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COHERENT OPTICAL INSTRUMENTATION FOR MEASUREMENTS

OF PARTICLE PARAMETERS

By

William P. Chul

SUMMARY

The objective of this research effort was to investigate

the application of cross-beam laser doppler velocimeter (LDV)

for sizing small particles. This report is a brief summary

of research findings during the period from September 1973 to

August 1974.

This report contains theoretical results obtained from

analyzing the scattering characteristics of small particles in

a cross-beam LDV system. Theoretical calculations based on

scalar diffraction theory and Mie scattering theory have been

performed. Experimental results are also obtained to compare

with theoretical predictions. It is concluded that the forward

scattering characteristics of small particles in a cross-beam

LDV system can be used for particle sizing.

INTRODUCTION

Light scattering properties of small particles have been

used extensively as a diagnostic tool for the measurements of

particle size. In this report, we will investigate the scattering

properties of small particles by two coherent cross-beams. The
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problem is closely related to defining the characteristics of

the doppler signals generated from a cross-beam LDV system.

Previous investigation by Farmer [1] indicated that the modu-

lation of the doppler signals is a unique function for different

particle shapes and depends only on one parameter given by

the ratio of particle geometric dimension to the fringe spacing

formed in the probe volume of the LDV. In this report, we will

show that Farmer's result is corrected only under some res-

trictive conditions. Only by measuring the forward scattering

with a sufficiently large aperture system can particle size

information then be obtained.

THEORETICAL ANALYSIS

Two approaches to analyzing the scattering of a spherical

particle by two coherent cross-beams have been performed. The

first approach is based on the scalar diffraction theory, which

is an approximate theory valid for particle dimensions much

larger than-a wavelength. The second approach is based on an

exact Mie scattering calculation which takes into account effects

of index of refraction of the particles. The theoretical calcu-

lations will result in a doppler signal with the following

general form

I(t) = Const (1 + V cos 2 wfdt) (1)

where I(t) is the doppler signal intensity, V is the visi-

bility (or the modulation), and fd is the doppler frequency.

What we are interested in is the dependence of the visibility

function V on parameters such as particle size, index of

refraction, cross-beam angle, and the size of the receiving

aperture.
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1. Scalar Diffraction Theory

Consider in the input plane we have a spherical particle

of radius a being illuminated by two unit amplitude plane

waves with cross-beam angle of 2y. The input field Uinput(X,y)

can then be written as

Uinput(x,y) = (eik sin yx + e-ik sin yx) (1 - P(x - vt,y) (2)

where P(x,y) is the transmission function of the particle,

and v is the velocity assuming along the x-axis. For a

spherical particle of radius a, P(x,y) = Circ (r/a) = 1

for r<a, zero otherwise. The diffracted wave at the far-field

plane (z = zf) will then be given by the following Fourier

transform expression [2],

Udiff(xfyf) = (Const phase)/Xzf

Sf Uinput(x,y) e-(2fi/Xzf)(xfx + y fy) dxdy (3)

Let us consider the integrated total scattering due to the

particle in the forward half plane. As is well known in diff-

raction theory, most of the diffracted energy from a scattering

object is contained within the first forward lobe of the

diffraction pattern. This forward lobe extends to an angle

approximately equal to A/D, where D is the dimension of the

object. Thus the total scattering signal should be approximately

equal to the signal obtained by collecting the forward scattering

within a cone of full angle greater than 2(y + A/D).

The total scattering intensity I(t) can be calculated

from equation (3). Using Parseval's theorem, we obtained the

following result:

I(t) = 2ff dxdy (1 + cos 2xk sin y) P2 (x - vt,y) (4)
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Equation (4) is a very interesting result. It illustrates

the.fact that the integrated scattering signal is equivalent to

the signal obtained by scanning a set of sinusoidal fringes of

spacing 6 = X/2 sin y with a small aperture of a shape the

same as the particle geometrical cross-section. For a spherical

particle of radius a, we have P2 (x,y) = Circ (r/a). After

some calculations, we then arrive at the visibility function of

the doppler signal as

Vspherical particle = 2J, (2a/6)/(2a/6) (5)

where J, is the first order Bessel function. Figure 1 shows

the visibility function versus the parameter 2a/6. These

results are similar to Farmer's results; however, they are

corrected only for the total scattering signals.

Next we will consider the case of collecting the scattering

along the forward direction with a finite size aperture. The

resulting signals in this case can be calculated by integrating

the scattering intensity across the aperture area. These can

be done directly from equation (3), and the results are summarized

in Figure 2. It shows the visibility function for spherical

particles versus the size of the aperture for different values

of 2a/6. Notice that as the aperture sustains a cone of full

angle greater than 2(y + X/2a), the values of V approach

the limiting values as given by equation (5).

2. Mie Scattering Theory

The problem here is to solve .the'Maxwell's equations under

the appropriate boundary conditions. For single beam scattering,

the calculation is the well documented Mie calculation based on

the multipole expansion of the electro-magnetic field. For the

present case, we have two linearly polarized incident plane waves

of the same polarization with cross-beam angle of 2y. Assuming

a coordinate system symmetric to the two incident plane waves,
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each plane wave can then be expanded into the following form [3]

6 ik-x
E = ie

= 47 i j (kr) Ym (' YZm(y , 7/2) (6)

t m

where YZm is the spherical harmonic, and j is the spherical

Bessel function of order Z. Using equation (6) as the expansion

for the incident plane waves, we can then construct the scattering

fields and apply the appropriate boundary conditions for a

spherical scattering center with radius a and index of refrac-

tion n = n - iO, where n is the real index and -8 isr r
the imaginary index. The complete calculation is sufficiently

lengthy and will not be presented here. We will try to summarize

some of the results.

For total scattering, where we integrated over 4n steradian,

the visibility function has the following interesting expression

V (2t + 1) a[a2 re (cos 2y) + bt 2 TZ (cos 2y)]V = Z(t + 1)

Z (2 g + 1)(la 12 + lb 12) (7)

where aZ and bt are the standard Mie A and B coefficients,

nr and Tt are similarly the Mie angular function. Notice the

similarity of equation (7) to the single beam Mie scattering field

expressions [4].

Numerical solutions to equation (7) have been obtained and

some of the results are shown in Figures 3 to 6. Figures 3 and

4 are results obtained for a cross-beam angle of 0.2 radian,

whereas Figures 5 and 6 are for a cross-beam angle of 0.1 radian.

The visibility functions show strong oscillation for no absorp-

tion. The oscillation decreases rapidly as absorption is intro-

duced or as the cross-beam angle is decreased. The general
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shape of the visibility functions is very similar to Figure 1

with results obtained from scalar diffraction theory.

Calculations of the visibility function for a detector

receiving a small cone angle of the forward scattering have

also been done. The results for varying particle size with a

full cone angle of 0.5 radian are shown in Figure 7. The results

are similar to those shown in Figure 3.

Figure 8 shows the change of the visibility function for

a fixed diameter particle with different receiver's cone angles

in both the forward and backward directions. For forward

scattering, the similarity with results from scalar diffraction

calculations is obvious. However, in the back scattering case,

no information on sizing can be obtained from measurements of

the visibility function.

EXPERIMENTAL RESULTS

A standard cross-beam LDV system has been constructed to

measure the visibility function for spherical particles of

different diameters. The glass particles are deposited on a

good quality AR-coated glass plate. The glass plate with diff-

erent particles on it was then slowly scanned across the probe

volume of the LDV system. Measurements of the visibility functions

have been done with this LDV system for different fringe spacings,

particles with different sizes, and different detector's receiving

cone angles. All experiments were performed with detector's

optics in the forward scattering direction. Figure 9 shows the

resulting values of visibility versus 2a/6 for a receiver's

full cone angle of 0.64 radian. Equation (5) is also shown for

comparison. Figure 10 shows the effect of varying the receiving

cone angle on the value of the visibility function for a fixed

size particle. Theoretical results identical to those shown in

Figure 8 are also shown for comparison.
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CONCLUSION

Theoretical calculations based on both scalar diffraction

theory and the exact Mie scattering theory show that the forward

scattering characteristics of a small particle in a cross-beam

LDV system can be used for particle sizing. The exact Mie cal-

culations indicate that effects due to index of refraction are

small provided the cross-beam angle is small. Both theories

predict similar scattering characteristics with varying receiver's

aperture size.

The materials in this report are being prepared for publi-

cation in technical journals. The journal articles will provide

a detailed description of the calculations involved in deriving

most of the results presented in this report.
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Figure 1. Visibility function versus the parameter
R = 2a/6 for spherical particles of
radius a, and 6 is the fringe
spacing.
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Figure 2. The visibility functions for spherical
particle versus the detector's aperture
size for five different values of 2a/6.
U = 2arf/lz where r is the radius
of the detector's aperture.
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Figure 3. Visibility functions calculated from Mie
scattering theory versus parameter 2a/6
for real index n = 1.33 and four diff-

erent imaginary ifidices. The cross-beam
angle 2y = 0.2 radian.
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Figure 5. Visibility functions calculated from Mie
scattering theory versus parameter 2a/6

Sfor real index n = 1.33 and-four diff-
erent imaginary iAdices. The cross-beam
angle 2y = 0.1 radian.
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Figure 6. Visibility functions calculated.from Mie
scatteriog theory versus parameter 2a/6
for real index nr = 1.5 and four diff-
erent imaginary indices. The cross-beam
angle 2y = 0.1 radian.
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Figure.7. The visibility function calculated from

Mie theory for a detector with full cone
angle of 0.5 radian in the forward direc-
tion versus the parameter R = 2a/6.
The real index is 1.33 and imaginary

index is zero.
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Figure 7. The visibility function calculated from
Mie theory for a detector with full cone

angle of 0.5 radian in the forward direc-

tion versus the parameter R = 2a/<S.
The real index is 1. 33 and imaginary
index is zero.
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Figure 8. The visibility function versus collecting
optics half cone angle in radian for both
the forward and back scattering directions
with a spherical particle of ka = 12.0
and index of refraction n = 1.5. The
cross-beam angle in this case is 2y = 0.2.
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Figure 9. Experimental results from the measurements
of the absolute visibility for .different
values of R = 2a/6. Equation (5) is shown 16
for comparison.
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Figure 10. Experimental results on the change of
visibility as a function of receiving
optics half cone angle in radian.
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