
https://ntrs.nasa.gov/search.jsp?R=19740025593 2020-03-23T04:35:00+00:00Z

--33701

MARTIN MARIETTA AEROSPACE DENVER DIVISION
POST OFFICE BOX 179

DENVER. COLORADO 80201
TELEPHONE (303) 794-5211

Recipients of MCR-74-314 NAS9-13616

Revision/of MCR-74-31A NAS9-13616. Phase 1 Final Report.
"Scheduling Language and Algorithm Development Study,
Volume III. Detailed Functional Specifications for the
Language and Module Library

Attached are revision pages for the subject report. Please
add the attached new page vii to your book and replace all pages
currently in your book with the remaining attached replacement
pages.

John F. Flater
Program Manager
NAS9-13616

Page Intentionally Left Blank

'"Page*
nr

missing from available version"

CONTENTS

1.0
»

1.1 .
1.1.1
1.1.2
1.1.3
1.1.4
1.2
1.2.1
1.2.2
1.3

2.0

2.1
2.2

k 2.3
r

2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2 . 4 . 11_
2.4.12
2.4.13
2.4.14
2.4.15
2.4.16
2.4.17
2.4.18
2.4.19
2.4.20
2.4.21
2.4.22
2.4.23

| 2-.-4-.-24

INTRODUCTION

SPECIFICATIONS FOR A PROGRAMMING LANGUAGE FOR
SCHEDULING APPLICATIONS
Specification Metalanguage
The Abstract Translator
The Metasyntactic Sublanguage
The Metasemantic Sublanguage . .
A Simple Example
The PLANS Pseudomachine
Basic Description . .
Definition of Individual Pseudomachine Operations
The PLANS Language Specification

SPECIFICATION OF A MODULE LIBRARY FOR SCHEDULING
APPLICATIONS
Representation Techniques for Data Trees
Standard Data Structures for the Scheduling
Operations Model
Terminology and Definitions of the Scheduling
Operations Model
Library Module Specifications
DURATION
ENVELOPE
INTERVAL UNION
.INTERVAL INTERSECTION
FIND MAXIMUM
FIND MINIMUM
CHECK FOR PROCESS DEFINITION . . .
GENERATE JOBSET
CHECK EXTERNAL TEMP RELATIONS
CHECK INTERNAL TEMP RELATIONS
CHECK_ELEMENTARY TEMP RELATIONS .
NEXTSET - . . . - . - . . - . - - . .
RESOURCE PROFILE
POOLED DESCRIPTOR COMPATIBILITY
DESCRIPTOR PROFILE .
UPDATE RESOURCE . .' ' .
WRITE ASSIGNMENT
UNSCHEDULE . .
COMPATIBILITY SET GENERATOR .
FEASIBLE PARTITION GENERATOR
PROJECT DECOMPOSER '
REDUNDANT PREDECESSOR CHECKER ...
CRITICAL PATH CALCULATOR . . .
PREDECESSOR SET INVERTER .

Page

1

1-1
1-5
1-5
1-9
1-20
1-27
1-37
1-37
1-39
1-47

2-1
2-3

2-9

2-19
2-21

2.4.1-1
2.4.2-1
2.4.3-1
2.4.4-1
2.4.5-1
2.4.6-1
2.4.7-1
2.4.8-1
2.4.9-1
2.4.10-1
2.4.11-1
2.4.12-1 -
2.4.13-1
2.4.14-1
2.4.15-1
2.4.16-1
2.4.17-1
2.4.18-1
2.4.19-1
2.4.20-1
2.4.21-1
2.4.22-1
2.4.23-1
2.4.24-1

IV

Page Intentionally Left Blank

2.4.11-1 Minimum Required Input Structures from Standard Data
Structures for Module: CHECK_ELEMENTARY_TEMP_RELATION . . 2.4.11-3

2.4.12-1 Minimum Required Input Structures from Standard Data
Structures for Module: NEXTSET 2.4.12-4

2.4.16-1 Minimum Required Input Structures from Standard Data
Structures for Module: UPDATE_RESOURCE 2.4.16-2

2.4.28-1 Illustration of Interfacing-Event Data Structure for
Sample Subnetwork Complex of.Fig. 2.4.28-2 . . 2.4.28-3

2.4.28-2 Sample Subnetwork Complex ' 2.4.28-4
2.4.32-1 Constrained-Resource Problem with Three

Resource Types 2.4.32-17
2.4.32-2 Trace of the Execution of the RESOURCE_ALLOCATOR

Algorithm on the Constrained-Resource Problem Shown
in Fig. 2.4.32-1, Using Contingency Resource
Thresholds on the First and Third Resources,
Respectively 2.4.32-18

2.4.32-3 RESOURCE_ALLOCATOR Solution to Constrained-Resource
Problem Using Resource Contingency Levels of 2, 0,
and 1, Respectively 2.4.32-22

2.4.32-4 Minimum Duration Solution to Constrained-Resource
Problem Using No Resource Contingency Levels •. . 2.4.32-23

2.4.32-5 RESOURCE_ALLOCATOR Solution to Constrained-Resource
Problem Using No Resource Contingency Levels 2.4.32-25

2.4.33-1 Profile for Single Resource . . 2.4.33-3
2.4.33-2 Time-Varying Resource Variables 2.4.33-7
2.4.33-3 Examples Project Network 2.4.33-10
2.4.33-4 Nominal Schedule Using CPM Early Starts 2.4.33-11
2.4.33-5 Rescheduled Using RESOURCE_LEVELER 2.4.33-11
2.4.33-6 "Hand" Scheduled Solution . . 2.4.33-11
2.4.33-7 Detailed Diagram of min (Ffs \) 2.4.33-13

2.4.34-1 Sample Presentation of a General Temporal Relation
Using Closely-Continuous Successors . .2.4.34-4

2.4.34-2 Sample Presentation of a General Temporal Relation
Using Closely-Continuous Successors ; 2.4.34-4

Table

-2=r4r-34-l--i- Sample-Characteristics of—Some Commercially-Available - — • ._.,,.-..-„- .:.
Computer Programs with Constrained-Resource Network
Scheduling Capabilities 2.4.34-14

2.4.37.8-1 Summary of Implementation Recommendation 2.4.37-8

vi

e REVISION STATUS SUMMARY

The.following list identifies the revisions made to this specification

by symbol, a brief summary of the purpose of each revision, and the pages

revised.

REVISION REVISION PURPOSE
SYMBOL PAGE NUMBER (S)

.REVISION DATE
ORIGINATOR/APPROVAL

A To incorporate revision status summary page.

vii

To correct typographical and editorial errors in original issue,

iv, vi, 1-14, 2-11, 2-12, 2-13, 2-14, 2-15, 2-16, 2.4.1-5, 2.4.3-1,

2.4.4-1, 2.4.5-2, 2.4.6-2, 2.4.7-1, 2.4.7-2, 2.4.7-3, 2.4.8-4,

2.4.8-5, 2.4.9-3, 2.4.9-4, 2.4.10-2, 2.4.10-3, 2.4.10-4, 2.4.11,

2.4.11-1, 2.4.11-3, 2.4.11-5, 2.4.12, 2.4.12-1, 2.4.12-2, 2.4.12-3,

2.4.12-4, 2.4.12-5, 2.4.12-6, 2.4.13-2, 2.4.13-3, 2.4.14-3,

2.4.14-5, 2.4.14-8, 2.4.14-9, 2.4.15-2, 2.4.15-3, 2.4.16-2,

2.4.16-3, 2.4.17-2, 2.4.18-3, 2.4.21-1, 2.4.21-2, 2.4.22-2,

2.4.22-3, 2.4.23-1, 2.4.23-2, 2.4.23-3, 2.4.23-4, 2.4-23-5,

2.4.23-6, 2.4.23-7, 2.4.23-8, 2.4.24-2, 2.4.24-3, 2.4.24-5,

2.4.25-4, 2.4.25-5, 2.4.25-6,̂ 2.4.25-7̂ 2.4.25-8, 2.4.26-2,

2.4.26-5, 2.4.27-2, 2.4.27-3, 2.4.27-4, 2.4.28-2, 2.4.28-5,

2.4.29-2, 2.4.29-3, 2.4.29-4, 2.4.30-4, 2.4.30-5, 2.4.30-6,

2.4.31-2, 2.4.32-4, 2.4.32-5, 2.4.32-6, 2.4.32-17, 2.4.32-24,

2.4.33-1, 2.4.33-2, 2.4.33-8, 2.4.34-3, 2.4.34-4, 2.4.34-6,

2.4.34-7, 2.4.34-8, 2.4.34-9, 2.4.34-10, 2.4.34-11, 2.4.34-17,

2.4.35. 2.4.36-3, 2.4.36-4, 2.4.38-5
13 October 1974

J. Willoughby//, S

i/ vii

Reading the definition from the top, it is said to be an
•

augmented grammar definition of the language METASYNTAX. The rule

defining METASYNTAX indicates that a language definition starts

with the string .AUGjSRAM, followed by an identifier (the name of

the language), followed by a RULE. The next character of the rule

METASYNTAX is an iteration operator. The dollar sign has the

meaning "zero or more occurrences of the element..." Thus, after

the mandatory RULE, zero or more additional RULEs may appear.

Finally, the string .END terminates the language definition.

The next rule defines a RULE as an identifier (the metavariable

name), followed by the string ":=", followed by an EXPRESSION.

Then zero or more occurrences of an element may occur, where the

element consists of the single character ")"•(vertical bar mean-

ing "or") followed by an EXPRESSION. Note the use of parentheses

to form a group that can be treated as a single unit. The

EXPRESSION *< "l" EXPRESSION)

portion of the rule allows a RULE to contain alternatives. An

example is the NOUN rule of Fig. 1.1.1-1, which is read "a NOUN

consists of the word 'BOY', or the word 'GIRL', or the word 'DOG',

•or the wordJCAU". Finally, the RULE is said to be terminated by

a semicolon (the one in quotation marks) and the RULE rule, having

been completed, is itself terminated (by a semicolon without quota-

tion marks). Keep in mind that symbols in quotation marks represent

terminal symbols in the language being defined (in this case

METASYNTAX), while symbols not in quotation marks have meaning in

the language in which the definition is written.

1-13

An EXPRESSION consists of an ELEMENT followed by zero or more

additional ELEMENTS. An ELEMENT is an identifier (used for meta-

variable names)., a string (used for specific terminal symbols),

or any of the specific symbols ".ID", ".STRING", ".LABEL,"

".TREE", ".NUM", or ".EMPTY". ".EMPTY" is a reference to the null

character string, which represents a condition that, during pars-

ing, is always satisfied. It is used when optional elements are

involved. If, for example, one wished to define a number with or

without preceding signs (unary operators), the rule might take

the form

NUMBER la (»*'• I "-" I .EMPTY) .NUM I

which specifies that either "+", "-", or nothing at all may precede

the number itself.

An additional alternative for ELEMENT (after ".EMPTY") is

".PEEK" "('« .STRING '•)"

which represents a look-ahead capability. The effect is to peek

ahead at the next input symbol to determine whether it is a spec-

ified string. The significance will be clearer when parsing is

discussed in more detail. The final alternatives for ELEMENT

represent a parenthesized expression and an iteration respectively.

Finally, the definition of .METASYNTAX is terminated by the string

".END".

It is suggested that the serious reader consider this defini-

tion of METASYNTAX as a grammar for the simple language of Fig.

1.1.1-1 and as a grammar for the language in which the definition

of METASYNTAX is written. This familiarization will help consider-

ably when the metalanguage is used later in the definition of PLANS.

1-14

Rev A

"Page\missing from available version"

'2-1
-to

2 - / 0

-t-i

o:
o
CO

o:

2-11

Rev A

2-12

Rev A

$OPSEQ

"OPSEQ") «EE GENERAL SUBSTRUCTURE)

(OPSEQ NAME)

(PROCESS OR
OPSEQ NAME)

ALTERNATIVES

Fig. 2.2-3 SOPSEQ Standard Data Structure

2-13

(Rev A)

3
-P
o
3

Q

?
f*-l

I

5
CO

oo

•t)
CO
o

I
00

8at

2-14

Rev A

CO
QQ
O

2-15

Rev A

«CHEDUL£

(JOB ID)

.) RESOURCES

("SPLITTABU" I "NONSPLinABL£"l(VALUEI

(TYPE)

(NAME)

) QUANTITY () (PARAMETER) () • • • () • • •

(VALUE) (VALUE) (VALUE) (VALUE)

Fig. 2.2-6 $SCHEDULE Standard Data Structure '

2-16

Rev A

SOOBSET. SJOBSET $JOBSET.

(SUBNET ID)

(JOB ID)

RESOURCED
ALTERNATIVES

START V ; END

(value) (value)

START

(value) .

Fig. 2.4.1-2 (canal)

END

(value) (value)

2.4.1-5

Rev A

2.4.3 INTERVALJJNION

2.4.3.1 Purpose and Scope

Given two standard intervals, this module constructs a

standard interval that represents their union, in the sense of

the sketch below.

$ INTERVAL A | - 1

$ INTERVAL B J

$UNION . |

2.4.3.2 Modules Called

None

2.4.3.3 Module Input

$INTERVAL_A and$NTERVAL_B are standard intervals.

2.4.3.4 Module Output

$UNION is a standard interval.

2.4.3-1

Rev A

2.4.3.5 Functional Block Diagram

$UNION equals
null interval

$UNION equals
first subinterval
of $INTERVAL_A,
$INTERVAL B

Find next
subinterval
of $INTERVAL_A,
$ INTERVAL B

Exhausted
?

Does
it start within
current subinterval

of $UNION?

Next subinterval
of $UNION equals
last found sub-
interval subinterval

End of current
subinterval of
$UNION equals
end of last
found subinterval

2.4.3-2

2.4.4 INTERVALJNTERSECTION

2.4.4.1 Purpose and Scope

Given two standard intervals, this module constructs a

standard interval which represents their intersection, in the

sense of the sketch below.

$INTERVAL_A | 1

$INTERVAL_B j : |

$INTERSECTION (. —|

2.4.4.2 Modules Called

None

2.4.4.3 Module Input

$INTERVAL_A and $INTERVAL_B are standard intervals.

2.4.4.4 Module Output

$INTERSECTION is a standard interval.

2.4.4-1

Rev A

2.4.4.5 Functional Block Diagram

SINTERSECTION
equals null
interval

$TEMP equals
las t found
subinterval

Start of next subinter-
vai of SINTERSECTION
equals start of last
found subinterval}end
equals end of $TEMP

$TEMP equals
next subinterval
of $INTERVAL_A,
$ INTERVAL B

Exhaus ted

Find next
subinterval of
$INTERVAL_A,
$INTERVAL B

Does
it start

within $TEMP
7

Does
it end

within STEMP

New subinterval
of SINTERSECTION
equals last found
subinterval

2.4.4-2

2.4.5 FIND_MAXIMUM

2.4.5.1 Purpose and Scope

Given a set of numerical values (i.e., a node of a tree for

which each of the next lower level subnodes is terminal and has

a numerical value), find the maximum (minimum) of the values and

find the indices (i.e., the ordinal positions in the original

set) of each of the subnodes for which the value equals the

maximum (minimum).

2.4.5.2 Modules Called

(None)

2.4.5.3 Module Input

$SET is a tree of the form shown in the sketch. Minimum

required data structure is a tree with at least one subnode at

the next lower level.

$SET

(value) (value)

where each value is numeric.

2.4.5.4 Module Output

MAXIMUM is an arithmetic variable whose value is the maximum

of the values of $SET.

2.4.5-1

$INDICES is a tree of the form

SINDICES

Kx)

(index) (index)

where the indices are the ordinal positions in $SET of all nodes

whose value equals maximum.

2.4.5-2

Rev A

e

2.4.6 FINDJIINIMUM

2.4.6.1 Purpose and Scope

Given a set of numerical values (i.e., a node of a tree for

which each of the next lower level subnodes is terminal and has

a numerical value), find the minimum of the values and find the

indices (i.e., the ordinal positions in the original set) of each

of the" subnodes for which the value equals the maximum minimum.

2.4.6.2 Modules Called

(None)

2.4.6.3 Module Input '

$SET is a tree of the form shown on the sketch with at least

one subnode at the next lower level.

$SET

where each value is numeric.

2.4.6,4 Module Output

MINIMUM is an arithmetic variable whose value is the minimum

of the values of $SET.

.2.4.6-1

$INDICES is a tree of the form

SINDICES

where the indices are the ordinal positions in $SET of all nodes

whose value equals minimum.

2.4.6-2

Rev A

2.4.7 CHECK_FOR_PROCESSJ)EFINITION

2.4.7.1 Purpose and Scope

This module checks that all processes or operations sequences

specified in $OBJECTIVE are defined in $PROCESS or $OPSEQ. These

processes may be listed explicitly or contained in an operations

sequence specified in $OBJECTIVES. If any processes are not

included in $PROCESS, such information as process duration and

required resources are not defined. Since this condition pre-

cludes successful execution of the problem, the missing processes

should be identified. This module performs that identification

function.

2.4.7.2 Modules Called

None

2.4.7.3 Module Input

Input to this module consists of $OBJECTIVES, $OPSEQ and

$PROCESS. The minimum required data structure from these Standard

Data Structures is illustrated in Fig. 2.4.7.3-1.

2.4.7.4 Module Output

This module will output a tree structure, $MISSING, with the

™" names~6f unfound processes .and operations sequences. If this tree

is null, no missing definitions have been identified.

2.4.7-1

Rev A

Note; Minimum (i.e. relevant) portion of required input Standard
Data Structures is shown. In all trees, any additional
structure will be preserved.

$OBJECTIVES

OPSEQ

(NAME)

SOPSEQ

(OPSEQ
NAME)

(ELEMENT
NAME)

TYPE

(value)

$PROCESS

(NAME)

Fig. 2.4.7.3-1
Minimum Required Input Structures from Standard Data Structures for
Module: CHECK FOR PROCESS DEFINITION

2.4.7-2

Rev A

2 .4 .7 .5 Functional Block Diagram

subnodes to OPSEQ
SOBJECTIVES been

considered C Return J

Is
next element

an operations sequence
or a process

Operations
sequence

Add subnode to
$MISSING.OPSEQ

process in
SPROCESS

Add the operations
sequence to the
pushdown stack

Add subnode to
$MISSING.PROCESS Select next element

from top operations
sequence on stack

Pop the operations
sequence from
top of stack

operations sequences
the stack

2.A.7-3

Rev A

2.4.7.6 Typical Applications

This module is useful for initial problem processing, which

checks for logical errors or incomplete data.

2.4.7-4

2.4.8.3 Module Input

The input to this module consists of the trees, $OBJECTIVES,

$OPSEQ, and $PROCESS, defined previously, and the integer

INITIAL_ID. The minimum required data structure from these stand-

ard structures is shown in Fig. 2.4.8-1. INITIAL_ID is the first

integer to be used in constructing unique job identifiers within

the module. ,

2.8.4.4 Module Output

This module will return an output tree $JOBSET to the calling

program. It will contain the REQUIRED_RESOURCES information from

$PROCESS with any specific ASSOCIATED_RESOURCES information from

$OBJECTIVES replacing the corresponding generic information in the

REQUIRED_RESOURCES. Since it is permissable to specify specific

resources in both $PROGESS and $OBJECTIVES, this module will pro-

duce an error message when inconsistent data are specified. The
I

structure of $JOBSET is shown in Fig. 2.4.8-2. .

2.4.8-3

Note: Minimum (i.e., relevant) portion of required input Standard Data
Structures is shown. Any additional structure will be preserved
in all trees.

SOBJECTIVES $OPSEQ $PROCESS

TYPE

(VALUE)

(OPSEQ
NAME)

(ELEMENT
NAME) .

TYPE

(VALUE)

(VALUE)

DURATION

END

(VALUE)

Fig. 2.4.8*1 "
Minimum Required Input Structures from Standard Data Structures for Module
Generation

2.4.8-4

Rev A

Fig. 2.-4.S-2
HT4T8-5'

Rev A

2.8.4..5 Functional Block Diagram

C ENTER J>

Select an OPSEQ from
$OBJECTIVES. (A first level
subnode of the node labeled
OPSEQ)

If selection is an operations
sequence (as opposed to a process),
recursively interrogate $OPSEQ
until a process is loacted.

Assign a unique integer job.
identifier to the next process
and label a first level sub-
node of the output tree, $JOBSET,
with the ID

Add such information as process
name, problem name, resources .
associated with the job (either .
generic or specific), and
appropriate intervals to the
output tree (as shown for $JOBSET)

Yes

Are
other operations
sequences on the

"pushdown
stack"

Have
all OPSEQ

in $OBJECTIVES
been

considered

Add appropriate nodes to $JOBSET
to define temporal relations between
jobs and job alternatives

RETURN

2.4.8-6

•a:

s

2.4.9-3

Rev A

Note: Minimum (i.e., relevant) portion of the required input standard data
structures is shown. In all trees, any additional structure will be
preserved.

SJOBSET

TEMPORAL RELATIONS

PREDECESSORS f) SUCCESSORS^!} GENERAL

(THE OTHER
JOB REF TIME)

(THE OTHER
JOB)

(VALUE)

$SCHED1 JSCHED2

(JOB ID)

iSTART

(VALUE) (VALUE)

Fig. 2.4.9-1
Minimum Required Input Structures from Standard Data Structures for Module:
CHECK EXTERNAL TEMP RELATIONS

2.4.9-4
Rev A

2.4.10 CHECK_INTERNAL_TEMP_RELATIONS

2.4.10.1 Purpose and Scope

This module will determine the temporal relations specified

for jobs in $JOBSET that are violated within a single partial

schedule that has two or more jobs.

Unlike CHECK_EXTERNAL_TEMP_RELATIONS, this module will iden-

tify all violations of temporal relations that exist within a

single tree containing several schedule units. The module 'will

build an output tree containing a first-level node for each iden-

tified violation of a temporal relation. Identifiers of the con-

flicting jobs, the identifiers of the violated temporal relations

and the interval of the violation will be recorded for each such

node.

2.4.10.2 Modules Called

CHECK_EtEMENTARY_JEMP_RELATION

2.4.10.3 Module Input

This module will be called with three arguments. There are two

input arguments: $JOBSET and $SCHED. The structure of $JOBSET is

identical to the structure output from the module GENERATE_JOBSET.

The structure of $SCHED is that of the standard schedule unit.

The minimum data structures required from the standard struc-

tures $JOBSET and $SCHEDULE are shown on the following page. Note

that in the minimum structure the fifth and sixth subnodes of a

relation in the TEMPORAL_RELATIONS substructure are not mandatory

in every case.

2.4.10-1

Note: Minimum (i.e., relevant) portion of the required input standard data
structures is shown. In all trees, any additional structure will be
preserved.

$JOBSET

\TEMPORAL RELATIONS

START

(VALUE) (VALUE)

PREDECESSORS OsUCCESSORS^ni GENERAL

(JOB REF (/ (LOGICAL IJ(THE OTHER % W <"«
TIME), YRELATiX) YJOB REF TIMEM JOB)

(THE OTHER

("START" ("<"
"END") |">_"

("START"
"END")

(VALUE)

$SCHED1

(JOB ID)

Fig. 2.4.10-1 ' • • • '
Minimum Required Input Structures from Standard Data Structures for Module:
CHECK INTERNAL TEMP RELATIONS .

2.4.10-2

Rev A

This .odule ,111

structure shown below:

111 build and return an output tree with the

OUTPUT DATA STRUCTURE

JTEMPORALJIOLATIONS

("START"("END") ("START"I"END") (VALUE)

(KUKERK
(ARtTH CONSTANT)
OPEM.TQR)

Each node of $TEMPORAL_VIOLATIONS will correspond to a. violation of

& temporal relation in $JOBSET (input) that appears internally in

$SCHED (input),.

-2-v4-.-10-3-

Rev A

2.4.10.5 Functional Block Diagram

ENTER

Create a set of all job
identifiers in $SCHED which
have non-null TEMPORAL_
RELATIONS nodes.

Select a job from the
set.

Select next TEMPORAL_
RELATION for this job.

Call CHECK ELEMENTARY TEMP RELATION

Have
All TEMPORAL

RELATIONS for this
job been considered

Have
all jobs in

$SCHED that have
TEMPORAL_RELATIONS
been considered

2.4.10-4

Rev A

2.4.11 CHECK JLEMENTARYJEMP.

RELATION

Rev A

2.4.11 CHECK_ELEMENTARY_TEMP_RELATION

2.4.11.1 Purpose and Scope

This module is elementary in the sense that it determines

satisfaction or nonsatisfaction of a single input relationship

involving the start or end times of two jobs for which specific

start and end times have been assigned. The principal use of this

module is to service higher level logic that is checking multiple

temporal relations between or within sets of jobs.

2.4.11.2 Modules Called

None

2.4.11.3 Module Input

There are three input arguments to this module. These are

$JOB1, $JOB2, and $RELATION. The structure of $JOB1 and $JOB2 is

shown below:

$JOB

JOB_INTERVAL

2.4.11-1

Rev A

The structure of $RELATION is the structure of one of the sub-

nodes of TEMPORAL_RELATIONS shown in the section on standard data

structures. This module assumes that $JOB1 is the same job for

which the structure TEMPORAL_RELATIONS is written and that $JOB2

is the other job that is referred to in the fourth subnode of the

special .structure of $RELATION. Note that in illustrating the

minimum required data structure for this information that the fifth

and sixth subnodes for the structure $RELATION are not mandatory to

specify temporal relationships in every case.

2.4.11-2

Note; The minimum (i.e., relevant) portion of the required input standard
data structures is shown. In all trees, any additional structure will
be preserved.

SRELATION

(LOGICAL
RELATION)

("START /!!<!! H.M ln-itV omi\i i Jl < I ~ /"
I "END" "7""?" *

(OTHER JOB)

VALUE

OR

OR

$RELATION

I PREDECESSORS

(NAME)

SUCCESSORS

(NAME)

Fig. 2.4.11-1
Minimum Required Input Structures from Standard Data Structures for Module.
CHECK ELEMENTARY TEMP RELATION

2.4.11-3
Rev A"

2.4.11.4 Module Output

This module returns a tree SRESULT with two first level subnodes

as shown below: •

SRESULT. -

SATISFIED () LEFT MINUS RIGHT

(YES|NO) (VALUE)

The value returned for the LEFT_MINUS_RIGHT node is simply the

algebraic result of subtracting the quantity on the right of the

binary operator (<_, <, =, >_, >) of the input TEMPORAL_RELATION

from the quantity on the left. If the module is called with a

PREDECESSOR or SUCCESSOR, this module assumes the following equiv-

alent relations to compute the LEFT_MINUS_RIGHT value:

GENERAL. RELATION

START)
(

END |

— ̂^— . — '
H

START)
(

END j

v

(+
OF (JOB ID) J

~~ (

i)
(CONSTANT) j

i

LEFTJSIDE

PREDECESSOR

END OF JOB2 <_ START OF JOB1

LEFT SIDE RIGHT SIDE

RIGHT_SIDE -

SUCCESSOR

START OF JOB2 >_ END OF JOB 1

LEFT SIDE RIGHT SIDE

2.4.11-4

2.4.11.5 Functional Block Diagram

c ENTER

Is
SRELATION

PREDECESSOR or
SUCCESSOR

Yes

Evaluate left side.

Evaluate right side.

LEFTJSIDE = END OF
JOB2

RIGHT SIDE = START OF
JOB!

Compute LEFT_SIDE
minus RIGHT_SIDE
and build node

LEFT SIDE = START OF
JOB2

RIGHT SIDE = END OF
JOB1

Is
operator

Yes ̂ 'PREDECESSOR'

Place 'YES'
as value of
satisfied
node.

Place 'NO'
value of satisfied
node.

2.4.11-5

Rev A

Ill
Crt

X
LLJ

2.4.12 NEXTSET

2.4.12 NEXTSET

2.4.12.1 Purpose and Scope

This module accepts an abstract description of item specific

resource requirements associated with a specific job and, by re-

ferring to information about the assignments already scheduled

for the resources, determines the earliest possible time (within

a designated interval) at which the resource requirements can be

fulfilled. It generates all information required to actually place

the job on the schedule but does not cause resource assignments

to be written. The module also determines the time intervals

during which the resource requirements are met using the same

permutation of resources and time intervals for which any permuta-

tion of available resources meets the requirements.

2.4.12.2 Modules Called

DURATION
INTERVALJJNION
INTERVALJNTERSECTION

2.4.12.3 Module Input

$ABSTRACT is a tree structure that describes the job in terms

of its general characteristics, resource requirements, and, if

applicable, in terms of any user-designated specific resource

allocations. Its structure is shown on the following page.

-27-471-2=1-

Rev A

2.4.12-2

Rev A

Except for the job, process, and resource intervals, the in-

formation is exactly as used elsewhere for abstract process and

job description. Specifically, the information is in the form

generated by the module GENERATE_JOBSET.

Since the absolute start and end times of the jobs, processes,

and resource allocations are an output of this (and other) modules,

rather than an input, the intervals in this structure are rela-

tive. The resource interval represents the start and.end times

(relative to the start of the process) of a single resource al-

location. These relative times may be positive, zero, or (very

rarely) negative.

• The absolute start and end times of interest are specified in

the argument list to limit the scope of assignments considered,

and $RESOURCE is referenced to allow access to the resource as-

signments.

If for a given resource unit, the resource unit name is

specified (i.e., LABEL($ABSTRACT.REQUIRED_RESOURCES(J)'(K)) is not

null, then it is assumed that the named resource unit is to be

used. Regardless of the specification or nonspecification of the

resource unit, the requirements (descriptors, quantity, etc.)

still apply and must be satisfied, if possible, by 'NEXT.SET.

-2T4-1-2-3—

Rev A

Note; The minimum (i.e., relevant) portion of the required input standard
data structures is shown. In all trees, any additional structure
will be preserved.

SABSTRACT
(JOB ID)

REQUIRED RESOURCES

(TYPE)

(NAME)

Fig. 2.4.12-1
Minimum Required Input Structures from Standard Data Structures for Module.
NEXTSET

2.4.12-4
Rev A

OUTPUT DATA STRUCTURE

$CONCRETE

(JOB ID)

9NAME

(VALUE) (VALUE)

START I END

(VALUE) (VALUE)

START I HND

-(VALUE)- (VALUE)-

FINAL

'QUANTITY () (PARAMETER) () •

(VALUE) (VALUE) (VALUE) (VALUE)

2.4.12-5
Rev A

2.4.12.4 Module Output

The output of NEXTSET consists of two output trees, $CONCRETE

and $AVAILABLE_WINDOWS. $CONCRETE, as shown below, describes a

specific execution of a job, with all times and resource alloca-

tions fully specified in absolute terms at the earliest available

opportunity within the specified window. $AVAILABLE_WINDOWS,

also shown below, defines all of the available time intervals,

within the specified window, for the set of resources correspond-

ing to the set representing the earliest available time. It also

defines the available time intervals if any permutation of ac-

ceptable resources is considered.

$AVAILABLE WINDOWS

SAME RESOURCE SET ANY RESOURCE SET

START() END

(VALUE) (VALUE)

START(JEND

(VALUE) (VALUE)

2.4.12-6
Rev A

2.4.13 RESOURCE_PROFILE

2.4.13.1 Purpose and Scope

In project scheduling the resources are assigned from a pool

and, upon completion of the job, are returned to the pool of avail-

able resources. Thus, the quantity of a given resource, available

in the pool for a given time interval, is required to determine

the advisability of scheduling a given job at a given time. Fur-

ther, if sufficient resources are not available at the desired

time, a contingency level of resources may be considered. This

module determines the profile of available resources over a given

time interval for both a "normal" and "contingency" level of re-
%

source. If contingency levels are not to be considered, they are

set equal to the normal level. Certain functional characteristics

of project scheduling also create the need to determine the usage

of a pool assigned over a given interval (such as in attempts to

level resource usage). Therefore, this module also determines

the profile of the assigned portion of the pool and defines the

association of jobs that make up the usage profile..

2.4.13.2 Modules Called

None.

2.4.13.3 Module Input " ~ - . - - . -

The input to this module will consist of the pooled resource

type and name whose profile is to be generated, the time interval

for which the profile is to be generated, and the $RESOURCE tree.

2.4.13-1

2.4.13.4 Module Output

The output of this module will consist of a tree structure as

shown in the sketch. The IN_USE portion of the tree defines the

quantity of the pooled resource assigned to a job for a given time

interval. Therefore, the sum of the quantities for a given inter-

val define the total INJJSE resources .for that interval. The span

of intervals listed will be consistent with the input interval re-

quested. The available portion of the tree defines the quantity

of resource pool that is unassigned for both a normal and contin-

gency mode of operation. These quantities are determined, from

the initial levels defined in $RESOURCE, the allocations recorded

in the ASSIGNMENT portion of $RESOURCE, and the resources DELETED

or GENERATED recorded in the ASSIGNMENT portion of $RESOURCE.

$PROFILE

((RESOURCE NAME)

START V. ; END { J USAGE

x x y./ I \ t } U A N T I T Y ^ > X

C^JsTART QEND \^) OSTAIt ^J<t ^STARTV^ENDV^ V^START \^J END ^QUANTITY
(value) (value) (value) (value) (value) (value)

I JOB Q) QUANTITY

(value) (value)

2.4.13-2
Rev A

2.4.13.5 Functional Block Diagram

Enter

requested interval
consistent with data

$RESOURCE

No Set Error
Flag

Yes

Locate the earliest assignment involving
the input start time. Compute portion
of that assignment included in requested
interval. Call it "current interval."

Return)

Form an assignment set consisting of all
non-null intersections of assignments
with the current interval.

Build a subnode of INJJSE for each
interval formed by consecutive start
and/or end times. Add corresponding
jobs and quantities for the assign-
ment set.

Add Deltas to
INITIAL_PROFILE
and Store as Total

Take complement of next
assignment interval with
respect to current interval.

Yes
Is

complement
null
9

2.4.13-3

Rev A

Define complement
as current interval.

current interval
end time > requested

end t ime

Define current interval
end time = requested
end time.

Subtract the
INJJSE Profile
from Total

Build Available
Tree Structure

C Return J

2.4.13-4

This module assumes some conventions about the structure of

the ASSIGNMENT node of any resource that is a pooled resource

(i.e., for which the node CLASS has a value 'POOLED'). A pooled

resource that has explicit descriptors must contain a subnode of

DESCRIPTORS for each partition of the pool. Those partitions that

are being used in the assignment interval are distinguished from

those not used in the interval by the appearance of the 'INITIAL1

and the 'FINAL1 nodes. Thus, the availability of a particular

partition of a pool is precluded during the assignment interval

only if that partition has a subnode of the 'DESCRIPTOR1 node

labeled 'INITIAL'. This convention is illustrated in the follow-

ing structure:

SRESOURCE

(PARTITION 2) () START

14 JUNE

NO._OF_FLTS
3

2.4.14-3

Rev A

The structure illustrates one assignment for the pooled re-

source named CREWMEN and indicates that between 14 June and 28

June five crewmen were assigned .(indicated by the appearance of

the INITIAL node) and 10 crewmen were not assigned.

A slight generalization of the convention is required for pools

that have overlapping assignments. The sketch illustrates the as-

sumed structure of a portion of the ASSIGNMENT substructure for a

pool of CREWMEN that has been separated into two partitions by

previous assignments. Two assignments whose intervals overlap are

shown. • . •

2.4.14-4

2.4.14-5

Rev A

Note in the illustration that the availability of the crewmen

in the 10-man partition during the overlap of-the assignment inter-

• vals (15 June through 20 June) cannot be determined correctly by

merely noting the absence of the 'INITIAL1 node in the first as-

signment. This is because that partition is used in the second

assignment. Therefore, the convention adopted requires that all

assignments whose intervals include the availability time in ques-

tion be considered in determineing the pool condition at that

time. Note also that the ASSIGNMENT conventions for pooled re-

sources permit the determination of descriptors by considering

only the assignments whose intervals include the time in question;

unlike the case for item-specific resources, there is no need to

work progressively through all the descriptor changes from a set

of initial descriptors to correctly determine the descriptors of

pooled resource. (See the discussions in volume II on pooled and

item-specific resources and the implication the corresponding

conventions have on scheduling and unscheduling using time pro-

gressive and time transcendent strategies).

This module builds a tree that displays for each conflict the

set of resource pool descriptors that exist because of jobs already

scheduled and those required to be added to the schedule. No in-

formation on which previously assigned jobs caused the conflicts

is included because the description of any pool is a result of the

composite of all decisions on resource and job alternatives that

have been made throughout development of the schedule. The most

basic information needed to resolve the conflicts is simply what

2.4.14-6

descriptors exist and what descriptors are required. This infor-

mation is provided by the output tree from this module.

This module does not write or remove any assignments in

$RESOURCE, i.e., $RESOURCE is returned unaltered. $RESOURCE is

required by the module to assess the complete .set of descriptors

describing the pooled resources.

2.4.14.2 Modules Called

None

2.4.14.3 Module Input .

This module is called with two arguments: $RESOURCE and

$SCHED_UNIT. $RESOURCE has the general structure given in para-

graph 2.4.14.1; $SCHED_UNIT has the general structure of a sched-

ule unit shown in the following illustration.

Note that in $SCHED_UNIT the node labeled JOBJNTERVAL.START

must contain the value of the assignment time for the job to be

inserted.

2.4.14-7

$SCHED_UNIT

V(JOB ID)

<t ^ START

(VALUE) (VALUE)

'QUANTITY LJ (PARAMETER)

(VALUE) (VALUE) (VALUE) (VALUE)

2.4.14-8
Rev A

2.4.14.4 Module Output

This module returns a structure called $POOLED_RE"SOURCE_

CONFLICTS which contains information about conflicts that would

result if $SCHED_UNIT were assigned at its specified time. The

general structure of $POOLED_RESOURCE_CONFLICTS is illustrated.

$POOLED_RESOURCEJCONFLICTS

(RESOURCE ID)

SCHED_UNIT_
RES DESCRIPTORS

SCHEDULED_RESOURCE
DESCRIPTORS

(QUANTITY Q(PARAMETER) ̂)(PARAMETER)Q.QUANTITY @ARAMETER)l((PARAMETER)

(VALUE) (VALUE) (VALUE) (VALUE) (VALUE) (VALUE)

2.4-14-9
Rev A

2.4.14.5 Functional Block Diagram

Enter

Select one (pooled)
Resource Required by
Job-To-Be-Added

Determine (for the assignment
time of the Job-to-be-Added)
the complete description of
all partitions of that Resource
that result from the already-
scheduled jobs. (To determine
this, consider all assignments
whose intervals include the
assignment time for the
Job-to-be-Added.)

Select a partition of the
'DESCRIPTORS' of the Job-
to-be-Added which has a
subnode labeled 'INITIAL'

2.4.14-10

2.4.15 DESCRIPTOR_PROFILE .

2.4.15.1 Purpose and Scope

This module Is used to update the set of descriptors that

apply to an item-specific resource, i.e., an individual, identifi-

able resource that would correspond to the first subnode level of

the resource "type" in the $RESOURCE tree. The update of descrip-

tors will consist of an assignment or set of assignments that de-

fine initial and final descriptors for each assignment. The

original set of descriptors to be updated and their corresponding

values will be supplied by the calling program. This could con-

sist of reference to the resource descriptors in the $RESOURCE

tree, a derived tree that has been maintaining the descriptors of

that resource as a function of time, or a tree built by the call-

ing program with specific (possibly artificial) descriptors.

Any number of descriptive parameters may have been used in

the resource assignments, but any one parameter will be assumed

to contain only mutually exclusive values. For example, 'if the

descriptive parameter, LOCATION is specified, values of DENVER,

DALLAS, or DETROIT are obviously mutually exclusive. If, however,,

the location were specified as DENVER and a process moved*the re—=

source to WAREHOUSE 3, this module would retain only the location

WAREHOUSE 3 whether or not Warehouse 3 was located in Denver.

2.4.15.2 Modules Called

None.

2.4.15-1

2.4.15.3 Module Input

Input consists of the item-specific resource to be considered,

the original values of descriptors to be updated and the corre-

sponding time, the assignments to be considered, and the interval

of time that assignments are to be considered. The original de-

scriptors and their values are defined in a tree structure as

shown in the sketch. This format corresponds to the first level

subnodes of the resource names in the $RESOURCE tree.

, $ORIGINAL STATE

INITIAL. ^(PARAMETER) ^J (PARAMETER)
TIME I T

(Value) (Value) (Value) (Value)

The assignments to be considered would have a format corre-

sponding to the subnode levels of the ASSIGNMENT node in the

$RESOURCE tree as illustrated in the sketch. Any nodes, other

than the time interval and descriptors (which are required), will

be retained for aiding traceability.

2.4.15-2

Rev A

$ASSIGNMENT

(JOB. ID) y PROCESS

(Value) (Value)

DESCRIPTORS

(PARAMETER)
(Value) (Value)

2.4.15.4 Module_0ut£ut

The output consists of a "resource
state" tree (shown) that

lists the resource

$RESOURCE_STATE

descriptors as a function of time.

END yKPARAMETER)

(Value) (Value) (Value)

(PARAMETER)

2.4.15-3
Rev A

2.4.15.5 Functional Block Diagram

c Enter

Build Resource State tree
with initial time and
corresponding descriptors,

Locate next assignment
to be considered.

Have
all of these

descriptive parameters
been included in

previous
interval

parameters Build new node on output
tree to reflect new
descriptors or values.

Add interval to
last node of
output tree. Has

maximum
allowed time

been
reached

Have
all assignments
been considered

2.4.15-4

2.4.16 UPDATE_RESOURCE

2.4.16.1 Purpose and Scope

This module will update information in the data tree $RESOURCE

for each resource assigned to a specific J08__ID in the structure

$SCHEDULE. It provides a standard method of reflecting in

SRESOURCE, the results of a scheduling decision. It creates a

data structure $NEXTUMIT" that contains element(s) to be added to

the chronologically ordered assignments of a specific $RESOURCE.

(TYPE).(NAME) by calling the module WRITE_ASSIGNMENT.

2.4.16.2 Modules Called

WRITE_ASSIGNMENT

.2.4.16.3 Module Input

Inputs consist of the standard data structures $SCHEDL)LE and

$RESOURCE, that are shown in standard form on .the following pages.

The minimum .relevant portions of the required input structures

are shown on subsequent pages.

2.4.16.4 Module Output

During execution the module creates the data structure

' SNEXTUNIT. .,.(See, the following illustrations. After execution,

the SRESOURCE tree will reflect the changes in assignments that

result from the scheduling of all jobs in $SCHEDULE.

2.4.16-1

Note: Minimum (i.e., relevant) portion of required input Standard Data Structures
is shown. In all trees, any additional structure will be preserved.

$SCHEDULE

VYNAME V^OPSEQ
(Value) (Value)

START (• J END

(Value) (Value)

$RESOURCE

>(TYPE)

'(NAME)
k

Fig. 2.4.16.4-2
Minimum Required Input Structures from Standard Data Structures
for Module: UPDATE^RESOURCE

2.4.16-2

Rev A

OUTPUT DATA STRUCTURE

SNEXTUNIT
(JOB ID)

("^DESCRIPTORS

/\
I INTERVAL l̂ JOBJD \J PROBLEM_\JOPSEQ l^PROCESS

(Value) (Value) NAME (Value) (Value)

START
(Value) (Value)

'QUANTITY Vy'(PARAMETER) \̂ -.
(Value) (Value) (Value) (Value)

2.4.16-3

Rev A

2.4.16.5 Functional Block Diagram

(EnterJ

Consider next job

Consider next resource type r

*Consider next resource name

I
Write Initial Time
descriptor if new resource

Create $NEXTUNIT for
current resource/job

Call WRITE ASSIGNMENT

2.4.16-4

2.4.17 WRITE_ASSIGNMENT

This module will add an element to the chronologicallly

ordered assignments of the $RESOURCE tree for a specified resource

name and type. Basis for the order is the resource interval start

time. If start times are equal, the assignment with an earlier

end time is listed first. If start and end times are equal, no

distinction is made in the order..

The specific data written for an assignment can vary with the

calling module. That is, dummy assignments may be made as a

means of constraining resources in which case processes, prob-

lem names, etc may be meaningless. However, selected resources

for a given problem may.contain many parameters and descriptors

that define the usage and provide traceability for later re-

trieval.

2.4.17.2 Modules Called

None

2.4.17.3 Module Input

Inputs to this module consist of $ASSIGI\IMENT_UNIT, the as-

signment node of $NEXTUNIT for which the assignment is to be

written, and identificaiton of the $RESOURCE subnode where the

assignment is made. In the standard case, the entire substruc-

ture of one of the third-level subnodes of $NEXTUNIT.RESOURCES

becomes the substructure for one element of the standard data

structure subnode $RESOURCE.(TYPE).(NAME).ASSIGNMENT that cor-

responds to the resource type and name identified by

SNEXTUNIT.RESOURCES.

2.4.17-1

MINIMUM REQUIRED INPUT STRUCTURES FROM STANDARD DATA STRUCTURES
FOR MODULE: WRITE ASSIGNMENT

Note: Minimum (i.e., relevant) portion of required input
standard Data Structures is shown. In all trees, any
additional structure will be preserved.

SRESOURCE

ASSIGNMENT

SASSIGNMENT UNIT

START r j END

(value) (value)

INPUT DATA STRUCTURE

$ASSIGNMENT U N I T

QUANTITY ^(PARAMETER) (^) .

(VALUE) (VALUE) (VALUE) (VALUE)

2.4.17-2
Rev A

INPUT DATA STRUCTURE

$UNSCHEDULE

(value)

(JOB ID) U1JOB ID)

DESCRIPTORS (f)INTERVAL

7\

QUANTITY \J (PARAMETER)

(VALUE) (VALUE) (VALUE) (VALUE)

2.A.18-3
Rev A

2.4.18.4 Module Output

Upon completion of this module, the assignment portion of

SRESOURCE will be altered based on the contents of $UNSCHEDULE

2.4.18.5 Functional Block Diagram

Consider next job

Have
all jobs been
considered

i

2.4.18-4

2.4.21 PROJECT_DECOMPOSER

2.4.21.1 Purpose and Scope

This module will identify all subprojects contained within a

specified project. Frequently these subprojects, which are some-

times apparent to the scheduler, are difficult to recognize in the

complete network. Identification of the subprojects can signif-

icantly reduce the computational effort required to schedule the

entire project by enabling some of the scheduling analysis to be

done separately for each subproject. For this reason the follow-

ing analytical procedure is proposed for their detection.

2.4.21.2 Modules Called

None

2.4.21.3 Module Input

Critical path input data $JOBSET

TEMPORAL_
RELATIONS

PREDECESSORS

(NAME)

(VALUE) (VALUE)

2.4.21-1
Rev A

2.4.21.4 Module Output

Tree defining the unique subproject decomposition $JOBSET

Subproject identifier (user supplied label)

Member activity or event identifer

Predecessor of activity or event identifer

SJOBSET

(SUBNET ID)

PREDECESSORS

(NAME) O(NAME)

(VALUE) (VALUE)

•2.4.21.5 Functional Description

In order to construct an algorithm for identifying "subprojects"-

this term must be precisely defined. A subproject is a subnetwork

containing all the predecessors and successors of its member ac-

tivities. (These, of course, do not include the events START and

FINISH.) Recall.that a network for scheduling purposes is a set r

of activities and events denoted by nodes together.with all their

2.4.21-2

Rev A

2.4.22 REDUNDANT_PREDECESSOR_CHECKER '

2.4.22.1 Purpose and Scope

Given a s.et of activities and respective predecessor sets,

this module eliminates any redundant predecessors. A predecessor

is said to be redundant if it is not an immediate predecessor;

that is, there is at least one intervening activity between the

predecessor and its successor. As an example, suppose activity

A is a predecessor of activity B,-and B is a predecessor of ac-

tivity C. Then A is a redundant predecessor of C, while A and B

are immediate predecessors of B and C, respectively.

Expressing a project in terms of a collection of nonredundant

predecessors serves two useful purpose: (1) it expedites con-

siderably critical path calculations; (2) its facilities compre-

hension of the precedence relations by representing the project

in terms of the most logically concise precedence network pos-

sible.

2.4.21.2 Modules Called

None

2.4.22.3 Module Input

Netwo'rk "definition $JOBSET - including redundant precedessors.

2.4.22-1

SJOBSET

(JOB ID) C)(JOB ID) I)(JOB ID)

TEMPORAL_
RELATIONS

HNAME)

(VALUE) (VALUE)

2.4.22.4. Module Output

Network definition $JOBSET - technologically ordered, exclud-

ing redundant predecessors.

2.4.22.5 Functional Description

The most efficient redundant predessor elimination algorithm

is a two-phase recursive procedure based on a technologically

ordered job set.

The first, or forward phase, recursively augments the predecessor
»

sets to introduce maximum redundancy beginning with the predecessor

set of the first element in the technologically ordered job set.

The second, or reverse phase, recursively decrements the maximally

redundant predecessor sets to secure minimum redundancy beginning

with the predecessor set of the last element in .the technologically

ordered job set. The major difficulty with this or any other

algorithm designed to eliminate redundant predecessors is the

excessive storage requirements. For a job set containing n ac-

tivities up to n2/2 memory cells can.be required to store the

intermediate maximally redundant predecessors.

2.4.22-2

Rev A

2.4.22.6 Functional Block Diagram

REDUNDANT PREDECESSOR.CHECKER

technologically

Pick next unexamined
element, i, in technologically
ordered job set proceeding
forward

unconsidered
technologically

predecessor

Pick next unexamined
element, i, in technologically
ordered job set proceeding
backward

Pick next unconsidered
element, j, in predecessor
set of i

Augment predecessor
set of i by predecessor
set of j

Yes

Pick next unconsidered
element, j, in predecessor
set of i

Remove those elements from
predecessor set of i that
are in predecessor set of j

2.4.22-3
Rev A

2.4.22.7 Typical Application

The module can be applied wherever the most logically concise

precedence network representation of a project is desired. This

includes critical path calculation, automated heuristic schedul-

ing, and manual precedence relation analysis.

2.4.22.8 References

Muth, John F. and Gerald L. Thompson: Industrial Scheduling,
Prentice Hall Inc., Englewood Cliffs, New Jersey, 1963.

2.4.22-4

2.4.23 CRITICAL_PATH_CALCULATOR

2.4.23.1 Purpose and Scope

This module will calculate the critical path data for a proj-

ect network. The variables computed are: (1) early-start, late-

start, early-finish, and late-finish of each activity; (2) early

occurrence and late occurrence of each event; and (3) total slack

and free slack of each activity and event.

A project that is defined by a collection of activities and

events, their precedence constraints, and their durations must

meet several other requirements to be amendable to critical path

analysis:

1) It must consist of a finite collection of well-defined activ-

ities and events (with no unspecified alternatives) which,

when completed, mark the end of the project.

2) The activities may be started and stopped independently of

each other within a given sequence. This requirement pre-

cludes the analysis of continuous flow processes.

3) The predecessor relationships among the activities and events

must not contain cycles; that is there can be no predecessor

chains implying that a job precedes itself. Thus a project

is nonrepetitive. It is essentially a one-time effort such

as a R&D task or a construction project.

2.4.23.2 Modules Called

ORDER_BY_PREDECESSORS

FIND_MAXIMUM

FIND_MINIMUM

2.4.23-1
Rev A

2.4.23.3 Module_Ingut

Critical Path Input Data ($JOBSET)

$JOBSET

(SUBNET ID)

(JOB ID)

TEMPORAL_
RELATIONS

2.4.23-2
Rev A

2.4.23.4 Module Output

Critical Path Output Data ($JOBSET)

$JOBSET

START () E N D

(VALUE) (VALUE)

SLACK

)PREDECESSORS (jSUCCESSORsCjEARLY O LATE QjEARLY QjLATE (jTOTAL QFREE

(VALUE) (VALUE) (-VALUE) (VALUE) (VALUE) (VALUE)

(VALUE) (VALUE) (VALUE) (VALUE)

2.4.23-3
Rev A

2.A.23.5 Functional Description

Critical path analysis is a powerful but simple technique

for analyzing, planning, scheduling, and controlling complex proj-

ects. In essence, the method provides a means of determining (1)

which activities are "critical" in their effect upon total proj-

ect duration, and (2) how to schedule all activities to meet mile-

stone dates.

Critical path analysis is based on the simple concept of pre-

decessor/successor relationships between the activities and events

defining the project network. A brief introduction to these fun-

damental scheduling concepts is presented below.

Let ̂ Jt = {i,j,k, ...} be a set of activities and events that

must be completed to finish a project. Let the symbol "«" denote

the basic immediate predecessor relation. Thus the notation i«j

is interpretated to mean that activity i must be completed before

activity j can start. If s. denotes the start of activity j and

f . denotes the finish of activity i, then the relationship i«j

is equivalent to the standard inequality s.^_f.. The set P. =

Cf

{j:j«i} is said to be the -immediate predecessor set of activity

or event i. Similarly the set, S• = {j:i<<:j}> denotes the im-

mediate successor set of the activity or event i.

A directed graph (network) is a useful topological representa-

tion of a project, and can provide valuable insight into many

scheduling problems. A summary of predecessor/successor relation-

ships in terms of their network representation is given in Table

1. More general temporal relationships can be easily included

within this simple framework by adding artificial activities.

2.4.23-4

Rev A

[1]

[2]

13]

[4]

Table 2.4.23-1 Basic Precedence Relationship

Network Representation Mathematical Representation

, sk>max{ f

i, k« j, SL> f, s. >

Suppose now that every activity in the project is started as

soon as possible, that is, as soon as all of its predecessors

are finished. It is then possible to calculate the early start

of each activity as

e
Si = max |f?l,

J£P, ' J'

and the early finish of activity i is clearly

where d. is the duration of the ith activity (d. = 0 for events)

Similarly,-the late finish for activity i is given by

,~ . . I]£. = min

and the late start is

2.4.23-5

Rev A

For any activity, the quantity

[5] St-4-
S!-£i-£!

is defined to be the total slack. The set of critical activities

is then the subset of activities having minimum total slack.

Another useful variable is free slack, S . Free slack is

defined as the amount by which an activity may be delayed with-

out affecting any other activity. It is computed as

[6] B[= min /sj - fj}

Je«V

The logic for the coordination of these calculations into

an efficient computational procedure is given in the following

block diagram.

2.4.23-6

Rev A

2.4.23.6 Functional Block Diagram

C ENTER J

^
Order activity and event
set according to the
precedence relations
(Call ORDER BY PREDECESSOR^

Select next (proceeding forward)
activity or event from the
technologically ordered set

Compute early start
and early finish of
next activity or event

2.4.23-7

Rev A

Are
there any

activities or events with
uncomputed late

.start and finish
dates in technologically

ordered set

Select next (proceeding backward)
activity or event from .the
technologically ordered set.

Compute late finish
and late start of
next activity or event,

Compute total and free .
slack for next activity.

2.4.23-8

Rev A

2.4.24 PREUECESSOR_SET_INVERTER

'2.4.24.1 Pur po se^ and Sc qpje

Given a set of activities and their respective predecessor

sets, this module will -form the respective successor sets. This

inversion process is necessary for critical path computation. The

project scheduling system assumes throughout that stating precedence

relations in terms of predecessor sets is more natural than ex-

pressing them as successor sets. For this reason the user is asked

to define all subnetwork topology in terms of predecessor sets in

the input data structure $JOBSET.

2 .4 .24 .2 Modules Called

None

2.4.24-1

2.4.24.3 Module Input

Network definition ($JOBSET)- The substructures of the tree

beginning at the nodes labeled SUCCESSORS are null upon input to

the module.

$JOBSET

(SUBNET ID)

TEMPORAL,
RELATIONS

(JOB ID)

(VALUE)

2.4.24-2
Rev A .

2.4.24.4 Module Output

Redundant network definition ($JOBSET) - The substructures of

the tree beginning at the nodes labeled SUCCESSORS are complete

upon exit from the module.

$JOBSET

(SUBNET ID)

(JOB ID)

TEMPORAL_
RELATIONS

SUCCESSORS

I* (J*.

(VALUE) (VALUE) (VALUE) (VALUE)

2.4.24-3
Rev A

2.4.24.5 Functional Description

The logic of the inversion process from predecessor sets is

simple and direct. Each activity in the job set is considered

in turn. Whenever a given activity is found in the predecessor

set of another, the latter is included in the successor set of

the former. When all of the predecessor sets of all of the jobs

_have been examined., the collection of successor sets is complete.

The following block diagram illustrates this straightforward yet

efficient logic.

2.4.24-4

2.4.24.6 Functional Block Diagram

PREDECESSOR SET INVERTER

Pick next activity, j,
in job set.

Pick next activity, k, in
predecessor set of j.

Place j in successor
set of k.

2.4.24-5

Rev A

2.4.24.7 Typical Application

The module can be applied wherever successor sets rather than

user input predecessor sets are required. This includes the mod-

ules CRITICAL PATH CALCULATOR.

.2.4.24-6

matter what its size, can be viewed as one comprehensible sum-

marized network. Without this capability network analysis would

be of little value to project scheduling..

The purpose of this module is then to convert a network, spec-

ified in terms of a ̂ obset with its corresponding family of pre-

decessor sets and durations, into a condensed network defined by

its event and pseudo-activity set with its corresponding collection

of predecessor sets and durations.

2.4.25.2 Modules Called

None

2.4.25-3

2.4.25.3 Module_Input

Critical Path Input Data ($JOBSET)

SJOBSET

(VALUE)

(SUBNET ID)

PREDECESSORS

TEMPORAL
RELATIONS

(JOB ID)

(VALUE) (VALUE)

2.4.25-4
Rev A

2.4.25.4 Module Output

Tree Defining the Condensed network

$CONDENSED JOBSET

(SUBNET ID)

(JOB ID)

iDURATION

(VALUE)
PREDECESSORS

2.4.25.5 Funcjt ion̂ al̂ Desc r ip_t ion

The problem of finding the critical delay between any pair

of events is simply that of finding the longest directed path be-

tween two nodes in a network not passing through any third node.

Because the critical"delays between all=directly connected events

are desired, the following approach suggests itself. Consider

each event in turn. Step by step, examine all possible paths

that terminate at the current event under analysis. All branches

of any path must be investigated and for this reason a "pushdown"

stack is useful•in recalling which alternatives remain unexamined.

A path is eliminated from further consideration when it reaches

2.4.25-5

Rev A

an event or merges with some other path of greater length. Since

the topology of the condensed networks are specified in terms of

precedence sets rather than successor sets, it is convenient to

proceed along the activity paths in reverse order to activity

performance.

T.he macrologic of the module requires a few further words of

explanation. First, when an event is transferred from the input

tree $JOBSET to the output tree $CONDENSED_JOBSET,. its predeces-

sors are omitted and its duration is maintained at zero. Second,

when candidate early start and finish times are computed, the

calculations are performed as though the activities and events

proceeded backward in time. This point of view is adopted to

avoid the costly process of inverting the predecessor sets to

obtain successor sets. Finally, the details of inserting a

pseudo-activity into the output tree $CONDENSED_JOBSET are des-

cribed. If pseudo-activity 1 represents a critical delay orig-

inating at event i and terminating at event j, then the pseudo-

activity should be listed as a predecessor of event j and event

i should be listed as a predecessor of pseudo-activity i. The

duration of the pseudo-activity is simply the critical delay be-

tween events i and j (that is, the early start of event i computed

with respect to event j).

2.4.25-6

Rev A

2.4.25.6 Functional Block Diagram

ENTER
Transfer each event in
$JOBSET directly to
$CONDENSED JOBSET

Are
there any

events whose
critical delays to

preceding events have
not been evaluated

Empty discovered
event record

Initialize early
"finish" time of
all activities and
events to zero.

Initialize "pushdown"
stack of activities
to event i.

Pick next event,
as current event
for analysis.

Place activity k
on top of "push-
down" stack.

Yes

Replace current
"early-finish" time
of activity k by
candidate value

Save current top
element of stack.

Pick next predecessor
activity, k.

Compute candidate "early finish"
time for activity k as "early
start" of top element of stack
plus duration of activity k.

2.4.25-7
Rev A

Pick next element
of discovered event
record j

Add activity t to $CONDENSED_JOBSET
with duration equal to "early finish"
of event j

Make j the predecessor of t

Add Si to predecessor net of
saved element i

2.4.25-8
Rev A

2.4.26 CONDENSED_NETWORK_MERGER .

2.4.26.1 Purpose and jjcope

This module will merge two condensed subnetworks into a com-

posite condensed network. This process is essential in merging

subnetworks into a self-contained master network.

2.4.26.2 Modules Called

None

2.4.26-1

2.4.26.3 Module Input

Critical path data for condensed subnetwork and condensed

master subnetworks $CONDENSED_JOBSET

$CONDENSED JOBSET

(MASTER
SUBNET ID)

(SUBNET ID)

(JOB ID)V"VjOB ID)

TEMPORAL_
RELATIONSDURATION

(VALUE)

PREDECESSORS

(VALUE) (VALUE)

2.4.26.4 Module Output

Critical path input data for merged network contained under

master subnetworks node of $CONDENSED JOBSET.

2.4.26-2
Rev A

2.4.26.6 Functional Block Diagram

Do any
unexamined

items remain in
activity/event set

for augmenting
network

Is nex
item an
event
7

Does
next event

already occur
in network
to be

augmented

Add event identifier
and predecessor set
to activity/event
network being
augmented.

Augment predecessor set
of event in augmented
network with those of
same event in augmenting
network

2.4.26-5

Rev A

Does next
activity represent
a critical delay
between two
events already

in network
to be

augmented

Yes Add activity identifier
and predecessor set to
activity/event tree of
network being augmented

In activity/event tree
of network being augmented
set the duration of the
activity to the maximum
of the values found in
the two networks to be
merged.

2.4.26-6

2. A.27 NETWORK_ASSEMBLER

2.4.27.1 Purpose and Scope

Given a master subnetwork and its prescribed interfacing events,

this module will assemble this subnetwork and all of its interfac-

ing subnetworks into a master network.. This assembly capability

facilitates the heuristic scheduling of any combination .of sub- .

networks that may share common resources. The list of interfacing

events need only be constructed to draw together all .of the desired

subnetworks.

2.4.27.2 Modules Called

None

2.4.27-1

2.4.27.3 Module^ Input

1) Interface event definition ($INTERFACE)

S-INTERFACE

(EVENT
IDENTIFIER)

(EVENT
IDENTIFIER)

(IDENTIFIER OF
CONTAINING SUBNET)

2) Subnetwork definitions, including master subnetwork ($JOBSET)

I J<XUYPI 1) PnoaianuME (1 OPSEO

fSPHTT«8U" I 'TMdSCllITABiri (VAUID IVMUO

REQUISEOJfSCXJBCtS

WAU10

2.4.27-2

Rev A

2.4.27.4 Module Output

1) Heuristic processor input data under master subnetwork node

of $JOBSET
2) Component Subnetworks of Master Network ($SUBNET_SET)

A. Component subnet identifier

$SUBNET_SET

(COMPONENT (COMPONENT i (COMPONENT
SUBNET ID) SUBNET ID) SUBNET ID)

2.4.27.5 Functional Descriptj^ori

The assembly of the master subnetwork and all of its inter-

facing subnetworks into a master network is straightforward. A

"pushdown" stack of interfacing subnetworks to be examined is

initialized to contain the master subnetwork. The top element

of the stack is analyzed for interfacing subnetworks by succes-

sively examining each of its events for their presence in other

unexamined subnetworks. Any such interfacing subnetworks found

are added to the 'top of the stack. When all events in a subnet-

work have been investigated it is added to the master network

and removed from the unexamined stack. When the unexamined stack

of interfacing networks is empty, the assembly process is complete.

2.4.27-3

Rev A

2.4 ;27 .6 Functional Block Diagram

ENTER

Place master subnetwork
in stack to be analyzed
for interfaces.

Empty list of subnetworks
previously examined for
interfaces.

Remove current
top subnetwork
the unexamined
stack and save

from

it.

Select top element from
stack of subnetworks to
be examined for interfaces
and decrement stack count.

fc.^>

Yes

Is'
stack of

unexamined
subnetwork

empty

Augment master sub-
network with current
subnetwork. Add cur-
rent subnetwork to
list of previously
examined subnetworks.

Do any
unexamined

events remain
saved top

subnetwork

Does next
event in saved top
subnetwork belpng
to an unexamined

subnetwork
9

Add those unexamined
interfacing subnetworks
of the current event to
the stack of subnetworks
to be examined.

2.4.27-4

Rev A

2.A.28 CRITICAL_PATH_PROCESSOR

2.4.28.1 Purpose and Scope

Given a master subnetwork and its prescribed interfacing

events, this module will

1) Integrate the master subnetwork and all of its interfacing

subnetworks into a condensed master network.

2) Compute the early- and late-occurrence dates of all the in-

terface events.

3) Compute all critical-path data for the activities in the

master subnetwork and all of its interfacing subnetworks.

The objective of the module is to facilitate critical path

calculations on networks too large to permit direct computations

because of computer resource limitations in high-speed memory

and execution time.

2.4.28.2 Modules Called

NETWORKJCONDENSER

CONDENSED_NETWORK_MERGER

CRITICAL PATH CALCULATOR

2.4.28-1

2.4.28.3 Module Input

1) Interface Event Definitions ($INTERFACE)

$INTERFACE

(EVENT
IDENTIFIER)(EVENT

IDENTIFIER)

(IDENTIFIER OF
CONTAINING SUBNET)

This data structure is illustrated in Fig. 2.4.28-1 for the

subnetwork complex of Fig. 2.4.28-2

2) Subnetwork Definitions, Including Master Subnetwork ($JOBSET)

$JOBSET

TEMPORAL.
RELATIONS'START

(VALUE)

(JOB ID)

PREDECESSORS (J SUCCESSORS

2.4.28-2

Rev A

2.4.28.4 Module Output

1) Identifiers of subnetworks that are components of total net-

work (all subnetworks in $JOBSET may not be connected to total

network).
$SUBNET SET

(SUBNET ID) (J(SUBNET ID) ^)(SUBNET ID)

2) Critical Path Output Data ($JOBSET)

$JOBSET

(JOB ID)

'START

(VALUE)

SLACK

^SUCCESSORS LJEARLY OLATE LJEARLY LJLATE ^ JTOTAL ^ JFREE

(VALUE) " " (V A L U E) (VALUE) (VALUE) (VALUE) (VALUE)

2.4.28-5

Rev A

2.4.28.5 Func t ion a1 Desc r ipt ion

This module has three basic objectives. The first objective,

assembling the subnetworks into a 'condensed' self-contained master

network, is the most involved and facilitates ready accomplishment

of the remaining two. Basically, it involves determining all of

the subnetworks to which the specified master subnetwork is con-

nected by interface events. These subnetworks are condensed and

then merged into a condensed master network. These steps can

best be accomplished in•the recursive fashion. (See para 2 .4 .28 .6 .)

The master condensed network is initialized as the condensed

master subnetwork. Next a 'pushdown' stack o€ interfacing sub-

networks is created and initialized as the master subnetwork.

Then, the top subnetwork of the stack is condensed and examined

for interfacing subnetworks. All unanalyzed subnetworks found

are added to the stack. When the interface examination of a

given subnetwork is completed, it is merged into the curren't con-

densed master network. The merging process will be'carried out

by . the module C O N D E N S E D _ N E T W O R K _ M E R G E R . When the 'pushdown'

stack of unexamined interfacing subnetworks is finally emptied,

a self-contained master condensed network has been assembled and

is ready for critical-path analysis.

The second objective of the module, calculation of the early

and late occurrence dates of all the interfacing events, is ac-

complished by applying the module CRITICAL_PATH_CALCULATOR to the

condensed master network. To do so one need only construct the

single tree $JOBSET, including the successor set substructure,

1 • i

2.4.28-6

2.4.29 NETWORK_EDITOR

2.4.29.1 Purpose and Scope

This module edits manually or automatically generated project

scheduling precedence relations for logical inconsistencies.

Four types of errors may occur in precedence data:

1) The predecessor relationships may contain cycles; for example,

job A is a predecessor of job B, B is a predecessor of C,

.' and C is a predecessor of A.

2) The list of predecessors for a job may include more than

immediate predecessors; for example job A is a predecessor

of. B, B is a predecessor of C, and A as well as B are listed

as predecessors of C.

3) Some precedence relations may be overlooked.

4) Some predence relations may be listed that are spurious.

Errors of types (1) and (2) are inconsistencies in the data that

can be detected by automated examination of the predecessor sets.

Errors of types (3) and (4), however, appear to be legitimate

data and, hence, cannot be discovered by computer procedures.

Instead, manual checking (perhaps by a committee) is necessary

to ensure that the predecessor relations are correctly reported.

Errors of type (1) are fatal to the critical path analysis.

Errors of type (2), however, are not fatal and merely lengthen

the execution of the critical path algorithm. For this reason

the NETWORK_EDITOR has been divided into two separate editing

procedures. The first, called ORDER_BY_PREDECESSORS, is manda-

tory. All efficient CPM processors require the job set to be

2.4.29-1

arranged in a technological ordering (any job in the list precedes

all of its successors) . This ordering is a useful byproduct of

the cycle-checking routine. The second procedure, called the

REDUNDANT_PREDECESSOR_CHECKER, is optional. Its use is, how-

ever, recommended because, in addition to expediting the critical

path processing, it generates the most logically concise prece-

dence network possible.

2.4.29.2 Modules. Called

ORDER_BY_PREDECESSORS

REDUNDANT_PREDECESSOR_CHECKER

2.4.29.3 Module Input

1) Network definition $JOBSET - unedited version

2) Redundant-predecessor-elimination option indicator (SIMPLIFY)

SJOBSET

.(SUBNET ID)

(JOB ID)

TEMPORAL.
RELATIONS

PREDECESSORS

{.VALUE) (VALUE)

2.4.29-2
Rev A

2.4.29.4 Module Output

1) Network definition $JOBSET - edited version

2) Cycle-containing subset of activities or events $CYCLE_SET

$CYCLE SET

(JOB ID)

2.4.29.5 Functional Description

The module NETWORK_EDITOR serves primarily as a coordinator

of the two editing modules ORDER_BY_PREDECESSORS and REDUNDANT_

PREDECESSOR_CHECKER. This module is intended to prevent the

user frdm attempting to use REDUNDANT_PREDECESSOR_CHECKER

without first having called ORDER_BY_PREDECESSORS to place the

second level subnodes of $JOBSET in a technological ordering.

The user may opt not to eliminate redundant predecessors by

setting the flag SIMPLIFY.

2.4.29-3
Rev A

2.4.29.6 Functional Block Diagram

Call
ORDER_BY_
PREDECESSORS

Was
ORDER_BY_

PREDECESSORS
successful

Is
redundant
predecessor
elimination
requested

Print subset
of jobset
containing
cycles

Call
REDUNDANT

PREDECESSOR
CHECKER

1

Return

2.4.29-4

Rev A

descriptors at the assignment time, the incompatibilities that

are identified for times after the assignment time are those

that result assuming compatibility between the scheduled resource

descriptors, and the required descriptors for the job to be in-

serted. This is illustrated below.

Time

x\
Scheduled
Job 1

/\
Job to be
Inserted

f\
Scheduled
Job 2

Input Status Required

Output Status

Identified
Incompatibility

(82 Assumed)

Identified
Incompatibility

2.4.30.2 Modules Called

DESCRIPTOR_PROFILE

2.4.30.3 Module Input

This module is called with two input arguments. They are

SRESOURCE and $SCHEDULE_UNIT. $RESOURCE has the general structure
given in Section 2.2 and must contain initial descriptors at a. _

reference time and all assignment and descriptor changes that

are to be considered after that time. This information is re-

quired by this module so that it can call DESCRIPTOR PROFILE.

2.4.30-3

2.4.30.4 Module Output

This module returns a structure called $DESCRIPTOR_CONFLICTS,

which contains information about the conflicts that would result

if $SCHED_UNIT were assigned at its specified time. The general

structure of $DESCRIPTOR_CONFLICTS is shown below:

$DESCRIPTOR CONFLICTS

(RESOURCE
ID)

(value)

iSCHED DESCRIPTOR I JJOBJDESCRIPTOR

(value) (value)

Each first-level subnode represents a resource status conflict

that would result from the assignment of $SCHED_UNIT at the

specified time.

2.4.. 30-4

Rev A

$SCHED_UNIT has the_general structure of a schedule unit

shown below:

$SCHED_UNIT

I (J O B ID)

PROBLEM
JWIE

(value) (value)

QUANTITY (.^(PARAMETERS'

(value) " (value)
Note that in $SCHED_UNIT, the JOBJNTERVAL .START must
contain the assignment time for the job to be inserted.

2.4.30-5

Rev A

2.4.30.5 Functional Block Diagram

For each required resource
of the job to be inserted,
determine resource descriptor
values at the assignment time
for the job to be inserted.
Call DESCRIPTOR_PROFILE
repeatedly to perform this
function.

Update resource
•descriptors to
start time of
Subsequent job.

Select one required
resource for job to
be inserted.

Select an output resource
from job to be inserted.

Find last previous
job that changed
the descriptors of
that resource.

Build a conflict
note.

Find next later scheduled
job that changes the
descriptors of that
resource (Call this job, J_)

Select next job that starts
equal to or after assignment
time for job to be inserted.

2.4.30-6

Rev A

2.4.31 ORDER_BY_PREDECESSORS

2.4.31.1 Purpose and Scope

Given a set of activities and events and their respective

predecessor sets, this module either places them in a technologi-

cal order if one exists or identifies a subset of the activities

containing a cycle. A technological ordering of the events and

activities means an ordering such that any activity or event is

preceded by all of its predecessors or equivalently followed by

all of its successors. A cycle, on the. other hand, is a chain

of predecessor-successor related activities or events implying

that some event or activity is a predecessor of itself. Such an

activity or event could never be scheduled because one of its

predecessors, namely itself, could never be completed beforehand.

Hence, the presence of cycles in a precedence network precludes

any scheduling or critical path analyses.

2.4.31.2 Modules Called

None

2.4;31-1

2.4.31.3 Module Input

Network definition ($JOBSET) - activities or events (first

level subnodes) are not technologically ordered.

$JOBLIST

(SUBNET ID)

TEMPORAL_
RELATIONS

(JOB ID)

(VALUE)

2.4.31-2
Rev A

2.4.31.4 Module Output

1) Network definition ($JOBSET) - activities or events (second-

level subnodes) are technologically ordered.

2) Subset of jobs containing cycles (if any exist) ($CYCLE_SET)

$CYCLE SET

(JOB ID)
r

2.4.31.5 Functional Description

It can be shown that the activities and events of a project

can be technologically ordered if, and only if, the precedence

relations contain no cycles. It must be noted, however, that if

cycles are absent, the technological ordering is by no means

unique. The particular ordering produced by this module results

from inductively "scheduling" in cycles all those activities or

events whose predecessors are "scheduled." Eventually a cycle

arises where there are no activities or events with all of their

predecessors "scheduled." If some activities or events remain

unscheduled, they contain a cycle. A more precise description

of the logic of the module is provided in the functional block

diagram.

2.4.31-3
Rev A

2.4.31.6 Functional Block Diagram

C Enter

Initialize currently
scheduled set to
singleton start.

Transfer currently
scheduled set
back to job set,
maintaining
recently established
technological order.

Transfer those elements
from job set into
currently scheduled set
that have all of their
predecessors in the
currently scheduled set.

Print remaining
contents of job set
along with message
that this subset of
jobs contains a
cycle.

C Exit

2.4.31-4

limits of their residual slack to produce heuristically the most

level resource-loaded schedule.

2.4.32.2 Modules Called

None

2.4.32.3 Module Input '

1) Network, Critical Path Data and Activity or Event Definitions

$JOBSET

2.4.32-3

2.4.32-4
Rev A

2) Resource Definitions ($PROFILES)

$PROFILES

)START ()END

(value) (value)

QUANTITY

(value) (value) (value) (value) (value) (value)

2.4.32-5
Rev A

2.4.32.4 Module Output

1) Resulting Heuristic Schedule ($SCHEDULE)

$SCHEDULE
S~\

T(JOB ID)O (JOB ID)

i (JOB INTERVAL)

FINISH

(value) (value)

2) Revised Resource Profile Including Usage ($PROFILES)

$PROFILES

AVAILABLE

)JOB () QUANTITY

(value) (value)

CONTINGENCY

START ()END f) USAGE

(value) (value)

START END

(value) (value) (value)

START ()END () QUANTITY

(value) (value) (value)

2.4.32-6
Rev A

C

i

C
I

I! II

OS

01o

Q
03

ca

I

(B

CM

to

Fig. 2.4.32-1

2.4.32-17

Rev A

3 <U
•O 4J
4) -H
J= T3
0 <U
0) Q.
0) X01 w

R
ES

O
U

R
C

ES

NOIIV30TIV
AON30NIIHOO

Noiivoonv
IVWION

snsviivAv
saowiossra

Ava

o o

^^^^^^^^^vo.^^o^

_ _ _ _ _ _ _ c M O ™ o ^ o ^ o i n ,

^^r.^^^^r.^r^mr.m^m-r^

»— 1 CNJ CO <J" tO \O f1*^ 00 O^

Fig. 2.4.32-2

2.4.32-18

ce nd
u
r

on

th
e

C
o

n
st

ra
in

ed
-R

es
o

T
h

re
sh

o
ld

s
o

n

th
e

F
ir

s
t

co
wa
0e

CO
w
M

£
>
1— 1
H
O
<

ias
awn

ssaooM
aioAo

HSINI5
aainaaHos

IHV1S
aainaaHos

AHiHa
Jio aioio

siNawa^inba«
aDWiosas

XWIS
.xsaxn

NOixvHna

AXIAIXOV

« o e> .

< o o a o o o

O i - i c M c o « * i n v o r ^ c o

I-H CM ro

c o m c T * t - ~ o c o . - i c o f o i n o o

O O c o m r ~ - o r ~ - c o c r i c o i n
i-l l-l l-H i-l

i - l r - I C M C M - d - » 3 - C O v D i n v O r ~

^ - (C M C M i - (C O t - (i - < C M C O O C M

C M < t i - I C O O r - l i - I C M e M i - l ^

C O C M C O » s t C M i - I C O C M C O > * i n

o « * c o o o o o e r v c o o \ c o m

c o m v D C M c o c o < f i n N j - c M c o

< P Q C J O W (t 1 C J C C l - l ' - > { « ! ;

g 1)
t$ O
-w <
•ri 3
s^ a
O CO
<3> ca

r-i Cq

^ 3,
O£. O
O C
H- Q)

5 Cn
5?

O -ti
_J 4i

1C)
UJ

^ ^
^ '^
O W
to Si
UJ
Q£ <«

Q> 1 3j
^C CM r~i
•4-* to <a

• »
^-» ^Ji "r^
O • 4^>

CX] C3

§ ^^•?A CJi CO
-P *^ Q)3 b. te;
<a s *.
H •«* 03
ki Q)

cxi S to
<M »S Q 3
^ +i rC O

• Co w•^ *•-> _ .s
• O E ftncxi ca
• O rQ ?H

Cji C5 O "^
•^ J^ J^ ^1*4 -&H fX, t-i

- A

B

C

p 1E 1

mo..
1 G

i

H

T 1 VJ | K

]

5 10 15 20

Process Time, Days

tu a)
O O •

gg 5
•H a

U
tl

li
z

a
F

ir
st

 R
<

0

B

A

B

A

-

B

A

D

B

D

B

1

F

E

C

F

E

C

F

E

C

G

C

G

C

> 1

G

c'

I

c

I

H

I

H

I

H

0 1

J

H

J

H

K K K

5 20
.Process Time, Days

a
«W U

o to
•H « r
u 04 5-
C0

r-l O
Tt 0
4J 4)

R TV p

D D

fl
F

C

F
C

F

C

G

C

G

C

G

C

T

G

J J y f Y

5 10 15
Process Time, Days

20

C 9
O O

•H 10

«<S 5
N

•H -O

•H -H

55

0

B

A

B

A

R

A

D

B

D

B

F

E

C

i

F

E

C

F

E

C

G

C

G

L

1

• •-

G

C

D

—

I

G

I

H

I

H

I

H

1

• ^_

- - -

H H K K K

5 ' 20
Process Time, Days

Fig. 2.4.32-4
Minimum Duration Solution to Constrained-Resource Problem
Using No Resource Contingency Levels

2.4.32-23

The optimal schedule requires two more days than the contingency-

resource schedule. Which schedule is suprior depends on the

availability of supplemental resource units; that is, on the

"hardness" of the resource constraints. It is obvious that the

optimal schedule is superior to the 25-day RESOURCE_ALLOCATOR

schedule generated assuming no resource contingency levels, as

shown in Fig. 2.4.32-5. Thus, it is apparent that the simple

priority rule scheduling of the RESOURCE_ALLOCATOR, which is in

force when no resource thresholds are present, is greatly enhanced

by the modifying heuristic that invokes contingency resources when

an activity's late-start date is slipped. Finally, it should be

noted that by executing a series of parametric funs with varying

resource contingency thresholds, a thorough analysis of the

tradeoff between project duration and resource availability can

be made.

2.4.32.8 References

Davis, Edward W. and Heidorn, George E., "An Algorithm for Optimal
Project Scheduling under Multiple Resource Constraints", Manage-
ment Science, August 1971.

Davis, Edward-W., "Networks: Resource Allocation", Journal of
Industrial Engineering, April 1974.

Burman, P. J.: Precedence Networks, for Project Planning and Con-
trol. McGraw Hill, London, 1972.

2.4.32-24

Rev A

2.4.33 RESOURCEJ.EVELER

2.4.33.1 Purpose and Scope

In many project scheduling situations, the pattern of resource

utilization is often more important than the quantity of resources

used. For example, a resource feasible, schedule that results in

rapidly changing resource requirements is clearly undesirable from

the project control standpoint. In these situations it is useful

to perform resource leveling in order to reduce resource profile

fluctuations.

Conceptually, a resource utilization profile is level when the

actual quantity of resource used in each time period is constant.

Unfortunately, it is not .generally possible to maintain perfectly

level profiles and simultaneously satisfy all of the scheduling

constraints. As a consequence, some fluctuations will inevitably

remain in the resource profiles. The purpose of this module is

then to minimize these remaining resource variations. This is

accomplished by heuristically minimizing the sum of the squares

of the resources over time, subject to the network, resource

availability, and activity completion constraints.

This "module is applicable to the general class of project

scheduling problems that includes multiple resources with time

varying pool levels.

2.4.33.2 Modules. Called

None.

2.4.33-1

Rev A

2.4.33.3 Module Input

1) Nominal Schedule ($SCHEDULE)

SSCHEDULE

(JOB ID)

JOB INTERVAL

FINISH

(VALUE)

2) Nominal Resource Profile ($PROFILES)

$PROFILES

AVAILABLE

CONTINGENCY

(value)

)<t (>TART()END ()QUANTITY (>TART()END QQUANTITY

(value) (value) (value) (value) (value) (value)
;JOB () QUANTITY

(value) (value)

2.4.33-2
Rev A

— Time Varying Pool Level

Resource Requirements
for Activity i.

ig. 2.4.33-2 Time-Varying Resource Variables

This module can also be easily modified to solve the resource

profile shaping problem. This can be accomplished by minimizing

the square of the differences between actual and desired resource

profiles.

2.4.33-7

2.4.33.6 Functional Block Diagram.

(ENTER J

Build a list L consisting

of all activities. Order
L as follows:
1. Latest scheduled

finish.
a. Minimum residual

slack.

Initialize current
activity to first
element in L.

Set current activity
to the next element
in L.

Determine all values of s. that
minimize: F(s.) ,
subject to:

t . ̂ ^ i
s* <s. < s .
1 — 1 — 1

Set start time of current
activity to the latest
start time that minimizes
F(s.) .

(EX1T)
Yes

2.4.33-8

Rev A

ingenuity. Furthermore, questions that arise in modeling the

project as a precedence network, frequently shed light on the

entire scheduling problem.

. Burman (Burman, 72) has suggested a sophistication of the

ordinary precedence network that would permit the simple repre-

sentation of all temporal relations among activities and events.

Indeed, a somewhat more involved critical path algorithm can be

developed to generate critical path data for his sophisticated

networks. Unfortunately, however, the new networks hopelessly

complicate any heuristic scheduling process. As is so often the

case in problem solving, it is far easier to generalize a problem

than to solve it.

Basically, what Burman has done is to identify a new type of

successor—the closely-continuous successor. Such a successor must

begin at the instant of completion of its predecessor. To see

how this new concept facilitates the simulation of general temporal

relations, consider the following examples. Consider the most

difficult case of two-activities whose respective start and finish

are constrained to differ by a fixed time interval with the suc-

cessor activity having an ordinary second predecessor as shown in

Fig. 2.4.34-1. - - - - - - . .

2.4.34-3

Rev A

Fig. 2.4.34-1
Sample Representation of a General Temporal Relation Using
Closely-Continuous Successors

To represent this temporal relation in terms of closely-

continuous successors one has only to introduce a single dummy

activity D requiring no resources of duration equal to the fixed

intervale length "a." Activity D is then made a closely-continuous

successor of activity A and B, in turn, is made a closely con-

tinuous successor of D. Activity B is made an ordinary successor

of activity C. Consider next the case illustrated in Fig. 2.4.34-2,

wherein one activity cannot start until a second activity has

started.

©
^ > s.
B - A

Fig. 2.4.34-2
Sample Representation of a General Temporal Relation Using
Closely Continuous Successors

2.4.34-4

Rev A

To represent this temporal relation, one need only introduce

a single dummy event E. Then activity A is made a closely-con-

tinuous successor of event E while activity B is made an ordinary

successor.

Although the closely-continuous successor concept provides a

generalized network presentation of all of the general temporal

relations, no simple heuristic procedure can be devised to sched-

ule such a network. Long multibranch trees of closely-continuous

successors of a given activity have to be scheduled before that

activity itself can be scheduled. This considerably complicates

the resource allocation logic perhaps to the point of diminishing

returns. Any complications in a heuristic procedure must be

justified by their results. Without establishing the utility of

the relatively simple resource allocator for ordinary precedence

networks, it seems pointless to build a vastly more complicated

allocator for generalized precedence networks. Nonetheless, in

Subsection 2.4.34.7, a proof is given that any general temporal

relation can be moldeled using only ordinary and closely continuous

successors.

This module has the capability of scheduling^interfacing sub-

networks. It assembles a user supplied master subnetwork and

all of its interfacing subnetworks into a master network. All the

activities of this master network are to be scheduled subject.to

common resource availability levels.

2.4.34-5

A time-progressive heuristic .program is used to obtain short,

but not necessarily minimal, project durations. The heuristic

employs a critical-path-based priority rule tempered by a modify-

ing heuristic using contingency resource thresholds. By utiliz-

ing late-start time as the priority value of each activity or

event, a dynamic priority function is obtained that does not re-

quire updating each time a new acticity is scheduled. This re-

sults from the fact that the late-start date of an activity is

independent of the actual scheduled start dates of any of its

predecessor as long as none of them are delayed beyond its late-

start date. Nonetheless, the late-start date does represent a

good priority rule in terms of scheduling the .least flexible

activities first. That unscheduled activity with the earliest

late-start date, other factors being equal, is the activity most

likely to lengthen project duration beyond the critical-path value.

The modifying heuristic is activated whenever an activity cannot

be scheduled before its late-start date. The resource that pre-

vents the scheduling of the activity is augmented by a user-input

contingency threshold from the time the activity's predecessors

were all completed until the activity is successfully scheduled.

Finally, an option is provided for leveling the resource

utilization profiles via a least squares heuristic after a tenta-

tive initial schedule has been obtained from the late-start-date

heuristic, the leveling procedure involves sequentially consider-

ing the activities in order of latest scheduled finish. A weighted

sum of squares of the resource profiles over time is then computed

2.4.34-6

Rev A

for each activity for eac'ft® start date in its residual float.-

That start date in the float interval is selected that will min-

imize the weighted resource sum of squares. Two underlying

principles motivate this heuristic procedure. First, by sequen-

tially delaying activities considered, in order of their latest

scheduled finish, the float of activities with earlier scheduled

finishes can only be increased, thereby improving their subse-

quent scheduling flexibility. Second, the weighted sum of squares

of the resource profiles over time is decreased by reducing any

jump in the utilization level of any resource from one time in-

terval to the next. In fact, the unconstrained minimum sum of

the squares is achieved when all the resource profiles are such

that the utilization levels of any given resource in each time

period by at most one unit.

2.4.34.2 Modules Called

NETWORK_ASSEMBLER-

RESOURCE_ALLOCATOR

RESOURCEJ.EVELER

2.4.34.3 Module Input

1) Network', Critical Path Data and Activity or Event Definitions

($JOBSET)

2.4.34-7
Rev A

2.4.34-8-
Rev A

2) Resource Definitions ($PROFILES)

$PROFILES

(RESOURCE
NAME)

AVAILABLE

i (H (JSTARTC JEND { JQUANTITY

(value) (value) (value)

CONTINGENCY

(value)

TARTV JEND (JQUANTITY

(value) (value) (value)
)JOB (JQUANTITY

(value) (value)

3) Interfacing Event Definitions ($INTERFACE)

$INTEFACE

(EVENT '
IDENTIFIER)

(IDENTIFIER OF
CONTAINING SUBNET)

4) Resource Leveling Option Indicator (LEVEL)

(EVENT
IDENTIFIER)

2.4.34-9

Rev A

2.4.34.4 Module Output

1) Resultant Project Schedule ($SCHEDULE)

$SCHEDULE

I START

(VALUE)

(JOB ID)

FINISH

(VALUE)

2) Revised Resource Profiles ($PROFILES)

Same as for Module Input.

2.4.34.5 Functional Description

The HEURISTIC_SCHEDULING_PROCESSOR serves as an executive pro-

cedure for controlling and coordinating the entire heuristic

scheduling process. First the network must be built whose activ-

ities are to be scheduled sharing the same common resources. By

means of a call to the module NETWORK_ASSEMBLER, the user-specified

master subnetwork and all of its interfacing subnetworks, as de-

tailed in the interfacing event definitions, are assembled into

the desired network. Next, the RESOURCE_ALLOCATOR is called to

schedule the activities of the network according to the minimum

project duration heuristic procedure described above. Earliest

late-start is used as the priority function for each activity.

2.4.34-10
Rev A

2) Resource Definitions ($PROFILES)

$PROFILES

(RESOURCE
NAME)

AVAILABLE

<f f JSTARTC)END (JQUANTITY

(value) (value) (value)

CONTINGENCY

(value)

TARTV JEND (. JQUANTITY

(value) (value) (value)
)JOB (J Q U A N T I T Y

(value) (value)

3) Interfacing Event Definitions ($INTERFACE)

$INTEFACE

(EVENT
IDENTIFIER)

(IDENTIFIER OF
CONTAINING SUBNET)

4) Resource Leveling Option Indicator (LEVEL)

(EVENT
IDENTIFIER)

2.4.34-9

Rev A

2.4.34.4 Module Output

1) Resultant Project Schedule ($SCHEDULE)

$SCHEDULE

I START

(VALUE)

(JOB ID)

FINISH

(VALUE)

2) Revised Resource Profiles ($PROFILES)

Same as for Module Input. '

2.4.34.5 Functional Description

The HEURISTIC_SCHEDULING_PROCESSOR serves as an executive pro-

cedure for controlling and coordinating the entire heuristic
/

scheduling process. First the network must be built whose activ-

ities are to be scheduled sharing the same common resources. By

means of a call to the module NETWORK_ASSEMBLER, the user-specified

master subnetwork and all of its interfacing subnetworks, as de-

tailed in the interfacing event definitions, are assembled into

the desired network. Next, the RESOURCE_ALLOCATOR is called to

schedule the activities of the network according to the minimum

project duration heuristic procedure described above. Earliest

late-start is used as the priority function for each activity.

2.4.34-10
Rev A

If an activity is delayed beyond its late-start date because of a

resource shortage, a modifying heuristic is invoked to increase

the availability of the deficient resource by a user input, con-

tingency threshold. If the user does not request any resource

leveling effort by leaving the leveling option indicator, LEVEL,

unset, the heuristic scheduling process ends here. Otherwise the

module RESOURCEJ.EVELER is called to heuristically reduce to a

minimum the jumps in the resource 'utilization rate. The heuristic

operates by considering the activities in order of latest sched-

uled finish. The weighted sum of the resource profiles squares

over time is then computed for each possible start time of the

activity under consideration within its remaining total float.

That start time is selected that minimizes the sum.. When all the

activities have been considered for delay, the leveling effort

is complete and the heuristic scheduling terminates.. The simple

macrologic for the processor is illustrated in the functional block

diagram. More detailed information on the resource allocation

and leveling heuristics can be found in the respective specifications

for the modules, RESOURCE ALLOCATOR and RESOURCE LEVELER.

2.4.34-11

Rev A

2.4.34.6 Functional Block Diagram

c ENTER 3

Form master network
from master subnetwork
and interfacing subnetworks,
(Call NETWORK ASSEMBLER)

Tentatively schedule activities
and events to heuristically
minimize project duration while
.satisfying resource constraints.
(Call RESOURCE ALLOCATOR)

Call resource
leveling heuristic.
(Call RESOURCE LEVELER)

2.4.34-12

all the original activities is maintained so that an ordinary

predecessor or successor relation can be represented as usual.

References

IBM, Project Management System IV Network Processor Program Descrip-
tion and Operations Manual, Publication SH20-0899-1, 1972.

ICT 1900 Series PEWTER (PERT without Tears). ICT Technical Publi-
cations Group, London 1967.

Burman, P. J.: Precedence Networks for Project Planning and Con-
trol. McGraw Hill, London,. 1972.

2.4.34-17
Rev A

2.4.35 GUB LP

cor)o

Rev A

Bender's algorithm makes use of the fact that for given values

of x, the problem reduces to an LP whose dual is independent of

any particular choice of x. This enables an equivalent program

with only one continuous variable to be formulated that can be

solved as a subproblem to yield the overall integer solution. A

brief description of this approach follows.

2.4.36.6 Functional Block Diagram

f Enter J

Initialize with u ̂ 0
such that

uD < e

Does
such a
solution
exist

No / No Feasible

Solution Exists

Solve the program MP1

min z.

Subject to

z ̂ ex + u(b - Ax) ,

x ̂ 0, x = 0 or 1,

for x.

2.4.36-3

Rev A

Using x, solve the LP

max u(b - Ax)
u

Subject to

uD <_ e u >_ 0

for u

solution unbounde

Is -̂-- Noz - ex < u(b - Ax)

Solve the LP

min : ey

Subj ect to

Dy >_ b - Ax

y >. 0

for the optimum value
of the continuous
variables y.

Add the constraint

Zu < M

Add the constraint

z x ey + u(b - Ax)

to MP 1

Return: Solution
is Optimal

2.4.36-4

Rev A

2.4.38.6 Functional Block Diagram

(Enter J

I
Perform problem setup:
1) addition of logicals
2) scale and translate

equations

Compute initial tableau

Is
maximum numbe
pf iterations

exceede

Determine row to
leave the basis

Update the basis
inverse by perform
ing a pivot opera-
.tion . _ - „ . ,

Is
solution
optimal

Is
solution
unbounded

Compute canonical form
of row to leave the
basis

Compute index of row
to enter the basis .

2.4.38-5

Rev A

2.4.38.7 Typical Applications

Dual simplex is generally used as a submodule in other

algorithms where the highly specialized advantages of the dual

structure can be exploited. For example, dual simplex is used

internally in the Benders' decomposition algorithm to solve for

the extreme points and rays of the primal problem for a fixed

value of the integer variables. The dual is used in this

situation because then the constraint set is independent of any

particular choice of the integer variables. (For more details,

see the description of the Bender decomposition algorithm.) Dual

simplex is also used in the Geofferion zero-one algorithm to

solve for the strongest surrogate constraint. In both of these

examples, dual simplex was used because in the process of solving

the master program a subproblem was created that was particularly

compatible with the dual algorithm. This is very typical of the

situations in which the dual simplex module would be used.

2.4.38.8 Implementation Considerations

A more general dual algorithm could be developed, similar to

that described in Ref 3 which handles type 1 variables directly.

In this more general setting, the dual algorithm is not the same

as the primal simplex applied to the dual problem.

2.4.38.9 References

Lemke, C. E. and Spielberg, K: "Direct Search Algorithms for
Zero-One and Mixed-Integer Programming; Operations Research,
Vol 15, No. 5, 1967.

Lasdon, Leon: "Optimization Theory for Large Systems." MacMillan
Series in Operations Research. 1970.

2.4.38-6

