

August 30, 1974

MATHEMATICAL MODEL FOR THE SIMULATION OF DYNAMIC DOCKING TEST SYSTEM (DDTS) ACTIVE TABLE MOTION

Contract NAS 9-13136

August 30, 1974

Prepared by
R. M. Gates
D. L. Graves

Approved by

1R. 1 Num
R. K. Nuno

Technical Program Manager

BOEING AEROSPACE COMPANY
Houston, Texas

REVISIONS

REV.	DESCRIPTION	DATE	APPROVED
SYM			

ABSTRACT

This document describes the mathematical model developed to describe the three-dimensional motion of the Dynamic Docking Test System (DDTS) active table. The active table is modeled as a rigid body supported by six flexible hydraulic actuators which produce the commanded table motions.

Key Words

Docking Simulator
Dynamic Docking Test System (DDTS)
Equations of Motion
Hydraulic Actuator
Mathematical Model
Motion Simulator

TABLE OF CONTENTS

SECTION
PAGE
REVISIONS ii
ABSTRACT AND KEY WORDS iii
TABLE OF CONTENTS iv
LIST OF ILLUSTRATIONS v
REFERENCES vi
1.0 INTRODUCTION 1-1
2.0 COORDINATE SYSTEMS AND TRANSFORMATIONS 2-1
3.0 TABLE MOTION COMMANDS 3-1
4.0 SERVO ELECTRONICS 4-1
5.0 ACTUATOR MODEL 5-1
6.0 EQUATIONS OF MOTION 6-1
7.0 CALCULATION OF ACTUATOR VELOCITIES AND POSITIONS 7-1
APPENDIX - NOMENCLATURE A-1

ILLUSTRATIONS

FIGURE PAGE
1-1 DDTS Simulator Facility 1-2
2-1 Active Table Coordinate Systems 2-2
2-2 Euler Angles 2-3
2-3 Actuator Transformation Angles 2-5
4-1 Servo Electronics Block Diagram 4-2
5-1 Hydraulic Actuator 5-2
5-2 Hydraulic Servo Valve Schematic 5-4
6-1 Mass Matrix 6-15

REFERENCES

1. D2-118544-2, "Dynamic Docking Test System (DDTS) Active Table Computer Program NASA Advanced Docking System (NADS)," August 30, 1974.
2. Merritt, H. E., Hydraulic Control Systems, John Wiley \& Sons Inc., 1967.

1.0 INTRODUCTION

The development of the three-dimensional mathematical model and computer program which simulates the dynamic motion of the DDTS active table in response to table motion commands is documented in two volumes. Volume 1 presents the derivation of the mathematical model and Volume 2 (Reference 1) describes the resulting computer program, "NASA Advanced Docking System (NADS)."

The active table shown in Figure 1-1 is modeled as a rigid body, and each of the six actuators is modeled as a flexible rod with pinned ends. The model includes nonlinear hydraulic equations for the hydraulic actuators and a mathematical representation of the electronic control system for each actuator. Actuator position, velocity, and differential pressure across the hydraulic piston are used as feedback signals in the control system. The nomenclature used in the equations is shown in the Appendix.

Figure 1-1. DDTS Simulator Facility

2.0 COORDINATE SYSTEMS AND TRANSFORMATIONS

2.1 INERTIAL COORDINATES $\left(x_{I}, y_{I}, z_{I}\right)$

The inertial simulator coordinate system is an orthogonal, right-handed coordinate system whose origin is on the simulator centerline in the plane of the floor swivel joints. The y_{I} and z_{I} axes form a horizontal plane, and the x_{I} axis is positive down (see Figure 2-1).

2.2 TABLE COORDINATES $\left(x_{T}, y_{T}, z_{T}\right)$

The table coordinate system is an orthogonal, right-handed coordinate system whose origin is at the center of gravity of the simulator table. The y_{T} and z_{T} axes lie in the plane of the table, and the x_{T}, axis is positive "down" (see Figure 2-1).
2.3 ACTUATOR COORDINATES $\left(x_{s_{j}}, y_{\mathbf{s}_{\mathbf{i}}} ; z_{\mathbf{s}_{\mathbf{i}}}\right)$

Each actuator has i ts own coordinate system. The $x_{\mathbf{s}_{\mathbf{j}}}$ axis is colinear with the actuator centerline. The $y_{\mathbf{s}_{\mathbf{i}}}$ axis is perpendicular to the $\mathrm{x}_{\mathbf{s}_{\mathbf{i}}}$ axis and the inertial gravity vector. The $z_{s_{i}}$ axis is perpendicular to both $\mathrm{x}_{\mathbf{s}_{\mathbf{i}}}$ and $\mathrm{y}_{\mathbf{s}_{\mathbf{i}}}$ and is positive "up" as shown in Figure 2-1.
2.4 TRANSFORMATION FROM INERTIAL TO TABLE COORDINATES

Euler angles shown in Figure 2-2 are used to transform from inertial coordinates to table coordinates.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Figure 2-1. Active Table Coordinate Systems
2.4 (Continued)

Figure 2-2. Euler Angles
The order of rotation is θ, ψ, ϕ which corresponds to rotation about the y, z, x axes, respectively. The transformation from table to inertial coordinates is:

$$
\left\{\begin{array}{l}
x_{I} \tag{1}\\
y_{I} \\
z_{I}
\end{array}\right\}=[A]\left\{\begin{array}{l}
\dot{x}_{T} \\
\dot{y}_{T} \\
z_{T}
\end{array}\right\}
$$

Therefore:

$$
\left\{\begin{array}{l}
x_{T} \tag{2}\\
y_{T_{H}} \\
z_{T}
\end{array}\right\}=[A]^{T}\left\{\begin{array}{l}
x_{I} \\
y_{I} \\
z_{I}
\end{array}\right\}
$$

2.4 (Continued)

$$
\left\{\begin{array}{c}
\dot{\theta} \tag{3}\\
\dot{\psi} \\
\dot{\phi}
\end{array}\right\}=\left[\begin{array}{ccc}
0 & \frac{\cos _{\phi}}{\cos \psi} & -\frac{\sin _{\phi}}{\cos \psi} \\
0 & \sin \phi & \cos \phi \\
1 & -\cos \phi \tan \phi & \sin \phi \tan \psi
\end{array}\right]\left\{\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right\}
$$

Where:

$$
\begin{aligned}
& {[A]=} {\left[\begin{array}{ccc}
C_{\theta} \cdot C_{\psi} & -C_{\phi} \cdot C_{\theta} \cdot S_{\psi}+S_{\theta} \cdot S_{\phi} & S_{\phi} \cdot C_{\theta} \cdot S_{\psi}+C_{\phi} \cdot S_{\theta} \\
S_{\psi} & C_{\phi} \cdot C_{\psi} & -S_{\phi} \cdot C_{\psi} \\
-S_{\theta} \cdot C_{\psi} & C_{\phi} \cdot \mathrm{S}_{\theta} \cdot \mathrm{S}_{\psi}+\mathrm{S}_{\phi} \cdot C_{\theta} & -S_{\phi} \cdot S_{\theta} \cdot S_{\psi}+C_{\phi} \cdot C_{\theta}
\end{array}\right] } \\
& C=\text { cosine } \\
& S=\text { sine } .
\end{aligned}
$$

2.5 TRANSFORMATION FROM ACTUATOR TO INERTIAL COORDINATES

The transformation from actuator coordinates to inertial coordinates uses the following angles:
${ }^{\theta} A$ - the angle between the horizontal plane through the floor
${ }^{\beta_{A}}$ - the angle between the inertial z_{I} axis and the projection of the actuator x_{s} axis in the $y_{I}-z_{I}$ plane (Figure 2-3)

$$
\begin{gather*}
\sin \theta_{A_{i}}=-\frac{{ }_{s_{x_{i}}}}{T_{p_{i}}} \tag{5}\\
\cos { }^{\theta} A_{i} \tag{6}
\end{gather*}=\frac{\sqrt{r_{s_{y_{i}}^{2}}+r_{s_{z_{i}}}^{2}}}{T_{p_{i}}},
$$

Figure 2-3. Actuator Transformation Angles

2.5 (Continued)

$$
\begin{gather*}
\sin { }^{\beta} A_{i}=\frac{r_{s_{y_{i}}}}{\sqrt{r_{s}{ }^{2}+r_{y_{i}}{ }^{2}}} \tag{7}\\
\cos { }_{z_{i}} A_{i}=\frac{r_{s}}{\sqrt{r_{s^{2}}{ }^{2}+r_{i}{ }^{2}}} \tag{8}
\end{gather*}
$$

where $r_{s_{z_{i}}}, r_{s_{y_{i}}}$, and $r_{s_{\mathbf{z}_{\boldsymbol{i}}}}$ are vector components of actuator length, $l_{p_{i}}$, in the inertial coordinate system.

The transformation from actuator to inertial coordinates is then:

$$
\left\{\begin{array}{l}
x_{I} \tag{9}\\
y_{I} \\
z_{I}
\end{array}\right\}=\left[T I_{i}\right]\left\{\begin{array}{l}
x_{s_{i}} \\
y_{s_{i}} \\
z_{s_{i}}
\end{array}\right\}
$$

where:

$$
\left[T I_{i}\right]=\left[\begin{array}{ccc}
-S \theta_{A_{i}} & 0 & { }^{-C \theta_{A_{i}}} \tag{10}\\
C \theta_{A_{i}} \cdot S \beta_{A_{i}} & C \beta_{A_{i}} & -S \theta_{A_{i}} \cdot S \beta_{A_{i}} \\
C{ }^{C \beta_{A_{i}}} \cdot C \theta_{A_{i}} & -S \beta_{A_{i}} & -C{ }_{A_{i}} \cdot S \theta_{A_{i}}
\end{array}\right]
$$

2.5 (Continued)

The equivalent "Euler angle" rotations for this transformation (from inertial to actuator coordinates) would:
a. Rotate -90° about y_{I}
b. Rotate ${ }^{\beta_{A_{i}}}$ about the intermediate z axis
c. Rotate ${ }^{-\theta} A_{i}$ about the intermediate y axis
2.6 TRANSFORMATION FROM INDIVIDUAL ACTUATOR COORDINATES TO TABLE COORDINATES Using the previous transformations, the transformation from individual actuator coordinate systems to the table coordinate system becomes:

$$
\left\{\begin{array}{l}
x_{T} \tag{11}\\
y_{T} \\
z_{T}
\end{array}\right\}=\left[T_{i}\right]^{T}\left\{\begin{array}{l}
x_{s_{i}} \\
y_{s_{i}} \\
z_{s_{i}}
\end{array}\right\}
$$

where

$$
\begin{equation*}
\left[T_{i}\right]^{\top}=[A]^{\top}\left[T I_{i}\right] \tag{12}
\end{equation*}
$$

Likewise:

$$
\left\{\begin{array}{c}
x_{s_{\mathbf{i}}} \tag{13}\\
y_{s_{\mathbf{i}}} \\
z_{s_{\mathbf{i}}}
\end{array}\right\}=\left[T_{\mathbf{i}}\right]\left\{\begin{array}{l}
x_{T} \\
y_{T} \\
z_{T}
\end{array}\right\}
$$

where:

$$
\begin{equation*}
\left[T_{\mathbf{i}}\right]=\left[\mathrm{TI}_{\mathbf{i}}\right]^{\top}[A] \tag{14}
\end{equation*}
$$

3.0 TABLE MOTION COMMANDS

Table commands are specified in the inertial coordinate system. Actuator commands for two types of commands will be discussed: sinusoidal position commands and constant velocity commands,

3.1 SINUSOIDAL POSITION COMMANDS

Let $\left(\Delta X_{I}\right)$ and $(\Delta \theta)$ be the amplitude of commanded sinusoidal table
motion in the inertial coordinate system. The total inertial commands are then obtained by adding the commanded sinusoidal motion to the initial inertial position of the table.

$$
\begin{align*}
& x_{I_{c}}=x_{I_{0}}+\Delta x_{I} \sin \omega_{c} t \\
& y_{I_{c}}=y_{I_{0}}+\Delta y_{I} \sin \omega_{c} t \\
& z_{I_{c}}=z_{I_{0}}+\Delta z_{I} \sin \omega_{c} t \\
& \theta_{c}=\theta_{0}+\Delta \theta \sin \omega_{c} t \\
& \psi_{c}=\psi_{0}+\Delta \psi \sin \omega_{c} t \tag{15}\\
& \phi_{c}=\phi_{0}+\Delta \phi \sin \omega_{c} t \\
& \dot{x}_{I_{c}}=\Delta x_{I} \omega_{c} \cos \omega_{c} t \\
& \dot{y}_{I_{c}}=\Delta y_{I} \omega_{c} \cos \omega_{c} t \\
& \dot{z_{I}}=\Delta z_{I} \omega_{c} \cos \omega_{c} t \\
& \dot{\theta}=\Delta \theta \omega_{c} \cos \omega_{c} t \\
& \dot{\psi}=\Delta \psi \omega_{c} \cos \omega_{c} t \\
& \dot{\phi}=\Delta \phi \omega_{c} \cos \omega_{c} t
\end{align*}
$$

3.2 CONSTANT VELOCITY COMMANDS

For constant velocity commands $\left(\Delta \dot{x}_{I}, \Delta \dot{y}_{I}, \Delta \dot{z}_{I}, \Delta \dot{\theta}, \Delta \dot{\psi}, \Delta \dot{\phi}\right)$, the total inertial commands are;

$$
\begin{aligned}
& x_{I_{c}}=x_{I_{0}}+\Delta \dot{x}_{I} t \\
& y_{I_{C}}=y_{I_{0}}+\Delta \dot{y}_{I} t \\
& z_{I_{C}}=z_{I_{0}}+\Delta \dot{z}_{I} t \\
& \theta_{C}=\theta_{0}+\Delta \dot{\theta} t \\
& \psi_{C}=\psi_{0}+\Delta \dot{\psi} t \\
& \phi_{C}=\phi_{0}+\Delta \dot{\phi} t \\
& \dot{x}_{I_{c}}=\Delta \dot{x}_{I} \\
& \dot{y}_{I_{C}}=\Delta \dot{y}_{I} \\
& \dot{z}_{I_{C}}=\Delta \dot{z}_{I} \\
& \dot{\theta}_{c}=\Delta \dot{\theta} \\
& \dot{\psi}_{C}=\Delta \dot{\psi} \\
& \dot{\phi}_{C}=\Delta \dot{\phi}
\end{aligned}
$$

3.3 ACTUATOR COMMANDS

The total inertial position and velocity commands are transformed to individual actuator commands.

Let $\left[A_{c}\right]$ be the transformation from the table coordinate system to the inertial coordinate system (equation 4) with the Euler angles replaced by the commanded Euler angles. Then the commanded inertial velocities of the actuator/table attachment points are:
3.3 (Continued)

$$
\left\{\begin{array}{c}
\dot{r}_{s_{x_{i}}} \tag{17}\\
\dot{r}_{s_{y_{i}}} \\
\dot{r}_{s_{z_{i}}}
\end{array}\right\}\left\{\begin{array}{c}
\dot{x}_{I_{c}} \\
\dot{y}_{I_{c}} \\
\dot{z}_{I_{c}}
\end{array}\right\}+\left[\begin{array}{ccc}
0 & { }^{-\omega_{z}} & { }^{\omega} y_{c} \\
A_{c}
\end{array}\right]\left\{\begin{array}{c}
r_{x a_{i}} \\
{ }^{\omega_{z}} \\
{ }_{c} \\
{ }^{\omega} y_{c} \\
r_{c} \\
{ }^{\omega_{x_{c}}} \\
{ }^{y a_{i}} \\
r_{z a_{i}}
\end{array}\right\}
$$

where

$$
\left\{\begin{array}{c}
{ }^{\omega} x_{c} \tag{18}\\
{ }^{\omega_{y_{c}}} \\
\omega_{z_{c}}
\end{array}\right\}=\left[\begin{array}{ccc}
1 & 0 & { }^{S} \psi_{c} \\
0 & S_{\phi_{c}} & C_{\psi_{c}} \cdot{ }^{C} \phi_{c} \\
0 & { }^{C} \phi_{c} & -{ }^{C} \psi_{c} \cdot{ }^{S} \phi_{c}
\end{array}\right]\left\{\begin{array}{l}
\dot{\phi}_{c} \\
\dot{\psi}_{c} \\
\dot{\theta}_{c}
\end{array}\right\}
$$

The commanded inertial components of actuator length are:

$$
\left\{\begin{array}{l}
r_{s_{x_{i}}} \tag{19}\\
r_{s_{y_{i}}} \\
r_{s_{z_{i}}}
\end{array}\right\}=\left\{\begin{array}{c}
{ }^{x} I_{c} \\
y_{I_{c}} \\
z_{I_{c}}
\end{array}\right\}+\left[A_{c}\right]\left\{\begin{array}{c}
r_{x a_{i}} \\
r_{y a_{i}} \\
r_{z a_{i}}
\end{array}\right\}-\left\{\begin{array}{l}
0 \\
y_{f_{i}} \\
z_{f_{i}}
\end{array}\right\}
$$

Commanded actuator lengths are then:

$$
\begin{equation*}
{ }^{1} c_{i}=\sqrt{r_{s_{x_{i}}}^{2}+r_{s_{y_{i}}}^{2}+r_{s_{z_{i}}}^{2}} \tag{20}
\end{equation*}
$$

D2-118544-1

3.3 (Continued)

and commanded actuator velocities are:

$$
\begin{equation*}
\dot{i}_{c_{i}}=\frac{1}{T_{c_{i}}}\left[r_{s_{x_{i}}} \cdot \dot{r}_{s_{x_{i}}}+r_{s_{y_{i}}} \cdot \dot{r}_{s_{y_{i}}}+r_{s_{z_{i}}} \cdot \dot{r}_{s_{z_{i}}}\right] \tag{21}
\end{equation*}
$$

4.0 SERVO ELECTRONICS

The servo electronics consist of actuator position and rate command signals; forward loop compensation network; servo valve; and position, rate, and differential pressure feedback loops as shown in Figure 4-1. The forward loop compensation network, the valve dynamics representation, and the position feedback filter are designed to be optional in the computer program. For example, if $\beta<1$, then the forward loop compensation network is not included in the simulation. Similarly, the valve dynamics and position feedback filter are neglected if $\omega_{v}<1$ and $\omega_{s}<1$, respectively.

4.1 ACTUATOR COMMANDS

Define

$$
\begin{align*}
& \delta_{i}=k_{f}{ }_{1} c_{i}+k_{r c}{ }^{i_{c}} \tag{22}\\
& \dot{\delta}_{\mathbf{i}}=k_{f} \dot{1}_{c_{i}}+k_{r c} \ddot{i}_{c_{i}}
\end{align*}
$$

where ${ }^{1}{c_{i}}_{i},{ }_{i_{c_{i}}}$, and $\ddot{i}_{\mathbf{c}_{\mathbf{i}}}$ are the commanded actuator length, velocity, and acceleration, respectively.

4.2 POSITION FEEDBACK FILTER

The differential equation for the actuator position feedback filter is:

$$
\begin{align*}
& \text { If } \begin{aligned}
\omega_{s} & \geq 1 \\
\text { If } \ddot{x}_{s}<1 & =\omega_{s}^{2}\left(1_{p_{i}}-\frac{2 \zeta_{s}}{\omega_{s}} \dot{x}_{s_{i}}-x_{s_{i}}\right) \\
\ddot{x}_{s_{i}} & =\ddot{p}_{p_{i}} \\
\dot{x}_{s_{i}} & =1_{p_{i}} \\
x_{s_{i}} & =1_{p_{i}}
\end{aligned}
\end{align*}
$$

Figure 4-1. Servo Electronics Block Diagram
4.3 DIFFERENTIAL PRESSURE FEEDBACK COMPENSATION

Pressure feedback compensation consists of two parts--a first-order lag filter and a high-pass filter. The first-order lag attenuates the higher frequency pressure fluctuations, while the high-pass filter eliminates the static differential pressure caused by unequal piston areas. The differential equations for these filters are:

$$
\begin{align*}
& \dot{a}_{\mathbf{o}_{\mathbf{i}}}=\omega_{p f 1}\left[K_{p f}\left(p_{1_{\mathbf{i}}}-p_{2_{\mathbf{i}}}\right)-a_{o_{\mathbf{i}}}\right] \tag{25}\\
& \dot{a}_{1_{\mathbf{i}}}=\omega_{\mathrm{pf}}\left(\dot{a}_{\mathbf{o}_{\mathbf{i}}}-a_{1_{\mathbf{i}}}\right)
\end{align*}
$$

where $K_{p f}$ is the pressure feedback gain.
4.4 FORWARD LOOP COMPENSATION NETWORK

The forward loop compensation network consists of a lead-lag filter with corner frequencies α and β.

For $\beta \geq 1$:

$$
\begin{align*}
\dot{e}_{i}=\beta & {\left[\frac{1}{\alpha}\left(\dot{\delta}_{i}-\dot{a}_{1_{i}}-k_{r} \ddot{x}_{s_{i}}-K_{f} \dot{x}_{s_{i}}\right)\right.} \tag{26}\\
& \left.+\left(\delta_{i}-a_{1_{i}}-K_{r} \dot{x}_{s_{i}}-k_{f} x_{s_{i}}\right)-e_{i}\right]
\end{align*}
$$

where $\dot{a}_{1_{i}}, a_{1_{i}}, \ddot{x}_{s}, \dot{x}_{s}$, and x_{s} are signals from the feedback loops.

For $\beta<1$:

$$
\begin{align*}
& \dot{e}_{\mathbf{i}}=0 \\
& \dot{e}_{\mathbf{i}}=\delta_{\mathbf{i}}-a_{1_{\mathbf{i}}}-K_{r} \dot{x}_{s_{\mathbf{i}}}-K_{f} x_{s_{\mathbf{i}}} \tag{27}
\end{align*}
$$

where K_{f} and K_{r} are the displacement and rate feedback gains, respectively.
4.5 SERVO VALVE DYNAMICS

The dynamics of the servo valve are represented by a single-degree-offreedom system with a natural frequency ω_{v} and damping ratio ζ_{v}.

If $\omega_{v} \geq 1$:

$$
\begin{equation*}
\ddot{Q}_{o_{i}}=\omega_{v}^{2}\left(K_{g} e_{i}-\frac{2 \zeta_{v}}{\omega_{v}} \dot{Q}_{o_{i}}-Q_{o_{i}}\right) \tag{28}
\end{equation*}
$$

where K_{g} is the forward loop amplifier gain and Q_{0} is the no-load flow through the valve.

If $\omega_{v}<1$:

$$
\begin{align*}
& \ddot{Q}_{o_{i}}=\dot{Q}_{o_{i}}=0 \tag{29}\\
& Q_{o_{i}}=K_{g} e_{i}
\end{align*}
$$

5.0 ACTUATOR MODEL

Each actuator is modeled as a flexible rod with pinned ends. Hydraulic forces are calculated using nonlinear hydraulic flow equations and unequal push and pull piston areas. Actuator control system electronics are modeled and include differential pressure, velocity, and position feedback. The actuator geometry and nomenclature are shown in Figure 5-1.

5.1 ACTUATOR MASS AND INERTIA CHARACTERISTICS

The mass moment of inertia of the piston rod is:

$$
\begin{equation*}
I_{p}=\frac{m_{p} 1_{r}^{2}}{12} \tag{30}
\end{equation*}
$$

where m_{p} is the driven mass (piston and piston rod). The mass moment of inertia of the entire actuator assembly about the floor pivot is:

$$
\begin{equation*}
I_{A_{i}}=I_{A_{c}}+I_{p}+m_{p}\left(I_{p_{i}}-\frac{1_{r}}{2}\right)^{2} \tag{31}
\end{equation*}
$$

where:
$I_{A_{c}}=$ Mass moment of inertia of the cylinder structure about the
floor pivot (excludes driven mass, m_{p}).

The effective rigid lateral mass of each actuator assembly for use in the equations of motion is then:

$$
\begin{equation*}
m_{L_{i}}=I_{A_{i}} / I_{p_{i}}^{2} \tag{32}
\end{equation*}
$$

5.2 ACTUATOR FLEXIBILITY

The dynamic bending characteristics of each actuator are calculated assuming that the cylinder is rigid compared to the piston rod and that the effective dynamic mass is lumped at the rod end seal of the cylinder. The bending characteristics are also assumed to be identical for each of the two bending planes of the actuator.

Figure 5-1. Hydraulic Actuator

5.2 (Continued)

The effective dynamic mass lumped at the cylinder end is approximated as:

$$
\begin{equation*}
m_{q_{i}}=\left[I_{A_{c}} / l_{c}^{2}\right]+\left[m_{p} / 2\right] \tag{33}
\end{equation*}
$$

Assuming pinned joints between the cylinder and piston rod, the piston rod stiffness is:

$$
\begin{equation*}
k_{r_{i}}=\frac{3(E I)_{r} l_{r}}{1_{r 1_{i}}{ }^{2} 1_{r r_{i}^{2}}^{2}} \tag{34}
\end{equation*}
$$

where ${ }^{1}{ }_{r 1}$ ind ${ }^{1}{ }_{r} \boldsymbol{1}_{\boldsymbol{i}}$ are defined as follows:

$$
\begin{aligned}
& 1_{r 1_{i}}=1_{p_{i}}-1_{c} \\
& 1_{r 2_{i}}=1_{r}-1_{r 1_{i}}
\end{aligned}
$$

The effective lateral stiffness of the actuator with a rigid cylinder is:

$$
\begin{equation*}
k_{e_{i}}=\frac{3(E I)_{r}\left(1_{r} 1_{c}-{ }_{1} 1_{i} 1_{p_{i}}\right)\left(1_{r}+1_{p_{i}}\right)\left(1_{c}-1_{p_{i}}\right)}{{ }_{r 1_{i}}{ }^{2} 1_{r 2_{i}}^{2}{ }_{c}{ }^{2}{ }^{2}{ }_{r}} \tag{35}
\end{equation*}
$$

The actuator bending frequency is then:

$$
\begin{equation*}
\omega_{e_{i}}^{2}=k_{e_{i}} / m_{q_{i}} \tag{36}
\end{equation*}
$$

5.3 HYDRAULIC FLOW EQUATIONS

The nonlinear hydraultc flow equations are based on the derivations presented in Reference 2 for a double-acting hydraulic piston. A schematic of the hydraulic servo valve and actuator is shown in Figure 5-2.

Figure 5-2. Hydraulic Servo Valve Schematic

$$
5-4
$$

5.3 (Continued)

The flow continuity equations are:

$$
\begin{align*}
& Q_{1}=C_{p}\left(p_{1}-p_{2}\right)+\dot{V}_{1}+\frac{V_{1}}{\beta_{e}} \dot{p}_{1} \\
& Q_{2}=C_{p}\left(p_{1}-p_{2}\right)-c_{e_{p}} p_{2}-\dot{V}_{2}-\frac{V_{2}}{\beta_{e}} \dot{p}_{2} \tag{37}
\end{align*}
$$

where:

$$
\begin{align*}
& Q_{1}=Q_{0}-2 K_{c} p_{1} \tag{38}\\
& Q_{2}=Q_{0}+2 K_{c} p_{2}
\end{align*}
$$

and
$Q_{0}=$ The no-load flow of the valve
$K_{c}=$ Valve pressure flow coefficient
$C_{p}=$ Leakage coefficient across the piston
$C_{e_{p}}=$ Leakage coefficient past the piston rod seal

The volume-stroke relationships are:

$$
\begin{align*}
& V_{1}=V_{0_{1}}+A_{1}\left(1_{p}-1_{0}\right) \\
& V_{2}=V_{0}-A_{2}\left(1_{p}-1_{0}\right) \tag{39}\\
& V_{1}=A_{1} 1_{p} \\
& V_{2}=-A_{2} 1_{p}
\end{align*}
$$

where $V_{0_{1}}$ and $V_{0_{2}}$ are the hydraulic volumes at zero stroke.
5.3 (Continued)

Therefore, neglecting piston rod seal leakage, the hydraulic flow equations for each actuator are:

$$
\begin{align*}
& \dot{p}_{1}=\frac{B_{e}}{V_{1}}\left[Q_{0}-2 K_{c} p_{1}-C_{p}\left(p_{1}-p_{2}\right)-A_{1} \dot{i}_{p}\right] \tag{40}\\
& \dot{p}_{2}=\frac{B_{e}}{V_{2}}\left[-Q_{0}-2 K_{c} p_{2}+C_{p}\left(p_{1}-p_{2}\right)+A_{2} \dot{i}_{p}\right]
\end{align*}
$$

5.4 ACTUATOR FORCES

Actuator forces $\left(F_{P_{i}}\right)$ are calculated from the differential pressure across the piston. In addition to the viscous damping forces associated with the actuators, coulomb friction is also included.

$$
\begin{equation*}
F_{p}=A_{1} p_{1}-A_{2} p_{2}-B_{p} \dot{i}_{p}-C_{F} F_{f} \tag{41}
\end{equation*}
$$

A velocity "bandwidth" for coulomb friction is used to prevent a discontinuity at zero velocity.

The coulomb friction force is:

$$
\begin{equation*}
F_{C F}=-C_{F} F_{f} \tag{42}
\end{equation*}
$$

$$
5-6^{\cdots}
$$

5.3 (Continued)
where C_{F} is a coefficient which is a function of actuator velocity:

$$
\begin{equation*}
\text { If }\left|\dot{i}_{p}\right| \geq v_{b w} \text {, then } c_{F}=\frac{\dot{j}_{p}}{\left|\dot{i}_{p}\right|} \tag{43}
\end{equation*}
$$

If $\left|i_{p}\right|<V_{b W}$, then $C_{F}=\frac{i_{p}}{V_{b W}}$

6.0 EQUATIONS OF MOTION

Table and actuator equations of motion are written in the body fixed table coordinates in the following form:

$$
\begin{equation*}
\{\ddot{x}\}=[m]^{-1}\{c \mid \tag{44}
\end{equation*}
$$

where: $\{\ddot{X}\}$ is a column of accelerations for each degree of freedom (six degrees of freedom for the table and two elastic degrees of freedom for each actuator)
[M] is the 18×18 coupled mass matrix
$\{c\}$ is a column of generalized forces for each degree of freedom

The mass coupling effects of the actuators due to table motions are derived by Lagrange's method.- The three-dimensional rigid motions of the actuators are completely constrained (i.e., they are dependent upon the motions of the table). These constraints are expressed by the velocity substitutions in the energy expressions.

The final equations are much simplified when compared with the equations which would result from a rigorous derivation. Due to the nonorthogonality between actuator and table motions, a large number of nonlinear velocity coupling terms results. All of these terms were assumed negligible since, for expected table velocities, they are quite small and their omission prevents the equations from becoming unwieldy.

6.1 MASS MATRIX

The kinetic energy of the rigid table and actuators is:

$$
\begin{align*}
T= & \frac{1}{2} m_{T}\left(\overrightarrow{\dot{r}}_{T} \cdot \overrightarrow{\dot{r}}_{T}\right)+\frac{1}{2} \vec{\omega}_{T} \cdot\left(\tilde{\mathrm{I}}_{T} \vec{\omega}_{T}\right)+\frac{1}{2} m_{p} \sum_{i=1}^{6} i_{p_{i}}^{2} \\
& +\frac{3}{2} \sum_{i=1}^{6} \int_{0}^{1}{ }^{p_{i}}\left(\dot{y}_{a_{i}}^{2}+\dot{z}_{a_{i}^{2}}^{2}\right) d m_{i} \tag{45}
\end{align*}
$$

6.1 (Continued)

The first two terms in this expression are the energy of the rigid table; the third term is the energy of the piston rod due to stroking; and the fourth term is the energy of the actuator assembly due to rotation about the floor pivot.

Using the transformation from table coordinates to actuator coordinates, $\left[T_{\mathfrak{i}}\right]$, shown in equation (14):

$$
\begin{align*}
& i_{p_{i}}=T_{i_{11}}\left(\dot{x}_{T}-\omega_{z} r_{y a_{i}}+\omega_{y} r_{z a_{i}}\right) \\
& +T_{i_{12}}\left(\dot{y}_{T}+\omega_{z} r_{x a_{i}}-\omega_{x} r_{z a_{i}}\right) \tag{46}\\
& +T_{\mathbf{i}_{13}}\left(i_{T}-\omega_{y} r_{x a_{i}}+\omega_{x} r_{y a_{i}}\right) \\
& -=T_{i_{11}} \dot{x}_{a_{i}}+T_{i_{12}} \dot{y}_{a_{i}}+T_{i_{13}} \dot{z}_{a_{i}} \\
& \dot{y}_{a_{i}}=\left[T_{i_{21}}\left(\dot{x}_{T}-\omega_{z} r_{y a_{i}}+\omega_{y} r_{z a_{i}}\right)\right. \\
& +T_{i_{22}}\left(\dot{y}_{T}+\omega_{z} r_{x a_{i}}-\omega_{x} r_{z a_{i}}\right) \\
& \left.+T_{i_{23}}\left(\dot{z}_{T}-\omega_{y} r_{x a_{i}}+\omega_{x} r_{y a_{i}}\right)\right] \frac{x_{s}}{1_{p_{i}}} \tag{47}\\
& +\dot{y}_{e_{i}} \phi_{i}\left(x_{s}\right) \\
& =\dot{y}_{r_{i}} \cdot \frac{x_{s}}{T_{p_{i}}}+\dot{y}_{e_{i}} \phi_{i}\left(x_{s}\right)
\end{align*}
$$

6.1 (Continued)

$$
\begin{aligned}
\dot{z}_{a_{i}}= & {\left[T_{i_{31}}\left(\dot{x}_{T}-\omega_{z} r_{y a_{i}}+\omega_{y} r_{z a_{i}}\right)\right.} \\
& +T_{i_{32}}\left(\dot{y}_{T}+\omega_{z} r_{x a_{i}}-\omega_{x} r_{z a_{i}}\right) \\
& \left.+T_{i_{33}}\left(\dot{z}_{T}-\omega_{y} r_{x a_{i}}+\omega_{x} r_{y a_{i}}\right)\right] \frac{x_{s}}{1_{p_{i}}} \\
& +\dot{z}_{e_{i}} \phi_{i}\left(x_{s}\right) \\
= & \dot{z}_{r_{i}} \frac{x_{s}}{1_{p_{i}}}+\dot{z}_{e_{i}}{ }^{\phi_{i}}\left(x_{s}\right)
\end{aligned}
$$

where:
$\phi_{\mathbf{i}}\left(x_{s}\right)$ is the actuator bending mode shape as a function of x_{s}, and $y_{e_{i}}$ and $z_{\mathbf{e}_{\mathbf{i}}}$ are bending velocities of the actuators.

The elastic bending modes of each actuator are assumed to be a simple mode shape normalized to unity at the upper end of the cylinder ($x_{s}=1_{c}$). There are two identical modes for each actuator. The generalized mass for each mode is assumed to be lumped at the upper end of the cylinder; thus, the mass distribution terms can be integrated.
egg.

$$
\int_{0}^{1} \mathrm{P}_{i} \cdot x_{s}^{2} d m=I_{A_{i}}=\text { mass moment of total actuator assembly }
$$

about the floor pivot.

6.1 (Continued)

and:

$$
\int_{0}^{1} p_{i} x_{s} \phi\left(x_{s}\right) d m_{i}=l_{c} m_{q_{i}}
$$

where $m_{q_{i}}$ is the generalized mass of $i \frac{\text { th }}{}$ actuator for each bending mode.

Lagrange's equation requires the determination of $\frac{d}{d t} \frac{\partial T}{\partial \dot{Q}_{j}}$ where Q_{j} is the j th generalized coordinate in the equation of motion. In this simunation:

$$
\begin{array}{ll}
\dot{Q}_{1}=\dot{x}_{T} & \dot{Q}_{7}=\dot{y}_{e_{1}} \\
\dot{Q}_{2}=\dot{y}_{\mathrm{t}} & \dot{Q}_{8}=\dot{z}_{e_{1}} \\
\dot{Q}_{3}=\dot{z}_{T} & \vdots \\
\dot{Q}_{4}={ }^{\omega} T_{x} & \vdots \\
\dot{Q}_{5}={ }^{\omega} T_{y} & \dot{Q}_{17}=\dot{y}_{e_{6}} \\
\dot{Q}_{6}=\omega^{\omega} T_{z} & \dot{Q}_{18}=\dot{z}_{e_{6}} . \tag{49}
\end{array}
$$

Then:

$$
\begin{align*}
\frac{\partial T}{\partial \dot{Q}_{j}}= & \frac{i}{2} m_{T} \frac{\partial}{\partial \dot{Q}_{j}}\left(\dot{\vec{r}}_{T} \cdot \dot{\vec{r}}_{T}\right)+\frac{1}{2} \frac{\partial}{\partial \dot{Q}_{j}}\left[\vec{\omega}_{T} \cdot\left(\underline{I} \cdot \dot{\omega}_{T}\right)\right] \tag{50}\\
& +m_{p} \sum_{i=1}^{6} \frac{\partial \dot{1}_{p_{i}}}{\partial \dot{Q}_{j}} \dot{i}_{p_{i}}+\sum_{i=1}^{6} \int_{0}^{1} p_{i}\left(\frac{\partial \dot{y}_{a_{i}}}{\partial \dot{Q}_{j}} \dot{y}_{a_{i}}+\frac{\partial \dot{z}_{a_{i}}}{\partial \dot{Q}_{j}} \dot{z}_{a_{i}}\right) d m_{i}
\end{align*}
$$

6.1 (Continued)

For $\mathrm{j} \leq 6$:

$$
\begin{equation*}
\frac{\partial \dot{y}_{a_{j}}}{\partial \dot{q}_{j}}=\frac{x_{s}}{\frac{p_{p}}{p_{i}}} c_{y_{i j}} \tag{51}
\end{equation*}
$$

where $C_{y_{i j}}$ are coefficients from equation (47), e.g.

$$
\begin{aligned}
& \dot{C}_{y_{i 1}}=T_{i_{21}} \\
& C_{y_{i 4}}=-T_{i_{22}} r_{z a_{i}}+T_{i_{23}} r_{y a_{i}} \\
& \vdots \\
& \text { etc. }
\end{aligned}
$$

For $\mathbf{j}=7,9,11,13,15,17:$

$$
\begin{equation*}
\frac{\partial \dot{y}_{a_{i}}}{\partial \dot{Q}_{j}}=\phi_{\mathbf{i}}=1 \tag{52}
\end{equation*}
$$

and, for $\mathbf{j}=8,10,12,14,16,18$

$$
\begin{equation*}
\frac{\partial \dot{y}_{a_{\mathbf{i}}}}{\partial \dot{Q}_{j}}=0 \tag{53}
\end{equation*}
$$

Likewise:

$$
\begin{array}{rlr}
\frac{\partial \dot{z}_{a_{i}}}{\partial \dot{Q}_{j}}=\frac{x_{s}}{1_{p_{\mathbf{i}}}} C_{z_{i j}} & \text { for } j \leq 6 \\
& =0 & \text { for } j=7,9,11,13,15,17 \\
& =1 & \text { for } j=8,10,12,14,16,18
\end{array}
$$

6.1 (Continued)

Therefore, for $\mathrm{j} \leq 6$, the last term in equation (50) becomes:

$$
\begin{align*}
\frac{\partial T}{\partial \dot{Q}_{j}}= & \sum_{i=1}^{6}\left[\left(\frac{x_{s}}{1_{p_{i}}}\right)^{2} \dot{y}_{r_{i}} c_{y_{i j}}+\frac{\dot{x}_{s}}{1_{p_{i}}} c_{y_{i j}} \dot{y}_{e_{i}} \phi_{i}\left(x_{s}\right)\right. \tag{57}\\
& \left.+\left(\frac{x_{s}}{1_{p_{i}}}\right)^{2} \dot{z}_{r_{i}} c_{z_{i j}}+\frac{x_{s}}{1_{p_{i}}} c_{z_{i j}} \dot{z}_{e_{i}} \phi_{i}\left(x_{s}\right)\right] d m_{i} \\
= & \sum_{i=1}^{6}\left[\frac{I_{i}}{T_{p_{i}}^{2}}\left(\dot{y}_{r_{i}} C_{y_{i j}}+\dot{z}_{r_{i}} c_{z_{i j}}\right)+m_{q_{i}} \frac{1_{c}}{T_{p_{i}}}\left(c_{y_{i j}} \dot{y}_{e_{i}}+c_{z_{i j}} \cdot \dot{z}_{e_{i}}\right)\right] \tag{58}
\end{align*}
$$

where, from equations (47) and (48):

$$
\begin{align*}
& \dot{y}_{r_{i}}=T_{i_{21}} \dot{x}_{a_{i}}+T_{i_{22}} \dot{y}_{a_{i}}+T_{i_{23}} \dot{z}_{a_{i}} \tag{59}\\
& \dot{z}_{r_{i}}=T_{i_{31}} \dot{x}_{a_{i}}+T_{i_{32}} \dot{y}_{a_{i}}+T_{i_{33}} \dot{z}_{a_{i}} \tag{60}
\end{align*}
$$

and, from equation (46):

$$
\begin{align*}
& \dot{x}_{a_{i}}=\dot{x}_{T}-\omega_{z} r_{y a_{i}}+\omega_{y} r_{z a_{i}} \tag{61}\\
& \dot{y}_{a_{i}}=\dot{y}_{T}+\omega_{z} r_{x a_{i}}-\omega_{x} r_{z a} \tag{62}\\
& \dot{z}_{a_{i}}=\dot{z}_{T}-\omega_{y} r_{x a_{i}}+\omega_{x} r_{y a_{i}} \tag{63}
\end{align*}
$$

6.1 (Continued)

Also, for ${ }^{-}=7,9,11,13,15,17$, the last term in equation (50) becomes:

$$
\begin{align*}
\frac{\partial T}{\partial \dot{Q}_{j}} & =\left(\dot{y}_{r_{i}} \frac{x_{s}}{1_{p_{i}}} \phi_{i}\left(x_{s}\right)+\dot{y}_{e_{i}} \phi_{i}^{2}\left(x_{s}\right)\right) d m_{i} \tag{64}\\
& =m_{q_{i}}\left(\dot{y}_{r_{i}} \frac{l_{c}}{1_{p_{i}}}+\dot{y}_{e_{i}}\right) \tag{65}
\end{align*}
$$

Likewise, for $\mathrm{j}=8,10,12,14,16,18$:

$$
\begin{equation*}
\frac{\partial T}{\partial \dot{Q}_{j}}=m_{q_{i}}\left(\dot{z}_{r_{i}} \frac{l_{c}}{1_{p_{i}}}+\dot{z}_{e_{i}}\right) \tag{66}
\end{equation*}
$$

Differentiating equations $(50),(58),(65)$, and (66) to obtain $\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{\mathrm{j}}}\right)$:
for $\mathrm{j} \leq 6$

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{j}}\right) & =\frac{d}{d t}\left\{\frac{1 / 2}{2} m_{T} \frac{\partial}{\partial \dot{Q}_{j}}\left(\dot{\vec{r}}_{T} \cdot \dot{\vec{r}}_{T}\right)+\frac{1}{2} \frac{\partial}{\partial \dot{Q}_{j}}\left[\vec{\omega}_{T} \cdot\left(\tilde{I}_{T} \cdot \vec{\omega}_{T}\right)\right]\right\} \\
& +m_{p} \sum_{i=1}^{6}\left[\frac{\partial \dot{p}_{p_{i}}}{\partial \dot{Q}_{j}} \ddot{i}_{p_{i}}+\dot{i}_{p_{i}} \frac{d}{d t} \frac{\partial \dot{i}_{p_{i}}}{\partial \dot{Q}_{j}}\right] \\
& +\sum_{i=1}^{6}\left[\frac{1}{T_{p_{i}}^{4}}\left(l_{p_{i}}^{2} \dot{I}_{A_{i}}-2 I_{A} l_{p_{i}} \dot{i}_{p_{i}}\right)\left(\dot{y}_{r_{i}} c_{y_{i j}}+\dot{z}_{r_{i}} c_{z_{i j}}\right)\right. \\
& +{\frac{I}{A_{i}}}_{{ }^{2}}^{p_{i}^{2}}
\end{aligned}
$$

6.1 (Continued)

$$
\begin{align*}
& +\frac{1}{1_{p_{i}^{2}}^{2}}\left(1_{p_{i}} l_{c} \dot{m}_{q_{i}}-m_{q_{i}} l_{c} \dot{1}_{p_{i}}\right)\left(c_{y_{i j}} \dot{y}_{e_{i}}+c_{z_{i j}} \dot{z}_{e_{i}}\right) \tag{67}\\
& \left.+m_{q_{i}} \frac{1_{c}}{l_{p_{i}}}\left(c_{y_{i j}} \ddot{y}_{e_{i}}+c_{z_{i j}} \ddot{z}_{e_{i}}+\dot{c}_{y_{i j}} \dot{y}_{e_{i}}+\dot{c}_{z_{i j}} \dot{z}_{e_{i}}\right)\right]
\end{align*}
$$

for $\mathrm{j}=7,9,11,13,15,17$:

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{j}}\right) & =\dot{m}_{q_{i}}\left(\dot{y}_{r_{i}} \frac{1_{c}}{1_{p_{i}}}+\dot{y}_{e_{i}}\right)+m_{q_{i}}\left(\ddot{y}_{r_{i}} \frac{1_{c}}{1_{p_{i}}}+\ddot{y}_{e_{i}}\right. \tag{68}\\
& \left.=\dot{y}_{r_{i}} \frac{{ }_{c} \dot{i}_{p_{i}}}{1_{p_{i}}^{2}}\right)
\end{align*}
$$

and, for $\mathrm{j}=8,10,12,14,16,18$:

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{i}}\right) & =\dot{m}_{q_{i}}\left(\dot{z}_{r_{i}} \frac{{ }_{c}}{1_{p_{i}}}+\dot{z}_{e_{i}}\right) \\
& +m_{q_{i}}\left(\ddot{z}_{r_{i}} \frac{{ }_{c}}{1_{p_{i}}}+\ddot{z}_{e_{i}}-\dot{z}_{r_{i}} \frac{{ }_{c} \dot{1}_{p_{i}}}{1_{p_{i}}^{2}}\right) \tag{69}
\end{align*}
$$

At this point, it is convenient to redefine several quantities to simplify the notation.

Let: $\left\{\begin{array}{c}\dot{x}_{a_{i}} \\ \dot{y}_{a_{i}} \\ \dot{z}_{a_{\mathbf{i}}}\end{array}\right\} \equiv\left\{\begin{array}{c}\dot{r}_{a_{i 1}} \\ \dot{r}_{a_{i 2}} \\ \dot{r}_{a_{i 3}}\end{array}\right\} \equiv \overrightarrow{\dot{r}_{a_{i}}}$

6.1 (Continued)

also:

$$
\begin{align*}
& c_{y_{i j}} \equiv T_{i_{2 j}} \tag{71}\\
& c_{z_{i j}} \equiv T_{i_{3 j}}
\end{align*}
$$

Then equations (46), (59), and (60) become:

$$
\begin{align*}
& \dot{i}_{p_{i}}=\sum_{k=1}^{3} T_{i_{1 k}} \dot{r}_{\mathrm{a}_{k i}} \tag{72}\\
& \dot{y}_{r_{i}}=\sum_{k=1}^{3} T_{i_{2 k}} \dot{r}_{a_{k i}} \tag{73}\\
& \dot{z}_{r_{i}}=\sum_{k=1}^{3} T_{i_{3 k}} \dot{r}_{a_{k i}} \tag{74}
\end{align*}
$$

Then, for $\mathrm{j}=1,2,3$:

$$
\begin{align*}
& \frac{{ }^{\partial \dot{I}_{p_{i}}}}{{ }_{\partial \dot{Q}_{j}}}=T_{i_{1 j}} \tag{75}\\
& \ddot{i}_{p_{i}}=\sum_{k=1}^{3} \dot{T}_{i_{1 k}} \dot{r}_{a_{i k}}+T_{i_{1 k}} \ddot{r}_{a_{i k}} \tag{76}\\
& \ddot{y}_{r_{i}}=\sum_{k=1}^{3} \dot{T}_{i_{2 k}} \dot{r}_{a_{i k}}+T_{i_{2 k}} \ddot{r}_{a_{i k}} \tag{77}\\
& \ddot{z}_{r_{i}}=\sum_{k=1}^{3} \dot{T}_{i_{3 k}} \dot{r}_{a_{i k}}+T_{i_{3 k}} \ddot{r}_{a_{i k}} \tag{78}
\end{align*}
$$

6.1 (Continued)

Therefore, for $\mathrm{j}=1,2,3$:

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{j}}\right)=\left[j \text { th row of. } m_{T}\left(\ddot{\vec{r}}_{T}+\vec{\omega}_{T} \times \dot{\vec{r}}_{T}\right)\right] \\
& +m_{p} \sum_{i=1}^{6}\left[T_{i_{1 j}} \sum_{k=1}^{3}\left(\dot{T}_{i_{1 k}} \dot{r}_{a_{i k}}+T_{i_{1 k}} \ddot{r}_{a_{i k}}\right)\right. \\
& \left.+\dot{T}_{i} \sum_{1 j}^{3} T_{i k} \dot{r}_{a_{i k}}\right]+\sum_{i=1}^{6}\left\{\frac { 1 } { l _ { p _ { i } } ^ { 3 } } \left(1_{p_{i}} \dot{I}_{A_{i}}\right.\right. \\
& \left.-2 I_{A_{i}} \dot{p}_{p_{i}}\right)\left(T_{i_{2 j}} \sum_{k=1}^{3} T_{i_{2 k}} \dot{r}_{a_{i k}}+T_{i_{3 j}} \sum_{k=1}^{3} T_{i_{3 k}} \dot{r}_{a_{i k}}\right) \\
& +\frac{I_{A_{i}}}{T_{p_{i}}^{2}}\left[T_{i_{2 j}} \sum_{k=1}^{3}\left(\dot{T}_{i_{2 k}} \dot{r}_{a_{i k}}+T_{i_{2 k}} \ddot{r}_{a_{i k}}\right)\right. \\
& +T_{i_{3 j}} \sum_{k=1}^{3}\left(\dot{T}_{i_{3 k}} \dot{r}_{a_{i k}}+T_{i_{3 k}} \ddot{\mathrm{r}}_{\mathrm{a}_{\mathrm{ik}}}\right) \\
& \left.+\dot{\mathrm{T}}_{\mathbf{i}_{2 j}} \sum_{k=1}^{3} \mathrm{~T}_{\mathbf{i}_{2 k}} \dot{\mathrm{r}}_{\mathrm{a}_{\mathrm{ik}}}+\dot{\mathrm{T}}_{\mathrm{i}_{3 j}} \sum_{k=1}^{3} \mathrm{~T}_{\mathbf{i}_{3 k}} \dot{\mathrm{r}}_{\mathrm{a}_{\mathrm{ik}}}\right] \\
& +\frac{l_{c}}{1_{p_{i}^{2}}}\left({ }_{p_{i}} \dot{m}_{q_{i}}-m_{q_{i}} \dot{i}_{p_{i}}\right)\left(T_{i_{2 j}} \dot{y}_{e_{i}}+T_{i_{3 j}} \dot{z}_{e_{i}}\right) \\
& \left.+m_{q_{i}} \frac{l_{c}}{l_{p_{i}}}\left(T_{i_{2 j}} \ddot{y}_{e_{i}}+T_{i_{3 j}} \ddot{z}_{e_{i}}+\dot{T}_{i_{2 j}} \dot{y}_{e_{i}}+\dot{T}_{i_{3 j}} \dot{z}_{e_{i}}\right)\right\} \tag{79}
\end{align*}
$$

The general equations are extremely complex, particularly because of all the centrifugal and coriolis acceleration terms. These terms can be shown
6.1 (Continued)
to be small (less than 0.01 g) for the expected table velocities. Neglecting these terms, equation (79) becomes (for $j=1,2,3$):

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{j}}\right)= & {\left[j \text { th row of } m_{T}\left(\ddot{\vec{r}}_{T}+\vec{\omega}_{T} \times \dot{\vec{r}}_{T}\right)\right] } \\
& +m_{p} \sum_{i=1}^{6} T_{i_{1 j}} \sum_{k=1}^{3} T_{i} \ddot{r}_{a_{i k}} \tag{80}\\
& +\sum_{i=1}^{6} \frac{1_{A_{i}}}{T_{p_{i}^{2}}^{2}}\left(T_{\mathbf{i}_{2 j}} \sum_{k=1}^{3} T_{\mathbf{i}_{2 k}} \ddot{r}_{a_{i k}}+T_{i_{3 j}} \sum_{k=1}^{3} T_{i_{3 k}} \ddot{r}_{a_{i k}}\right) \\
& +\sum_{i=1}^{6} m_{q_{i}} \frac{l_{c}}{1_{p_{i}}}\left(T_{i_{2 j}} \ddot{y}_{e_{i}}+T_{\mathbf{i}_{3 j}} \ddot{z}_{\mathbf{e}_{\mathbf{i}}}\right)
\end{align*}
$$

Likewise for $j=4,5,-6$:

$$
\begin{align*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{j}}\right)= & {\left[\operatorname{row}(j-3) \text { of }\left[\tilde{I}_{T}\right]\left\{\dot{\vec{\omega}}_{T}\right\}+\vec{\omega}_{T} \times\left(\tilde{I}_{T} \cdot \vec{\omega}_{T}\right)\right] } \\
& +m_{p} \sum_{i=1}^{6} \frac{\partial \dot{p}_{p_{i}}}{\partial \dot{Q}_{i}} \ddot{p}_{p_{i}}+\sum_{i=1}^{6} \frac{{ }^{I} A_{i}}{T_{p_{i}}^{2}}\left(\ddot{y}_{r_{i}} c_{y_{i j}}+\ddot{z}_{r_{i}} c_{z_{i j}}\right) \tag{81}\\
& +\sum_{i=1}^{6} m_{q_{i}} \frac{l_{c}}{T_{p_{i}}}\left(c_{y_{i j}} \ddot{y}_{e_{i}}+c_{z_{i j}} \ddot{z}_{e_{i}}\right)
\end{align*}
$$

where:

$$
\begin{align*}
& \frac{\partial \dot{i}_{p_{\mathbf{i}}}}{\partial \dot{Q}_{4}}=-T_{\mathbf{i}_{12}} r_{z a_{\mathbf{i}}}+T_{\mathbf{i}_{13}} r_{y a_{\mathbf{i}}} \equiv \mathrm{C}_{x x_{\mathbf{i}}} \tag{82}\\
& \frac{\partial \dot{i}_{p_{\mathbf{i}}}}{\partial \dot{Q}_{5}}=T_{\mathbf{i}_{11}} r_{z a_{\mathbf{i}}}-T_{\mathbf{i}_{13}} r_{x a_{\mathbf{i}}} \equiv C_{x y_{\mathbf{i}}} \tag{83}
\end{align*}
$$

6.1 (Continued)

$$
\begin{equation*}
\frac{{ }^{\partial \dot{T}_{i}}}{\partial \dot{Q}_{6}}=-T_{i 11} r_{y a_{i}}-T_{i_{12}} r_{x a_{i}} \equiv C_{x z_{i}} \tag{84}
\end{equation*}
$$

Define:

$$
\begin{align*}
& C_{y_{i 4}}=-T_{i_{22}} r_{z a_{i}}+T_{i_{23}} r_{y a_{i}} \equiv C_{y x_{i}} \tag{85}\\
& C_{z_{i 4}}=-T_{i_{32}} r_{z a_{i}}+T_{i_{33}} r_{y a_{i}} \equiv C_{z x_{i}} \tag{86}\\
& C_{y_{i 5}}=T_{i_{21}} r_{z a_{i}}-T_{i_{23}} r_{x a_{i}} \equiv C_{y y_{i}} \tag{87}\\
& C_{y_{i 6}}=-T_{i_{21}} r_{y a_{i}}+T_{i_{22}} r_{x a_{i}} \equiv C_{y z_{i}} \tag{88}
\end{align*}
$$

Then, using equations (72), (73), and (74), equation (81) becomes:

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{j}}\right)=\left[\operatorname{row}(j-3) \text { of }[\tilde{I}]\left\{\dot{\vec{\omega}}_{T}\right\}+\vec{\omega}_{T} \times\left(\tilde{I} \cdot \vec{\omega}_{T}\right)\right] \\
& +m_{p} \sum_{i=1}^{6}\left(\frac{{ }^{2} \dot{p}_{i}}{\partial \dot{Q}_{j}}\right) \sum_{k=1}^{3} T_{i k} \ddot{r}_{a_{i k}} \tag{89}\\
& +\sum_{i=1}^{6} \frac{I_{A_{i}}}{T_{p_{i}}^{2}}\left(C_{y_{i j}} \sum_{k=1}^{3} T_{i_{2 k}} \ddot{r}_{a_{i k}}+C_{z_{i j}} \sum_{k=1}^{3} T_{i} \ddot{\ddot{r}}_{a_{k}}\right) \\
& +\sum_{i=1}^{6} m_{q_{i}} \frac{1_{c}}{1_{p_{i}}}\left(c_{y_{i j}} \ddot{y}_{e_{i}}+c_{z_{i j}} \ddot{z}_{e_{i}}\right)
\end{align*}
$$

Simplifying equation (68), for $j=7,9,11,13,15,17$:

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial Q_{i}}\right) \approx m_{q_{i}}\left(\frac{1_{c}}{1_{p_{i}}} \ddot{y}_{r_{i}}+\ddot{\ddot{y}}_{e_{i}}\right)
$$

6.1 (Continued)

$$
\begin{equation*}
\approx m_{q_{i}} \ddot{y}_{e_{i}}+m_{q_{i}} \frac{l_{c}}{T_{p_{i}}} \sum_{k=1}^{3} T_{i 2 k} \ddot{r}_{a_{i k}} \tag{90}
\end{equation*}
$$

and, simplifying equation (69), for $j=8,10,12,14,16,18$:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{Q}_{j}}\right) \approx m_{q_{i}} \ddot{z}_{e_{i}}+m_{q_{i}} \frac{l_{c}}{{ }_{p_{i}}} \sum_{k=1}^{3} T_{i i_{k k}} \ddot{r}_{a_{i k}} \tag{91}
\end{equation*}
$$

Expanding some of the summations in equations (89), (90), and (91):

$$
\begin{align*}
& \sum_{k=1}^{3} T_{i_{1 k}} \ddot{r}_{a_{i k}}=T_{\mathbf{j}_{11}}\left(\ddot{x}_{T}-\dot{\omega}_{z} r_{y a_{i}}+\dot{\omega}_{y} r_{z a_{i}} \cdot\right) \\
& +T_{i_{12}}\left(\ddot{y}_{T}+\dot{\omega}_{z} r_{x a_{i}}-\dot{\omega}_{x} r_{z a_{i}}\right) \tag{92}\\
& +T_{i_{13}}\left(\ddot{z}_{T}-\dot{\omega}_{y} r_{x a_{i}}+\dot{\omega}_{x} r_{y a_{i}}\right) \\
& \sum_{k=1}^{3} T_{i_{2 k}} \ddot{r}_{a_{i k}}=T_{i_{21}}\left(\ddot{x}_{T}-\dot{\omega}_{z} r_{y a_{i}}+\dot{\omega}_{y} r_{z a_{i}}\right) \\
& +T_{i_{22}}\left(\ddot{y}_{T}+\dot{\omega}_{z} r_{x a_{i}}-\dot{\omega}_{x} r_{z a_{i}}\right) \tag{93}\\
& +T_{i_{23}}\left(\ddot{z}_{T}-\dot{\omega}_{y} r_{x a_{i}}+\dot{\omega}_{x} \dot{r}_{y a_{i}}\right) \\
& \sum_{k=1}^{3} T_{i_{3 k}} \ddot{r}_{a_{i k}}=T_{i_{31}}\left(\ddot{x}_{T}-\dot{\omega}_{z} r_{y a_{i}}+\dot{\omega}_{y} r_{z a_{i}}\right)
\end{align*}
$$

6.1 (Continued)

$$
\begin{align*}
& +T_{i_{32}}\left(\ddot{y}_{T}+\dot{\omega}_{z} r_{x a_{i}}-\dot{\omega}_{x} r_{z a_{i}}\right) \\
& +T_{i_{33}}\left(\ddot{z}_{T}-\dot{\omega}_{y} r_{x a_{i}}+\dot{\omega}_{x} r_{y a_{i}}\right) \tag{94}
\end{align*}
$$

Using the definitions in equations (82) through (88), these equations reduce to:

$$
\begin{align*}
& \sum_{k=1}^{3} T_{i k} \cdot \ddot{r}_{a_{i k}}=T_{i 11} \ddot{x}_{T}+T_{i 12} \ddot{y}_{T}+T_{i_{13}} \ddot{z}_{T}+C_{x x} \dot{\omega}_{x} \\
& +C_{x y} \dot{\omega}_{y}+C_{x z_{i}} \dot{\omega}_{z} \tag{95}\\
& \sum_{k=1}^{3} T_{i_{2 k}} \ddot{r}_{a_{i k}}=T_{i_{21}} \ddot{x}_{T}+T_{i_{22}} \ddot{y}_{T}+T_{i_{23}} \ddot{z}_{T}+C_{y x} \ddot{\omega}_{x} \\
& +C_{y y_{i}} \dot{\omega}_{y}+C_{y z_{i}} \dot{\omega}_{z} \tag{96}\\
& \sum_{k=1}^{3} T_{i_{3 k}} \ddot{r}_{a_{i k}}=T_{i_{31}} \ddot{x}_{T}+T_{i_{32}} \ddot{y}_{T}+T_{i_{33}} \ddot{z}_{T}+C_{z x} \dot{\omega}_{x} \tag{97}\\
& +C_{z y_{i}} \dot{\omega}_{y}+C_{z z} \dot{\omega}_{z}
\end{align*}
$$

The mass matrix shown in upper triangular form shown in Figure 6-1 is obtained by combining equations (95) through (97) and (82) through (88) with equations (80), (89), (90), and (91).
6.2 GENERALIZED FORCES

The generalized forces are obtained by considering the work required to produce a unit displacement for each degree of freedom.

6.2 (Continued)

$$
\begin{equation*}
\delta W_{j}=Q_{j}\left(\delta q_{j}\right) \tag{98}
\end{equation*}
$$

where:

$$
\begin{aligned}
Q_{j} & =\text { Generalized force } \\
\delta q_{j} & =\text { Unit displacement }
\end{aligned}
$$

Let F_{p} be the net piston force along the local x_{s} actuator axis. The work done is then:

$$
\begin{equation*}
\delta W_{i}=F_{p_{i}} x_{s_{i}} \tag{99}
\end{equation*}
$$

But, since:

$$
\left\{\begin{array}{c}
x_{s_{i}} \tag{100}\\
y_{s_{i}} \\
z_{s_{i}}
\end{array}\right\}=\left[T_{i}\right]\left\{\begin{array}{l}
x_{T} \\
y_{T} \\
z_{T}
\end{array}\right\}
$$

then:

$$
\delta W_{\mathbf{i}}=F_{p_{\mathbf{i}}}\left\lfloor\begin{array}{lll}
T_{\mathbf{i}_{11}} & T_{\mathbf{i}_{12}} & T_{\mathbf{i}_{13}} \tag{101}\\
\\
& \begin{array}{l}
x_{T} \\
y_{T} \\
z_{T}
\end{array}
\end{array}\right.
$$

The generalized force for the table translational degrees of freedom are obtained by letting $x_{T}=1, y_{T}=z_{T}=0$ and then $y_{T}=1, x_{T}=z_{T}=0$, etc.

6.2 (Continued)

$$
\left\{\begin{array}{l}
F_{H_{x}} \tag{102}\\
F_{H_{y}} \\
F_{H_{z}}
\end{array}\right\}=\left\{\begin{array}{l}
\sum_{i=1}^{6} F_{p_{i}} \\
T_{i} \\
\sum_{i 11}^{6} F_{p_{i}} \\
T_{i_{12}} \\
\sum_{i=1}^{6} F_{p_{i}} \\
T_{i_{13}}
\end{array}\right\}
$$

The displacements at the table swivel joints due to rotations of the table are:

$$
\left\{\begin{array}{c}
\Delta x_{i} \tag{103}\\
\Delta y_{i} \\
\Delta z_{i}
\end{array}\right\}_{T}=\left[\begin{array}{ccc}
0 & -\Delta \theta_{z} & \Delta \theta_{y} \\
\Delta \theta_{z} & 0 & -\Delta \theta_{x} \\
-\Delta \theta_{y} & \Delta \theta_{x} & 0
\end{array}\right]\left\{\begin{array}{c}
r_{x a_{i}} \\
r_{y a_{i}} \\
r_{z a_{i}}
\end{array}\right\}
$$

For $\Delta \theta_{x}=1, \Delta \theta_{y}=\Delta \theta_{z}=0$:

$$
\left\{\begin{array}{c}
\Delta x_{i} \tag{104}\\
\Delta y_{i} \\
\Delta z_{i}
\end{array}\right\}=\left\{\begin{array}{c}
0 \\
-r_{z a_{i}} \\
r_{y a_{i}}
\end{array}\right\}
$$

For $\Delta \theta_{y}=1,-\Delta \theta_{x}=\Delta \theta_{z}=0$:

$$
\left\{\begin{array}{c}
\Delta x_{i} \tag{105}\\
\Delta y_{i} \\
\Delta z_{i}
\end{array}\right\}_{T}=\left\{\begin{array}{c}
r_{z a_{i}} \\
0 \\
-r_{x a_{i}}
\end{array}\right\}
$$

6.2 (Continued)

For $\Delta \theta_{z}=1, \Delta \theta_{x}=\Delta \theta_{y}=0$:

$$
\left\{\begin{array}{c}
\Delta x_{i} \tag{106}\\
\Delta y_{i} \\
\Delta z_{i}
\end{array}\right\}_{T}=\left\{\begin{array}{c}
-r_{y a_{i}} \\
r_{x a_{i}} \\
0
\end{array}\right\}
$$

Transforming these displacements to the servo actuator coordinate system:

$$
\begin{array}{ll}
\Delta x_{s_{\mathbf{i}}}=-T_{\mathbf{i}_{12}} r_{z a_{\mathbf{i}}}+T_{\mathbf{i}_{13}} r_{y a_{\mathbf{i}}} & \text { for } \Delta \theta_{x}=1 \\
\Delta x_{\mathbf{s}_{\mathbf{i}}}=T_{\mathbf{i}_{11}} r_{z a_{\mathbf{i}}}-T_{\mathbf{i}_{13}} r_{x a_{\mathbf{i}}} & \text { for } \Delta \theta_{\mathbf{y}}=1 \tag{107}\\
\Delta x_{\mathbf{s}_{\mathbf{i}}}=-T_{\mathbf{i}_{11}} r_{y a_{\mathbf{i}}}+T_{\mathbf{i}_{12}} r_{x a_{\mathbf{i}}} & \text { for } \Delta \theta_{z}=1
\end{array}
$$

Then:

$$
\begin{equation*}
\delta W=\sum_{i=1}^{6} F_{p_{i}} \Delta x_{s_{i}} \tag{108}
\end{equation*}
$$

or:

These generalized forces are' combined with the $m_{T}\left(\vec{\omega}_{T} \times \dot{\vec{r}}_{T}\right)$ terms from equation (80), the $\vec{\omega}_{T} \times\left(\tilde{I}_{T} \cdot \vec{\omega}_{T}\right)$ terms from equation (81), the actuator

6.2 (Continued)

damping and stiffness terms and the external forces and moments to obtain the $\{C\}$ matrix of equation (44):

7.0 CALCULATION OF ACTUATOR VELOCITIES AND POSITIONS

Actuator lengths and velocities are calculated from the equations of motion variables for use in the servo loop feedbacks and for the determination of, actuator friction forces.

Actuator velocities are calculated by first determining the velocities of the actuator/table attachment points in table coordinates:

$$
\left\{\begin{array}{c}
\dot{r}_{a_{i_{1}}} \tag{111}\\
\dot{r}_{a_{i_{2}}} \\
\dot{r}_{a_{i_{3}}}
\end{array}\right\}=\left\{\begin{array}{c}
\dot{x}_{T} \\
\dot{y}_{T} \\
\dot{z}_{T}
\end{array}\right\}+\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right] \quad\left\{\begin{array}{c}
r_{x a_{i}} \\
r_{y a_{i}} \\
r_{z a_{i}}
\end{array}\right\}
$$

These velocities are then transformed to actuator coordinates to obtain:

$$
\begin{equation*}
i_{p_{i}}=\sum_{k=1}^{3} T_{i_{1 k}} \dot{r}_{a_{i_{k}}} \tag{112}
\end{equation*}
$$

Actuator lengths are calculated by first obtaining the components of actuator length in the inertial coordinate system.

$$
\left\{\begin{array}{l}
r_{s_{x_{i}}} \tag{113}\\
r_{s_{y_{i}}} \\
r_{s_{z_{i}}}
\end{array}\right\}=\left\{\begin{array}{l}
x_{I} \\
y_{I} \\
z_{I}
\end{array}\right\}+[A]\left\{\begin{array}{l}
r_{x a_{i}} \\
r_{y a_{i}} \\
r_{z a_{i}}
\end{array}\right\}-\left\{\begin{array}{l}
0 \\
y_{f_{i}} \\
z_{f_{i}}
\end{array}\right\}
$$

where $y_{f_{i}}$ and $z_{f_{i}}$ are the inertial coordinates of the floor swivel joints of each actuator.

7.0 (Continued)

Then the actuator lengths are calculated as follows:

$$
\begin{equation*}
I_{p_{i}}=\sqrt{{ }^{r_{s_{x_{i}}}^{2}}+{ }_{r_{s_{y_{i}}}^{2}}+r_{s_{z_{i}}^{2}}} \tag{114}
\end{equation*}
$$

These actuator lengths and velocities are used in the feedback loops in the servo electronics shown in Figure 4-1.

APPENDIX

NOMENCLATURE

Symbol

Description

Transformation matrix from table to inertial coordinates ."Push" and "pull" stroke working areas of actuators Output of the pressure feedback first-order lag filter Output of the pressure feedback high-pass filter Viscous damping coefficient of actuator Column of generalized forces for equations of motion solution

Leakage coefficient across piston seals
Output of the forward loop compensation network Bending modulus of piston rod

External force
Coulomb friction force of actuator
Total hydraulic and friction forces acting on pistons
Net forces on actuator piston
Inertia tensor of the active table
Mass moment of inertia of entire actuator assembly about floor pivot

Mass moment of inertia of cylinder (excluding the mass of the piston) about floor swivel joint
Mass moment of inertia of the piston rod

$\mathrm{I}_{x x}, \mathrm{I}_{y y}$,	Moment and products of inertia
$I_{z z}, I_{x y}$,	. . ${ }^{\text {- }}$
$I_{x z}, I_{y z}$	
k_{e}	Effective lateral stiffness of the actuator
k_{r}	Piston rod stiffness
K_{c}	Valve pressure flow coefficient
K_{f}	Displacement feedback and command gain
K_{g}	Electronics and valve forward loop gain.
K_{pf}	Pressure feedback loop gain
K_{r}	Velocity feedback loop gain
K_{rc}	Velocity command gain
${ }^{1}$	Distance from floor swivel to center line of piston rod seal at end of cylinder
${ }^{1} c_{i}$	Commanded actuator length
$\mathrm{i}_{\mathrm{c}_{i}}$	Commanded actuator velocity
$\ddot{i}_{c_{i}}$	Commanded actuator acceleration
10	Retracted length (between swivel joints) of actuators
$1_{p m}$	Maximum stroke of actuators
${ }^{1} \mathrm{r}$	Length of piston rod
1_{p}	Actuator length
i_{p}	Actuator velocity

Symbol	Description
m_{p}	Actuator acceleration
m_{p}	Effective rigid lateral mass of actuator assembly
m_{t}	Mass of piston rod and piston

Symbol

Description

Velocity bandwidth for coulomb friction
Initial hydraulic volumes of push and pull strokes of fully retracted actuator
"Push" and "pull" hydraulic volumes
Inertial coordinates

Actuator coordinates

Table coordinates
Initial inertial coordinates of table c.g.

Bending displacements of the actuators
Y and Z inertial coordinates of floor swivel joints
Break frequency of first order filter
Break frequency of first order filter
The angle between the inertial z_{I} axis and the projection of the actuator x_{S} axis in the $y_{I}-z_{I}$ plane
Equivalent hydraulic system bulk modulus
Total actuator command signal
Sinusoidal amplitudes of translational commands for table c.g. and of table Euler angles
$\Delta Z_{I}, \Delta \theta$,
$\Delta \psi, \Delta \phi$
θ, ψ, ϕ
${ }^{\theta} \mathrm{A}$

Euler angles
The angle between the $y_{I}-z_{I} p l a n e$ and the actuator x_{s} axis

Symbol
$\theta_{0}, \psi_{0}, \phi_{0}$
${ }^{\omega} s$
${ }^{\omega} v$
$\omega_{x}, \omega_{y}, \omega_{z}$

Description
Initial Euler angles of the table coordinate system with respect to the inertial system

Actuator bending mode shape
Damping constant for actuator bending
Damping constant of second order filter on displacement feedback

Damping constant of valve dynamics
Break frequencies of first order filters

Displacement command signal frequency

Actuator bending frequency

Frequency of sinusoidal external forces and moments

Break frequencies of pressure feedback filters
Frequency of second order filter on displacement feedback

Frequency of valve dynamics
Table rotational rates

