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ABSTRACT

Differential equations and boundary conditions for a rotor blade in
forward flight, with subsonic or transonic tip Mach number, are derived.
A variety of limiting flow regimes determined by different limits involv-
ing blade thickness ratio; aspect ratio, advance ratio and maximum tip
Mach nﬁi‘nber is discussed. The tfansonic problem is discussed in some
detail, and in particular the conditions that make this problem quasi-steady
or essentially unsteady are determined. Asympt?)tic forms; of equations and
boundary conditions that are valid in an appropriately scaled region of the
tip and an azimuthal sector on the advancing side are derived. These equa-
tions are then put in a form that is valid from the blade tip inboard through

the strip theory region.
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SYMBOLS

free stream velocity relative to blade fixed coordinates
sound speed

non-dimensional blade geometry in blade attached co-
ordinate system

blade geometry relative to an inertial coordinate sys-
tem ’

dimensional blade geometry in blade attached coordinate
system

unit vectors along x and y axes
blade chord

reference Mach number

tip Mach number on advancing side
static pressure

ﬁosition vector

blade radius |

distance in chords measured toward center of rotation
from blade tip

span coordinate for transonic problefn
time -

scaled time variable for transonic problem
forward velocity of rotor

coordinates along the blade chord, span and normal
to the plane of rotation

ratio of specific heats

scale parameter for time in transonic problém
inverse of blade aspect ratio

advance ratio

fhicknes s ratio
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(4 velocity potential
w . reduced frequency

Q rotational velocity

A primé refers to a fixed (inertial) coordinate system,
Subscript o refers to conditions in undisturbed air.

A bar denotes a vector.
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UNSTEADY SUBSONIC AND TRANSONIC POTEN'].TIAL.FLOW
OVER HELICOPTER ROTOR BLADES

I. INTRODUCTION

Helicoi)ter rotor blades that could sﬁpport a nearly shock free tran-
sonic flow in the advancing blade tip region would improve helicopter aero-
dynamic performance anci would reduce noise produced by the blade. The -

design of better ﬂigh speed rotor blades has so far been guided mostly by
qualitative consideration of how blade geomé}cr;)r influences the flow in the
complex aerodynamic environment of the tip region, Wﬁile such considera-
tions are'undoubtedly useful, they necessarily involve some guessing of héw
blade geometry influences flow behavior, particularly at high speeds; -
Verificatibn of a particular design must rely on expensive (and time con-
suming) wind tunnel and flight testing. It is therefore clear that blade de-
sign (as in any other design problem) would benefit f'rom' analytice;l and
numerical methods that would predict the détails of a transonic flow field

in the tip region for a given blade geometry and specified flight pérame-
ters. Calcul.ation of the nonlinear, three-dimensional and poséibly un- |
steady flow near a rotor tip is, of course, only a first step toward better
'design; The problem here is thét while there have been recent advances

in thé analytical and numerical methods that will generate shock-free two-
dimensional airfoil sections,: there are no such methods availa:bie for
three-dimensional flows.. There is also no indication yet that a shock-

frée two-dimensional section would show better performance in a three-
dimensional environment than any other standafd airfoil section, although
it may be that the two-dimensional-designs do have advanta\ées over stan-

dard sections in a three-dimensional application.



Preliminary calculations of transonic pressure distributions on
rotor blades were made by _Caradbnna and Isom (1). They considered
what is probably the simplest case, a non-lifting, hovering rectangular
blade with 6% thick biconvéx sections operating in the lower transonic
regime, The calculations show how direct numerical methods suitable for
two-dimensional problems can be extended in a fairly straightforward way
to the three-dimensional problem of steady transonic flow near a rotor
tip.

The analysis of reference (1) is restricted to a rotor with zero ad-
vance ratio, so that the flow is steady in a coordinate system attached to
the blade. In this report we shall consider the more complicated problem
of a rotor with non-zero advance ratio. The primary objective is to ob-
tain suitably scaléd differential equations that describe transonic flow over
the advancing rotor tip, and to show how possible flow regimes depend on
various limiting cases of scale parameters, In particular, itis import;.nt

"worst'" case, which is a three-dimen-

to isolate what might be called the
sional, nonlinear and unsteady (as opposed to quasi-steady) flqw regime on
the advancing side of the blade.

The hover problem of reference (1) is c.haractelzized by three para-
meters: blade thickness ratio 7, aspect ratio AR = € -1 and tip Mach
number M = QR/ c (Q is angular velocity, R is blade radius and ¢ bthe
speed of sound in undisturbed air). It was shown in reference (1) that the ~
hover problem is in some ways similar to the problem of flow over a fixed
wing, and the analysis was guided by this (sometimes rough) analogy. The
'advancing rotor prpblem involves one additional parameter, thg advance

ratio u , as well as the time variable t. The reference Mach number is

then the maximum free-stream Mach number on the advancing side,



m = —M(l + ). Our objective is to determine how 7, €, [l and u combine
as coefficients in the governing differential equations and boundary condi-
tiohs‘, and then to consider asymptotic forms of these equations, with 7
and € small, 7l either subsonic or transonic, and u either order one or
small. The asymptotic resulj:s always simplify unwieldly equations, and,
more importantly, they serve to put éqﬁations into a form thaf is subject
to useful physical interpretation. It will be noted, however, that pursuit
of a variety of limiting cases may ?roduce distinctions lthat are rather fine,
and in some insta.n~ces too fine, For example, we consider three limiting
values of advance ratios a high advance ratio problem where u is of theA |

/3)3

order of 0, 4 and fixed; a case for which u = O('r2 and one for which
pu = O(7), with 70 in each case. Each of these limiting cases.resﬁlts in a
distinct set of governing equations and a distinguished flow physics. How-
. ever, when the blade thicknessn ratio 7 is about 0, 1, then u = 0.4, or

7 =_' 0(72/3) or u = O(7) are not widely different values for advance rétio.
Nevertheless, the usual scaling procedure foll_oned here is always based
on taking appropriate limits (7 -0, € >0, etc.), and whether the resulting

equations describe sharply distinguished physical regimes encountered in

practice must depend on detailed numerical calculations and experiments.

I FORMULATION OF PROBLEMS

Consider a two-blade rotor advancing at a constant velocity V and
rotating at angular velocity Eperpendicular to thé direction of acivance.
For our purposes, the number of blades is not important. Attention is
restricted to the outer few chords of the advancing.blade. In the near
flow field,. close to the advan;:ing tip region, the fléw is not influenced (in

a first approximation) by other portions of the blade system. Boundary



conditions on the blade are formulated for arbitrary planform, although
special care may be required if the planform has some unusual shape, as '
for one with a kink. We shall not consider the lifting problem because too
little is known about rotor wake properties, this being particularly true
for high speed rotors, It will also be assumed that the flow is inviscid

and isentropic. A velocity potential therefore exists for the flow déscribed
in an inertial coordinate system. We takAe this sy.rstem to be one a.t rest
relative to the undisturbed air.

The potential equation for ¢ is an inertial reference system is

9 2 1 2 2 2
b+ 53 VO + VO V5 (Vo) = V@ » (1)

where ¢ is the local adiabatic sound speed, Bernoulli's equation, relating

"¢ and @ is,
2

2.
1 2 c _ o
/¢t + 3 (Vo)™ + Fl = 7a1 (2)

where C'oo is the sound speed in the undisturbed gas.
In a fixed Cartesian (x, y, z) coordinate system, let the blade geo-
metry and location be described by F(x,y, z,t) = 0. The condition of flow

tangency at the blade surface is

Ft+V(P°VF=0, A - (3)
and we require that ('Dt and V¢ go to zero at infinity.

In all cases of interest here (including nonlinear problems), the
third term on the left hand side of equation (1), the cubic term, is negli- ,

gible. That term will be neglected in all further discussion,



It is convenient to feformulate the i)roble?;'x in aAcoordinate syst'em
attached to the blade, with the origin at the center of rotation. -The velo-
city of advance v will be taken in tﬁe‘ direction of the negative x-axis of
the fixed refefence frame. Coordinaté z for both fixed and moving frames
is normal to the plane of rotation, and the angular velocity of rotation Q
poir;ts in the positive z-direction, In the rotating frame, the blade-attached
x-axis is in the chordwise direction and the y-axis is along th<'a blade span.

We now transform equations (1)-(3) and rewrite them in a coordinate
system attached to the blade., For a moment it w-il.1 be necessary to distin-
guish between time and space coordinates of the inertial frame and tin;e and
' spéce coordinates of the_ moving frame, " Let _primed va_riables refer to the
inertial system, and unprimed variables refer to the blade-attached system.
Let ;' = (x| s yl s z' )and T = (x,v, z) be position vectors in these two sys-

tems., The two reference systems are related by' '

Vt+R(t)T,

r =
1
t =t
where R(t) is the rotation matrix .
cos Qt - sin Qt 0
R(t) =| sin Qt cos Qt 0
0 _ 0 1

The inverse transformation is

T

)T -r M)V e

. ! . ‘ ~
t=t. ’



where R-'1 is the inverse of R. For the purposes of equations (1)-(3), the
gradient operation in the inertial system may be replaced by the gradient
operation in the moving system. Time differentiation in the inertial system

transforms as

- 0 x, :
0] oQ @ - :
° iS5t to '1 gx ' (4)
ot gt i

with a sum over the i-subscript. It is easily shown that

ax. . _ . - 1 ._ _ -_— —
—t = - [RO)T], -[RT() V]. = - (QxT + V),
9t ' 1 1 1

where R(0) is dR/ dt evaluated att = 0. In a more convenient notation,

equation (4) becomes

@
S
I
@
AS

= -(Q@xr+ V). Vo ’ - (5)

QO
-+

The velocity V in equation (5) must be expressed as it appears to

— 1
an observer in the moving frame, In the fixed frame, = -i V, In the

moving frame,

V=-iVecosQt+jVsinQit.

An observer in the moving frame sees a free-stream velocity -2 x r + V).

Let
a=-Qxr+V),
Then equation (5) is

EY
1

8¢  — :
= = + a . V(p,
st Ot



- To transform equations (1)-(3) to the moving frame, we first note that a

_second application of equation (5) gives

¢ =¢&+E-vv¢-2+zz.v%-ﬁxZ-V¢-%-V¢.
[ . | .

t¢

The second term in equation (1) is

2 (ve?-

+3. V) (Vo)l
ot -

i)
(3¢

2 Vo . V<pt+2€- vV Vo - Vo

The right hand side of equation (1), c‘2 VZ @, requires c2 from Bernoulli's
équa.tion (2), and c2 must be expressed in the moving frame. Bernoulli's

equation transforms to
2 _ 2 — 1 2
¢’ = ¢ - (v -1)[¢t+a- V<P+E(V(P) 1.
The complete equation for ¢ written in the moving frame is now
Ppta. V. 3+232. V9 -0xa. V9-V . Vg
+2Ve. Vo +23a- VY- Vo
={Z -t -1P +3- VO3 V0 Vo (6)
Equation (6) is the exact potential equation written in a coordinate system
that translates at constant velocity V and that rotates with constant angu-
lar velocity @ . As far as equation (6) is concerned, v and Q are arbitrary

vectors as they appear in the definitiona = -Qxr - V, Later, ¥ and ©

will be spécified a s vectors appropriate for a rotating blade problem,

-



It is very useful to "sirnplify equation (6) by non-dimensionalizing
and scaling it in a way that is appropriate for the particular problems at
hand., This simplification requires a choice of suitable length and time
scales, and a further specification of the relative magnitudfes of all non-
dimensional parameters that enter the problem. The choice of léngth and
time scales will in turn depend on what part of the flow field one is'inter-
ested in. For the rotor problem, there are several.distinguished flow

regions, Some of their features are listed here,

Region 1. This is the region near the blade and sufficiently far inboard
‘from the tip that tip effects are not important, It is the strip thebry or
blade element region. If the blade tip Mach nunlbef is subsonic or tran-
sonic, equation (6) in Region 1 will become linear and quasi-steady; that
is

, all nonlinear terms and time derivatives may be neglected. In addition,_

the flow in this region becomes approximately two-dimensional, Span
coordiné.te and time appear only as parameters in the problem. The length

scale is blade chord and time scale is Q° 1.

.

Region 2. This is the region near the blade surface and near the blade tip,
If the blade tip'Mach number is subsonic (not transonic), equation (6) will
be linear, quasi-steady and three-dimensional. The length scale is dis-
tance ip chords measured from the tip and time scale is 2~ 1. In a first.
approximation, the blade will appear to be semi-infinite as viewed from

the tip. When a quantity (e.é @) is calculated in the tip region, then, as

the calculation marches inboard from the tip, the results must match those
obtained in Region 1,

- If the tip Mach number is transonic, analysis of equation (6) in the

tip region is more complicated. The equation will be nonlinear-in spatiall



derivatives, and may be quasi~steady or essentially unsteady, depending

on certain limiting cases to be discussed later.

Region 3. This region will be called the first far field region. The char-
acteristic length scale is blade span, For subsonic flow, an ob'sgrver' in
" this region would view the blade as a line rotating about its mid-point,
Disturbances measured in this region would be considered as caused by .
point singularities continuously distributed along the blade line. Equation
- (6) becomes linear, three-dimensional and unsteady. for both subsonic and
‘transonic Mach numbers. The inner bomﬁdary of this region is the éom-

bined flow of Regions 1 and 2; the outer boundary is the field at infinity.

Region 4, This is the distant far field, defined by letting x2 + yz + z2 > 0.
It is the region appropriate for far field acoustic calculations, At any point
in this far field, the local flow is described by retaining all linear terms in
" equation (1), Time scale is Q-l and distance is a characteristic wavelength
27c/. |
We are primarily interested in Region 2, the tip region. A prelim-
inary simplification of equation (6) will now be made, and it can be verified
later that terms dropped here are negligible. All first order derivatives on
the 1effc-hand side of equation (6) may be neglected. The term 2 V¢ - V(Pt
. may be neglected compargd to the term 2 a * V(Pt because 2 is essentially
a first order term and V@ is the perturbation velocity, On the right hand
- side, the terms (Pt .and —él- (V(D)Z in the square bracket that multiplies Vz(ﬂ may

be neglected, With these observations, the basic equation (6) becomes
Ppta- VVO. 3+23- VP +23. VVQ- VO

=lel- - DE- vV | (7)



The condition that the flow be tangent to the blade surface is easily
expressed in the moving coordinate system, where the blade surface ap-
pears stationary, Let blade geometry be defined by z = g(x,y). Then the

blade boundary condition is
¢ = (-Qxr-V+VQ- Vg,

Z

evaluated on z = g(x,y). The term V¢ is negligible, and we use the mean

surface appréximation to get

¢ (x,y,0,t)= - @xt+7V)- Vg (8)

Scaling of equations (7) and (8) requires that they be written out in
scalar form, - Using the definition of a, and rearranging some terms,

equation (7) expands into the following lengthy form:
q)tt + 2y + V cos Qt) (th - 2(2x + V sin Qt)’(pyt
2 . 2
= [Coo - Qy + V cos Qt)” - (y+1) (Qy + V cos Qt) (Px
- {y -1) €@x + V sin Qt) (Py] ¢xx
+[2(@x + V sin Qt) 2y + V cos Qt) + 2(2x + V sin Qt) @

- 2(Q \' 2
2(Qy + V cos t)(Py] qaxy
+ [Cozo - @x + V sin Q’c)z -ty - 1) (@x+ Vcos@t) ¥
1) (@ V sin Qt
+(y+ 1) @x + V sin )goy]<pw

-2 (QY + V sin Qt) (Pz (sz + Z(Qx + V sin Qt) (PZ (sz

+ [Cozo_ (v-1)(@ + V cos@6)9, +(y-1)(2, + V sint)]0__ (9)

10



The expanded form of the boundary condition, equation (8), is

QDZ(x,y,O,t) = (R2y+ Vcos 2t) g, - x+VsinQt) gy' (10)

Equation (9) and (10), with a suitable boundary condition at infinity, des-
cribe.the é.erodynamics of the nonlifting rotor blade. These equations will
be further simplified by scaling them. This scaling will be done in the next
section whére the two most important problems are considered, the blade
with subsonic advancing tip Mach number, and then the blade with transonic

Mach number on the advancing tip.

III. SCALED EQUATIONS

1. The subsonic problem

We first consider the problem of a blade with ad\}ancing tip Mach
number that is subsonic.

The introduction of new symbols for nondimensional scaled variables
can be avoided by a convenient notation, The combination 2t in equation (9)
is simplY replac}:ed by t, with the understanding that from now on t stands
for Qt.-‘ Similarly, let £ be the blade chord, and use the substitution
x/ # - x, where the x on the left is dimensional and on the right non-

dimensional. The complete set of time and spatial substitutions is then

Qt - t
x/£ - X
, (11)
y/R> y
z/ 8~ =z
A reference; Mach number will be taken as
M=QR/c (12)

11



and advance ratio

u=V/QR. S (13)

The blade has reference thickness ratio 7. Using the substifut_ion scheme

(11), the scaled potential for the subsonic problem is .

¢ .
Tarz % (14)

The blade has aspéc_t ratio AR

]

R/ 2. Define the parameter €

m
n

AR"L- g/R, (15)

which is generally a small number for a rotor blade. We now use the substi-
tutivons (11) - (15) in the differential equation (9). All nonlinear t-erms may be V

neglected in the subsonic tip problem, The scaled differential equation is

therefore

2

2 2 o2 2 o
‘M%e @tt+2M€(y+ucost)(th—2M€ (€x+u81n,t)¢yt

_ 2 2. 2 . :
=[1-M%(y + u cos t) 19+ 2M7€(ex + pusint) (y + p cos t)(pxy

+ € 2[ i—Mz(e X + u sin t)vz](ﬂyy + ﬁozz. (16)

A properly posed problem for the tip region requires some y-derivatives in
the differential equation, The scale length for this region is distance s in

chords measured from the tip toward the center of rotation:
s= X, y=1l-€s Can

Equation (16) becomes -

12



2 2 2 2 .
M%e (,Dtt+2M €(l-€ s + u cos t)‘th+2M €(§x+u s1nt)€9St

=,[1—M2(1-€ s + u cos t)z]ﬁﬂxx - 2M2(€x + u sin t) (1-€ s + u cos t)(ﬂxs

-

- 2 2
+[1-M%€ex + pu sin t) ](pss‘+(pzz' (18)
Keep M, u, x, s, z and t fixed. Lete€ -~ 0, Equation (18) becomes
[1-M2(1 + u cos t)2]<,0 - ZM2 usint(l+ ucos t)®
xx H XS
22 .2 '
+ (1-M™u” sin t)(PSS + (pzz =0 (19)

In the boundary condition, equation (10), let blade geometry be fur-

ther specified (in dimensional form) by
z=glxy) =2 71, %)
wherg 7 is a reference thickness ratio, Nondimensional scaled geometry is
z = 71i(x,v).
Equation (10) transforms to»
(PZ(X, v,0,t)= (y +u cos .t)fx -€(ex + u sin t)fy. | (20)
Replacing y by l1-€ s and letting € - 04gives

Qaz(x, 1,0,t)= (1 + u cos t) fx (x,1) + usint fs(x,- 1) (21)

The differential equation (19) and boundary condition (21) describe the tip
flow for all values of time, that is, for all azimuthal angles around the rotor
disk. The scaled problem is also quasi-steady, with time appearing only as

a paArameter. Note also that the problem posed by equations (19) and (21) is

13



exactly the same_as the problem of the flow in the tip region of a fixed yawed
wing in subsonic motion, moving with forward velocity V = -i' (R + V cos Qt)
+ j' Vsinf2t relative to the undisturbed air.

It has been assumed so far that the advance ratio u is not small. If
u were sniall, say of the order of thickness ratio 7, then it would be incon-
sistent to retain terms of order u and smaller in equations (19) and (21). If
p = O(7), then all terms involving u must be neglected, and time no longer
enters the problem at all: for small u, the flow in the tip region of an ad-
vancing rotor with subso4nic tip Mach number becomes equivalent to the flova;
in tip region of an unyawed fixed wing moving at constant velocity —\7=-i' v
relative to undisturbed air.

While equations (19) and (21) describe the tip flow for the subsonic
rotor, they are not convenient for use in numerical calculations. A single
set of equations that describes the flow.in the tip region, and which remains
valid inboard from the tip through the strip theory reAgion, is found by in-

spection of equations (19) and (21) to be -

2 2 2 . . _
[1-M“(y + u cos t) ](PXX + 3M%€ u sin t(1+ u cos t)q)xy

2 22 .2 -
+€”[1 - M°u” sin t]¢yy+‘ﬂzz= 0 (22)

‘PZ(X,Y, 0,t) = (y + u cos t)fX -eusint fY .

2. The subsonic far field

In numerical calculations, some condition must be imposed on a spa-
" tial boundary that is, in some sense, far from the blade. There are two
possibilities, The first is to set @ and its derivatives equal to zero on

a boundary that is some number of blade chords distant from the blade itself.

14



The second alternative is to derive an asymptotic far field representation of
the solutic;n, and impose this representation on a boundary that is again suit-
“ably far from the blade. This second appro.a_ch has been used by Murman and
Cole (2) for a two-dimensional airfoil in transonic potential flow, and extended
by Klunker (3) to the case of a three-dimensional fixed wing in transonic flow.
For the subsonic rotor problem, the asymptotic far field is most easily de-
rived in an inertial coordinate system, where the potential satisfies

(ptt = c2 Vz @ . The far field is then represeﬁted by the radiative part of a
potential field that is caused by a system of retarded doublets continuously
distributed along the span of the wing. The strength of the doublets will vary
alqng the span, and also with time for an advancing rotor. When this repre-
sentation has been found in the inertial system, it can be transformed to the
moving frame and ﬁsed as an outer boundary condition for equations (19) and
(21). . Itis nbt clear, however, whether the additional labor involved in find-
ing and using an accurate far field representation is worth the effort. Numeri-
cal experiments with two- and three-dimensional fixed wings indicate that

simply setting ¢ = 0 on the outer numerical boundary leads to sufficiently

accurate results,

3, The transonic probleni

The starting point for the nonlinear transonic problem is equation (7),
and its exi)anded form (9). We are again guided by the close analogy between
the flow near the tip of the rotor and the corresponding flow near the tip of a
fixed wing., The preliminary scaling of svpatial coordinates is exactly the
same as for the fixed wing problem. Thus, in equation (9) we make substi-

tutions

15



Qt - t
x/l - X
v/ R -y
71/3z/l — z

o/ 3R ©

After deleting some terms by inspection from equation (9), we get

M2€2 2 2

2 € - 2M"e - .
@Y. +2M (y +ucos t)@_, - (ex + u sin t)¢@
273 it 273 “xt " T 273 vt

2 2
1-M®(y+ t 2
= _ (:;/"‘37‘:05 L. (y+1) M™(y + u cos t)(px] (pxx
L + 00+ 0 40 (23)
:2.7.3_ x + u sin vy + u cos xy TW} vy zZz .

The blade boundary condition is
®_(x,7,0,t) = (y + u cos t)f, - €lex + p sin t)f . (24)

In contrast to the subsonic problem, some assumption must now be
made about the relative orders of magnitude of € = AR~ 1 and 7. A typical
blade has thickness ratio of the order . 06 to 0. 1 near the tip, and aspéct
ratio of order 20 to (in an extreme case) ‘10, Therefore we assume the
limits 7 —0, € =0 and7/€ = O(1). We first assume that the advance ratio
is of order 0.3 to 0.4 and is held fixed when any limits are taken,

When the flow is transonic only on the advancing side of the rotor
disk, there is some finite azimuthal angle measured about t (or Qt) = 0
within which the flow is transonic and outside of which the flow should be-

come subsonic, It is therefore necessary to scale time in a suitable way.’

16



Also, Qhen the flow is transonic there is some characteristic region, mea-
sured in chords, near the tip when transonic conditions exist and inboard of
which the flow becomes subsonic and follows strip'theory. It is »tlherefore

also necessary to appropriately scale the span coordinate y to obtain a pro-
perly posed boundary value problem in the tip region. Following Reference

(1), we introduce a new span variable:-

S=71/3 (—I;ﬂ, Y=1-TT€§-S ) (25)

Introduce a time scale parameter 6§ by
t=45 T, . . - (26)

with & to be determined. Use of equations (25) and (26) in (23) gives

2 2 2
M~ € 2M"e €
e, + a- S+ u cos 6T)¢
727362 TT 72/36 71/3 xT |

2 _
M .
+ 2 ;Tﬁ (€ex + u sin BT)(PST

2 € 2
1- M~(1- S+ ucos$T)
t173_ 4

2 €
=[ 72/3 - (y+1)M (1-,7.?3 S+u cos GT)(PX](PXX
- -2M2 (ex + u sin 6 T) (1 S+« 8§T) </’v
71'7 3 H - 717 3 u cos xS-
ot (PSS + (pzz' ‘ | @7)

The boundary condition is

1/

€ _ € _ 3 .
(Pz(x, 1- W—:a— S, 0, 6T)= (1 - 77? S + u cos liT)fX + 7/ T (ex+tu s1n6t)fs.

The maximum Mach number_ of the free strearﬁ reiative to the blade occurs

17



when T =0, and is . M= M( + ). As for a fixed wing, we assume
a- mz) 7-2/3 = O(1). Consider first the coefficient of Q’XX in equation (27),

and in pé.rticular consider the part

’ 2 € 2
1-M7(1- S+ ucoséT
( 73 g )_ o 1= M2+ )
2/3 72f3

T

+ aM2(4u )§ S

2 2012
2M € M 2
+7—72 3(1+u--7—71 3S)u (L - cos §T) - 2 5 (1 - cos 8T)

2

€ 2
+ m S (28)

Let Sand T be O(1), lete —0, 7—0, €/ 7= 0(1), (I - mz)/'T?/3 = O(1), and

for the moment assume also § =0 as 71— 0. Equation (28) becomes

2 €
1-M(1-—7-T‘13S+ucos<ST) 1_”22 ) .
~ +2M°(1 +u)==5
2/3 2/3 T
T T
2 (29)

+M2 L+ p) 52 T
2/3

The second part of the square bracket that multiplies (pxx becomes, in the .
above limit and with x = 0(1), (y +1) M2(1 + u)¢’x, which provides the usual.
nonlinearity, We assume this term is O(1).

The magnitude of the last term in equation (29) is determined by the

limiting value of 6 T 1/'3, with both §, 7—0. Examine the coefficient of‘(ﬂxs

in equation (27) in the above limits. The coefficient of (sz becomes
- 2M2u6 7_1/3 (1+u) T.

If § 7-1/3 becomes unbounde-d as 7 —0, the (PxS and (pxx terms would dominate

18



all other terms in equation (27), and the scaling procedﬁre followed so far

1/3

would be incorrect, Alternatively, if § 7 — 0 as 7—0, inspection of
equation (27) shows that the (pr term alone dominates, leading to another
useless result, The conclusion is that 6§ should be chosen so that § 'r-l/ 3:0(1)

as 7— 0, and we therefore take

Combining these; results, the asymptotic form of equation (27), valid in the

tip region on thé advancing side, is
oMZ(1 + ) _[1-7/12 +2M20 + ) €5+ M2+ p) u T2
BIT VT = _TW? k)7 Kip

2
-t MmO @

\ ‘ ,
~2M°u 1+ u) T (sz + ¢SS + ¢zz’ (30)

while the blade boundary condition is
¢, (x, 1, 0, 0)= (1+pu)f. (31)

The origihal choice of the relative order of magnitude of € and 7
was based on the observation that € = O(7) for a typical rotor blade. How-
ever, it now emerges from equation (27) that, analyti\cally, a necéssary con-
dition for the flow to be transonic and nonlinear is that precisely this relation -
between € and T shqulci hold. v ‘

The tran:;onic problem defined by equations (30) and (31) differs from
the subsonic problem in two essential respects: the transonic problem is |

nonlinear (in the usual way, and as is to be expected), and it is essentially
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an unsteady problem with the coefficient of QXT =- O(1). Thus the simplifying
feature of quasi-steady flow does not appear. This latter result naturally
complicates numerical calculations because solutions must be obtained in a
four-dimensional (x, vy, z, t) space. The term in (pTT’ howeéver, again disap-
pears. The hypersurface T = constant (or t = constant) is therefore charac-
teristic (the necessary and sufficient condition for T = constant to be charac-
teristic is that the term in quT not appear in the differential equation).
Notice that the tip flow is transonic, unstéady and nonlinear over a

1/3

sector of the 1.'otor disk of yo'rder t{or Qt)~ 777, with't measured about t= 0,
If 7= 0.1, the azimuthal extent of the transonic regiloﬁ is about 540, or 27°
either sice of t = 0.

While equations (30) and (31) are a first approximation to the flow in
the tip region, they are not conveniént for numerical calculations, Following

the same procedure that was used for the subsonic problem, we retain only

the appropri‘a-te terms in equations (23) and (24) and find

2 2
2M? g (1 +u cos 1), = FEMOPHLCOS B L (i nu cos 119, ] 7,
T _ T ’

+ 2M2€ pusint(l+pcos t).  + 62 ¢ +9
727 3 XY 727 3 yy zz’

?,= (y +ucos t)f_ on z= 0. .

These two equations describe the flow in the transonic tip region and remain

valid inboard through the subsonic sti-ip theory region,

4. Reduced frequency

A fixed wing with chord £ moving at constant velocity V and oscil-

lating with angular frequency Q has associated with it a nondimensional re-
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duced frequency w = Q2/V, This parameter is a measure of the number of
oscillations the wing goes through as a fluid particle goes from ieading to
trailing edge in its mean motion. Unsteady flow is generally characterized
by large w an'd-quasi-steady flow by small w. Usually v is multiplied by'
some other parameter or paraméters in the governing differe;nﬁal equation

. and boundary condition, and appropriate limits must be taken to specify what
is meant by large or small w., In the rotor problem, a reduced frequency in
precisely the form Q¢/ V does not'app>ear, but a similar parameter can be
interpreted as a reduced frequency. The reference velocity near the tip on
the advancing side is QR + V. The reference transit time of a particle in its
4rn'otion from leading edge to trailing edge is £(QR + V)~ 1. The number of

radians traversed by the tip in this time is

~

N S
WEgR s v - Y

2/R

1+p ?

or

e
. “1l4+u

This parameter may be defined as the reduced frequency for an advancing.
rotor. Since u is never large, the reduced frequency is effectively the in;
verse of the ‘blade_aspect ratio €, Reference to the basic differential equa-
tion (23) indicates that € does indeed play the role of reduced‘ frequency

wherever it multiplies time derivatives.

5., ‘The transonic far field
The specification of a far field boundary condition in the transonic
problem is considerably more complicated than for the subsonic problem.

This is particularly true if an asymptotic representation more accurate than
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@ =0 is to be prescribed on a boundary some chordsv distant from the blade.
If a distant far field solution based on the limit x2 + y2 + z2 ~— o0 is required,
_ then finding such a solution is equivalent to finding the radiative part of the
solution at infinity, and getting this solution means solving the acoustic prob-
lem for the rotor. One method for analyzing the acoustic far field for a body
in transonic motion has been described by Ffowcs Williams and Hawkings (4),
but it has not yet been applied to rotor problems. The method is rather com-
plicated and involves the near field transonic solution in an integral repre-
sentation of the far field. The essential difficulty here is that aﬁ element of
blade surface in transonic motion causes a disturbance that is not compact,
and the far field of the disturbance cannot be represented as a simple point
multipole, as it could be for subsonic motion. These remarks indicate that
without a much deeper analysis, there is no alternative, at the present time,

to using the condition ¢ = 0 at a far field boundary in numerical calculations.

6. The transonic problem with small advance ratio

It has already been noted that for a subsonic blade at moderate ad-
vance ratio the flow is quasi-steady and linear; and when advance ratio is
small, time does not enter the problem at all: if, say, u = O(1), then the
effect of forward motion becomes a second order effect, and the first ap-
proximation to the flow is simply the flow over a hovering blade.

We now consider the transonic problem for small advance ratio and
determine the appropriaté equations in ihe. limit y — 0,

Refer again to the basic differential equation (23) and consider the

first term in the square bracket that multiplies @



2 € 2
1-M (1-—7— S+ ucos §T)
1- M2(y+y cos t)” 'T1 3
72/3 B 7_2/3

2 2

1-M“(1+ 2 €
-—;217—311)— + 2M%(Ltu) = S

2 2. 9
oM M
+573 (L4 - 7176? Shu(l-cos §T) - 573 (l-cos 6T)2

‘ 62
+717—3 S. | (32)

We first consider the case for whichy — 0, u = 0(72/3). Set the
time scale factor 6 = 1 in equation (32), and revertto 6T =t. Let S = 0(1),
t=0(1), €/7= O(1), u-= 0(72/3), € - 0, T— 6, u— 0. The asymptotic

form of equation (32) is

2 2 ‘ 2 .
1-M"(t+y cos t)™  1-M" 2 2 €
273 273 2M 72173 veMie s

‘ 2
+ 2M (1-cos t)
. 725 3 -

Time derivatives become negligible, and the asymptotic forms of the differ-

ential equation (23) and boundary condition (24) are -

2
1-M 2 u 2 € 2 2
[77—3- - 2M ?7—5 + 2M p S +2M ;2977 (I-cos t) - (y+1)M (Px](P ,

0,

1

+ ¢SS + <Pzz

1l
Hh
.

?,(x, 1,0, 1)
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The cross derivative ¢ is also negligible in this limit, its coefficient being
0(71/3). The flow is therefore quasi-steady and sw;aep-back effects are of
second order. The flow is, however, transonic and nonlineér around the
entire rotor disk,

The differential equation and boundary condition in forms suitable

for computations from the tip inboard through the strip theory region are

2 2 2
1-M"(y+u cos t) 2 € =
F 7273 - (yv+1)M (px]‘P + 72 3 cvyy + qozz = 0, (33)
(Pz =y fx’ on z = 0, - (34)

There is also a limitiﬁg case based on the limit u/72/3 —- 0. Itis
apparent from equations (33) and (34) that in this case time derivaﬁves,
.sweep back effects and time itself do not enter the problem in both the tip
region and the strip theory region. In this limit, the flow over the rotor
from the tip inboard is therefore equivalent, in the first approxin;lation, to

the flow over a hovering rotor with tip Mach number M. -

7. The very large aspect-ratio blade

A final limiting case emerges naturally from equations derived in
previous éections. It is based on the limit7—0, € >0, € /7—- 0 a.'nd corres-
ponds to a very large (and perhaps impracticably large) aspect ratio blade. In
this limit, time derivatives and sweep-back effects disappear, and also the
effect of a mean Mach number gradient along the blade span becomes negli-
gible. For a hovering blade, this limit implies that the rotor problem as
described in a blade fixed coordinate system is entirely equivalent to the
problem of a fixed wing with free-stream Mach number QR/ c. For the.

advancing blade, there are several flow regimes associated with e/T— 0,
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depending on the order of magnitude of the advance ratio u. In all cases,

the flow over the very large aspeict ratio blade is analogous to some fixed
4 .
wing problem. Further details are unnecessary here, since each limiting

‘case can be read directly from the differential equation and boundary condi-

tion corresponding to a particular choice of u.

IV, PRESSURE COEFFICIENT

The pressure coefficient CP is based on the local chordwise free
stream veloeity at each span station. In nondimensional form, this velocity
is y+ u cos t, The leading terms in the expression for Cp are

P-P,

12 P QZRZ(yﬂ.t cos t) T

C
P
T

Z(p 2€ y sint @ - .
= -—— —— (35)
" y+ucost (y+u cos t)2

‘For subsonic flow in the tip region this becomes

Z(Px' : 2u51nt‘PS
1+ucost ™

Eﬁ’ .
2~ (36)

(1 +u cos t)?'

Strictly speaking, 1f U= d(l) thé second term involving the spenwise de-
r1vat1ve (P must be retalned While this term may be neglected in a sufficiently
small sector about t= 0, it should be noted that there is no character1st1c azi-
* muthal angle on the advancing. side for a subsonic tip (in contrast to the advanc-
ing transonic tip, for which a characteristic azin}uthal angle about t= 0 does
~ play an essential role). The t_erms in (P in equation (35) end (PS in equation
(36) should therefore be reta1ned in a subsonic calculation when u = O(l)

The second term in equatlon (35) is never 1mportant in transomc

flow. Therefore, for thJ.S case



C: 29

T Tx
253 T T y4+wmcost - A (37)

Equations (35) and (37) represent Cp from the tip inboard through

"the strip theory region for subsonic and transonic tip Mach numbers.

V. CONCLUSIONS

The most difficult problem for numerical calculations occurs when the'
advancing tip in transonic and advance ratio is about 0, 4. Under these condi-
tions, a shock wéve begins to form as the blade enters the advancing side of
the rotor disk, It grows to some maximum strength in the advancing region
and then decays as the blade retreats, Both the shock wave and blade thickness
cause weak waves to be propagated very slowly, relative to the blade, into the
upstream region, The slow propag-ation' speed of these waves causes thé essen-
tial unsteadiness in the flow and complicates the governing equations, If the
tip is transonic and advance ratio is 0,4, a bléde of radius 20 feei; would have
a forward velocity of about 190 knots and 375 rpm at sea level conditions,

These conditions could be encountered in cruise or maneuver for a high per-
formance helicopter.

The computational problem is much simpler when advance ratio is small,
The flow becomes quasi-steady, sweep-back effects are ﬁegligible and the flow
is nonlinear and transonic around the entire rotor disk. Computer progifams
for a hovering transonic rotor can be used here because time enters only as
a parameter,

If advance ratio is very small (of the order of thickness ratio or smaller),
sweep-back effects, time itself and therefore tirﬁe derivatives do not enter the
problem in both the tips ar.ld_ strip theo-ry regions, In a first approximation, this
problem is equivalent to a hovering rotor, It differs from a fixed wing problem
onl&r by the mean Mach nﬁrnber gradient along the span, |
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Other limiting flow regimes for subsonic and transonic tip Mach num-
bers are discussed in the main text. The'.s'é r'égi_mes" have interesting physical
features, but th’éy are of secondary im}:;orf.ance'in their numerical, aerodynamic

and acoustic properties relative to the high 's'pee;dl, ‘high advance ratio blade.
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