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ABSTRACT

Differential equations and boundary conditions for a rotor blade in

forward flight, with subsonic or transonic tip Mach number, are derived.

A variety of limiting flow regimes determined by different limits involv-

ing blade thickness ratio; aspect ratio, advance ratio and maximum tip

Mach number is discussed. The transonic problem is discussed in some

detail, and in particular the conditions that make this problem quasi-steady

or essentially unsteady are determined. Asymptotic forms of equations and

boundary conditions that are valid in an appropriately scaled region of the

tip and an azimuthal sector on the advancing side are derived. These equa-

tions are then put in a form that is valid from the blade tip inboard through

the strip theory region.
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SYMBOLS

a = - .(& x r + V) free stream velocity relative to blade fixed coordinates

c sound speed

f = f(x, y) non-dimensional blade geometry in blade attached co-
ordinate system

F=F(x, y, z, t ) = 0 blade geometry relative to an inertial coordinate sys-
tem

g = g(x, y) dimensional blade geometry in blade attached coordinate
system

i, j unit vectors along x and y axes

£ blade chord

M = ftR/c - reference Mach number

Jfl = M(l + u) tip Mach number on advancing side

p static pressure

.r" position vector

R blade radius

s distance in chords measured toward center of rotation
from blade tip

1/35 = T s span coordinate for transonic problem

t time

1 scaled time variable for transonic problem

V forward velocity of rotor

x, y, z coordinates along the blade chord, span and normal
to the plane of rotation

Y ratio of specific heats

6 scale parameter for time in transonic problem

e inverse of blade aspect ratio

ju advance ratio

T thickness ratio
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(p velocity potential

u> reduced frequency

£2 rotational velocity

A prime refers to a fixed (inertial) coordinate system.

Subscript oo refers to conditions in undisturbed air.

A bar denotes a vector.

IV



UNSTEADY SUBSONIC AND TRANSONIC POTENTIAL.FLOW
OVER HELICOPTER ROTOR BLADES

I. INTRODUCTION

Helicopter rotor blades that could support a nearly shock free tran-

sonic flow in the advancing blade tip region would improve helicopter aero-

dynamic performance and would reduce noise produced by the blade. The -

design of better high speed rotor blades has so far been guided mostly by

qualitative consideration of how blade geometry influences the flow in the

complex aerodynamic environment of the tip region. While such considera-

tions are'undoubtedly useful, they necessarily involve some guessing of how

blade geometry influences flow behavior, particularly at high speeds.

Verification of a particular design must rely on expensive (and time con-

suming) wind tunnel and flight testing. It is therefore clear that blade de-

sign (as in any other design problem) would benefit from analytical and

numerical methods that would predict the details of a transonic flow field

in the tip region for a given blade geometry and specified flight parame-

ters. Calculation of the nonlinear, three-dimensional and possibly un-

steady flow near a rotor tip is, of course, only a first step toward better

design. The problem here is that while there have been recent advances

in the analytical and numerical methods that will generate shock-free two-

dimensional airfoil sections, there are no such methods available for

three-dimensional flows. There is also ho indication yet that a shock-

free two-dimensional section would show better performance in a three-

dimensional, environment than any other standard airfoil section, although

it may be that the two-dimensional designs do have advantages over stan-
\

dard sections in a three-dimensional application.



Preliminary calculations of transonic pressure distributions on

rotor blades were made by Caradonna and Isom (1). They considered

what is probably the simplest case, a non-lifting, hovering rectangular

blade with 6% thick biconvex sections operating in the lower transonic

regime. The calculations show how direct numerical methods suitable for

two-dimensional problems can be extended in a fairly straightforward way

to the three-dimensional problem of steady transonic flow near a rotor

tip.

The analysis of reference (1) is restricted to a rotor •with zero ad-

vance ratio, so that the flow is steady in a coordinate system attached to

the blade. In this report we shall consider the more complicated problem

of a rotor with non-zero advance ratio. The primary objective is to ob-

tain suitably scaled differential equations that describe transonic flow over

the advancing rotor tip, and to show how possible flow regimes depend on

various limiting cases of scale parameters. In particular, it is important

to isolate what might be called the "worst" case, which is a three-dimen-

sional, nonlinear and unsteady (as opposed to quasi-steady) flow regime on

the advancing side of the blade.

The hover problem of reference (1) is characterized by three para-

meters: blade thickness ratio r, aspect ratio AR = e and tip Mach

number M = J7R/c (£2 is angular velocity, R is blade radius and c the

speed of sound in undisturbed air). It was shown in reference ( 1) that the v

hover problem is in some ways similar to the problem of flow over a fixed

wing, and the analysis was guided by this (sometimes rough) analogy. The

advancing rotor problem involves one additional parameter, the advance

ratio u , as well as the time variable t. The reference Mach number is

then the maximum free-stream Mach number on the advancing side,



fH = M(l + y). Our objective is to determine how T, e, TJl and y combine

as coefficients in the governing differential equations and boundary condi-

tions, and then to consider asymptotic forms of these equations, with T

and e small, Jfl either subsonic or transonic, and 'u either order one or

small. The asymptotic results always simplify unwieldly equations, and,

more importantly, they serve to put equations into a form that is subject

to useful physical interpretation. It will be noted, however, that pursuit

of a variety of limiting cases may produce distinctions that are rather fine,

and in some instances too fine. For example, we consider three limiting

values of advance ratio: a high advance ratio problem where /u is of the

2/3
order of 0. 4 and fixed; a case for which u = O(r )j and one for which

|U = O(T), with T -*• 0 in each case. Each of these limiting cases results in a

distinct set of governing equations and a distinguished flow physics. How-

ever, when the blade thickness ratio T is about 0. 1, then n = 0. 4, or

2/3H = O(r ) or u = O(T) are not widely different values for advance ratio.

Nevertheless, the usual scaling procedure followed here is always based

on taking appropriate limits ( T -* 0, e •* 0, etc. ), and whether the resulting

equations describe sharply distinguished physical regimes encountered in

practice must depend on detailed numerical calculations and experiments.

II. FORMULATION OF PROBLEMS

Consider a two-blade rotor advancing at a constant velocity V^ and

rotating at angular velocity ft perpendicular to the direction of advance.

For our purposes, the number of blades is not important. Attention is

restricted to the outer few chords of the advancing blade. In the near

flow field, close to the advancing tip region, the flow is not influenced (in

a first approximation) by other portions of the blade system. Boundary



conditions on the blade are formulated for arbitrary planform, although

special care may be required if the planform has some unusual shape, as

for one with a kink. We shall not consider the lifting problem because too

little is known about rotor wake properties, this being particularly true

for high speed rotors. It will also be assumed that the flow is inviscid

and isentropic. A velocity potential therefore exists for the flow described

in an inertial coordinate system. We take this system to be one at rest

relative to the undisturbed air.

The potential equation for lp is an inertial reference system is

<Ptt + -^ (V<P)2 + V<P • V[| (V<?)2] = c2 V2 <p (1)

where c is the local adiabatic sound speed. Bernoulli's equation, relating

c and (f> is,

'

t

where c is the sound speed in the undisturbed gas.
00

In a fixed Cartesian (x, y, z) coordinate system, let the blade geo-

metry and location be described by F(x, y, z, t) = 0. The condition of flow

tangency at the blade surface is

Ft + V(P' VF = 0, (3)

and we require that <P and V<P go to zero at infinity.

In all cases of interest here (including nonlinear problems), the

third term on the left hand side of equation (1), the cubic term, is negli- ,

gible. That term will be neglected in all further discussion.



It is convenient to reformulate the problem in a coordinate system

attached to the blade, with the origin at the center of rotation. The velo-

city of advance V will be taken in the direction of the negative x-axis of

the fixed reference frame. Coordinate z for both fixed and moving frames

is normal to the plane of rotation, and the angular velocity of rotation f2

points in the positive z-direction. In the rotating frame, the blade-attached

x-axis is in the chordwise direction and the y-axis is along the blade span.

We now transform equations ( l )-(3) and rewrite them in a coordinate
\

system attached to the blade. For a moment it will be necessary to distin-

guish between time and space coordinates of the inertial frame and time and

space coordinates of the moving frame. Let primed variables refer to the

inertial system, and unprimed variables refer to the blade-attached system.
_ i i i i _

Let r = (x , y , z ) and r = (x, y, z) be position vectors in these two sys-

tems. The two reference systems are related by

r"' = V t + R.(t) r",

i
t = t,

where R( t ) is the rotation matrix

R(t) =

cos S2t - sin J2t 0

sin fit cos S2t 0

0 0 . 1

The inverse transformation is

— _ 1 i —' _ 1 i — i
r = R (t ) r - R - (t ) V t

f = t .



where R is the inverse of R. For the purposes of equations (l)-(3), the

gradient operation in the inertial system may be replaced by the gradient

operation in the moving system. Time differentiation in the inertial system

transforms as

9 <p 9 <p ^ xi 9 <p ,- •

at' 8t at' 9xi

with a sum over the i-subscript. It is easily shown that

9 x . . _ . ' _ _ _ _
'• ~ ~ - [R(0) r]. - [R" (t) V]. = - ( f2x r + V).
9 t x 1 1

where R(0) is dR/dt evaluated at t = 0. In a more convenient notation,

equation (4) becomes

_ . ' ( 5 )
at a*

The velocity V in equation (5) must be expressed as it appears to
_ - 1

an observer in the moving frame. In the fixed frame, V = - i V. In the

moving frame,

V = - i V cos ft t + j V sin J2 t.

An observer in the moving frame sees a free- stream velocity -(J2 x r + V).

Let

I = - (S2 x 7 + V ) .

Then equation (5) is . '

at



To transform equations ( l)-(3) to the moving frame, we first note that a

second application of equation (5) gives

<p = <P^ + a • V V(? • a + 2 a • V <^ - Q x a • W - V

t't'

- . , ! « . - » » T c* i «-i » - * T, , tt t

The second term in equation (1) is

I
at

= 2 W • V<?t + 2 a • V

The right hand side of equation ( 1), c V <p, requires c from Bernoulli's

equation (2), and c must be expressed in the moving frame. Bernoulli's

equation transforms to

c2. = c £ - (y - 1) [<p . + I • V<p + j- (V<P)2] .
OO , L ^

The complete equation, for <P written in the moving frame is now

<P + a . V V<p • 'I + 2 I . V<? - J2 x I • V<? - V

+ 2 V<jf> • V (p + 2 a •

= { c2 - (7 - 1) [<p. + I • V<^ + 1 (V<p)2] } V2 (^ (6)
GO t £

Equation (6) is the exact potential equation written in a coordinate system

that translates at constant velocity V and that rotates with constant angu-

lar velocity J2 . As far as equation (6) is concerned, V and £2 are arbitrary

vectors as they appear in the definition a= - f i x r - V . Later, V and £2

will be specified as vectors appropriate for a rotating blade problem.



It is very useful to simplify equation (6) by non-dimensionalizing

and scaling it in a way that is appropriate for the particular problems at

hand. This simplification requires a choice of suitable length and time

scales, and a further specification of the relative magnitudes of all non-

dimensional parameters that enter the problem. The choice of length and

time scales •will in turn depend on what part of the flow field one is inter-

ested in. For the rotor problem, there are several distinguished flow

regions. Some of their features are listed here.

Region 1. This is the region near the blade and sufficiently far inboard

from the tip that tip effects are not important. It is the strip theory or

blade element region. If the blade tip Mach number is subsonic or tran-

sonic, equation (6) in Region 1 will become linear and quasi-steady; that

is, all nonlinear terms and time derivatives may be neglected. In addition,

the flow in this region becomes approximately two-dimensional. Span

coordinate and time appear only as parameters in the problem. The length

scale is blade chord and time scale is n

Region 2. This is the region near the blade surface and near the blade tip.

If the Made tip Mach number is subsonic (not transonic), equation (6) will

be linear, quasi-steady and three-dimensional. The length scale is dis-

tance in chords measured from the tip and time scale is Q~ . In a first

approximation, the blade will appear to be semi-infinite as viewed from

the tip. When a quantity (e. g. , <P ) is calculated in the tip region, then, as

the calculation marches inboard from the tip, the results must match those

obtained in Region 1.

If the tip Mach number is transonic, analysis of equation (6) in the

tip region is more complicated.. The equation will be nonlinear-in spatial



derivatives, and may be quasi-steady or essentially unsteady, depending

on certain limiting cases to be discussed later.

Region 3. This region will be called the first far field region. The char-

acteristic length scale is blade span. For subsonic flow, an observer in

this region would view the blade as a line rotating about its mid-point.

Disturbances measured in this region -would be considered as caused by

point singularities continuously distributed along the blade line. Equation

(6) becomes linear, three-dimensional and unsteady for both subsonic and

transonic Mach numbers. The inner boundary of this region is the com-

bined flow of Regions 1 and 2; the outer boundary is the field at infinity.

2 2 2Region 4. This is the distant far field, defined by letting x + y + z -*• oo .

It is the region appropriate for far field acoustic calculations. At any point

in this far field, the local flow is described by retaining all linear terms in

equation (1). Time scale is fi and distance is a characteristic wavelength

We are primarily interested in Region 2, the tip region. A prelim-

inary simplification of Equation (6) will now be made, and it can be verified

later that terms dropped here are negligible. All first order derivatives on

the left-hand side of equation (6) may be neglected. The term 2

may be neglected compared to the term 2 a • V<P because a is essentially

a first order term and V<p is the perturbation velocity. On the right hand

1 2 2side, the terms (P and — (V<P) in the square bracket that multiplies V <P may

be neglected. With these observations, the basic equation (6) becomes

(P + I . V W • a + 2 I • W + 2 I • V

= [c2 - (Y - l)a". W].V2<p. (7)
00



The condition that the flow be tangent to the blade surface is easily

expressed in the moving coordinate system, where the blade surface ap-

pears stationary. Let blade geometry be defined by z = g(x, y). Then the

blade boundary condition is

<P = (- Q- x7 - V + W) • Vg,.
Z

evaluated on z = g(x, y). The term V<£> is negligible, and we use the mean

surface approximation to get

<?„ (X,Y . 0, t) = - ($? x 7 + V) . Vg. (8)
Z

Scaling of equations (1) and (8) requires that they be written out in

scalar form. Using the definition of a, and rearranging some terms,

equation (1) expands into the following lengthy form:

+ 2(Qy + V cos m-) ̂  - 2(Ox + V sin .

= [c2 - (J2y + V cos nt)2 - (7+1) (tty + V cos S2t) V

- (y - 1) (Ox + V sin nt) <P ] <P
y Ji.X.

+ [2(J2x + V sin nt) (f2y + V cos J2t) + 2(S2x + V sin fit) <P

- 2(f2y + V cos nt)<iP ] <Py xy
+ [c2 - (fix + V sin nt)2 - (7 - 1) (S2x + V cos Ot) <P

+ (7 + 1) (Ox + V sin fit) <P ] <P

- Z (Q + V sin J2t) (P V + 2(S7 + V sin f2t) <P <Py z xz ^ x z xz

+ [c2 - (T- i)(n + vcOSnt)(p + (7- i)(n + v sinnt)]«p (9)
Ou y Ji. Ji. /o^

10



The expanded form of the boundary condition, equation (8), is

(P (x, y, 0, t) = (O y + V cos Q t) g - (ft x + V sin « t) g ( 10)

Equation (9) and (10), with a suitable boundary condition at infinity, des-

cribe the aerodynamics of the nonlifting rotor blade. These equations will

be further simplified by scaling them. This scaling will be done in the next

section where the two most important problems are considered, the blade

with subsonic advancing tip Mach number, and then the blade with transonic

Mach number on the advancing tip.

III. SCALED EQUATIONS

1. The subsonic problem

We first consider the problem of a blade with advancing tip Mach

number that is subsonic.

The introduction of new symbols for nondimensional scaled variables

can be avoided by a convenient notation. The combination £2f in equation (9)

is simply replaced by t, with the understanding that from now on t stands

fo r f l t . Similarly, let f be the blade chord, and use the substitution

x/ j? -»• x, where the x on the left is dimensional and on the right non-

dimensional. The complete set of time and spatial substitutions is then

nt - t

x/ j? •-»• x
(11)

y /R- y

z/ £ -* z.

A reference Mach number will be taken as

M = J2R/c (12)

11



and advance ratio

U = V/fiR . (13)

The blade has reference thickness ratio r . Using the substitution scheme

(11), the scaled potential for the subsonic problem is

•7-n R f.

The blade has aspect ratio AR = R/£. Define the parameter e

(14)

e = AR'1 = J[/R , (15)

which is generally a small number for a rotor blade. We now use the substi-

tutions (11) - (15) in the differential equation (9). All nonlinear terms may be

neglected in the subsonic tip problem. The scaled differential equation is

therefore

M2e 2 (Pit + 2M2e (y + u cos t) (p^ - 2M2e 2(e x + u sin t) <P t

o p 9
= [ 1-M (y + u cos t) ]<P + 2M e (e x + u sin t) (y + /u cos t)<P

3cx ^^y

+ e 2[l-M2(ex + u sin t)V + V (16)yy zz

A properly posed problem for the tip region requires some y-derivatives in

the differential equation. The scale length for this region is distance s in

chords measured from the tip toward the center of rotation:

y = 1 - es (17)

Equation (16) becomes

12



M2e 2<P + 2M2e (1-e s + y cos t) + 2M2e (ex + /u sin

= [l-M2(l-e s + n cos t)2](P - 2M2(ex + u sin t) (1-e s + p cos t)<?
XX XS

' + [l-M2(ex + n sin t)2]<P . + <P . . (18)
S S Z Z

Keep M, /u, x, s, z and t fixed. Let e -*• 0. Equation (18) becomes

[1-M2(1 + /u cos t)2]<P - 2M2 y sin t (1 + y cos t)(p
XX XS

+ (l-M2/u2 sin2t)^ + (P =0 (19)
S S Z Z

In the boundary condition, equation (10), let blade geometry be fur-

ther specified (in dimensional form) by

z= g(x,y)-* Ti(j, \ )

where T is a reference thickness ratio. Nondimensional scaled geometry is

z = T f(x, y).

Equation (10) transforms to

(P (x, y, 0, t) = (y + n cos t)f - e (e x + u sin t)f . (20)
Z A y

Replacing y by 1-6 s and letting € -*• 0 gives

- <P (x, 1, 0, t) = (1 + /u cos t)f (x, 1) +n s i n t f (x, 1) (21)
Z Ji. b '

The differential equation (19) and boundary condition (21) describe the tip

flow for all values of time, that is, for all azimuthal angles around the rotor

disk. The scaled problem is also quasi-steady, with time appearing only as

a parameter. Note also that the problem posed by equations (19) and (21) is

13



exactly the same as the problem of the flow in the tip region of a fixed yawed

wing in subsonic motion, moving with forward velocity "V = -i (OR + V cos Ot)
i

+ j Vsinfit relative to the undisturbed air.

It has been assumed so far that the advance ratio /u is not small. If

y were small, say of the order of thickness ratio T, then it would be incon-

sistent to retain terms of order u and smaller in equations (19) and (21). If

H = O(T), then all terms involving u must be neglected, and time no longer

enters the problem at all: for small u , the flow in the tip region of an ad-

vancing rotor with subsonic tip Mach number becomes equivalent to the flow

— 'in tip region of an unyawed fixed wing moving at constant velocity V=-i V

relative to undisturbed air.

While equations (19) and (21) describe the tip flow for the subsonic

rotor, they are not convenient for use in numerical calculations. A single

set of equations that describes the flow in the tip region, and which remains

valid inboard from the tip through the strip theory region, is found by in-

spection of equations (19) and (21) to be

[l-M2(y + y cos t)2]<P + 3M2e u sin t ( l+ y cos t)<P
xx xy

+ e2[l - M2y2 sin2 t]<p + V = 0 ' (22)
y y z z

(p (x, y, 0, t) = (y + u cos t)f - e » sin t f .
Z X y

The subsonic far field

In numerical calculations, some condition must be imposed on a spa-

tial boundary that is, in some sense, far from the blade. There are two

possibilities. The first is to set <p and its derivatives equal to zero on

a boundary that is some number of blade chords distant from the blade itself.

14



The second alternative is to derive an asymptotic far field representation of

the solution, and impose this representation on a boundary that is again suit-

ably far from the blade. This second approach has been used by Murman and

Cole (2) for a two-dimensional airfoil in transonic potential flow, and extended

by Klunker (3) to the case of a three-dimensional fixed wing in transonic flow.

For the subsonic rotor problem, the asymptotic far field is most easily de-

rived in an inertial coordinate system, where the potential satisfies

2 2(P.. = c V cp . The far field is then represented by the radiative part of a

potential field that is caused by a system of retarded doublets continuously

distributed along the span of the wing. The strength of the doublets will vary

along the span, and also with time for an advancing rotor. When this repre-

sentation has been found in the inertial system, it can be transformed to the

moving frame and used as an outer boundary condition for equations (19) and

(21). It is not clear, however, whether the additional labor involved in find-

ing and using an accurate far field representation is worth the effort. Numeri-

cal experiments with two- and three-dimensional fixed wings indicate that

simply setting <P = 0 on the outer numerical boundary leads to sufficiently

accurate results.

3. The transonic problem

The starting point for the nonlinear transonic problem is equation (7),

and its expanded form (9). We are again guided by the close analogy between

the flow near the tip of the rotor and the corresponding flow near the tip of a

fixed wing. The preliminary scaling of spatial coordinates is exactly the

same as for the fixed wing problem. Thus, in equation (9) we make substi-

tutions

15



— t

y/R
1/3 /,T z/ a

After deleting some terms by inspection from equation (9), we get

2 2 2 2

- < + * cos t)</? - (ex + » sin

M2(y + M cos

sin t) (y + ju cos t)<P +— > <P + <P (23)

The blade boundary condition is

(pz(x, y, 0, t) = (y +V cos t)fx - e(ex + /u sin t)fy. (24)

In contrast to the subsonic problem, some as sumption .must now be

made about the relative orders of magnitude of e = AR and T. A typical

blade has thickness ratio of the order . 06 to 0. 1 near the tip, and aspect

ratio of order 20 to (in an extreme case) 10. Therefore we assume the

limits T —0, e — 0 andT/e = O(l). We first assume that the advance ratio

is of order 0. 3 to 0. 4 and is held fixed when any limits are taken.

When the flow is transonic only on the advancing side of the rotor

disk, there is some finite azimuthal angle measured about t (or f i t ) = 0

within which the flow is transonic and outside of which the flow should be-

come subsonic. It is therefore necessary to scale time in a suitable way.

16



Also, when the flow is transonic there is some characteristic region, mea-

sured in chords, near the tip when transonic conditions exist and inboard of

which the flow becomes subsonic and follows strip theory. It is therefore

also necessary to appropriately scale the span coordinate y to obtain a pro-

perly posed boundary value problem in the tip region. Following Reference

(1), we introduce a new span variable:

7 = 1 - - 5 (25)

Introduce a time scale parameter 8 by

t = 8 T, , (26)

with 6 to be determined. Use of equations (25) and (26) in (23) gives

173 s + « cos
T O T O T

M2

+ 2 (ex + ju sin

1 - M2(l—j4-j S + u cos 6T)2

[ 5-7-5 - (-y+l)M (1--TTJ S+/u cos _ ..„.,.„,_
<i/ J if J X XX

T ' T '

2
2M (ex + V sin 8T) (1 - ITT s + V cos 5T) ^ c-

The boundary condition is

<P (X, 1 - -yf-r- S, 0, 6T) = (1 - ^ry-r- S + JU COS 6 T )f + T (6X+/U sin 6t)f c.
Z I/ J I/ j X O

T T

The maximum Mach number of the free stream relative to the blade occurs

17



when T = 0, and is . IR - M(l + n). As for a. fixed wing, we assume

(1 - Tn2) r"2' 3 = O(l). Consider first the coefficient of <P in equation (27),
3C3C

and in particular consider the part

. 1—
- M2(l - -- S + n cos 6T)2

I2 e u2M2 2
"l"~271 (1 + ^ - 17T s> M U - cos 6T) - M

273 (1 " cos 6T)

T. T T

+ -4/3- S2 (28)
T

Let S and T be O(l), let e —0, T-* 0, e / r= 0(1), (1 - 1K2)/~T2 '3 = O(l), and

for the moment assume also 6 -*0 as T-»0. Equation (28) becomes

1 - M2(l - -fr, S + M cos 5T)
1 - HIT

M2 v(l + n) -r?- T2 (29)

The second part of the square bracket that multiplies <P becomes, in the -
o

above limit and with x = 0(1), (y +1) M (1 + \jCfP , which provides the usual -

nonlinearity. We assume this term is O(l).

The magnitude of the last term in equation (29) is determined by the

-1/3limiting value of 6 T ' , with both 6, T—-0. Examine the coefficient of <P «

in equation (27) in the above limits. The coefficient of ^ g becomes

- 2M2 u 6 T'1/3 (1+ u) T.

If 6 T becomes unbounded as T -» 0, the </> Q and <P terms would dominate
?Co 3CX
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all other terms in equation (27), and the scaling procedure followed so far

would be incorrect. Alternatively, if 6 T -» 0 as T -» 0, inspection of

equation (27) shows that the <P ~, term alone dominates, leading to another

useless result. The conclusion is that 6 should be chosen so that 6 T =O(1)

as T —* 0, and we therefore take

. 1/36 = T '

Combining these results,, the asymptotic form, of equation (27), valid in the

tip region on the advancing side, is

2
2M2(1 + n) 1 (Pxj, = fc&j- + 2M2(1 + U) | S + M2(l + /u) /u T2

T

- (Y + i) M2(i + M) <P] (P

- 2M2 n (1 + ju) T (P + V + V, (30)

while the blade boundary condition is

<P (x, 1, 0, 0)= ( 1 + j u ) f . (31)
Z X.

The original choice of the relative order of magnitude of e and r

was based on the observation that e = O(T) for a typical rotor blade. How-

ever, it now emerges from equation (27) that, analytically, a necessary con-

dition for the flow to be transonic and nonlinear is that precisely this relation

between e and r should hold.

The transonic problem defined by equations (30) and (31) differs from

the subsonic problem in two essential respects: the transonic problem is

nonlinear (in the usual way, and as is to be expected), and it is essentially
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an unsteady problem with the coefficient of fP „ = O( 1). Thus the simplifying

feature of quasi-steady flow, does not appear. This latter result naturally

complicates numerical calculations because solutions must be obtained in a

four-dimensional (x, y, z, t) space. The term in ^rprp, however, again disap-

pears. The hypersurface T = constant (or t = constant) is therefore charac-

teristic (the necessary and sufficient condition for T = constant to be charac-

teristic is that the term in ^rprp not appear in the differential equation).

Notice that the tip flow is transonic, unsteady and nonlinear over a

1/3sector of the rotor disk of order t-(or Qt) •+* T , with t measured about t = 0.

If T= 0. 1, the azimuthal extent of the transonic region is about 54 , or 27

either sice of t = 0.

While equations (30) and (31) are a first approximation to the flow in

the tip region, they are not convenient for numerical calculations. Following

the same procedure that was used for the subsonic problem, we retain only

the appropriate terms in equations (23) and (24) and find

2 2
2M2 ~-i - (1 + n cos t)<P - [1-M tyV3

C°S ^ (7+l)M2(l+/u cos t)<Pj<P_.
T T

2M2e e2

+ —Trrz— U sin t (1 + u. cos tW + n i - <P + <P ,£,/ j xy 2,/ 6 yy zzT T

- (y + u cos t)f on z = 0.
Z ~ X

These two equations describe the flow in the transonic tip region and remain

valid inboard through the subsonic strip theory region.

4. Reduced frequency

A fixed wing with chord S. moving at constant velocity V and oscil-

lating with angular frequency £2 has associated with it a nondimensional re-
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duced frequency u = S2^/V. This parameter is a measure of the number of

oscillations the wing goes through as a fluid particle goes from leading to

trailing edge in its mean motion. Unsteady flow is generally characterized

by large <j and quasi- steady flow by s'mall u. Usually u is multiplied by

some other parameter or parameters in the governing differential equation

and boundary condition, and appropriate limits must be taken to specify •what

is meant by large or small u. In the rotor problem, a reduced frequency in

precisely the form SIS./ V does not appear, but a similar parameter can be

interpreted as a reduced frequency. The reference velocity near the tip on

the advancing side is S2R + V. The reference transit time of a particle in its

motion from leading edge to trailing edge is S. (J2R + V) . The number of

radians traversed by the tip in this time is

M 5 O R + V ' °

~ l +

or

This parameter may be defined as the reduced frequency for an advancing

rotor. Since /u is never large, the reduced frequency is effectively the in-

verse of the blade aspect ratio e. Reference to the basic differential equa-

tion (23) indicates that e does indeed play the role of reduced frequency

wherever it multiplies time derivatives.

5_._ The transonic far field

The specification of a far field boundary condition in the transonic

problem is considerably more complicated than for the subsonic problem.

This is particularly true if an asymptotic representation more accurate than
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<P = 0 is to be prescribed on a boundary some chords distant from the blade.

2 2 2If a distant far field solution based on the limit x + y + z -*cois required,

then finding such a solution is equivalent to finding the radiative part of the

solution at infinity, and getting this solution means solving the acoustic prob-

lem for the rotor. One method for analyzing the acoustic far field for a body

in transonic motion has been described by Ffowcs Williams and Hawkings (4),

but it has not yet been applied to rotor problems. The method is rather com-

plicated and involves the near field transonic solution in an integral repre-

sentation of the far field. The essential difficulty here is that an element of

blade surface in transonic motion causes a disturbance that is not compact,

and the far field of the disturbance cannot be represented as a simple point

multipole, as it could be for subsonic motion. These remarks indicate that

without a much deeper analysis, there is no alternative, at the present time,

to using the condition <P - 0 at a far field boundary in numerical calculations.

6. The transonic problem with small advance ratio

It has already been noted that for a subsonic blade at moderate ad-

vance ratio the flow is quasi-steady and linear; and when advance ratio is

small, time does not enter the problem at all: if, say, n - O(T), then the

effect of forward motion becomes a second order effect, and the first ap-

proximation to the flow is simply the flow over a hovering blade.

We now consider the transonic problem for small advance ratio and

determine the appropriate equations in ihe limit n -*- 0.

Refer again to the basic differential equation (23) and consider the

first term in the square bracket that multiplies <P :
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1 - hr(y+n cos tr

2M

T

e2

~4/T

5^- (1-cos 8T)2

s- (32)

2/3We first consider the case for which ju -— 0, /u = O(T ). Set the

time scale factor 6 = 1 in equation (32), and revert to 6T = t. Let S = 0(1),
2/ 3

t= O(l), e / r= O(l), (j. = O(r ' ), e -* 0, T -* 0, /j -* 0. The asymptotic

form of equation (32) is

l-M2(t+ju cos t)2

271
T '

1-M
2/
'

- S
T

(1-cos t)

Time derivatives become negligible, and the asymptotic forms of the differ-

ential equation (23) and boundary condition (24) are

[ - - 2 M
T T

2M2 1 S (1-cos t) -

1.0,t)-= fx.
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The cross derivative <P is also negligible in this limit, its coefficient being
/ ^^

O(T ). The flow is therefore quasi- steady and sweep-back effects are of

second order. The flow is, however, transonic and nonlinear around the

entire rotor disk.

The differential equation and boundary condition in forms suitable

for computations from the tip inboard through the strip theory region are

c.. .

T

<P = yf, on z = 0 . (34)
£t Ji.

2 / 3
There is also a limiting case based on the limit /U/T -» 0. It is

apparent from equations (33) and (34) that in this case time derivatives,

sweep back effects and time itself do not enter the problem in both the tip

region and the strip theory region. In this limit, the flow over the rotor

from the tip inboard is therefore equivalent, in the first approximation, to

the flow over a hovering rotor with tip Mach number M.

7. The very large aspect-ratio blade

A final limiting case emerges naturally from equations derived in

previous sections. It is based on the limit T -» 0, € -* 0, e/r-*0 and corres-

ponds to a very large (and perhaps impracticably large) aspect ratio blade. In

this limit, time derivatives and sweep-back effects disappear, and also the

effect of a mean Mach number gradient along the blade span becomes negli-

gible. For a hovering blade, this limit implies that the rotor problem as

described in a blade fixed coordinate system is entirely equivalent to the

problem of a fixed wing with free- stream Mach number QR/ c. For the

advancing blade, there are several flow regimes associated with e / T — *• 0,
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depending on the order of magnitude of the advance ratio ^. In all cases,

the flow over the very large aspect ratio blade is analogous to some fixed

wing problem. Further details are unnecessary here, since each limiting

-case can be read directly from the differential equation and boundary condi-

tion corresponding to a particular choice of /u.

IV. PRESSURE COEFFICIENT

The pressure coefficient C is based on the local chordwise free
P

stream velocity at each span station. In nondimensional form, this velocity

is y + /u cos t. The leading terms in the expression for C are

C P "Poo
-£ = 1 2~~T, 7L—T •=• p £2 R (y+u. cos t) T

C. OO

2 -tp 2€ n sin t <P
= - . x - + £ . (35)

" ' '• cos t , __„ tj2

For subsonic flow in the tip region this becomes

C "2 <f> 2 u sin t <P
p ^ x " s_

- T 1 + ̂ c o s t - (1 + „ C08 t)2 • -.

Strictly speaking, if n = O(l), the second term involving the spanwise de-

rivative <P must be retained. While this term may be neglected in a sufficiently
S

small sector about t = 0, it should be noted that there is no characteristic azi-

muthal angle on the advancing^ side for a subsonic tip (in contrast to the advanc-

ing transonic tip, for which a characteristic azimuthal angle about t= 0 does

play an essential role). The terms in </> in equation (35) and <P in equation

(36) should therefore be retained in a subsonic calculation when /u = O( 1).

The second term in equation (35) is never important in transonic

flow. Therefore, for this case
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2 < p
(37)2/3 y + W cos t

Equations (35) and (37) represent C from the tip inboard through

the strip theory region for subsonic and transonic tip Mach numbers.

V. CONCLUSIONS

The most difficult problem for numerical calculations occurs when the

advancing tip in transonic and advance ratio is about 0. 4. Under these condi-

tions, a shock wave begins to form as the blade enters the advancing side of

the rotor disk. It grows to some maximum strength in the advancing region

and then decays as the blade retreats. Both the shock wave and blade thickness

cause weak waves to be propagated very slowly, relative to the blade, into the

upstream region. The slow propagation speed of these waves causes the essen-

tial unsteadiness in the flow and complicates the governing equations. If the

tip is transonic and advance ratio is 0. 4, a blade of radius 20 feet would have

a forward velocity of about 190 knots and 375 rpm at sea level conditions.

These conditions could be encountered in cruise or maneuver for a high per-

formance helicopter.

The computational problem is much simpler when advance ratio is small.

The flow becomes quasi-steady, sweep-back effects are negligible and the flow

is nonlinear and transonic around the entire rotor disk. Computer programs

for a hovering transonic rotor can be used here because time enters only as

a parameter.

If advance ratio is very small (of the order of thickness ratio or smaller),

sweep-back effects, time itself and therefore time derivatives do not enter the

problem in both the tips and strip theory regions. In a. first approximation, this

problem is equivalent to a hovering rotor. It differs from a fixed wing problem

only by the mean Mach number gradient along the span,

26



Other limiting flow regimes for subsonic and transonic tip Mach num-

bers are discussed in the main text. These regimes have interesting physical

features, but they are of secondary importance in their numerical, aerodynamic

and acoustic properties relative to the high speed, high advance ratio blade.
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