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I. SUMMARY

Dissimilarmetal joints in thermionicpowerconversionsystemscandegradethroughmaterial

interdiffusion. Suchdegradationeffectsoccur (1) ascracks in brittle intermetalllc phaseswhich

formin the juncture; (2) a._Kirkendallvoidswhich formin one side of the juncture; (3) or

asan impuritywhich reducesthe emlttanceefficiency of the diode. In order to resolvethe

time dependencyof theseeffects, an experimentalstudywasperformed. Fourdiodeemitter

materials, (1) arc casttungsten;(2) CVD tungsten;(3) powdermetallurgyrhenium;and (4)

CVD rheniumwere autoclavehot isostaticpressureor hot pressweldedto each of thestructural

supportalloys listedbelow:

Cb

Cb-lZr

Ta

Ta-10W

T-111

ASTAR811C

Mo-.SORe

W-30. 9Re-20. 1Mo

W-25Re

W or Re

Theresultingbimetallic interdiffu_oncoupleswere vacuumagedfor periodsof 100, 1000,

and 2000 hoursat 1200, 1500, 1630, 1800, and2000°C. Metal!ographlcinvestigationas

well as electronmicroprobetrace andspotcountscanswere employedto analyze theextent

of interdlffuslonasa functionof age time andtemperature. Computerprogramswere employed "

_. to correctthe microprobeanalysisdata for fluorescenseand adsorptionandalsoto performthe
Boltzmonn-Mantanoanalyslsof the lnterd|ffuslonconcentrationprofiles. Engineering#,

•i ' 1
I
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relationships were established to predict the extent of interdlffusion for each systemas a

function of age temperature and age time. These relations are expressedfor each couple

systemin the form:

In( )= + A (1)

where Z_X i, the net interdiffuslon zone width (cm)

t is the age time at temperature (sec)

T is the age temperature (OK)

and A, B are constants.

Table 1 presentsthe parameters A and B for equation (1) for the interdiffusion systems

studied.
1

I

High temperature solid state interdiffuslon between two metallurgically joined metals of

widely different melting points can also result in a coalescence of vacancies in the lower

, melting point material. The resulting pores form in a plane on one slde of the juncture

, and can result in fracture in t{_at plane, as well as th,'ough leakage of cesium plasma or e

containment gases. A method was devised to retard the formation of these Kirkendall

voids, a,ld a cursory investigation showed it to be quite successful.

Although all of the selected diffusion junctions survived the one age thermal cycle without

fracture, several observations could be noted. Welded (hot isostatlc pressure)interfaces

with Re are not recommendedfor long term elevated temperature service due to brittle

intermetallic phasesand cracks which formed in the diffusion interface during short term

,_. thermal ageing. Nonplanar joints such as tubular (concentric cylinder) face joints with Re
to Ta all cracked and fractured in the interdlffuslon zone. Tungstenjoined to columblum

_lt
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I

Table 1. Parameters to Predict Net Interdlffus_on Zone W_dth

As a Function of Age Time(t-seconds) and Temperature (T - OK)

In ( ) = B(T)+A

(with 95% confidence limits)

System A B

W/Cb, Cb-1Zr -3. 8689 + 0. 2266 -37, 390 + 2810
m

Re/Cb, Cb-1Zr -0. 4899 + 0. 2266 -43, 880 + 3060

W/Ta, Ta-10W -7. 3385 + 0. 1891 -35,290 + 2210

W/"T-111, ASTAR -3. 3585 + O. 1530 -44, 720 + 3760

Re/Ta, Ta-10W -7, 1024 + O.0980 -35,020 + 11O0 :

Re/T-111, ASTAR -6.4489 + O. 1374 -36,560 + 1730

W/Mo-5ORe +0. 1554 + O. 1921 -45, 140 + 4500

Re/Mo-5ORe -8,4797 + O. 1466 -30, 140 + 2940

W/W-30. 9Re-20. 1Mo -7. 2084 + O. 1719 -34, 750 + 3890 '
w

Re/W-30. 9Re-20. 1Mo -9. 3027 + O. 1440 -28,580 + 3290

W/Re -4. 4641 + O.3317 -41,300 + 7470 ::

' W/W-25Re -2.1992 +_O.4407 -47, 1O0 +_9930 1

Re/W-25Re +2.4148 + O. 5513 -53, 990 + 11,900
-- -- t

I

1
: I

e

I

!
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1

and tantalum alloys were not subject to joint cracking but were susceptible to considerable

KTrkendall void formation. The most acceptable joints for long term high temperature servlce

should be those of W to alloys such as T-111 or ASTAR-811C after being pretreated for

Kirkendall void [nhibltlon.

Stl.dles were also conducted into the weldabillty of Re/Cb-1Zr and Cb-1Zr,/W-25Re

systems. EBweld parameters suchas beam energy, width, traverse speed, sample geometry,

etc. were evaluated.

Successfulelectron beam welds were produced between Cb-I Zr alloy and W-25Re or Re.

I These joints had braze characteristics in that the lower melting point Cb-lZr was meltedagainst the more refractory material, and little intermixing occurred. Due to the brittle
t

!
nature of these welds and the limited extent of thls study, employment of junctions of

these materials cannot be recommended for specific appllcatlon without more deflnit've

characterlzation.

Lq

° 4

1974025933-020



(_) AstronuclearLaboratory

II. INTRODUCTION

In-core and out-of-core thermlonic power nuclear reactors operate on the prlnciple of thermal

emissionof electrons. Metals with low electron thermal emission energies are heated to

elevated temperatures, 1500 to 1800°C, where the electrons are emitted, traverse a short

gap, typically 5 to 10 mils (0.25 mm) and are collected on an adjacent, lower temperature

metal. Such diodes typically employ tungstenor rhenium as the emitter material, and colum-

b{um, for instance, as the collector material.

Problemsoccur in that the most ideal emitter materials, rhenium or tungsten, are not neces-

sarily the best high temperature strength or load bearing materials, nor the mosteasily joined

materials. Consequently, the pure emitter materials mustbe joined to more sophisticated

refractory metal alloys to satisfy fabrication or structural requirements. Joining these materi-

als is accomplished by (1) hot isostatic pressure('-I_P) welding in an autoclave; (2) hot press

joining; (3) electron beam (EB)welding; or (4) chemical vapor deposition.

Most of the diverse properties that occur in the material juncture region result from:

• Material intermixing

• Formation of brittle intermetolllc phases

• Thermalexpansion mismatching of phases

• Kirkendall void formation

• Penetration by diffusing structural materials to the emitter surfaces

and are dependent upon/or strongly influenced by the rate of ]nterdlffuslon (intermixing) of the

parent binary metal combinations at elevated temperatures. For instance, thin interdlffu_on

zones composedof brittle lntermetallic phasesare mostresistant to thermal cycling or-,t

" l),r stressfracture than thicker zones. Also, the thermlonlc emissionefficiency can be reduced by
#

/_ the introduction (diffusion) of trace levels of other elements from structural support members

to the emitter surfaces. The ability to predict the extent of interdlffusion between emitter/4"

I

....,.,.__ .._ _ ....
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structural material combinations would be valuable in the design selection of diode components.

This studyquantitatively characterized the interdiffusion behavior of tungstenor rhenium emitter

materials to several refractory metals and thelr alloys. Predictive models of the extent of

interdlffuslon as a function of material combination and temperature for long age iapplication)

times were resolved. Also, the various material combinations selected for analysis were

studied for juncture cracking, Kirkendall porosity, and interphase growth. Figure 1 presentsa

guide to the operational sequence of events fol lowed in the performance of this study.

_ 6
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III. MATERIAL SYSTEMSAND SOURCES

Although many emltter materials could have been selected for this study, tungsten and rhenium

were chosenfor thelr high temperature properties and general acceptance as leading thermlonic

emitter candidates. Chemlcal vapor deposltion (CVD), arc cast, and powder metallurgy product

materials were selected to resolve if any structural effects could be observed in the measured

interdlffuslon zone growth analysis. Selections of alloy structural support materials were made on

the basisof (1) a good cross-sectlon (representation) of alloy bases(i. e., columbium base,

tantalum base, tungstenbase, molybdenum-rhenlum base), (2) general acceptability to high

temperature structura! supportapplications, and (3) posslbilltles for observing the effect of

sequential alloy additions on interdlffusion rates (i. e., Ta, Ta-10W, T-111, ASTAR811C).

Table 2 presentsthe diffusion couple combinations that were selected for detailed experimental

study.

Selectlons of the experimental age temperatures to employ were bounded by the following con-

stralnts. Age temperaturesfor each alloy were restricted to that temperature regime where

they would normally be employed. Also, the tungsten or rhenium to alloy couple was inves-

tlgated for possible low melting eutectic conditions which could occur upon interdiffuslon.

Thus, Cb and Cb-lZr systemswere diffusion aged at 1200, 1500, 1630, and 1800°(: while

W-25Re systemswere aged at 1500, 1630, 1800, and 2000°C.

Since all of the systems,due to their differing characteristics, interdlffuw at different rates,

selection of experimental age times was critical. For instance, 100 hoursat 1500°C for the

W/Cb-1 Zr couple combination would result in sufficient interd|ffuslon for accurate exper-

+t_ lmental measurement. However, ageing W,/V/-25Re for 100 hours at 1500°C would be

_' analytically Impractical. In order to select the optimum experimental age time/age temper-
.w

ature condltiom to imposeupon the selected material couple combinations, an engineering

t

i 8
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Table 2. Diffusion Couple Material Combinations

Selected for Study

Emitter Side Allay Side

W(arccast) to Cb
W (CVD (100)) * Cb-1Zr

Re (powder metal product) Ta

Re (CVD (0001))* Ta-IOW

T-111

ASTARSIIC

t _-50Re
I

W-30. 9Re-20. I Mo _ ]

W-25Re (arc cast) i

W or Re !

4 emitter materials 10 structure materials _!

i
• Miller indices (100) indicating (100) planes parallel to

junction plane.

f

'. _ _" 9
i
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1974025933-025



'P¢ -e.-._

I level interdiffusion model w_s der_,-_:J ;_,_smodel, utilizing experimental results from

I similar material couple systemso_ ,..i-_tive entropy correlations, wasused to predict theI

i extent of ;nterdiffusion for the couple systemsselected for this program*. Thus, the optimum

age times necessaryto generate rec_dilyanalyzable (microprobe) interdiffuslon zones of adequate

dimension were quantitatively predicted with this model. The model, presented in Part II,

Appendix C, is also applicable to other diffusion couple material combinations not presented

in Table 1.

With the aforementioned conslderationsas a guide, the age temperaturesand times for the

material combinations selected were resolved as illustrated in Tobies 3 and 4. These

tables also contain the predicted interdiffusion zone widths as derived from the model. Thus,

in Table 3, for tungsten couples, columnsone and two descrlbe the age cyclic history
t

, planned for the material couples, and the remaining ten columm denote (by dots) the selected

age cycle treatment for each alloy combination. Short age times at low temperatures (1200°C)

were avoided as were 10ngage times at elevated temperatures. As a selection crlteria, only

, time/temperature conditions which resulted in a predicted Interdiffusion zone wtdth of 3. 8

x 10-3 cm (1.5 mils) (or 5. 1 x 10-3 cm (2 mils) at a 45 tie'tree angle to the interdlffusion

interface) or greatei were accepted.

Since the effects of small impurity levels in _,e couple materials could influence the dlffuslon

characteristics, high purity starting materials were desired. Table 5 lists the couple materials

usedfor the study and their trace chemistries. Vendor chemistrieswere verified with random

checks by our own analysis. Alloy constituencies are presented in Table 6 and were also

verified by our own analysis. ** Purchaseorder materials specifications were written to mini-

mize constituent Impurities, yet still permit economic alloy manufacture.

* Port II, Appendix C, Interdlffusion Predictive Model
. **Electron beam microprobe analysis, relative intensity ratio

i _ 10
J: , 1

__,_Dlmlli_l_, o_,__i_,_l_, ..............• _',_l._. _ i_'_'_ ..... _"_ ,_ _'_ _ _A2 _rr_ _*'_''" '" _ ......... _5, _" -_
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TablL 6. Alloy Chemistrie: and Properties

AI Ioy Composition Source

Cb Cb Wah Chang

Cb-1 Zr Cb-1. OZr Wah Chang

Ta Ta Wah Chang

Ta-10W Ta-9. 2W Wah Chang

T-111 Ta-8. 2W-1.9Hf Wah Changi

ASTAR811C Ta-8. 1W-1.4Re-O. 9Hf-O. 03C Wah Chang

Mo-5ORe Mo-49. 5Re Cleveland Refractory Metals

i W-Re-Mo W-30. 9Re-20. 1Mo G.E. Cincinnati

: Re (powder met) Re Cleveland Refractory Metals

W (arc cast) W WestinghouseAstranuclea r

, Re (CVD) Re San FemancloLaboratory

' W (CVD) W San Fernando Laboratory

' W-25Re (arc cast) W-25.6Re Wah Chang

Mo* Mo Cllmax Molybdenum

i

I
L

_I * Molybdenum used to encapsulate couple material for autoclave HIP-weld process.
I

_q
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TheCVD tungstenandCVD rheniumwere investigatedfor preferredorientationby x-ray

diffraction tests. X-ray diffraction peaksare recordedat varyingx-ray anglesby planes

(h k I) parallel to the samplesurface. Only certain planesgive reflectionsand peaks(/ ).

Structure factor calculations for tungsten (BCC)showthat only planeswith Miller indices

h + k + I = evennumberwill resultin reflections. Thus,the (100)planewill not yie!d a

peak, whereasthe (200), (110), etc., will. A similaranalysisappliesto rhen|um(HCP),

andagain onlycertain planeswill yield reflections. Table 7 presentsthe relative dif-

fraction peak intensitiesfor randomlyorientedtungstenand rhenium,andthe CVD products

usedin thisstudy. TheCVD tungstenwasfoundto be very stlonglyoriented with the (200) o,

planes(_ 100_fc_..7) parallel to the surface;and thusdiffusionoccurredperpendicular(.L_)

to the{ 100_familyof planes. TheCVD rheniumwasalsohighly orientedwith the (0002)
planes(_0001t family) pa _llel to thesurface;andthusdiffusionoccurredperpendicular(-L) i!

to the10001_family of planes. _

1

r

I

t

1

1
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Table 7. Comparisonof Relative X-Ray Diffraction Peak Intensities
for Randomand CVD Oriented Materials

Tungsten Rhenium

Plone ,/,,1 ,/,12 P,ane ,/,j1 _/,.2
(hkl) (random) CVD (hkl) ranaom CVb

100 100 1 100 32 ---

200 15 1O0 002 34 1O0

211 23 2 101 100 ---

220 8 --- 102 11 ---

310 11 --- 110 22 ---

222 4 --- 103 . • ---

321 18 --- 200 3 ---

400 2 --- 112 20 ---

201 15 ---

004 2 15

202 3 ---

104 2 ---

203 7 ---

210 3 --- i
I

211 15 --- I
I

1Relativeintensity; Diffraction peak intensity 114 8 --- i

divided by intensity of maximumpeak. These 212 5 --- !
data traceable to NBSreports, l

105 8 ....

'I,-;_ 2Relative intensity;NAS 3-13231 CVD 204 2 ---
_, materials(testsat WANL).

.m 300 5 ---

6_

i _ 16
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IV. FORMATION OF DIFFUSION COUPLES

Autoclave hot isostatlc pressure(HIP) welding was selected as the mode of forming the

diffusion couples. This method was chosen because it could accommodate a large number

of couple welds (all of the scheduled programcouples) in one autoclave cycle. Also, the

HIP welding processcould affect metallurgical, surface to surface welds at low tempera- .
H

tures with minimal material interdlffusion. Figure 2 illustrates, conceptually, the HIP

welding sequenceemployed. The diffusion couple fabrication sequencebegan with surface

preparation operations.

The materials to be surface welded to form diffusion coupleswere received in the form of sheets :i

(3.20 cm (1.250 inches)wide by 0. 20 cm(0. 080 inches)*thick by randomlength). Lengthsof '_

6.35 cm (2.50 inches) were cut by shearing or by carbide cutoff wheel. All material surfaces

were smooth(32 RMSor better) and flat. Light polishingwith 600 emerypaperandwater

wasusedto removethe faint surfaceoxides. The 3. 20 cm (1.250 inches)by 6.35 cm (2.50

inches)sheetwere then cleanedby subsequent

• Scrubbing with an abrasive cleaner

• Rinsingin hot tap water

• Rinsingin boiling distilled water

• RinsingIn ethyl alcohol

• and air drying.

The surfaceswere then chemicallyetchedas follows:

Cb t, 65 partsHNO 3 - 35 partsHF
i Cb-1Zr _" 1 minuteof 120_l:

_:_ Ta 15 partsH2SO4Ta-10W 20 partsHF
•It T-111 20 partsHNO3, 45 partswater i

ASTAR81lC 5 minutesat roomtemperature

*"0"_0 Inch thicknessdetermined by diffusion anaJysis boundary conditions. See Part II,
Appendix G, Diffusion Analysis.

+ ._. 17 ';
i
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W
Re No etch
W-Re-Mo
Mo-50Re

W-25Re I 30 partsHNO 3 - 20 partsHF - 50 partswater

Mo } Hot chromicacid

Molybdenumcontainercanswere drawnto thegeometryillustrated in Figure 2 from

O.051 cm (0.020 inches)thick arc castmolybdenumsheetproduct. Prior to theassemblyof

diffusioncouplematerialsin each molybdenumcontainer, all componentswere vacuumde-

gassedat 900°C at 10-8 torr for 2 hours. Duringthedegasslngcycle, all componentswere

individually wrappedin tantalumfoil envelopes. Figure 3 presentsa molybdenumHIP-

weld can in the processof assembly. A tantalumfoll sheetO.0051 cm (0. 002 inches)thick

by 3.20 x 12.70 cm (1.25 by 5. 00 inches)wasplaced in the bottomof the can. Next, the

tungstenor rheniumhalf of the plannedcouplecombinationwaswoundwith 0. 0051 cm

(0.002 inches)diameterW-1.0%ThO2 wiresat 0.08-0. 16 cm (1/32 - 1/16 inch) intervals.
Thewiresservedas interfaceIocatorsin the welded couplesand were involved in the

analytical treo_ent. Thewireshadbeensonicdegreasedandwere pulled throughan

alcohol lubricatedcloth grip in orderto removeoil and grease. Thealloy half of eachcouple

was thenplacedon the tungstenor rheniumhalf, another0. 0051 cm (0.002 inches)tantalum

foll added,and the flat sheetmolybdenumlid wasplacedoverthe couples. Theassemblywas

heldtogetherwith "C" clampsuntil joined by welding.

Precautionsweretaken to insurethat contaminationthroughhandlingwouldnot occur. All

' assemblyandhandlingoperationswere performedwlth teflon t|pped tweezersor by cotton

_, over plasticgloves. Care wastaken not to rubor touchiron bearingmaterialson expected
weld surfaces. Thediffusioncouplematerlalswerealsocross-loadedin the containmentcans.w

I_

' _ 19
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for redundancy. Thus, as in Figure 3, half of the can contained one a;Ioy to tungsten

couple material, and the other half of the can contained another alloy to tungsten couple

combination. Thus, if one can failed in the hiP welding cycle, a backup capability was

present. Also, the crossloading did not mix tungstenand rhenium in one can nor did it

mix alloy materlals of widely varying composition. In total, 48 cans were prepared for the

autoclave HIP welding operation.

Once assembled, the cans were placed in a TIG weld box, and after a twelve hour evacua-

tion at 10-4 N/m 2 (10-6 torr) were welded on three sides (edges) in an argon environment. :

Boxatmosphereswere normally in the 2 ppmoxygen and 3 ppm moisturerange, continuously

monitored during the weld cycle• Following this weld operation, the cans were immediately _

placed in an EBweld chamber, evacuated for 12 hours at 10"4 N/m 2 (10-6 tarr), and EB

weld sealed on the fourth (short)edge that had been left open.

The sealed molybdenumcanswere then dye penetrant inspected for weld crack_ _r flaws and !

were also helium leak checked. This operation was performed In two steps. The sealed cans

were placed in a retort which was evacuated and backfilled with helium to 15 psig and held _
for 15 minutes. Upon removal, the canswere plunged Into a methanol bath where bubbles

would indicate a gross leak. Following this operation, the cycle was repeated, and the cons

were helium massspectrograph leak checked and comparedto a 10"9cc (STP)/se¢ standard

leak. Leaking cans were opened, and their contents cleaned, and tramferred to a new

container.
v

Initially, problemswere encountered with the welds of several of the molybdenum cans.

':' Postweld embrittlement and leaks (cracks) In areas adjacent to the welds were found only

'_,'_ in cans with chemlstries of 10-20 ppm or lesscarbon and 10 ppm oxygen. Molybdenum

•IF cans with 250 ppm carbon and l0 ppm oxygen were leak (crack)free. Apparently, the

high carbon is necessaryto counteract the oxygen and to prever_t"hot tearing" as a result
Q
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of the weld process. Leaking cans were either replaced with cans of high carbon molybdenum

or were resealed in a secondcan of tantalum.

Two autoclave trial HIP-weld parameter evaluation cycles with a crosssection of planned

material junctions showedthat operation at 1450°C at 193 MN/m 2 (28, 000 psi) for 45 min-

utes was adequate to achieve 100 percent surface weldlng of all couple material combinations.

Thus, the couple cans were placed in four, four-lnch diameter by 6-1nch deep molybdenum

containment buckets and placed in the autoclave furnace. Autoclave then_al control problems

prevented achlevement of the temperature goals in this third cycle and a fourth full load cycle

was made. During thls fourth full load cycle, three of the five heating zones in the autoclave

furnace shortedand burned through, and all of the couple combinations dld not reach the desired

1450°C temperature. Figure 4 showsthe typical appearance of the post-HIP cycle molybdenum

cans. A complete descrlptlon of autoclave proceduresfollowed, and their rationale is presented

in Part II, Appendlx D, HIP-Weldlng Operation and Practices.

Table 8 reviews the HIP weld autoclave cycles employed in thls study, while Table 9 pre-

sentsthe results of the fourth HIP weld cycle. Post-HIP weld helium massspectrographleak

checks of the cans (noted in Table 9) revealed that thosecouples, which dld not weld

acceptably, were primarily in cansthat failed the leak check. The acceptability of the weld-

interface for each material combination was determined by metallographic observation. For

Instance, Figure 5 showstypical interface conditions for accepted tungstenwelds, while

Figures 6 and 7 Illustrate typical, accepted rhenium interfaces. Thosewelds not accepted

generally appeared as Illustrated in Figure 8. Thosecomblnatlons not welding acceptably

(asdenoted in Table 9 ) were separated for hot presswelding. The remaining, welded couple

combinations continued their pmceuing cycle as fallows:

_

tF

#
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Table 8. Diffusion Couple Evaluation - HIP Weld Cycles

Cycle Purpose ...... Results .....

1 Evaluate HIP-weld T-P Molybdenum HIP-weld cons leaked due to
conditions for alloys of oxygen hot tearing. Showed need to add
program, getters (T-111 chips) and baffles to furnace

and need to employ high carbon molybdenum
cans.

2 Evaluate HIP-weld T-P Welding cond|tions of 193 MN/m 2 (28,000 psi)
conditions for alloys of at 1450°C for 40 minutes yielded 95-100%
program, welding of oil alloys in the program. T-111

chips ond To foil baffles prevent oxygen hot
tearing of high carbon molybdenumcons.

3 HIP-weld of oil program Problemsin autoclave furnace control. 100%
diffusion couples at T-P welding of Re/Cb, Re/Cb-lZr, W/Cb, and
conditions of cycle 2. W/Cb-lZr. Other couples partially welded.

I I

4 HiP-weld of remainder Achieved 65% of desired program couple welds.
of programcouples. Furnace molt-through precludes further cycles.

• . 24 "' .,

I: : 1 !
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i Table 9. HIP-Weld Yield of Diffusion Couples from Autoclave Cycle 4
I
1

l Can Couple Post-Cycle % Welded Acceptable Can
Number Combination He Leak (Subjective for Repackaged

, (Primary Side) 1 Check of Evaluation) Ageing for Hot-Press

X/Y .'ontai%ment and Welding of
L Can '_ Analysis Couple

j la _arc/Cb OK 100% Yes ---
#

_t lb _/Cb-lZr OK 100% Yes ---

t lc W/Ta-10W OK 50% No Yes
/rob

i ld W/To OK 100% Yes --

le W/T-Ill OK 60% No yes

1f _/Astar 811C O K 50% No Yes

lg W/W-25Re OK 0% No Yes

lh W/W30, 9Re2Q1Mo Leak 50% No Yes

li _/Mo-5ORe Leak 0% No Yes

1i W/Rep Leak 30% No Yes
i i i|

2. Wc JCb oK v., --
2b Wcv,Cb-lz,oK v., --
2c WCvD/Ta OK 100% Yes --

2d Wc vD/To-10W OK 95% Yet --

• 2e WCVIj'T-III Leak 0% No Yet

_, 2f WCvD/AStor811( Leak 0% No Ym

' _'"_ 2g Wc VD ':H-25Re OK 50% No Ym

1 Secondaryside of cam contain backup couplet

2 Couple cam post-autoclave helium leek checked

25
i

i
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Table 9 (Continued)

Post-Cycle Acceptable Can
Couple He Leak for Repackaged

Combination Check of % Welded Ageing for Hot Press

Can (PrimaryS|de)1 Containl_ent (Subjective and Welding of
No.... X/Y .... Can , Evaluation) Analysis Coupling

2h WCvD/W30.9Re20. ! Mo OK 50% No Yes

2i WCvD/Mo-5ORe Leak 5% No Yes

2j WCvD/ReP OK 95% Yes --

3a Rep/Cb OK 100% Yes --

3b Rep/Cb-1Zr OK 1000/0 Yes --

3c Rep/l"a OK 1000/0 Yes --

3d Rep/Ta-10W OK 100% Yes --

3e Rep/ASTAR811C OK 40% No Yes

3g Rep/W-25Re O K 90% Yes --

3h Rep/W30. 9Re20.1Mo OK 100% Yes --

3i Rep/MO-50Re OK 100% Yes --

4a Recv D/Cb OK 1000/0 Yes --

4b Recv D/Cb- 1Zr OK 1000/O Yes --

4c ReCvD/Ta OK 100% Yes --

4cl RecvD/Ta-10W OK 100% Yes --

4e Recv D/T111 OK 100% Yes --

4f ReCvD/ASTAR811C OK 50% No Yes

4g ReCvD/VV-25Re Leak 50% No Yes

4h RecvD/W30.9Re20.1Mo OK 1000/O Yes --

41 RecvD/Mo-50Re OK 100% Yes --

;_ 4j ReCvD/W OK 60% No Yes

e - Summa_':Acceptable Yield = 59% ....
Couplecansleaking (post-cycle)= 18% #

Cansto be hot pressed= 16 unlts

_q

_ 26
i
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Figure 5. TheArc Cast-W/Cb and the CVD-W/Ta Interfaceat 400X
, (Oblique Light) Demon_tratlngAcceptable HIP-Weld Junctures
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PowderMet _,-': .@"_• ,e.,, : Ta

Figure 6. The PowderMetallurgy Re/Ta Interface at IO00X, Obllque Light
(Thls Magnificatlc, n was Necessary in Order to see into the Interface Zone)

I llustratlng Acceptable HIP-Weld Junctlon
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CVD Re ,." T-111
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;

Flgum 7. The CVD-Re/'r-lll Interface at IO00X (Obffque Light)
Illustrating Acceptable HIP-Wold Junction
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.. . '., • ..:_.:::.._:_:... b'. ' " - Arc Cast W' .. ,. '_ '.: - ,_,'_' ,. 7. ,-

• " _".,'_f_T"":"_'_.";,_',,_. .- . .-

Astor811C

_; Figure 8. Typical Partially HIP-WeldedInterfaceRequiringFurtherWelding
•I' In the Hot PressFacility (Arc CastW/ASTAR811C at 400X, Oblique Light)
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Postautoclave cycle vacuum outgassingtreatments at 900°C for 1 hour at 10..6 torr were

employed to remove hydrogen intrc,duced by the autoclave operation*.

The degree of welding of each couple combination as presented in Table 9 was established

by cutting off 0. 320 cm (0. 125 inches) from the end of each molybdenum can and metal-

Iographlcally inspecting the weld interface. Thosematerlal comblnatlons that were welded

(visual, subjective analysls) were cut to 1.59 x 1.27 cm (0. 625 x 0. 500 inch) diffusion couples

with a diamond cutoff wheel. The perimeter of each couple was coated with a strlppable

latex, and the molybdenumcan faces (lateral surfaces)were removedby etching in ni_rlc acid.

The previously mentioned 0. 005 cm (0. 002 inch) tantalum foil can liner prevented lateral

attack of the couples. Alpha-numerlc identification characters were scribed into the tungsten

face of each couple with a carbide tip vlbratool**. Annealing of a W/Ta couple at 2650oC

for 10 hours*** showed that the scri')e markswould not disappear through surface diffusion

effects. The prepared coupleswere then scrubbedwlth an abraslve c!eaner and rinsed in distilled

water and alcohol. A 10-6 tort vacuumanneal at 900°C for 3 hourswas usedto prepare the
+

couples for ageing . The couples were again wrapped in tantalum foil during this outgas

anneal.

Thosediffusion couple combinations not joined by HIP weld practice were prepared for hot press

joining. Surface preparation was identical to that described for the HIP weld materials. A

parameter evaluation hot presscycle was made with a stack of the following material sequence:

Ta/ASTAR811C/W/r-I I l/W-30. 9Re-20. 1Mo/W/W-25Re/T-111/Ta.

At 2000°C, 12.4 MN/m 2 (1800 psl)for 15 mlnutes, the ASTAR811C and T-111 welds to W

!_': were 70-90 percent successful, while the W-25Re and W-30. 9Re-20. 1Mo welds were only

'_ * Part II, Appendix D, HIP-Weldlng Operation and Practlces.
• * Diffusion Couple Age/Identification Chart presented in Part II, Appendlx F.

,_ *** Accelerated diffusion test.+ See Part II, Appendix K, Secti_n 1. Minimizing Interdlffuslon Durlng Vacuum

i_ Outgasslng Anneals.

1:
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30% successful. A secondcycle at 2100°C, 20. 7 MN/M 2 for 20 minutesyielded 100 per cent

l weldingof all iunctlons. Microprobetracesacrossthesesampleweld interfacesindicatedweld

zonesof lessthan6 microns. PartII, AppendixE, Hot PressOperation, describesthe practice

andfacilities to join thecouplecombinationsdesignatedin Table9.

In orderto achieve the necessarystressto effect hot presswelding, the6.45 x 3. 18 cm

(2.500 x 1.250 inch) HIP weld sheetswere cut to 1.27 x 3. 18 (0.500 incheswide x 1.250

incheslong)andstackedas follows:

Mo/A IIoy/W/Mo/A IIoy/W/Mo/ ....

Inte_rfoce Inte_rface

Thus,after hot presswelding, the weldedstackof materialswas immersedin nitric acid,
t

t andthe preferentialetch removalof the molybdenumreleasedthealloy/tungstendiffusion
!

couples.

Theseindividualdiffusioncouplepieceswerealsosurfacepolished,chemicallycleaned, and

vacuumoutgassed*underthe sameconditionsas previouslydescribedfor the HIP welded

couples.

t

f

*See PartII, AppendixK, Section1, Minimizing InterdlffuslonDuringVacuum
Outgasslng Ann_ Is

1

b
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V. DIFFUSION AGING CYCLES

The age temperature/time conditions selected for each of the diffusion couple combinations

are presented in Tables 3 and 4. Three age times (100, 1000, and 2000 hours) and four age

temperatures (2000, 1800, 1500, 1200°C) were selected as described previously. Part II,

Appendix F, Diffusion Couple Age/Identificatlon Chart, illustrates the number of diffusion

couples in the program (323), and the number of couples per age cycle. Table 10 summarizes

the age time/temperature matrix by illustrating the number of couples to be aged for each

condition. As can be seen, nine age cycles were required. Since three furnaces were avail-

able for the program, Table 11 was necessary to affect the optimum schedule for furnace utili-

zation and calendar time.

Three ultra-hlgh vacuum, sputter ion pumped, cold wall vacuum furnaceswere used for the

diffusion ages. One furnace was tantalum resistance heated (1200°C cycles)and two were

tungstenmeshresistance heated (1500, 1800, and 2000°C cycles). The furnaceswere manu-

factured by Varlan Associatesof Palo Alto, California. Hot zones are 10. 2 cm (4-1nches)
I

dlameter by 15. 2 cm (6-1nches) long and were shielded by tungstenfoll reflectors. The

. furnaces were pumped by 500 I/sec dlode sputter ion pumpsand operated, typically, at

I x10"6N/m2(1 xl0"8torr) or lower for all of the age cycles employed. Awater_led

copper cold wall surroundsthe radlatlon shields and spilt cyllnder reslstance heater to maln-

taln the sputter ion pump and vacuum chamber at as low a temperature as posslble. All seals

were made with crushable copper gaskets. Titanium sublimation pumpsare located in the

chamberbottomand were only usedduring temperature ramps to operatlng condltlons. Tanta-

lum foil shields were employed to protect the furnace from llne of sight exposure to sublimed
(2)

titanium. These furnaces are completely described in prior reports.

The furnaces could be temperaturecontrolled either through standard proportional controllers,
./,

or a saturable core reactor thermowatt converter system. Bare wire thermocoupleswere used
:_.

i

L'
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Table 10. InterdlffusionFurnaceAge Treatments

T°C Age Time
2000hrs 1000 hrs 100 hrs

2000 - C (30) G (23)

1800 - D (52) H (47)

1500 A (39) E (47) I (12)

1200 B (24) F (24) - i

* (parenthesisdenotenumberof diffusion couplesper age treatment)

Table 11. FurnaceAge - TimeChart for InterdiffusionStudy

Furnace

A (W mesh) .14.I D, I_t,I I C I l

B(Wmesh) { E II A J

C (Ta mesh) lull F ,Ia_
II I

0 1 2 3 4 5

,. Months
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in the hot zone with ceramic insulation (ThO2) for shield feedthroughs. W/W-26Re thermo-

coupleswere usedat 2000:and 1800°C while Pt/PtRh thermocoupleswere usedat 1500 and 1200°C.

Continuoustrace mil livolt recorders were usedto monitor temperature conditions throughout the

age perlods. Temperature variatlons dld not exceed + 20°C for all of the ages.

Prior to actual ageing cycles, the furnaceswere charged wlth simulated couple loadsand power

requirementsfor each age temperature were determined. With this calibration the ramp times

from 800°C to 1200, 1500, 1800, and 2000°C were determined. These ramp tests were made to

ascertain the time corrections for time at temperature*. For instance, ramp times from 800°C

to 1500°C were lessthan 2 minutes, while quench times back to 800°C were lessthan 5 minutes.

Theseshort times were due tu the low thermal mass in the fu,nace hot zone. Since the ratlo of

interdlffuslon coefficients for tungsten/rhenium interdiffusion (3) is

(800°C) - O. 0045 (2)
~D(1200°C)

and the two ramp tlmes are short (2 minutes up ramp _t u , 5 minutes quench/,tq), the average
age time correction would be

At +At

t (corrected)=tee (experimental)+ u q (3)age 2

For the mlnlmum age of 100 hours, the correction would be

,6t + _t

u Cl - O. 058 hours (4)2

or O.058%. The ramp time corrections to the 1800 and 2000°C age temperatures are also lower.

Thus, ramp time correctlons to the age temperature were not necessaryin this study.

'_*'_ The diffusion couples to be aged for each time-temperature cycle were placed on a special

/V EDM fabricated tungsten support stand. Figure 9 illustrates the couples for age 1"* placed

"" * See Part II, Appendix K, Section 2, Corrections to Age Time due to Furnace Time- '
Temperature Romps.

, ** See Table 10 and Part II, Appendix F, Diffusion Couple Age/Id-ntlflc_ti_n ('hart.

' _ 34I
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upon the supportstructure. Each couple contacts the standat only two support points, thus

permitting thermal expansion without stresses. A complete identification map of each couple's

furnace location in each age cycle was retained. Tungstenloll ;nterlayers between the stands

prevented couples from falling out of the hot zone if they slipped from the stand. Thesefoils

also acted with top and bottom foils to prevent axial temperature drops in the hot zone. Figure

10 illustrates diffusion couple placement inside the heater sheath in the age furnace.

Once the furnace was loaded, thermocouplesplaced, and vacuum chamber sealed (27. 3 cm

(10-3/4 inch) "Wheeler" flange seated on a crushable roundcopper gasket), the chamber

was baked out for 12 hoursat 200°C after being evacuated wlth a turbomalecular pump.

Initial power heating to 900°C and a five to ten hour hold were affected to outgasthe system.

Subsequentpower ramps to temperature were rapid (previously descrlbed), and pressuresdld

not exceed 1.2 x 10-3 N/m 2 (1 x 10-5 ton') during thls startupcycle. The pressurealways

dropped below 1.2 x 10-6 N/m 2 (1 x 10-8) within a few hours(with titanium sublimation

pumping), and no pressureproblemswere encountered for any of the age cycles.

Powerversuselaps,,cltime and temperature versuselapsed time continuous plots were made during

the age cycles to observe trends in control. Temperature deviations did not exceed + 20°C

for any of the age cycles*. One cycle, age E, 1500°C for 1000 hours, did encounter a tem-

perature problem. Although the thermocouple reading indicated 1500°C, the optical pyrometer

reading was 1630°C. This discrepancy was not resolved until after the cycle had been termln-

ated. The 20. 3 cm (8-1nch) long 8 pin (1/8 inch diameter each) thermocouple feadthrough

into the furnace was removed. It was found that someteflon bore imulators were not present,

thusthe thermocouple wires were shortingat each end of the metallic feedthrough, and since i

the internal end was hot, o stray emf wosaffecting the temperature modlng. This problem

_1.:• was corrected for subsequentcycles in this furnace. ** Optical pyrometer readings on the

• _ * See Part II, Appendix K, Sectlon 5, Error C_ntributlon to Interdiffuslon Analysis
due to Variance in Age ]_em=erature.

" ** Employmentof the 1630"C optical pyror_eter temperature reading was later validated by the '
: lnterdlffusion analysis.
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o

other age cycles correlated well with thermocouple readlngs and were recordedas a backup

to thermocouple failure. The sight glassemployed was shielded from incident metal vapor

from withln the furnace except for the few secondsrequired to take temperature readings.

Age cycle shutdownproceduresinvolved shutting the power off at the end ot the cycle time

per;ocland permitting the furnace to cool under vacuum. The diffusion coupleswere removed

from the furnace, ;mpected v|sually for irregularities, and sealed in |ndlvidual envelopes

until delivered for rnetallogmphic prepamtion.

38
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Vl. INTERDIFFUSION ANALYSIS

In order to completely describe the interdiffuslon characteristics of the selected tungstenor

rheniumdiffusion couple combinations, several modesof analysis were required. Engineering

analysis and ;nterdlffusion zone width predictive mod.,dsrequired electron microprobe trace

data acrossthe interdlffuslon Interface, photomlcrograp;,sto illustrate the effects of inter-

diffusion, and somemlcroherdness]nfommtlon through the ]nterdiFfuslonzone. Diffusion

analysis by Boltzmann-Mantano techniques required electron microprobe spat count profiles

acrossthe interdlffuslon interface, and correction programs for absort,tlon, fluorescense, etc.

Prior to performing these tasks, however, was the task of metallogral_lc preparatlon.

All diffusion couplesstudied in this investlgatlon were prepared for both metolJographicexam-

;nation and ele_r:,_n microprobe analysis. Eachsample, as submitted, was first grour_ on

bimetal edge perpendicular to the wrapped tungstenwire being used for both orientation and ._

calibration purposes. After this initial grinding, the sample was carefully mounted in a 2.5 cm

(one inch) diameter mold using Hysol R8-2038 Resin (H4-3410 Hardener) saturated with a filler I

medium consistingof 1.50meshpowdered porcelain. The prepared mount was inserted into a
I

low vacuum oven for 10 minutes and then cured and hardened by raising the oven temperature !

to 60°C (140°F) for a minimum 2-hour period. The cooled mounted sample was then transversely i

cut in half, and all further metallographlc operations were performed on this cut surface. This

technique of preparing the samplesfor metallogrophic analysis prevented the brittle diffusion

zones from cracking during sectioning; and at the same time, the added parcalain filler oid_

in keeping the exposedsample surfaces flat during the subsequentgrinding-polishing operations*.

Samplesfor metallographic exominatlon were ground successivelyon 120, 240, 400, and 600

'i.-_ grit silicon carbide papers with water as the coolant. Using e0.,q_maticgrinding apparatus, the
_.

f l_re"_'port II, Appendix K, Section 3, Potential Error in Interdiffuslon Zone Width
. Measurement due to Impro.oerMetollographic Mounting
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grinding cycle wasone minute at 14 Kg (30 pounds)pressureon each grinding paper used.

In somecasesmore than one grinding paper of a particular size was necessary. Normally,

six mountedsamplescould be run at the same time usingthe Buehler Automet polishing

attachment.

The next step consistedof a rough polish on Buehler AB silk cloth using a slurry of 0.3 micron

AI20 3 (Linde "A") as the abrasive and an automatic cycle of two minutesand 14 Kg (30

pounds) pressure.

The final polish was made on Buehler AB Microcloth using one of the two following acid-polish

mediums. For Group I couples consisting of W/W25Re, W/W-Re-Mo, W/MoSORe, Re/W25Re,

Re/W-Re-Mo, Re/Mo5ORe, and W/Re refractory alloy combinations, the acid-polish used was

10 grams Cr20 3 and 10 gramsJeweler's Rouge in 100 ml of water. For Group 2 couples con-

sisting of W/Cb, W/CblZr, W/Tal0W, W/T111, W/ASTAR811C, Re/Cb, Re/CblZr, Re/Tal0W,

Re/.-'-111, and Re/ASTAR811C refractory alloy combinations, the acld-pollsh usedwas 100 ml

of an acid solution consisting of 250 ml water, 50 gramsCr20 3, 35 ml orthophosphorTcacid

and 3 ml H2SO3 mixed with 200 ml water containing approximately 75 grams. 05 micron AI20 3

(Linde "B").

To reveal the mlcrostructure of the diffusion zone, Group 1 couples (W) were swab-etched with

a solutlon conslstlng of 40 ml conc. HCI, 20 ml conc. HNO 3, and 30 ml 48% hydrofluoric

acid while Group 2 couples (Re) were swab-etched wlth a solution consisting of 10 grams potassium

ferrlcyanlde, 10 gramsof potassiumhydroxide in 100 ml water.

i

For electron microprobeanalysls, the metallogrophlc sampleswere prepared only through the

_. final polish stage. No etching was performed on microprobe samplesin order to prevent pre- i

0 ferentia_ constituentdissolution and perturbed results.

Post-age inte,'diffuslol_concontratlon profiles were resolved by electron microprobeanalysis.

Two types of analysis were performed. The Intordiffuslon zone of every dlffuslon couple in the

.......... • t
I
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programwas traced witl" a continuous scan at 90 or 45 degrees (depending upon zone width)

to the interface plane. For binary couples, one element was traced. For ternary or higher

couples, two or more elements were traced. Selected diffusion couples were also spot count

traversed at 2, 4, or 8 micron intervals at 90 or 45 degrees to the interface plane. The

equipment, techniques, and correction factors (Colby Computer Program)employed are described

below.

To determine the composition profiles for the refractory metal alloy diffusion interfaces, the

Applied Research Laboratories Model AMX electron probe mlcroanalyzer was used. Quantitative

analysis was performed by calculating the weight fraction of an element in the sample under

studyby determining the ratios of characteristic x-ray intensities generated by the electron beam

in the sample to that generated from a pure standard of the same element, i

In this investigation the operating parametersof the microprobe were set at 25.0 KV accelerating

potential and 0. 1 I_A beam current. The electron beam was adjusted to a 1 micron spot size i

i using an aluminum oxide standard for focusingand aligning the beam. The generated x-rays i

i were diffracted by a dispersive scanner having a LiF analyzing crystal and proportional counter

! detector. The intensity data was recorded either on a X-Y recorder or a scaler-typewrlter _

output translator. Quantitative composition resultswere computed from the digital data by a

modified MAGIC computer programas described in Part II, Appendix J.

Normally the sampleswere scanned at 45 degrees to the diffusion zone; the angle of traverse

being posltloned wlth the ald of a protractor eyepiece usedwlth the light optica I microscope

system. For a few caseswhere the dlffuslon zone was very wide, a 90 degree traverse was used

for the analysls.

For the X-Y recorder continuousscansof the dlffuslon zone, the traverse speedwas sot to 16

microns per minute. In thosecasesof wlde diffusion zone bandsr the traverse speed was

_ 41
i

t!_
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increased to 196 micronsper minute. The acquisition of the ratemeter analog data was normally

begun 100 micronsbefore the diffusion edge and continued until no intensity change could be

observedafter passingthrough the diffusion zone.

The point count digital data wasobtained by meansof a stepping motor. As with the X-Y scanning

method, the point count data was started 20 to 30 micronsbefore the edge of the diffusion zone,

and digital data was continuously obtained at 2 micron intervals until no fu_her change in in-

tensity could be observed. Backgroundcounts were taken before and after the element intensity

peak in both matrix materials of the couple, averaged for each of the matrices and if necessary,

prorated for each of the point counts through the diffusion zone.

The counting time was set to either 10 secondsor 1 second, the latter time usedfor the intermediate

and wide diffusion zone couples. Asstated previously, the scaler output was recorded on a

special IBM typewriter through a data translator. It was thls data that was prepared for input to

the Raytheon520 computer for calculating the compositionsof the selected element in the

refractory metal alloy couples.

Direct calibration of the electron probe mlcroanalyzer as well as testing the correction cal-

culations utilized in the modified Colby Computer Programwere made by analyzing the NBS

Standard Reference Material No. 482, Gold-Copper Wires for Microprobe Analysis. The

nominal composition of these wires is shown in Table 12.

Although all samplesof the series were run, the standardization of the microprobe was normally

based only on Wire C, Au60 Cu40 with the principle analysis belng performed on the copper

_(_. composition. The periodic calibration resultsare shown in Table 13.

• !

I
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Table 12. Gold-Copper Wiresfor MicroprobeAnalysis
, SRM482

" Chemical Composition
(weightpercent)

Wire .... Name Gold Copper"

A Au1O0 100.O0 --

B Au80 Cu20 80. 15 19.83

C Au60 Cu40 60. 36 39. 64

D Au40 Cu60 40. 10 59. 92

E Au20 Cu80 20. 12 79. 85 i

F Cu I00 -- I00. 00

Table 13. CopperResults,Wire C, Au60 Cu40
SRM482 ]

Date Copper ._

Ana_zed __..._o i

1 November, 1971 41.00

24 November, 1971 41.02

17 December,1971 41.79

21 December,1971 39. 14

i



As shown in Table 13, the laboratory coupld duplicate the standardscomposition well within

5 percent of the NBS reported value.

A more meaningful analysis of the precision and accuracy obtained for typical couples

analyzed in this study is shownin Tables 14, 15, and 16 on the analysis of 50Re50Mo

matrices (containing 33.57 atomic percent rhenium) of three Re/50Re 50Mo couples identified

as 41A1, 31A5, and 31A6. Thesethree couples were aged at 1500, 1800, and 2000°C,

respectively.

Primary emphasisin analytlcal treatment was devoted to engineering level analysis with the

development of correlation equations. Theseequat|ons permitted the net interdiffuslon zone

width of each diffusion couple material combination to be characterized as a function of age

time, age temperature, and extrapolated time (to 10,000 hours) if sodesired. Part II, Appendix

G, Diffusion Analysls Methods, presents analytical techniques and methodsnecessaryto the

accurate resolutlon and characterlzatlon of interdlffuslon informatlon. The development and

interrelatlonshlps between interdlffusion equations are also described in Appendix G.

On an engineering level, the interdiffusion characteristlcs of the tungstenor rhenium to alloy

couple systemswere described at each age temperature by relating the interdiffusion zone

width, _X, to age time, t, as

Ax a (S)

_,, o.
I

i
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Table 14. RheniumAnalysisby WANL ElectronMicroprobe
Sample41A1

1500oC/100 hours
50Re-Mo Matrix

(33.57 a/o Re)

PointCount Rhenium(a/o)

1 33. 54
2 33.54
3 33.54
4 33. 51
5 33.95
6 33.51
7 33.80 i
8 33.89
9 33.93

X = 33.69
,i

e = +0.20
30 = +0. 60

- !

Table 15. RheniumAnalysisby WANL ElectronMicroprobe !
Sample31A5

1800°C/1000 hours 1

50Re-MoMatrix _,
(33.57 a/o Re)

PointCount Rhenium(a/o)ii i | ill

1 32.63
2 32.87
3 32.41
4 32.14
5 32.61

i 6 31.58

7 32.87
_, 8 32.83

9 32.06
• _" i ill | _ ii

X - 32.44
o = +.44

I 3o = 71.32

('

i _ 45 •,
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Table 16. RheniumAnalysisby WANL ElectronMicroprobe

Sample31A6
2000°C/100 hours
50Re-Mo Matrix

(33.57 a/a Re)

PointCount Rhenium(a/o)

1 33.33

2 34. 30

3 33. 18

4 34.40

5 34. 79

6 33.78
! , ,

X = 33.96

a = +.64

3a = +1.92

_ 46 l

J' it
• - '...................... I --

w ' "
i

v . ,

-I-

1974025933-062



(_ AstronuclearLaboralory

where the Tnterdiffusionzonewidthwasdeterminedfroma microprobetrace concentration

scanacrossthe diffusioninterface. A typical microprobetrace scanfor this program

, determinedthe net interdiffusionzonewidthas that distanceextendingfrom 100/98
t

atomicpercenttungsten. Resolutionbelow + 2 atomicpercentwasbeyondthe accuracy
of the trace scan*. Thenet interdlffusionzone width dimensionswere determinedasthe

pointsat the extremetlesof the concentrationprofile wherethe slopewent to zero. These

positionsof zeroslopewere determinedgraphically. Thedimensionbetweenthe concen-

tration profile extremetiesof agedcouples(i. e., net intercllffusionzonewidth) wascor-

rectedforas-weldedconditionsby subtractingtheas-weldedzonewidth. Theerrorcon-

tributionof largeas-weldedzone widthsis discussedin PartII, Appendix K (Section7) r!

andwasfoundnot to exceed14 percent.

Theaccuracyof the measuredandcorrectedinterdiffuslonzonewidthswasevaluatedwith

the assistanceof equation (6):

In(-_-)= _+A

where_X is m,: interdlffuslonzonewidth (cm), t is age time (see), T is age temperature

(OK), andA andBare constants. Equation (6) wasdevelopedfrombasicdiffuslon...9theory

as presentedin Part II, AppendixG. Thus,fromequation (6) a plot of In (-_-)versus 1/T

will yield a straightline. In_erdiffuslonzonewidthsat oneage temperatureandseveral

age timeswill all define one point. Theresultinggraph of equation (6) servesasan

excellent check on theaccuracyof the measuredinterdiffusionzonewidthsat any age tem-

peratureforall age times. Equation(6) alsobecomesan excellent predictive modelfor

verifying theaccuracyof equation (5) and permittingextrapolationto extendedage

times (beyoldthoseemployedexperimentally). However,each lnterdlffusloncouplesystem

't_.'_ (W/Cb, Re/To, etc. ) will requirea separatesetof constants(A, B) in orderto use Equation

(6) as a predictivemodel.

; Part'll, AppendixK, ErrorAnalysis, SectionI.

i •

,i
t'
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predictive model, which describes the net interdlffusion zone widths for varying age

times and temperatures, for tungsten orrhenlum interdlffusion with elements of Group V and

VI of the periodic table was derived. This model, described in Part II, Appendix C, relates

the net interdlffusion zone width upon aging to the relative entropy level of the diffusion

couple system. The predictive model developed in Appendix C presented the interdiffuslon

zone width, Z_X (cm), as

In( )=21.0 (_)-37.5 (7)
m

where t is age time (sec.), T is age temperature (oK), and Tm is the lowest melting point

in the combined diffusion couple system(i. e., eutectlc for blnary system). This is the

model that was employed to predlct the level of interdlffuslon expected for the couple

materials selected for this study. Experlmental age times and temperatureswere selected

with the assistanceof this model in order to project adequate interdlffusion for microprobe

analysis. The accuracy of the predictive model with respect to the experimental results

will be discussedin a later sectlon.

The microprobespot count analyses were employed for diffusion analysis of the individual

couple systems. Diffusion analysis, as described in Part II, Appendix G, showedthat for com-

ponentsof dissimilar meltlng points, Gausslan (error function) concentratlon/penetration profile_

would not occur, and non-Gausslan analysis would be required. Such concentration profiles

required employment of the Boltzmann-Matano analysis to describe the interdlffuslon

coefficient as o function of tungstenor rhenium concentration and as a function of age tem-

perature. The Boltzmann-Matano equation

~ 1 1 /' Cmax
O(c)= - 2"; / xdc (8)J

.r

i '

I

%

I
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wassolvedwith the aid of the Hartley computerprogram*for interdiffuslonzoneswith

intermediatephases,and by the Lifshin** computerprogramfor solidsolution, non-Gauss;an --

concentrationprofiles.

Theresultsof thesediffusionanalyseswere presentedas In D versusconcentrationplotsfar

eachage temperatureforeachmaterial systemstudied. Theresultsof analysisat several

age temperatureswere summarizedas

In vs 1/'T (9)

relations. Only the Followingsystemswere analyzed:

cb/v
Cb/_e

' Ta/W
Ta/Re
Re/Mo-5ORe
Re/W

This isbecauseothersystemsformedpartial couples(i. e., W/To-lOW, W/W-25Re)

andwouldhaveyielded thesameinformationas total couplet, or formed ternarysystems

suchthat the ternary constituentcould no longerbe ignored(i. e., Re,/T-111, Re,/1'a-lOW,

W,/Mo-5ORe,Re/W-30. 9Re-20.1Mo, etc. ) Ternaryanalysiswasnotattemptedin such

systemsas W/Mo-5OReand W/W-30. 9Re-20. 1Mosincemoreexperimentalinformation

wouldhave been required.
I

I

. I' _ II, AppendixH, Hartley ComputerProgramfor Boltzmann-MatonoDiffusionAnalysis.
** PartII, Appendix I, Lif,hln-HammemannComputerProgramfor Boltzmonn-Matano

:' DiffusionAnalysis.

i *
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VII. RESULTSAND OBSERVATIONS

The resultsof the interdlffusion analyses are presentedas a function of alloy family. The

sequence followed is presentedas tungsten or rhenium interdlffuslon with (1) columbium

systems;(2) tantalum systems;(3) molybdenum-rhenlum systems;(4) molybdenum-rhenium-

tungsten systems;and (5) tungsten-rhenlum systems.

Tables 17 through 20 summarizethe corrected, experimental interdlffuslon zone widths

(98 to 2 atomic percent tungstenor rhenium) found from analyzing the microprobe trace scans.

This experimental information was treated and is presented in this section to quantitatively

characterize the interdiffuslon behavior of the material couple combinationsof this study.

A. COLUMBIUM SYSTEMS

!. Columblum-Tungsten S_tems

The columblum-tungsten systemdiffusion couplesform solid solution, interdlffusion zones.

, All junctions were formed by autoclave HIP welds resulting in minimal zero condition inter-

diffusion zones. Figure 11 illustrates that an extrapolation of measured interdiffuslon zone

widths (_X meas) to time zero results In a_ |,,temept at approximately 0. 80 x 10-3cm. This

agreed well wlth the rr,lcroprobe trace measur_J as welded zone widths of 0.48 and 0. 72 x

10"3cm. Analysis of columblum a_l columbi,Jm-1 zirconium to arc cast tungsten and CVD

tungsten interdlffuslon zone widths is summari_ed in Table 21.

Figure 12 showstt_ although som_ scatter exists at 1200_C, there is essentially no

detectable difference between the systems. A grain boundary diffusion effect for preferentially

. oriented CVD tungsten grains was not discerned, and the scatter at 1200°C con be assigned

_* to experimental errorsand the small AX values found. Leastsquaresr.omputeranalysis

•I' established the columblum-tungsten Interdiffuslen mQdelas

L

i 50

I
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I

1974025933-066



(_) Asir0nuclearLab0ral0rv

| I ...... 'I
I I_) 0

• • • I .... * I I I I _ . 0..
tit:_ I __,,l i ol_. l,,'i,."l i i i i i Z

•._, . . , • • ! • • I I I I ' . i i_. i
"i' I o, "' • l_i'Nl c,'ii'_i _ i i i , w i -r- i
_,i i e ,,==_0 ] I i . i
_.I , '

..I _ i " i I
_.I o_! oo,: _o,! 'io t ,,
I I I ,,i_ll"'l , I C)"q" I I ,,l_,_ _ I I I 1 "_ ' _ 1
0 ' C_,i'N I _I',-- I '=- I I

.9 ,..o.; ®o.:-__ i ! _! _ i
"_ . . i • * * * I I I i ,-- i ii= '_,° I .i®; I_-<'>!_'_ , I , ' ' I , _" .

I ' ' I # _ t ,

_' _ ' 1 _ i- ":1<®t <" : i I ! _- ,.

• * " * * I tl 411 I * ' it.
_/ I'-t t 1 I ,

/ I , , i i _ ,
/ t , I l t _ t

/ .i _ i ! i,,i,,,t_ ,,,i,,,il! ol It o; ._ : -
.... i,_ 01': i-' _.._

I I , ,t I t I =-- ,I I I I ,_ _, .-0 I I_ _/ ,,,! ,_-I '_ , i ," 1.i..__,
L- ' '. i :--- l!ili

"i l.tit

'_'"_ b-.-J---_', -- i..... I-- _ , ."_-!i

--..•, Io..





(_ AstronuclearLab0rat0r'v

I I ' .,_" I ..,."_" _ _" .." I I I I l " I%
, I ---r',_ I _-sl'_l l"l_ I I I I i '-- _"

4, ' ..... I !
E • _ • ',
:_ e# I ' ' I ,

w I i I • • I • • ' • • • I I I I . I II.
9 ' i _"" i ,O',m _ coo_ i i i _ o ; =

>, _l "_- - I - I t ""

• _ I } 0 6 I ,

w, .-- . _ i. I t 1
I 1 , ! , I

I__ I-- _ I I I_ .,,,,,=: ,_®1, _,',f,,,,o,, oo, i--_ _
,._ _ _ ....ol, , 1 . 1 , l 1 .

l..i "- _ I I I I • • I • • I a. _. I I • _ Q-
.. iv I i i i i i , @_ I _ i ' ; ,; i I 0 '. =

I' ; I I _ i !
l t

"t_1 o _> _ ,_ _,o '_' ' i " __5
- : I * • I • • , • • I • • I a. ;

__L r ' _' i l ; I l -!,

]i / _o, II II I-'_l,_,_l'_lla ° =/ ,",,,, ! _ d,,

#! I 1 ; i ; _ i i _ •

t I I ! I -"
c / ,I, _ ! ! ! I t _:_ I i ._.. _ i I , i [ _ I ,_. o_•m, I R I I I I , I I_I "qr i I ql_ s-,e I l I I I , qm ' l

l l l. : 1 ..t -_ *

_o ...... , ,:_ ,,. ,,'I__z z

'l I i , -'IS i

I
I

1974025933-069





qg=_w.,.._

(_ Astronuclea_Laboratory

1 I I _ i I 1
3.5 - • _ -

3.0- _ -

u

J

zs- _:.

-- j

2.0 -- ,,>

c
o _ _

.} 1.__ . _
z _ -

,5

:_° 1.0- - _

- .}

- 1
o.s: _" f

- 1ept Microprobe Measured
_X =0.80x10 -3¢m 0.48, 0.72x10 -3cm for6X -

0 0

o 1l°° I)°°°0"_"i f I I i
0 10 20 30 40 50 60

. _ age hours

Figure i i. Extrapolationof MeasuredInterdlffuslonZone Widthstoj.J

Zero 13meto EstablishZero Conditionfor the W/Cb System

qS! (

: _ 55 'i

I| I, ,,
h

1974025933-071



Table 21. Columblum-TungstenCouple SystemsCorrected
Interdiffus_crZone Widths

Ax2/tInterdiffusion

Age Age Time t Zone
Columblum Temp. Width ^
Couple (UC) (hrs.) (secx10-6 (cmx 107).* (cm2/sec)

Cb/W ** 1800 1000 3.60 _ 29.42 2.41 x 10-10-I0 -10
arc 100 0.36 9.84, 9.54 2.69x 10 .., 2.53x 10

-II

1630 1000 3.60 16.72, 17.50 7.76 x 10 12' 8.52 x 10-11
1500 100 0.36 1.72 8.22 x 10-".
1200 2000 7. 20 0. 66 6.02 x 10-I 4

1000 3.60 0.69 1.32 x 10-13
_ H -q

-10
Cb-IZr,/W 18(30 1000 3.60 D 30.62 2.61 x 1010

arc 100 0.36 11.04 3.38x 1011 1
1630 1000 3.60 17.05, 16.62 8.09x 10 .^, 7.68x 10-1
1500 100 0.36 1.78 8.84x 10-Iz
1200 2000 7. 20 1.75 4. 25 x 10-13

1000 3.60 0. 73 1.49 x 10-13

-10
Cb/WcvD*** 1800 1000 3.60 E 30.68 2.61 x 1010

100 0.36 9.63 2.58x 1011
1630 1000 3.60 15.37 6.56 x 1012
1500 100 0.36 1.54 6.59x ]0.13
1200 2000 7. 20 0. 90 1.12 x Iu

1000 3.60 0.33 3.03 x 10-14

-10
Cb-1Zr/Wcv D 1800 1000 3. 60 34. 18 3. 25 x 1010

100 0. 36 9. 91 2.73 x 1011
I 1630 1000 3.60 17.27 8.29x 10
I 1500 100 0.36 2.04 1.15x 10"11

1200 2000 7.20 0.61 5.09x 10"14
1000 3.60 0.81 1.80x 10"13

............. o ........ .

"+"_" cm_I._" * Zonewidth=cmxl03, i.e., 1.72=1.72x10 "3
Zone width alsocorrectedby as-weldedcondition

•_ ** W = arc casttungsten
arc

:+ *** WCVD = chemicalvapordepositedtungsten,fromWF6, (100) planes

'I 56
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9

In (AX-) =_ 37,390 _2810) _ 3.869 (+0.227) (10)
I r T -

where AX is interdiffuslon zone width from 98 to 2 atomic percent tungsten in centimeters,

t is age time in seconds, and T is age temperature it1OK. Ninety-five percent confidence

limits are presented. Note that columblum-tungsten interdfffuslon zone width data from

Hudsonand Yang(3) correlate well wlth the data presented here.

Figure 13 presentsthe interdiffusion zone width information as a function of age time,

and extrapolations to long age timesare provided with equation (10) from Figure 12.

A least squaresfit correlafic,_ coefficient of 0. 934 wasfound for equation (10). This cor-

relation was surprising in light of the grossKirkendall porosity which occurred on the colum-

blum side of the interface in this system. Figure 14 presentsthe as-welded columblum/CVD

tungsten interface in contrast to Figures 15 and 16 which presentthe same interface

after 1000 hoursof ageing at 1630 and 1800°C, respectively. The void structure, although

presentinga reduced crosssectional area to interdiffuslon, did not appear to effect the extrap-

olation capabilities of equation (10). Perhapsthe reduced area for constituent flux was

counteracted by rapid surface diffusion effects wlthln the voids. Also, by the time the pores

became gross, the interdlffuslon kinetics were qulte reduced.

For Boltzmann-Mantano analysis of the columblum-tungsten sy_tem_, the columblum-1

zlrconlum alloy can be treated as columblum*. Electron microprobe spot count traverses

were made on samples**

1AA-5 1800Oc 1000 hours
1AA-4 1500°C 100 hours

' 1AA-2 1200°C 1000 hours

Refer to Part II, Appendix G, Diffusion Analysis Methods (consideration of
"_ ternary components).

• ** Part II, Appendix F, Diffusion Couple Age/identification Chart.

i _ 58
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' ill' Figu,e 16. Interfaceof Columblum/CVDTungstenInterface
After 1000 hoursat 1800°C (2AA._) at 200X
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and the Colby MAGIC* corrected concentration profiles were loaded into the Lifshln-

" Hannemann** Boltzmann-Mantano analysis computer program. Figu-e 17 illustrates the

microprobe corrected interdlffuslon concentration profile of sample 1AA-5 as presented by

Calcomp plot subroutine. Figures 18, 19 and 20 present the resulting interdiffuslon

coefficients as a function of concentration of tungsten at 1200_ 1500, and 1800°C. Figure

20, interdlffuslon at 1800°C, closely approaches the form found by Hehemann and

Leber(4), and report_ by Vergasova (5).

Figure 21 presentsthe Arrhenlus interdlffuslon relation for columbium-tungsten inter-

diffusion as resolved in this study. Agreement of interdlffuslon coefficient and slope

(activation energy) with that presentedby Hehemann and Leber(4) is excellent and falls

properly within the respective self-cllffuslon coefficients. Although Hehemannand Leber

did not quantize the interdlffusion coefficient, it could be expressed (generally) as

2

"" cm [ 52,400] (11)D (s--_-) =9.21 x 10"7 exp -

for S0 to 95 atomic percent tungsten, where T is in OK and R is the gas constant (1. 987 cal/

mole-°K).

2. Columblum-RhenlumSystems

_i The columbium-rhenium systems'dlffusloncouples form an intermediate p_,,ase(X) interdlffusion
l
I

zone. All junctions were formed by autoclave HIP.welds, resultlng in minimal zero condition

interdlffuslon zones. Microprobe trace m_sured as-_elded zo_ widths wore O.91 and

0. 57 x 10-3 centlmete_s. Analysis of columblum and columblum-1 zirconium to rhenium

,,_ : (powder metallurgy and CVD product) lnterdlffuslon zone wldths is summarized in Table 22.

'W !
* Part II, Appendix J, Colby Computer Programfor Correcting Microprobe Intensity Analysis.

:_. ** Appendix I, Lifshln-Hannemann Computer Programfor Boltzmann-Mantano Diffuslon Analysis.
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Table 22. Columbium-Rhenlum Couple SystemsCorrected
Interdlffusion Zone Widths

LAX Z_X2/t
Interdlffuslon

Age __.__e Time t Zone
Columblum Temp. Width

Coup.!e I (_C) (hrs.) (secx 10-6) (cmx 103) * (cm2/sec) ....
-10

Cb/Rep** 1800 1000 3.60 I::! 34.09 3.23 x 1010 -I0
100 .36 1.37, 12.14 3.59x 10 "I' 4.10x 10

1630 1000 3.60 18. 14 9. 14 x I0-_^
-IZ

1500 100 .36 1.52 6.42 x 1014

1200 2000 7.20 0.36 1"77 x 10-14,10 10-141000 3.60 0.43, 0.34 5.14x 3.21 x

-10
Cb-lZr/Rep 1800 1000 3.60 _J 32.24 2.89x 10_10 0

100 .36 114.44, 14.38 5.79x 10 .., 5.75x 10-1
630 1000 3.60 16.31 7.40 x 10-II

1-500 100 .36 3.16 2.78x 10-11
1200 2000 7.20 --+ --

1000 3.60 --+ --

'10
Cb/Recv_-:* 1800 1000 3.60 • 31.13 2.69 x 1010

100 .36 t 10.80 3.24x1011
1630 1000 3.60 16.38 7.46 x 1012
1500 100 .36 1.38 5.29 x 10_14
1200 2000 7.20 0.83 9.51 x 10

1000 3.60 0.86 2.04x 10-13

-10
Cb-lZr/Recv D 1800 1000 3.60 }' 32. 13 2.87 x 10_10

100 .36 i 12.06 4.04x10_11
1630 1000 3.60 _ 15.33 6.53 x 10_11
1500 100 .36 2.67 1.98x 10_13
1200 2000 7. 20 i 1.27 2.24 x 10

1000 3.60 0.43 5.14x 10"14

• Zone width = cm x 103, also corrected by as-welded condition
• * Rep = powder metallurgy rhenium product

' :_* ReCVD = chemical vapor deposited rhenium
I + Insufflclent interdiffuslon for accurate analysis

r,,
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Figure 22 shows that although somescatter exlsts at 1200 and 1500°C, there is no

detectable difference between the systems. A grain boundary diffusion effect far preferentially

oriented CVD rhenium grains was not discerned, nor did the presence of zirconium influence

the interdiffuslon zone widths. Least squarescomputer analysis established the columblum-

rhenlum interdlffuslon model as

In (_.2) = 43,880 _ 3060) _ 0.490 (+0.249 (12)- 1'
J

I

where _X is interdiffusion zone width from 98 to 2 atomic percent rhenium in centimeters,

t is age tlme in seconds, and T is age temperature in OK. Ninety-five percent confidence f

limits are shown. Literature reviews were unable to reveal other sourcesof information for

th|s systemfor comparative purposes. _i

Figure 23 presentsthe interdiffusion zone width information as a function of age time, ;_

and extrapolations to long age times are provlded wlth equation (12) from Figure 22.I

A least squaresflt correlation coefficient of 0. 866 was found for equation (12).

Although K;rkendall voids were not produced in this system for the temperatures and age _

times employed, photomicrographsrevealed a brlttle X phase in the interdlffusion zo'_e. The i_

X phasewas only found to be cracked after long age periods (1000 hours), and is exhibited

in Figures 24 and 25.

For Boltzmann-Matano analysis of the columblum-rhenlum systems, the columblum-1 zirconium

alloy was treated as columblum*. Electron microprobe spot count traverseswere made on

samples** :

_ * Refer to Part II, Appendlx G, Diffusion Analysis Methods (conslderotlon of

•rf ternary c'_ml0onents).
• * Part II, Appendix F, Diffusion Couple Age/Identlficatlon Chart.
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Figure 23. IllustratingExtrapolationof Zone Widthsto LongAge Times
for Columblum-RhenlumInterdlffuslon
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3AA-5 1800°C 1000 hours
" 3BA-3 1500°C 100 hours

4AA-1 12O0°C 1000 hours

and the Colby MAGIC* corrected concentration profiles were loaded into the Hartley**

Boltzmann-Matano analysis computer pr_,gramafter being fitted, in probability coordinates,

for curve smooth|_g. Figure 26 Tllustr_testhe microprobe corrected interdlffusion con-

centration profile of sample 3_,A-5 as presented by Calcomp plot subroutine.

Figu:e 27 presentsthe smoothedconcentration profile generated by the least squaresfit

routine (in probability coordinates) of the Hartley program. The two X phaseconcentration _

discontinuities agree rather well with published phasediagrams for rhenlum-columbium.

Figures 28, 29, and 3C present the resulting interdiffuslon coefficients as a function of ,.:

rhenium concentration at 1200, 1500 and 1800°C. The absence of two phaseregions in _!

Figure 28 is due to the small interdlffusion zone and the steep (few data pointsconcentra- ._

tlon gradient found at 1200°C..-'_

Figure 31 presentsthe Arrhenium interdlffusion relation for columbium-rhenium inter- i!

J
diffusion as resolved in this study. The interdiffusion coefficients fall closely below that for _

columblum self-dlffusion and are plotted as mean 'D values for each phase region. Self-

dlffuslon data for rheniumwas not found in the literature (probably due to a lack of tong

ITved rhenium isotopeswith adequate emission properties). The low activation energy (slope) _,

of the a phase llne may be more measurementerror than real, since very few data points 'i

were available in this region, and the Hartley Programdistortsnear boundaries. The ir_ter-

diffusion coefficient can be expressedfor each phaseas:

2

cm [_ 73,400 ] (13):" _ DB (s-_") -- 8. 24 x 10-4 exp T"ET--

•# *_ II, Appendix J, Colby Computer Programfor Correcting Microprobe
Intensity Anolysis.

** Part II, Appendix H, Hartley Computer Programfor Boltzmann-Manta,_o
_ Diffusion Analysis.
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Figure 31. Arrhenlus Interdtffusloe Coefficient-Temperature
Relation for the Columblum-Rhentum $yltma
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2

DX (cm)=sec 8"75 x10"6 exp I-_'] (14)

for the concentrationregionsof the phasediagramwheretheyapply, andwhereT is in OK,

and R isthe gasconstant(1.987 cal/mole-°K).

B. TANTALUM SYSTEMS

1. Tantalum-Tungsten Systems

The tantalum-tungstensystemdiffusioncouplesformsolid-solutlon, interdiffuslonzones.

Of the fourarc castandCVD tungstento tantalumand tantalum-10tungstencouplesystems,

only arc cast tungstento tantalum-10 tungstencoupleswere fonmedby hot pressing. The other

threesyste:c,._wereformedby autoclave HIP welding. Microprobetrace measuredas-welded

zone widthswere 0.48 x 10-3 centimeters. Anolysisof tantalum-tungsteninterdlffusionzone +

widthsare summarized;_ Table23.
t

Figure32 sF_wsthat althoughsomescatterexists, there is essentiallynodetectable dif-

ferencebetweenthe systems.A groinboundarydiffusioneffect for preferentiallyoriented

CVD tungstengroinswasnot discerned. LeastKluarm computeranalysisestablishedthe

tantalum-tungstenIntendlffusionmodelas

g; .In ( 35,,290 _ 2210): " 'T .- -7.339(+0.189) (15)

where_X is net Interdiffuslonzonewidth (affected zone) in centimeters,t isage time in

seconds,and T is age temperaturein OK. Ninety-five percentconfidencelimits areshown.

Note that tantalum-tungsteninterdtfi_usionzone widthdata fromHudsonand Yong(3) correlate

'_,+_ well wlth the data presented here.

.IP

+ 80i
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I Table 23. Tantalum-Tungsten Couple Systems Corrected
t _;_terdiff, tslon Zone Widths

t
I

Ax _x2/t
Interdiffusion

Age Age Time(t) Zone
Columb;um Temp. Width..
Couple pC) _rs.) [secxl0"6) (cmx 10a) (cm2/utc)

-11
TO/%rc** 180_. 1000 3.60 _ 8.61 2.08 x 10.11

, 100 .36 3.08 2.64 x 10.) 2
1630 1000 3.60 3.94 4.3b x 1012 **
1500 2000 7. 2_'J 3.56 1.76 x 10
1200 2000 7.20 0.29 !.17x 10"14

1000 3. 60 --+

,,oo,ooo
100 .36 2.98 2.47x 10 tl

1630 lOgO 3,60 6.27 i.09x 10"i:)
1500 2000 7.20 2.97 1.23 x I0" i-
1200 2000 7.20 0.50 3.41 x 10"'4 :_

1000 3.60 0.26 2. 18 x 10-14 _

I ........ ,o
I To-lOW/Worc 2000 I0)0 3.60 C 25.67 1.83 x I0.10100 .36 7.21 1.44 x 1011

t 1800 I000 3.60 7.97 1.77x 1012
100 .36 1.67 7.75x 101:)

i 1630 10003._0 5.. 9.52_i0.,;
1500 2000 7.'_0 2.28 7.23x I0_
1200 2000 7.20 0.57 4.52x 10 _

!000 3.60 0.40 4.34x I0 "'4

,o-,ow_cvo2_ ,ooo3._o, 2,._ ,.6,.!o':°
100 .36 7.29 I.,18 x eUl I

1800 I000 3.60 9,07 2.28x 10.11 -11 1641• I00 .36 2.81, 3.53, 3.33 2.20x I0 173.46x1_ ,3.0ex ,
1630 1000 3.60 5.41 8. I't x I0"_
I_O _o 7.:'o ,., 3.27.1(;;

• 1200 2000 7.20 0.?9 I. 16 x 10;_ ' ,
1000 3.60 0.35 3.41 x 10 "_

q * Zonewidth=cmx 103, I.e., 1.72" 1._'2x10"3¢m i
Zone width also corrected for m-welded condition

• * W_rc : or,: cost h_q_ten
• ** V_CV D : chemical vapor depos|ted tungsten, from WF6, (1(0, _ plones
+ Ir_fflclent interdiffusion for accurate analysis

, 81
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Figure 32. Arrhen|us Model for Interd|ffusion Zone Widths

in the Tantalum-Tungsten Couple Systems
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Figure 33 presentsthe intercllffuslon zone width information asa function of age time,

and extrapolations to long age timesare provided with equation (15) from Figure 32.

A least squaresfit correlation coefficient of 0. 897 wasfound for equation (15).

A Kirkendall voidstructureformedon the tantalumsideof the interface at 2000, 1800,

1630, and 1500°Cbut wasnotas advancedasthat observedin the columbium-tungstensystem.

Voidswere notobservedat 1200°C. Voidsappearedafter ageingat 1500°C and weregenerally

sphericalor oblate. Ageingat 1800°C resultedin two typesof void structure,sphericalag_ n

(Figure 34), andalso elongated (Figure35). Figure 34 illustratesthe joiningof several

spherical voidsto forman elongatedvoid. Thepresenceof thedifferent voidstructures

did notappear to dependonmethodof coupleformation(HIP-weld or hot press),on thealloy

constituency(i. e., tantalumor tantalum-10 tungsten),or on theage time (sincevoidsformed

at 1800°Cand 100 hourswereelongated-- see Figure 34). Interestingly, the voiddensity

after 2000°C ageswasmuchreducedover that at 1630 or 1800°C. It appearsthat Kirkendall

voidswill not format lowor elevated temperaturesbutonly at someintermediatetemperature.

Thisconsiderationis evaluatedin moredetail in Section9, KirkendallVoid Problems.

ForBoltzmann-Matanoanalysisof the tantalum-tungstensystems,only the tantalum-tungsten

coupleswere evaluatedsincetantalum-lOtungstenal lay couplesformedpartial couples*.

Electronmicroprobespotcounttraversesweremadeon samples** i_

1DA-5 1800°C 1000 hours
1DA-3 1500°C 100 hours _

•' 2CA-1 1200oc 1000 hours

and theColbyMAGIC*** correctedconcentrationprofileswere loaded into the Lifshin-

• Referto Part II, AppendixG, DiffusionAnalyslsMethods
•* Pat; Ii, AppendixF, DiffuslonCoupleAge/Identification Chart._t'

•** Part II, AppendixJ, ColbyComputerProgramfor CorrectingMicroprobe
Inten_ffyAnalysls

83
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•W FTgure 33. Illustrating Extrapolation of Zone W;dths to Long

,, Age Times for Tantalum-Tungsten Interdiffuslon .
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Figure 34. IllustraHng Spherical Voids in Tantalum-10 Tungsten/Tungsten (arc cast)
System After Ageing at 1800°C for 1000 hours (1CA-5)at 200X
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• ' Figure 35. Illustrating Elongated Voids in Tantalum-Tungsten (CVD)
i SystemAfter Ageing at 1800°C for 1000 hours (2CA-6) at 200X
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Hannemann* Boltzmann-Matano analysis computer program. Figure 36 illustrates the

microprobe corrected interdiffusion concentration profile of sample 1DA-5 as presented

by Calcomp plot subroutine. Figures 37, 38, and 39 present the resulting interdlffuslan

coefficients as a function of concentration of tungstenat 1200, 1500, and 1800UC.

Figure 40 presentsthe Arrhenlus interd|ffuslon relation for tantalum-tungsten lnterdlffuslon.

as resolved in thls study. Aggrement of interd|ffuslon coefficient and slope (activation

energy} with that presentedby Ivanov(8) is excellent and falls properly within the respective

self-dlffuslon coefficients. Analysis of interdTffuslon by Tregubov(9) at 2000°C also agrees

quite well with this study. Although Tregubov could not expresshis results in the Arrhenlus

form, that of Ivanov (Q = 120. 5 to 110 Kcal/mole, Do = 1.54 to 42 cm2/sec) does not agree

with the coefficients developed here:

"" cm _ 70,300 (16)D (s_) = 1.07 x 10-3 exp RT

for 10 atomic percent tungsten, and

cm2 [ 72'500"1--4.45x 10 exp - j (17)

for 60 to 90 atomic percent tungsten, where T is in OK and R is the gas constant (1. 987 cal/

mole-°K). Thls disagreement is probably due to Ivanov's data being |n a very restricted tem-

perature range and thus leading to greater error in slope for extended extrapolations.

2. Tantalum Alloy-Tungsten Systems

The tantalum al Ioy (T-111, ASTAR811C)_-tungsten (arc cast, CVD) systemdiffusion couples

form solid solution, interdiffuslon zones. All four couple systemswere fon'ned by hot press

'_ _ welding, thus resulting in slightly larger zero condltlon interdlffuslon zones than for HIP-

I_ * Part II, Appendix I, Lifshlm-Hannemann Computer Programfor Boltzmann-Matano
Oiffuslon Anolysls.

' ** T-111 Alloy is Ta-8.2W-1.9Hf
ASTAR81IC is Ta-8. I W-I. 4Re-0. 9Hf

86L
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Figure40. Ard_enlusInterdlffusionCoefflclent-Temperuture
Rolot|onfor the Tantalurn-TungstenSystem

8 91 !
ji

1974025933-107



weldedcouples. Figure 41 illustratesthat an extrapolation of measuredinterdiffuslon

zonewidths(L_Xmeas)for 1800°Cagesto time zero results.n an interceptat 2.0 x 10-3cm.

' Thisvalueagreedwell with the microprobetrace measuredas weldedzonewidthsof 1.5 and

1 6x10 "3• cm. Analyslsof T-111 andASTAR811Cto arc castandCVD tungsteninterdlffuslon

zonewidths is summarizedin Table 24.

Figure 42 showsthnt very little scatterexisted for thls systemand that there is no detectable *

difference betweenthe systems.A slight trendfor tungsteninterdlffusionzone wldthsto ex-

ceed thoseof ta,:talumcan be noted in Table24, but is notcancluslve. A grain boundarydif-

fusioneffect for preferentiallyorientedCVD tungstengrainswasnot discerned, nordld thedif-

ferencein alloy bose(Hf, Re)constituentsinfluencethe interdlffusionzonewidths. Inter-

diffusionzone widthsat 1200°C were notdlscemableabovethe zero condltianas welded

correctionandthuswerenot includedin theanalysis. Leastsquarescomputeranalysis

establishedthe tantalumalloy-tungsteninterdlffuslonmodelas
9

In (_.----_)= _44,720 (+_3760) . 3. 359 (+ 0. 153) (18)
I" T

where _X ls the net interdlffusionzonewidth (affectedzone) In centimeters,t is age time in

seconds,and T isage temperatureIn OK. Ninety-five percentconfidencelimitsare shown.

Literaturereviewswere unableto reveal othersourcesof informationfor thissystemfor

comparisonpurposes.

Figure 43 presentsthe lnterdiffusionzone width informationas a function of age time,

and extrapolatiomto longage timesare providedwith equation (18) fromFigure 42.

A least squaresfit correlationcoefficient of O.815 wasfoundfor equation

_, Kirkenclallvoidstructurewasnot as pronoun,_adas In thebinary tantalum-tungstensystemcouples

•I' and consistedof occasionalsl_erlcal voidson _healloy sideof the interface. No elongated

. 92i
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Table 24. T-11 1/ASTAR811C - Tungsten Couple Systems
Corrected Irtemfffus|on Zone W_dths

t _X t, X2/t

Tontalun_ Age _ InterdiffuslonZone Width
Alloy Temp. I (_ec--'- (cmx 103)* _ , (cmx 103)*

Couple (°C) Hrs. I x 10-6) TaCurve WCurve (Ta Curve) (W Curve)

T-111,/V/ ** 1800 1000 3.60 O 4.75 "1_5.62 [36.27 x 10"1z-12 38.79 x 101-1z1
arc 100 0.36 1.79 2.21 8.89 x 10 .,, 1.36 x 10-,,: -12

1630 1000 3.60 3.36 3.08 3.14x10 13 2.63x10
1500 2000 7.20 1.77 1.97 4.36 x 1U 5.40 x I0 "13 :
1200 2000 7. 20 -- + - - + -- + --+

1000 3.60 --+ - -+ --+ - -+

T-11/WCV_** 1800 1000 3.60 • 5.95 "IJlF6.28 •9.83x10 "12 1_1.09x10 "11
100 0.36 2.14 2.08 1.27 x 10-I1 1.20 x 10 11

1630 1000 3.60 3.97 4.07 4.37 x I0 -12 4.60x iO"12
1500 2000 7.20 1.67 1.56 3. P_ x 10-13 3.38 xl0 "13
1200 2000 7. 20 --+ --+ --+ --'_

1000 3.60 --+ --+ --+ --+

ASTAR/V/ 2000 1000 3.60 O 24.47 <_)-20.61 O 1.68 x 10"11 (_. 18 x 10"10
arc 100 0.36 5.43 6.30 8.19x 10"11 1.10x 10"10

1800 I000 3.60 5.77 5.71 9 23x10"12.. 9.06xln-12" -fz --11
100 0.36 1.50, 1.64 2.34, 1.88 6.25,7.47xl0 1.52x 10 12

9.83 x _-121630 1000 3.60 2.37 2.82 1.56 x 10"12 2.21 x
. 10"13 10-131500 2000 7.20 1.45 I 74 2.92x 4.18x

1200 2000 7.20 + --+ --+ --+
3.60 --+ --+ --+ --+

ASTAR/%VCVD 2000 1000 3.60 622.83 4jk25.21 I61.45,,lO-lo _.77xlO -I°100 0.36 6.94 6.58 1.34 x 10"10 .20x 10"!0
1800 1000 3.60 6.24 6.16 1.08 x 10"11 1.06 x 10"11

10U 0.36 2.50, 1.91 2.61,2.96 1.73,1.01,1.89 2.43x10 "11

1630 1080 3..60 3.46 3.40 3.33 x 10"112 3.22 .: 10"121500 2000 7. 20 I. 42 1.70 2. 80 x 10" 4.02 x 10-13
1200 2000 7.20 --+ --+ --+ --+

I000 3.60 --+ --+ --+ --+ '

• Zone width =crux 03, I.e., 1.72= .72x 10"3cm
Zone widths011ocorrected for us.welded condition

•* War _ arc costtungstenc
• ** V_V D = ¢hemicolvopordel_ited tungsten, tromWF6, (IC_i _:;_r_ez.

,, _, + Insufficient interdlffus_onfor accurate anolysls.

|
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or interconnecting volds were observed. Since Kirkendall voids did form to a slightly greater

extent in tantalum-10 tungsten, only the addltlons of hafnium or rhenium to T-111 or ASTAR-

811C could have been responsiblefor the reduced vold structure in these alloys.

Boltzmann-Matano diffusion analysis was not performedon the T-111, ASTAR811C to tungsten

interdlffusion couples since the effects of ternary addltlons (hafnlum, rhenium) appeared to

perturb the systemsfrom true binary behavior•

3. Tantalum-Rhenlum Systems

The tantalum-rhenlum systemsdiffusion couples forman intermediate phase(x) interdlffuslon

zone. All junctions were formed by autoclave HIP-welds, resulting in minimal zero condition

interdlffusion zones. Tantalum and tantalum-10 tungstenwere joined to CVD and powder

metallurgy product rhenium. Microprobe trace measuredas-welded zero condltlon zone

widthswere 0.66 x 10-3 cm. Extrapolations of measured interdlffuslon zone widths (from

samplesaged at 1800 and 2000°C) to time zero resulted in intercepts at 0. 60 to 1.00 x 10"3cm

(Figure 44 ). Analysls of tantalum and tantalum-10 tungstento powder metallurgy and

CVD rhenium interdiffuslon zone widths is summarized in Table 25. The tantalum-10 tungsten

alloy formsa ternary couple with rhenlum but was included in thls couple systemsince the

tungstenwas not expected to contribute the deviations that hafnium would (T-111, ASTAR811C).

Figure 45 sF0wsthat very little scatter existed _or this system, and that there is no obvious

. difference between the systems. A slight tendency for powder metallurgy rhenium couplesto i

exhlblt larger interdiffuslon zone widths could be due to statlstlcal scatter. A grain boundary i

diffusion effect for preferentially oriented CVD rhenium gralns was not discerned nor did the

_._ presenceof tungsten (alloy constituent) influence the interdlffuslon zone widths. Interdiffusion !zonesat low temperatures (1500, 1200°C) possessedmore statistical scatter, but this was due

•I_ to measuredzone widths being of the same order of magnitude as zero condltlon zone widths.

'!_ 97
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Table 25. Tantalum-RheniumCoupleSystems
CorrectedInterdlffusionZone Widths

AX AX2/t
Age Age Time (t) Interdiffusion

Tantalum Temp. (see. Zo;e Widt._.Couple.. (°CI (hrs. I x 10-6/ _..,.,x 10")* (cm2/se¢)
Re Ta

Ta//Repowd;r* 1800 I000 3.60 @ 11.57 -- 3.72 x 10-! I100 .36 4.22 -- 4.95 x 10-/1
1630 1000 3.60 6. O0 -- 1.0 x 10-11
1500 2000 7.20 3. 16 -- 1.38 x 10-`2
1200 2000 7.20 0.46 -- 2. 98 x 10-14

1000 3.60 0.38 -- L4.01 X 10-14

Ta,/Recv*I_* 1800 1000 3.60 0 11.79 -- 3. 86 x 10"11
100 .36 4.16 -- 4.81 xlO -11

1630 1000 3.60 5.12 -- 7.29x 10"12

1500 2000 7.20 2.99 -- 1.24x 10:12

1200 2000 7.20 0.65 -- 5.93 x 1_)_141000 3.60 O.34 -- 3.21 x 1

Ta-10W/R_p 2000 1000 3.60 . 26.64 "1_25.84 1.97x 10-0 1.86x 10110
100 .36 7.94 8.42 1.75 xlO- 1 1.97x 10 1T

1800 1000 3.60 10.55 11.17 3.09 x 1O- 3.47 x 10""" i

4 -it100 .36 3.38 4.04 3.18 x 10- .53 x 10_11
1.17x10 ,,,

1630 1000 3.60 5.76 6.48 9.23 x 10' 2 3.54 x lO'J z
1500 2000 7.20 5.02 5.05 3.50 x 10- 4 3.64 x 10-_.4.1200 2000 7.20 0.64 0.51 5.70x 10- 4

1000 3.60 0.56 0.43 8.73 x 10" 5.14x 10"14

Ta-IOW/RecvD 2000 1000 3.60 O 26. 19 t_5.84 1.91 x 10" 0 1 85 x 10-10
" -10. 10" 1.98x1011100 36 8. 24 8. 45 1.89 x

1800 1000 3.60 8. 73 9. 24 2. 12 x 1_. i 1 2.38 x 1011100 .36 3.12 3.34 2.70xl '2 3.10x10 11
1630 1000 3.60 5.80 6.09 9.35 x 10-i 2 1.03 x 10-',,
1500 2000 7.20 3.47 3.73 1.67x10-I 1.93x10 "'z
1200 2000 7. 20 O.39 O.43 2. 12 x 1(_'14 2.57 x 10"14

1000 3.60 0.34 --+ 3.21 x 10"14 --+
_y_. ......

_L, * Zone width = cmx 103, i.e., 1.72 : 1.72 x 10"3 cm
Zone width alsocorrectedfor as-weldedconditionIF

• * Repowder= powdermetallurgyproductrhenium

•** ReCVD = chemicalvapordepositedrhenium

; + Not analyzed.
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Leastsquarescomputeranalyslsestabllshedthe tantalum-rheniuminterdlffuslonmodelas:

, ,AX 2 35, 020 _1100) -7.102 (+0.098) (19)In ('T-) = - T

where I_X is the net interdiffuslonzonewidth (affectedzone) in centimeters, t isage tlme

in seconds,andT isage temperaturein OK. Ninety-five percentconfidencelimitsare

shown. Literaturereviewsdld not reveal other sourcesof zone width informationfor this

system.

Figure 46 presentsthe interdiffuslonzonewidth informationasa functionof age time,

andextrapolatlonsto longage timesare provldedwith equation(19) from Figure 45.

A leastsquaresfit correlationcoefflclent of 0. 971 wasfoundfor equation (19).

AlthoughKirkendallvoidswere not observedin thissystemfor theage timesandtemperatures

employed, photomicrographsrevealeda brittle X phasein the interdlffusionzone. Cracks

in the x phaseweregenerallyparallel to the weld zoneandwere not consistentin their

appearancein theaged couples, i.e., somecouplespossessedcracksafter 1000hoursat

1630°C, while someaged for 1000 hoursat 1800°C _nddid not. Whetherthe cracksexisted

prior to/or were causedby metallographlctreatmentwasnot resolved. Figure 47 showsthe
P"

uncracked X phaseinterface after ageinga tantalum-CVDrheniumcouplefor 1000hoursat

1800°C. Theholesin theCVD rheniumare the resultof a deposltlonstepandare not

Kirkendall effects. Figure 48 illustratesthe typeof cracksappearlngin the tantalum-

10 tungsten/CVDrheniumsystemafter ageing for 1000 hoursat 2000°C.

ForBoltzmann-Matanoanalysisof the tantalum-rhenlumsystem,only puretantalumto rhenium

wasconsidered. Electronmicroprobespotcounttraverseswere madeon somples:*

_t _ _.

" 3CA-6 1800°C 1000 hours

. t 3CA-3 1630°C 1000 hours

. 3CA-1 1200°C 1000 hours

_' Part II, AppendixF, DiffusionCoupleAge/Identlflcation Chart.
t
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and the Colby MAGIC* corrected concentration profiles were loaded into the Hartley**

* Boltzmann-Matano analysis computer programafter being fitted, in probabillty coordinates,

for curve smoothing. Figure 49 illustrates the mlcroprobe corrected interdiffusion con-

centratlon profile of sample 3CA-6 as presented by Calcomp plot subroutlne. Figure 50

presentsthe smoothed concentration profile generated by the least squaresfit routine (in

probabillty coordlnates) of the Hartley program. The two x phaseconcentratlon discontinuities

agree rather well with published phasediagrams forrhenlum-tantalum. Figures 51, 52

and 53 present the interdlffuslon coefficient as a function of rhenium concentration at 1200,

1630, and 1800°C. The absence of the interdlffusion phase regions in Figure 51 is due to

the small interdlffuslon zone and the steep (few data polnts) concentmtlon gradient found at

1200°C (i. e., x phasediscontinuities were not discernable).

Figure 54 presentsthe Arrhenlus interdiffusion relation for tantlum-rhenlum interdlffuslon

as resolved in this study. The interdiffusion coefficients fall closely below that for tantalum

self-diffusion and are plotted as mean D values for each phaseregion. Self-dlffusion data

for rhenium was not found in the literature. Difficulty was encountered in resolving D for

the a phase(~ 99-100 atomic percent Re) due to the limited size of the phasefield and the

lack of data points in it and also due to the distortionswhich occur in the analytical code

near phaseboundaries. The interdlffusion coefficient can be expressedfor each phase as:

t

D/_ ( )=3.71x10 -6 exp -T (20)

for the concentratlon (phase) regions of the phase diagram where they apply, and where T is

"" _," in OK and R is the gas constant (1. 987 cal/mole-°K).

•_ * Part II, Appendlx J, Colby Computer Programfor Correcting Microprobe Intensity Analysis.
• * Pad' II, Append|x H, Hartley Computer Programtar Boltzmann-Matano Diffusion Analysis. !

l
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4. TantalumAlloy-RheniumSystems

Thetantalumalloy-rhenlumsystemsdiffusion_ouplesforman intermediatephase(X) inter-

diffusionzone. TheT-111 alloy-rhenlum(CVD andpowdermetallurgyproduct)junctions

were formedby autoclaveHIP-welding, whereastheASTAR811C-rhenlumjunctionswere

formedby hot pressjoining. Microprobetrace as-weldeddiffusion zonesfor theT-111

junctionswere0. 72 x 10-3cm, while thosefar the hot pressjoined ASTAR811Cjunctions

were 1.34 x 10-3 cm. Extrapolationsof measuredinterdiffusionzonewidths(fromsamples

aged at 1800and2000°C) to time zero resultedin interceptsat 0.90 to 1.80 x 10-3 cm

(Figure 55 ). Analysisof T-111 andASTAR811C to powdermetallurgyandCVD rhenium

interdlffuslonzonewidths is summarizedin Table26.

, Figure56 showsthat very little scatterexisted for this systemand that there is no detectable

_ differencebetweenthe systems.A grain boundarydlffus'.'oneffect for preferentiallyoriented

CVD rheniumgrainswasnotdiscemed, nordid thedifference in alloy base(Hf, Re)constituents

, influencethe interdlffuslonzonewidths. Leastsquarescomputeranalyslsestablishedthe _j
' tantalumalloy-rheniuminterdiffusionmodelas

In( )= _ 36,560 (_1730) .6.449(+O.137) (22)T

where AX is the net interdlffuslonzonewidth (affected zone) in centimeters,t is theage _

time in seconds,and T is the age temperaturein OK. Ninety-five percentconfidencelimits _!

are shown. Literature reviewswere unableto revealothersourcesof informationfor this _,

systemfor comparativepurposes. _ '

' Figure 57 presentsthe interdlffuslonzonewidth informationasa functionof age time,

_('_- andextrapalatlonsto longage timesare providedwith equation (22) from Figure56.

A leastsquaresfit correlationcoefficient of 0. 939 wasfoundfor equation(22).
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Table 26. Tantalum Alloy-Rhenlum Couple Systems
1 Corrected InterdlffuslonZone Widths

x2/,
Tantalum Age Age Iime (t) laterdiffus|on

AIIoy Temp. (sec. Zone Wid,_h
Couple (°C) (hrs.) x 10-6) (cmx 10°) * (cm2/sec)

( Re Ta Re TaII I J

• * 1800 1000 3.60 _ 10.36 -_10.51 2.98 x 10-11 3.07x 1 -11
• T-111/Repowder 100 36 4•09 3.99 4.65 x 10-11 0-1_

• 4.43 x 10_12

1630 1000 3.60 5.14 5.41 7.35x10 -12 8.14xlu_1201500 2000 7.20 3.241 3•29 1.46 x 10-12 1•51 x 1
1200 2000 7. 20 --+ --+ --+ --+

1000 3.60 --+ --+ --+ --+

!T-Ill/R- *** 1800 1000 3.60 • 9.71 "_i'9.65 2.62x10 -il 2.59x10 -11
' "¢13VD 100 . 36 4•16 3.52 4•81 x 10-11 3.44x 10-11

1630 1000 3.60 5.27! 5.75 7.72x10 -12 9.19x10 -12
1500 2000 7.20 3.32 3. 16 1.53 x 10-12 1.39 x 10-12
1200 2000 7. 20 4- __+ __+ __+

1000 3. 60 --+ --+ --+ --+

ASTAR/Repowc_er 2000 1000 3.60 O 26.88 _?.7.47 2.01 x 10-10 2.09x 10-10100 .36 8.57 8.76 2.04 x 10"10 2.13x 10-10

1800 1000 3.60 C.acked in Age Furnace
100 .36 3.35 3.62 3.12x 10"11 3.64 x 10-11

1630 1000 3.60 6.40 6.06 1.14 x 10"11 1.02 x 10-11
1500 2000 7.20 2.71 2.57 1.02 x 10"12 9.17x 10-13

1_"141200 2000 7.20 0.61 0.80 5.09x10 "14 8.90x -141000 3.60 0.35 0.35 3.40x 10"14 3.40x 1

10"10 2.27 x 10"10ASTA,cv0 2ooolOOO3.60 • 27.56+28.58 2 11x
100 .36 7.56 8.81 1.59x 10"10 2.16 x 10"10

1800 1000 3.60 Crockeddurln_.ctae
100 .36 2•85 2.85 2.26x10 It" 2.26x10-11

' 10-II 1.04 x I0 -11
1630 1000 3.60 6.20 6. 11 1.07 x -13
1500 2000 7.20 1.92 182 5. 12 x 10 4.61 x 10"13

" ._-14 10-!41200 2000 7. 20 0. 45 0. 41 2.82 x I U 2.34 x 4

'i,_ 1000 3.60 0.23 0.31 1.47 x 10"14 2.67 x 10"1 _

• Zone width = cmx 103, I.e., 1.72 = 1.72 x 10"3¢m
' _ Zone width also corrected for as-welded condition

• * Re wd = powder rheniummetallurgy productpo er
"" *** Recv D = chemical vapor depa4lted rhenium
; + Insufficient |nterdlffusion for accurate analysis
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Figure57. IllustratingExtrapolationof Zone Widthsto LongAge Times
for TantalumAlloy (T-111, ASTAR811C)-RhenlumInte;-Jlffudon



4---

A Kirkendall vold structure was not observedin the tantalum alloy-rhenium couple inter-

diffusion zones. ASTAR811C couplesto CVD, and powder metallurgy rhenium possessed

long cracks through the interdlffusion zone after agelng at 2000 and 1800°C for 1000 hours

( Figure 58) but possessedno cracks after short 100 hour age at these temperatures. The

T-111 couples aged at 1800°C for 1000 hoursdid not crack in the interdlffusion zone (Figure

59). It is probable that some;nterdiffuslon zone width mustbe exceeded before cracking

(thermal stressinduced) will occur, and the additional presenceof rhenium in ASTAR811C

(over T-111 ) causesit to have a lower crack threshhold.

Boltzmann-Matano diffusion analysis was not performed on the T-111, ASTAR811C to rhenium

;nterdlffuslon zones slr,ce the effects of ternary and higher elemental additions could not be

adequately described by the limlted numberof couple (alloy) combinations employed here.

C. MOLYBDENUM-RHENIUM SYSTEMS

1. Molybdenum-50Rhenlum to TungstenSystems
I

The molybdenum-50rhenlum to tungsten (arc cast and CVD) dlffusion couplesform ;nte.r -
I

mediate pilase (discontinuousconcentration profile);ntercliffusion zones. Both tungsten

systemcouples were formed by hot pressjoining. Microprobe trace measuredas-welded zone

widths were 2.2 x 10-3cm. Figure 60 showsthat an extrapolation of measured interdlffuslon

zone widths for 1800°C ages to time zero results in an intercept at 2.2 x 10"3cm. Analysis of

molybdenum-60rhenium interdlffuslon with tungsten (arc cast and CVD) is summarized in

Table 27.

Figure 61 showsthat very little scatter existed for this systemand that no dlscemlble

"_,_-' differences were found between the tungstensystems. A grain boundary diffusion effect for
preferentially oriented CVD tungstengroins was not found. The Interdlffus|on zone widths

IF

'4"
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Figure 60. Extrapolation of Measured Interdiffuslon Zone Widths to Zero Time to
EstablishZero Condition for the Molybdenum-5ORhenium/l'ungsten System
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Table 27. Mo-5ORe/l'ungsten-Rhenium Couple Systems
Corrected Interdlffusion Zone Widths

'1

_X /_X2/t

Mo-5ORe Age Age Time (t) Intemliffusion
Alloy Temp. (sec.. Zone Wid_
Couple (°C) (hrs.) x 10"6) (cmx 10") (cm2/$e¢)

w R,
tot

Mo-50Re/Worc 2000 1000 3. 60 O 96.60 104.60 2.56 x 10-9 3.04 x 10-9
100 .36 23.75 --+** 1.57 x 10"_' "'+** -10

1800 1000 3.60 40.20 38.6 4.49 x 10"! 0 4.14 x 10.10
100 .36 14.69 11.23 6.00 x 10"i 0 3.50 x 10

1630 1000 3.60 15.79 15.79 6.93x10" _ 6.93x10 -I1

, 10"ll1500 100 .36 2,i_ 1.35 L1.21 x 5.06x 10"12
***

Mo-50Pe/V/CVD 2000 1000 3.60 II 108.5 98.2 3.27 10-9 2.71 x 10-9
100 .36 32.0 29. 30 2.85 : 10-9 2.39 x 10-9

7.25x 10-1118oolOOO36o 3970, 16.15438xlo:1O
42. 30 4. 97 x 10 -I0

100 .36 10.94 10.11 3.32 x 10"10 2.84 x 10-II -11
I 1630 1000 3.60 16.81 17.42 7,85x 10 8.43x 10

1500 100 .36 1.41 0.49 5.52 x 10"I2 6.67x 10"13
" -I0

Mo-50Re/l_epdr+. 2000 1000 3.60 1:3 --+** 43.24 5.20 x 10oi0" 100 .36 --+** 11.12 3.44x 10
1800 1000 3.60 --+** 16.59 7.65 x 10"11-11

100 .36 --+** 5.88 9.61 x 1011 ,
1630 1000 3.60 --+** 10.93 3.32 x 1011
1500 2000 7.20 --+** 8.54 1.01 x 10
1500 100 .36 --+** 2r09. 1,21 ;_10"I1

"l't

Mo-5ORe/lteCVD 2000 1000 3.60 @ --+** 35.53 3.51 x 10 I0100 .36 --+** 11.23 3.50x 10"10-I1
1800 1000 3.60 --+** 15.42 6.61 x 1010

100 .36 --+** 6.90 1.32x 10.11
1630 1000 3.60 --+** 10.89 3.29 x 10
1500 2000 7.20 --+** 8.14 9.20x 10"12
1500 100 .36 --+** 1.62, 1.42 7,29x 10"i2,

5.56x 10"12

* Zonewldth=©mxlO 3, i.e., 1.72=l.72xlO'3¢m
Zone width also correctedfor as-welded condition

_:. Warc = arc castt_ngsten
WCV0 = chemical vapordepositedtungsten

+ Re_ = powdermetallurgy d_enlum.; +, ReCVD -- chemical vapor deposited_onlum
+** Not analyzed

t
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Figure 61. Arrhenlus Model for Interdlffus|on Zone Width in the

Molybdenum-5OR._enlum/l'ungsten Couple System
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measured were large comparedto thoseof other systems, and since they exceeded zero time

as-welded conditions by one order of magnitude, the result wasvery little data scatter. Least

squarescomputer analysis established the molybdenum-50 rhenium/tungsten interdiffusion

model as
,,)

In ( _X')= _ 45, 140 _ 45_.). + O. 155 (+ O. 192) (23)T

. where ,_X is the net interdlffuslon zone width (affected zone) in centimeters, t is age time

;n seconds, and T is age temperature in OK. Ninety-flve percent confidence limits are

shown. Literature reviewsdid not reveal other sourcesof information for this systemfor :om-

parlson purposes.

Figure 62 presentsthe interdiffuslon zone width information as o function of age time,

and extrapolations to Io,_gage times am provided with equation (23) from Figure 61.

A least squaresfit correlation coefficient of 0. 894 was found for equation (23).

Only tungsten conce,_tration profiles were analyzed for Figures 61 and 62 since they i

formed the largest interdlffusion zone widths, and the rhenium zone widths were generally

lessthan or equal to tho_ of the tungsten trace. The tungT,ten zone widths exceeded those !

of rhenium at high temperatures and equaled them at low temperatures. This variation resulted

because the molybdenum-S0rhenlum/tungsten diffusion couple is o strongternary system.

Whereasthe diffusion path in a binary systemis constant, that in a ternary system is variable.

Figure 63 represents o typical interdlffusion concentration path in a ternary system. This

slnusoldal affect is due to the different mabllltles of the ternary constituents. If several

phasefields were present in Figure 64, then the diffusion path would follow tie lines i

through two phase reglom and could trace a surprisingly extended path. If C (in Figure

. _ 63) were tungsten, and A and B were molybdenumand rhenium, the Interdiffusion path,

•IF which occurred in couples of tungste_ to molytxlenum-S0rhenlum would follow the trends

exhibited. However, as Figure 64 demonstrates, a two phase field is intercepted by the

lnt_rdiffuslon pa_, and on intermediate phase (e} is created in the interdiffusion zone.
i



-- _. _ °.

q% ,e,,,_

]00 I l _ I I'1 I Jl .I ' I I • l'l I I I

_" 0 Mo-50_e/War c

__ / ,/ /
20GO°C

o / !/o/ /

° 10 llK)OOC _ /

o _
X

X

!
._

)SoOOC

.S ).(

" / '- - i
- 1

" / - _

- ,_x 2. _,1(0(_4500) .0,1_(+0.)_)) ) ]I. I-;--- ) .... T
t

m

A11e;.k_n IO0 I000 _ I0,000 40,0I_0

0 L f I i l I Ifll h I I I I I IIII I
z 4 6 E 2 4 6 II

I0 _ 103 104

'i,')_,- [J_e ,)m lSeco_b)] I/2

.I

:. Flgurt 62. Illustrotln0Extrapolationof Zone Widthsto LongAge Timesfor
/_lybdenum-5ORhenlum/_ungshmInt_m:llffusion

q)!

122



(_,_ AstronuclearLaboratory

I :I

1

It

Figure 63. IllustratingTypical DiffusionPath _
for TernaryCoupleC/50A-50B

w

|*

Rgure 64. InterdlffudonPathof Tungstento Molybdenum-50RhenlumCouples(11)
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As exhibited in Figure 64, the diffusion path infflally parallels the tungsten-molybdenum

base of the ternary phase diagram, resulting in changes in tungsten and molybdenum concen-

tration but following _so-rhenlum concentration lines. Since molybdenum has the lowest

melting paint on its side of the interface, its preferred interdiffuslon (higher mobility) wffh

tungsten would be expected. The slnusoldal diffusion path is shallower at lower temper-

atures, resulting in more equal interdiffusion zone widths for tungsten and rhenium traces. *_

|

Binary Boltzmann-Matano interdiffuslon analysis was not performed in this systemdue to its

ternary character. Ternary Matano analysis could not be performed without significantly

more couple combinations of varying composition for each age temperature.

Metallographic study of the interdlffusion zones for the couples of this systemdid showan

intermediate phase in the |nterdlffuslon zone. Figure 65 showssuch a zone ( _r phase) for

a molybdenum-50 rhenlum/tungsten couple aged at 1800°C for 100 hours. Kirkendall voids

were not observed in the interdlffuslon zone of this system. Interdiffusion zone cracking

did not occur for any of the age temperatures or age times.

2. Mol_'bdenum-5ORhenlumto RheniumS_tems i

The molybdenum-5Orhenlumto rhenium system diffusion couples form an intermediate phase i

(a,_) interdlffusion zone. All junctions were formed by autoclave HIP-welds, resulting in t !

mln;mal interdlffusion zones. Molybclenum-5Orhenlumwas joined to CVD and powder metal- 1
¢

lurgy product rhenium. Microprobe trace measuredas-welded zero condition zone widths

were O.66 x 10-3cm. Analysis of the interdlffuslon zone widths for this systemare presented

in Table 27. (See Section C. 1, Molybdenum-5ORhenlum to TungstenSystems.) Only rhenium

_! _ concentration profiles were traced for this binary system.

i

124

-_,, ........... ' ........... •....-:: ..........: I .............................. i _.._._
, • _,,.._,_.m,.,j_.lla_,_,_, _

I

1974025933-140



"_% A_tr_nth-_ G_r

Laboratory

OpAGllqA.LvAuz,

_L* Figure 65. An IntermediatePhase(u) ExistsIn the InterdlffuslonZone of the
•I" Molylxlenum-50Rhenlum/'rungstenCoupleAged at 1800°C

for 100 hours(11A-3). Vlew at 200X
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Figure 66 showsthat very little scatter existed for this systemand that there is no dif-

ference between the systems. A grain boundary diffusion effect for preferentially oriented

CVD rhenium grains was not observed. Least squarescomputeranalysis established the

molybdenum-50rhenium to rhenium interdiffuslon model as:
I 9

i In (--_-") = - 30, 140 _ 2940) _ 8. 480 (+ O. 147) (24)

T

where AX is the net interdlffusion zone width (affected zone) in centimeters, t is age time

in seconds, and T is age temperature in OK. Ninety-five pert "_tconfidence limits are

I shown. The interdlffusion zone width, AX, extends from 50 to 100 weight percent (33 to

100 atomic percent) rhenium. Literature reviews did not reveal other sourcesof zone width

information for this system.
1

! Figure 67 presentsthe interdlffuslon zone width information as a function of age time,

and extrapolations to long age times are provided with equation (24) from Figure 66.

A least squaresfit correlation coefficient of 0. 929 was found for equation (24).

Although Kirkendall voids were not observed in this systemfor the age times and temper-

atures employed, photomicrographsdid reveal a wide interdlffuslon zone with o and _(

phasespresent (Fig_,re 68). Interdiffuslon zone cracking only occurred for the agesat

2000Oc (Figure 69).

For Boltzmann-Matano analysis of the molybdenum-50rhenlum to rhenium system, only

rhenium concentration traces were analyzed. Electron microprobe spotcount traverses

were made on samples*:

,(__,_. 31A-6 2000°C 100hours
/ 31A-5 1800°C 1000 hours

I_ 41A-1 1500°C 100 hours

Part II, Appendix F, Diffusion Couple Age/Identlflcatlon Chart
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, Figure 66. ArrhenlusModel for InterdlffuslonZone Width In the
i Molybdenum-5ORhenlumto RheniumCoupleSystem
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Figure 68. The Molybdenum-50Rhenlumto CVD RheniumInterdiffuslonZone
After Ageingat 1800°C for 1000 hours(41A-5)at 200X

• : .'- . ._ Re(p)
I

'"!

,:; Figure 69. TheTypeof Crac.kingWhich Occurred in the Molybdenum-
50Rhenlumto RheniumInterdlffuslonZone After Agesat 2000°C
(Couple31A-7, 2000°C, for 1000 hoursat 200X)I_

1974025933-145



ql_ .l*,..b

and the Colby MAGIC* corrected concentration profiles were loaded into the Hartley**

' Boltzmann-Matano analysis computer programafter being fitted, in probability coordinates,

:or curve smoothlng. Interdlffusion phaseconcentrations (llmlts) did not correspondto that

for publlshed phase dlagram(_.1) For instance, at 1500°C the o and x phase regions should

extend from. 52 to. 68 and . 72 to. 78 atom fracti¢.n rhenium, respectively. Concentration

ranges in sample 41A-1 were. 55 -. 58 and. 64 -. 76 atomlc fraction rhenium, respectively.

This could be because the systemwas dynamic,and equilibrium conditions had not been

established. Figures 70, 71, and 72 present the interdlffusion coefficients for this system

as plotted by computer subroutine.

Interdiffuslon coefficients at 1500°C (Figure 70 ) were only accurate in the x phasedue

to the small o phaselimit and due to the previously described limited phaseextent of the o

phase (0. 72 - 0. 78 atom fraction rhenium). Interd'ffuslon coefficients at 1800 and 2000°C

were more accurately derived from larger phasefield regions.

Figure 73 presentsthe Arrhenius interdlffuslon relation for the molybdenum-rhenlum

system. The ;nterdiffusion coefficients crossthat for molybdenum self-dlffuslon, and are i

plotted as mean D values for each phase region. Self-dlffuslon data for rhenium was not

found in the literature. Due to the scatter in the calculated D values, Arrhenlus form pre-

dictive equations were not derived from Figure 73. The scatter is due to the dlfficulty !
in establlshlng D values at 1500°C and to the small X phase field at higher temperatures.

The molybdenum-50rhenlum to rhenium interdiffuslon coefficient at 1500 to 2000°C is in

the 10"11 to 10-12 cm2/sec range.

3. _Tungsten-Rhenium-Molybdenumto Tungsten

' The tungsten-30. 9rhenium-20. 1molybdenumalloy to tungsten (CVD, arc cast) system dif-

, I' fusion couples form solid solution lnterdlffusion zones. Couples for this systemwere formed

_" *Part II, Appendix J, Colby Computer Programfor Correcting Microprobe Intensity Analysis.
i **Part II, Appendix H, Hartley Computer Program_'orBoltzmann-Matano Diffusion Analysis.
•
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by hot press joining. Figure 74 illustrates that an extrapolation of measured inter-

dlffuslon zone widths (_X meas) for 1800°C ages to time zero results in an intercept at

1.45 x 10"3cm. Thls value agreed well with the microprobe trace measured as-welded

zone width of 1.40 x 10-3cm. Analysis of tungsten-rhenium-molybdenum to tungsten inter-

diffusion zone widths is summarized in Table 28. *i

Figure 75 showsthat very little scatter existed for this systemand that there is no ,_

detectable difference between the systems. A gra|n _clary diffusion effect for prefer-

entlally oriented CVD tungsten grains was not observed. !.east squarescomputer analysis _*"

established the tungsten-rhenium-molybdenum to tungsten interdlffuslon model as: :_

in ( )= 34, 750 _ 3890) 7.20A(+0.172) (25) "T - 1

where _X is the net interdiffuslon zone width (affected zone) in centimeters, t is age time

in seconds, and T is age temperature in OK. Ninety-five percent confidence limits are

shown. The interdlffusion zone width extends from 98 to 42 atomic percent tungsten, or 26

to 2 atomic percent rhenlum. Both tungsten end _enium Intendiffuslon zone widthsore

presented in Figure 75 with no one element bein0 predominant in hovlng a larger zone

width (i. e., slnusoldal ternary path). Literature reviews did not reveal other soun:esof

zone width infonmatlonfor this system.
t

I

Figure 76 presents the interdlffuslon zone width information as a function of age time, and

extrapolations to long age timesare provided wlth equation (25) from Figure 75. A least

squarescorrelation coefficient of 0. 771 was found for equation (25).

. Metallagrapt_ic studyof the interdlffuslon zone revealed that neither Kirkendall voids nor

_ int,_rmediate phaseswere present. Cracking did not occur In the interdiffusion zone.

t
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Table28. W-30.9Re-20.1Mo/Tungsten-Rhen|umCouple
S CorrectedInterdlffusionZoneWidths

_X AX2/t
Age Age Time (t) Interdiffusion

W-29Re-18Mo Temp. sec. Zone W_dth
Couple (_C) (hrs.) (x 10"6) (cm x !0"3) * (cm2Aec)

W Re
-10

W-Re-Mo,/W ** 2000 1000 3.60 0 22.47 _ 22.97 1.40x10' 0 1.46xi0 10
arc 100 0.36 8.69 8.39 2.10x 10" 0 1.96 x 10

1800 1000 3.60 7.381 7.31 1.51 x 10" 1 1.49 x 10"111 -11

100 0.36 3.5_i 3.41 3.58 x 10" 1 3.23 x 10
1630 1000 3.60 6.1 5.62 1.06x 10" 2 8.77x 10"12
1500 2000 7.20 4.51 4. 19 2.82 x 10" 2.44 x 10"12

ooo,ooo • + -- , +,x,ol° -- -,o
100 0.36 10.98 10.56 3.36x I0"11 3. lOx 1011

1800 1000 3.60 12.17! 11.15 4.11 x I0".: 3.44 x 10

100 0.30 3.64 4.59 3.68 x 1011 5.86 x 1012 .t
1630 1000 3.60 6.471 5.92 1.16 x 10 12 9.74 x 10
1500 2000 7.20 3.75 4.37 1.96 x 10"" 2.66 x 10-12 :,

e;w -10-- 3.57 x 1010
W-Re-Mo/R dr. 2000 1000 3.60 0 -- _ 35.83 -10 2.42 x 10

100 0.36 9.851 9.34 2.70x 10_11 -11
1800 1000 3.60 16.03] 15.48 7.14 x 10_!0 6.68 x 10_10

100 0.36 8.17 8.13 1.86 x 10.i 1 1.84x 10 _-II ?
1630 1000 3.60 10.35 8.49 2.97x I0 2. I1 x I0

i 1500 2000 7.20 7.09 7.27 6.99x 10-12 7.35 x I0 -12
-I0 t

W-Re-Mo_,c_"_ 2OOOlOO0360 • -- "" 0 209x10_10 +100 _.36 9.65 9.68 2.54 x 10" 2.61 x 1010
1.00x 10_I0 i

1800 1000 3.60 21.78 18.97 1.32 x 10- 0 1.24 x 10_11
100 0.36 7.37 6.68 1.51 x 10" 1 2.82 x 101630 1000 3.60 9.77 10.07 2.65 x 10" 1

1500 200G 7.20 8.52 7.94 1.01 x lu 8.75 x 10"12

• Zone width = cm x 103, i.e., 1.72 = 1.72 x 10"3cm |
Zone width also correctedfor as-welded condition

•* Warc = arc casttungsten
• ** WC = chem;calvapordepos;tedtungsten(W), rhenium(Re)VD

+ Repowcler = powdermetallurgyproductrhenium
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. Figure 75. Arrhenlus Model for Interdlffudon Zone Width in the
' Tungsten-Rhen|um-Molybdenum to TungstenCouple ._ystem
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Figure 76. Illustratlng Extrapolationof ZoneWidthsto LongAge Timesfor
i Tungsten-Rhenlum-Molybdenumto RheniumInterdlffusion
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Boltzmann-Matano analysis was not performed for this systemsince it is a strong ternary

system, and diffusion couplesof several compositionswould have been required.

4. Tungsten-Rhenium-Molybdenumto Rhenium

The tungsten-30. 9rhenium-20. 1molybdenumalloy to rhenium (CVD, powder metallurgy

product) systemdiffusion couplesform intermediate phase (discontinuousconcentration pro-

file) interdlffusion zones. Couples for thls systemwere formed by autoclave pressurewelding. 9

Microprobe trace measuredas-welded widths were 0. 72 x 10-3cm. Analysis of tungsten-

rhenium-molybdenum to rhenium interdiffuslon zone widths are summarized in Table 28. _

Figure 77 showsthat this system had little scatter and that there is no detectable dif-
c

ference between the systems. A grain boundary diffusion effect for preferentially oriented _
CVD rhenium grains wasnot observed. Least squarescomputer analysis established the tungsten-

rhenium-molybdenum to rhenium interdiffuslon model as:

tn ( ).. 28,58O(*.329O). 9.3O3 O.144) (26)T

where AX is the net interdlffusion zone width (affected zone) in centimeters, t is age time

in seconds, and T is age temperature in OK. Ninety-five percent confidence limits are

shown. The interdiffuslon zone width extends from 98 to 26 atomic percent rhenium, or

from 42 to 2 atomic percent tungsten. Bothtungstenand rhenium interdiffuslon zone widths ::
!

are presented in Figure 77 with no one element being predominate in having a larger

zone width (i. e., slnusoidal ternary path). Literature reviews did not reveal ottler sources

of zone width information for this system.

Figure 78 presentsthe interdlffuslon zone width information as a function of age time, and

:_L;_ extrapolations to long age times are provided with equation (26) from Figure 77. A least

•B squarescorrelation coefficient of 0. 791 was _oundfor equation (26).
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.,. Figure 78. Illustrating Extrapolationof Zone Widthsto LongAge Times
for Tungsten-Rhenlum-Molybdenumto RhenlumInterdlffuslon
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K;rkendall voids did not form in the ;nterdiffusion zonesof this system. Figures 79 and

80 illustrate the cr and × phaseswhich formed in the ;nterdiffusion zone after ages at

1800°C. The small porosity on the rhenium side of the ;nterdiffusion zone are the result of

CVD processesand are not a K|rkendall effect.

Cracks were only observed in the ;nterdiffusion zones of this sample systemafter ageing at

2000°C for 1000 hours. Figure 81 illustrates the small, randomly oriented cracks which occurred

in the a phase region of this system. The holes in the interdiffuslon zone are associated with

the tungsten-1 percent thorla marker wire and are typical of marker wire effects in this study. !

None of the couples of this systemfractured.
i

Boltzmann-Matano analysis was not performed for this systemsince it is a strong ternary
I

:;l system, and diffusion couples of several compositions would have been required, i
!
j D. TUNGSTEN TO RHENIUM SYSTEMS

1. Tungstento Rhenium .

The tungsten to rhenium systemdiffusion couples form an interdlffuslon zone with intermediate

phases. The coupleswere all formed by hot pressjoining and were joined in the following

structures:

W(arc cast)/Re (powdermetallurgy product)

W(CVD product)/Re(powder metallurgy product)

W(powder meta I lurgy product)/Re(CVD product)

Microprobe trace measuredas-welded zero condition zone widths were 1.77 to 2.10 x lO-3cm.

Analysis of tungstento rhenium ;nterdiffuslon zone widths are summarized in Table 29.

.e
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/_" W-Re-Mo

• Re(CVD)
• ° e •

t a _ ,o " ° " * • e

• ,, .p

Figure 79. Tungsten-30.9Rhenlum-20.1Molybdenumto CVD Rheniuminterdlffuslon
Zone After 100 hoursat 1800°C (4HA-3) at 200X.

Note the thin x andwide o phasezonesin the couple.

_;. " * ,, - ': _.'.,._:_I
#i_:, • ." -. • .:1 W-ke-Mo- .. [ ...:";_

:_,, , o '" ;:;..,

,'i '" ' <1 _ " " , .,,,t,t""

I '_' '_* ' "r J '' '" Re(CVD)

.;, Figure 80. Tungsten-30.9Rhenium-20.1Molybdenumlo CVD RheniumInterdlffuslon "
Zone after 1000 hoursat 1800oC(4HA4) at 200X.

The _(ando phasezoneshave grownproportlono}1_,fromthe 100 hourage.
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'" _ Figure 81. Typical RandomlyOriented InterdlffuslonZoneu PhaseCrocksAppearing
,;, In Tungsten-30.9Rhenium-20.!Molybdenumto RheniumCouplesAfter

Ageingat 2000°C for 1000 hours(3HA-6) ot 200X.
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Table 29. Tungsten-RhenlumCouple Systems
Corrected Interdiffuslon Zone Widths

AX AX2/t
Tungsten// Age Age Time (t) Interdiffusion

Rhenium Temp. (sec. , Zone Wide,
Couple (°C) (hrs.) x 10"6) (cm x 10 )* (cm2/sec)

** *** -10

Warc/Repowder 2000 1000 3.60 II 34.37 3.28 x 10_10
100 0.36 24.48 1.66x 1011

1800 1000 3.60 10.83 3.26x 1011
100 0.36 2. 10 1.23 x 1012

1630 1000 0.36 5.07 7.15x 10
1500 2000 7.20 3.09 1.33 x 10"12

+ *** -10

t _._vD/Repowder 2000 1000 3.60 a 37.70 3.95x 10.10

100 0.36 19.85 1.09x 10
1800 1000 3.60 13.90 5.37x 10"11

-11
100 0.36 2.00 1.11 x 1012

1630 1000 3.60 5.15 7.38x 10
1500 2000 7.20 2.61 9.46 x 10-13.

*** _ + -10
! . Wpowclet/_,.,CVD 2000 1000 3.60 X 28.09 2.19 x I 0.i I

100 0.36 4.70 6.14x 10_11
1800 1000 3.60 8.83 2.16x 10_12

' 100 0.36 1.60 7.11 x 10_12
1630 1000 3.60 3.76 3.93 x 10

' 1500 2000 7.20 2.08 6.02 x 10-13

* Zone width = cm x 103, i.e., 1.72 = 1.72 x 10-3cm !
Zone width also corrected for as-welded condition.

** W = arc cast tungstenproduct
*** Rearc . = powder metallurgy rhenium product I

W_°v_ae=r chemical _,_apordeposited tungsten product
-f

ii '
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Figure 82 showsthat somescatterexisted for thissystembut could notbe assignedto any

materialstructuredifferences. Thescatterwasmorepronouncedas a resultof elevated tem-

peratureageing than low temperatureageing, contraryto the resultsfor all of the other systems

in thisstudy. Workof HudsonandYang(13) agreesratherwell at elevated temperaturesbut

differsby a factor of 3 (in zone width)at lowertemperatures. Thedifference couldbe the

resultof joining techniques(hotpressfor thisstudyversusCVD to a substrate)or neglectof

correctionsfor as-weldedconditionsat zero agetime. Leastsquarescomputeranalysisestabl-

lished the tungsten-rheniuminterdiffusionmodelas: i

In ( )= 41,.300 (:L7470) -4.464 1*0.332) (27) ii

whereAX is the net interd|ffusionzonewidth (affectedzone) in centimeters,t is age time in

seconds,andT is age temperaturein OK. Ninety-five percentconfidencelimits are shown.

Figure 83 presentsthe interdiffuslonzonewidth informationas a functionof age time,

and extrapolationsto longage timesare providedwith equation (27) fromFigure 82.

A leastsquaresfit correlationcoefficientof 0. 584 wasfoundfor equation (27).

Metallographlc investlgatlonof the interdiffusionzonerevealedthat Kirkendall voidsdid not

occurin thissystem. Bothc,and x phaseswere observedin the !nterdiffusionzone (Figure

84). Interdlffusionzone crackswerenot observedin any of the couplesfor thissystem. The

• CVD tungstendevelopeda definite grain bou_ar_ related porosityafter 2000 hoursat 2000°C

. (Figure 85). Thisporositywasprobablythe r_sult_f the CVD proce. (fluorinecontent),

but did not adverselyperturbthe interdiffusloncharacteristicsof the couplesystem. Thevoids

presentin the interdiffusioninterface (Figure 85 ) only occurredin the areaswhereCVD grain

•i -,_. boundaryporosityoccurred. Similarporositieswere not observedin the CVD rheniumcouple
_. materialbut were presentto o lesserextent in the powdermetallurgytungstenmaterial.

I
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' Figure 82. Arr_,en|usModel for Interd|ffu0|on Zone Width
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Figure 84. The e and x Phaseswere Present in All Tungsten to Rhenium Interdiffusion

j Zones. Th|s couple (2JA-4) aged at for 1000 hours _at200X).1800°C

.__,_,. .

-__ _..;_]n_ _ ,_ W(CVD)

;Ib

1 ' Figure 85. Gmln BoundaryPorosity Occurred In the CVD TungstenCouple
Tungsten Couple Materials after 1000 hoursat 2000°C

(Couple 2JA-6 at 200X)
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Perusal of Figures 84 and 85 will reveal that the x phase does not appear to be present

after 2000°C agelng. Thls observation was repeated for all tungsten to rhenlum couples for

2000Oc age only. Since published phase diagrams establish a x phaseto 2200°C, its absence

at 2000°C could only be assigned to its small concentration span at this temperature (i. e.,

73 to 74 atomic percent), and thus low vlslbillty an a concentration gradient trace. However,

when the relative concentration-distance profiles were plotted an probability paper (Hartley

Boltzmann-Matano computer analysis), a dlscontinulty in thls concentration area verified the

exlstance of the x phase.

For Boltzmann-Matana analysis of the tungsten-rhenium system, only pure tungsten to rhenium

was considered. Other couples, such as tungsten to tungsten-25rhenium and rhenium to

tungsten-25rhen;um form partial ceuples and will yield the same results. Electron microprobe

spot c .,nt traverseswere made on samples:*

f

4JA-6 2000Oc 1000 hours _

4JA-4 1800°C 1000 hours

2JA-1 1630°C 1000 hours ;_

and the Colby MAGIC** corrected concentration profiles were loaded into the Hartley***

Boltzmann-Matano analysis computer programafter belng fitted, in probability coordinates,

for curve smoothing. Figure 86 illustrates the microprobe corrected interdlffuslon con-

centratlon profile of sample2JA-1 as presentedby Calcomp plot subroutine. Phasespresent

from pure tungstento rhenium are 8, o, x, a. Figure 87 presentsthe smoothedconcen-

tratlon profile generated by the least squaresfit routine (in probability coordinates) of the

Hartley program. The e and x phaseconcentration limits agreed with published phasediagrams.

Figures 88, 89, and 90 present the interdiffusion coefficient as a function of tungsten

'_'_' concentration at 1630, 1800, and 2000°C. Only the e and x phaseinterdlffusion coefficients_._

* Part II, Appendix F, Diffusion Couple Age/Identificatlon Chart.
** Part II, Appendix J, Colby Computer Programfor Correcting Microprobe Intensity Analysis.
*** Part II, Appendix H, Hartley Computer Programfor Boltzmann-Matano Diffusion Analysis.
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Figure 88. Tungsten-Rhenium Interdiffusion Coefficient at 1630°C (2JA-1)
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Figure 89. Tungsten-RhenlumInferdlffusionCoefficientat 1800°C (4JA-4).
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Figure 90. Tungsten-Rhenlum Interdlffuslon Coefficient at 2000°C (4JA-6)
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are p_esented in Figure 91 becausedlfficultleswereexperlenced in least squares fitting

the concentration curve _n the/3 (high tungsten) and a (high rhenium) phase regions.

Figure 91 presents the Arrhenlus interdlffusion relation for tungsten-rhenlum interdiffuslon

as resolved in this study. The interdlffusion coefficients fall abo_e that for tungsten self-

diffusion and are plotted as mean D values for each phase region. Self-dlffuslon data for

rhenium was not found in the literature but should be larger than that for tungsten. Difficulty

was encountered in resolving D for the a and B phases due to the problem (previously described)

of curve fitting to the data at 2000°C. The interdiffuslon coefficient can be expressed for the

o and × phases a_:

_ (c__m)=8.81 x 10-4exp (28)a 'sec RT

- 2 0- 3 i 74,000]
D× (cm)=1 33x 1 exp (29)sec " RT

For the concentration (phase) regions of the phase diagram where they apply, and where T is

in OK and R is the gas constant (1. 987 cal/mole-°K ).

i

2. Tungsten-25Rhenium to Tungsten Systems

The arc cast tungsten-.25rhenium alloy to tungsten (arc cast, CVD) system diffusion couples

formed solid solution interdiffusion zones. Couples for this system were the most difficult to

autoclave HIP-weld and were all formed by hot press joining. Electron microprobe trace

measured as-welded zero condition zone widths were 0. 94 x 10-3era. Analysis of the a_c cast

ttngsten-25rhenlum alloy to tungsten interdiffuslon zone widths are summarized in Table 30.

Figure 92 shows that some scatter for this system existed at 1500 and 1800°C, but there was

_i no detectable difference between the systems. A grain boundary diffusion effect for preferentially
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Figure 91. Ar,],enius Interdiffusion Coefficlent-Temperature
Relation for the Tungsten-RhenlumSystem
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Table 30. W-25Re/Tungsten-t'_henium Couple Systems
Corrected Interdlffuslo, Zone Widths

Z_X ,_X2/t

Age Age Time (t) Interdif'fusion

W-25Re AIIoy Temp. (sec. Zone Widt_
Couple (°C) (hrs.) x 10.6) (cm x 10") * (cm2/sec)

W Trace Re

W-25Re/W ** 2000 1000 3.60 0 19.2i -- 1.03x 10-10
arc 100 0.36 6. 10 -- 1 03 x 10-10

-11
1800 1000 3.60 7.92 -- 1 74x 10_11

100 0.36 2.37 -- 1.56 x 10 ] 2

1630 1000 3.60 2.43 -- 1 65 x 1__121500 2000 7. 20 3.06 -- 1 30 x 1
I

W-25Re,/WC*_[_ 2000 1000 3.60 t 19.68 -- 1.08x 10:10
100 0.36 6.88 -- 1.32 x lu_l 1

1800 1000 3.60 11.15 -- 3.46 x 10_12
100 0.36 1.60 -- 7 11 x 10_12

1630 1000 3.60 2.38 -- 1158 x 10_13
1500 2000 7.20 0.85 -- 1.01 x 10

W-25Re/Repd+w 2000 1000 3.60 r-1-- 61.60 1.06 x 10-_0
r. 100 0.36 -- 17.65 8.65 x 10_11

1800 1000 3.60 -- 13.90 5.37x 10 "1
100 0.36 -- 2.78 2.14x 10-!.

1630 1000 3.60 -- 6.07 1.02 x 10-I I
1500 2000 7.20 -- 2.86 1.14x 10-12

W_25Re/Re/;V+D -10
2000 1000 3.60 • -- 46.30 5.95 x 10

" 100 0.36 -- 11.60 3.74 x 10-10
1800 1000 3.60 ......

-11
100 O. 36 -- 2.54 1.79 x 10_11

1630 1000 3.60 -- 7.72 1.65x 10
1500 2000 7.20 -- 1.34 2.49x 10-13

• Zone wldth=cmx103 ' i.e., 1.72 =1.72x10 -3cm
Zone width also corrected for as-welded condition._q,L.

,_ ** Warc = arc cast tungstenproduct
• ** WCV D = chemical vapor deposited tungsten product

4 + Re . = powder metallurgy rhenium product
powaer

+* Recv D = chemical vapor deposited rhenium product

159
i _

I
-- Ii,

I.i. -. ..............

, t -- -" -F ....

...................................................................................... i
I

]974025933-]75



10. E 2000. 1800 1630 1500 1200 T,° ,I I I I 1 -

47, 100 (+9930) " (+0.4411 -In( = T "_"

10-9

Z

\ -o W-25Re,_Varc

• W-25Re/Wcv D

lo-_o

• 0
" 0

10"1= :
_x" - .Z

.el --

10_12 o

10"13 r

u

'_, _,_. I0 "|4 I I 1 I I I I I I I I • I

,l_., 4 0 5 0.6 0,7
I/T (OK'I _x 103

it

Figure 92. Arrhenius Model for Interdlffus|on Zone Width In the
Tungsten-25Rher,lum to TungstenCouple System
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oriented CVD tungsten groins was not observed. Least squarescomputer analysis established

the tungsten-25rhenium to tungsten interdiffuslon model as:

In (._.z) = _ 47, 100 _ 9930) _ 2.199 (+ O. 441) (30)T

where _X is the net interdiffuslon zone width (affected zone) in centimeters, t is age time in

seconds, and T is age temperature in OK. Ninety-flve percent confidence limits are shown.

The interdiffuslon zone width extends from 98 to 75 atomic percent tungsten. Since this

partial tungsten-rhenium couple is a binary system, only the tungsten concentration trace was

followed. Literature reviews did not reveal other sourcesof zone width information for this

couple system.

Figure 93 presentsthe interdlffusion :one width information as a function of age time,

and extrapolations to long age timesare provided with equation (30) from Figure 92.

A least squarescorrelation coefficient of 0. 966 was found for equation (30).

Metallogrophlc studyof the interdlffusion zone revealed that neither Kirkendall voids nor

intermediate phaseswere present. Cracking did not occur in the interdlffuslon zone. As

described for the tungsten-rhenlum diffusion couple system, grain boundary porosity developed

in the CVD tungstenstructure only after 2000°C ageing for 1000 hour. This porosity did not

appear to affect the interdlffuslon characteristics of the couple system.

Boltzmann-Matano analysis was not performed for this systemsince it is a partial couple to the

tungsten-rhenlumcouple system, and resultswould have duplicated this system.

" 3. Tungsten-25Rhenlum t° RheniumSysten_s•, e,el _

The arc cast tungsten-25rhenlum alloy to rhenium (CVD, powder metallurgy product)system

diffusion couplesformed intermediate phase (e, x ) concentration discontinuous profile

161
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Figure 93. Illustrating Extrapolation of Zone Widths to LongAge Times
for Tun_ten-25Rhen|um to Tungsten Inte_iffus|_
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ir_'e_i:;_.sTo_ zor,es. Co_oles :or th_s systeerwere amorg the most di_fTc_It to ,:-_toc_,_e HI_'-

,veld _:,x_w_.re all :or'r'_.._by hot ocessiolnlr_g. Electron mic.opro_e trace r"e_s_ree :s-_eide,_

zero cor_itior_ zone widths were 1.96 x 10°3cm. Analysis of the arc ccs_tun_s_e_-25r_-er,i_m

olloy to rflef'ium interdiffuslon zone widths are summarize_ i', Table 30.

Figure 94 showsthat this systempossessedobove average scatter and that there is _ _,,alt

trend for interdfffusion zone widths with powder metallurgy rhenium to be slightly larger than

thosewith CVD rhenium. Since grain diameters were equal to or larger than the interd_ffuslon

zone widths (Figure 95), this effect _ould ne,t be assigned to a .0raln structural dependency.
i

The CVD rhenium was layered due to deposition practices, and one layer iunction plane

poral!,;lecl the couple weld plane and occurred within the interdlffusion zone. The small pores

and deposition disruption associated with this CVD layer zone muld have contributed to the

interdlffusion zone widths being smaller for the CVD rhenium couples.

Least squarescomputeranalysis established the tungsten-25rhenium to rhenium interdlffusion

model as:

In (._ X-_)= - 5_:__,,990 _ 11,900 + 2.415 (+0.551) (31_
- T

where/IX is the net interdiffusion zone width (affected area) In centimeters, t i,_age time

in seconds, and T is age temperature in OK. Ninety-five percent confidence limits are shown.

The interdiffusion zone width extends from 98 to 25 atomic percent rhenium. Since this partial

tungsten-rhenium couple is a binary system, only the rhenium concentration trace was fol lowed.

Literature reviews did not reveal other sourcesof zone width information for this couple system.

Figure 96 presentsthe interdiffusion zone width information as a function of age time, and

_- extr',palatlons to long age times are provided with equation (31) from Figure 94. A least

'_ squarescorrelation coefficient of 0. 761 was found for equation (31). 1
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Figure 94. Ar_lmius Model for Inte_llffuilon Zone Width in the
Tu_$_n-25Rhenlum to Rhenium Couple Syst_
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Re(p)

/

W-25Re

, ,,l_-,.

Figure 95. Tungsten-25Rheniumto Rhen|umInterd|ffusionZone Width after 1._)0hours
at 1800°C (3GA-4) at 21X)X. Note that average grain slze equals

ot exceedsinterdlffusionzonew|dth
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Figure 96. Illustrating Extrapolation of Zone Widths to Long
Age Times for Tungsten-25Rhenlumto RheniumInterdlffuslon
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I Metallographlc study of the interdlffuslon zone revealed that nelther Kirkendall voids nor
I

! cracking were present. The × phase: a phasezone width ratio wasconstantat 1:5 for the age

i times and temperaturesstudied. The× phasewasnot observedmetal lographlcally in those
i

I samplesaged at 2000°C for 100 and 1000 hours. Microprobe concentration traces of the
I
! 2000°C age couples also failed to reveal a definite )c phase region. Since published phase

,J diagrams establish a × phase to 2200°C, its absence at 2000°C would only be assigned to its

I small concentrationspanat this temperature(i. e. 73 to 74 atomic percent), and thuslowI
I

! visibility on a concentration gradient trace. Also, since the diffusion coefficient of the ×
I

! phase is slightly larger than that of the o phase (see Tungsten to RheniumSystems), the o phase
I

! diffusion should be rate controlling, and o phaseshould grow at the expense of X phase.

i
: Boltzmann-Matano analysis wcs not perfon_ed for this systemsince it ; a partial couple tol

! the tungsten-rhenlum couple system, and resultswould have duplicat_l this system.

i
I

i

!
I

1
i
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VIII. DISCUSSION OF RESULTS

The selection of refractory metals and alloys for diffusion couple analysis was based on

several considerations. Refractory metal structural alloys typical of thermbnic support

materials were joined to pure refractory metals, typical emitter structures, to simulate

thermlonic systemapplication. Also, diffusion couple systemsthat were not reported in the

literature were selected. Sufficient alloy family and partial couples* were selected to

ascertain the effect of varying boundary conditions upon couple interdiffusion characteristics.

Progressivealloys (Ta, Ta-10W, T-111, ASTAR-811C) were also selected for diffusion

couples with tungsten or rhenium for similar purposes.
[

1 The diffusion couple systemsselected were first joined by hot isostatic pressurewelding.1
j Lower strength materials such as Cb, Cb-lZr, Ta, etc. were easily welded. Higher strength
!

! _ materials required secondary processing at more elevated temperatures (hot press joining) in
I order to achieve 100 percent welded interdiffusion interfaces. In both casesthe as-welded
t
f interdiffusion zone width was minimal with respect to subsequentdiffusion age thicknesses.

t
I

I Ageing temperatures were selected to span h/picalthermionic application conditions. Ages

at 1200°C were not expected to yield substantial interdiffusion zone widths, and age times

of 1000 and 2000 hours were found in most cases to be marginal for accurate microprobe

analysis. Ages at 2000°C were 100 and 1000 hours and resulted in substantial interdiffusion

zone widths whose analysis showed substantially no differences oetween 100 hour and 1000

hour interdiffusion constants. The inadvertant shorting of the control thermocouple dLJring

the 1500°C age cycle was properly rectified by optical pyrometry to 1630°C and was later

4 supported by the coincidence of the 1630°C data with diffusion characteristics at 1200,

_" 1500, 1800, and 2000°C (i. e., In (AX2/t) vs. 1/1"correlations).

* Where W/l"a is a full couple, W/I"a-10W is a partial couple, etc.
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All interdiffusion zone width parameters followed the relation

In (-_)=A+ B_" (32)

where/_X is zone width in centimeters, t is age time in seconds, and T is age temperature

in degrees Kelvin. Graphical presentation of experimental interdlffuslon data as

.__.2 ] (33)In( )vs

and

I n (&X) vs In (t) 1/2 (34)

showed good correlation to equation (32). Table 31 presents the parameters A and

B (in equation 32 ) for the interdlffuslon couple systemsof this study. Correlation coef-

ficients were good considering the small number of data points available. Most of the

correlation coefficients were 0.8 or better.

Classic interdlffuslon coefficients were only calculated for a few of the systems. For instance,

W/Cb, W/Ta, etc. were analyzed for D, but not W/I"a-10W or similar partial coupes,

since these partial couples would have yielded the same results. A'lso, ternary or higher

alloy interdiffuslon coupleswere not analyzed for D.. due to the lack of sufficient ternary
II ,

Tnterdiffuslon at one temperature (i. e., crossingpath technique). Where classic interdlffuslon

coefficients were calculated, correlation with published data by other researcherswas

established.

Classic intrinsic dlffusivities (i. e., Darken's analysis with marker mo:ior correlations) were

not calculated for this study since primary concern was predicting interdlffuslon zone widths.

;_'_' Also, distortions around the fairly large marker wires (W-2% ThO 2 at 0. 001 inch dlometer)

t causedthem to form unusual geometries as well as potential disruptlon to normal diffusion

See Part II; Appendix B, keferences 20, 27, 28, etc.
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Table 31. Interdlffuslon Zone W_dth Analytical Model*

_6tX2 1In ( ) =B (T) +A

_X =_/i- eA/2 e B/21

Correlation
System Coefflclent A B

1. W(Pow' CVD),/Cb, Cb-lZr O.934 -3.8689 -37,390

2. Re(pow' CVD),/Cb, Cb-1Zr O. 866 -0. 4899 -43,880

3. W(arc ' CVD)/I"a, Ta-10W O. 897 -7. 3385 -35,290

4. W(arc, CVD)/I"-111, _STAR-811C 0.815 -3.3589 -44,720

5. Re(pow' CVD)/Ta, Ta-10W O. 971 -7. 1024 -35,020

6. Re(pow, CVD),/T-111, ASTAR-811C 0.939 -6.4489 -36,560

7. W(arc ' CvD/Mo-5ORe O. 894 +0. 1554 -45, 140

8. Re(pow, CVD/M°-5ORe O. 929 -8.4797 -30, 140

9. W(arc ' CVD)/W-30.9Re-20. 1 Mo O. 771 -7. 2084 -34, 750

. 10. Re(pow' CVD)/W-30. 9 Re-20.1 Mo O. 791 -9. 3027 -28,580

11. W(arc, CVD)'/_e(pow, CVD) O. 584 -4. 4641 -41,300

12. W(arc, CVD)/W-25Re O.966 -2. 1992 -47, 100

13. Re(pow,CVD)/W-25Re 0.761 +2.4148 -53,990

I * Least squaresfit to (__X") = A' eB7 r
r

wq
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paths. Microprobe trace and spot count analyses were therefore made in areas removed from

the marker locations.

The use of mlcrohardness traverses to determine interdlffuslon zone widths has been his-

torically inaccurate and qualitative but was attempted early in this study to establish cor-

relations with microprobe analysis° Interdlffusion analysis by mlcrohardness traverse of the

interdlffusion zone was not continued in the study since: (1) Kirkendall voids disrupted

these measurements, (2) interdlffusion zone widths of small dimension were beneath the

resolution of the technique, and (3) mlcrohardness changes across the interdiffusion zone

were in some cases within statistical scatter.

The effect of varying grain size on |nterdiffusion characteristic within each alloy family was,

if present, undetectable. For instance, |nterdiffuslon characteristics for arc cast W to a

couple material were the same as CVD W to the samematerial. In general, post-test grain

sizes were all larger than the interdiff,'slon zone width for both sides of thp diffusion couple

by factors of 10 or more. As a result of this effect, gr_lin boundary diffusion was not an in-

fluencing factor in the analysis of the couples. This is further illustrated by the fact that the

graphical presentationsof In (AX2/t) vs (1,/T) were linear in all cases. If grain boundary

effects had been present, the interdiffusion zone widths would have been larger than expected

at low temperatures, and deviations above the linear relationship described above would have

been observed. This was not the -r'_e.

Several systemcomparisonscan be made for the diffusion couplesof this study. For instance,

Figure 97 demonstratesthe interdiffuslon characteristics for the Cb/W and Cb/Re systems.

There is surprisingly little variation between the two systemseven though one is a solid solution
r_

_ couple systemand the other is one wlth an interphase interdlffuslon zone. Differences between

e CVD W and arc cast W, and CVD Re and powder metallurgy Re were not noticed in the
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earlier presentation of these systems. Note also, the absence of a grain boundor- ffect.

The statistical scatter at low temperatures is due to the resolution of analytical techr,ques
I

and the _.mall interdlffuslon zone widths achieved in this temperature range. Tk_se onalytical

problems are not present at elevated temperatures.

Comparison of the W/Ta alloy systems is presented in Figure 98 as well as that of Re/Ta

systems. The relationships of the interdiffuslon characteristics are almost predictable. For

instance, the interdlffuslun zone width of Ta/W and W,/l"a-10W couples is greater than those

of T-111 and ASTAR-811C to W at low temperatures but almost equal at elevated temperatures.

That the zone width of the Ta-10W,/V¢ partial couple is the same as that for the W/l"a couple

was not entirely expected. As a comparison, the Re,/i"aalloy systems_ssessed slightly higher

zone widths than those of w/'ra, even though they formed multiple phase interdlffuslon zones.

This would be expected from a re!atlve melting point conslderation (Part II, Appendix C).

An interdlffusion predictive model was developed early in thls study as an aid in predicting

adequate age times and temperatures to employ (experimentally) in order to generate zone widths

of analyzable dimensions. Part II, Appendix C describesthe development of this mode! in

detail° Basic interdlffuslon Arrhenlus equations were employed to relate the interdlffuslon

zone width to the entropy of the combined system. Since entropy and relative temperatures

were shownto be related, the interdiffuslon zone widths of variou,: interdiffusion systems

could all be related to one "family" llne. The lowest melting paint temperature of each

binary (interdiffusic n) systemwas selected as the point of hlghest ent.'opy, and thusthe

paint of diffusion characterization. Figure 99 presentsthe predicted interdlffuslon/

temperature relationship for the material comblnatlons of thls study, as well as the exper-

imental llne. Correlatlon wasbetter than expected due to the "universality" assigned to

, '*,_ the relatlonshlp. However, the intercllffuslon characteristics of W and Re to group V and

l' VI refractory metals and alloys can be predicted by Figure 99 with _cceptable

e.,
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t accuracywhenexperimentaldata are notavailable.

Althoughall of the selecteddiffusion iunctlonssurvivedtheir oneage thermalcycle without

fracture, severalobservationscouldbe noted. Hot isostaticpressurewelded interfaceswith

Recannotbe recommendedfor longtermelevated temperatureservicedueto brittle inter-

metallic phasesandcrackswhich formedin their diffusion interfacesduring,hort term thermal

ageing. Nonplanar jointssuchas tubular (concentriccyllnder)face jointswith Reto Ta

all crackedandfractured in the interdlffuslonzone. W jointsto refractorymetalalloys

werenot subjectto joint crackingbut weresusceptibleto considerableKirkendallvoid

I formation. Themostacceptablejointsfor longterm high temperatureserviceshouldbe hose
l of W to alloyssuchasT-111 or ASTAR-811Cafter being pretreatedfor Kirkendall void in-

hibltion (seeSectionIX, "Kirkerdall Void Problems").

Sincetheexperimentalinte_iffusion testpieceswere all planar in geometryandsmallin

dimension,theabove recommendationof acceptable junctionmaterialsfor Ior.gtermhigh

temperatureserviceshouldbe temperedwith the fact that moretortuoustubulargeometries

maybe more conduclveto iunction failure.

A meansof inhlbltlng the formatK, and thusthe deleteriouseffects of Kirkenclallvoidsin

dlssimilarmetal junctionsisdescribedin SectionIX. Althoughthe techniquehas

beenverl/ied in thisstudywlth minimalexperimentalevidence, the implicationsare

importantenoughto thermionlcsystemsaswell as otherdlsslmilarmetal junctionapplications

to merit morethoroughcharacterization.

_._ SeeSe_tio-_IX, KirkendallVold Problems.

t
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IX. KIRKENDALL VOID PROBLEMS

A. PROBLEMSINTRODUCED BY KIRKENDALL VOIDS

When dissimilar metallic materials are joined (pressurewelding, EBwelding, etc. ) and

employed at elevated temperatures, they will interdlffu_e. The interdlffuslon is uneven _n

that the atoms of the lower melting point metal possessa higher mobil't,, and diffuse across

the junction more rapidly than those atoms of the hlghe_____rmelting point material moving in

the opposite direction. This net flux of (low melting point material) atoms moving across

the junction is compensatedby a flux of vacancies moving in the opposite direction. The_e

vacancies coalesce adjacent to the junction in the lower n,eltlng point material (Figure 100

This phenomenonis well documented in diffusion literature and is commonly referred to as

th_ "Kirkendall Effect"(l! ) Longdiffusion thermal ageing inherent in the application of

the dissimilar metal junction (i. e., thermionlc emitter/structure joints such as CVD-tungsten

or rhenium to,ASTAR-811C, etc. ) could result in the conlescence of these voids into an

interconnecting (porous)structure(15_nd,

• through interconnection, form paths that lead to junction thraugh-leakage.

Thus, in thermlonlc systems, vacuum or cesium plasma envelopes become

compromised.

• The plane of Kirkendali voids is known to be easily fractured, due to i*s

purousstructure.

• Since the grossformation of Kirkendall voids forms in a plane, the cross

sectional area for thermlonlc current is reduced, leading to 12Rlossesand

localized hea_ing.

,.qe.

Employingdissimilar metai junction_ of materials whoseselection is dictated by other

# characteristics (i. e., th._rm|onlc omission) r:. luires the prevention or inhibition of the

grossgrowth of Kirkendall voids.
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(a) W(crc cost)/Cb as HIP Welded Junction (400X)

_b

c -

a ' ",' f',_*

i (bJ W(orc cmt)/Cb Junction Aged at 1800°C/1000 _n:.n (200X) (1AA-5)

Figure 100. IlJustrafing the Gross Kirkenciall Void Structure Posslble Through
Thermal Ageln_ of Di_imilor MetoJ Junctions
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Prior research has been directed toward inhibiting or retarding the interdiffusion of dis-

similar metals by placing a layer of a third material, a "barrier", between them<16./ Here,

._.; general'; accepted concept is that the higher the melting point of the selected barrier

'_=._erlal, the lower the extent of interdlffuslon.

Selectlon of a "barrier" to interdlffusion, however, does not solve the vold problem. For

instance, if tungsten is coupled to columblum, no barrier of a higher meltlng point exists.

Also, direct coupling of tungsten to columblum will still result in considerable Kirkendall

void formation after brief (100-500 hours) ageing at elevated temperatures(17.) Also, if

two dlsslmilar melting polnt metals are jolned by a barrier w|th a much hlgher melting point,

Kirkendall voids could form in each of the d|ss|milar metals adjacent to their interface with

the barrler. Similarly, if the barrier were an intermediate melting point metal (melting

point between that of the two jolned metals), the K|rkendall voids could form in the lower

melting point metal and in the barrier.

Often in thermlonic power systems, the two metals to be joined are selected for thermionlc

emlsslon and hlgh temperature strength characterlst|cs, and no consideration is glven with

respect to inhibiting the Kirkendall effect. For instance, an emitter material of CVD-

tungsten or rhenium may be jolned to a structural materlal such as ASTAR-811C, Cb-1Zr,

or T-111. A means of retarding Klrkendall vold formation and coalescence is requlred

to main',._in system integrity, vacuum or ceslum plasma envelopes, etc_ This requirement

becomes more important when system I|fetlmes are expected to exceed 3 and 4 years without

material compromise.

B. KIRKENDALL VOID !NHIBITION (KVI) CONCEPTS

The objectlve of thls cursory study is not to totally prevent Kirkendall vold formatlon
t

durlng the |nterdiffuslon of two dlssimilar metals at elevated temperatures, but to evaluate



the potential of a proposed method of reducing the coalescence and growth of such voids

over that which would normally occur over the same age tlme/temperature conditions in

junctions not treated to inhibit interdiffusiono Thus, the intent is to evaluate a method of

preventing intervoid porosity and through leakage from occurring in junctions particularly

susceptible to such degradation.

In order to minimize the formation of Kirkendall voids without utilizing a (dissimilar metal)

barrier between two metallurgically joined dissimilar metals, the rates of interdiffusion

must be investigated. The width or extent of the interdiffuslon zone (AX) between the

metals is related to their tlme (t) at the elevated temperature by the relationship

_X = At n (35)

where n is usually found (experimentally) to be 1.72. Figure 101 illustrates the usual

mode of graphically representing the interdiffusion zone width at one temperature. The

information in Figure 101 can also be plotted as illustrated in Figure 102 where the rate

of ext_nt of interdlffusion is observed to decrease with time. This can also be shown by

taking the time derivative of equation (IX-l):

Joe., 6X = At 1/2 (35)'

d_X A
- (36)

dt 2tT72-

Thus, from equation (35), the rate of grr_wth of the interdlffuslon zone width decreases

with time° In Figure 102, the growth of the interdlffuslon zone for time increment (t 1 -0)

.. is AX I, whereas for the same tlme increment (t2 - t 1) at a later time, the growth of the

'_" interdlffuslon zone is 6X 2 (<< _X 1).
t
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t

i T1I
t

T Tl> T2
AX 2 2

t

Figure 101. Extent of Interdiffusion Zone Width as a Functionof Time at TemperatureTi.

_L
' AX2 • --__ j

x,-- = t1 -_:_ At = t1

0 tl t2
;.,,_..

;" t
H"

i Figure 102. Illustrating Decreasein Rate of Extent of Interdiffusion with Time
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Figure 103 illustrates that as the diffusion age tlme increases at one age temperature, the

diffusion concentration profile between dissimilar metals A and B becomes lower in slope

(gradient). Since the diffusion flux, J, is proportional to the concentration (activity)

gradient, by the first Fick equation

"" _C
J =-D _ (36)

where D is the diffusion coefficlent, the reason for the effect of Figure 102 is obvious.

Several texts offer good reviews of concentration dependent interdlffuslon (D) coefficients,

the Boltzmann-Matano analysis for D, and the Kirkendall effect (18' 19).

1o Alloy Layers

If a layer, AX 1, of material homogeneously composed of 50% A and 50% B is inserted

between A and B of Figure 103, then the interdiffusion zone width at time zero is AX 1

(see Figure 102). Thus, the artificial interdiffuslon zone width AX 1 forms a shallow con-

centration gradient to subsequent interdlffuslon (Figure 104). In the followlng time interval

t 1, the extent of further interdiffuslon will be AX 2. More importantly, the interdlffusion

at time zero now beglns with the "artificial" interdiffuslon zone AX 1, without the presence

of Kirkendall voids; and the initiation and development of Kirkendall voids will now form

at a reduced rate slnce the rate of interdlffuslon has now been reduced by the void free

Kirkendall Vold Inhlbltlon (KVI) layer.

The KVI layer can be expanded from the 100A/SOA-50B,/100B geometry to several KVI

layers to further smooth the concentration (activity) gradients between A and B, i.e.,

100A,/75A-25B/50A-50B/25A-75B/100B

_ where each layer is from a special melt.
t
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1.0 _._t2tl O = to< tT<t2<t3
CA B

°° at T

-x X0 +x

F_gure 103. As the Diffusion Age Time t at Temperature T1 is
Increased, the Concentration Gradients Decrease.
The Kirkenclall voids Form in the Higher Mobility Metal.

KVI Layer

I &XI I

1'0 _50A- IA 50B II B ° t<tl°CA

- t

11 Figure 104. The Kirkendall Void Inhibition Layer Retards the
Rate of Formation of Kirkendall Voids During
Interdlffuslon of A and B.
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Or, the KVI layer may already exlst as an industrial (commerclally available) alloy of the

two components of the junction, ;, e.,

W/'_V-25Re/Re

The KVI layer may be formed separately and applied to the junction during metallurgical

joining (hot isostatic pressure welding), or may be formed during joinlng (wlde puddle durlng

EB weldlng), or may be formed through short, elevated temperature anneals (discussed later).

It should be noted that the KVI layer is not a "barrler" but does utilize diffusion kinetics

to extend the useful life of dlsslmilar metal joints at elevated temperatures by retardlng

the formation of Kirkendall voids.

Consideratlons such as brittle phases, KVI layer fabricabillty (from rolled sheet or HIP-
f

. weld junction as a powder, etc. ), KVI layer thickness, etc., must also be accounted for in

, the selection of suitable systems.

2. Annealed Layers

If an intercllffuslon couple is subjected to age time-temperature conditions whlch are ;n-

sufficlent to obtain Kirkendall voids, a mathematlcat approach can be employed to ascertain
(20/

the positlon where the Kirkendall volds would appear with adequate ageing . Consider

Figure 105 where (a) illustrates the initial condltlons of the as HIP-welded couple at time

zero. In (lo) the couple has been aged at temperature T for tim_ t and presents a concen-

tration gradient of constituent A. Boltzmann-Matano analysis results in the ;nterdiffusion

coefficient D. Knowledge of _ plus the marker (thorlated tungsten wire) motion (V) allows

_ Darken's(21)calculation of the intrinsic diffuslvltles DA and DB. The constituency flux of

A and B can then be determined from DA and DB and their respective concentration

gradients as in Figure 105 (d). In this case, constituent B is the faster moving element,

and the net flux if vacancies is into B. The rate of creation or destruction (coalescence)

t
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1.0 (a) Concentratior, plot .,f as
HIP-welded couple at t - O.

o

CA A B

0
O X

o
1.0 _,, (b) CoupleatT,t >t

• _ B Apply Darken' s analysisCA(X_

I ' ;_ "_:NADB*NBDAc_NA
0 Xm x Vmarker = (DA-DB)

I_ (c) Simultaneous soiutlon to Darken's

JB equations yield intrinsic DA, DB.
Ji Then JA = -DA c_CAaX

JB = "DB _CA
_X

X

(d) The vacancy flux is

Jv Jv = JB " JA

f',=.
I

X _

i (e' The rate of creation or destruction
i (coalescence) of vacancies is the

I Kirkendall variance of the vacancy flux with

; Voids position (i.e. dJv).

Source 0%

_011 _f Kirkendallvoids form at the sink.

dJv _.
d-'_ a

I _/" Sink
" I

I

Figure 105. Predictingthe Locationof Kirkendall Voids
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of vacancles is the variance of the vacancy flux with position, i.e., dJ ,/dX. Figurev

105 (e) demonstrates the location of vacancy source and sink areas in this demonstration

couple. Kirkendal I voids would be expected to form at the sink location in Figure 105 (e_

if their rate of arrival exceeds the normal crystallographic mechanisms of their removal

(ioe., dislocation motion, normal vacancy motion, grain boundaries, etc. ).

Figure 106 demonstrates that this analysis must be further refined. Notice that as the

concentration penetration profile (Figure 105 (b) becomesflattened and extended for

longer age times, the vacancy source and sink peaks in Figure 106 will become shorter

(i. e., fewer vacancies are being created or removed). Also, the location of the two peaks

will be observed to move away from the original interface. Experimental evidence usually

indicates a void free zone b_tween the initial interface and the Kirkendall voids. This

is probably an incubation zone which occurs prior to adequate vacancy density levels

forming to initiate coalescence. There is probably a critical sink peak height below which

the normcl crystallographic removal rate of vacancies would equal or exceed their arrival

rate. Thus, the optimum selection of the KVI layer composition as well as the thickness

could result in no Kirkendall voids being formed. This critical sink (source) peak height

is represented by the dashed lines (a, b) in Figure 106. This dashed llne can be thought of as

the normal vacancy equilibrium concentration supply rate found in the material of interest

at the temperature being studied. Once the concentration penetratlon profile (Figure 105 (b))

becomessufficiently extended sothat the source and sink peaks (Figure 106) fall

below the equilibrium lines, then the Kirkendall voids will cease to grow (coalesce). The

KVI layer establishesthis extended concentratlon-penetratlan profile immediately.

., We should also note that as the diffusion age temperature is raised, the equilibrium vacancy

concentration level (Figure 106,dotted line (a),will also rise while the peak heights would
t

remain constant (i. e., derivative of C(x, t) with respect to X). Thus, one would expect

the absence of or a red_,ced Kirkendall effect at high temperatures when compared to low

o.
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Vacancy sink for t --_ t3o

F|gure 106. TheVacancy CoalescenceRate(sink) Decreaseswith Age Time,and the
Zone of VacancyCoalescenceMovesWith the InterdiffuslonProfile
With AgeTime

4e_

l

187

1974025933-203



temperatures. This hasbeen shown to be true experlmentally (13! This also demonstrates

that one may form the KVI layer by a short high temperature diffuslon age to establish a

Kirkendall void free extended concentration-penetration profile in the hardware junctions.

Hudson(13)shows that the Kirkendall effect in W-Ta couples aged at 2200°C for 100 hours

prior to their 400 hour agelng at 1650°C was substantially reduced over that in couples

aged directly at 1650°C. This lends considerable credence to the KVI layer concept

proposed in that Hudson's preage at 2200°C probably produced a KVI layer of graded

concentration.

Also, since the Kirkendall voids are observed experimentally to form in one small zone in

the dlffusion couple, it can be proposedthat the sink peak of Figure 106 exceeds the

removal rate of vacancies for a brief period. Then, as the decreaslng peak movesaway

from the interface, the normal vacancy removal rates exceed their arrival rate, and

vacancy coalescence ceasesto be a problem.

Thus, KVI layer junctions can also be grown through short, elevated temperature anneals

where vacancy equilibrium levels and removal rates are high, and the opportunities for

coalescence are minimlzed. Then, additional long term ageing at reduced temperatures

would occur on the low growth rate part of the curve of Figure 102 and with the low sink

peaks of Figure 106 resulting in little, if any, vacancy coalescence or vold growth.

C. AGE SCHEDULE

Two groupsof junctlons were selected for cursorystudy: (1) a group fabrlcated wlth

commerclal alloy layers placed between the pure metal couples; and (2) a group with

graded concentratlon layers grown through short, elevated temperature anneals to

._ minimize Kirkendall void formation.

t
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1. Alloy Layers

Tri-layer combinationsto ascertain the valldffy of the KVI alloy layer concept were

selected as:

KVI Layer Control Couple
(TrlTI.ayer) (No KVI Layer)

W,AN-25Re/Re W,/Re

Ta,/ra- 10W/Ta Ta/NV

Table 32 presentsthe age time-temperature matrix for the KVI alloy layer studyaswell

as the selected KVI layer initial thicknesses(_X). Theserhlcknesseswere determined from

the predictive interdiffu_ion model (Part I'., Appendix C) asvalues which bounded the max-

imum interdlffuslon :. _nethicknessesexp,:ctedfor the control couple (no KVI layer) for

the age tlme-temperature selected. Sr,,'nethicknesseswere selected to exceed expected

control couple interdlffusian zones, ar,d somewere not. The commercially available

a_loy layers employed are not opti_,t,m KVI layers (i. e., 50-50 or graded combinations

may have been preferred)but were adequate to verify or disprove the concept.

2. AnnealedLayers

Diffusioncouplematerial combinationsselectedto ascertainthe validity of the KVI annealed

(graded)layerconceptwereselected. It wasdecided to grow KVI layers throughhigh tem-

peratureannealsfor the followingsystems:

Re/l"a

W/Ta

•.- CVD Re/Ta (tube)

!
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Table 32. Alloy KVI Tri-layer Age Schedule

Code: X = ScheduledKVI layer couple
o = Control couple
() = KVI layer thickness(cmx 103)

T t KVI Control KVI Contro
(°C) (Hours/ Ta/l"a-10W/W W/l"a W/W-25Re/Re W/Re

2000 2000 X (25.4) o X (38. ! ) o
1000 X (25.4) o X (38. 1) o
100 o

10 ........... i
1800 2000 X (12.7) o I

1000 X (12.7) c, X (25.4) o
100 o o
10

1500 2000 X (12.7) o X (12.7) o
1000 o o
IO0
10

1200 ..... 2000 r 0

1000 o
IO0
I0

6
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The diffusion ages fo_ annealed layers are preser_tedin Table 33. The KVI annealed

layer is a compositlonall_,graded layer gro' Jnthrough a high temperature anneal, whilu

the KVI alloy layer is a stepped layer produced through the hot isostatlc pressure (HIP/

welding o,_ hot pressw_-Idingof st,ctified alloy sheets.

The interdlffusion predictive model (Part II, Appendix C) was used to predict the KVI layer

annenl conditions (time, temperature) required to produce the desired layer thicknesses(am

T/T =0.94) illustrated in Table 34. The KVI annealed layer thicknesses, as can be seenm

in Table 34 were not selected to eliminate all K_rkendall voids but to encompas_the pre-

dicted interdiffuslon zone growthsexpected fc,r Ic_wtemperature age',_g. This method

(controlled experiment) of reducing Kirkendall voids was expected to yield more information

than their total reduction through the employmentof a wide KVI annealed layer. WiJe

KVI layers were not desired since they could also create problemsin embrlttlement, sub-

sequent handling, thermal cycling, and _ resultant lack of measurable data.

Ramptime corrections to the preage anneal (i. e., h_,atupand quench contributions to KVI

zone width growth) are treated in Part II, Appendix D.

3. Preparation and Age

The alloy interlayer KVI couples were prepared as described earlier by vacuum encapsulation

in molybdenum containers a_l HIP welding. The annealed KVI layers were prepared by

short time anneals at 0. 95 T/l"m in a 10-5 tort tungsten meshresistance furnace. Temper-

atures were monitored by optical pyrometry and power-temperature curve extrapolations

from lower temperatures. The anneal tlme-temperature ccmclltlonsselected for KV! growth

are described in Table 34, footnote 2. Theseconditlon, ,..re selected to give grown

interdlffuslon layersof thicknesseswhich fell on either _id_ _,_,_e t_ickness which would

0 occur in non-preann_aled, aged couples (i. e., control couples).
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Table 33. KVI (Annealed) Layer Age Schedule

Ag_ KVI Combination I

Condition ' 1"a/Re Ta/Re Ta/W Ta/W Ta/CVD Re
I

AX 1 AX 2 AX 3 AX 4 AX5=O AX 1 AX_
Tube Tube . Tube

ii i i i

1800°C

1000 hrs X X X X X X X

100 hrs X X X X X X X

1500°C

2000 hrs X X X X X X X

1000 hrs X X X X X X X

Control (No age) X X X X X X X

* Z_X1and AX 2 denote KVI annealed layer thlckness

• See Table IX-3. AX 1 = 25.4 x 10-3cm

AX 2 = 7.6 x 10-3cm

AX3 = 15.2 x 10-3¢m

AX4 = 5.1 xl0-3cm

AX5 = As deposited, no KVI layer (AX = 0 cm)

t
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Table 34. KVI (Annealed) Layer Predicted Thicknesses (cm x 103) to be Aged

Diffusion Age W,/i"a Re/l"a
Conditions

Predicted Programmed KVI AX** PredictedlProarammed KVI 6X**

(°C) (hrs.) AX* Z3X3 _X 4 AX0 _,X* AX I [ L_X2 IAX n

1800 1000 5.48 15.2 5.1 0"** 9. 38 25.4 7. 6 0_*

100 1.73 15. 2 5.1 0"** 2.97 25.4 7.6 0"**

1500 2000 4.24 15. 2 5. 1 0"** 6.00 25. 4 7. 6 0"**

1000 3.00 15. 2 5. 1 0"** 4. 24 25.4 7. 6 0"**

* Predicted interdiffuslon zone thickness for a non-KVI layer couple from interdiffuslon
predictive model of Appendix C.

** KVI growth conditions at 0.95 T,71"m

W/Ta 15. 2 x 10-3cm = _X3; 2800°C for 3.6 hours

W/l"a 5. 1 x 10-3cm = _X4; 2800°C for 0. 4 hours

Re/l"a 25. 4 x 10-3cm = Z_X1;2500°C for 10 hours

Re/Ta 7. 6 x 10"3cm = AX2; 2500°C for 0. 9 hours

*** Non-KVI layered control couples.

l'
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All KVI couples were indexed (see Appendix F, Diffusion Couple Age/Identlflcatlon Chartl,

an_ were aged with the interdlffuslon couples as described earlier in thls report. As reported

earlier, age temperatures did not vary by + 20°C, and vacuum conditions were 1.2 × 10-6N/m 2

(10-8torr) or better for the duration of the age cycle (except for a brief, 1 hour, period at

10-3 N/m 2 (10-5 torr) during age startup).

D. RESULTSAND DISCUSSION

The effectiveness of the KVI preage treatment upon subsequent Kirkendall void formation

was evaluated qualitatively. Comparison of Kirkendall vold structure between KVI treated

couples and control couples showed the KVI treatments to be effective in reducing or

eliminating Kirkendall voids.

Figure 107 presents the as-welded and aged control couple, Warc cast/Ta - 1800°C/

. 1000 hours, while Figure 108 presentsa similar couple for the WCvD/Ta system. Note

in both systemsthat the Kirkendall void structure is the same, i.e., elongated, inter-

connected voids on the Ta side of the weld interface. Figure 109 presents the W/l"a
I

interface of the annealed (2650°C - 0. 4 hour) KVI couple prior to and after ageing at

t 1800°C for 1000 hours. Figure 110 also illustrates other zones of the Tnterdlffusion

interface of the W/Ta KVI couple and demonstratesthat the Kirkendall voids of Figures IX-8

and 108 are almost entirely eliminated.

If the W/l"a KVI couple is initially annealed at 2650°C for 3.6 hours (rather than 0. 4 hours),

the post-age results are as illustrated in Figure 111. The reduced number of Kirkendall

voids, which do form (over those appearing in non-KVI treated couples), are located

further away from the weld (juncture) interface than those in Figure 110, aged at 2650°C
_,_..

_ for 0.4 hour. This is compatible with the extended concentration/penetratlon profiles

t grown at the longer anneal times at 2650°C. Contrary,"to expectation, the density of
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W (arc cast)

(a) W(_-c cast)/Ta As Welded Diffusion Couple (200X)

i

.W (arc cost)

To

J

(b) W(arc cast)/Ta After Ageing at 1800°C/1000 hours(200X)

Figure 107. The W/arc cast)/Ta Control Couple. Note the CoalescedVoid
Structure in the Ta S|de of the Interface
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W (CVD)
J

(b) 'tC(CVD)/Ta After Ageing at 1800°C/1000 hours (200X)

Figure 108. W(CVD)/I"a Control Couple Note the Coalesced Vold Structure
in the Ta Side of the Interface
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Ta

(a) W/Ta Interface After Preannealat 2650°C for 0.4 hours(200X)

' W

Ta

(b) W/To PreannealedCouple After Ageing at 1800°C for 1000Hours (200X)#

Figure 109. The PreannealedW/1"aKVI DiffusionCouple, Preannealedat 2650°C
for O.4 hoursPrior to Ageingat 1800°C for 1000hours.

(Continuedon next page)
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#

, (c) W/Ta Preanneal Couple (2650°C,/0.4 hours) After Ageing
at 1800°C/1000 hours (200X)

I L

W
T

• _O Q • Ot e.e

., Ta

/.
j_,v" •, " * ! W'

¢._ ,'

.Q,' •

0 (d) W,/'ra Preannealed Couple (2650°C/0.4 hours) After Ageing
at 1800°C/1000 hours (200X)

F|gure 110. (Cont|nued from previous page)
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(a) W/Ta Interface After Preanneal at 2650°C for 3.6 hours (200X)

.o

• V/

• ii i t _ • " • • tO • *lO

t (b) W/Ta Preannealecl Couple After Ageing at 1800°C for 1000 Hours (200X)

Figure 111. The Preannealed W/Ta KVI Diffusion Couple, Preannealed at 2650°C for
3.6 hours Prior to Ageing at 1800°C for 1000 Hours
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Kirkendall volds appears to be slightly larger than that resulting from anneals at 2650°C

for 0.4 hour prlor to 1800°C/1000 hour ageing. Thls may be a statistical variation _n

sample structure or could be real. Further study will be necessary to resolve thls issue.

Inhibiting Kirkendall void structures from forming in the Ta/W systemwas also uttempted

with alloy KVI layers. Figure 112 (a) presents_agaln, the Warc cast/Ta control couple

aged 1000 hours at 1800°C. Figure 112 (b) demonstrates that the insertion of a Tc-10W

alloy interlayer of 5 mils (0. 013 cm) thickness considerably reduces the density of Kirkendall

voids over that occurring in the control couple.

The void density, which does appear_ is not, however, as limited as that which resulted

from high temperature preagelng. The voids appear in the Ta-10W alloy layer next to the

W/alloy junction and are in a plane. The plane is further from the couple interface than

that occurring in the pure Ta/W control couple.

Figures 113, 114, 115, and 116 present the results of the KVI concept feaslb!llty

study. Results were more positive for the W/ra systemsthan for the Re/ra systemssince the

latter: (1) possessedcloser melting points and were therefore lesssusceptible to Kirkendall

void formation, and (2) formed brittle intermetalllc phasesin the interdlffuslon zone which

cracked and could have affected interdiffusion. Also, high temperature pre-annealing

of the intercllffusion couples appeared more promising in ellmlnatlng Kirkendall volds than

alloy tri-layer ins_rtlon.

Consider Figure 116. If a dissimilar metal junction is aged at an elevated temperature,

0. 90 Tm or higher, then the Kirkendall void structure which r,_:_sllswill be considerably

.i_ reduced over that whlch occurs at a lower temperature, since vacancy removal rates

i_ through bulk diffusion, dislocations, and grain boundaries are higher (i. e., T llne (b)anneaI

200 ;
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• , , _. . _1"_'. 'it.

(a) W(arc cast)/Ta JuncHon After 1800°C/1000 hours Ageing
(Control) (200X)

, \ //-" /-

: ;/ L
, _ w
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r" x

To-lOW

i

(b)A w/'ra-10W/TaAlloyKVI Layer(,005-inches)AfterAgeing
at1800°C/I000Hours(200X)

Figure 112, The Effectof a KVI Alloy Layer Between Junction Materials
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(a) Warc/Ta at 1800°C/100 hours (b) Ware/Toat 1800°C/100 hours
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Figure 113. Post-Age KVI Observations: W/ra Pre-Annealed Aged Couples
(All photomicrographsat 200X)
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(a) Re(p)/Ta at 1800°C/100 hours (b) Re(p/Ta at 1800oC/|00 hours
(Pre-annealed at 2500°C/0.9 hours)

e

(¢) Re(p/TO _t 1800°C/1000 hours (d) Re(p)/Ta ot 1800_C/1000 hours
.. (Pre-onneoled at 2500°C/0.9 hou,)

t

Figure 114. Post-AgeI0/I Observations:Re/Ta Pre-AnnealedAgedCouples
(All photomicrographsat 200X)
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Figure ! 15. Post-_e KVI Ol:_r_t|om: Ta/_'_-IOW/W Alloy Td-t_r Couples
(All photomicrographsat 200X)
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Figure ! 16. Post-Age KVI Ob_r_tions: W/W-25Re/Ile Alloy Tr|-Layer Couples
Age at 1800°(:/1000 hours (All photomicrographsat 200X)
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of Figure 106 as opposed to T line (a)). Also, vacancy equilibrium concentration levels
age

are higher. It may also be hypothesized that long age treatment of dissimilar metal junctions

at low temperatures would result in reduced Kirkendall effects. At low temperatures the

vacancy flux would be very small, and again normal crystal Iographic short circuiting paths

such as dislocctlons, grain boundaries, etc. would remove excess vacancies before they

could accumulate or coalesce as voids. Figure 117 thus demonstrates that Kirkendall

voids are more likely to form at intermediate temperatures and are more gross in density

and appearance in this select temperature range.

Similarly, short time ages will result in little if any void structure since an incubation

period is required before sufficient vacancies can coalesce to form an optically visible void.

Once formed, voids will grow rapidly until the vacancy arrival .ate diminishes. This occurs

when the interdiffuslon concentration penetration profile becomes sufficlently distended

that the vacancy flux then equals or becomes lower than the active vacancy removal rate

(see Figure 105). This observation is illustrated in Figure 118, where the maximum

vacancy growth rate occurs during a short period of the total age time. Observation of

voids of couples aged for 1000 hours and 2000 hours found voids of nearly the same dimension.

It would appear, then, that maximum void growth occurred early in the age cycle when

diffusional fluxes were high.

The location of the void plane in the lower melting point material wlth respect to the weld

interface will also be observed to vary with temperature. For instance, in preannealed

Ta/W KVI couples, the void plane in couples preannealed at 2650°C for 3.6 hours is farther

from the weld plane than the void plane of the Ta,AN couple preannealed at 2650°C for

0.4 hour (both aged at 1L_00°Cfor 1000 hours). This appearance of Kirkendall voids at the

.. same concentration level (h e., point in the concentration-penetration profile) was also
(47

t observed by Hehemann . Further study will be necessary to resolve, if this plane is

2O6
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Figure 117. Kirkendall VoidsAre More Likely to Format IntermediateTemperatures
Thanat Lowor ElevatedTemperatures
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Figure 118. TheKirkendall Void StructureWill Grow Only Until the Vacancy
Arrlval Flux Equals the Vacancy Removal Rate
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consistently the inflection point of the vacancy flux profile (Figure 105 (d, e)). A parabolic

plot of the void plane distance from the weld plane with respect to age time and microprobe

concentration correlations at void locations should resolve this issue.

Further quantitative study beyond th|s cursory investigation should be performed. Inltlal

evidence indicates that the Kirkendall void structure can be reduced if not entirely

eliminated through the proper formation (alloy layer) or thermal pre!:'eatment (anneal layer)

of dissimilar metal junctions destined for long term thermal environments.

0
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X. ELECTRON BEAM WELD STUDIES

A. MATERIAL SELECTION

As discussed in Section I of this report, the typical thermionlc system of interest would employ

a high temperature emitter material joined to the necessary structural elements. The tubular

type configurations involved lend themselves to welding as the simplest assembly approach,

if welds with satisfactory properties could be produced. Thus an evaluation of electron beam

welding appl led to dissimilar metals appl icable to thermlonlc designs was performed.

A review of the desired materials for the emitter and structural portion of the thermionic

systemled to the selection by NASA program managementof Reto Cb-lZr and W-25Re to

Cb-lZr for this study. I: was recognized that rhenium formsbrittle intermetalllcs, Sigma

and Xi, in combination with columbium. However, successin welding had been achieved

in other systems,for example stainlesssteel to Ta by adjusting heat balance to achieve a

braze type joint. While joints of this type may not be recommendedfor high strength

applications, they could be resistant to thermal cycle stressesand serve as effective seals

for a closed system. Thus it was felt that the ability of the electron beam processto control

intermix ing during welding,through parameter selectlon and joint design variation, should

be explored on the material combinations noted.

Flat sheet materlal . 05 x 8.9 cm (. 020 thlck x 3-1/'2" long) was employed in these tests.

Powdermetallurgy Reand arc cast W-25Re were utilizod. The characteristics and prior

history cf these materials and the Cb-lZr :,heetare discussedelsewhere in this report.

Simple holddownclamps provided the required fixturing for these butt welds produced in a

:_,- 150 KV, Hamilton Standard Electron BeamWelder.
_

t
B. BUTTWELDING

A series of sheet butt joints . 05 cm thick (. 020") were producedwlth variations in speed,

preheat, and beam position relative to the weld seam. In all cases weld current wasadjusted

,. 209
l

!, ------"

]974025933-225



to that required for full penetration. Table 35 details the results of thes_ weld tests on

both material combinations. It can be seenthat defect free welds, as revealed by visual

and dye penetrant exam[natlon, were produced between W-25Re and Cb-lZr alloy with

parameter combinations that minimized material intermixing. Theseconditions required

low weld speed and electron beam placement preferentially on the Cb-lZr side of the weld

seam. In this mannerthe lower melting temperature Cb-lZr was fused and flowed against

the W-25Re alloy. Figures 119, 120, and 121 show typical weld cross s_-ctionsproduced in

this manner. Obviously control of this technique is difficult and duplication of results was

not consistent.

Satisfactory weld configurations could not be achieved when placing the beam on the W-25Re.

Power levels adequate to completely melt the higher melting point material cnused excessive

melt back of the Cb-IZr alloy. Even when bonding was achieved, with apparent limited

intermixing, cracking would occur in the melt zone immediately adjacent to the W-25Re.

Thls can be observed in Figures 122 and 123.

Regardlessof the butt weld technique employed, no successwas obtained in joining the Re

to the Cb-lZr. Similar weld zone configurations could be produced but cracking always

occurred. Typical condfflons are shown in the crosssection of Figure 124. The weld

parametersin this case duplicated thosethat had produced somesuccessin the other material

combination.

C. LAP WELDING

Experience at WANL with lap type weld configurations in other systemshad indicated

.., better control of material intermlxlng could be achleved with _hls jolnt design. The lower

_ melting material would be heated preferentially and melted against the higher melting point

t material. Thls approach was pursuedand a numberof short length (approximately 3.8 cm (1.5"))

weld,_were successfullyproduced between Cb-lZr and Re. These joints were free of cracks

as revealed by dye penetrant examination. The condltions were successfully reproduced on

_'+ 210
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Figure 119. W-25Re to Cb-lZr (Weld Noo 1),Electron Beam
Positioned. 010" (.025 cm) on Cb-1Zr (50X)
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(50X)

Figure 121. W-25Re to Cb-lZr, Electron Beam Positioned .010" on Cb-lZr
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Cb-1Zr .'_, } W-25Re
/,

(s0x)
Figure 122. Cb-lZr to W-25Re, Electron B,_m Positioned

• 010" (. 025 cm) on W-25Re

W-25Re

"_[ • &_:@ q ", 'I" ° ° '_ "x'J'_""

"-',v,, ...._'k _ ,,
"rF"* " " _ " • b • -

Cb-i Zr

(400X)
Figure 123. Longitudinal Cracking at Interface of Melt Zone

and W-25Re on Weld Shown in Figure X-3A,
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Figure 124. Cb-1Zr to Re, Electron Beam Positioned . 010" (. 025 cm) on

Cb-lZr, Cracklng Occurs Near the Cb-lZr -
Melt Zone Interface.
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8.9 cm (3-1/2") length spec|mens(standard for thls program). As in the production of butt

welds, lap weldlng of the Cb-lZr to W-25 Re material was achleved wlth lesser difficulty.

Tables 36 and 37 list the parameters employed for each of the lap weld tests. It can be seen

that lower speeds, 12.7 cm/mln (5 ipm),were most successful. Figures 125, 126, 127, and

128 are cross sections of typical crack free jolnts. In thls case the Cb-lZr had been heated

preferentially and melted agalnst the rhenium.

The weld schedule which produced successful and reproducible lap joints in both material

combinations was as follows:

Standard Lap Joint Weld Procedure._.s_s

Weld Parameter

Overlap 1/32 inch (. 079 cm) (Cb-lZr on top)

Beamcenter location from seam .015 inch (.038 cm_ in Cb-lZr

Weld speed 5 ipm (12.7 cm/mln)

Voltage 110 KV

Current 3.5 MA

Deflection None

Work distance 6.5 inches (16.5 cm)

Pre-heat None

Beamfocus Defocus to . 025" (. 064 cm) diameter

It was apparent from these tests that whenever intermixing of fuslon zones in the dissimilar

metals occurred, severe cracking could not be avoided.

_ Attempts to heat the hlgher meltlng palnt materlal (Re) and through conductive heating cause

t Iocallzed melting and bondlng to the Cb-lZr were unsuccessful in all but one case (see

Figures 129 and 130). This short3.8 cm (1.5") joint could not be duplicated with slmilar

weld parameters. It does illustrate however that where mlnlmal intermlxlng occurs (a braze

type jolnt) a soundjolnt may be achieved.
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Cb-lZr • .

"q 0

(" , _ _ _ *','
" " _, Rhenium

50X

Figure 125. LapWeld No. 12. Melt Downof Cb-lZr AgainstUnfusedRhenium

Cb-lZr

Rheni,Jm

• 1000X

Figure 126. LapWeld No. 12. Interface BetweenFusedCb-lZr andRhenium
ShowingLimitedIntermixingof Material.
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50X

Figure 127. Lap Weld No. 13. Melt Down of Cb-lZr Against UnfusedRhenium

_ Cb-lZr

I

e • •

D

• i

Rhenium

1000X

F_gure 128. Lap Weld No. 13. Interface Between Fused Cb-lZr and Rhenium
ShowingLimited Intermixing of/V_terial.
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Rhenium

Cb-1 Zr

.. ,, ..... • I I I IIII I-

(50X)

Figure i29. Lap Weld No. 2. Melting of Cb-]Zr Against
Unfused Rhenium

i I' ,,' Rhenium

d

' _. Cb-1Zr

• "- ,-" , " t q

.,," . "__,,,";,,,;: , _ ._",, .,.

J

(looox)
Figure 130. Lap Weld No. 2. Braze Type Interface Showing

Limited Int=.rmlxlng of Material
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Regardlessof the ability to produce joints with apparent as welded integrity, the extreme

brittleness of the intermetalllc interface could be expected to create severe handling and

use problems. For example, the cutting of samplesfor metallographlc inspection or bend

specimen preparation was difficult due to the extreme brittleness of the joints in both mate-

rial combinations. The Cb-lZr to W-25Re joints were successfully sectioned, however, by

clamping the sheet between 1.27 cm (I/2") thick layers of spongerubber and slowly cutting using

a soft abrasive cut-off wheel. Electrical discharge machining was also successfulwffh th_s

material combination. Similar procedures did not resolve the problem with the Cb-lZr to

Rewelds. Approximately 50% of specimens in this combination developed cracks even

when the shock and vibration free electrical discharge machining was employed. Figure 131

illustrates the brittle nature of the interface area which fractured during metallographlc

preparation.

Elevated temperature bend testing was performed on lap joints. While this test would

obviously be nonstandardand not comparable to other ductile-brittle transition temperature

data, it was felt that somefeel for joint ductility at temperature might be obtained. As

the data shownin Table 38 illustrates, extreme brittle behavlor occurred even at the maximum

bend test temperature of 704°C (1300°F).

D. RECOMMENDATIONS

While limited in nature this welding study demonstrated that joining of the W-25Re and Re

to Cb-lZr alloy was feasible. The basic principle of melting the lower melting point al Ioy

against the more refractory material did result in joints with no apparent defects in the as

welded condition. This type of process is difficult to control on flat sheet speclmem.

,_ However the round, tubular joints typical of thermlonic systemswould undoubtedly be more

amenable to the process.
t

The extreme brittle nature of the joints produced mustbe considered in any appllcatlon. It

is suggestedthat before actual use,production configurations be carefully evaluated for

performance through thermal cycling and other design requirements.
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Figure 131. Lap Weld No. 14. Interface BetweenFusedCb-lZr and Rhenium.
Crackingand FragmentationOccurredDuringMetallographic
Preparation.



Table 38. Longitudinal Bend Test Data on Lap Welds

Test Final Bend

Temp. Test Angle After

Lap Weld.Type °C Atmosphere Springback* Results

Cb-lZr to W-25Re 538 Argon 74° Single large weld zone cracks
543 Vacuun'. 68° Many small weld zone cracks
649 Vacuum 79° Many small weld zone cracks
704 Vacuum 55° Many small weld zone cracks

Cb-lZr to Re 704 Vacuum 83° Crack-weld fusion zone shattered
704 Vacuum 83° Crack--weld fusion zone shattered

.*_ntto 90° in test

t
!
J
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XI. CONCLUSIONS

• The interdiffusion zone width of W or Re coupled to group V or VI refractory

metals or alloys can be characterized with 95% accuracy by the following

• AX 2,
In (:--T.--) = B ( _ ) + A (37)

where 3X is zone width in centimeters, t is age time in seconds,T is age temper-

ature in OK, and A and B are as expressedin Table 39.

• Although the interdlffusion relationship expressedabove wasderived from 1000

and 2000 hour age experiments, data trends indicate valid extrapolation to

10,000 hours.

• A general interdiffuslon zone width predictive model for any refractory metal

junctions of W or Re to group V and VI elements of the periodic table can be

expressedas

IX 2) 1" (38)In(-- = -40.7+24.4 Tm

where AX is interdiffusion zone width in centimeters, t is age time in seconds,

T is age temperature in OK, and Tm is lowest binary systemmelting point (i.e.,

eutectlc, etc.) in OK. This predictive model is applicable only at T/T m greater

than 0.6.

• A general interdiffuslon zone width predlctive model for any refractory metal

. ;_ junctions of W or Re to groupV and VI elements of the periodic table can be
_ _ expressedas

(@)) = 24. 44 - 40.68 (39)

L,
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Table 39. Parametersto Predict Net Intercliffuslon Zone Width

As o Functionof Age Time(t-seconds)and Temperature(T - OK)

In ( ) = B(_.)+A

(with 95% confidence limits)

System A B

W/Cb, Cb-1Zr -3.8689 + O.2266 " -37, 390 + 2810

Re/Cb, Cb-1Zr -0. 4899 + O.2266 -43, 880 + 3060

W/Ta, Ta-IOW -7. 3385 + O.1891 -35,290 + 2210

W/I"-I 1I, ASTAR -3. 3585 + 0. 1530 -44, 720 + 3760

Re/'l'a, Ta-10W -7,1024 + 0. 0980 -35, 020 + 1100

Re/T-I 1I, ASTAR ..6.4489 + 0. 1374 -36,560 + 1730

W/Mo-50Re +0. 1554 + 0. 1921 -45,140 + 4500

Re/Mo-5ORe -8, 4797 + O.1466 -30, 140 + 2940

w/W-30. 9Re-20.1Mo -7. 2084 + O.1719 -34, 750 + 3890

Re/W-30. 9Re-20.1Mo -9. 3027 + O.1440 -28, 580 + 3290

W/Re -4. 4641 + O.3317 -41,300 + 7470

W/_,^I-25°c -2.1992 + 0. 4407 -47, 100 + 9930

Re,/W-25Re +2.4148 + O.5513 -53, 990 + 11,900

4t
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where _X is interdiffusion zone width in centimeters, t is age time in seconds,T is

age temperature in oK,, and Tm is lowest binary systemmelting polnt,(i.e., eutectlc

etc.) in °K. This predictive model is applicable only at T/T m greater than 0.6.

• The appearance of Kirkendall voids upon ageing of metallurgically coupled dissimilar

metals can be inhibited if not prevented by the introduction of Kirkendail Void

Inhibition (KVI) layers either by thermal pre-age treatments, or the introduction of

interdictory alloy layers (of the same coupled materials) upon couple formation.

• W to T-111 or ASTAR-811C appear to be the best junctions for long time thermionic

application._ since their Kirkendall void structuresare minimal (of the 39 junctions

studied here). Re couplesshould be avoided since brittle intermetallics and sub-

sequent iunction cracking occur.

• Limited application lap welds between Cb-lZr and Reor W-25Re can be formed by

melting the Cb-lZr onto the second material (braze type welds). Only sheet

geometries were studied. Welds between these materials cannot be recommended

without further development since they are brittle.

• Hot isostatic pressure(HIP) welding at 1400°C for 1/2 to 1 hoL/r at 190 Mn/m 2

(28,000 psi) is an excellent method for joining W or Reto group V and VI elements

and alloys of the periodic table with minimal iolnt thicknesses.

t
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Xll. RECOMMENDATIONS FOR FUTUREWORK

• This study has demonstrated the feasibility of eliminating Kirkendall voids from

dissimilar metal junctions by proper pre-age heat treatments or insertion of alloy

interdictory layers. Analytical and experimental characterization of these pre-age

treatments mustbe developed on a formal basiswith respect to vacancy flux, pre-age

anneal temperature, time, vacancy coalescense, etc.

• The possibilities of joining complex thermionlc power structures in the hot isostatic

pressure(HIP) weld autoclave should be investigated. Complex geometries may be

premachlned as simple componentsand joined by HIP welding.

• Further definition and parameter analysis will be required to resolve the feasibility

and utility of Cb-lZr to Re or W-2.SRewelds.

0

4,

. 228

!.

1974025933-244



(_ AstronuclearLaboratory

Xlll. REFERENCES

1. Taylor, A., X-Ray Metallography, Wiley, New York pp 242-245, 1%1.

2. Stoner, D. R. and Lessmann,G. G., "Operation of 10-10 Torr Vacuum Heat Treating
Furnacesin RoutineProcessing", WANL-SP-010, June 1965.

3. Hudson, R. G. et al., "SomeInvestigations of Refractory Metal Systemsof Thermionic
Interest", NASA-CR-111593, November 1%9.

4. Hehema_n,R. F. and Leber, S., "Chemical Diffusion in the Columbium-Tungsten
System", AIME Trans., Vol. 236, p. 1040, July 1966.

5= Vergasova, L. L., Prokoshkin, D. A., andVasileva, E. V., "Concentrational and
TemperatureCorrelation of Interdiffusion Coefficients in Binary Nb Alloys", Izv. Akad.
Naak, SSSR,Metal., No. 4, 1970, pp 198-204. As cited in DiffusionData, No. 1,
1971, p. 53, Diffusion Information Center, Cleveland, Ohio.

6. Pawel, R.E. and Lundy, T. S., "Tracer Diffusion in Tungsten", Acta Met., Vol. 17,
No. 8, p. 979, August 1969.

7. Lundy, T. S., Winslow, F. R., Pawel, R. E., and McHargue, C. J., "Tracer Diffusion
in Columbium", ORNL-3617, June 1964. (Also in AIME Trans. 1965)

8. Ivanov, A. N., Krasil'nikova, G. B., and Mitiu, B. S., "Determining the Diffusion
Parametersin Mo-Ta and W-Ta Systems",The Physicsof Metals and Metallography,
Vol. 29, No. 1, p. 215, May 1971.

9. Tregubov, I. A., K_,zina, L. N., and Ivonov, O. S., "Mutual Diffusion of Taand W",
(in Russian)Dokl. Akad. Nauk. SSSR.,Vol. 180, No. 2, p. 423, 1968.

10. Powel, R. E., and Lundy, T. S., J. Phys.Chem. Solids, 1965 ascited in Askil. J.,
"A Bibliographyon TracerDiffusionin Metals, PartI", ORNL-3795, May 1%5.

11. DMIC ReportNo. 152, "Binary andTernaryPhaseDiagramsof Coh.mblum, Molybdenum,
Tantalum,and Tungsten",p. 167, April 28, 1%1.

12. Danneberg,W. and Krautz, E., Z. Naturforsch., 16a(a), p. 854, 1961 as cited in
Askil, J., "A Bibliographyon TracerDiffusionin Metals, Part I", ORNL-3795, May
I%5.

13. Hudson, R. O and Yang, L., "Dif_sion and ElectronEmissionPropertiesof Duplex4.

_f RefractoryMetal ThermlonlcEmitters", RefractaryMetals andAlloys, IV, Researchand
_; Development,Vol. II, AIME FrenchLick, Indiana Confer_ce, Oct. 3-5, 1965,

t" p. 1253, Go'n-Breach Publishers,1%7.



• I IIIII I II
4 I I II i i iii

..................................................................................................... - ........... "_..'_ .......

I

REFERENCES(Cont'd.)

i 14. K|rkendall, E. O. and Smlgelskas, A. D., Metals Tech. 13, Tech. Publo 2071, 1946.

i 15. Phillips, W. M., "Welding and Ageing of Bimetallic Refractory Metal Joints", IEEE
I Conference on Thermlonlc Conversion, Oct. 26-29, 1970 (70 C 53-ED).
t

16. Passmore, E. M., et al., "Investigation of Diffusion Barriers for Refractory Metals",
ASD-TDR-62-432, WPAFB, July 1962.

17. Hehemann, R. F. and Leber, S., "Chemical Diffusion in the Columbium-Tungsten
System", Trans. of the AIME, Vol. 236, p. 1040, July 1966.

18. Jost, W., Diffusion in Solids, Liquids, and Gases, Academic Press, 1960.

19. Shewmon, P. G., Diffusion in Sol|ds, McGraw Hill, 1963.

20. Adda, Y., et al., "Application de la Thermodynamique des ProcessesIrreversilles a la
Diffusion a L'etate Solide", _ermodynamlcs, Vol. II, p. 255, IAEA, Vienna, 1966.

2_. Darken, L., AIME IMD, Metals Technol. 15, Tech. Pubis. 2311 and 2433, 1948.

230
i,

........ • -~ .

197402593.3-24R


