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SUMMARY

In recent years the surface-source method of calculating potential flow
about arbitrary bodies has been developed extensively and has proved to be a
useful tool in a wide variety of Tow-speed design applications ranging from
simple shapes to complicated inlets with centerbodies, multielement airfoils,
and wing-fuselage-pylon-nacelle combinations, Two-dimensional, axisymmetric,
and three-dimensional methods have been developed. While the method is gener-
ally quite satisfactory, increases in computational speed and accuracy are
desirable for certain applications, particularly interior flows and exterior
flows about complicated multiple-body combinations. Such improvements can be
realized by refining the formulation, In the basic method the profile curve
of a two~-dimensional or axisymmetric body is approximated by a Targe number of
straight-Tine elements over each of which the source density is constant. The
so-called higher-order refinement consists of using curved surface elements
and a source density that varies over an element. This report describes the
analysis for the axisymmetric case where the next-simplest approximation is
used. Specifically, the surface elements are parabolas, and the source density
varies linearly in arc length over each element. Calculated results for a
series of test cases are presented and compared. For both exterior and interior
flows the higher-order formulation yields very significant decreases in comput-
ing time and increased computational accuracy.
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LIST OF SYMBOLS
radius of a ring source or yortex
axial location of a ring source or vortex
half the curvature of an element
cy
integer subscripts denoting particular elements
total number of elements on a body
arc length along an element
half the total arc length of an element
s'y
surface velocity
free~stream velocity
velocity components
velocity due to a ring source or vortex

perturbation velocitya i-th control point

velocity at i-th control point due to a unit value of j-th source

density with all other values zero

velocity at i-th control point due to a parabolic source density

distribution on the j-th element
axial coordinate
coordinates of a control point

radial coordinate

slope angle of the tangent to an element at the control point with

respect to the x-axis

length of the chord of an element

perpendicular distance from control point to chord of-an element



8 circumferential angle about the x-axis
u vorticity strength
Es Cartesian coordinates with origin at the control point of an element

and directions, respectively, parallel and perpendicular to the
tangent line

o source density

0(1) derivative of source density with respect to arc length

0(2) half the second derivative of source density with respect to arc
length

s velocity potential



INTRODUCTION

Recent years have seen the development of very general surface singularity
methods for the calculation of potential flow about arbitrary configurations [1].
Moreover, these methods have been applied successfully to a large number of
practical design problems of low-speed flow [1], [2]1. The most common such
method is the so~called surfacezsource method [2], which utilizes a source
density distribution over the surface of the body about which flow is to be
computed, Application of the boundary condition of zero (or prescribed} normal
velocity on the body surface theoretically yields a Fredholm integral eguation
of the second kind for the source density. Once the source density is known,
all other quantities, such as flow velocities and pressures, may be obtained by
integration. Separate procedures have been developed for calculating flow about
two~dimensional bodies, axisymmetric bodies, and three-dimensional bodies,
respectivelv. For the case of axisymmetric bodies the flow itself does not
necessarily have .. "~vmmetric, but it may be a case of cross flow for
which the free-stream direction is perpendicular to the body's symmetry axis
or a Eaie of rotation of the body about an axis perpendicular to its symmetry
axis [2].

To impiement this method for the computer, various approximations must be
made. In particular, both the body shape and the source density distribution
must be approximated in a form suitabie for machine computation, During most
of the development of the surface-source method the profile curve defining an
axisymmetric {or two-dimensional) body has been approximated by a large number
N of small straight-line elements, which form an inscribed polygon. Moreover,
the source density has been assumed to be constant over each straight-line
element, although it varies from one element to another., This reduces the
problem of determining the source density distribution to that of determining
a finite number of values of the source density — one for each element. One
point of each element, the midpoint for a straight-line element, is selected
as the control point where the normal-velocity boundary condition is to be
applied. Formulas have been derived that give the velocity at any point due
to a unit value of source density on a straight~line element., From these
formulas a matrix of vector velocities induced by the elements at the control
points can be obtained. Then the integral equation is replaced by a set of
Tinear algebraic equations forthe values of source density on the elements.
The coefficient matrix of this set of equations consists of the set of normal
velocities induced by the elements at each others' control points, which is
obtained by taking normal components of the basic induced velocity matrix.
Finally, surface velocities at the control points are obtained by a matrix
multiplication of the tangential components of the induced velocity matrix
with the column of values of source density. The two main parts of the compy-
tation are the calculation of the N2 velacities that comprise the induced
velocity matrix and the solution of the Tinear equations for the values of
source density, If a direct elimination solution is used, the computational
magnitude of solving the linear equations is proportional to N3.

The above described procedure, which uses flat surface elements and a
piecewise-constant source density distribution, is designated the base method.
It has proved satisfactory in a wide variety of design applications [1].[2].
However, it is evident that more elaborate procedures can be formulated and
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that these should give a higher accuracy for a given element number N and
thus an equal accuracy with a smaller element number. Moreover, if it is
properly implemented, a more elaborate procedure would require only a slightly
greater computing time than the base method for a given N. Because of the
rapid variation of computing time with N, a reduction of computing time for
a given accuracy should be possible. This has been successfully accomplished
for the case of two-dimensional bodies [1], [3], [4], [51, in which case the
application of main interest is a multielement airfoil. Here the case of
axisymmetric bodies is considered, where the application of main interest is
an inlet, possibly with centerbody and ring vanes. The technique employed is
basically the one used in two dimensions [3], which employs curved surface
elements and a source density that varies over the element. Such an approach
is designated a higher-order implementation. For axisymmetric bodies these
varfations refer to the profile curve defining the body. The circumferential
variations around the symmetry axis of element geometry and source density
are similar to those of the base method [2]. Name1y, a complete surface ele-
ment is a portion of a conoid (a cone frustum in the flat-element case), and
the source density is independent of circumferential angle for axisymmetric
flow and is proportional to the cosine of the circumferential angle for cross
flow and for rotation.

Use of higher-order implementations brings up the question of the consist-
ency of the orders of the approximation used for the element geometry and the
approximation used for the source density. It is known [1], [3], that consist-
ency is obtained when the poiynomial expressing the element shape has a degree
one higher than that defining the source density. Thus, consistent formulations
include: (1) flat-element constant-source, (2) parabolic-element linear-source,
and (3) cubic-element parabolic~source. In this paper parabolic elements are
used together with a piecewise-parabolic source density. The extra inconsistent
parabolic term in the source density has been included to determine whether or
not it gives increased accuracy in low-curvature reg1ons. It turns out that,
as the theory predicts, little or no gain in accuracy is obtained by including
the parabolic source term.



SURFACE ELEMENT GEOMETRY

The profile curve of the body about which flow is to be computed is
specified as a table of coordinates for N + 1 points (xi, yi), each of
which is presumably exactly on the contour. By this means the contour is
divided into N elementary arcs as shown in Figure 1. On each arc a control
-point is selected by the following criterion: the normal projections of the
endpoints of the element, (xi, y;) and (x4.7» ¥i41)> ©On the 1ine tangent
to the arc at the control point are equidistant from the control point. The
slope of the tangent line at the control point is defined as the slope of the
element. If this tangent line is taken as the horizontal axis of a E,n-
coordinate system with the control point as origin, the elementary arc is as
shown in Figure 2. The equation of this arc may be written as a power series

TI=C€2+ ene (-”

The arc length s along the arc measured from the control point is given by

ds = [Vﬁ + (2cg)2 + ...]dE (2)
= [1 + 278 + ... )de
Thus
S =g+ %-c253 + .., (3)

The basic reference coordinate system in which the body is defined has its
x~axis as the symmetry axis of the body. Let a point of the element have
coordinates x =b y = a 1in this system then

b =X + (cosa)t —-c(sina)g2 + ae

(4)

y + (sina)z + c(cosu)g2 + ues

1]

a

where o is_the slope angle of the t-axis (tangent line) with respect to the
x-axis and x, y are reference coordinates of the control point.

In principle, approximations of arbitrarily high order could be generated
by retaining surfficient terms in the above series. For present purposes the
efement is assumed to be parabolic, and the above series are terminated with
the terms shown. For this approximation the control point 1ies on the perpen-
dicular bisector of the straight line between (xi, yi) and (Xj4+1s Y341)
and the slope of the element equals the slope of this straight line. A]so, by
inspection of (3) it can be seen that to this order of approximation s may be
substituted for £ 1in (4). A circle is passed through the points (xi-T' ¥i_1!s
(x5, ¥5)» and (xi+]’ yi+1), and another circle is passed through the poinls
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¥i)s (x 1) and (%44 The half~curvature c¢ of the para-

bolic element} hicﬁ enters equat?ons T%) and (4), is set equal to half the
geometric mean of the curvatures of these two c1rc1es. Requiring the parabola
to pass through the endpoints (xj, y and > Y3 +1 then uniquely
defines the parabola and estab1ishes 1he coordina?es X, ¥ of the control point.
For the first and last elements of a body one circle is not defined and ¢ is
set equal to half the curvature of the remaining circle.

Explicit formulas for the above procedure are contained in Appendix A.



INDUCED VELOCITY MATRICES

The basic calc Tational task of the flow~calculation method is to compute
the flow velocitie: induced by the elements at each others' control points.
Ther : are three ty] :s of induced velocities corresponding to three types of
surf..ce singularit (1) a constant~strength ring source, which is appropriate
for .:xisymmetric 1 »wy (2) a ring source whose strength is proportional to the
cosie of the circ nferential angle, which 1s appropriate for cross flow and
for >ody rotation; and (3) a constant-strength ring vortex, which is used to
produce certain auxiliary solutions appropriate to axisymmetric flow about
ring-airfoils and inlets, The velocities in the induced velocity matrices are
obtained by integrating the ring source or vortex formulas over an element.
Specifically, et a ring singularity (source or vortex) have a radius a and
lie in the plane x = b with its center on the x-axis. Then the velocity at
the point (x,y} due to this singularity is

¥ = Vx, y, b, al (5}

Specific formulas for the two types of ring source are contained in [2] and
derived in 6], [7]. Many of the functions appearing in the expressions are
repeated, particularly the specific complete elliptic integrals. The velocity
components of a constant-strength ring vortex are related to those of a constant-
strength ring source by [8]

2 2
v, (vortex) = %Tfj:¥sy V, (source) + %—Vy(source)

X —b (6)
3 Vy(source)

= L -
Vy(vortex) < Vx(source)

Let the source density on the j-th element be denoted o.(s). The velocity
induced by this source density at control point of the idth element (xi, yi)
is obtained by integrating over the element, that is

S —

By = S T e byt g Iegsras 7
where As. is the total arc Tength of the j-th element. Equation (7) applies
to both tﬂpes of source singularity. This equation also applies to the vor-
ticity singularity if b'(s? is replaced by the vorticity strength uj(s).

In evaluating the 1ntegrg1 of (7), b and a are given by (4) with § replac-
ing «&.

The source density may be written as a power series

(8)

e

_ M., (@2,



where aj, 031) and OiZ) are independent of s and represent, respectively,
the valug, first derivative, and half the second derivative of the source
density at the control point of the j-th element. 1In the present analysis the
source density is assumed to be at most parabolic, and (8) is terminated with
the terms shown. Thus (7) becomes

W=y f VIR, 5y by0s), ag(s)les
ASj

+ d§]) f?[?i, Yi» by(s), a;(s)]sds (9)

AS .
J

+ oJ(-Z) f V[i}, 371-,_ bs(s), aj(S)]szds

ASj
or
2 - w0 {1 (1) L w(2) (2)
Vi; T Vijlog t ViyTeg "t Yig o (10)

The vorticity distribution wu.(s) is taken as constant so that only the first
terms of (9) and (10) are predent. In fact, the vorticity is handled exactly
as in the base method [1], except that the integral is over a curved element
rather than a flat one. The form of equation (10) makes it easy to investigate
the effectiveness of retaining various terms in the source density expansion.
The relative effectiveness of flat and curved elements can be investigated by
setting ¢ either zero or nonzero in equation (4).

For j # i the integrals in (9) are evaluated by numerical integration
using Simpson's rule with a variable number of ordinates [2]. It is evident
from (9) that the three integrands are very similar and can be conveniently
calculated together., For Jj =1 the basic ring-source (or vortex) velocity
V[x,y,b,a] has a singularity of order 1/s at s = 0. Accordingly, resort
must be made to a series expansion in powers of s so that the singularity
may be cancelled analytically. These expansions are similar to those used in
the base method [2]. The quantities V[x,y.,b,als and V[x,y.b,als? are not
singular but for consistency they are evaluated by series expansions for
j =1, Derivation of these expressions is straightforward but tedious and is
not pursued here. Formulas for these expansions are contained in Appendix B.



ORGANIZATION OF THE CALCULATION

In the most general case all three integrals of equation (9) must be
evaluated for both the axisymmetric and the cross-flow type of source density.
Thus including the vorticity, which requires only the first integral of (9),
there are seven vector integrals in the higher-order analysis as opposed to
three in the base method. In axisymmetric flow there are two velocity compon-
ents, axlal and radial, while cross fiow has an additional circumferential
component. Thus the total number of scalar integrals can be seventeen rather
than the seven of the base method. However, the final number of scalar N x N
induced velocity component matrices that must be stored and used is the same in
the higher order and base methods, namely five,

As described above, the normal velocity boundary condition is applied at
the control point of each element to produce a number of linear equations equal
to the number of elements. However, the var1at1o? ?f source d n§1ty over an
element i ?escr1bed ?%)three parameters, and o. The deriva-

tives a4 and are expressed in t%rms of va1ues ofJ o by differ-
ent1at1ng the paraboia through the three values 0512 Oje and SR That is
(]) = + +
o5 Djaj-1 E. cJ F. 03+1 (1)
S8 2 N
.] G‘]U:j 1 HJO’J I. 593+

where the coefficients in (11) are standard numerical differentiation formulas
and depend only on the lengths of the three elements [3]. For the first {or
last) element of a body the parabola that is differentiated passes. through the
first (or last) three values of o, and the formulas of (11) are modified
accordingly. This last feature could introduce error if a smooth contour is
defined with the first and last points coincident, as for example, a torous.
However, this case is too rare to be of great significance. The above pro-
cedure is appropriate for all inlets and ducts and alsc for simply-connected
bodies, which are input from the upstream stagnation point to the downstream
stagnation point.

From (10) and (11) it is evident that the velocity induced at a point by
an element is a linear combination of three neighboring values of o. The
matrix that is needed for subsequent calculations is the one giving the veloc-
ity at each control point due to each value of source density. As the calcu-
lation proceeds to calculate the velocity at a control point due to successive
elements, the velocity induced by the j~th element is not associated entirely
with o, aJ in the base method, but certain portions are associated with
0j-1s 0%, and c in the obvious way. When all elements have been accounted
for, th% velocity al a control point due to each value of source density has
been formed as the sum of contributions from three elements except for those
due to the first and last values, to which two elements contribute and then
those due to the third and third-to-last values, to which four elements contri-
bute. The result of this phase of the computation is a matrix V1J, such that
the velocities at the control points due to the body are

10



N
v =Zv1.jaj, i=1,2, .e.s N (12)

There is a single vector matrix V for the axisymmetric.source densities,
one for the cross-flow source dens1%1es and one for the axisymmetric vortic-
jties, just as in the base method. Moreover, as in the base method, the vortex
velocities are not saved individually. Instead the velocities produced by all
elements at a control point are added together to give the velocity at that
control point due to a vortex sheet of constant unit strength, This auxiliary
onset flow is used in certain inlet and ring-wing applications.

Thus the result of this phase of the calculation is a set of matrices Vs
~and vorticity onset-flows equivalent to those of the base method. In fact, J
all subsequent calculations {2] are identical for both base and h1gher—order
methods and do not depend_on how the V matrix was produced. In particular,
the normal component of Vis is the coe+f1c1ent matrix of the linear equations
for the values of source density. The right sides of these equations are the
negatives of the normal components of the onset flows, either uniform or other-
wise. Once solutions have been obtained, the flow velocity at each control
point {or any other point) is calculated for each onset flow by adding a sum of
the form (12) to the onset-flow velocity at that point.

Explicit coefficients for the numerical differentiation formula (11} are
presented in Appendix C.

11



DISCUSSION OF RESULTS

Comparison _of Calcujated Results with Analytic Solutions

To determine the effectiveness of the higher~order technique and to evalu-
ate the importance of the varlous terms in the expansion, a considerable number
of calculations have been performed for a sphere and for a 8-to-1 prolate spher-
oid, for which analytic solutions are available., The first conclusion that can
be drawn from thfi? calculations is that the addition of the quadratic source
density term oy never yields an appreciable increase in accuracy regardless
of whether flator curved surface elements are used. In every case the solution
that utilizes only oj .3nd oj 1) is virtually indistinguishable from the one
that also includes c-( . In what follows, the solution that utilizes curved
surface elements and Q Tinearly varying source density is denoted "higher order"
while the flat-element constant-source solution is denoted the base method.
Solutions obtained with other combinations of* terms are labeled explicitly.

Calculations were performed for a sphere represented by 60 equal-length
elements of 3° subtended angle. Four solutions were obtained. 1In addition to
the higher order and the base method, two inconsistent solutions were obtained:
that using the curved-elements constant-sources and that using flat-elements
linear-sources. The higher-order solution was also calculated for a 12-element
sphere whose elements each subtend a 15° angle. Results for a uniform onset
flow parallel to the x-axis are presented in Figure 3, which shows differences
between calculated and analytic surface velocities. The importance of mathe-
matical consistency is evident. Accounting for either source variation or
element curvature separately produces no improvement on the base method. How=-
ever, when both are accounted for, as in the higher-order solution, the result
is a large gain in accuracy — about two orders of magnitude. Even the 12-element
higher-order solution is an order of magnitude more accurate than the 60-element
base method and also requires an order of magnitude Tess computing time.

If the uniform onset flow is parallel to the y-axis, i.e., a "cross flow,"
the calculated results are slightly different from those for the case of onset
flow parallel to the x-axis, because in the former case the conoidal surface
elements do not have the same axis of symmetry as the flow field. Errors in
calculated surface velocities are shown in Figure 4. Figure 4a shows velocities
along the profile curve in the plane containing the onset flow vector and the
body's symmetry axis {xy-plane). Figure 4b shows velocities along the curve
in the plane perpendicular to the onset flow and containing the body's symmetry
axis {xz-plane). In this last plane the analytic velocity has a constant value
of 1.5 and is parallel to the onset flow vector. The gain in accuracy from use
of the higher-order solution is not as impressive in Figure 4a as it is in Fig-
ure 3, but it is still present. In particular the 12-element higher-order
solution is still at Teast as accurate as the 60-element base method. The
ineffectiveness of the two inconsistent solutions is quite clear. The results
of Figure 4b are similar, with one exception, to those of Figure 3. Both the
60-element and the 12-element higher-order solutions are much more accurate
than the 60-element base method. However, unlike the case of Figure 3, the
gain in accuracy of Figure 4b is due Targely to the use of curved elements
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while the yse of a variable source density has virtually no effect. However,
the fact that this is true forone velocity component out of three does not
change the basic conclusion that in general a consistent formulation is required
to obtain a significant increase in accuracy.

The relative effectiveness of the two methods of solution for an 8-to-1
prolate spheroid is illustrated in comparing results for the base method using
60 elements with results for the higher-order method using 30 elements. For
these element numbers the higher~order method is approximately four times
faster than the base method. Somewhat different distributions of elements are
used for the two methods. The distribution used for the higher-order method
concentrates elements in the high-curvature region to a greater degree than that
for the base method. Correspondingly, the higher-order solution uses very
few elements in the low-curvature region, but it is able to maintain accuracy
in this region because of the use of variable source density. Generally, each
method is used with the element distribution for which the best solution is-
obtained., (Similar experience is reported in [3].} Differences between cal-
culated and analytic surface velocities are shown in Figure 5 for the axisym-
metric case where the onset flowis parallel to the body's symmetry axis (x-axis)
and in Figure 6 for the cross-flow case where the onset flow is perpendicuiar
to the body's symmetry axis (parallel to the y-axis). To put these results in
perspective, the maximum value of surface velocity is about 1.0293 times free-
stream velocity for the axisymmetric case of Figure 5 and about 1.9447 times
free-stream velocity for the cross-flow case of Figure 6. In the xz-plane,
Figure 6b, the velocity is parallel to free-stream and has a constant magnitude
of 1.9447, The curves of Figures 5 and 6 epphatically show that in addition to
being much faster the higher~-order technique is also much more accurate than
the base method. The substantial gain in accuracy that can be achieved by use
of the higher-order method for cases of smooth convex bodies is in marked con-
trast to the two-dimensional case [3].

Interior Flow in Ducts

In two dimensions [4] the greatest gains in accuracy from use of the higher-
order method occur for interior flow in ducts. To investigate the behavior of
the present axisymmetric case, the first geometry selected is the analog of one
previously considered in [3], namely the case of a uniform onset flow into the
closed duct shown in Figure 7 (an interior hemisphere cylinder). The flow
inside the duct should be virtually stagnant, and the average axial velocity
component at any axial Tocation should be exactly zero. Thus, the average
axial velocity is a measure of the calculational error. The base method with
55 elements gives a typical error of 15 percent of free-stream velocity. Use
of the higher-order technique reduces this error by a full two orders of
magnitude.

A more practical case is that af a contracting duct of area ratio 16 as
shown in Figure 8. The contracting section is a portion of a sine wave. By
continuity the net flux of fluid at every axial station should be identical,
so changes in this flux represent calculational error. Net fluxes have been
calculated at five stations as shown in Figure 8 and normalized with respect
to the flux in the large constant-~diameter section. It is evident that the
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use of the higher-order solution reduces the maximum error in flux by a factor
of about 25,

Injets

The most frequently~occurring type of axisymmetric body is an inlet.
SimuTating an arbitrarily prescribed mass flow ratio through the inlet requires
use of an artifice that is described in detail in Appendix D. Basically, three
flow solutions are required: that about the empty inlet in a uniform onset flow
at zero angle of attack (Figure 9a), the pure cross-flow due to a uniform stream
at 90° angle of attack (Figure 9b), and a static solution, where there is flow
through the inlet but no onset flow. This last solution can be obtained either
by the use of an interior suction surface (Figure 10a) or by use of surface
vorticity (Figure 10b). The first two solutions are no more difficult than those
for flow about simple closed bodies. It is the static solution that can lead to
numerical difficulty and may require large element numbers.

Several inlet goemetries were studied with both the higher-order solution
and the base method for two or three different element numbers. Since results
for all inlets are similar, discussion here is concentrated on the results for
the inlet-centerbody combination shown in Figure 11. The control station where
mass flow ratios are evaluated is at x = 13.4 and the inlet is terminated at
X = 44, about two diameters. Figure 12a shows an input point distribution
typical of those customarily used to define such an inlet — a total of 244
elements. The element number has been reduced by deleting every other input
point in the forward region, but the same element size is maintained on the
afterbody. The resulting input point distribution, which corresponds to 149
elements, is shown in Figure 12b. The same procedure was applied to the dis~
tribution of Figure 12b to produce the 103-element distribution of Figure 12c,
which has only one-fourth the density in the nose region as that of Figure 1Za.

The most surprising result of the calculations for all iniets and for both
the higher-order and the base method is that the calculated velocity distribu-
tions do not change much with element number. Thus, if a user contemplated a
series of cases, it would be profitable for him to do a little initial experi-
mentation with element number and select the lowest possible.

With regard to flow continuity inside the inlet, the higher-order solution
is an order of magnitude more accurate than the base method, but the latter is
accurate enough for most purposes. The only real advantage in this regard for
the higher-order solution is that its control station may be located anywhere,
while the base method should have its control station as far forward as possible.

The higher~order solution and the base method give virtually identical
results for the two solutions of Figure 9. This was not unexpected. However,
for the static solution of Figure 10, the higher-order solution offers an
improvement in accuracy over the base method for the same element number. The
improvement is modest if the surface-vorticity method of generating a static
solution (Figure 10b) is used, but is quite substantial if the interfor suction
method (Figure 10a) is used.
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When the surface yorticity solution for the inlet of figure 11 was calcu-
lated, the 244-ejement and the 149-element higher~order solutions gave graphically
identical velocity distributions, which may be regarded as the "correct" answer,
This 1s compared in Figure 13 with: the 103~element higher-order, the 103-element
base method, and the 244~element base method. The 103-element higher-order
solution is clearly superior to the 103-element base method and is at Teast
comparable to and probably superior to the 244-element base method, which
requires at least six times as much computing time. '

~ The suction method of simulating a static case (Figure 10a) was calculated
with 149 elements for both the higher-order solution and the base method. For
both solutions the suction element was placed at x = 44. The resulting veloc-
ity distributions are compared with the “correct" (i.e., 244-element higher
order) solution of Figure 14, It is evident that the higher-order solution
‘effects a considerable increase in accuracy on the inside of the inlet. In
fact, the very close agreement of the two quite different higher-order solutions
of Figure 14 is further evidence that the 244-element {or 149-element) higher-
order solution with surface vorticity is indeed the "correct" static solution.
However, on the outside of the inlet the difficulties associated with suction
solutions (Appendix D) are evident. Rather than a montonically decreasing vel-
ocity of constant direction (towards the inlet 1ip} the suction solutions have
stagnation points aft of which the flow is in the wrong direction, Moreover,
the higher-order solution is not much better than the base method. Aft of the
ficticious stagnation point of the static solution the calculated variation of
surface pressure with mass flow ratio has the opposite sign from the true
variation. Thus, 1f the outside of the inlet is of interest, the surface
vorticity method of simulating a static solution should be used in preference
to the suction method. The previous statement is true for all inlets where
the outside surface is essentially parallel to the inside surface at aft loca-
tions {Figure 11). It does not hold for "bellmouth" or "flush" inlets, which
are characterized by the fact that the outside surface does not bend around
and eventually assume a constant radius (constant value of y) but instead
proceeds radially outward to large distances at a nearly constant value of x.
For these inlets, the suction method and the surface vorticity method of simu-
lating the static solution are essentially equivalent.
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CONCLUSIONS

The higher~order method (parabelic-element Tinear=-source) fs both faster
and more accurate than the base method (straight~line-element constant-source)
for exterior flow about simple bodies and for interior flow in ducts. The
precise amount of improvement depends on the body shape and on the veiocity
component considered, but an order of magnitude improvement in both speed and
accuracy has been obtained in apparently typical cases,

For inlet flows the effectiveness of the higher~order method is less
dramatic, but it still appears to offer some improvement over the base method,

Use of a surface vorticity distribution to generate a static solution for
inlets is much preferable to use of an interior suction surface.

Satisfactory results can be obtained in"inlet cases with fewer elements
than is currently customary.
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APPENDIX A
FLEMENT GEOMETRY FORMULAS

Q(xy_/,yy*,)
X

As 1in the present program the following geometric quantities associated
with the j-th element are computed from two adjacent input points (x., y.)

|
and (Xj_l_'l ] ‘yJ+1 ) -

=1
XO 2(xj+x.j+])
“ 5 vy + i)
Yo 77 Vi T Y54
- Y- Y
8=l = xg)% * (g~ yy) (A-1)
X — X
Cos“:.iﬂ_r_;
Yigr — Vs
sina = .Jﬁﬂ_7r_;L
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Now the element curvature must be computed, Half the value of curvature
is stored. The half curvature is denoted c. However, the actual curvatyre
2¢ {s printed out on the preliminary out€ut, This is the only addition to
that output. The curvature of the j-~th element is computed as the geometric
mean of the curvatures of two circles: the "left" circle through the points
(xq_1, y{_1), (x4, ¥3)s and {xj41, y{+1) and the “right" circle through the
poTnts 1xj, ¥y)s (x3+1> ¥y4q)s “and xj+%, Yij#2). 1f the "left" and "right
circles have curvatures of oppostite sign, the élement curvature is set equal to
zero. The above scheme will not work for the first and last elements of a body.,
For the first element the curvature is set equal to that of the "right" circle
and the (nonexistent) "left" circle is ignored. For the Tast element the curvy-
ature is set equal to that of the left" circle and the (nonexistent) "right"
circle is ignored. This scheme is proper for the overwhelming majority of bodies:
(1) finite body on axis, e.g., a sphere, {(2) semi-infinite body on axis, e.q.,
a hemisphere cylinder, (3) a semi-infinite body off the axis, e.g., an inlet,
(4) a duct, and (5) a ring airfoil with sharp trailing edge. The only exception
is the smooth "donut type" body for which it would be preferrable to form a
"left" circle for the first element using the second-to-last input point and a
"right" circle for the last element using the second input point. However, this
case does not seem to be important enough to justify an option,

The basic calculational unit of the above is the computation of the curv-
ature of a circle through three given points. Let the points through which
the circle goes be (x1, y1)s (X3, ¥5)s (X3, ¥3). The order of the points is
important, because it determines the"sign of tﬁe curvature. In the present
application the curvature is negative on convex portions of the body. The
curvature 2c s

_D
2c = R (A—Z)
where
D = 4L(xy ~ XMy, =¥} = (x5 — x3){yy ~ y;)]
R = J(sz - Dn)2 + (Dy, — Dk)z (A-3)
D, = 2[(x§? * yf)(y3 —¥p) * (xg + yg)(jq —¥3) * (xg + yg)(yz -yl
B, = 2[(X$ * 3/12)(242 ~ xg) + (xg + yg)(x3 —xp) * (xg + yg)(xl ~ x,)]

Once the curvature is known the offset distance n, (see sketch above) is
determined by passing a symmetric parabola with that curvature at the vertex
through the endpoints, This gives

n. = =C -ﬁ‘—— (A-4)
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Then the control point coordinates are

|

=x_ —n. Ssin o
° (A~5)

Vv = + S a
Y=Yy T Ng 0

These now replace xo and yg, which are discarded. The contro) point (x, y)
also serves as the origin of element coordinates.

The "half" arc length s' of the curved element is obtained from
1 2.2
s! = %-(1 + 7 ¢n°) (A-6)

The arc Tength as on the Basic Case output is
As = 2s' ‘ (A~7)

A1l integrations versus arc length used to construct the induced velocity
matrices have integration limits of -s' to +s'.

There is also an option to input curvatures for each element. If this
option is used, the curvature computation is bypassed, and a table of curva~
tures for all elements of all bodies is input, These are divided by two to
produce the half curvatures c¢, which are stored with the basic geometric
data for each element. Quantities saved for each element are

X, ¥s Cy A, SiN @, €OS Gy S (A-8)
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APPENDIX B
SINGULAR SUBELEMENT EXPANSIONS

The logical structure of this calculation is described in {21, [61, [7].
First the half arc length s' is tested. If

s' < 0,085 (B-1)

then the effect of the entire element is given by the singular subelement series
(discussed below) and the argument of this series S' is

S'=s'y (B-2)
If on the other hand,
$' > 0.08 y | (B-3)
then the effect of the "middle" of the ejement, i.e., the portion
-0,08y <s < 0.08y (B~4)
is given by the singular subelement series with argument
' = 0,08 (8-5)
The “ends" of the element, i.e., the two portions
~s' <5 <~0.0BYy and 0,08y <5 <s' (B-6)

are treated as two off-diagonal elements and their effects are computed by the
numerical integration scheme of the section Induced Velocity Matrices.

The required singular subelement series are logically similar to those of
the base method, which they replace. These series are listed on the following
pages, equations {B-9), {8-10), (B-11), (B-12}, (B-13), (B-14), and (B-15).
The only new parameter in these equations is

C=cy (B-7)

These equations lack the additional 2ggj normal velocity term. Thus, f??se
terms myst be added to the coefficient of o3. (The coefficients of oj
and o412) are not affected.) The terms to"be added are:
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Axisymmetric X : 27 sina

y : =21 cO0S o

Cross Flow X : 2m sin o
¥y ¢ =27 c0s a (B-8)
) 0

Yortex X i 27 CO0S a

In the formuias below the notation of the left sides is chosen to be consistent
with [6], [7]. '

Axisymmetric Source

(%%)p = cj; 2 sin o (cos o —-ZC)S' + (%ﬁ—sin o COS a [sinzu + l%-+ In %l]

+ %E-an o _sinza + %—-2 cos o + 8 InS' —1In 8 —4C(1 + cos u)])S'B%

(M5 , (cosu 6 cinl S
+ 9 y1{4 cosa S + |, 36[6 sTﬁ o +7 +6 1In E‘]

+'§£-[coszd -2 sinzd — 2C cos a])S'B‘

+ a§2)572 ]%— sin « (cos o — ZC) 513 } (8~9)
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1
cj}(z S'inza + 2 In §—+ AC cos u)S'

. 4 L2 . S'
+(T[251na+351na 3 BTng-]

NI =t

+ —%[- cos o (6 sina + ‘; +31n8)—4+21ns' +8C(1 ~2C cos a)])5‘3s

(1) ; ' : € einl. S'y .4 . _ ,3‘
+cj y {4 sin aS' + s1na[651na 11+61n3—J+§CS1na[c05a C] S

+o(2)_2¥—§— S?na+§+ ]ngs-'—+20 cos a)5'3$ (B-10)

Cross-Flow Source

(&),

22

oj% 2 sin a{CDS a— ZC)S'

-G
¥ (2 sinae Ccos a[z sinza—g -6 1In 85“]

+ &

5 [sinu (-6 sin2u+ 4 sin o—5+61n8 —4 cosza)

[ ]

+2—-61nS" —16C sin o (cos a— C)])S'BE
(]) ] .I * 2 S’
+c:J 4 coso S T?‘COSO‘["z sin a+3+61n—-]
?3-9 [CDSZG—S'inzu-—ZC sin a])8'3g

+ ogz)yei%sina(cos a—zc)s'3£ (B-11)



(?E) ;(2 sinfa + 4 + 2 1n%—+ 4c)s'
o

2, _ 43— 24 1n-g—')+9+27 1n§'—]

+(—;——lsin2cz (6 sin g

2

+ -g[cos a(~3 sinZe + 7 + 5 1n g-'-) — 1+ 4C cos a{cos a — 2c)])s'3i

-+

cy)y;“l sin aS' +(Sm = I 6 sin a+29+30 'Ing ]

%C sin a[cos a —CJ)S‘at

+
+ (2)—21 sina + g + In §—+ 2C cos u)S 3'; (B-12)
(F38), eyt ofds o e v
+%[ -4 cos o+ 6 —6cos o 'lng ])S'Bs
(1) ’ sin u(g + 1n g )S' £+ 0(2)_23 =+ 1n %-'—)5‘3£
(B-13)

Axisymmetric Vorticity

V;( (vortex) = (-2 S'inzcc +21n %—’— 4C cos a)S'
+([J.;.—2- sina (-6 sinfa — 72 cos n+ 23+ 12 In -Sg'—) —%— (1 + 1n %—i—)

+ [cos (54 sin%e —11 +6 Tn 8 + 30 1n ') — 12

L
h

+ 24C (3 sinza — coszu — C cos o;)

)5'3 (B-14)
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V)" (vortex) =(2 sin a[cos o — ZCJ)S'

"(%ﬁ' sin o cos a[—z sin2

C . 2
+ -rzsin a[66 sin"a + 31 — 12 cos

—~18 Tn 8 + 48C cos a])S'3
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a+9+61n§l]

2

8

a+33-§1n s!

(B-15)



APPENDIX C
NUMERICAL DIFFERENTIATION FORMULAS

First the options must be applied as follows:

Constant Source Option — set Tﬂ-) = V:?J =0

1
J
Linear Source Option — set V{S) =0

Now for any element that is not the first or Jast of a body, compute the
quantities
-1 st +s!

Dy = s+ 172(s T ¥ 5! R
3o sy ¥ M2sy g *sy)] sy sy
1 ] 1 1
i e I A e B
] 55 / (sj_} sj+1)] S;FSi1 SiTSig
I ]
Fi = T T2 S T
I 2lsy v l/2ls; #5541 syt sy
(c-1)
1
G; = T =T =T T T
Jj 2Isj + 1/2(sj_] + Sj+1)](sj + sj_1f
Hy = g7+ 5 }%31 ¥ sty
J J-1"7 J+
I, = 1

al ] I I T
Jj 2[sj + I/Z(Sj_}‘+ st}J(sj + Sj+1)
where the "half arc length" s' of an element is defined in Appendix A. These
are used in (11).

When computing the effect of the first (j=1) element of each body, (11)
is replaced by

cr-f}) Ac-l + de + CUB

(c-2)

(2) _
0'1 - GzU] + H20'2 + 1203
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Here the quantities Gg, Hp, Ip are given by (C-1) with j=2, i.e., they are
the same as the second element's (but they multiply different quantities}. The
new quantities are

sé + si + 1/2(sé + 55)

A=~ Tep ¥ ssy F V/2(sT + 5501
st 4+ 1/2(s! + s!)
oo 2 1753
B =2 (57+ s3)(s5 + 53) (C-3)
el 51+ 5

= T2 sy ¥ silsy * 1/2(s] + 5371

When computing the effect of the last element on a body, say j=L, (11)
is replaced by

"

UE]) Xo

+ Yo + Io

L-2 L-1 L

(C-4)

G{z) + H

6 102 * Hooa) T L9

where the quantities G).1. H.1s I —1 are given by (C-1) with j=L-1, i.e.,
the same as the preceding element (bu used differently). The new quantities

are
[ 1

X = l‘ SL—]: SL T T

| ) ]

o+ 1/2(s)! , t 8]

V= 2 k] i SL? (c-5)

(s]_p ¥ 5[ ) sy + 5)

] ]

B T WS 5 T

B OREERICEERACEREH)
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APPENDIX D
BASIC SOLUTIONS FOR INLETS AND SHROUDED PROPELLERS

A common application of the present method is the calculation of flow over
the forward portions of inlets or propeller shrouds. In such cases a complica-
tion arises from the necessity of obtaining the desired total flow through the
inlet — the so~called mass flow ratio. (The effect of all the interior machin-
ery 1s lumped into this quantity.) The straightforward way to handle this prob~
Tem is to simply define by input points a surface across the interior coinciding
with the actual propeller plane or compressor face and to specify the desired
mass flow as a nonzero normal velocity on this surface. This procedure fails
for reasons related to the inability of the present method to handle internal
corners, The calculated flow in the neighborhood of the simulated compressor
fai?fjs erratic and not physically meaningful. Thus resort must be made to an
artifice.

The forward portion of the inlet is artificially extended by means of long
afterbodies with constant inner and outer diameters as shown in figure 9. A
forward location is selected in the region where the flow is of interest, and
it is designated the control station for mass flow ratio. Often the choice is
the propeiler plane or compressor face, Three fundamental flows are calculated.
The first two are i1lustrated in figure 9. The Tong afterbody is left open at
the rear and flows calculated for uniform onset flows at 0° and 90° angle of
attack. The 0° flow gives a certain value of mass flow at the control station.
This value cannot be predicted a priori, but it is usually near unity. The
90° flow is a cross flow and gives zero net flow through the control station.
These two solutions can be combined to give an onset flow at any angle of
attack, but the mass flow ratio is always that obtained from the 0° onset flow.
To obtain other mass flow ratios a third basic flow is required.

The third basic flow is that for the inlet in static operation. That is,
the flow is zero at infinity but has a finite mass flow at the control station.
This flow can be 1inearly combined with the first two to give the fiow about
the inlet at any angle of attack and any mass flow ratio at the control station.
Thus all solutions are obtained from the basic three.

It is the third solution for static operation that leads to numerical dif-
ficulty. Two methods of obtaining it are illustrated in figure 10. The most
strajghtforward procedure 1s that illustrated in figure 10a. A surface is
placed across the interior of the ilet far back in the constant diameter region,
and a nonzeroc normal velocity is prescribed on this "suction" surface. The
flow in the neighborhood of the surface is meaningless as described above, but
jt smooths out upstream and is well-behaved at the control station. The mass
flow obtained at the control station may be different than that specified on
the suction surface, due to "leakage" caused by numerical errors. However,
since this solution is to be linearly combined with other solutions, the exact
value of mass flow {3 unimportant. This value is essentially absorbed in the
combination constant.

27



The sqlution of figure0a gives good results ipside the inlet and around
the Tip, but inaccuracies enter in the exterior region, Because a finite
number of surface elements are used, the exterior flow "sees through" the
inlet surface directly to the suction surface and is pulled towards that
surface., Thus as shown in figure 10a there is a stagnation point on the
exterior syrface. Fluid to the left enters the inlet mouth, while fluid on
the right flows aft along the inlet. Foy the exact solution, which could be
approached by using a very Targe number of elements, the inlet surfaces "screen
out" the suction element from the exterior flow, and the suction effect is felt
solely through the inlet mouth. Thus the actual flow is to the left over the
entire exterior surface with the velocity falling rapidly tc zero with increas-
ing distance from the inlet mouth., The calculated velocity is not large, but
it is in the wrong direction in this region,

For the exterior region, the scheme shown in figure 10b gives a more
accurate solution for static operation. A constant unit strength vorticity
distribution 1s taken to 1ie on the surface. Of course, the normal velocity
on the body due to the vorticity distribution is not zero, and a surface source
distribution is also required. The flow field of the constant vorticity dis-
tribution provides another onset flow to the body, and the values of source
density on the elements are determined in the usual way to give zero normal
velocity at all control points in the presence of the vorticity distribution.
The only difference between this flow solution and the solution for a uniform
onset flow is the right side of the Tinear equations. (This device also pro-
vides Tift for airfoils [4], although for axisymmetric inlets the vorticity
is ring vorticity.) It can be shown that if the afterbodies are infinitely
long, even with finite-element lengths, the solution obtained in This manner
is the correct static solution. Specifically, there is constant flow far back
inside and outside a leftward flow that falls to zero with increasing distance
from the inlet Tip (figure 10b). The error in this case arises from the fact
that long finite afterbodies Tead to small nonzero velocities on the exterior
surface, but this velocity is in the right direction.
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BASE METHOD 1.OO0O 0.9853 0.6794 0.7340
Figure 8. Flow in a contracting duct of area ratio 16 with total velocity fluxes calculated at various

locations by the higher-order and base method.
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Figure 10. Two methods for simulating fiow about an inlet in static operation.

(a} Interior suctfon. (b} Surface vorticity.
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& Figure 13. Calculated surface velocity distributions on an inlet tn static operation simulated by a
surface vorticity solution.
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Figure 14. Comparison of calculated surface velocity distributions on an inlet in static operation
simulated by the two methods.



