of all nodes

whose value equals minimum.

2.4.6-2

Rev A

2.4.7

" names of unfound-processes.and operations sequences. If th

CHECK_FOR_PROCESS_DEFINITION

2.4;7.1 Purpose and Scope

This module checks that all processes or operations sequences
specified in $OBJECTIVE are defined‘in_$PROCESS or $0PSEQ. These
processes may be listed explicitly or contained in an operations
sequence specified in $OBJECTIVES. If any processes are not .. -
included in $PROCESS, such information as process durafion and
required resources are not defined. Since this condition pre-
cludes successful execution of.;he problem, the missing processes
should be identified. This module performs that identification
function.

2.4.7.2 Modules Called

None

2.4.7.3 Module Input

Input to this module consists of $0BJECTIVES, $OPSEQ and
$PROCESS. The minimum required data structure from these Standard

Data Structures is illustrated in Fig. 2.4.7.3-1.

2.4.7.4 Module Qutput

This module will output a tree structure, $MISSING, with the

is tree

is null, no missing definitions have been identified.

2.4.7-1
Rev A

Note: Minimum (i.e. relevant) portion of required input Standard
Data Structures is shown. In all trees, any additional
. structure will be preserved. :

.

$OBJECTIVES - $OPSEQ $PROCESS

OPSEQ. (OPSEQ M
NAME) ' (NAME)
(NAME) (ELEMENT
NAME)
TYPE TYPE
(value) o (value)
Fig. 2.4.7.3-1 :
Minimuwn Required Input Structures from Standard Data Structures for .

Module: CHECK FOR PROCESS DEFINITION

2.4.7-2

- Rev A

2.4.7.5 Functional Block Diagram

Enter

all first-level
subnodes to OPSEQ in
$OBJECTIVES been

considered

Yes

Operations
sequence

next element
an operations sequence
Oor a process

- the operations No

sequence in

$OPSEQ
?

Process 'l Add subnode to

$MISSING.OPSEQ

Yes

Is
process in

$PROCESS
?

y

Add the operations

sequence to the
. pushdown stack

Yes . {

Select next element

from top operations

)

Add subnode to
$MISSING.PROCESS

sequence on stack

1

there more
elements in the
operations sequence
on the top of

the stack
?

Pop the operations
sequence from
top of stack

Are

there more-

No . Yes
operations sequences

on the stack
' 9

2.4.7-3
Rev A

2.4.,7.6 Typical Applications

This module is useful for initial problem processing, which

checks for logical errors or incomplete data.

2.4.7-4

2.4.8.3 Module Input

The input to this module consists of the trees, $0BJECTIVES,

$0PSEQ, and $PROCESS, defined previously, and the integer

-INITIAL_ID} The minimum required data structure from these stand-

ard structures is shown in Fig. 2.4.8-1. INITIAL ID is the first
integer to be used in constructing unique . job identifiers within

the module.

2.8.4.4 lodule OQutput

This module will return an output tree $JOBSET to the calling

'pfogram. It will contain the REQUIRED_RESOURCES information from

$PROCESS with any specific ASSOCIATED_RESOURCES information from

$OBJECTIVES replacing the corresponding generic information in the

REQUIRED_RESOURCES; Since it is permissable to specify specific

resources in both $PROCESS an& $0BJECTIVES, this module will pro-

duce an error message when inconsistent data are specified. The

. ' ' R
structure of $JOBSET is shown in Fig. 2.4.8-2.

2.4.8-3

Note: Minimum (i.e., relevant) portion of required input Standard Data
Structures is shown. Any additional structure will be preserved
in all trees. .
$OBJECTIVES $0PSEQ $PROCESS
- (OPSEQ
OPSEQ . NAME)
' (ELEMENT REQUIRED
(NAME) ‘ 'NAME) , RE?OURCEg- DURATION
(VALUE)
YeE TYPE
(VALUE) (VALUE)
' (NAME).
¢
INTERVAL
END
(VALUE) (VALUE)
Fig. £.4.8<1 : -
Minimum Required Input Structures from Standard Data Structures for Module
Generatzon
2.4.8-4]

Rev- A

amva

(dAl

SIALIYNNUY
INOSTH

SNOLLYI3Y YOIV

2aN30NI18

GmyA amvar

$354N0S3¥"0341N0IY

N
pang pavPWDRS LASEOL ATVHINZD §78°7°8 B24

(LIIGYLLINGSNON, | TIEVLIdSd

101 L3INGNS)

1358018

8-5

2.4

Rev A

2.8.4.5 Functional Block Diagram

(ENTER)

|

.| Select an OPSEQ from)
) $OBJECTIVES. (A first level
subnode of the node labeled
OPSEQ) | ~

If selection is an operations
sequence (as opposed to a process),
recursively interrogate $0PSEQ
until a process is loacted.

g
Assign a unique integer job.
identifier to the next process
and label a first level sub-

node of the output tree, $JOBSET,
with the ID :

L
Add such information as process
name, problem name, resources
assoclated with the job (either .
generic or specific), and '
appropriate intervals to the
output tree (as shown for $JOBSET).

Are
other operations
sequences on the
"pushdown
stack"

Have
all processes
been considered for
this operations

sequence
?

Have
all OPSEQ
in $OBJECTIVES
been’
considered
?

Yes |Add appropriate nodes to $JOBSET
to define temporal relations between
jobs and job alternatives

!

(RETURN)

2.4.8-6

A..A:_:-M: _.: ._ﬂ.;:v:v ‘ T
(3nTA) Gl “(3nWA) (WaN3a|ul8YLSa) (nONT, | wLUYLSY)
(40Lv¥3d0 (3n11 _ . . o :
(LNYLSNOD HLI¥Y) (g0r a3y gon() (NOLLY I3 (Ju1L- S _
B — @ O 4 wanio) O 23HL0) QRSO FETK) (O
(3nvA) (3n7VA) (3nTWA) (3nWA) (3n7vA) (3n77A)

1O 1Q n@ 'O 'O 'O Q. O J®

b (3NTvA) (3nvA)

TwyINgs () syoss39ans (_J '5Y055323034d a3

1uVLS

. | , 031Y101A @ TyA¥ILNT 900

TSINIVYLSNOD

SNOTLYIOIA TWHOdWIL$

UNLINYLS Y1VQ LNdLNO

2.4.9-3

Rev A

Note: Minimum (i.e., relevant) portion of the required input standard data
structures is shown. In all trees, any additional structure will be
preserved.

$JOBSET

()o08 10) (") (J08 1D)

(Y 20B_INTERVAL () TEMPORAL_RELATIONS

(Jprepecessors (JSuccessors) SENERAL

O st (Oeno
. . ‘ ¢
(VALUE) (VALUE) ((V¢ @®

Otoos ref Oiroarca, (O (THE-0THER () (THE OTHER

TIME) RELATION) JOB REF TIME) Jos)
("START" (ll<ll "i“ n=mn ("START" (VALUE)
l"END") |II>II s IIIENDu)

(308 10) (J0B 1D)

J08

- JOB
INTERVAL

INTERVAL

END END

(VALUE) "~ (VALUE) (VALUE) (VALUE)

Fig. 2.4.9-1
Minimum Required Input Structures from Standard Data Structures for Module:
CHECK_EXTERNAL_TEMP_RELATIONS

2.4.9-4
Rev A

2.4.10

CHECK _INTERNAL TEMP_RELATIONS

2.4.10.1 Purpose and Scope

This module will determine the temporal relations specifigd

for jobs in $JOBSET that are violated within a single partial

.schedule that has two or more jobs.

Unlike CHECK EXTERNAL TEMP RELATIONS, this module will iden-
tify all violations of temporal relations that exist within a
single tree containing several schedule units. The module will
build an output tree containing a first-level node for each iden-
tified violation of a temporal relation. Identifiers of the con-
flicfing jobs, the identifiers of the violated temporal relations'.

and the interval of the violation will be recorded for each such.

node.

2.4.10.2 Modules Called

CHECK_ELEMENTARY_TEMP_RELATION

2.4.10.3 Module Input

This module will be éalled with three arguments. There are two
input arguments: $JOBSET and $SCHED. The structure of $JOBSET 1is
identical to the structure output from the module GENERATE;JOBSET.
The structure of $SCHED is that of the standard schedule unit.

| The minimum data structures required from the standard struc-—
tures $JOBSET and $SCHEDULE are shown on the following page. Note
that in the minimum structure the fifth and sixth subnodes of a
relation in the TEMPORAL_RELATIONS substructure are not mandatory

in every case.

2.4.10-1

Note: Minimum (i.e., relevant) portion of the required input standard data
structures is shown. In all trees, any additional structure will be
preserved. : .

" $JOBSET

Olaos 10y - (Qtaos. 10)

' 0
() J0B_INTERVAL O TEMPORAL_RELATIONS

()preocessors ()SUCCESSORS) GENERAL

() starr () END

(J¢ (O¢ ¢
(VALUE) (VALUE) .
Ooos ke Oftoarcar (J(the omher () (THE OTHER .
. TIME) RELATION) JOB REF TIME) JOB) -
1 nonjuzn . " w. .-
st (et (AR ()
|"END") "> s |"END")
$SCHED1
’

(J08 1D)

JOB_
INTERVAL
END

: (VALUE) (VALUE)

Pig. 2.4. 10-1
© Minimum Required Input Structures from Standard Data Structures for Module
CHECK_INTERNAL_TEMP_RELATIONS .

2.4,10-2
Rev A

5 4.10.4 Module Output
Thi

structure shown below:

QYTPUT DATA STRUCTURE

$TEMPORAL_VIOLATIONS

(Jtsos 10) (208 1) {)08 10)

() 308_INTERVAL

Osmar (o (Crprepecessors

(VALUE) {VALUE)
e O oL (Ot
(VALUE) (VALUE) (VALUE) {VALUE)

fach node of $TEMPORAL VIOLATIONS will correspond

a temporal relation in $JOBS

$SCHED (input)..

¢ module will build and return an output

tree with the

CONSTRAINTS_
. VIOLATED

. SUCCESSORS . GENERAL

Ot O+ o oL O

(VALUE) {(VALUE)

(OTHER (NUKERIC
O Tooe mex (LOBICAL (™ bog Rer () (omHeR () ar ()
RELATION i CONSTANT
TIME) T i) J08) " QpERATOR))
(rotaRTeren0n) ey (1) vhee)

("START" { "END")

("“'I“srl‘unlnl“‘u’“)
to a violation of

ET (input) that appears internally in

24 10-3

Rev A

2.4.10.5 Functional Block Diagram

(ENTER)

Y

Create a set of all job
identifiers in $SCHED which
have non-null TEMPORAL _
RELATIONS nodes.

Select a job from the
set.

—
-

i

Select next TEMPORAL_
RELATION for this job.

J
Call CHECK ELEMENTARY TEMP RELATION

Have
All TEMPORAL_
RELATIONS for this

job been considered
© 9

all jobs in
-$SCHED that have

No

TEMPORAL_RELATIONS

been considered
?

RETURN

- 2.4.10-4

Rev A

2.4.11 CHECK_ELEMENTARY_TEMP_
RELATION |

\

Rev A

Ay TEMP RELATION

‘ 2.4.11 CHECK_ELEMENTARY_TEMP_RELATION

2.4.11.1 Purpose and Scope

This module is elementary in the sense that it determines
satisfaction or nonsatisfaqtioﬁ.of a single iﬁput relationéhip
involving the start or end times of two jobs for which specific
start and'eﬁd times have been assigned. The principal use of this.
module is to service higher level logic that is checking mﬁltiple
temporal relations between or within sets of jobs.

2.4.11.2 Modules Called

None

2.4.11.3 Module Input
There are three input arguments to this module. These é;e
$J0B1, $J0B2, and-$RELATION. Thé structure of $JOB1l and $JOB2 is

shown below:

$J08

(VALUE) (VALUE)

*~—
- 9.4.11-1

Rev A

The structure of $RELATIONvis'the structure of one of‘the sub-
nodes of TEMPORAL RELATIONS shown in the section on standard data
"structures. This module assumes that‘$JOBl is'the same job fof
which the structure TEMPORAL_RELATIONS is written and that $J0B2
'is the other job that is referred to in the fourth subnode of the
special structure of $RELATION. Note that in illustrating the
minimum required data structure for this information that the fifth
and sixth SuEnodes for the structure $RELATION are not mandatory to

specify temporal relationships in every case.

2.4.11-2

Note: The minimum (i.e., relevant) portion of the required input standard
. data structures is shown. In all trees, any additional structure will
. be preserved.)
N $RELATION

-(JOB REF
TIME)

~ ("START"
l “END")

(LOGICAL
RELATION)

(n<n|u "ln_n
. Iu N Iu"“u

$RELATION

(OTHER
JOB REF
TIME)

("START"| "END")

OR PREDECESSORS

¢

(NAME)

OR SUCCESSORS

¢
(NAME)

Fig. 2.4.11-1

(OTHER JOB)

VALUE

Minimum Required Input Structures from Standard Data Structures for Module:

" CHECK_ELEMENTARY TEMP-RELATION

o

2.4.11-3
Rev A

2.4.11.4 Module Output

This module returns a tree SRESULT with two first level subnodes

as shown below: -

$RESULT - : -

SATISFIED LEFT_MINUS_RIGHT

(YES [NO) (VALUE)

The value returned for the LEFT_MINUS RIGHT node is simply the
algebraic result of subtracting the quantity on the right of the
binary operator (<, <, =, >, ;) of the input TEMPORAL RELATION
from the quantity on the left. If the module is cailed with a
PREDECESSOR or SUCCESSOR, this module assumes the following eduiv—
- alent relations to compute the LEFT_MINUS_RIGHT value:

GENERAL RELATION

STRT) | < START ‘ L |
= 0F |(J0B_1D)] { } | (consTanT)]
o) > END S '
, > \ : J
LEFT_SIDE ' RIGHT SIDE -
PREDECESSOR SUCCESSOR

END OF JOB2 - START OF J0OB1 ~ START OF JOB2 > END OF JOB 1
LEFT SIDE RIGHT SIDE LEFT SIDE RIGHT SIDE

C2.4.11-4

2.4.11.5 Functional Block Diagram

Yes

?

" ENTER

Is
SRELATION a
PREDECESSOR or
SUCCESSOR

?

Yes

PREDECESSOR
?

Evaluate left side.

Evaluate right side.

operator
'PREDECESSOR’

<', or '<', or

LEFT_SIDE = END OF
JoB2
RIGHT_SIDE = START OF
JOBY

LEFT_SIDE = START OF
J0B2

RIGHT_SIDE = END OF
‘JOB1

Compute LEFT_SIDE
minus RIGHT_SIDE
and build node

LEFT_SIDE-
RIGHT_SIDE
?

Is
operator
‘SUCCESSOR', ' >°,

lil or '=!

Yes .

operator
l<' | . | '>' or

. T'PREDECESSOR’

or
SUCCESSOR.
? .

Yes

Place 'YES'
as value of

satisfied
‘node.

Place 'NO’
value of satisfied

node.

{ "RETURN)

-

2.4.11-5
Rev A

. AlasTuxan Tive

2.4.12 NEXTSET

‘ 2.4.12 NEXTSET .

2.4.12.1 Purpose and Scope

This modﬁle accepts an abstract descripﬁion of item specific
resource requirements aséoéiatéd with a specific job and, by re-
ferring to information about the assignments already Scheéuled
fbr the resoufces, determines the earliest possible time (within
-a designated interval) at which the resource requiremenﬁs can be
fulfilled.'vlt generates all information required to actually place
the joB'on the schedule but does not cause resource assignments
to be written. The modulg also determine; the time intervals
during which the resourcelrequirements are met using the same
permutation of reSOurcés and time intervals for which any pérmuta—
tion of available resources meets the ;equirements.

‘ : 2.4.12.2 Modules Called

DURATION
INTERVAL UNION
INTERVAL INTERSECTION

2.4.12.3 Module Input

$ABSTRACT is a tree structure that describes the job in terms
of its general characteristics; resource requirements, and, if
applicable, in terms of any user-designated specific resource

allocations. Its structure is shown on the following page.

2.4712=1
Rev A

Gmya amva amva) amva

ese () eee() wamvave) () E:aa‘

NI ‘ , 4 WILINI ‘

(34AD . G4AD . - o .

$34NOSIY ININ0IY .

owisavs -

(INQVLLISNON. | \J1BYLLNAS

3dA80r . C

2.4,12-2

Rev A

Except for the job, process, and resoﬁrce intervals, the in-
formation is exactly as used elsewhere fof abstract process and
job description. Specifically, the information is iﬂ the form
generated‘by'the module GENERATE JOBSET.

Since the absolute start and end times of the jobs, processes,

‘and resource allocations are an output of this (and other) modules,

rather than an input, the intervals in this structure are rela-
tive. The resource interval represents the start éndiend times
(relative to the start of the procesé) of a single resource al-
location. These relative times may be positive, zero, or (very
rarely) negative.

- The absolute start and end times‘Of interest are specified in
the argument list to'limit the scope of assignments considered,
and $RESOURCE is referenced to allow access to the resource as-
signments. |

1f for a given resource unit, the resource unit name is
specified (i.e., LABEL($ABSTRACT.REQUIRED_RESOURCES(J)(K)) is not
null,-then it is assumed that the named resoﬁrce unit is to be

used. Regardless of the specification or nonspecification of the

resource unit, the requirements (descriptors, quantity, etc.)

still aﬁpiy and must be satisfied, if possible, by NEXT SET.

274+12-3-

Rev A .

o

Note: The minimum (i.e., relevant) portion of the required input standard
data structures is shown. In all trees, any additional structure

will be preserved.

$ABSTRACT
(J0B 1D)

JOB

INTERVAL REQUIRED RESQURCES

(TYPE)

(VALUE) (VALUE)

(NAME)

Fig. 2.4.12-1
Minimum Required Input Structures from Standard Data Structures for Module:

NEXTSET

2.4.12-4
Rev A

OUTPUT DATA STRUCTURE

$CONCRETE -
(J0B 1D)

{"J08

PROBLEM
- OPSEQ
QNAME Q INTERVAL RESOURCES
(VALUE)

(VALUE) —— (VALUE) /

START END (TYPE)

(VALUE) ———— (VALUE)

(NAME) (NAME)

Sty

DESCRIPTORS . - INT;RVAL

W

O

Q{ ‘ X START END
~ (VALUE) = —— (YALUE)» —m—

QW\{&MWET%”T\Q o

(VALUE) (VALUE) (VALUE) (VALUE)

2.4.12-5
Rev A

2.4.12.4 Module Output

The outputvof NEXTSET consists of two output trees, $CONCRETE .
and $AVAILABLE_WINDOWS. S$CONCRETE, as shown below, describes a
specific éxecution of a job, with all timés and resource alloca-
tions fully specified in absolgte terms at the earliest available
_opportunity within the specified window. $AVAILABLE_WINDOWS;'
also éhown below, defines all of #he available time intervals,
within the specified window; for the set of resources correspond-
ing to the set representing the earliest availéble time. It also .
defines the availaﬁle ;ime intervals if any permutation of ac-

-~ ceptable resources is considered.

$AVAILABLE _WINDOWS . °

SAME_RESOURCE_SET ANY_RESOURCE_SET

(VALUE) (VALUE) (VALUE) (VALUE)

1 2.4.12-6
Rev A

2.4.13

‘time interval for both a ''mormal" and
< v

RESOURCE_PROFILE

2.4.13.1 Purpose and Scope

In project scheduling the resources are assigned from a pool
and, upon completion of the job, are returned to the pool of avail-
able resources. Thus, the quantity of a given resource, available

in the pool for a given time interval, is required to determine

" the advisability of scheduling a given job -at a given time. Fur-

ther, if sufficient resources are not available at the desired
time, a contingency level of resourcéé may be considered. Ihis
module determines the profile of available resources over a given
"contingency" level of re-
source. If cqntiﬁgency levels are not to.be considered, theyAare
set equal to the normal level. -Certain functional characteristics
of project scheduling also create ;he need to determine the usage
of a podl assigned over a given interval (such aé in attempté to
level resource usage). Therefore, this module also determines

the profile of the assigned portion of the pool and defines the

association of jobs that make up the usage profile.

2.4.13.2 Modules Called

None.

2.4.13.3 Module Input N
The input to this module will consist of the pooled resource
type and name whose profile is to be generated, the time interval

for which the profile is to be generated, and the $RESOURCE.tree.

2.4.13-1

2.4.13.4 Module Output

The output of this module will consist. of a tree structure as
shown in the sketch. The IN _USE portion of the tree defines the
qﬁantity of the pooled resource assigned to a job for a given time
intervél. Therefore, the sum of the quantities for a given inter-
val define the total IN_USE resources for that interval. The span
-of intervals listed will be consistent with the input interval re-
questgd. The available portion of the tree defines the quantity
of resource pool that is unassigned for both a normal and contin-
gency mode of operation. These quantities are determined from
the initial levels defined in $RESOURCE, the allocatioﬁs‘recorded
'ip the ASSIGNMENT.portion of $RESOURCE, and the resources DELETED
or GENERATED recorded in the ASSIGNMENT portion of $RESOURCE.

$PROFILE . |

NURCE_NAME)

,////,

IN_USE AVAILABLE

¢ NORMAL CONTINGENCY

¢ ¢ é ¢ ¢
QUANTITY '
START END QUANTITY

{(value) (value) (value) (value) (value) (value)

308 \C) QUANTITY

_(value) (value)

(vélue) (value)

2.4,13-2
Rev A

. 2.4.13.5 Functional Block Diagram

Is

requested interval No

consistent with data
in $RESOURCE
?

Yes

Locate the earliest assignment involving
the input start time. Compute portion
of that assignment included in requested
interval. Call it "current interval."

{

Form an assignment set consisting of all
non-null intersections of assignments
with the current interval.

]

Build a subnode of IN_USE for each
interval formed by consecutive start
and/or end times. Add corresponding
jobs and quantities for the assign-
ment set.

any resources
generated or deleted
in assignments
considered

Yes -

No

-

- Set Error
Flag

Add Deltas to

INITIAL_PROFILE

and Store as Total

»| assignment interval with

respect to current interval.

Is

Yes complement

null
?

Take complement of next ~~ ~ | -~ --

2.4.13-3

Rev A

2.4-13_4

Define complement
as current interval.

Is
current interval
end time > requested
end time

Define current interval
end time = requested
end time.

current interval
end time > start
time
?

Yes

Subtract the
IN_USE Profile
from Total

1

Build Available
Tree Structure

i

‘ Return)

This module assumes some conventions about the structure of
the ASSIGNMENT node of any resource that is a pooled resource
(i.e., for which the node CLASS has a value 'POOLED'). A pooled
resource that has explicit descriptors mﬁst contain a subnode of
DESCRIPTORS for each partition of the pool. Those partitions that
are being-used in the assignment interval are distinguished from
those'ﬁot used in the interval by the appearance of the 'INITIAL'
and the 'FINAL' nodes. Thus, the availabiiity of a particular
partition .of a pool is precluded during the(aséignment interval
only if that partition has a subnode of the ‘DESCRIPTOR' node
labeled 'INITIAL'. This conﬁention is illustrated in the follow-

ing structure:

$RESOURCE

PERSONNEL

CREWMEN

ASSTGNMENT

END
28_JUNE

INITIAL

NO._OF FLTS

2.4. 14"3

Rev A

The structure illustrates one assignmeﬁt for the pooled re-
source named CREWMEN and indicates that between 14 June and 28
June five crewmen were~assignedA(indicated by the appearance of
the INITIAL node) and 10 crewmen were not assigned.

A slight generalization of the convention is required for‘pools
that have overlaﬁping assignments. The sketch illustrates the as-
sumed structure §f~a portion of the ASSIGNMENT substructure for a
pool of CREWMEN that has been separated into two partitions by
previous assignments. Two assignments whose intervals overlap are

shown.

2.4.14-4

4

01

s174 740 oN() artiwnd()

9 S
- ﬁ:. ALTINYAD .

40 ON
WNIA ()
aNnC. 62 aNng 61
a3() wwvis()
WAINT ()

2 ()

54014149530 ()

(e Lwn9sy))

£ o1 £ 0
_ Sk _ S
u_ovoz oLritiive uoh_.oz ()rL1wnd ()
() wii() LN @
aNng 02 3nng OT
p() aa() wvisC)
WAYaLNT ()
(e€

LINIFWNIISSY .

40 ON

3 ()

0 ON

9 g g S
_ S14 . >:»z<:o., ln_mw.: . ALILNYND .

N4 () WWILINS O

()

S¥0Ld1¥9s3a ()

1WNOSY)

2.4.14-5

Rev A

Note in the illustration that the aVaiiability of the crewmen
iﬁ the 10-man partition during the overlap of-ﬁhé assignment inter-
-vals (15 June through 20 June) cannot be determined correctly by
merely noting the absence of the 'INITIAL' node in the first as-
signmeﬁt. This is because that partition is used in ghe second
assignment. Therefore, the convention adopted requires that all
assignments whose intervals include the availability time in ques-
tion be considered in détermineing the pool gondition at that
time. Note also that the ASSIGNMENT coﬁventions for pooled re-
sources permit fhe determination of descriptoré by considering
Aonly the assignments whose intefvals include the time in question;
unlike the case for item-specific resources, there is no need to
work progressively through all the descriptor changes from a set
of initial dgscriptors té correctly determine the descriptors of
pooled reséurce. (See the discussions in volume II on pooled.and
item-specific resources and the implication :hé corfesponding
conventions have on scheduling and unscheduling using time pro-
gressivé and time transcendent strategies). |
This module builds a tree that disﬁlays for each conflict the

set of resource pool descfiptérs‘that existIBecause of jobs already
scheduled and those required to be added to fhe'schedule. -No in-
" formation on which previoﬁsly assigned jobs caused the conflicts
is included because thé description of any pool is é result of the
composite of all decisions on resource and job aiternatives‘that
have been made throughout development of the schedule. The most

basic information needed to resolve the conflicts is simply what

2.4.14-6

descriptofs exist and-what describtors are required. This infor-
mation is providedvby the output tree from this module.

This module does not write or remove any assignments in
$RESOURCE, i.e., $RESOURCE is returned unaltered. $RESOURCE 1is
required by the module to assess the complete set of descriptors

describing the pooled resources.

2.4.14.2 Modules Called
None

2.4.14.3 Module Input

This module is called with two argumenté: $RESOURCE and
$SCHED UNIT. $RESOURCE has the general structure given in para-
graph 2.4.14.1; $SCHED UNIT has~£he general structure of a sched-
ule ﬁnit shown in the following illustration. |

Note that in $SCHED UNIT the node labeled JOB_INTERVAL.START
must contain the value of the.assignment time for the.job to be

inserted.’

2.4. 14-7

$SCHED_UNIT
(J0B 1D)

PROBLEM ' J0B
(:;TNAME (:)OPSEQ : INTERVAL PROCESS RESOURCES
(VALUE) (VALUE) - \ (VALUE) _
sTART . ()enp - (TYPE)
(VALUE) ‘(VALUE)

QUANTITY (PARAMETER)

(VALUE) (VALUE) (VALUE). (VALUE)

2.4.14-8 .
Rev A

2.4.14.4 Module Output

This module returns a structure called’$POOLED_RESOURCE_
CONFLICTS which contains information about conflicts that would
result if $SCHED UNIT were assigned at its specified time. The

general structure of $POOLED RESOURCE_CONFLICTS is illustrated.

$POOLED_RESOURCE_CONFLICTS

(RESOURCE
ID)

(RESOURCE

1D) (RESQURCE ID)

~ SCHEDULED_RESOURCE_

SCHED UNIT DESCRIPTORS

RES_DESCRIPTORS

(PARAMETER){ (PARAMETER)

QUANTITY (PARAMETER) (") (PARAMETER)() QUANTITY

C(VAWE) (VALUE) - (VALUE) (VALUE) - -(VALUE)- - - (VALUE) .

Rev A

2.4.14.5 Functional Block Diagram

“Entef)

)

Select one (pooled)
Resource Required by
Job-To~Be-Added -

)

Determine (for the assignment .
time of the Job-to-be-Added)
the complete description of

all partitions of that Resource
that result from the already-

- scheduled jobs. (To determine

this, consider all assignments
whose intervals include the
assignment time for the
Job-to-be~Added.)

]

Select a partition of the
'"DESCRIPTORS' of the Job-
to-be-Added which has a

subnode labeled 'INITIAL'

2.4.14-10

®

2.4.15 DESCRIPTOR PROFILE

2.4.,15.1 Purpose and Scope

This module is used to update the set of dgscriptors that
aﬁply to an item-specific resource, i.e., an individual, identifi-
aBle resource that would correspon& to the first_subnode level of
the resourcé "type" in the‘$RESOURCE tree. The update of descrip-
tors will consist'éf an ;ssignment or set of assignments fhat &e-
fine initial and final.descriptors for each assignment. The
original set of descriptors to be updated and their corresponding
values will bé supplied by the calling prog?am. This cqﬁld con-
sist of reference to the.resoufchdescriptdrs.in the $RESOURCE
tree, a derived trée thatrhas Been maiﬁtaining the deécriptors of
tha; resource as a function qf timé; or a tree built by'fhe cail—
iﬁg program with specific (possibly artificial) descriptofs.

Any number of descripti@e parémeters may have been used in.
the resource éssignments, but ‘any one parameter wili be.assumed
to contain only mutually exclusive Qalues, For example,'if'che
descriptive parameter, LOCAfION is specified, values of DENVER,

DAELAS, or DETROIT are obviously mutually exclusive. If, however,.

the location were specified as DENVER and a process moved the re=- -~ - - .. __

source to WAREHOUSE 3, this module would retain only the location

WAREHOUSE 3 whether or not Warehouse 3 was located in Denver.

2.4.15.2 Modules Called

Mone.

. » _ ‘ 2.4.15-1

2.4.15.3 Module Input

Input Eonéists of the item-specific resource to be considered,
the origipal values of descriptors to be updated and ‘the corre-
sponding timéi the assignments to be considéred, and the ihterva;
of time that assignments.are to be considered. The original de-
scriptors and their values are défined in a tree structure as
shown in the skétch. This format corresponds to the first level

subnodes of the resource names in the $RESOURCE tree.

$ORIGINAL_STATE

INITIAL
.TIME

(PARAMETER) .
(Value) ~ (Value) (Value) ~ (Value)

(PARAMETER)

-The'assignments to be considered would have a format corre-
sponding to the subnode levéls of the ASSIGNMENT node in the
$RESOURCE tree as illustrated in the sketch. ' Any nodes, other
tﬁan the time interval and descriptors kwhich are reduired), will

be retained for aiding traceability.

2.4.15-2 ' -

Rev A

$ASSTGNMENT

()
¢ ¢ ‘ ¢

‘ (JoB. 1D) . PROCESS . INTERVAL bESCRIPTO_RS
(value) - (value) . ¢ . ¢

(sTart or C T INITIAL () Fna

QUANTITY (PARAMETER)
(value) (value)

2.4.15.4 Module Output

The output consists of a "'resource state' .tree (shown) that

ptors as a function of time.

1ists the resource descri

$RESOURCE_§TATE

2-4. 15—3
Rev A -

2.4.15.5 Functional

Block Diagram

Build Resource State tree
with initial time and
corresponding descriptors.

Y

Locate next assignment
. ” e
to be considered. .

Yes

any of the
values change
for these

parameters
?

Add interval to
last node of
output tree.

Yes

'

Have
all of these
descriptive parameters
been included in
previous -
interval

No

oy

Build new node on output
tree to reflect new
descriptors or values.

2.4.15-4

No

Has
maximum
allowed time
been

reached
9

all assignments

been considered’
"9

2.4.16 UPDATE_RESOURCE

2.4.16.1 Purpose and Scope

This module will update information iﬁ the data tree $RESOURCE
for each resource assigned to a specific JOB_ID in the structure
$SCHEDULE. 1t pfovides a standard method of reflecting in
SRESOURCE, the results of a scheduling decision. £t creates a
data structure $NEXTUNIT'thaF contains element (s) to be added to

the chronologically ordered assignments of a specific $RESOURCE.

(TYPE) .(NAME) by calling the module WRITE ASSIGNMENT.

2.4.16.2 Modules Called

WRITE_ASSIGNMENT

2.4.16.3 Module Input

Inputs consist of the standard data structures SSCHEDULE and
SRESOURCE, that are shown in standard form on the following pages.
The minimum .relevant péftions of the required input structures
are shown on subsequent pages.

2.4.16.4 Module Output

During execution the module creates the data structure

SNEXTUNIT. (See the following illustrations. After execution,

" the SRESOURCE tree will reflect the changes in assignmeﬁésiﬁhéf

result from the scheduling of all jobs in $SCHEDULE.

2.4.16-1

~ Note: Minimum (i.e., relevant) portion of required input Standard Data Structures
is shown. In all trees, any additional structure will be preserved.

$SCHEDULE

(JoB 1D)

<;:T(JOB ID)

PROBLEM_
NAME
(value) ~ (value)

PROCESS

RESOURCES

(TYPE)
%Mm \Q
INTERVAL
START‘\\\\I::) END
(value) (Value)
$RESOURCE

(TYPE)
(NAME)

Fig. 2.4.16.4-2
Minimum Required Input Structures from Standard Data Structures
for Module: UPDATE _RESOURCE

2.4.16-2

Rev A

OUTPUT DATA STRUCTURE

- $NEXTUNIT
(JOB ID)

RESOURCES
(TYPE)

- DESCRIPTORS : INTERVAL . PROBLEM _ OPSEQ PROCESS .
(Value) (Value) NAME (Value) (value)

“(value (Va1ue)

QUANTITY %\RAMETM. ..

(value) (value) (Value) - (value)

2.4.16~-3
Rev A

2.4.16.5 Functional Block Diagram

[' Consider next job -

Consider next resource type

K|

Consider next resource name |-

i

Write Initial Time
descriptor if new resource

Create $NEXTUNIT for

current resource/job

)
Call WRITE_ASSIGNMENT

'

all resource names
of this type been
considered

Have

all resource types No -

of this

been considered
7

Have

No

all jobs been
considered _

2.4,16~4

2.4.17 WRITE ASSIGNMENT

This module will add an element to the chronologicallly
ordered aésignmenté éf the $RESOURCE tree for a specified resource
name and type. Basis for the ordef is the resource interval start
time. If start times are equal, the éssignment with an earlier
end time is liste& first. 1If start and end times are equal, no
distinction is made in the order.

The specific data written for an assignment can vary with the
calling module. That is,‘dUmmy assignments may be-made as a
means of constraining resources in which case processes, prob;
lem names, etc may be-meaningless. However, selected resources
for a given proBlem may. contain many parameters and descriptors
that define the usage and provide trgceability for later re-

trieval.

2.4.17.2 Modules Called

None

2.4.17.3 - Module Input

Inputs to this module consist of $ASSIGNMENT UNIT, the as—
signment node of $NEXTUNIT for which the assignment is to be
written, and identificaiton of the $RESOURCE subnode where the
assignmeﬁt;is made. In thé sténdard case, the entire substruc-
ture of one of the third—levelhsubnodes of $NEXTUNIT.RESOURCES
becomes the substructure for one element of the standard data
structure subnode $RESOURCE.(TYPE).(NAME).ASSIGNMENT that cor-

responds to the resource type and name identified by

$NEXTUNIT.RESOURCES.

2.4.17-1

MINIMUM REQUIRED INPUT STRUCTURES FROM STANDARD DATA STRUCTURES
_FOR MODULE: WRITE ASSIGNMENT

Note: Minimum (i.e., relevant) portion of required input
standard Data Structures is shown. 1In all trees, any
additional structure will be preserved. ’

- $RESOURCE $ASSIGNMENT UNIT
(TYPE) P
. ' INTERVAL
(NAME)
' S START END
ASSIGNMENT

(value) (value)

INPUT DATA STRUCTURE

$ASSIGNMENT UNIT

DESCRIPTORS INTERVAL JOB_ID PROBLEM PROCESS
' NAME T
g27¢ k Q{ START END ’ | .
(value)
INITIAL

QUANTITY (PARAMETER) C.
(VALUE) (VALUE) (VALUE)

(VALUE)

2.4,17-2
Rev A

INPUT DATA STRUCTURE

$UNSCHEDULE

(JoB 1D) (J0B ID)

(JoB 1D)

JOB_
CINTERVAL

PROCESS

(value)

PROBLEM_ RESOURCES

(value)NVAME (value)

START END (TYPE)

(value) (value)

{NAME) (NAME)

DESCRIPTORS INTERVAL

END

(value)

FINAL

INITIAL

QUANTITY - (;5?:;RAMETER) \

(VALUE) (VALUE) © (VALUE) (VALUE)

2.4,18-3
Rev A

2.4.18.4 Module Output

Upon completion of this module, the assignment portion of

$RESOURCE will be altered based on the contents of $UNSCHEDULE .

2.4.18.5 Functional Block Diagram

‘ Enter ’ -

Consider next job

1

Consider next resource type

T

Consider next resource name [

{

Locate assignments to be
deleted based on intervals
and descriptions in

$UNSCHEDULE

B

PRUNE assignment elements

all resource names of
this type been considered

Have
all resource types of
this job been considered

Have
all jobs been
considered

No

Yes

2.4.18-4

2:4.21

PROJECT DECOMPOSER

2.4.21.1 Purpose and Scope

This-module will identify all subprojects contained within a
specified project. Freduently the;e-subprojects, which are some-
times apparent to the scheduler, are difficult to recognize in thé
complete network. _Ideptificétion of the Subprojectsrcaﬁ signif-
icantly reduce the cqﬁputétional effort :equired to schedule the
entire-project by enabling somé of the scheduling analysis to be
done separately for each subproject. For this reason the follow-

ing analytical procedure is proposed for their detection.

2.4.21.2 Modules Called
None

2.4.21.3 Module Input

 Critical path input data $JOBSET

$JOBSET

N TEMPORAL R
RELATIONS . :
PREDECESSORS
“(NAME) “(NAME)
(VALUE) (VALUE)

2.4.21-1
Rev A

2.4.21.4 Module OQutput

' Tree defining the unique subproject decomposition $JOBSET
Subproject identifier (user supplied label)
Member activity or event identifer

Predecessor of activity or event identifer

$JOBSET

(SUBNET ID)

(SUBNET ID)

.(SUBNET 1D)

(JOB 1D)

'PREDECESSORS

(NAME)
(VALUE) (VALUE)

-2.4.21.5 Functional Description

In order to construct an algorithm for identifying "subprojects'-

this term must be precisely defined. Alsubproject is a subnetwork
containing all the predecessors and succéssors of its member ac-
tivities. (These, of course;Ado not'inglude the events START and
.FINISH.) Recall that a netWo?k for scheduling purposes is a set r

of activities and events denoted by nodes together.with all their

2.4.21-2
Rev A

2.4.22 REDUNDANT_PREDECESSOR CHECKER

2.4.22.1 Purpose and Scope

Given a set of activities and respective predecessor éets,
this module eliﬁinates any redundant predecessors. A predecessor
is said to be redundant if it is not an immediate predecessor;
that is, there is at ieast one intervening-activity.betwéen the
predecessor and its successor . As an example, suppose activity

A is a predecessor of activity B,-and B is a predecessor of ac-

-tivity C. Then A is a redundant predecessor of C, while A and B

are immediate predecessors of B and C, respectively.

Expreséing a projeét-in terms of a collection of nonredundant
pre&ecessors serves two usefpl purpose: (1) it expedites con-
siderably critical path caiculations; (2) its facilities compre-~
hension of the brecedence relations by representing tﬁé projéct
in terms of the most logically concise precedence network pos-

sible.

"2.4.22.2 Modules Called

None

2.4.22.3 Module Input

~ Network definition $JOBSET - including redundant precedessors.

2.4,22~1

SJOBSET

(SUBNET 1D)

(JOB iD) (JoB 10)

TEMPORAL _
RELATIONS

PREDECESSORS

(NAME)

(VALUE) (VALUE)

2.4.22.4 Module Output’

Network definition $JOBSET - technologically ordered, exclud-
ing redundant predecessors.

2.4.22.5 Functional Description

The most efficient redundant predessor elimination_algorithm
is a two-phase recursive procedure based on a technologically

ordered job set.
The first, or forward pﬁase, recursively augments the predecessor

. . © .
sets to introduce maximum redundancy beginning with the predecessor
set of the first element in the technologically ordered job set.
The second, or reverse phase, recursively decremeete the maximally
redundant predecessor sets to seeere minimum redundancy beginning
with the predecessor set of the last element in .the techﬁologically
ordered job set. The.major difficulty with fhis or any other
algorithm designed to eliminate redundant predecessors is the
exeessive storage requirements. For a job set containing n ac-

tivities up to n2/2 memory cells can.be required to store the

intermediate maximally redundant predecessors..

2.4.22-2
Rev‘A

2.4.22.6 Functional Block Diagram

REDUNDANT_PREDECESSOR .CHECKER

any unexamined
elements remain
in technologically
ordered job set on
forward pass

YES

any unexamined
. elements remain
in technologically
ordered set on
backward pass

Pick next unexamined

element, i, in technologically
ordered job set proceeding
backward

any- unconsidered
elements remain
in predecessor set
of element, i

Pick next unconsidered
element, j, in predecessor
set of i

Remove those elements from
predecessor set of i that
are in predecessor set of j

Pick next unexamined .
element, 1, in techmnologically
ordered job set proceeding
forward :

any unconsidered

elements remain
in predecessor set
of element, i

Pick next unconsidered

element, j, in predecessor
set of i

\

Augment predecessor
set of i by predecessor
set of j

2.4.22-3
Rev A

2.4.22.7 Typical Application : . .

The module can be applied wherever the most logically concise
precedence network representatioﬁ of a project is desired. Thié
includes critical path calculation, automated heuristic.schedul—
ing, and manual precedence felatioﬁ analysis.
2.4.22.8 References

Muth, John F. and Gerald L. Thompson: Industrial Scheduling,
Prentice Hall Inc., Englewood Cliffs, New Jersey, 1963.

2.4.22-4

® 2.4.23 CRITICAL_PATH CALCULATOR

2.4.,23.1 Purpose and Scope

This module will calculate the critical path data for a proj-

ect network. The variables computed are: (1) early-start, late-

start, early-finish, and late-finish of each activity; (2) early

occurrence and late occurrence of each event; and (3) total slack

and free. slack of each activity and event.

A project that is defined by a collection of activities and

events, their precedence constraints, and their durations must

meet several other requirements to be amendable to critical path

. analysis:

i’

2)

3)

 chains implying that a-job precedes itself. Thus a project

It must consist of a finite céllection of well—defined activ-
ities and evéﬁts (witb no unépecified alternatives) which,
when completed, mark the end of the project. |

The. activities may be started and stopped independently of
each other within a given sequeﬁce. Tﬁis_requirement pre-
cludes the analysis of continuous flow processes.

The predecessor relationships among the activities and events
must not:contaig cycles; that is-chere can be no predecessor

is nonrepetitive. It is essentially a one-time effort such

."as a R&D task or a construction project.

2.4,23.2 Modules Called

ORDER_BY PREDECESSORS

FIND MAXIMUM

FIND MINIMUM

2.4.23-1
"~ Rev A

2.4.23.3 Module Input

Critical Path Input Data ($JOBSET)

$JOBSET-

(SUBNET ID)

(JOB ID)

(J0B ID) B(JOB ID)

JOB_INTERVAL

‘END

(VALUE) (VALUE) TEMPORAL

RELATIONS

PREDECESSORS SUCCESSORS

(VALUE) ~ (VALUE) " (VALUE) (VALUE)

2.4.23-2
Rev A '

2.4,23.4 Module Output

Critical Path Qutput Data ($JOBSET)

$J0BSET

‘ (SUBNET ID)

(Y (908 1D) (). (908 ID)

() 30B_INTERVAL

O st Qeno () 1EMRRNL (JSTART: (JFINISH () stack

(VALUE) (VALUE)

()rrevecessors ()successors(earLy () LATE (eArcy ()tate () TOTAL ()FREE

(VALUE) (VALUE) (VALUE) (VALUE) (VALUE) (VALUE) °

~ (VALUE) (VALUE) (VALUE) (VALUE)

2.4.23-3
Rev A

2.4.23.5 Functional Description

Critical path analysis is a powerful but simple technique
for analyzing, planning, scheduling, and controlling complex proj-
ects. In essence, the methpd provides a means of determining (1)
which activities are "critical" in their effect upon total proj-
ect duration, and (2) how to schedule all activities to meet mile-
stone dates.

Critical path analysis is based on the simple concept of pre-
decessor/successor relationships between the activities and events
defining the project network. A brief introducfion to these fun-
damental scheduling conéepts is presented below.

Let:ﬁ = {i,j,k, ...} be a set of acfivities and events that
must be completed to finish a project. Let the symbol e denote
the basic immediate predecessor relation. Thus the notation i<<j
is'interpretated to mean that activity i mﬁst‘be completed before
activity j can start. 1If sj denotes the start of activity j and
fi denoteé the finish of activity i, then the relationship i<<j
is equivalent to the standard inequality sjzfi. The set.Pi =
{j:j<<i} is said to be the immediate ;redecessor set of actiQity
or event i. Similarly the set,é?i = {j:i<<j}, denotes the im-
mediate successor éet of the activity or event i.

A directed graph (network) is a useful topological representa-
tion of a project, and can proVidé valuable insight into many
scheduling problems. A summary of predecessor/successor relation-
ships in terms of their netwérk representation is given in Table
l. More géneral temporal relationships can be easily included
within this simple framework by adding artificial activities.

2.4.23-4
Rev A

[1]

(2]

[3]

[4)

Table 2.4.23-1 Basic Precedence Relationship

Network Representation _ Mathematical Representation -

13, sz 0 Py = {afed =43}

i k, j<(k, s, 2max{f fj}

Pk = {i;j} ’Zli ={ k} %gj%

k o ki, kK3, 26, 8,2 6

jp—e Pi=Pj={k},Jk={i,j}

Suppose now that every activity in the project is started. as
soon as possibie, that is, as soon as all of its predecessors
are finished. It is then possible to calculate the early start

of each activity as

e) e
s, = max {f,},
jeP, J
i

and the early finish of activity i is clearly

e
f e
i = s; + di

where di is the duration of the ith activity (di = 0 for events).

"~ Similarly; -the late finish for activity 1 is:given by

fi = min {s%}
o jetg h|

and the late start is

L L
Si = fi _4di'

2.4.23-5

Rev A

For any activity, the'quantity

L _ e _ L _ e
(3] Sy = sy sy Ty - fy

is defined to be the tétal slack, Tﬁe set of critical activities

is then the subset of activities haQing minimum total slack.
Another useful variable is free siack, Sf. Free slack is

defined as the amount by which an activity may be delayed with-

out affecting any other activity. It is computed as

[6] Sf = min {S? - f?}
i J 3j i
jes,
The logic for the coordination of these calculations into

an efficient computational procedure is given in the following

block diagram.

2.4.23-6

Rev A

2.4.23.6 Functional Block Diagram

)

Order activity and event
set according to the
precedence relations

(Call ORDER_BY PREDECESSORY)

Are
there any
activities or events with
uncomputed early start and finish
dates in technologically

ordered set
2

Select next (proceeding forward)
activity or event from the
technologically ordered set

hext activity or

event an event whose
early occurrence

\time is specified. -

Compute early start
and early finish of
next activity or event

-2.4.23-7
Rev A

Are
there any
activities or events with
uncomputed late
start and finish
dates in technologically

ordered set
2 .

No

Select next (proceeding backwafd)
activity or event from the
technologically ordered set.

Is next
activity or event
an event whose
late occurrence
time is
specified

°)

Compute late finish
and late start of
next activity or event.

Yes

RETURN

i
—

]

Compute total and free
- slack for next activity.

2.4.23-8

Rev A

2.4.24 PREDECESSOR_SET IHVERTER

2.4.24,1 Purpose and Scope .

Given a set of>activitiés and thgir respective predecessor
seté,'this module will .-form the respective successor sets. This
inversion process is necessary for critical path computation. The
project scheduling system assumes throughout that stating preéedence
relations in terms of predecessor sets is more natural.than ex—
pressing_thém as successor sets. For this reason the user is asked
to define all subnetwork topology in terms of predecessor sets in
the input data structure $JOBSET.

2.4.24.2 Modules Called

None

2.4,24-1

2.4.24.3 Module Input

Network definition ($JOBSET)~ The substructures of the tree
beginning at the nodes labeled SUCCESSORS are null upon input to

the module.

$JOBSET

Q

(SUBNET 1D)

(308 ID) (JOB ID)

TEMPORAL _
RELATIONS

PREDECESSORS

(VALUE) (VALUE)

2.4.24-2
Rev A

2.4.24.4 Module Output

Redundant network definition ($JOBSET) - The substructures of

the tree beginning at the nodes labeled SUCCESSOR§ are complete

upon.exit from the module.

$JOBSET

(SUBNET ID)

(JOB ID) (JoB 1D)

TEMPORAL
RELATIONS

PREDECESSORS SUCCESSORS

(VALUE) (VALUE) (VALUE) (VALUE)

2.4.24-3
Rev A

2.4.24.5 Functicnal Description

The logic of the in&ersion process from predecessor sets is
simple and direct. Each activity in the jog set is considered
in turn. Whenever a given activity is found in the predecessor
set of anbther, the latter is included in the successor set of
the former. When all of the predecessor sets of all of the jobs
" have Beén_examined, the collection of successor sets is complete.
The following block diagram {1lustrates this étraightfdryard yef

efficient logic.

2.4.24-4

‘ 2,4,24.6 Functional Block Diagram

PREDECESSOR _SET INVERTER

‘ ENTER)

{11 activitied
in job set been
considered

‘ ' ' Pick next activity, J,
' in job set.

all activities
in predecessor
set of j
been
considereq
NG 2P e e

No

Pick next activity, k, in
predecessor set of j.

. . S
Place j insuccessor
set of k.

2.4,24-5

Rev A

2.4.24.7 Typical Application

The module can be applied wherever successor sets rather than

" user input predecessor sets are required. This includes the mod-

ules CRITICAL PATH_CALCULATOR.

2.4.24-6

matter what its size, can be viewed as one cqmprehensibré sum~
marized network. Without this capability network analysis would
be of little value to project scheduling..

The purpose of this module is then to convert a network, spec-
ified in terms of a Jobset with its corresponding family of pre4
decessor sets and durations, into a condensed network defined by
its event and pseudo—activity»Set‘with its corresponding collection
of prédecessor sets‘and durafiqns. |
2.4.25.2 Modules Called

None

2.4.25-3

2.4.25.3 Module Input

Critical Path Input Data ($JOBSET)

$JOBSET

(SUBNET 1D)

(J0B ID)

> (J0B ID) (J0B D)

TEMPORAL

DURATION RELATIONS

(VALUE)

PREDECESSORS

(VALUE) (VALUE)

2.4,.25-4
Rev A

2.4.25.4 Module Qutput

Tree Defining the Condensed network

$CONDENSED JOBSET

(SUBNET 1D)
(J0B ID) {J0B 1D)

DURAT ION

(VALUE)
: PREDECESSORS

(VALUE) (VALUE)

2.4.25.5 Functional Description

The problem of finding the critical delay between any pair
of events is simply that of finding the longest directed path be-
tween two nodes in a network not passing through any third node.

Because the critical-delays between all directly connected events

are desired, the folléwing>approach suggests itself. Consider
each- event in turn.' Step by step, examine all possible paths
that terminate at the current event under analysis. All branches
of any path must be investigated and for this reason a 'pushdown"
stack is useful - in recalling which alternatives remain unexamined.

A path is eliminated from further consideration when it reaches

2.4.25-5
Rev A

an event or merges with some other path of greatér length. Since
the topoldgy of the condensed networks are specified in terms of
precédence sets rather than successor sets, it is convenient to
proceed along the activity paths in revefse order to activity
performaﬁce. |

The ﬁacrolpgie of the module requifes a few further words of
explanation. First, when an event is transferred frém the input
tree $JOBSET to the output tree $CONDENSED_JOBSET,.its prédeces—
sors are omitted and its duration is maintained at zero. Second,
when candidate early start and finish times are computed, the

" calculations are performed as though the activities and events

proceeded backward in time., This point of view is adopted to

avoid ;he costly process of ihver;ing the predecessor sets to
obtain succéssor sets. Fiqally, the detéils of inserting a
pseudo-activity into the output tree $CONDENSED. JOBSET are des-
cribed. 1If pseudo-activity 1 répreseﬁts a critical delay orig-
inating at event i and terminating at event j» then the pseudo-
activiﬁy should be listed as a predecessor of eventvj and event

4i should be listed as a predecessor of pseudo-activity i. The
duration of the pseudo-activity is simply the critical delay be-
tween events i andAj (that is, the early start of event 1 computed

with respect to event j).

2.4.25-6

Rev A

2.4.,25.6 Functional Block Diagram

Transfer each event in
ENTER $JOBSET directly to
$CONDENSED_QOBSET

there any
events whose
critical delays to
preceding events have
not been evaluated

Initialize early
"finish" time of
all activities and
events to zero.

b

Pick next event, {1,
as current event
for analysis.

Empty discovered
{'event record

Initialize "pushdown"
stack of activities
to event 1i.

No Place ac;ixityhk (E\ Save current top
on top o push- element.of stack.
down" stack. .
X Add k to
Activity Yes discovered
k an event event record
Remove

? there any unexamined
predecessor activities
to saved top element
of stack
. ?

top element
from stock

Replace current
"early-finish" time
of activity k by
candidate value

Yes . Pick next predecessor
activity, k.

Is
candidate
"early-finish" time
greater than
current “early
finish" time for
activity, k.
?

Compute candidate "early finish"
time for activity k as "early
start" of top element of stack

- plus duration of activity k.

|

2.4.25-7
Rev A

Pick next element
of discovered event
record j

Add activity % to $CONDENSED JOBSET

with duration equal to "early finish"
of event j

Make j the predecessor of %

Add. 2 to predecessor net of
saved element i

All
" discovered =
events in record

considered

ta

2.4.26 CONDENSED NETWORK MERGER .

2.4.26.1 Purpose and Scope

This module will merge two condensed subnetworks into a com-

posite condensed network. This process-is essential in merging

subnetworks into a self-contained master network.

2.4.26.2 Modules Called

None

2.4.26-1

2.4.26.3 Module Input

‘Critical path data for condensed subnetwork and condensed

master subnetworks $CONDENSED_QOBSET

$CONDENSED_JOBSET

(MASTER

SUBNET 1D) (

SUBNET 1D)

(JOB ID) (JOB ID)

TEMPORAL

DURAT ION RELATIONS

(VALUE)
PREDECESSORS .

(VALUE) (VALUE)

2.4.26.4 Module Output

Critical path input data for merged network contained under

master subnetworks node of $CONDENSED JOBSET.

2.4.26-2
Rev A

2.4.26.6 Functional Block Diagram

Do any
unexamined
items remain in
activity/event set
for augmenting

Next event
already occur
in network
to be
- augmented
?

Add event identifier Yes
and predecessor set
to activity/event
network being
augmented:;

Augment predecessor set
of event in augmented
" network with those of
same event in augmenting
network

2.4.26-5

"Rev A

Does next
activity represent
a critical delay
between two
events already
"in network
to be
augmented
P

Yes | Add activity identifier
and predecessor set to
activity/event tree of
network being augmented

In activity/event tree

of network being augmented
set the duration of -the
activity to the maximum

of the values found in
the two networks to be
merged.

2.4.26-6

2.4.27

NETWORK ASSEMBLER

2.4.27.1 Purpose and Scope

Given a master subnetwork and its prescribed interfacing events,
this module will éssemble this subnetwork and all of its inferfac—
ing subnetﬁorks into a master network.. This assembly capability
facilitates the heuristic scheduling of any combination of sub-
networks that may share common resources. The list of interfacing
events need only be constructed to draw together all .of the desired

subnetworks.

2.4.27.2 Modules Called.

None

2.4.27-1

2.4.27.3 Module Input
1) Interface event definition ($INTERFACE)

$INTERFACE

(EVENT

IDENTIFIER)

(IDENTIFIER OF
CONTAINING SUBNET)

2) Subnetwork definitions, including master subnetwork ($I0BSET)

3J0BSEY

MASTER_
SUBNET_ID

IVALUE, .
! . (SUBNET 10} . (SUBNET 10}
‘ 408 1D} . (108 10) . (108 10)
PSPLITTABLE" | "NONSPLITTABLE™ " (VAWD VAWE

. 10g_TYPE . PROBLEM_NAME ‘ OPSEQ . J0B_INTERVAL ’ PROCESS . REQUIRED_RESOURCES
VALLE) ’ -

stm END thD mm"

vAWD o wAue

. NAME . . (NAME)
¢ (o
. INTERVAL
. START . o
VAWD VAWD

2.4.27-2

Rev A

2.4.27.4 Module Output

1) Heﬁristic processor input data under master subnetwork node
of $JOBSET

2) Component Subnetworks of ﬁaster Network ($SUBNET_§ET)

A. Component subnet identifier

$SUBNEI_SET

(COMPONENT (COMPONENT (COMPONENT
SUBNET ID) SUBNET 1D) SUBNET 1D)

2.4.27.5 Functional Description

The assembly of the master subnetwork and all -of its inter-
facing subnetworks in;o a master network is straightforwérd. A
"pushdoﬁn" stack of interfacing subnetworks to be éxamined is
initialized to contain the master subnetwork. The top element
ofvthe stack is analyzed for interfacing subnetworks by succes-
sively examining each of its events for the;r presence in other
unexamined subnetwérks. Any such inferfacing subnetworks found

are added to the ‘top of the stack. When all events in a subnet-

work have been investigateé it is added to the master network:

‘and removed from the unexamined stack. When the unexamined stack

of interfaciﬂg networks is empty, the assembly process is complete.

2.4.27-3

Rev A -

2.4,27.6 Functional Block Diagram

Remove current

top subnetwork from
the unexamined
stack and save it.

igfl—— stack of subnetworks to

ENTER

Place master subnetwork
in stack to be analyzed
for interfaces.

y

Empty list of subnetworks
previously examined for
interfaces.

Select top element from

be examined for interfaces
and decrement stack count.

2.4.2734
Rev A

Do any
unexamined
events remain in

saved top
subnetwork

No

Does next
event in saved top
subnetwork belong
to an unexamined

subnetwork
?

Add those unexamined’
interfacing subnetworks

Augment master sub-
network with current
subnetwork. Add cur-
rent subnetwork to
list of previously
examined subnetworks.

of the current event to
the stack of subnetworks
to be examined.

2.4.28 CRITICAL PATH_PROCESSOR

2.4.28.1 Purpose and Scope

Giyen a master subnetwork and its prescribed interfacing
events, this module'wiil‘

1) Integrate the master subnetwork and all of its interfacing
subnetworks into a condensed master network.

2) Compute the early- and late-occurrence dates of all the in-
terfacé events.

3) Compute all critical-path data for the activities in the
masfer subnetwork and all of its interfacing subnetworks.
The objective of the module is to facilitate ;ritiéal path

calculatioﬂs on networks too large to permit direct computations

' because of computer resource limitations in high-speed memory

and execution time.

2.4.28.2 Modules Called - - - .
NETWORK_CONDENSER |
CONDENSED_NETWORK_MERGER
CRITICAL PATH CALCULATOR

2.4.28-1

2.4.28.3 Module Input

1) 1Interface Event Definitions ($INTERFACE)

$INTERFACE

(EVENT

(EVENT IDENTIFIER)

IDENTIFIER)

(IDENTIFIER OF

CONTAINING SUBNET)
This data structure is illustrated in Fig. 2.4.28-1 for the

_ subnetwork complex of Fig. 2.4.28-2

2) Subnetwork Deﬁinitions, Including Master Subnetwork ($JOBSET)

"$JOBSET

MASTER_SUBNET,ID
(SUBNET 1D)

(QOB ID)

JOB_INTERVAL

TEMPORAL _
RELATIONS

(VALUE)

PREQE CESSORS SUCCESSORS

2.4.28-2

Rev A

2.4.28.4 Module Output

1) Identifiers of subnetworks that are components of total net-
work (all subnetworks in $JOBSET may not be coﬁnected to total

network).

$SUBNET SET

(SUBNET 1D) (SUBNET ID)

(SUBNET ID)
é) Critical Path Output Data ($JOBSET)

e $JOBSET

(O{MASTER SUBNET 1D) (){SUBNET ID)

O)jos) {4908 10): (D08 10)

. JOB INTERVAL

: START FINISH
(JSTART (Jeno () ;ET;??S}VS DATE DATE () stAck

(VALUE) (VALUE

Orrevecessors Osuccessors Oearny Ouate: Oeary Ouare Orotar Oprree
(VALUE) ~ (VALUE) (VALUE) (VALUE) (VALUE) (VALUE)

2.4.28-5
Rev A

2.4.28.5 Functional Description

This module has three basic objectives. The first objective,
éssembling the subnetworks into a 'condensed' self-contained master
network, is the most involved and facilitates ready accomplishmént
of the remaining two. Basically, it involves determining all of
the subnetworks to which the specified master subnetwork is con-
nected by interface evenfs.- These subnetworks are condensed and
then merged into a condensed master network. These steps.can
best be accomplished in-the recursive fashion. (See para 2.4.28.6:)

The master condensed network is initialized as the céndensed
master subnetwork. Next a 'pushdown' stack of inteérfacing ;ubf
networks is creéted and initialized as the master subnetwork.

Then, the top subnetwork of the stéck is condensed and examined

for interfacing subnetworks. All unanalyzed subnetworks found

are added to the stack. When the interface examination of a
given subnetwork is completed, it is merged into the current éon—
densed master network. The merging process will bé”carriéd out
by the module CONDENSED NETWORK MERGER. When the 'pushdown'
stack of unexamined interfacing éubnetworks is finélly emptied,

a self-contained master condensed network has been éssembled-and
is ready for critical-path analysis.

The second objective of the.module, célculation of the early
and late occurrence dates of/éll the interfacing events, is ac-
complished by épplying the module CRITICALTPATH_CALCULATOR to the
condensed master network. To do so one need only construct the

single tree $JOBSET, including the successor set substructure,

2.4.28-6

\im

2.4.29 NETWORK EDITOR

2.4.29.1 Purpose and_Scope
| This module edi;s manually or automatically generated project
scheduling precedence relations for logicél inconsistencies.
-Four types of errors may occur in pfecedence data:

1) The predecessor relationships may contain cycles; for example,

.job A is a predecessor of job B, B is a predecessor of C,
.. and C is a predecessor of A.

2) The list of predecessors for a job may include more than
immediate predecessors; for example job A is a predecessor
of B, B is‘é predecessor of C, and A as weli as B are listed
aé predecessors of C.

3) Some precedence relations may be overlooked.

4) ‘Some predence }elations may be listed that are spurious.

Errors of types (1) and (2) are inconsistencies in the déta that

can be detected by automated examination of the predecéssor seté.

Errors of types (3) and (45, however, appear to be legitimaté

data and, hence, cannot be discovered by computer procedures.

- Instead, manual éhecking (perhaps by a committee) is necessary

to ensure that the pfedecessor relations éré‘cor%écﬁiyrfépofééhiiy"
Errors of type (1) are fatal to the cri;ical path analysis.
Errors of type (2), however, are not fatal and merely lengthen
the -execution of the critiéal path_élgorithm. For this reason
the NETWORK EDITOR has been divided into two separate-editing
proéedures. The first, called ORDER_BY_PREDECESSORS, is manda-

tory. All efficient CPM processors require the job set to be

2.4,29-1

arranged in a technological orderiﬁg (any job, in the list precedes
all of its successors). This ordering is a useful byproduct of
the cyc}e—checking routine. The second procedure, called the
REDUNDANT PREDECESSOR CHECKER, is optional. Its use is, how-
ever, recommended because, in éddition to expediting the critical
path processing, it generates the most logically concise prece-
dence network possible.

" 2.4.29.2 Modules. Called

ORDER BY PREDECESSORS
REDUNDANT PREDECESSOR_CHECKER

2.4.,29.3 Module Input

1) Network definition $JOBSET -.unedited version

2)" Redundant-predecessor-elimination option indicator (SIMPLIFY)

$JOBSET

(SUBNET 1D)

(JOB-ID)V

TEMPORAL _
RELATIONS

PREDECESSORS

(VALUE) (VALUE)

2.4.,29-2
Rev A

. ‘2.4.29.4 Module Qutput

-~

1) Network definition $JOBSET - edited version

2) Cycle-containing subset of activities or events $CYCLE SET

$CYCLE_SET

(308 10) () (J0B ID)

2.4.29.5 Functional Description

The module NETWORK_EDITOR serves primarily as a coordinator
| of the two editing modules ORDER BY PREDECESSORS and REdUNDANT_
PREDECESSOR_CHECKER.. This module is intended to prevent the
o user from attempting to use REDUNDANT_PREDECESSOR_CHECKER
without first having called ORDER BY PREDECESSORS to place the
second level subnodes of $JOBSET in a technological ordering.
The user may opt not to eliminate redundant'éredecessors by

setting the flag SIMPLIFY.

2.4.29-3
Rev A

2.4.29.6 Functional Block Diagram

' Enter ’

¥

Call
ORDER BY _
PREDECESSORS

Was
ORDER_BY_
PREDECESSORS

successful
?

. Is
redundant
predecessor
elimination
requested
?

Call
REDUNDANT _
PREDECESSOR -
CHECKER

Print subset
of jobset
containing
cycles

2.4.29-4

Rev A

descriptors at the assignment time, the incompatibilities that

are identified for times after the assignment time are those

that result assuming compatibility between the scheduled resource

desc;iptors.and the required descriptors- for the job to be in-

serted. This is illustrated below.
Time
F va) 7~ "
v . Scheduled Job to be Scheduled
Job 1 Inserted Job 2
- Input Status Required
Sz 51

Output Status :
51

‘Identified

2.4.30.2 Modules Called
DESCRIPTOR_PROFILE

2.4.30.3 Module Input

4/(; , Assumed) ‘//V
/

Incompatibility

/

Identified
Incompatibility

This module is called with two input'arguments. They are

$RESQOURCE and_$SCHEDULE_pNIT. $RESOURCE has the general structure

given in Section 2.2 and must. contaif ‘initial descriptors at a. .

reference time and all assignment and descriptor changes that

are to be considered after that time. This information is re-

quired by this module so that it can call DESCRIPTOR PROFILE.

2.4.30-3

S»

2.4.30.4 Module Qutput

This module returns a structure called $DESCRIPTOR CONFLICTS,
which contains information about the conflicts that would result
if $SCHED UNIT were assigned at its specified time. The general

structure of $DESCRIPTOR CONFLICTS is shown below:

$DESCRIPTOR CONFLICTS

5o
OO O X
(") 908_10s (), RESOURCES

‘ ¢ ' ¢ ‘ ’ ?E?OURC ‘ (rIuSOURCE

(value) (value)

‘ SCHED | DESCRIPTOR ' JoB DESCRIPTOR

 (value) (value)

Each first-level subnode represents a resource status conflict
that would result from the assignment of $SCHED _UNIT at the

specified time.

2.4.30-4

Rev A,

$SCHED_UNIT has the _general structure of a schedule unit

shown below:

$SCHED_UNIT
(JoB 1D)

RESOURCES

PROBLEM Q :
OPSEQ JOB_ D PROCESS
_NAME INTERVAL

(value) (value) (value)

(value) (value)

(NAME)

INTERVAL

(valhg) o (value)

Note that in $SCHED _UNIT, the JOB INTERVAL.START must
contain the assignment time for the job to be inserted.

2.4.30-5

Rev A

2.4.30.5 Functional Block Diagram

For each required resource

of the job to be inserted,
determine resource descriptor
values at the assignment time
for the job to be inserted.
Call DESCRIPTOR PROFILE
repeatedly to perform this
function.

]
Select one required

resource for job to
be inserted.

Are
the descriptor
values of that resource
compatible with those
produced by the
schedule ?

Find last previous
job that changed
the descriptors of
that resource.

l

Build a conflict
note.

Have

all required

resources
been

considered
?

2.4.30-6

, Rev A

Update resource
-descriptors to
start time of

subsequent job.

Select an output resource
from job to be inserted.

1

Find next later scheduled
job that changes the
descriptors of that

resource (Call this job, JB)

Select next job that starts
equal to or after assignment
time for job to be inserted.

Build a
conflict
node.

- Is
this job scheduled

after JB is

scheduled

Are
the. descriptors
produced by job to be
inserted compatible
with those required
by this job?

Have

all output

resources from job

to be inserted been

considered
?

2.4.31

ORDER_ BY PREDECESSORS

2.4.31.1 Purpose and Scope

Given a set of activities and events -and their respective
predecessor sets, this module eithér places éhem in a technoiogi—
cal order if one exists or identifies a subset of the activities
containing a cycle. A technological ordering of the events and
activities means an ordering such that any activity or event isA

preceded by all of its predecessors or equivalently followed by

all of its successors. A cycle, on the. other hand, is a chain

of predecessor-successor related activities or events implying
that some event or activity is a predecessor of itself. Such an
activity ar event.could never be scheduled because‘one of its
predecessors, namely itself, could ng&er be completed beforehand.
Hence, the presence of cycles in a precedencé network precludes
any scheduling or critical path analyses.

2.4.31.2 Modules Called

"None

2.4.31-1

2.4.31.3 Module Input
Network definition ($JOBSET) - activities or events (first

level subnodes) are not technologically ordered.

$JOBLIST
(SUBNET 1ID)

(JoB ID) (JOB 1D)

TEMPORAL _
RELATIONS

PREDECESSORS |

(VALUE) ' ~ (VALUE)

2.4.31-2
Rev A

2.4.31.4 Module Output

1) Network definition ($JOBSET) - activities or events (second-
level subnodes) are technologically ordered.

2) Subset of jobs containing cycles (if any exist) ($CYCLE_§ET)

$CYCLE_SET

(J08 ID)

2.4.31.5 Functional Description

‘It can be shown that the activities and events.of a projecﬁ
can be technologically ordered if, and only if, the p;ecedence
relations contain no cycles. It must be noted, however, that if
cycles are absent, the technological ordering is by no means -
unique. The particular ordering produced by this module results
from inductively "scheduling" in cycles all those activities or
events whose predeceséors are "scheduled." Eventually a cyéle

arises where there are no activities or events with all of their

predecessors "scheduled." If some activities or events remain

unscheduled, they contain a cyclé;r A more precise ‘description
of the logic of the module is provided in the functional block

diagram.

. , 2.4.31-3
Rev A

2.4.31.6 Functional Block Diagram

Initialize currently
scheduled set to
singleton start.

there any
elements remaining
in job set whose predecessors
are all in currently

scheduled set
: ?

Yés

Transfer those elements
from job set into
currently scheduled set
that have all of their

| predecessors in the

1 currently scheduled set,

2.4.31-4

Transfer currently
scheduled set

back to job set,
maintaining

recently established
technological order.

Print remaining
contents of job set
along with message
- that this subset of
jobs contains. a
cycle.

Co D)

limits of their residual slack ﬁo produce heuristically the most

level resource-loaded schedule.

2.4.32.2 Modules Called
None

2.4.32.3 Module Input

1) Network, Critical Path Data and Activity or Event Definitions

$JOBSET

2.4.32-3

(snTeA) . (antea) (onTeA)

TA¥INT()
() (onten) (anT®A) (anTen) (enTeA) (3nWyN) {3WVN)
(3WWN) | ‘ |
| () MO BRI TNG® avi() auva() () 2()
(3dAL) . (anTea) (enTeA) . (enTeA) (enTeA)
w1 () woss39ons{_Juosspoaand{ Y aa(O)wvis ()
(+379YLLITASNON,
|/ 379VLLINdS,) ,

3dAL S3UN0S3Y SNOILY 1Y . TYAYILN]
“gor Q1IN0 ‘ 1v074 ‘ ‘HSINIJ . RIUARS . A TIV0dWaL “qor

(a1 go0) \

(a1 L3nans) .

2.4.32-4

Rev A

L3saocs ’

2) Resource Definitions ($PROFILES)

$PROFILES
O
o () (RESOURCE POOL)
POOL) ’
(Xan_use : ‘ () AVAILABLE
(J¢ ()¢ ()¢ (" YnormaL ()CONTINGENCY
(Jstart ()End (V¢ ()¢ ()¢ ()¢ ()¢ ()¢
(value) (value) . . '
(Jsmarr - (OQeno) quantaty (Ysmwr (e) QuanTITY |
(value) (value) (value) (value) (value) (value)

2.4.32-5
Rev A

2.4.32.4 Module Qutput

1) Resulting Heuristic Schedule ($SCHEDULE)

$SCHEDULE

(JOB INTERVAL)

FINISH

(value) ‘ (value)

2) Revised Resource Profile Including Usage ($PROFILES)

$PROFILES
(Orresource '
NAME)) ()(RESOURCE NAVE)
IN_USE . -~)AVAILABLE
(" JNorRMAL () CONTINGENCY
START (")END USAGE ()¢ ()¢ ()¢ ()¢ ()¢ ()¢
(value) (value)
¢ (st (e O)quantrty (st (enp
(value) ~ (value) (value) (value) (value)

QUANTITY

(value) (value)

2.4.32~6
Rev A

() auantity

(value)

sadRy sounosay mu&x& Y310 WD7qOIg wo&xowwm»ﬁm:mc&%wxow
: : I~g¢'p 2 *bag

|

usw g

I
o

usw 4

]
-4

usw 9 = Y 1.
183 WY 99IN0SIY, “

AN

uorjeanp L3ITATIOY

g v S. _
81 .. ET 7 16 6] v
usTuTd 4 , 1216 6l °[¢ 1% :
81 (22 D). ¢ (17 ¢) (t%2)
mHmE
gl i¢ ,
c -z . ¢ (1'1°1) z 33838
T E oY €] : Tl .o 0 8 0
it rE q atA
“mﬁ ST i 8]l ls sl l¢
(2'vs) (o 1°vF b (c'0°T) 5 (1°¢°y) ¢
€Y 16 18] |€ £].,10
16 AME : AME :
(e‘z'e) . (z°1°¢€) (1°2°¢)

AMM nNm n‘—.Mv ‘91 mvwh..ﬂs_uw.u o2dA3 l|\

201n0Os91 Yoea JO s1TUf]

2.4.32-17
‘Rev A

Fig. 2.4.32-1

ALIAIIOV | < RO ARBEOTHD M

o
4
QA
—{
5
o &
o
£
o d
o A
o X
[~
- ——
NOILVOOTIV ' ‘ A
| AONZONILINOD OO0 0000000000000 OOOO §"§
N)
01%;%?333 O OO OONOONOONOONOOMNOYMNOOMNY §j§
: ey
2 Y
& - RS
2 A A AN A AN HNNFNNNOINMOINMOINMOINMm Eg
G T M TA A IR VA IR R W A W T A S T T NS W T TS g3
N
Q
g}ggggggg N OO N RO N ECE~NEE N CE~NEE N EE~BW NS :§.§
. N
Ava |l —~ ~ e < o © ~) o S &
. rs N
O
) =) gl
. 55
) LIS | « 4 o (=] a A A a AR
3 ~ <
N WIL @ Q
= i ~) < " © ~ e
& $SEAI0Ud S s
S
0K | ~ o = S 5
: <|§
HS TN 4 DI O @ 1Y 0O S o
—t
QmaHHOS . o S i S S S %S
o n
CAWVIS | s o min~o~m o min mb
QaNaaHos o & -
~
AN [m NN TN OO~ 42
40 F10XD B’y
; AR
% SIE
l: NN~ NN ON :Ng
-] - Q
['\4.070)
= N =N O NN T SR
B4 : gr-un:
O
< | SINIWTIINO TY 3.3 o
1385
Ivis loev mwocoamnann PRI
i — o e e W 6
LS ILV1 wnjs EC%
NN ONMMTINT N w25
NOI1VINa Q=
+833
. &
naAE

Fig. 2.4.32-2

2.4.32-18

- b1 E | J] K

- [

F B] [G6 H
0 i 10 5 - 20

Process Time, Days

@
°ou-
|1 3
g3 sl--- e e
- @ FIF|F
JH]
ﬂ " B|B|B|D E|E]|E Gleic|t JiJ
- u D 1|1z
g E KIK{K
AlAlA clcicicielc|c
B|B HIHIH[(H]H
0 5 10 15 20
' .Process Time, Days i
@
w U
O W - — - - - - - -"--""—-"_--—- ==
-
e 0]
953 DD
e AT
'g-u B|B|B
j g I{I|I
-l O
S 3 BiB F|F|F[G|G|G ! e KKK
AlAlA HIHfH{H|H
c|cicfcic|c|G
0 5 10 15 20
Process Time, Days
w 9
-]
ﬂ; P, - -
38 U777 TTEE[E
E:E E|E|E I|1]1
GiI
5& B|s|P D G[G
AlAl A BIB|C|C|C|cC|cC]|C i? H|H|H|H{H|K K K
0 5 10 15 . 20

Process Time, Days

Fig. 2.4.32-4
Minimum Duration Solution to Constrained-Resource Problem
Using No Resource Contingency Levels

2.4.32-23

The optimal schedule requires two more days than the contingency-
reéource schedule. Which schedule is suprior depends on the
ayailability of supplemental resource uniﬁs; that 'is, on the
"hardness" of the resource constraints. It is obvious.that the
optimal schedule is superior to the 25—aay RESOURCE_ALLOCATOR
schedule generated assuming no resource contingency lévels, as
shown in Fig. 2.4.32-5., Thus, it is apparent that the simple

" priority rule scheduling of the RESOURCE_ALLOCATOR,Awhich is in
force when no resource-thresholds are present, is greatly enhanced
by the modifying heuristic that invokes contingency resources when
an activity's late-start dafe is slipped. Finally, it should be
noted that by\executing a series of pafametric funs with varyiné
resource contingency thresholds, a thorough analysis of the
tradeoff between project duration and resource availability can
be made. |
2.4.32.8 Referénces
Davis, Edward W. and Heidornm, George E., "An Algorithm fdf Optimal
Project Scheduling under Multiple Resource Constraints', Manage-
ment Science, August 1971.

Davis, Edward W., "Networks: Resource Allocation", Journal of
Industrial Engineering, April 1974.

Burman, P, J.: Precedence Networks. for.Project Planning and Con-
trol. McGraw Hill, London, 1972, .

2.4.32-24

- Rev A

'2.4.33

RESOURCE_LEVELER

2.4.33.1 APurpose and Scope

In many project schg&uling siﬁuations, the pattern of‘resource
utilization is often more important than'the quantity of resources
useé. For example, a resource feasible schedule that results in
rapidiy éhénging resource requirements is clearly undesiraBle from -
the project control standpoint. Iﬁ these situations it is useful
to perform résourée leveling in order to ;eduée reésource profile
flﬁctuations;

Conceptually, a resource utilization profiie is level when the
actual quantity of resource used in each time period is constant.
Unfortunately, it is not generally possible to maintain perfectly
1evel.profiles and simultaneoﬁsly satisfy all of the scheduling
constraints. As a consequence, some flﬁctuations will inevitably
remain in the resource profiles. The purpése of this modﬁle is
then to minimize these remaining resource variations. This is

accomplished by heuristically minimizing the sum of the squares

.of the resources over time, subject to the network, resource

aVailability, and activity completion constraints.
This module is applicable to the general classfnggroject

scheduling problems that includes multiple resources with time

éarying pool levels.

2.4.33.2 Modules. Called

None.

2.4.33-1

Rev A

2.4.33.3 Module Input-

1) Nominal Schedule ($SCHEDULE)

$SCHEDULE

(J0B ID)

J08_INTERVAL

FINISH

(VALUE) : 4 (VALUE)

2) Nominal Resource Profile’ ($PROFILES)

$PROFILES

O
® NFZ%SEOURCE ® (RESOURCE NAME)
‘IN_USE o | D)AvArLsLE
Oe¢ O O¢ o (Y ORMAL . ‘ CO!;ITINGENCY
(Ostart(eno_() Oe L)X O ‘¢ Oe O¢

(value) (valye)

Q¢ ()¢ ()¢ (Ostart(Deno () quantity Ostarteno () quantry

(value) (value) (value) (value) (value) (value)
(Daos () quantity :

(value) (value)

2.4.33-2
Rev A

- —Time Varying Pool Level

Resource Requirements
for Activity i.

7

LISLL11277122127171700

Fig. 2.4.33-2 Time-Varying Resource Variables

This module can also be easily modified to solve the resource
profile shaping problem. This can be accomplished by minimiziﬁg
the square of the diffefences between actual and desired resource

profiles.

2.4.33-7

2.4.33.6 Functional Block Diagram

ENTER

Build a list L consisting

of all activities. Order
L as follows: _
1. Latest scheduled
finish.
a, Minimum residual
slack.

v

"Initialize current
activity to first
element in L.

Set current activity
| to the next element

Yes
in L,

No current
activity the
last element
in L
?

residual slack"
of current activity
positive
?

Determine all values of s; that
minimize: F(s.) ,
subject to:
- + - <
E:rkj(t s.) rki(t Si) < Rk(t)
jest_
s¥<s,<s
i—"1i-

= w

2
-

=

v

Set start time of current
activity to the latest -
‘start time that minimizes
F(si) .

2.4.33-8 , ' ‘

Rev A

ingenuity. Furthermore, questions that arise in modeling the
project as a precedence network, frequently shed light oﬁ the
entire scheduling problem.

Burman (Burman, 72) has suggested a sophistication of the
ordinary precedence network that would permit tﬁe simple repre-
sentation of 'all temporal relations among acﬁivities and events.
Indegd, a soméwhat more involved critical path algorithm can be
developed to generate critical. path data for his sophisticated
netﬁorks. Unfortunately, however, the new networks hopelessly
complicéte any'heuriséic sgheduling process; As is so often the
case in problem solving, it is far easier to generalize a probiém
‘than to solve it.

Basically; what Burman has doﬁe is to identify a new type of
successor--the closely-continuous successor. Such a éﬁégessbr muéf-
begin at the instant of completion of its predecessor. To see
how this new concept facilitates the simu;ation of general teméoral
relations, consider the following exémplgs. Consider the most
difficult case of two-activities whose respectivelstart and finish
are constrained to'differ'by a fixed time interval with the suc-
cessor activity having an ordinary second predecessor as shown in

Fig. 2.4.34-1.

2.4.34-3
,Rev A

1l
[}

Fig. 2.4.34~1
Sample Representation of a General Temporal Relation Using
Closely-Continuous Successors

To represent this temporal relation in terms of closely-
continuous successors one has only to introduce a single dummy
activity D requifing no resources of duration equal to the fixed
intervale length "a." Activity D is then made a closely—continuous>
successor of activity A and B, in turn, is made a cldsely'conf
tinuous sucﬁessor of D. Activity B is made an ordinary successor
of activity C. Consider next the case illustrated in Fig. 2.4.34-2,
wherein one acfivity cannot start until a second activity has

started. -

s >S \ 9

B — A

Fig. 2.4.34-2 _
Sample Representation of a General Temporal Relation Uszng
Closely Cbntznuous Successors

2.4.34-4

Rev A

To represent this temporal relation, one need only ihtroducé
a single dummy event E. Then activity A is made a closely-con-
tinuous successor of event E while activity B is made an ordinary
successor.

Although the closely-continuous sucéessor concept provides a
generaiized network presentation of all of tﬁe general temporaL
relatdions, no‘simple heuristic procedure can be devised to sched-
ule such é network. Long multibranch trees bf closely-continuous
suécegsors of a given activity have to be scheduled before that
activity itself can be scheduled. This considerably complicates
the resource allocation logic perhaps to the point of diminishing
returns. Any complicatiops in a heuristic procedure must be
justified by tﬁeir-results. Without establishing the utility of
;he relatively simple resource allocator for ordinary precedence
networks, it seems pointiess to build a'vastly more complicated
. allocatér for generalized precedence networks. Nonethelesé, in
Subsection 2.4.34.7, a proof is given that any geheral temporal
relation can be moldeled using only ordinary and‘cloself continuous
successors.

7 Thié;éodﬁle has the capability of schedulingﬂin;e;facipg sub-
networks. It assembles a user supplied‘master subnetwork and'
all of its interfacing subnetworks into a master network. All the
activitieé of this master network are to be séheduled subject- to

common resource availability levels.

2.4.34-5

A-time—progressive heuristic program is used to obtain short,
but not necessarily minimal, project durations. The heuristic
employs a critical-path—based'priority rule tempered by a moaify—
ing ﬁeuristic using contingency resource thresholds. By utiliz-
ing late-start time as the priority valué of each activify or
event, a dynamic priority function is obtained that does not re-
duire updating each time a new acticity is scheduled; fhis re-
sults from the fact that the late-start date of an activity is
independentAbf the actual scheduled start dates of any of its
predecessor as long as none of theﬁ are delayed beyond its late-
start date. Nonetheless, the late-start date does represent a
good priority rule in terms of scheduling‘the.least flexible
activities first. That unscheduled‘activitylwith'the eérliest
late—starf date, other factofs being equal, is thé activity most
likely to lengthen prqjec? duration beyond the critical-path value.
The modifying heuristic is activated wﬂenever an activity cannot
be scheduled before its late—stért date. The resource fhat pre-
vents the scheduling of the activity is augmented by a uger—iﬁput
contingency threshold from the time the activity’s predeéessors
were all completed until the activity is successfully scheduled.

Finally, an option is provided for leveling the resource
utilization profiles via a least squareé‘heuristic after a tenta-
tive initial schedule has been obtained from the 1ate-st§rt—date
heuristic. The leveling procedure inv&l&essequentiaily consider-
iné the activities in order‘of laFest scheduiéd finish. A weighted

sum of squares of the resource profiles over time is then computed

2.4.34-6

Rev A~

for each activity for eaclP start date in its residual bfloat ‘
That start date in the float inferval is selected that will ﬁin—-
imize the weightéd resource sum of squares. Two underlying
principles motivate this heuristic procedure. First, by sequen-
tially deiaying activities considered, in order of their latest
scheduled finish, the float of activities-with earlier scheduled
finishes-canbonly be increased, thereby improving their subse-
quent scheduling flexiﬁility. Second, the Weighted sum of squares
-of the resoqrce'profiles over time is decreased by reducing any
jump in the‘utilization level of any resourceif;om one time in-
terval toAthe next. In fact, the unconstrained minimum sum of
the squares is achieved when all the resource profiles are such
that the utilizafion.levels of‘any given resourée in each time

period by at most one unit.

2.4.34.2 Modules Called
NETWORK_ASSEMBLER.
RESOURCE_ALLOCATOR |
RESOURCE_LEVELER

2.4.34.3 Module Input
15 Network, Critical Path Data and.Activity or Evgnt Definitions

($J0BSET) -

2.4.34-7
Rev A

(anTeA) (enTea) (@nTea)

annwno () ana() navas().

(Invp) (3InTVA)
WAYILINI . .
. (enTeA) (anTea) ’ . ? .
O R w1() awa() s4055300ns () SY0SS323034d() .
& . (enTeA) (3nTEA) (enTes) (anTeA) ‘ (3NTYA) - (3nWA)
(3w O 1310) WO 1) Amvi() U @RTNG
C (3dAL) | | ,
A.u._mE::mzwz. | ® A
. 318Y11174S,
. . $304N0S3Y _ 13lva T SNOTLY13Y _
3dAL (O “aau1ndau () wovisC L. Thsinad () 1v1s () TH0dwaL() TYAYILNI 800)

(a1 83‘
- (3nTVA)
a1
(a1 LIanans) . ll._.uzM_:w
_ g - yatsw) O ®
, . w
<
13sg0r$ () N

Rev A

‘ 2) Resource Definitions ($PROFILES)

$PROFILES
O
(RESOURT
RESOURCE (RESOURCE
O nae Qo) (O na)
(NN _USE | () LVAILABLE
O ¢ O ‘ (O)NORMAL () CONTINGENCY
(Ostart(Denp () : O)¢ O e O O

(value) (value)

Qnt ()¢ (¢ (Ostart(Jeno ()quanTITy OsmartOeno () quantiry

(value) (value) (value) (value) (value) (value)
(Doos () quantity
(value) -(value)

3) -Interfacing Event Definitions ($INTERFACE)

$INTEFACE

(EVENT

(EVENT
IDENTIFIER)

IDENTIFIER)

(IDENTIFIER OF
CONTAINING SUBNET)

4) Resource Leveling Option Indicator (LEVEL)

2.4.34-9
Rev A

2.4.34.4 Module Output

1) Resultant Project Schedule ($SCHEDULE)

~ $SCHEDULE ' v

(QOB ID) (JoB 1D) -

JOB_INTERVAL

START | S FINISH
(VALUE) | (VALUE)

2) Revised Resource Profiles ($PROFILES)

Same as for Module Input.

.2.4.34.5 Functional Description

The HEURISTIC SCHEDULING PROCESSOR serves as an executive pro-
cedure for controlling and coordinating the entire heuristic
scheduling process. First_the network must be built whose activ-
ities are to'be scheduled sharing the same common resources. By
means of a call to the module NETWORK ASSEMBLER, the user-specified
master subnetwork and all of its interfacing subnetworks, as de-
tailed in the intérfacing event definitions, are assembled into
the deéired network. Next, the RESOURCE ALLOCATOR is called to
schedule the activities of the network accerding to the minimum
project duration heuristic procedure described above. Earliest-

late-start is used as the priority function for each acfivity.

2.4.34-10
Rev A

2) Resource Definitions ($PROFILES)

$PROFILES
@
(RESOURT
= RESOURCE (RESOURCE
O gy — O (O nane)

(CJIN_UsE , ' ® AVAILABLE
e Ot O (SYORMAL C)CONTINGENCY
Ostarr(Deno) O ¢ O O O N

(value) (value)

th (¢ Ot Osmrr()eno Oauantiry (OsTar Oeno O quantity

. ~ (value) (value) (value) (value) (value) (value)
()oos ()quantity '

(value) (value)

3) Interfacing Event Definitions ($INTERFACE)

$INTEFACE

(EVENT

(EVENT
IDENTIFIER)

IDENTIFIER)

(IDENTIFIER OF
CONTAINING SUBNET)

4) Resource Leveling Option Indicator (LEVEL)

2.4.34-9
Rev A

2.4.34.4 Module OQutput

1) Resultant Project Schedule ($SCHEDULE)

$SCHEDULE N -

(J0B 1D) (J08 ID)

JOB_INTERVAL

FINISH

(VALUE) (VALUE)

2) Revised Resource Profiles ($PROFILES)
Same as for Module Input.

2.4.34.5 Functional Description

The HEURISTIC_§CHEDULING_PROCESSOR serves as an executive pro-
cedure for,contrélling and coordinating the entire heuristic
schedulipg process. First the network must be built ﬁhose activ-
itieé areAto be scheduled sharing the same common resources. By
_ means of a call to ?he module NETWORK ASSEMBLER, the user-specified
master subnetwork and all of its interfacing subnetworks, as de-
tailed in the interfacing event defihifions, are assembled into
the desired network. Next, the RESOURCE ALLOCATOR is called to
schedule the activities of the network according to the minimum
project duration heuristic procedure described above. Earliest
late-start is used as the priority function for each activity.

2.4.34-10
Rev A’

If an activity is delayed beyond its late-start date because of a
resource shortage, a modifying héuristic is invoked to increase
the availability of the deficient resource by a usef inputAcop—
tingency threshold. If the user does not request any resource
leveling effort by leaving.the leveling'option indicator, LEVEL,
unset, the heuristic scheduling process en&s hefe. iOtherwise the
~module RESOURCE LEVELER is called to heuristically reduce to a
minimum the jumps in the ;esource‘utilizatiop rate. The heuristic
operétés by considering the activities in order of 1ates£ sched-
uled finish. The weighted sum of the resource profileé squares
ovef time is then computed for each possiblé start time‘of the
activity under consideration within its remaining total float.
That start tiﬁe is selected that minimizes the sum.. When all the
activities have been considered for delay, the leveiing effort

is complete and the heuristic scheduling terminates.. The simple
ﬁacrologic for the processor is jillustrated in the functionai block
diagram. More detailed information on the resource allocation

and leveling heuristics can be found in the respective specif?cations

for the modules, RESOURCE_ALLOCATOR and RESOURCE LEVELER.

©2.4.34-11

Rev A

2.4.34 .6 Functional Block Diagram

(ENTER)

\

Form master network
from master subnetwork
and interfacing subnetworks.

(Call NETWORK ASSEMBLER)

{

Tentatively schedule activities
and events to heuristically

minimize project duration while
.satisfying resource constraints.

-(Call RESOURCE_ALLOCATOR)

Is
resource

leveling requested
?

Call resource
leveling heuristic.

(Call RESOURCE_LEVELER)

2.4.34-12

all the original activities is maintained so that an ordinary
predecessor or. successor relation can be represented as usual.
References

IBM, Project Management System IV Network Processor Prograﬁ Descrip~
tion and Operations Manual, Publication SH20-0899-1, 1972.

ICT 1900 Series PEWTER (PERT without Tears). ICT Technical Publi-
~cations Group, London 1967. ‘ ’

Burman, P. J.: Precedence Networks for Projeect Planning and Con- -
trol. McGraw Hill, London, 1972.

2.4.34-17
Rev A

2.4.35 GUB LP

>RevA

P

2435 GUB

.')

Bender's algorithm makes use of the fact that for given values

of x, .the problem reduces to an LP whose dual is independent of

any particular chéice of x. This enables an equivalent program

with only one continuous variable to be formulated that can be

solved as a subproblem to yield the overall integer solution. A

brief description of this approach follows.

2.4.36.6 Functional Block Diagram

Enter

Initialize with u > 0
such that

ub < e

Does™
such a
solution
exist

No Feasible
Solution Exists

Solve the program MP1

min z.

Subject to .
z'> cx + u(b - Ax),
X Z 0, X = O'Or 1’

for X.

2.4.36~3

Rev A

Using x, solve the LP

max u(b - AX)
u

Subject to
ub<e u>0

for u

- Is
solution unbounded

Add the constraint
<
Z:ui <M

Add the constraint
z > ey + u(b - Ax)
to MP 1

Solve the LP

min : ey
‘Subject to:
Dy > b - Ax
y2>20

for the optimum value
of the continuous
variables y.

2.6.36=-4

Rev A

Return: Solution
is Optimal

. 2.4.38.6 Functional Block Diagram

Enter

Perform problem setup:

1) addition of logicals

2) scale and translate
equations

|

Compute initial tableau

Return

Determine row to
leave the basis

Is .
solution .
optimal

Compute'canonical form
of row to leave the
basis

Update the basis
inverse by perform-
ing a pivot opera--
-}-tion

R R |

)} Compute index of row
to enter the basis

“1g -
solution

unbounded
?

2.4.38-5

Rev A
\

2.4.38.7 Typical Applications

Dual simplex is generally used.as a sbbmodule in other
algorithms where the highly specialized advantaées of the dual
structure can be exploited. For example, dual simélex is used
internally in the Benders' decomposition algorithm to solve for
the extreme points and rays of the primal prob;em for a fixed
value of_tﬁe ipteger variables. ' The dual is used in this
situation because then the constraint set is independent of any
partipular choice of the'integer variables. (For more details,
see the description of the Bender decoﬁposition algorithm.) Dual
simplex is also used in the Geofferion zero-one algorithm to
solve for the strongest surrogate constraint. In both of these

examples, dual simplex was used because in the process of solving

the master progr@m a subproblem was created that was particularly
compatible with the dual algorithm. This is very typical of the
situations in which the dual simplex module would be used.

2.4.38.8 Implementation Considerations

A more general dual algorithm‘could be developed, similar to
that described in Ref 3 which handles type 1 variables directly.
In this more genera; setting, the dual algorithm is not the same
as the primal simplex applied to the dual problem.
2.4.38.9 References
Lemke, C. E. and Spielberg, K: 'Direct Search Algorithms for
Zero-One and Mixed-Integer Programming; Operations Research,

Vol 15, No. 5, 1967.

Lasdon, Leon: '"Optimization Theory for Large Systems." MacMillan
Sertes in Operations Research. 1970.

2.4.38-6)

