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ABSTRACT

This document describes the mathematical model developed to describe the
three-dimensiona1 motion of the Dynamic Docking Test System (DDTS) active
‘table. The active table is modeled as a rigid body supported by six
flexible hydrau11c actuators which produce the commanded table motions.
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1.0 INTRODUCTION

" The development of the three-dimensional mathematical model and computer
program which simulates the dynamic motion of the DDTS active table in
response to table motion commands is documented in two volumes. Volume 1
presents the derivation of the mathematical model and Volume 2 (Reference
1) describes the resulting computer program, "NASA Advanced Docking Systém
(NADS}."

The active table shown in Figure 1-1 is modeled as a rigid bady, and each
of the six actuators is modeled as a flexible rod with pinned ends. The
model includes nonlinear hydraulic equations for the hydraulic actuators
‘and a mathematical representation of the electronic control system for each
actuator. Actuator position, velocity, and differential pressure across
‘the hydraulic piston are used as feedback signals in the control system.
The nomenclature used in the equations is shown in the Appendix.
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2.0 COORDINATE SYSTEMS AND TRANSFORMATIONS
2.1 INERTIAL COORDINATES (x» ¥p» 21)

The inertial simulator coordinate system is an orthogonal , right-handed
coordinate system whose origin is on the simulator centerline in the plane
of the floor swivel joints. The y; and z; axes form a horizontal

plane, and the Xx; axis is positive down (see Figure 2-1).

2.2 TABLE COORDINATES (xq, ¥7 27)

The table coordinate system js an orthogonal, right-handed coordihate
system whose origin js at the center of gravity of the simulator table. .
The ¥p and - zy axes lie in the plane of the table, and the Xg axis

is positive "down" (see Figure 2-1).

5. 3 ACTUATOR COORDINATES (x_ »'¥ .z )
7 Si S.i Si

Each actuator has its own coordinate system. The X axis is colinear
' ' i

with the actuator centerline. The ¥ axis is perpendicular to the X
55 o

axis and the inertial gravity vector. The zg axis is perpendicular to
i

both x. and Yo and is positive "up" as shown in Figure 2-1.
i i

2.4 TRANSFOhMATION FROM INERTIAL TO TABLE COORDINATES

Euler angles shown in Figure 2-2 are used to transform from inertial
coordinates to table coordinates.

/

2-1
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2.4 (Continued)

Figure 2-2. Euler Ang]eé

The order of rotation is. 8, ¢, ¢ which corresponds to rotation about
the y, Z, X axes, respectively. The transformation from table to
inertial coordinates is: '

X _ .
vy = A (v (1)
2y ol |
Therefore:
Xy o X1 | 4
yrpo= [A) (N o (2)
ZT ' z;

|

- 2-3
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2.4 (Continued) .

. g  Cosg _sing 7. 'mx

] COSy oSy

¢} =10 sing - coSé Oy (3)
$ 1 -cos¢tany singtany w,

where:

Co<Cy -C-Co-Sy+S6+Sp  So+Co+Sy+Co-So

[A] =} su Co-Cy - -S¢-Cy - (8)
-S0+Cyp Co-So-Sy+Se+Ce  -S¢p+So+Sy+Cqy-Co
'C = cosine -
$ = sine

2.5 TRANSFORMATION FROM ACTUATOR TO INERTIAL COORDINATES

The transformation from actuator coordinates to inertial coordinates uses
the following angles: '

6y - the angle between the horizontal plane through the floor
. Joint and the actuator Xg axis (Figure 2-3)
By - the angle between the inertial Z axis and the”projection

of the actuator x. axis in the y; - z; plane (Figure 2-3)

r
sxi
sinoy = -~7— (5)
i Ps
3
J rsz +r 2 /
Y z ‘
cos 9, = i 1 _ (6)
A 1 .
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VIEW A-A

Figure 2-3. Actuator Transformation Angles
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2.5 (Continued)

T
S
. Y
o BAi S vz rr2
sy s,
i i
s
,..21.
cos Bp =
i 2 ¥ 2
i \f}s re
Y3 3

where r. , r. ,and are vector components of actuator
S, sy_ S, -
i i i
1p-’ in the inertial coordinate system.
i

The transformation from actuator to inertial coordinates is then:

. X
XI S_i
Yip = [”1'] Is;
Z
ZI |

_whére:
- . -
-58 0 -Co
TI. = Ce, +*SB Ce -58, °*SB -
[ 1] Ai A'i A'i Ai A'i
R TS B B

2-6
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The equivalent "Euler angle" rotations for this transformation (from

inertial to actuator coordinates) would:

a. Rotate -90° about yi

b. Rotate g, about the intermediate z axis
Ai )

¢. Rotate —eA1

2.6 TRANSFORMATION FROM INDIVIDUAL ACTUATOR COORDINATES TO TABLE CO

Using the previous transformations,
actuator coordinate systems to the tab

where

Likewise:

where:

about the intermediate y axis

X
. Yy
T

— -
—
-l
—_——
|
N

zZ
5

Sy
_ T)y
- [Ti] 84

(] ()

Si XT
y = |T;

55 [ 1] Yt
Z

Si ZT

2-7
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3.0 TABLE MOTION COMMANDS

Table commands are specified in the inert1a1'éoordinate system. Actuator
commands for two types of commands will be discussed: sinusoidal position
commands and constant velocity commands ,

3.1 SINUSOIDAL POSITION COMMANDS

Lét AX{ and ‘Aé' be the amplitude of commandéd sinusoidal table
8Yq - { Ay
b2y "

motion in the inertial coordinate system. The total jnertial commands are

then obtained by adding the commanded sinusoidal motion to the initial
inertial position of the table.

x. = Xy * Ax; sino t
I¢ Io I c
y, =Yy; *tAy sin w t
Ic Io I C
7. = 7. + Az sinw t
Ic I0 . 1 C
ec = Bo + AB sin mct
p =¥+ Ap sinw t o
. C 4] ] C (15)
= + 1
¢c ¢0 Ad sIn wct
XIC = AXI mc c0s mct
yrc = byp w, cos wct
'ch = AzI w . cos mct
2] = Aemc cos mct
vy = A¢wc cos wct
¢ = A¢wc_cos mct

3-1
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3.2 CONSTANT VELOCITY QOMMANDS

For constant velocity commands (Ail, A}I, Ail, A8, - &Y, A$), the

" total inertial commands are;

—_

XI = xI + Axlt

c 0
Yy =y +ayt
_IC -IO I
ec =8, + agt
Yo T u taut |
b T 9o t AGL | (16)
X. = AX
I, I
¥ =AY
I I
Z. = AZ
1.~ A
éc = AP
Vo T A
be = B

3.3 ACTUATOR COMMANDS

The total inertial position and velocity commands are transformed to
individual actuator commands. '

”~

Let [A;] be the transformation from the table coordinate system to the

snertial coordinate system (equation 4} with the Euler angles replaced by
the commanded Euler angles. Then the commanded inertial velocities of

the actuator/table attachment points are:

3-2-
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3.3 {Continued)

r X - 0 -0 0 r
Sxi Ic _ z. Ye X3,
r = 5] w 0 W r
§¥1 '_Ic ¥ [Ac] Z¢ Xe Y3
r z | ~w w -0 r
?zi I Ye Xe 23
where
w . ' ’ -
xc} 1 0 S 1%

ay 1=10 S Co . Coc | L Ve

mzc l 0 C¢C ‘C‘DC-S‘:’C ec

The commanded inertial components of actuator length are:

ST X _ r -, (0O
: $x1 "1 .xai
' r _ly ' r Y
§y1 et [A;] yai‘ 7 5
’ ir z r I, .
‘ \ szi ;c ' zai f,

Commanded actuatorllengths are then:

lci = ‘/ r‘sm rsy s,
i i i’

(17)

(18)

(19)

(20)
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3.3 (Continued)

and commanded actuator velocities are:

. . 1 . . . . .
] = r - T +r . r ) + r « T .
¢ T;; [ Sxi s s syi s, Szi] (21)

3-47
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4.0 SERVO ELECTRONICS .

The servo electronics consist of actuator position and rate command signals;
forward loop compensation network; servo valve; and position, rate, and
differential pressure feedback loops as shown in Figure 4-1. The forward
joop compensation network, the valve dynamics representat1on, and the
. position feedback filter are designed to be opt1ona1 in the computer pro-
gram. For example, if g<l, then the forward 1oop compensation network
is not included in the simulation. Similarly, the valve dynamics and
position feedback filter are neglected if wv<1 and w5<1, respectively.

4.1 ACTUATOR COMMANDS

Define

. 5 = Ke ]c,i * K c; -
_ (22)
8 = Ke 1(:i * Krc Cy

where 1_ TC , and Tc are the commanded actuator Tength, velocity,
i i :
and acceleration, respectively.

4.2 POSITION FEEDBACK FILTER

The differential equation for the actuator position'feedback filter is:

1f w2l :
s
" 2 (1 2cs .
X, =W -—X, "X
o (Pi s % 51) @)
If m$<l
” =P]‘
54 P; _ :
x. =1 ‘ (24)
59 P4
X =1
$i Py
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4.3 DIFFERENTIAL PRESSURE FEEDBACK COMPENSATION

Pressure feedback compensation consists of two parts--a £irst-order lag
f£ilter and a high-pass filter. .The fFirst-order lag attenuates the higher
frequency pressure fluctuations, while the high-pass filter eliminates
the static differential pressure caused by unequal piston areas. “The
,different1a1‘equations for these filters are: B

s [t (24, 72) %)
05 pfl [. pf 11 .21 05

a, = a -a
14 Wpf2 ( 0; 11)

where Kpf is the pressure feedback gain.

e
1

(25)

4.4 FORWARD LOOP COMPENSATION NETWORK

The forward loop compensation network consists of a Jead-lag filter with
corner frequencies o and g.

for g21:

& = 8 { o 65 - 9y, ~ Ry gs. - Ke %g ) :
i i
' | (26)
Coa, - KX - Kex ) oo e.]
i 4 rUsg f S i

where él s By 0 X s is, and x, are signals from the feedback loops.

é1 = 64 --a11 - Ke x51 ~ Ke xs1 | (2?)

f N
where K¢ and Kr are the displacement and rate feedback gains, respectively.

4-3
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" 4.5 SERVO VALVE DYNAMICS

' The dynamics of the servo valve are representéed by a single~degree-of-
freedom system with a natural frequency w, and damping ratio ¢,.

If mv?. 1:

g

Q- Y4, -0, ) - @

=w? (K e - Y
Y Ty 0 i

g

where Kg js the forward loop amplifier gain and QO js the no-load

flow through the valve.

1f sy <L

(29)

o
n
al
{0

4-4-
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5.0 ACTUATOR MODEL

"Each actuator is modeled as a f1ex1b1e rod with pinned ends. Hydraulic
forces are calculated using nonlinear hydraulic flow equations and unequal
push and pull piston areas. Actuator contro] system electronics are
modeled and include differential pressure, velocity, and position feedback
The actuator geometry and nomenclature are shown in Figure 5-1.

5.1 ACTUATORVMASS AND_INERTIA CHARACTERISTICS

The mass moment of inertia of the piston rod is:

1 =PI | (30)

where my is the driven mass (piston and piston rod). The mass moment

of inertia of the entire actuator assembly about the floor pivot is:

2.
| 1,
I, =1, +I +m (1 - —-—)
Ay A, PP p; 2 (31)
where:
I. = Mass moment of inertia of the cylinder structure about the

Ac floor pivot (excludes driven mass, mp).

The effective rigid lateral mass of each actuator assembly for use in the
equations of motion is then:

mo =1, /1.2 (32)
Li Ay Py

5.2 ACTUATOR FLEXIBILITY

The dynam1c bendlng characteristics of each actuator are calculated assuming
that the cylinder is rigid compared to the piston rod and that the effective
dynamic mass is lumped at the rod end seal of the cylinder. The bending

characteristics are also assumed to be identical for each of the two bending
planes of the actuator. :

5-1
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5.2 {(Continued)

The effective dynamié mass lumped at the cylinder end is approximated as:

.mq1i =[IAC /.1;2]+[mp/.2] (33)

Assuming pinned joints between the cylinder and piston rod, the piston
rod stiffness is:

'_,3.(51)‘,1r
k. =T 772 | (34)

r :
i rli \“2,i

where 1r1i and Trzi are defined as fo]]qws:

i
1l

-
1

et

The effective lateral stiffness of the actuator with a rigid cylinder is:

3 (EI)r(1r'lc - 1r11.‘p1.)(‘r + ]Pi) (1c ; 1‘-”1)

Ke. = T3 2] 2 (35)
& ' Y1l Yl [P

i i

The actuator bending frequency is then:
w2=k /m ‘ (36)

e & Y
5.3 HYDRAULIC FLOW EQUATIONS
/.

The nonlinear hydraulic flow equations are based on the derivations presented
in Reference 2 for a double-acting hydraulic piston. A schematic of the
hydraulic servo valve and actuator is shown 1in Figure 5-2.

5-3
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- ACTUATOR
Aoy P2, Vo
p1’V13A1
[ 1
Q Q,
X
SPOOL—= PN
N \
HYDRAULIC A HYDRAULIC b
SUPPLY —'s RETURN —— Po
LINE LINE

Figure 5-2. Hydraulic Servo Valve Schematic
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" The flow continuity equations are:

’ N
_ . 1.
Ql = Cp (pl - pz) + 'Vl + Be_pl
(37}
. ..V2 .
Q2 = Cp (pl - p2) = Cep P2 - vz 'E’;pz
where:
Q= Q- 2K Py
(38}
Qy = Qg * 2 Ke Py
and
Q, = The no-Toad flow of the valve
Ke = Valve pressure flow coefficient
Cp = Leakage coefficient across the piston
Ce = Leakage coefficient ﬁast the piston rod seal
D ,

The volume-stroke relationships are:
V, = V°2 - A1 - 1)
: _ : (39)
Vo= A 1p
vz = "A21p

where Vo and Vo

2

/

are the hydraulic volumes at zero stroke.
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5.3 (Continued)

Therefore, neglecting piston rod seal leakage, the hydraulic flow equations
for each actuator are:

i

P

-
—

[ Qg - 2K Py = G Py - pp) - A Ty ]
(40)
B, .

- [—QO . ZKC p2 + cp (pl . pz) + Az .Ip]

by

™~

5.4 ACTUATOR FORCES
Actuator forces (Fp ) are calculated from the differentiaT pressure

across the piston. In addition to the viscous damping forces associated
with the actuators, coulomb friction is also included. '

Fh = APy - Aypy - Bp1p - CFe (41)

A velocity "bandwidth" for coulomb friction is used to prevent a discontinuity

at zero velocity.

- f Forcé

The coulomb friction force is:

Fep = -Cr Fg (42)
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5.3 (Continued)

is a coefficient which is a function of actuator velocity:

where C.

- -.-'I
.If l1pl A then Cp = .Q_
| i)

(43)

Cre 13 i
If |1p[ < Vi » then C; = VE_
' ' bw
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6.0 EQUATIONS OF MOTION

Table and actuator equations of motion are wr1tten in the body fixed
table coordinates in the following form:

b0t )

where: {x} is a column of accelerations for each degree of freedom (six
degrees of freedom for the table and two elastic degrees of
freedom for each actuator)

[M] is the 18 k 18 coupled mass matrix

{C} is a column of generalized forces for each deéree of freedom_

The mass coup]ing'effects of the actuators due to table motions are derived
by Lagrange's method.- The three-dimensional rigid motions of the actuators
are completely constrained (1.é., they are dependent upon the motions of
the table)}. These constraints are expressed by the velocity substitutions
in the energy expressions. '

The final equations are much simplified when compared with the equations
which would result from a rigorous derivation. Due to the nonorthogonality
between actuator and table motions, a large number of nonlinear velocity
coupling terms results. A1l of these terms were assumed negligible since,

- for expected table velocities, they are quite small and thejr omission
prevents the equations from becoming unwieldy.

6.1 MASS MATRIX

The kinetic energy of the rigid table and actuators is:

oy " 8.
Ty (i) ety (BB v
1 (45)
-6 p'i- .
+ % (y.2+2z.2) dm, :
LS 05 ) e

6-1
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6.1 (Continued)

The first two terms in this expression are the energy of the rigid table;

- the third term is the energy of the piston rod due to stroking; and the -

fourth term is the energy of the actuator assembly due to rotation about
the floor pivot.

Using the transformation from table coordinates to actuator coordinates,
[T;] » shown in equation (14):

u »
]
j}]
-
—
—
—
Pamiae N
e
-
1
NE
4
o
t<E
-
N
.11
—
—

(46)
+ z - +
T113 ( 2y - wy a wy fya1)
=T, ox. +T, oy +T. 1z
T3 73 Tz "% M3 9
y = | T y -‘w r + w. r
3 [ Y] ( T z ya, ¥ za1 )
T ( §T o, Tea. T % Tza )
22
L] xs ‘
+ - o+ : -
T123 (ZT Yy T'xai “x 1r‘5/«311)]' ]pi (47)
+ ye; ¢'i (XS)
i
L . xs *
ip; i
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6.1 (Continued)

X
. s
+ T, - + S 48
T133(zT vy rxai w, ryai)]]pi (48)
tzg 9y (x)
1 .
s S v g ()
=z —=4+2z 4. (x
r; 1pi e; 1 _s

wheré:‘
¢ (xs) is the actuator bending mode shape as a function of

X and ye_ and Ze; are bending velocities of the

’
S 1 1

actuators.

The elastic bending modes of each actuator are assumed to be a simple
mode shape normalized to unity at the upper end of the cylinder (xS = ]c
Thére are two identical modes for each actuator. The generalized mass
for each mode is assumed to be lumped at the upper end of the cylinder;

thus, the mass distribution terms can be integrated.

1

P 2 , ‘

¢/~ 1 Xy dm. IA = mass moment of total actuator assembly
0 i

about the floor pivot.

e.g.

. 6-3
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6.1 (Continued)

and: .
1
L7 x s e =1 m
X ¢ {x m,= m
0 s s i e gy
where mq_ is the generalized'mass of 13& actuator for each
9
bending mode.
Lagrange's equation requires the determination of %E-agt- where Qj is
ol. - ‘
' J

the jEﬂ generalized coordinate in the equation of motion. In this simu-

lation:

Q1 = X _ Q? = yel
Qp = ¥¢ f18 =z
- . . 1
37 . (‘4)
L ] ,. - g
Q = : "
.4 T, :
Qe = ® Q=¥
.5 T, .17 eg
Q = ur Qg = 2
6 Tz 18 es

Then:

6-4
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6.1 (Cdntinued)

For j < 6t

ay
--.-—-—-—-a‘i = ;S_-c .
.‘ y..
BQJ P; 13
where C, — are coefficients from equation (47}. e.g.
1]
C =T
Yi1. 'y

For j = 7, 9, 11, 13,15, 17:

and, for j = 8, 10, 12, 14, 16, 18

Y
3
3QJ
Likewise:
3z
a, X ,
—L=-c,  forj<é
BQJ P; 1J 7
,. _
=0 for j =7,9, 11, 13, 15, 17
= 8, 10, 12, 14, 16, 18

=1 for j

6-5

(51) .

(52)

(53)

- (54)

(55)
(56) .
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6.1 {Continued)

Therefore, for Jj €6, the last term in equation (SO) pecomes:

;( =XT"UJ )
R a.
3, z ya, y za,
- Y =.+ -
Yy, S¥p T oz Tya. ~ 9% "za
i i
i =z -, T + T
a; T y Xay X ya,

(57) .

(58)

(59)

(60)

(61)
(62}

(63)
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6.1 (Continued)
Also, for"j = 7,9, 11, 13, 15, 17, the last term in equation (50)

becomes:
aT . X5 ‘ .
-l (yr. I AR (xg) ) dm, (64)
Q. i 'p; i .
R i
1
c (65)
=m Y, 71
9 ( T ]pi & )
Likewise, for j = 8, 10, 12, 14, 16, 18:
: 1
LI (ir £+ 3, ) (66)
3Q G\ T Ty o S

Differentiating equat%ons (50), (58), {65), and (66) to obtain %f'( cll )
_ 8Q.
A h|

for j £ 6
d [>T\ d 3 > = [+ g7 L
(D e G Fo (B 5]
J J J
6 a1p al
.i-. d p-l
+m — 1. +1 —
;é% BQj P P5 dt BQJ
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6.1 (Continued)

1 ( . » - . . »

+-—=—{1 1. m -m 11 C y +¢C Z )
2 :

lpi P; C 9 q; ¢ pi) ( yij e, Zi5 ey

(67)
1, . :
+m T—|(C y. +¢C z + y +C Z )]
95 ]pi ( Yij & Zi; G Yij & 233 &
for j = 7, 9, 11, 13, 15, 17:
' 1 ' 1
d (3TN (o € 4 - le L
C(FEm (v, 7%V )-+ln (3f T+ Yy
dt (aq.) 9 ( ry To. e/ 9\ Tp T8
J i i
. (68)
1.1
. c p-i
Yy, 1.2
i P:
i
and, for j = 8, 10, 12, 14, 16, 18:
() o Uy
at — ] = mq Zr. T Ze.
30, i ip; i
(69)
+ ( ‘C + ' 1C1p1 )
m 72 w=—+z -2, 7T
G\ 1p1 ey r 1p1

At this point, it is convenient to redefine several quantities to simplify

the notation. -

Let: i F
3 i1
0 SRR LS B
z ; r
23 aiB
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6.1 (Continued)

also: C = T,
C = T,
%35 133

Then equations (46), (59), and (60) become:

3
1 =3 T. r
P EE% Yk ki
3
y. o= T, r
5 Eé; Tok  3ki

o 3
_ 2. =Y T,

- r
=T Y

Then, for j = 1, 2, 3:

(71)

(72)

(73)

(78)

(78)

{76)

(77)

(78)
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6.1 {Continued)

Therefore, for j = 1, 2, 3:

4 (3T ) [jib-row of my (?} + o X %T)]

BQ 6 3
+my :E: [ " > (

1 k=1

+T 2T ]*Z!Tl‘f
Co Tt Tk fikd 4 Uy

+T, v
aik Y1k aik)

(. oy +T, oz, +T. ¥ + T, i)‘(}rg)
q; 1 ( 12j e, 13j e; 12j ey 13j e;

The general eduations are extremely complex, particularly because of all

the centrifugal and coriolis acceleration terms.

These terms can be shown
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6;1 (Continued)

to be small (1ess than 0.01 g) for the expected table velocities.
Neglecting these terms, equation (79) becomes (for j =1, 2, 3):

d a7 ). |;sth oL oy
dt( ) [ row of mT(rT_+ ”‘Ter)]

R
+m T. T r
Pi=1 11:i|<z=:1 Tk ik
. 80
+ —-l-( T, 7, v, 4T r )
;g;]p, 25kl Tk ik ‘3;2%%_‘3k ik
6 ]c
+ m. o= T y +T1 z )
?;1 % 1p, ( ;78 33 G
Likewise for j = 4, 5,5 6:
- T : . "
%(¥)=Pwu4MfUﬂiaiﬂaxm-aq
2Q; |
m e _T(y Z )
£ 20, Py & 191 re o Yi5 T4 243 (81)
6 1
C
+Sm S (c, y +C, 2z )
:L:i 9 '|p1_ ( Yij e Zij &
where:
aip '
i |
—— =T YT Tya, = (82)
g, 12 i T XX
aip; / .
1
. - r - r = (83)
2y i, 28y 1i3 X 0
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6.1 {(Continued)

2l
B R T.- r.. =C (84)
2 iy Y8y ipp X3y T X%
- Define: .
‘ C = -T. T. r =C (85)
Yia Yoo 23 123 Yay Y%5
c =-T. r._ +T, r, = (86)
294 32 %5 Taz Y P4 | |
c =T, r._. =T, r_ =C (87)
Yig o1 23, a3 Xy Y4
¢ =T, r_ +7T, v =¢C (88)
Yig . Tpp Y33 Mo X35 VE
Then, using equations (72), (73), and (74), equation {81) becomes:
d (o1 \. [ iy vy .y Y o
Ef(aq) = [row (j-3) of [ 1] {mT} +wTX(I '“’T)]
3 L ,
6 /%1, \3
i
+m -.——ZT. Y
ng(a% )p111k 4k
(89)
j!
+ ——I(C T r +C T. r )
i;l‘pi Yij eo1 T2k ik zij'E;% T3k 34k
:g: 1, - "
+ m, = ((3 y +¢C z )
=1 TN F R B F

Simplifying equation (68), for j = 7, 9, 11, 13, 15, 17:

| 1. .

d a-l- ) ( c - . )
[ ZYmem | —y. tY
at ( ) % \pg i TE

6-12 -
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6.1 (Continued}

2
=
c.; .
"'1

3 . '
~ (90)
%é; Tok 2,

qi1 9

‘and, simplifying equation (69), for j = 8, 10, 12, 14, 16, 18:

| 3
d_ ( ot ) M Z = (91)
dt BQ q; €y 1 Z |

Expanding-some of the summations in equations (89}, (90), and (91):

3 .
T, r, =T, ( Xp =@, Py *oa, T ')
Z i a. 141 T z Yy y za;

k=1 1k ik
_ * Tilz( 1 +_°’z'rxa1- T ¥ rzai) : (92)
+ 7, (z - w, Py, ta, T )
i3 T Yy "xay X yay
3
T. r, = (x -y r. g, T )
kgl o 4k 151 T z ya, y . za
+T122(y1’+ “z "xay T T a1) (93)

6-13 -
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(Continued)

+ T, ( Yot o P - T )
132 T z. xai X ;ai

+ - +
T3 ( ‘y Txag T

r
ya, )

(94)

Using the definitions in equations (82) through (88}, these equations

reduce to:

3
T. - =T, X +T, y-+T, 7.+ C
kz=:1 1k ‘“1 T T T iy Ty
+ s +C .
c"yi Y ke Y
3 e .

T r T, + T, y.+T. z.+C
,;1 Top B3 a1 T i 7T i T ¥
+ - "

nyi wy Cyzi w,
3 (1] .CI
T, r =T, % +T, y-+T, 2z +C
:‘:‘1 igg 3k Tap T 3T gz T X
+C. w, +C_ o

£

(95)

(96)

(97)

The mass matrix shown in upper triangular form shown in Figure 6-1 is
obtained by combining equations (95) through (97) and (82) through (88)

with equations (80), (83},

{90), and (91).

6.2 GENERALIZED FORCES /

The generalized forces are obtained by considering the work required to

produce a unit disb]acement for each degree of freedom.

- 6-14
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6.2 (Continued)

where:

J

D2-118544-1

ij = Qj (ﬁqj)

Q. = Generalized force

8q. = Unit displacement

J

Let F_ be the net piston force along the local Xg

p
work done is then:

But, since:

then: .

The generalized force for the'tab1e translational degrees of fre

obtained by letting Xx; = Ly =277 0 and then yr = 1, x5

etc.

W, = F T, T. T, y
. & ‘-.111 12 113J T

sW. = F_ X
1 P4 55
S; X
y =T, y
si [ 1] T
z
zs T

7

21
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actuator axis.

(98)

The

(99)

(100)

(101)

edom are
=z.=0,

T
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6.2 (Continued) .

6
> F

=1

ndy

b
2: F

i

-t

ik

|1chx

el
[ S

Py

P

T,

pi

\
111

——

112 ‘ (102)

The displacements at the table swivel joints due to rotations of the table

are:
r
B 0 ~48, Aey Xa,
A = | e, 0 -48, ryai (103)
AZ., ~ A0 a6, 0
Vi Y X Vza,
1
For a¢ 1, Aey = Aez ='Q:
X 0
Wit 7 ) T za, (104)
i
AZ
it ya,
For Aey =1, - = 86, = 0:
Axi_ r'zai
Ayg =! 0 (105)
-r
AZ]- T xai
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6.2 (Continued)

For Ae; = 1, raax = Aey = 0:
. Tyay |
AYs) = S (106)
1 ‘ l"‘xa.i _
Az_l
T 0

Transforming these displacements to the servo actuator coordinate system:

ax =-T. r _ *+T, ¢ for ae, =1
51 19 233 T13 ¥ X
ax, = T. v ~T. r for aa, =1 (107)
55 i1 235 Tz X y
ax, ~=-T, r + T, r for ae, = 1
Then:
G
M= D Fp g  (108)
i=1 1 1
or: .
56_: F T '
. r .or
MH i=1 p1 (- 112 Za'i 7+ '\13 'ya'l )
X ‘
y fi e (T v, T '
= T v .oor
y R E=L ( B PPRECTRT xa; ) (109)
MH :
'z

These generalized forces are combined with the L ($f X ?T) terms from
v .
equation (80), the $T X (1; - 7)) terms from equation (81), the actuator

 6-18
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damping and stiffness terms and the external forces and. moments to obtain
" _the {C} matrix of equation (44):

o = !

D2-118544-1

* .
————-—-—a——u—‘-—-——_q———————
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7.0 CALCULATION OF ACTUATOR VELOCITIES AND POSITIONS

Actuator lengths and velocities are calculated from-the.equatiOns of motion
- variables for use in the servo loop feedbacks and for the determination of -
actuator friction forces.

Actuator velocities are calculated by first determining the velocities of
the actuator/table attachment points in table coordinates:

o
i v r
. 1 Xg 0 w, Wy Xa
r - . _
ai‘z e Y1 + W, 0 Wy l"ya.i (111)
. z -0 W 0
r.. T Y X rza.
i, i

These velocities are then transformed to actuator coordinates to obtain:

. 3
1 = Tl ;‘
Ps i a. (112)

Actuator lengths are calculated by first obtaining the components of actuator
length in the inertial coordinate system. '

~ qr | X | ro 0 .
Sxi -I | xai
o jr _ly - Jr
;yi = {71 +[A] T yfi (113)
r FA r 7 -
_ | sZi I za, fi

where Ye and zp are the inertial coordinates of the floor swivel joints
i i '

of each actuator.

7-1 -
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Then the actuator lengths are calculated as follows:

1. _fr2 +r2 +p2.
P -‘/ i Sy Sz, (114) ..

These actuator lengths. and velocities are used in the feedback loops in
the servo e]ectron1cs shown in Figure 4-1.
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APPENDIX
NOMENCLATURE

Description .

Transformation matrix from table to inertial coordinates

.;Phsh" and "pull" stroke working areas of actuators
Outbut of the pressure feedback first-order lag filter
0ufput_of the préssufg feedback high-pass filter
Viscous damping coefficiént of actuator

Column of generalized forces for equations of motion
solution :

_ Leakage coefficient across piston seals

Output of the forward loop compensation network

Bending modulus of piston rod
External force
Coulomb friction force of actuator

Total hydraulic and friction forces acting on pistons

" Net forces on actuator piston

Inertia tensor of the active table

Mass moment of inertia of entire actuator assembly

about floor pivot

Mass moment of inertia of cylinder (excluding the
mass of the piston) about floor swivel joint

Mass moment of inertia of the piston rod



Description

Moment and products of inertia

Effective lateral stiffness of the actuator

Piston rod stiffness

Valve pressure flow coefficient
Displacement feedback and command gain
Electronics and valve forward 1ﬁop gain'
Preﬁsure feedback loop gain

Velocity feedback loop gain

Velocity command gain

Distance from floor swivel to center line of
piston rod seal at.end of cylinder

Commanded actuator length
Commanded actuator velocity
Commanded actuator acceleration

Retracted length (between swivel joints) of
actuators

Maximum stroke of actuators
Length of piston rod
Actuator length

Actuator velocity

A-2
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Description

Actuator acceleration

Effective rigid 1atera1 mags of actuator assembly
Mass of piston rod.and piston

Effective bending mass lumped at rod seal of cylinder
Table mass

Mass matrix and mass matrix inverse

External moments

Moment acting about table c.g. from hydraulic and
friction forces

Supply pressure

"pysh" and "pull” actuator hydraulic pressure
.th . i

j— generalized coordinate

No-load valve flow

Hydraulic flow into and out of the actuator

Inertial vector components of actuator length

X axis table station of actuator swivel joints with
respect to the tabie c.g.

Y, 7 table coordinates of swivel joints with respect
to the table c.g.

~ Transformation matrix transforming vectors from table

coordinates to local actuator coordinates

~ Transformation from actuator to inertial coordinates

/‘ .

Time

Kinetic energy of the system

A-37



AX'I ) Ayl s -

AZI, AB,
AY, B¢
6, Vs ¢

Description -

Velocity bandwidth for coulomb friction

Initial hydraulic volumes of push and pull strokes
of fully retracted actuator

"push" and "pull" hydrau1i£ volumes
Inertia] coordinates

Actuator coordinates

Table coordinates

Initial inertial coordinates of table é.g.

" Bending displacements of the actuators

Y and Z inertial coordinates of floor swivel joints

Break frequency of first order filter
Break frequency of first order filter

The angle between the inertial zy axis and the

projection of the actuator x. axis in the Y1-77
plane

Equivalent hydraulic system bulk modulus

Total actuator command signal

_Sinusbida] ampTitudes of translational commands for

table c.g. and of table Euler angles

Euler angles

The angle between the y{-Z; plane and the actuétor
x_ axis ' :
s



Description

Initial Euler angles of the table coordinate system
with respect to the inertial system

Actuator bending mode shape

Damping constant for actuator bending

Damping constant of second order filter on displacement
feedback '

Damping constant of valve dyﬁamfcs

Break frequeﬁcies of first order filters
Displacement command signal frequency

Actuator bending frequency

Freguency of sinusoidal external forces and moments
Break frequencies of pressure'feedback filters

Frequency of second order filter on displacement
feedback

Frequéncy of valve dynamics

Table rotational rates



